1
|
Kim S, Shin JJ, Kang M, Yang Y, Cho YS, Paik H, Kim J, Yi Y, Lee S, Koo HY, Bok J, Bae YC, Kim JY, Kim E. Alternatively spliced mini-exon B in PTPδ regulates excitatory synapses through cell-type-specific trans-synaptic PTPδ-IL1RAP interaction. Nat Commun 2025; 16:4415. [PMID: 40360498 PMCID: PMC12075705 DOI: 10.1038/s41467-025-59685-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
PTPδ, encoded by PTPRD, is implicated in various neurological, psychiatric, and neurodevelopmental disorders, but the underlying mechanisms remain unclear. PTPδ trans-synaptically interacts with multiple postsynaptic adhesion molecules, which involves its extracellular alternatively spliced mini-exons, meA and meB. While PTPδ-meA functions have been studied in vivo, PTPδ-meB has not been studied. Here, we report that, unlike homozygous PTPδ-meA-mutant mice, homozygous PTPδ-meB-mutant (Ptprd-meB-/-) mice show markedly reduced early postnatal survival. Heterozygous Ptprd-meB+/- male mice show behavioral abnormalities and decreased excitatory synaptic density and transmission in dentate gyrus granule cells (DG-GCs). Proteomic analyses identify decreased postsynaptic density levels of IL1RAP, a known trans-synaptic partner of meB-containing PTPδ. Accordingly, IL1RAP-mutant mice show decreased excitatory synaptic transmission in DG-GCs. Ptprd-meB+/- DG interneurons with minimal IL1RAP expression show increased excitatory synaptic density and transmission. Therefore, PTPδ-meB is important for survival, synaptic, and behavioral phenotypes and regulates excitatory synapses in cell-type-specific and IL1RAP-dependent manners.
Collapse
Affiliation(s)
- Seoyeong Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Jae Jin Shin
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Muwon Kang
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Yeji Yang
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea
- Digital Omics Research Center, Korea Basic Science Institute (KBSI), Ochang, 28119, Korea
| | - Yi Sul Cho
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, 41940, Korea
| | - Hyojung Paik
- Center for Biomedical Computing, Korea Institute of Science and Technology Information (KISTI), Daejeon, 34141, Korea
| | - Jimin Kim
- Center for Biomedical Computing, Korea Institute of Science and Technology Information (KISTI), Daejeon, 34141, Korea
| | - Yunho Yi
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Suho Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Hei Yeun Koo
- Department of Anatomy, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Jinwoong Bok
- Department of Anatomy, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, 41940, Korea
| | - Jin Young Kim
- Digital Omics Research Center, Korea Basic Science Institute (KBSI), Ochang, 28119, Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea.
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea.
| |
Collapse
|
2
|
Feliciano DM, Bordey A. TSC-mTORC1 Pathway in Postnatal V-SVZ Neurodevelopment. Biomolecules 2025; 15:573. [PMID: 40305300 PMCID: PMC12024678 DOI: 10.3390/biom15040573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/31/2025] [Accepted: 04/09/2025] [Indexed: 05/02/2025] Open
Abstract
In restricted regions of the rodent brain, neurogenesis persists throughout life, hinting that perhaps similar phenomena may exist in humans. Neural stem cells (NSCs) that reside within the ventricular-subventricular zone (V-SVZ) continually produce functional cells, including neurons that integrate into the olfactory bulb circuitry. The ability to achieve this feat is based on genetically encoded transcriptional programs that are controlled by environmentally regulated post-transcriptional signaling pathways. One such pathway that molds V-SVZ neurogenesis is the mTOR pathway. This pathway integrates nutrient sufficiency with growth factor signaling to control distinct steps of neurogenesis. Alterations in mTOR pathway signaling occur in numerous neurodevelopmental disorders. Here, we provide a narrative review for the role of the mTOR pathway in this process and discuss the use of this region to study the mTOR pathway in both health and disease.
Collapse
Affiliation(s)
- David M. Feliciano
- Department of Biological Sciences, Clemson University, Clemson, SC 29634-0314, USA
- Center for Human Genetics, Clemson University, Greenwood, SC 29646, USA
| | - Angelique Bordey
- Departments of Neurosurgery, and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06520-8082, USA;
| |
Collapse
|
3
|
Isay SE, Vornholz L, Schnalzger T, Groll T, Magg T, Loll P, Weirich G, Steiger K, Hauck F, Ruland J. Enforced CARD11/MALT1 signaling in dendritic cells triggers hemophagocytic lymphohistiocytosis. Proc Natl Acad Sci U S A 2024; 121:e2413162121. [PMID: 39661061 DOI: 10.1073/pnas.2413162121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening syndrome fueled by uncontrolled mononuclear phagocyte activity, yet the innate immune mechanisms driving HLH pathogenesis remain elusive. Germline gain-of-function (GOF) mutations in CARD11, a pivotal regulator of lymphocyte antigen receptor signaling, cause the lymphoproliferative disease B-cell expansion with NF-κB and T-cell anergy, which is frequently associated with HLH development. Given that CARD11 is physiologically expressed not only in lymphocytes but also in dendritic cells (DCs), we explored whether enforced CARD11 signaling in DCs contributes to immunopathology. We demonstrated that exclusive DC-intrinsic expression of CARD11-GOF in mice was sufficient to induce a lethal autoinflammatory syndrome that mimicked human HLH. Mechanistically, DC-intrinsic CARD11-GOF signaling triggered cell-autonomous inflammatory cytokine production via MALT1 paracaspase engagement. Genetic deletion of Malt1 in CARD11-GOF-expressing animals reversed the hyperinflammatory phenotype. These results highlight the significant role of enforced CARD11/MALT1 signaling in DCs as a contributor to HLH pathology and suggest potential therapeutic strategies for HLH treatment.
Collapse
Affiliation(s)
- Sophie E Isay
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine and Health, Technical University of Munich, Munich 81675, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich 81675, Germany
| | - Larsen Vornholz
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine and Health, Technical University of Munich, Munich 81675, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich 81675, Germany
| | - Theresa Schnalzger
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine and Health, Technical University of Munich, Munich 81675, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich 81675, Germany
| | - Tanja Groll
- Institute of Pathology, School of Medicine and Health, Technical University of Munich, Munich 81675, Germany
| | - Thomas Magg
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich 80337, Germany
| | - Patricia Loll
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine and Health, Technical University of Munich, Munich 81675, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich 81675, Germany
| | - Gregor Weirich
- Institute of Pathology, School of Medicine and Health, Technical University of Munich, Munich 81675, Germany
| | - Katja Steiger
- Institute of Pathology, School of Medicine and Health, Technical University of Munich, Munich 81675, Germany
| | - Fabian Hauck
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich 80337, Germany
| | - Jürgen Ruland
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine and Health, Technical University of Munich, Munich 81675, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich 81675, Germany
- German Cancer Consortium, Partner Site Munich, a Partnership between German Cancer Research Center and Hospital of the Technical University of Munich, Munich 81675, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich 81675, Germany
| |
Collapse
|
4
|
Furuhata Y, Kimura M, Sakai A, Murakami T, Egi E, Sakuma T, Yamamoto T, Yoshizumi T, Kato Y. Direct protein delivery into intact Arabidopsis cells for genome engineering. Sci Rep 2024; 14:22568. [PMID: 39343787 PMCID: PMC11439911 DOI: 10.1038/s41598-024-72978-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
Intracellular delivery of biomolecules is a prerequisite for genetic techniques such as recombinant engineering and genome editing. Realizing the full potential of this technology requires the development of safe and effective methods for delivering protein tools into cells. In this study, we demonstrated the spontaneous internalization of exogenous proteins into intact cells and root tissue of whole plants of Arabidopsis thaliana. We termed this internalization phenomenon as protein Delivery Independent of Vehicles or Equipment (DIVE), which efficiently delivered genome engineering proteins including Cre recombinase and zinc-finger nucleases (ZFN) into plant cells. Using protein DIVE, we achieved less toxic protein delivery than electroporation with up to 94% efficiency in Arabidopsis cell culture and 19% genome modification in Arabidopsis plants that was maintained in regenerated tissue. This work illustrates the potential of protein DIVE for a wide range of applications, including genome engineering in plants.
Collapse
Affiliation(s)
- Yuichi Furuhata
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba, 305-8566, Japan
| | - Mitsuhiro Kimura
- Faculty of Agriculture, Takasaki University of Health and Welfare, 37-1 Nakaorui-machi, Takasaki-shi, Gunma, 370-0033, Japan
| | - Ayako Sakai
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba, 305-8566, Japan
| | - Tomi Murakami
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba, 305-8566, Japan
| | - Emiko Egi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba, 305-8566, Japan
| | - Tetsushi Sakuma
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8526, Japan
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8526, Japan
| | - Takeshi Yoshizumi
- Faculty of Agriculture, Takasaki University of Health and Welfare, 37-1 Nakaorui-machi, Takasaki-shi, Gunma, 370-0033, Japan
| | - Yoshio Kato
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba, 305-8566, Japan.
| |
Collapse
|
5
|
Duquenne M, Deligia E, Folgueira C, Bourouh C, Caron E, Pfrieger F, Schwaninger M, Nogueiras R, Annicotte JS, Imbernon M, Prévot V. Tanycytic transcytosis inhibition disrupts energy balance, glucose homeostasis and cognitive function in male mice. Mol Metab 2024; 87:101996. [PMID: 39047908 PMCID: PMC11340606 DOI: 10.1016/j.molmet.2024.101996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/06/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024] Open
Abstract
OBJECTIVES In Western society, high-caloric diets rich in fats and sugars have fueled the obesity epidemic and its related disorders. Disruption of the body-brain communication, crucial for maintaining glucose and energy homeostasis, arises from both obesogenic and genetic factors, leading to metabolic disorders. Here, we investigate the role of hypothalamic tanycyte shuttles between the pituitary portal blood and the third ventricle cerebrospinal fluid in regulating energy balance. METHODS We inhibited vesicle-associated membrane proteins (VAMP1-3)-mediated release in tanycytes by expressing the botulinum neurotoxin type B light chain (BoNT/B) in a Cre-dependent manner in tanycytes. This was achieved by injecting either TAT-Cre in the third ventricle or an AAV1/2 expressing Cre under the control of the tanycyte-specific promoter iodothyronine deiodinase 2 into the lateral ventricle of adult male mice. RESULTS In male mice fed a standard diet, targeted expression of BoNT/B in adult tanycytes blocks leptin transport into the mediobasal hypothalamus and results in normal-weight central obesity, including increased food intake, abdominal fat deposition, and elevated leptin levels but no marked change in body weight. Furthermore, BoNT/B expression in adult tanycytes promotes fatty acid storage, leading to glucose intolerance and insulin resistance. Notably, these metabolic disturbances occur despite a compensatory increase in insulin secretion, observed both in response to exogenous glucose boluses in vivo and in isolated pancreatic islets. Intriguingly, these metabolic alterations are associated with impaired spatial memory in BoNT/B-expressing mice. CONCLUSIONS These findings underscore the central role of tanycytes in brain-periphery communication and highlight their potential implication in the age-related development of type 2 diabetes and cognitive decline. Our tanycytic BoNT/B mouse model provides a robust platform for studying how these conditions progress over time, from prediabetic states to full-blown metabolic and cognitive disorders, and the mechanistic contribution of tanycytes to their development. The recognition of the impact of tanycytic transcytosis on hormone transport opens new avenues for developing targeted therapies that could address both metabolic disorders and their associated cognitive comorbidities, which often emerge or worsen with advancing age.
Collapse
Affiliation(s)
- Manon Duquenne
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR_S1172, EGID, DISTALZ, Lille, France
| | - Eleonora Deligia
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR_S1172, EGID, DISTALZ, Lille, France
| | - Cintia Folgueira
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Cyril Bourouh
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Emilie Caron
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR_S1172, EGID, DISTALZ, Lille, France
| | - Frank Pfrieger
- Centre National de la Recherche Scientifique, Universite de Strasbourg, Institut des Neurosciences Cellulaires et Integratives, 67000 Strasbourg, France
| | - Markus Schwaninger
- Institute of Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Ruben Nogueiras
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Jean-Sébastien Annicotte
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France
| | - Monica Imbernon
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR_S1172, EGID, DISTALZ, Lille, France.
| | - Vincent Prévot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR_S1172, EGID, DISTALZ, Lille, France.
| |
Collapse
|
6
|
Fernandois D, Rusidzé M, Mueller-Fielitz H, Sauve F, Deligia E, Silva MSB, Evrard F, Franco-García A, Mazur D, Martinez-Corral I, Jouy N, Rasika S, Maurage CA, Giacobini P, Nogueiras R, Dehouck B, Schwaninger M, Lenfant F, Prevot V. Estrogen receptor-α signaling in tanycytes lies at the crossroads of fertility and metabolism. Metabolism 2024; 158:155976. [PMID: 39019342 PMCID: PMC7616427 DOI: 10.1016/j.metabol.2024.155976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND Estrogen secretion by the ovaries regulates the hypothalamic-pituitary-gonadal axis during the reproductive cycle, influencing gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) secretion, and also plays a role in regulating metabolism. Here, we establish that hypothalamic tanycytes-specialized glia lining the floor and walls of the third ventricle-integrate estrogenic feedback signals from the gonads and couple reproduction with metabolism by relaying this information to orexigenic neuropeptide Y (NPY) neurons. METHODS Using mouse models, including mice floxed for Esr1 (encoding estrogen receptor alpha, ERα) and those with Cre-dependent expression of designer receptors exclusively activated by designer drugs (DREADDs), along with viral-mediated, pharmacological and indirect calorimetric approaches, we evaluated the role of tanycytes and tanycytic estrogen signaling in pulsatile LH secretion, cFos expression in NPY neurons, estrous cyclicity, body-weight changes and metabolic parameters in adult females. RESULTS In ovariectomized mice, chemogenetic activation of tanycytes significantly reduced LH pulsatile release, mimicking the effects of direct NPY neuron activation. In intact mice, tanycytes were crucial for the estrogen-mediated control of GnRH/LH release, with tanycytic ERα activation suppressing fasting-induced NPY neuron activation. Selective knockout of Esr1 in tanycytes altered estrous cyclicity and fertility in female mice and affected estrogen's ability to inhibit refeeding in fasting mice. The absence of ERα signaling in tanycytes increased Npy transcripts and body weight in intact mice and prevented the estrogen-mediated decrease in food intake as well as increase in energy expenditure and fatty acid oxidation in ovariectomized mice. CONCLUSIONS Our findings underscore the pivotal role of tanycytes in the neuroendocrine coupling of reproduction and metabolism, with potential implications for its age-related deregulation after menopause. SIGNIFICANCE STATEMENT Our investigation reveals that tanycytes, specialized glial cells in the brain, are key interpreters of estrogen signals for orexigenic NPY neurons in the hypothalamus. Disrupting tanycytic estrogen receptors not only alters fertility in female mice but also impairs the ability of estrogens to suppress appetite. This work thus sheds light on the critical role played by tanycytes in bridging the hormonal regulation of cyclic reproductive function and appetite/feeding behavior. This understanding may have potential implications for age-related metabolic deregulation after menopause.
Collapse
Affiliation(s)
- Daniela Fernandois
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
| | - Mariam Rusidzé
- Institute of Metabolic and Cardiovascular Diseases (I2MC) Equipe 4, Inserm U1297UPS, CHU, Toulouse, France
| | - Helge Mueller-Fielitz
- Institute of Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Florent Sauve
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
| | - Eleonora Deligia
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
| | - Mauro S B Silva
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
| | - Florence Evrard
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
| | - Aurelio Franco-García
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, CEIR Campus Mare Nostrum, University of Murcia, Spain, Instituto Murciano de Investigación Biosanitaria (IMIB), Pascual Parrilla, Murcia, Spain
| | - Daniele Mazur
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
| | - Ines Martinez-Corral
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
| | | | - S Rasika
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
| | - Claude-Alain Maurage
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
| | - Paolo Giacobini
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
| | - Ruben Nogueiras
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Benedicte Dehouck
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
| | - Markus Schwaninger
- Institute of Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Francoise Lenfant
- Institute of Metabolic and Cardiovascular Diseases (I2MC) Equipe 4, Inserm U1297UPS, CHU, Toulouse, France
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France.
| |
Collapse
|
7
|
Gupta MN, Uversky VN. Biological importance of arginine: A comprehensive review of the roles in structure, disorder, and functionality of peptides and proteins. Int J Biol Macromol 2024; 257:128646. [PMID: 38061507 DOI: 10.1016/j.ijbiomac.2023.128646] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 01/26/2024]
Abstract
Arginine shows Jekyll and Hyde behavior in several respects. It participates in protein folding via ionic and H-bonds and cation-pi interactions; the charge and hydrophobicity of its side chain make it a disorder-promoting amino acid. Its methylation in histones; RNA binding proteins; chaperones regulates several cellular processes. The arginine-centric modifications are important in oncogenesis and as biomarkers in several cardiovascular diseases. The cross-links involving arginine in collagen and cornea are involved in pathogenesis of tissues but have also been useful in tissue engineering and wound-dressing materials. Arginine is a part of active site of several enzymes such as GTPases, peroxidases, and sulfotransferases. Its metabolic importance is obvious as it is involved in production of urea, NO, ornithine and citrulline. It can form unusual functional structures such as molecular tweezers in vitro and sprockets which engage DNA chains as part of histones in vivo. It has been used in design of cell-penetrating peptides as drugs. Arginine has been used as an excipient in both solid and injectable drug formulations; its role in suppressing opalescence due to liquid-liquid phase separation is particularly very promising. It has been known as a suppressor of protein aggregation during protein refolding. It has proved its usefulness in protein bioseparation processes like ion-exchange, hydrophobic and affinity chromatographies. Arginine is an amino acid, whose importance in biological sciences and biotechnology continues to grow in diverse ways.
Collapse
Affiliation(s)
- Munishwar Nath Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India
| | - Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|
8
|
Cheong SS, Luis TC, Stewart M, Hillier R, Hind M, Dean CH. A method for TAT-Cre recombinase-mediated floxed allele modification in ex vivo tissue slices. Dis Model Mech 2023; 16:dmm050267. [PMID: 37828896 PMCID: PMC10629676 DOI: 10.1242/dmm.050267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/06/2023] [Indexed: 10/14/2023] Open
Abstract
Precision-cut lung slices (PCLS) are used for a variety of applications. However, methods to manipulate genes in PCLS are currently limited. We developed a new method, TAT-Cre recombinase-mediated floxed allele modification in tissue slices (TReATS), to induce highly effective and temporally controlled gene deletion or activation in ex vivo PCLS. Treatment of PCLS from Rosa26-flox-stop-flox-EYFP mice with cell-permeant TAT-Cre recombinase induced ubiquitous EYFP protein expression, indicating successful Cre-mediated excision of the upstream loxP-flanked stop sequence. Quantitative real-time PCR confirmed induction of EYFP. We successfully replicated the TReATS method in PCLS from Vangl2flox/flox mice, leading to the deletion of loxP-flanked exon 4 of the Vangl2 gene. Cre-treated Vangl2flox/flox PCLS exhibited cytoskeletal abnormalities, a known phenotype caused by VANGL2 dysfunction. We report a new method that bypasses conventional Cre-Lox breeding, allowing rapid and highly effective gene manipulation in ex vivo tissue models.
Collapse
Affiliation(s)
- Sek-Shir Cheong
- National Heart and Lung Institute (NHLI), Imperial College London, London SW7 2AZ, UK
| | - Tiago C. Luis
- Centre for Inflammatory Diseases, Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Michelle Stewart
- The Mary Lyon Centre at MRC Harwell, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Rosie Hillier
- The Mary Lyon Centre at MRC Harwell, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Matthew Hind
- National Heart and Lung Institute (NHLI), Imperial College London, London SW7 2AZ, UK
- National Institute for Health Research (NIHR) Respiratory Biomedical Research Unit at the Royal Brompton and Harefield NHS Foundation Trust, London SW3 6NP, UK
| | - Charlotte H. Dean
- National Heart and Lung Institute (NHLI), Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
9
|
Strobl F, Ratke J, Krämer F, Utta A, Becker S, Stelzer EHK. Next generation marker-based vector concepts for rapid and unambiguous identification of single and double homozygous transgenic organisms. Biol Open 2023; 12:bio060015. [PMID: 37855381 PMCID: PMC10602009 DOI: 10.1242/bio.060015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/15/2023] [Indexed: 10/20/2023] Open
Abstract
For diploid model organisms, the actual transgenesis processes require subsequent periods of transgene management, which are challenging in emerging model organisms due to the lack of suitable methodology. We used the red flour beetle Tribolium castaneum, a stored-grain pest, to perform a comprehensive functional evaluation of our AClashOfStrings (ACOS) and the combined AGameOfClones/AClashOfStrings (AGOC/ACOS) vector concepts, which use four clearly distinguishable markers to provide full visual control over up to two independent transgenes. We achieved comprehensive statistical validation of our approach by systematically creating seventeen novel single and double homozygous sublines intended for fluorescence live imaging, including several sublines in which the microtubule cytoskeleton is labeled. During the mating procedures, we genotyped more than 20,000 individuals in less than 80 working hours, which corresponds to about 10 to 15 s per individual. We also confirm the functionality of our combined concept in two double transgene special cases, i.e. integration of both transgenes in close proximity on the same chromosome and integration of one transgene on the X allosome. Finally, we discuss our vector concepts regarding performance, genotyping accuracy, throughput, resource saving potential, fluorescent protein choice, modularity, adaptation to other diploid model organisms and expansion capability.
Collapse
Affiliation(s)
- Frederic Strobl
- Physical Biology / Physikalische Biologie (IZN, FB 15), Buchmann Institute for Molecular Life Sciences (BMLS), Cluster of Excellence Frankfurt – Macromolecular Complexes (CEF – MC), Goethe-Universität Frankfurt am Main (Campus Riedberg),Max-von-Laue-Straße 15, D-60438 Frankfurt am Main, Germany
| | - Julia Ratke
- Physical Biology / Physikalische Biologie (IZN, FB 15), Buchmann Institute for Molecular Life Sciences (BMLS), Cluster of Excellence Frankfurt – Macromolecular Complexes (CEF – MC), Goethe-Universität Frankfurt am Main (Campus Riedberg),Max-von-Laue-Straße 15, D-60438 Frankfurt am Main, Germany
| | - Franziska Krämer
- Physical Biology / Physikalische Biologie (IZN, FB 15), Buchmann Institute for Molecular Life Sciences (BMLS), Cluster of Excellence Frankfurt – Macromolecular Complexes (CEF – MC), Goethe-Universität Frankfurt am Main (Campus Riedberg),Max-von-Laue-Straße 15, D-60438 Frankfurt am Main, Germany
| | - Ana Utta
- Physical Biology / Physikalische Biologie (IZN, FB 15), Buchmann Institute for Molecular Life Sciences (BMLS), Cluster of Excellence Frankfurt – Macromolecular Complexes (CEF – MC), Goethe-Universität Frankfurt am Main (Campus Riedberg),Max-von-Laue-Straße 15, D-60438 Frankfurt am Main, Germany
| | - Sigrun Becker
- Physical Biology / Physikalische Biologie (IZN, FB 15), Buchmann Institute for Molecular Life Sciences (BMLS), Cluster of Excellence Frankfurt – Macromolecular Complexes (CEF – MC), Goethe-Universität Frankfurt am Main (Campus Riedberg),Max-von-Laue-Straße 15, D-60438 Frankfurt am Main, Germany
| | - Ernst H. K. Stelzer
- Physical Biology / Physikalische Biologie (IZN, FB 15), Buchmann Institute for Molecular Life Sciences (BMLS), Cluster of Excellence Frankfurt – Macromolecular Complexes (CEF – MC), Goethe-Universität Frankfurt am Main (Campus Riedberg),Max-von-Laue-Straße 15, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
10
|
Zhao M, Chauhan P, Sherman CA, Singh A, Kaileh M, Mazan-Mamczarz K, Ji H, Joy J, Nandi S, De S, Zhang Y, Fan J, Becker KG, Loke P, Zhou W, Sen R. NF-κB subunits direct kinetically distinct transcriptional cascades in antigen receptor-activated B cells. Nat Immunol 2023; 24:1552-1564. [PMID: 37524800 PMCID: PMC10457194 DOI: 10.1038/s41590-023-01561-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/15/2023] [Indexed: 08/02/2023]
Abstract
The nuclear factor kappa B (NF-κB) family of transcription factors orchestrates signal-induced gene expression in diverse cell types. Cellular responses to NF-κB activation are regulated at the level of cell and signal specificity, as well as differential use of family members (subunit specificity). Here we used time-dependent multi-omics to investigate the selective functions of Rel and RelA, two closely related NF-κB proteins, in primary B lymphocytes activated via the B cell receptor. Despite large numbers of shared binding sites genome wide, Rel and RelA directed kinetically distinct cascades of gene expression in activated B cells. Single-cell RNA sequencing revealed marked heterogeneity of Rel- and RelA-specific responses, and sequential binding of these factors was not a major mechanism of protracted transcription. Moreover, nuclear co-expression of Rel and RelA led to functional antagonism between the factors. By rigorously identifying the target genes of each NF-κB subunit, these studies provide insights into exclusive functions of Rel and RelA in immunity and cancer.
Collapse
Affiliation(s)
- Mingming Zhao
- Gene Regulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
- Type 2 Immunity Section, Laboratory of Parasitic Diseases National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Prashant Chauhan
- Gene Regulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | - Cheryl A Sherman
- Gene Regulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | - Amit Singh
- Gene Regulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | - Mary Kaileh
- Gene Regulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | - Krystyna Mazan-Mamczarz
- Computational Biology and Genomics Core, Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, MD, USA
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jaimy Joy
- Gene Regulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | - Satabdi Nandi
- Gene Regulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | - Supriyo De
- Computational Biology and Genomics Core, Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, MD, USA
| | - Yongqing Zhang
- Computational Biology and Genomics Core, Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, MD, USA
| | - Jinshui Fan
- Computational Biology and Genomics Core, Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, MD, USA
| | - Kevin G Becker
- Computational Biology and Genomics Core, Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, MD, USA
| | - Png Loke
- Type 2 Immunity Section, Laboratory of Parasitic Diseases National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Weiqiang Zhou
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ranjan Sen
- Gene Regulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA.
| |
Collapse
|
11
|
Tromp A, Wang H, Hall TE, Mowry B, Giacomotto J. Optimising the zebrafish Cre/Lox toolbox. Codon improved iCre, new gateway tools, Cre protein and guidelines. Front Physiol 2023; 14:1221310. [PMID: 37601640 PMCID: PMC10433388 DOI: 10.3389/fphys.2023.1221310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/04/2023] [Indexed: 08/22/2023] Open
Abstract
We recently introduced the Cre/Lox technology in our laboratory for both transient (mRNA injections) and stable/transgenic experiments. We experienced significant issues such as silencing, mosaicism, and partial recombination using both approaches. Reviewing the literature gave us the impression that these issues are common among the zebrafish community using the Cre/Lox system. While some researchers took advantage of these problems for specific applications, such as cell and lineage tracing using the Zebrabow construct, we tried here to improve the efficiency and reliability of this system by constituting and testing a new set of tools for zebrafish genetics. First, we implemented a codon-improved Cre version (iCre) designed for rodent studies to counteract some of the aforementioned problems. This eukaryotic-like iCre version was engineered to i) reduce silencing, ii) increase mRNA stability, iii) enhance translational efficiency, and iv) improve nuclear translocation. Second, we established a new set of tol2-kit compatible vectors to facilitate the generation of either iCre-mRNA or iCre-transgenes for transient and transgenic experiments, respectively. We then validated the use of this material and are providing tips for users. Interestingly, during the validation steps, we found that maternal iCRE-mRNA and/or protein deposition from female transgenics systematically led to complete/homogeneous conversion of all tested Lox-responder-transgenes, as opposed to some residual imperfect conversion when using males-drivers or mRNA injections. Considering that we did not find any evidence of Cre-protein soaking and injections in the literature as it is usually conducted with cells, we tested these approaches. While soaking of cell-permeant CRE-protein did not lead to any detectable Lox-conversion, 1ng-10 ng protein injections led to robust and homogeneous Lox-recombination, suggesting that the use of protein could be a robust option for exogenous delivery. This approach may be particularly useful to manipulate housekeeping genes involved in development, sex determination and reproduction which are difficult to investigate with traditional knockout approaches. All in all, we are providing here a new set of tools that should be useful in the field.
Collapse
Affiliation(s)
- Alisha Tromp
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia
| | - Haitao Wang
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia
| | - Thomas E. Hall
- Institute for Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia
| | - Bryan Mowry
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia
- Queensland Centre for Mental Health Research, Wacol, QLD, Australia
| | - Jean Giacomotto
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia
- Centre for Cellular Phenomics, School of Environment and Science, Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
| |
Collapse
|
12
|
Oh H, Lee S, Oh Y, Kim S, Kim YS, Yang Y, Choi W, Yoo YE, Cho H, Lee S, Yang E, Koh W, Won W, Kim R, Lee CJ, Kim H, Kang H, Kim JY, Ku T, Paik SB, Kim E. Kv7/KCNQ potassium channels in cortical hyperexcitability and juvenile seizure-related death in Ank2-mutant mice. Nat Commun 2023; 14:3547. [PMID: 37321992 PMCID: PMC10272139 DOI: 10.1038/s41467-023-39203-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/01/2023] [Indexed: 06/17/2023] Open
Abstract
Autism spectrum disorders (ASD) represent neurodevelopmental disorders characterized by social deficits, repetitive behaviors, and various comorbidities, including epilepsy. ANK2, which encodes a neuronal scaffolding protein, is frequently mutated in ASD, but its in vivo functions and disease-related mechanisms are largely unknown. Here, we report that mice with Ank2 knockout restricted to cortical and hippocampal excitatory neurons (Ank2-cKO mice) show ASD-related behavioral abnormalities and juvenile seizure-related death. Ank2-cKO cortical neurons show abnormally increased excitability and firing rate. These changes accompanied decreases in the total level and function of the Kv7.2/KCNQ2 and Kv7.3/KCNQ3 potassium channels and the density of these channels in the enlengthened axon initial segment. Importantly, the Kv7 agonist, retigabine, rescued neuronal excitability, juvenile seizure-related death, and hyperactivity in Ank2-cKO mice. These results suggest that Ank2 regulates neuronal excitability by regulating the length of and Kv7 density in the AIS and that Kv7 channelopathy is involved in Ank2-related brain dysfunctions.
Collapse
Affiliation(s)
- Hyoseon Oh
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Suho Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Yusang Oh
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Korea
| | - Seongbin Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Young Seo Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Korea
| | - Yeji Yang
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, 162 Yeongudanjiro, Ochang, Cheongju, Chungbuk, 28119, Korea
| | - Woochul Choi
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Korea
| | - Ye-Eun Yoo
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Heejin Cho
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Seungjoon Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Esther Yang
- Department of Anatomy and Brain Korea 21 Graduate Program, Biomedical Science, College of Medicine, Korea University, Seoul, 02841, Korea
| | - Wuhyun Koh
- Center for Cognition and Sociality, IBS, Daejeon, 34126, Korea
| | - Woojin Won
- Center for Cognition and Sociality, IBS, Daejeon, 34126, Korea
| | - Ryunhee Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - C Justin Lee
- Center for Cognition and Sociality, IBS, Daejeon, 34126, Korea
| | - Hyun Kim
- Department of Anatomy and Brain Korea 21 Graduate Program, Biomedical Science, College of Medicine, Korea University, Seoul, 02841, Korea
| | - Hyojin Kang
- Division of National Supercomputing, Korea Institute of Science and Technology Information, Daejeon, 34141, Korea
| | - Jin Young Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, 162 Yeongudanjiro, Ochang, Cheongju, Chungbuk, 28119, Korea
| | - Taeyun Ku
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Korea
| | - Se-Bum Paik
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea.
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea.
| |
Collapse
|
13
|
Ozguldez HO, Govindasamy N, Fan R, Long H, Mildner K, Zeuschner D, Trappmann B, Ranga A, Bedzhov I. Polarity inversion reorganizes the stem cell compartment of the trophoblast lineage. Cell Rep 2023; 42:112313. [PMID: 36989113 PMCID: PMC10157138 DOI: 10.1016/j.celrep.2023.112313] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/12/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
The extra-embryonic tissues that form the placenta originate from a small population of trophectoderm cells with stem cell properties, positioned at the embryonic pole of the mouse blastocyst. During the implantation stages, the polar trophectoderm rapidly proliferates and transforms into extra-embryonic ectoderm. The current model of trophoblast morphogenesis suggests that tissue folding reshapes the trophoblast during the blastocyst to egg cylinder transition. Instead of through folding, here we found that the tissue scale architecture of the stem cell compartment of the trophoblast lineage is reorganized via inversion of the epithelial polarity axis. Our findings show the developmental significance of polarity inversion and provide a framework for the morphogenetic transitions in the peri-implantation trophoblast.
Collapse
Affiliation(s)
- Hatice O Ozguldez
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Niraimathi Govindasamy
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Rui Fan
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Hongyan Long
- Bioactive Materials Laboratory, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Karina Mildner
- Electron Microscopy Facility, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Dagmar Zeuschner
- Electron Microscopy Facility, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Britta Trappmann
- Bioactive Materials Laboratory, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Adrian Ranga
- Laboratory of Bioengineering and Morphogenesis, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Ivan Bedzhov
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany.
| |
Collapse
|
14
|
Barbotin AL, Mimouni NEH, Kuchcinski G, Lopes R, Viard R, Rasika S, Mazur D, Silva MSB, Simon V, Boursier A, Pruvo JP, Yu Q, Candlish M, Boehm U, Bello FD, Medana C, Pigny P, Dewailly D, Prevot V, Catteau-Jonard S, Giacobini P. Hypothalamic neuroglial plasticity is regulated by anti-Müllerian hormone and disrupted in polycystic ovary syndrome. EBioMedicine 2023; 90:104535. [PMID: 37001236 PMCID: PMC10070524 DOI: 10.1016/j.ebiom.2023.104535] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is the most common reproductive-endocrine disorder affecting between 5 and 18% of women worldwide. An elevated frequency of pulsatile luteinizing hormone (LH) secretion and higher serum levels of anti-Müllerian hormone (AMH) are frequently observed in women with PCOS. The origin of these abnormalities is, however, not well understood. METHODS We studied brain structure and function in women with and without PCOS using proton magnetic resonance spectroscopy (MRS) and diffusion tensor imaging combined with fiber tractography. Then, using a mouse model of PCOS, we investigated by electron microscopy whether AMH played a role on the regulation of hypothalamic structural plasticity. FINDINGS Increased AMH serum levels are associated with increased hypothalamic activity/axonal-glial signalling in PCOS patients. Furthermore, we demonstrate that AMH promotes profound micro-structural changes in the murine hypothalamic median eminence (ME), creating a permissive environment for GnRH secretion. These include the retraction of the processes of specialized AMH-sensitive ependymo-glial cells called tanycytes, allowing more GnRH neuron terminals to approach ME blood capillaries both during the run-up to ovulation and in a mouse model of PCOS. INTERPRETATION We uncovered a central function for AMH in the regulation of fertility by remodeling GnRH terminals and their tanycytic sheaths, and provided insights into the pivotal role of the brain in the establishment and maintenance of neuroendocrine dysfunction in PCOS. FUNDING INSERM (U1172), European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement n° 725149), CHU de Lille, France (Bonus H).
Collapse
Affiliation(s)
- Anne-Laure Barbotin
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille F-59000, France; CHU Lille, Institut de Biologie de la Reproduction-Spermiologie-CECOS, Lille F-59000, France
| | - Nour El Houda Mimouni
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille F-59000, France
| | - Grégory Kuchcinski
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille F-59000, France; CHU Lille, Department of Neuroradiology, Lille F-59000, France
| | - Renaud Lopes
- CHU Lille, Department of Neuroradiology, Lille F-59000, France
| | - Romain Viard
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, Lille F-59000, France
| | - Sowmyalakshmi Rasika
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille F-59000, France
| | - Daniele Mazur
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille F-59000, France
| | - Mauro S B Silva
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille F-59000, France
| | - Virginie Simon
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille F-59000, France
| | - Angèle Boursier
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille F-59000, France; CHU Lille, Institut de Biologie de la Reproduction-Spermiologie-CECOS, Lille F-59000, France
| | | | - Qiang Yu
- Experimental Pharmacology, Center for Molecular Signalling (PZMS), Saarland University School of Medicine, Homburg 66123, Germany
| | - Michael Candlish
- Experimental Pharmacology, Center for Molecular Signalling (PZMS), Saarland University School of Medicine, Homburg 66123, Germany
| | - Ulrich Boehm
- Experimental Pharmacology, Center for Molecular Signalling (PZMS), Saarland University School of Medicine, Homburg 66123, Germany
| | - Federica Dal Bello
- Department of Molecular Biotechnology and Health Science, University of Turin, Turin 10125, Italy
| | - Claudio Medana
- Department of Molecular Biotechnology and Health Science, University of Turin, Turin 10125, Italy
| | - Pascal Pigny
- CHU Lille, Service de Biochimie et Hormonologie, Centre de Biologie Pathologie, Lille F-59000, France
| | - Didier Dewailly
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille F-59000, France
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille F-59000, France
| | - Sophie Catteau-Jonard
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille F-59000, France; CHU Lille, Service de Gynécologie Médicale, Hôpital Jeanne de Flandre, Lille F-59000, France
| | - Paolo Giacobini
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille F-59000, France.
| |
Collapse
|
15
|
Hu G, Song M, Wang Y, Hao K, Wang J, Zhang Y. Using a modified piggyBac transposon-combined Cre/loxP system to produce selectable reporter-free transgenic bovine mammary epithelial cells for somatic cell nuclear transfer. Genesis 2023:e23510. [PMID: 36748563 DOI: 10.1002/dvg.23510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 02/08/2023]
Abstract
Transposon systems are widely used for genetic engineering in various model organisms. PiggyBac (PB) has recently been confirmed to have highly efficient transposition in the mouse germ line and mammalian cell lines. In this study, we used a modified PB transposon system mediated by PB transposase (PBase) mRNA carrying the human lactoferrin gene driven by bovine β-casein promoter to transfect bovine mammary epithelial cells (BMECs), and the selectable reporter in two stable transgenic BMEC clones was removed using cell-permeant Cre recombinase. These reporter-free transgenic BMECs were used as donor cells for somatic cell nuclear transfer (SCNT) and exhibited a competence of SCNT embryos similar to stable transgenic BMECs and nontransgenic BMECs. The comprehensive information from this study provided a modified approach using an altered PB transposon system mediated by PBase mRNA in vitro and combined with the Cre/loxP system to produce transgenic and selectable reporter-free donor nuclei for SCNT. Consequently, the production of safe bovine mammary bioreactors can be promoted.
Collapse
Affiliation(s)
- Guangdong Hu
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Meijun Song
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Yan Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Kexing Hao
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Jing Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, China.,College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
16
|
Chan WH, Micati D, Engel RM, Kerr G, Akhtar R, Jardé T, Abud HE. Modeling Intestinal Carcinogenesis Using In Vitro Organoid Cultures. Methods Mol Biol 2023; 2691:55-69. [PMID: 37355537 DOI: 10.1007/978-1-0716-3331-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2023]
Abstract
Mouse models of intestinal carcinogenesis are very powerful tools for studying the impact of specific mutations on tumor initiation and progression. Mutations can be studied both singularly and in combination using conditional alleles that can be induced in a temporal manner. The steps in intestinal carcinogenesis are complex and can be challenging to image in live animals at a cellular level. The ability to culture intestinal epithelial tissue in three-dimensional organoids in vitro provides an accessible system that can be genetically manipulated and easily visualized to assess specific biological impacts in living tissue. Here, we describe methodology for conditional mutation of genes in organoids from genetically modified mice via induction of Cre recombinase induced by tamoxifen or by transient exposure to TAT-Cre protein and subsequent phenotyping of the organoids. This methodology provides a rapid platform for assessing the cellular changes induced by specific mutations in intestinal tissue.
Collapse
Affiliation(s)
- Wing Hei Chan
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
| | - Diana Micati
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
| | - Rebekah M Engel
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Cabrini Monash University Department of Surgery, Cabrini Hospital, Melbourne, VIC, Australia
| | - Genevieve Kerr
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
| | - Reyhan Akhtar
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Thierry Jardé
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia.
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia.
- Cancer Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia.
| | - Helen E Abud
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia.
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia.
| |
Collapse
|
17
|
Kaiser KA, Loffredo LF, Santos-Alexis KDL, Ringham OR, Arpaia N. Regulation of the alveolar regenerative niche by amphiregulin-producing regulatory T cells. J Exp Med 2022; 220:213767. [PMID: 36534084 PMCID: PMC9767680 DOI: 10.1084/jem.20221462] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/26/2022] [Accepted: 11/16/2022] [Indexed: 12/23/2022] Open
Abstract
Following respiratory viral infection, regeneration of the epithelial barrier is required to preserve lung function and prevent secondary infections. Lung regulatory T (Treg) cells are critical for maintaining blood oxygenation following influenza virus infection through production of the EGFR ligand amphiregulin (Areg); however, how Treg cells engage with progenitors within the alveolar niche is unknown. Here, we describe local interactions between Treg cells and an Areg-responsive population of Col14a1+EGFR+ lung mesenchymal cells that mediate type II alveolar epithelial (AT2) cell-mediated regeneration following influenza virus infection. We propose a mechanism whereby Treg cells are deployed to sites of damage and provide pro-survival cues that support mesenchymal programming of the alveolar niche. In the absence of fibroblast EGFR signaling, we observe impaired AT2 proliferation and disrupted lung remodeling following viral clearance, uncovering a crucial immune/mesenchymal/epithelial network that guides alveolar regeneration.
Collapse
Affiliation(s)
- Katherine A. Kaiser
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Lucas F. Loffredo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Olivia R. Ringham
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Nicholas Arpaia
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA,Correspondence to Nicholas Arpaia:
| |
Collapse
|
18
|
Imai T, Van TM, Pasparakis M, Polykratis A. Smooth muscle cell specific NEMO deficiency inhibits atherosclerosis in ApoE−/− mice. Sci Rep 2022; 12:12538. [PMID: 35869246 PMCID: PMC9307802 DOI: 10.1038/s41598-022-16737-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/14/2022] [Indexed: 11/22/2022] Open
Abstract
The development of atherosclerotic plaques is the result of a chronic inflammatory response coordinated by stromal and immune cellular components of the vascular wall. While endothelial cells and leukocytes are well-recognised mediators of inflammation in atherosclerosis, the role of smooth muscle cells (SMCs) remains incompletely understood. Here we aimed to address the role of canonical NF-κB signalling in SMCs in the development of atherosclerosis. We investigated the role of NF-κB signalling in SMCs in atherosclerosis by employing SMC-specific ablation of NEMO, an IKK complex subunit that is essential for canonical NF-κB activation, in ApoE−/− mice. We show that SMC-specific ablation of NEMO (NEMOSMCiKO) inhibited high fat diet induced atherosclerosis in ApoE−/− mice. NEMOSMCiKO/ApoE−/− mice developed less and smaller atherosclerotic plaques, which contained fewer macrophages, decreased numbers of apoptotic cells and smaller necrotic areas and showed reduced inflammation compared to the plaques of ApoE−/− mice. In addition, the plaques of NEMOSMCiKO/ApoE−/− mice showed higher expression of α-SMA and lower expression of the transcriptional factor KLF4 compared to those of ApoE−/− mice. Consistently, in vitro, NEMO-deficient SMCs exhibited reduced proliferation and migration, as well as decreased KLF4 expression and lower production of IL-6 and MCP-1 upon inflammatory stimulus (TNF or LPS) compared to NEMO-expressing SMCs. In conclusion, NEMO-dependent activation of NF-κB signalling in SMCs critically contributes to the pathogenesis of atherosclerosis by regulating SMC proliferation, migration and phenotype switching in response to inflammatory stimuli.
Collapse
|
19
|
Bakker W, Imbernon M, Salinas CG, Moro Chao DH, Hassouna R, Morel C, Martin C, Leger C, Denis RG, Castel J, Peter A, Heni M, Maetzler W, Nielsen HS, Duquenne M, Schwaninger M, Lundh S, Johan Hogendorf WF, Gangarossa G, Secher A, Hecksher-Sørensen J, Pedersen TÅ, Prevot V, Luquet S. Acute changes in systemic glycemia gate access and action of GLP-1R agonist on brain structures controlling energy homeostasis. Cell Rep 2022; 41:111698. [PMID: 36417883 PMCID: PMC9715912 DOI: 10.1016/j.celrep.2022.111698] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 08/19/2022] [Accepted: 10/20/2022] [Indexed: 11/23/2022] Open
Abstract
Therapies based on glucagon-like peptide-1 (GLP-1) long-acting analogs and insulin are often used in the treatment of metabolic diseases. Both insulin and GLP-1 receptors are expressed in metabolically relevant brain regions, suggesting a cooperative action. However, the mechanisms underlying the synergistic actions of insulin and GLP-1R agonists remain elusive. In this study, we show that insulin-induced hypoglycemia enhances GLP-1R agonists entry in hypothalamic and area, leading to enhanced whole-body fat oxidation. Mechanistically, this phenomenon relies on the release of tanycyctic vascular endothelial growth factor A, which is selectively impaired after calorie-rich diet exposure. In humans, low blood glucose also correlates with enhanced blood-to-brain passage of insulin, suggesting that blood glucose gates the passage other energy-related signals in the brain. This study implies that the preventing hyperglycemia is important to harnessing the full benefit of GLP-1R agonist entry in the brain and action onto lipid mobilization and body weight loss.
Collapse
Affiliation(s)
- Wineke Bakker
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, 75013 Paris, France,Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark,Corresponding author
| | - Monica Imbernon
- University Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, EGID, UMR-S 1172, 59000 Lille, France
| | - Casper Gravesen Salinas
- Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark,Image Analysis & Computer Graphics, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark,Gubra ApS, Hørsholm Kongevej 11B, 2970 Hørsholm, Denmark
| | | | - Rim Hassouna
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, 75013 Paris, France
| | - Chloe Morel
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, 75013 Paris, France
| | - Claire Martin
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, 75013 Paris, France
| | - Caroline Leger
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, 75013 Paris, France
| | - Raphael G.P. Denis
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, 75013 Paris, France,Institut Cochin, Université Paris Cité, INSERM U1016, CNRS UMR 8104, 75014 Paris, France
| | - Julien Castel
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, 75013 Paris, France
| | - Andreas Peter
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany,German Center for Diabetes Research (DZD), Tübingen, Germany,Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Martin Heni
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University of Tübingen, Tübingen, Germany,Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany,German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Walter Maetzler
- Department of Neurodegenerative Diseases, Center of Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany,German Center for Neurodegenerative Diseases, Tübingen, Germany,Department of Neurology, University of Kiel, Kiel, Germany
| | | | - Manon Duquenne
- University Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, EGID, UMR-S 1172, 59000 Lille, France
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Sofia Lundh
- Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | | | - Giuseppe Gangarossa
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, 75013 Paris, France
| | - Anna Secher
- Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | - Jacob Hecksher-Sørensen
- Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark,Gubra ApS, Hørsholm Kongevej 11B, 2970 Hørsholm, Denmark
| | | | - Vincent Prevot
- University Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, EGID, UMR-S 1172, 59000 Lille, France
| | - Serge Luquet
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, 75013 Paris, France,Corresponding author
| |
Collapse
|
20
|
Increased susceptibility to doxorubicin-induced cell death in acute lymphocytic leukemia cells by inhibiting serine/threonine WEE1 kinase expression using the chitosan-carboxymethyl dextran-polyethylene glycol-TAT nanoparticles. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Bernhardt C, Sock E, Fröb F, Hillgärtner S, Nemer M, Wegner M. KLF9 and KLF13 transcription factors boost myelin gene expression in oligodendrocytes as partners of SOX10 and MYRF. Nucleic Acids Res 2022; 50:11509-11528. [PMID: 36318265 PMCID: PMC9723594 DOI: 10.1093/nar/gkac953] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
Differentiated oligodendrocytes produce myelin and thereby ensure rapid nerve impulse conduction and efficient information processing in the vertebrate central nervous system. The Krüppel-like transcription factor KLF9 enhances oligodendrocyte differentiation in culture, but appears dispensable in vivo. Its mode of action and role within the oligodendroglial gene regulatory network are unclear. Here we show that KLF9 shares its expression in differentiating oligodendrocytes with the closely related KLF13 protein. Both KLF9 and KLF13 bind to regulatory regions of genes that are important for oligodendrocyte differentiation and equally recognized by the central differentiation promoting transcription factors SOX10 and MYRF. KLF9 and KLF13 physically interact and synergistically activate oligodendrocyte-specific regulatory regions with SOX10 and MYRF. Similar to KLF9, KLF13 promotes differentiation and myelination in primary oligodendroglial cultures. Oligodendrocyte differentiation is also altered in KLF13-deficient mice as demonstrated by a transiently reduced myelin gene expression during the first postnatal week. Considering mouse phenotypes, the similarities in expression pattern and genomic binding and the behaviour in functional assays, KLF9 and KLF13 are important and largely redundant components of the gene regulatory network in charge of oligodendrocyte differentiation and myelination.
Collapse
Affiliation(s)
- Celine Bernhardt
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Elisabeth Sock
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Franziska Fröb
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Simone Hillgärtner
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Mona Nemer
- Molecular Genetics and Cardiac Regeneration Laboratory, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Michael Wegner
- To whom correspondence should be addressed. Tel: +49 9131 85 24620; Fax: +49 9131 85 22484;
| |
Collapse
|
22
|
Hydrophobicity is a key determinant in the activity of arginine-rich cell penetrating peptides. Sci Rep 2022; 12:15981. [PMID: 36156072 PMCID: PMC9510126 DOI: 10.1038/s41598-022-20425-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022] Open
Abstract
To deliver useful biological payloads into the cytosolic space of cells, cell-penetrating peptides have to cross biological membranes. The molecular features that control or enhance this activity remain unclear. Herein, a dimeric template of the arginine-rich HIV TAT CPP was used to establish the effect of incorporating groups and residues of various chemical structures and properties. A positive correlation is established between the relative hydrophobicity of these additional moieties and the ability of the CPP conjugates to deliver a peptidic probe into live cells. CPP conjugates with low hydrophobicity lead to no detectable delivery activity, while CPPs containing groups of increasing hydrophobicity achieve intracellular delivery at low micromolar concentrations. Notably, the chemical structures of the hydrophobic groups do not appear to play a role in overall cell penetration activity. The cell penetration activity detected is consistent with endosomal escape. Leakage assays with lipid bilayer of endosomal membrane composition also establish a positive correlation between hydrophobicity and membrane permeation. Overall, these results indicate that the presence of a relatively hydrophobic moiety, regardless of structure, is required in a CPP structure to enhance its cell penetration. It also indicates that simple modifications, including fluorophores used for cell imaging or small payloads, modulate the activity of CPPs and that a given CPP-conjugate may be unique in its membrane permeation properties.
Collapse
|
23
|
Cheng S, Mittnenzweig M, Mayshar Y, Lifshitz A, Dunjić M, Rais Y, Ben-Yair R, Gehrs S, Chomsky E, Mukamel Z, Rubinstein H, Schlereth K, Reines N, Orenbuch AH, Tanay A, Stelzer Y. The intrinsic and extrinsic effects of TET proteins during gastrulation. Cell 2022; 185:3169-3185.e20. [PMID: 35908548 PMCID: PMC9432429 DOI: 10.1016/j.cell.2022.06.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/18/2022] [Accepted: 06/25/2022] [Indexed: 12/17/2022]
Abstract
Mice deficient for all ten-eleven translocation (TET) genes exhibit early gastrulation lethality. However, separating cause and effect in such embryonic failure is challenging. To isolate cell-autonomous effects of TET loss, we used temporal single-cell atlases from embryos with partial or complete mutant contributions. Strikingly, when developing within a wild-type embryo, Tet-mutant cells retain near-complete differentiation potential, whereas embryos solely comprising mutant cells are defective in epiblast to ectoderm transition with degenerated mesoderm potential. We map de-repressions of early epiblast factors (e.g., Dppa4 and Gdf3) and failure to activate multiple signaling from nascent mesoderm (Lefty, FGF, and Notch) as likely cell-intrinsic drivers of TET loss phenotypes. We further suggest loss of enhancer demethylation as the underlying mechanism. Collectively, our work demonstrates an unbiased approach for defining intrinsic and extrinsic embryonic gene function based on temporal differentiation atlases and disentangles the intracellular effects of the demethylation machinery from its broader tissue-level ramifications. Chimeras with full or partial Tet deficiency are mapped over the course of gastrulation Tet-TKO cells disrupt signaling, leading to skewed whole-embryo mutant gastrulation Tet-TKO cells retain near-complete differentiation potential in a chimera context Loss of TET leads to pervasive hypermethylation and mildly perturbed gene expression
Collapse
Affiliation(s)
- Saifeng Cheng
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Markus Mittnenzweig
- Department of Computer Science and Applied Mathematics and Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Yoav Mayshar
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Aviezer Lifshitz
- Department of Computer Science and Applied Mathematics and Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Marko Dunjić
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Yoach Rais
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Raz Ben-Yair
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Stephanie Gehrs
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ), Heidelberg, Germany; European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Elad Chomsky
- Department of Computer Science and Applied Mathematics and Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Zohar Mukamel
- Department of Computer Science and Applied Mathematics and Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Hernan Rubinstein
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Katharina Schlereth
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ), Heidelberg, Germany; European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Netta Reines
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | | | - Amos Tanay
- Department of Computer Science and Applied Mathematics and Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel.
| | - Yonatan Stelzer
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel.
| |
Collapse
|
24
|
Tanycytes control hypothalamic liraglutide uptake and its anti-obesity actions. Cell Metab 2022; 34:1054-1063.e7. [PMID: 35716660 PMCID: PMC7613793 DOI: 10.1016/j.cmet.2022.06.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 08/08/2021] [Accepted: 06/01/2022] [Indexed: 11/24/2022]
Abstract
Liraglutide, an anti-diabetic drug and agonist of the glucagon-like peptide one receptor (GLP1R), has recently been approved to treat obesity in individuals with or without type 2 diabetes. Despite its extensive metabolic benefits, the mechanism and site of action of liraglutide remain unclear. Here, we demonstrate that liraglutide is shuttled to target cells in the mouse hypothalamus by specialized ependymoglial cells called tanycytes, bypassing the blood-brain barrier. Selectively silencing GLP1R in tanycytes or inhibiting tanycytic transcytosis by botulinum neurotoxin expression not only hampers liraglutide transport into the brain and its activation of target hypothalamic neurons, but also blocks its anti-obesity effects on food intake, body weight and fat mass, and fatty acid oxidation. Collectively, these striking data indicate that the liraglutide-induced activation of hypothalamic neurons and its downstream metabolic effects are mediated by its tanycytic transport into the mediobasal hypothalamus, strengthening the notion of tanycytes as key regulators of metabolic homeostasis.
Collapse
|
25
|
Jang A, Lehtinen MK. Experimental approaches for manipulating choroid plexus epithelial cells. Fluids Barriers CNS 2022; 19:36. [PMID: 35619113 PMCID: PMC9134666 DOI: 10.1186/s12987-022-00330-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/14/2022] [Indexed: 12/26/2022] Open
Abstract
Choroid plexus (ChP) epithelial cells are crucial for the function of the blood-cerebrospinal fluid barrier (BCSFB) in the developing and mature brain. The ChP is considered the primary source and regulator of CSF, secreting many important factors that nourish the brain. It also performs CSF clearance functions including removing Amyloid beta and potassium. As such, the ChP is a promising target for gene and drug therapy for neurodevelopmental and neurological disorders in the central nervous system (CNS). This review describes the current successful and emerging experimental approaches for targeting ChP epithelial cells. We highlight methodological strategies to specifically target these cells for gain or loss of function in vivo. We cover both genetic models and viral gene delivery systems. Additionally, several lines of reporters to access the ChP epithelia are reviewed. Finally, we discuss exciting new approaches, such as chemical activation and transplantation of engineered ChP epithelial cells. We elaborate on fundamental functions of the ChP in secretion and clearance and outline experimental approaches paving the way to clinical applications.
Collapse
Affiliation(s)
- Ahram Jang
- Department of Pathology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
26
|
Zhang C, Ren H, Liu G, Li J, Wang X, Zhang Y. Effective Genome Editing Using CRISPR-Cas9 Nanoflowers. Adv Healthc Mater 2022; 11:e2102365. [PMID: 34989166 DOI: 10.1002/adhm.202102365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/17/2021] [Indexed: 01/31/2023]
Abstract
CRISPR-Cas9 as a powerful gene-editing tool has tremendous potential for the treatment of genetic diseases. Herein, a new mesoporous nanoflower (NF)-like delivery nanoplatform termed Cas9-NF is reported by crosslinking Cas9 and polymeric micelles that enables efficient intracellular delivery and controlled release of Cas9 in response to reductive microenvironment in tumor cells. The flower morphology is flexibly tunable by the protein concentration and different types of crosslinkers. Cas9 protein, embedded between polymeric micelles and protected by Cas9-NF, remains stable even under extreme pH conditions. Responsive cleavage of crosslinkers in tumor cells, leads to the traceless release of Cas9 for efficient gene knockout in nucleus. This crosslinked nanoparticle exhibits excellent capability of downregulating oncogene expression and inhibiting tumor growth in a murine tumor model. Taken together, these findings pave a new pathway toward the application of the protein-micelle crosslinked nanoflower for protein delivery, which warrants further investigations for gene regulation and cancer treatment.
Collapse
Affiliation(s)
- Chen Zhang
- Key Laboratory of Systems Bioengineering (Ministry of Education) School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China
| | - He Ren
- Key Laboratory of Systems Bioengineering (Ministry of Education) School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China
| | - Gengqi Liu
- Key Laboratory of Systems Bioengineering (Ministry of Education) School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China
| | - Jiexin Li
- Key Laboratory of Systems Bioengineering (Ministry of Education) School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China
| | - Xiaojie Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education) School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China
| | - Yumiao Zhang
- Key Laboratory of Systems Bioengineering (Ministry of Education) School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China
| |
Collapse
|
27
|
Igalouzene R, Hernandez-Vargas H, Benech N, Guyennon A, Bauché D, Barrachina C, Dubois E, Marie JC, Soudja SM. SMAD4 TGF-β–independent function preconditions naive CD8+ T cells to prevent severe chronic intestinal inflammation. J Clin Invest 2022; 132:151020. [PMID: 35426367 PMCID: PMC9012287 DOI: 10.1172/jci151020] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 03/08/2022] [Indexed: 12/13/2022] Open
Abstract
SMAD4, a mediator of TGF-β signaling, plays an important role in T cells to prevent inflammatory bowel disease (IBD). However, the precise mechanisms underlying this control remain elusive. Using both genetic and epigenetic approaches, we revealed an unexpected mechanism by which SMAD4 prevents naive CD8+ T cells from becoming pathogenic for the gut. Prior to the engagement of the TGF-β receptor, SMAD4 restrains the epigenetic, transcriptional, and functional landscape of the TGF-β signature in naive CD8+ T cells. Mechanistically, prior to TGF-β signaling, SMAD4 binds to promoters and enhancers of several TGF-β target genes, and by regulating histone deacetylation, suppresses their expression. Consequently, regardless of a TGF-β signal, SMAD4 limits the expression of TGF-β negative feedback loop genes, such as Smad7 and Ski, and likely conditions CD8+ T cells for the immunoregulatory effects of TGF-β. In addition, SMAD4 ablation conferred naive CD8+ T cells with both a superior survival capacity, by enhancing their response to IL-7, as well as an enhanced capacity to be retained within the intestinal epithelium, by promoting the expression of Itgae, which encodes the integrin CD103. Accumulation, epithelial retention, and escape from TGF-β control elicited chronic microbiota-driven CD8+ T cell activation in the gut. Hence, in a TGF-β–independent manner, SMAD4 imprints a program that preconditions naive CD8+ T cell fate, preventing IBD.
Collapse
Affiliation(s)
- Ramdane Igalouzene
- Tumor Escape Resistance and Immunity Department, Cancer Research Center of Lyon (CRCL), INSERM U1052, CNRS UMR 5286, Centre Léon Bérard (CLB) and University of Lyon 1, Lyon, France
| | - Hector Hernandez-Vargas
- Tumor Escape Resistance and Immunity Department, Cancer Research Center of Lyon (CRCL), INSERM U1052, CNRS UMR 5286, Centre Léon Bérard (CLB) and University of Lyon 1, Lyon, France
| | - Nicolas Benech
- Tumor Escape Resistance and Immunity Department, Cancer Research Center of Lyon (CRCL), INSERM U1052, CNRS UMR 5286, Centre Léon Bérard (CLB) and University of Lyon 1, Lyon, France
| | - Alexandre Guyennon
- Tumor Escape Resistance and Immunity Department, Cancer Research Center of Lyon (CRCL), INSERM U1052, CNRS UMR 5286, Centre Léon Bérard (CLB) and University of Lyon 1, Lyon, France
| | - David Bauché
- Tumor Escape Resistance and Immunity Department, Cancer Research Center of Lyon (CRCL), INSERM U1052, CNRS UMR 5286, Centre Léon Bérard (CLB) and University of Lyon 1, Lyon, France
| | - Célia Barrachina
- Montpellier GenomiX, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Emeric Dubois
- Montpellier GenomiX, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Julien C. Marie
- Tumor Escape Resistance and Immunity Department, Cancer Research Center of Lyon (CRCL), INSERM U1052, CNRS UMR 5286, Centre Léon Bérard (CLB) and University of Lyon 1, Lyon, France
| | - Saïdi M’Homa Soudja
- Tumor Escape Resistance and Immunity Department, Cancer Research Center of Lyon (CRCL), INSERM U1052, CNRS UMR 5286, Centre Léon Bérard (CLB) and University of Lyon 1, Lyon, France
| |
Collapse
|
28
|
Ren H, Li J, Liu G, Sun Y, Yang X, Jiang Z, Zhang J, Lovell JF, Zhang Y. Anticancer Vaccination with Immunogenic Micelles That Capture and Release Pristine CD8 + T-Cell Epitopes and Adjuvants. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2510-2521. [PMID: 34986639 DOI: 10.1021/acsami.1c18117] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development of nanocarriers capable of codelivering antigens and immune-activating adjuvants is an emerging area of research and is relevant for cancer vaccines that target induction of antigen-specific CD8+ T-cell responses. Here, we report a system for delivery of short peptide antigens to dendritic cells for strong cellular immune responses, based on block copolymers chemically modified with a hydrophobic and self-immolative linker. After modification, micelles effectively and reversibly capture antigens and adjuvants via a covalent bond within several minutes in an aqueous solution. After uptake in antigen presenting cells, the polymer disulfide bond is cleaved by intracellular glutathione, leading to release of pristine antigens, along with the upregulated expression of costimulatory molecules. The induced antigen-specific CD8+ T cells have strong tumor cell killing efficacy in the murine B16OVA and human papilloma virus-E6/E7 subcutaneous and lung metastasis tumor models. In addition, delivery to lymph nodes can be imaged to visualize vaccine trafficking. Taken together, multifunctional self-immolative micelles represent a versatile class of a vaccine delivery system for the generation of a cellular immune response that warrants further exploration as a component of cancer immunotherapy.
Collapse
Affiliation(s)
- He Ren
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, P. R. China 300350
| | - Jiexin Li
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, P. R. China 300350
| | - Gengqi Liu
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, P. R. China 300350
| | - Yaping Sun
- Imaging Center, Hospital of Traditional Chinese Medicine, Beichen District, Tianjin, P. R. China 300400
| | - Xingyue Yang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, P. R. China 300350
| | - Zhen Jiang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, P. R. China 300350
| | - Jingyu Zhang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, P. R. China 300350
| | - Jonathan F Lovell
- Department of Biomedical Engineering, The State University of New York at Buffalo, Buffalo, New York 14260, United States
| | - Yumiao Zhang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, P. R. China 300350
| |
Collapse
|
29
|
Albanese M, Chen YFA, Hüls C, Gärtner K, Tagawa T, Mejias-Perez E, Keppler OT, Göbel C, Zeidler R, Shein M, Schütz AK, Hammerschmidt W. MicroRNAs are minor constituents of extracellular vesicles that are rarely delivered to target cells. PLoS Genet 2021; 17:e1009951. [PMID: 34871319 PMCID: PMC8675925 DOI: 10.1371/journal.pgen.1009951] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/16/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
Mammalian cells release different types of vesicles, collectively termed extracellular vesicles (EVs). EVs contain cellular microRNAs (miRNAs) with an apparent potential to deliver their miRNA cargo to recipient cells to affect the stability of individual mRNAs and the cells’ transcriptome. The extent to which miRNAs are exported via the EV route and whether they contribute to cell-cell communication are controversial. To address these issues, we defined multiple properties of EVs and analyzed their capacity to deliver packaged miRNAs into target cells to exert biological functions. We applied well-defined approaches to produce and characterize purified EVs with or without specific viral miRNAs. We found that only a small fraction of EVs carried miRNAs. EVs readily bound to different target cell types, but EVs did not fuse detectably with cellular membranes to deliver their cargo. We engineered EVs to be fusogenic and document their capacity to deliver functional messenger RNAs. Engineered fusogenic EVs, however, did not detectably alter the functionality of cells exposed to miRNA-carrying EVs. These results suggest that EV-borne miRNAs do not act as effectors of cell-to-cell communication. The majority of metazoan cells release vesicles of different types and origins, such as exosomes and microvesicles, now collectively termed extracellular vesicles (EVs). EVs have gained much attention because they contain microRNAs (miRNAs) and thus could regulate their specific mRNA targets in recipient or acceptor cells that take up EVs. Using a novel fusion assay with superior sensitivity and specificity, we revisited this claim but found no convincing evidence for an efficient functional uptake of EVs in many different cell lines and primary human blood cells. Even EVs engineered to fuse and deliver their miRNA cargo to recipient cells had no measurable effect on target mRNAs in very carefully controlled, quantitative experiments. Our negative results clearly indicate that EVs do not act as vehicles for miRNA-based cell-to-cell communication.
Collapse
Affiliation(s)
- Manuel Albanese
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
- German Centre for Infection Research (DZIF), Partner site Munich, Germany
- * E-mail: (MA); (WH)
| | - Yen-Fu Adam Chen
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Centre for Infection Research (DZIF), Partner site Munich, Germany
| | - Corinna Hüls
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Centre for Infection Research (DZIF), Partner site Munich, Germany
| | - Kathrin Gärtner
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Centre for Infection Research (DZIF), Partner site Munich, Germany
| | - Takanobu Tagawa
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Centre for Infection Research (DZIF), Partner site Munich, Germany
| | - Ernesto Mejias-Perez
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
- German Centre for Infection Research (DZIF), Partner site Munich, Germany
| | - Oliver T. Keppler
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
- German Centre for Infection Research (DZIF), Partner site Munich, Germany
| | - Christine Göbel
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Centre for Infection Research (DZIF), Partner site Munich, Germany
| | - Reinhard Zeidler
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Centre for Infection Research (DZIF), Partner site Munich, Germany
- Department of Otorhinolaryngology, Klinikum der Universität München, Munich, Germany
| | - Mikhail Shein
- Bavarian NMR Center, Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Anne K. Schütz
- Bavarian NMR Center, Department of Chemistry, Technical University of Munich, Garching, Germany
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Wolfgang Hammerschmidt
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Centre for Infection Research (DZIF), Partner site Munich, Germany
- * E-mail: (MA); (WH)
| |
Collapse
|
30
|
Lynch KL, Dillon MR, Bat-Erdene M, Lewis HC, Kaai RJ, Arnold EA, Avgousti DC. A viral histone-like protein exploits antagonism between linker histones and HMGB proteins to obstruct the cell cycle. Curr Biol 2021; 31:5227-5237.e7. [PMID: 34666003 DOI: 10.1016/j.cub.2021.09.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/30/2021] [Accepted: 09/17/2021] [Indexed: 11/17/2022]
Abstract
Virus infection necessarily requires redirecting cellular resources toward viral progeny production. Adenovirus encodes the histone-like protein VII, which causes catastrophic global reorganization of host chromatin to promote virus infection. Protein VII recruits the family of high mobility group box (HMGB) proteins to chromatin along with the histone chaperone SET. As a consequence of this recruitment, we find that protein VII causes chromatin depletion of several linker histone H1 isoforms. The relationship between linker histone H1 and the functionally opposite HMGB proteins is critical for higher-order chromatin structure. However, the physiological consequences of perturbing this relationship are largely unknown. Here, we employ complementary systems in Saccharomyces cerevisiae and human cells to demonstrate that adenovirus protein VII disrupts the H1-HMGB balance to obstruct the cell cycle. We find that protein VII causes an accumulation of G2/M cells both in yeast and human systems, underscoring the high conservation of this chromatin vulnerability. In contrast, adenovirus E1A and E1B proteins are well established to override cell cycle regulation and promote transformation of human cells. Strikingly, we find that protein VII obstructs the cell cycle, even in the presence of E1A and E1B. We further show that, in a protein-VII-deleted infection, several cell cycle markers are regulated differently compared to wild-type infection, supporting our model that protein VII plays an integral role in hijacking cell cycle regulation during infection. Together, our results demonstrate that protein VII targets H1-HMGB1 antagonism to obstruct cell cycle progression, revealing an unexpected chromatin vulnerability exploited for viral benefit.
Collapse
Affiliation(s)
- Kelsey L Lynch
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | - Melanie R Dillon
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | - Mongoljin Bat-Erdene
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | - Hannah C Lewis
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA; Molecular & Cellular Biology in Seattle, Graduate Program, University of Washington and Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | - Robin J Kaai
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA; Molecular & Cellular Biology in Seattle, Graduate Program, University of Washington and Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | - Edward A Arnold
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA; Microbiology Graduate Program, University of Washington, 1705 NE Pacific Street, Box 357735, Seattle, WA 98195, USA
| | - Daphne C Avgousti
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA; Molecular & Cellular Biology in Seattle, Graduate Program, University of Washington and Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA; Microbiology Graduate Program, University of Washington, 1705 NE Pacific Street, Box 357735, Seattle, WA 98195, USA.
| |
Collapse
|
31
|
Schmidt V, Horváth C, Dong H, Blüher M, Qvist P, Wolfrum C, Willnow TE. SORLA is required for insulin-induced expansion of the adipocyte precursor pool in visceral fat. J Cell Biol 2021; 220:e202006058. [PMID: 34779857 PMCID: PMC8598079 DOI: 10.1083/jcb.202006058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/19/2021] [Accepted: 09/08/2021] [Indexed: 01/24/2023] Open
Abstract
Visceral adipose tissue shows remarkable plasticity, constantly replacing mature adipocytes from an inherent pool of adipocyte precursors. The number of precursors is set in the juvenile organism and remains constant in adult life. Which signals drive precursor pool expansion in juveniles and why they operate in visceral but not in subcutaneous white adipose tissue (WAT) are unclear. Using mouse models, we identified the insulin-sensitizing receptor SORLA as a molecular factor explaining the distinct proliferative capacity of visceral WAT. High levels of SORLA activity in precursors of juvenile visceral WAT prime these cells for nutritional stimuli provided through insulin, promoting mitotic expansion of the visceral precursor cell pool in overfed juvenile mice. SORLA activity is low in subcutaneous precursors, blunting their response to insulin and preventing diet-induced proliferation of this cell type. Our findings provide a molecular explanation for the unique proliferative properties of juvenile visceral WAT, and for the genetic association of SORLA with visceral obesity in humans.
Collapse
Affiliation(s)
- Vanessa Schmidt
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Carla Horváth
- Laboratory of Translational Nutrition Biology, ETH Zurich, Schwerzenbach, Switzerland
| | - Hua Dong
- Laboratory of Translational Nutrition Biology, ETH Zurich, Schwerzenbach, Switzerland
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Per Qvist
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Centre for Genomics and Personalized Medicine, Aarhus University, Aarhus, Denmark
| | - Christian Wolfrum
- Laboratory of Translational Nutrition Biology, ETH Zurich, Schwerzenbach, Switzerland
| | - Thomas E. Willnow
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
32
|
Uriarte M, De Francesco PN, Fernández G, Castrogiovanni D, D'Arcangelo M, Imbernon M, Cantel S, Denoyelle S, Fehrentz JA, Praetorius J, Prevot V, Perello M. Circulating ghrelin crosses the blood-cerebrospinal fluid barrier via growth hormone secretagogue receptor dependent and independent mechanisms. Mol Cell Endocrinol 2021; 538:111449. [PMID: 34478806 DOI: 10.1016/j.mce.2021.111449] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/13/2021] [Accepted: 08/30/2021] [Indexed: 01/17/2023]
Abstract
Ghrelin is a peptide hormone mainly secreted from gastrointestinal tract that acts via the growth hormone secretagogue receptor (GHSR), which is highly expressed in the brain. Strikingly, the accessibility of ghrelin to the brain seems to be limited and restricted to few brain areas. Previous studies in mice have shown that ghrelin can access the brain via the blood-cerebrospinal fluid (CSF) barrier, an interface constituted by the choroid plexus and the hypothalamic tanycytes. Here, we performed a variety of in vivo and in vitro studies to test the hypothesis that the transport of ghrelin across the blood-CSF barrier occurs in a GHSR-dependent manner. In vivo, we found that the uptake of systemically administered fluorescent ghrelin in the choroid plexus epithelial (CPE) cells and in hypothalamic tanycytes depends on the presence of GHSR. Also, we detected lower levels of CSF ghrelin after a systemic ghrelin injection in GHSR-deficient mice, as compared to WT mice. In vitro, the internalization of fluorescent ghrelin was reduced in explants of choroid plexus from GHSR-deficient mice, and unaffected in primary cultures of hypothalamic tanycytes derived from GHSR-deficient mice. Finally, we found that the GHSR mRNA is detected in a pool of CPE cells, but is nearly undetectable in hypothalamic tanycytes with current approaches. Thus, our results suggest that circulating ghrelin crosses the blood-CSF barrier mainly by a mechanism that involves the GHSR, and also possibly via a GHSR-independent mechanism.
Collapse
Affiliation(s)
- Maia Uriarte
- Laboratory of Neurophysiology, [Argentine Research Council (CONICET), Scientific Research Commission of the Province of Buenos Aires (CIC-PBA) and National University of La Plata (UNLP)], La Plata, Argentina
| | - Pablo N De Francesco
- Laboratory of Neurophysiology, [Argentine Research Council (CONICET), Scientific Research Commission of the Province of Buenos Aires (CIC-PBA) and National University of La Plata (UNLP)], La Plata, Argentina
| | - Gimena Fernández
- Laboratory of Neurophysiology, [Argentine Research Council (CONICET), Scientific Research Commission of the Province of Buenos Aires (CIC-PBA) and National University of La Plata (UNLP)], La Plata, Argentina
| | - Daniel Castrogiovanni
- Cell Culture Facility of the Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET), Scientific Research Commission of the Province of Buenos Aires (CIC-PBA) and National University of La Plata (UNLP)], La Plata, Argentina
| | - Micaela D'Arcangelo
- Laboratory of Neurophysiology, [Argentine Research Council (CONICET), Scientific Research Commission of the Province of Buenos Aires (CIC-PBA) and National University of La Plata (UNLP)], La Plata, Argentina
| | - Mónica Imbernon
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR, S1172, Lille, France
| | - Sonia Cantel
- Institut des Biomolécules Max Mousseron, UMR, 5247, CNRS-Université Montpellier-ENSCM, Faculté de Pharmacie, Montpellier, France
| | - Severine Denoyelle
- Institut des Biomolécules Max Mousseron, UMR, 5247, CNRS-Université Montpellier-ENSCM, Faculté de Pharmacie, Montpellier, France
| | - Jean-Alain Fehrentz
- Institut des Biomolécules Max Mousseron, UMR, 5247, CNRS-Université Montpellier-ENSCM, Faculté de Pharmacie, Montpellier, France
| | | | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR, S1172, Lille, France
| | - Mario Perello
- Laboratory of Neurophysiology, [Argentine Research Council (CONICET), Scientific Research Commission of the Province of Buenos Aires (CIC-PBA) and National University of La Plata (UNLP)], La Plata, Argentina.
| |
Collapse
|
33
|
ELMO1 signaling is a promoter of osteoclast function and bone loss. Nat Commun 2021; 12:4974. [PMID: 34404802 PMCID: PMC8371122 DOI: 10.1038/s41467-021-25239-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 07/28/2021] [Indexed: 01/02/2023] Open
Abstract
Osteoporosis affects millions worldwide and is often caused by osteoclast induced bone loss. Here, we identify the cytoplasmic protein ELMO1 as an important ‘signaling node’ in osteoclasts. We note that ELMO1 SNPs associate with bone abnormalities in humans, and that ELMO1 deletion in mice reduces bone loss in four in vivo models: osteoprotegerin deficiency, ovariectomy, and two types of inflammatory arthritis. Our transcriptomic analyses coupled with CRISPR/Cas9 genetic deletion identify Elmo1 associated regulators of osteoclast function, including cathepsin G and myeloperoxidase. Further, we define the ‘ELMO1 interactome’ in osteoclasts via proteomics and reveal proteins required for bone degradation. ELMO1 also contributes to osteoclast sealing zone on bone-like surfaces and distribution of osteoclast-specific proteases. Finally, a 3D structure-based ELMO1 inhibitory peptide reduces bone resorption in wild type osteoclasts. Collectively, we identify ELMO1 as a signaling hub that regulates osteoclast function and bone loss, with relevance to osteoporosis and arthritis. Osteoporosis and bone fractures affect millions of patients worldwide and are often due to increased bone resorption. Here the authors identify the cytoplasmic protein ELMO1 as an important ‘signaling node’ promoting the bone resorption function of osteoclasts.
Collapse
|
34
|
Duquenne M, Folgueira C, Bourouh C, Millet M, Silva A, Clasadonte J, Imbernon M, Fernandois D, Martinez-Corral I, Kusumakshi S, Caron E, Rasika S, Deliglia E, Jouy N, Oishi A, Mazzone M, Trinquet E, Tavernier J, Kim YB, Ory S, Jockers R, Schwaninger M, Boehm U, Nogueiras R, Annicotte JS, Gasman S, Dam J, Prévot V. Leptin brain entry via a tanycytic LepR-EGFR shuttle controls lipid metabolism and pancreas function. Nat Metab 2021; 3:1071-1090. [PMID: 34341568 PMCID: PMC7611554 DOI: 10.1038/s42255-021-00432-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 06/23/2021] [Indexed: 01/14/2023]
Abstract
Metabolic health depends on the brain's ability to control food intake and nutrient use versus storage, processes that require peripheral signals such as the adipocyte-derived hormone, leptin, to cross brain barriers and mobilize regulatory circuits. We have previously shown that hypothalamic tanycytes shuttle leptin into the brain to reach target neurons. Here, using multiple complementary models, we show that tanycytes express functional leptin receptor (LepR), respond to leptin by triggering Ca2+ waves and target protein phosphorylation, and that their transcytotic transport of leptin requires the activation of a LepR-EGFR complex by leptin and EGF sequentially. Selective deletion of LepR in tanycytes blocks leptin entry into the brain, inducing not only increased food intake and lipogenesis but also glucose intolerance through attenuated insulin secretion by pancreatic β-cells, possibly via altered sympathetic nervous tone. Tanycytic LepRb-EGFR-mediated transport of leptin could thus be crucial to the pathophysiology of diabetes in addition to obesity, with therapeutic implications.
Collapse
Affiliation(s)
- Manon Duquenne
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, Lille, France
| | - Cintia Folgueira
- Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Cyril Bourouh
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, CNRS, U1283-UMR 8199-EGID, Lille, France
| | - Marion Millet
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Anisia Silva
- Institut Cochin, Inserm U1016, CNRS UMR 8104, University Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jérôme Clasadonte
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, Lille, France
| | - Monica Imbernon
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, Lille, France
| | - Daniela Fernandois
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, Lille, France
| | - Ines Martinez-Corral
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, Lille, France
| | - Soumya Kusumakshi
- Experimental Pharmacology, Center for Molecular Signaling, Saarland University School of Medicine, Homburg, Germany
| | - Emilie Caron
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, Lille, France
| | - S Rasika
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, Lille, France
| | - Eleonora Deliglia
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, Lille, France
| | - Nathalie Jouy
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, Lille, France
- Flow Cytometry Core Facility, BioImaging Center of Lille, Hospital Campus, UMS2014-US41, Lille, France
| | - Asturo Oishi
- Institut Cochin, Inserm U1016, CNRS UMR 8104, University Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Department of Oncology, Leuven, Belgium
| | - Eric Trinquet
- Cisbio Bioassays, Parc Technologique Marcel Boiteux, Codolet, France
| | - Jan Tavernier
- VIB-UGent Center for Medical Biotechnology, Gent, Belgium
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Stéphane Ory
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Ralf Jockers
- Institut Cochin, Inserm U1016, CNRS UMR 8104, University Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Ulrich Boehm
- Experimental Pharmacology, Center for Molecular Signaling, Saarland University School of Medicine, Homburg, Germany
| | - Ruben Nogueiras
- Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Jean-Sébastien Annicotte
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, CNRS, U1283-UMR 8199-EGID, Lille, France
| | - Stéphane Gasman
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Julie Dam
- Institut Cochin, Inserm U1016, CNRS UMR 8104, University Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Vincent Prévot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, Lille, France.
| |
Collapse
|
35
|
Shin S, Kim SH, Lee JS, Lee GM. Streamlined Human Cell-Based Recombinase-Mediated Cassette Exchange Platform Enables Multigene Expression for the Production of Therapeutic Proteins. ACS Synth Biol 2021; 10:1715-1727. [PMID: 34133132 DOI: 10.1021/acssynbio.1c00113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A platform, based on targeted integration of transgenes using recombinase-mediated cassette exchange (RMCE) coupled with CRISPR/Cas9, is increasingly being used for the development of mammalian cell lines that produce therapeutic proteins, because of reduced clonal variation and predictable transgene expression. However, low efficiency of the RMCE process has hampered its application in multicopy or multisite integration of transgenes. To improve RMCE efficiency, nuclear transport of RMCE components such as site-specific recombinase and donor plasmid was accelerated by incorporation of nuclear localization signal and DNA nuclear-targeting sequence, respectively. Consequently, the efficiency of RMCE in dual-landing pad human embryonic kidney 293 (HEK293) cell lines harboring identical or orthogonal pairs of recombination sites at two well-known human safe harbors (AAVS1 and ROSA26 loci), increased 6.7- and 8.1-fold, respectively. This platform with enhanced RMCE efficiency enabled simultaneous integration of transgenes at the two sites using a single transfection without performing selection and enrichment processes. The use of a homotypic dual-landing pad HEK293 cell line capable of incorporating the same transgenes at two sites resulted in a 2-fold increase in the transgene expression level compared to a single-landing pad HEK293 cell line. In addition, the use of a heterotypic dual-landing pad HEK293 cell line, which can incorporate transgenes for a recombinant protein at one site and an effector transgene for cell engineering at another site, increased recombinant protein production. Overall, a streamlined RMCE platform can be a versatile tool for mammalian cell line development by facilitating multigene expression at genomic safe harbors.
Collapse
Affiliation(s)
- Seunghyeon Shin
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Su Hyun Kim
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Jae Seong Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Gyun Min Lee
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
36
|
Schneider AFL, Kithil M, Cardoso MC, Lehmann M, Hackenberger CPR. Cellular uptake of large biomolecules enabled by cell-surface-reactive cell-penetrating peptide additives. Nat Chem 2021; 13:530-539. [PMID: 33859390 DOI: 10.1038/s41557-021-00661-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/10/2021] [Indexed: 02/01/2023]
Abstract
Enabling the cellular delivery and cytosolic bioavailability of functional proteins constitutes a major challenge for the life sciences. Here we demonstrate that thiol-reactive arginine-rich peptide additives can enhance the cellular uptake of protein-CPP conjugates in a non-endocytic mode, even at low micromolar concentration. We show that such thiol- or HaloTag-reactive additives can result in covalently anchored CPPs on the cell surface, which are highly effective at co-delivering protein cargoes. Taking advantage of the thiol reactivity of our most effective CPP additive, we show that Cys-containing proteins can be readily delivered into the cytosol by simple co-addition of a slight excess of this CPP. Furthermore, we demonstrate the application of our 'CPP-additive technique' in the delivery of functional enzymes, nanobodies and full-length immunoglobulin-G antibodies. This new cellular uptake protocol greatly simplifies both the accessibility and efficiency of protein and antibody delivery, with minimal chemical or genetic engineering.
Collapse
Affiliation(s)
- Anselm F L Schneider
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Marina Kithil
- Technical University of Darmstadt, Darmstadt, Germany
| | | | - Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Christian P R Hackenberger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany. .,Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
37
|
de Vasconcelos NM, Van Opdenbosch N, Van Gorp H, Martín-Pérez R, Zecchin A, Vandenabeele P, Lamkanfi M. An Apoptotic Caspase Network Safeguards Cell Death Induction in Pyroptotic Macrophages. Cell Rep 2021; 32:107959. [PMID: 32726624 PMCID: PMC7408007 DOI: 10.1016/j.celrep.2020.107959] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/02/2020] [Accepted: 07/02/2020] [Indexed: 12/23/2022] Open
Abstract
Pyroptosis has emerged as a key mechanism by which inflammasomes promote host defense against microbial pathogens and sterile inflammation. Gasdermin D (GSDMD)-mediated cell lysis is a hallmark of pyroptosis, but our understanding of cell death signaling during pyroptosis is fragmented. Here, we show that independently of GSDMD-mediated plasma membrane permeabilization, inflammasome receptors engage caspase-1 and caspase-8, both of which redundantly promote activation of apoptotic executioner caspase-3 and caspase-7 in pyroptotic macrophages. Impaired GSDMD pore formation downstream of caspase-1 and caspase-8 activation suffices to unmask the apoptotic phenotype of pyroptotic macrophages. Combined inactivation of initiator caspase-1 and caspase-8, or executioner caspase-3 and caspase-7, is required to abolish inflammasome-induced DEVDase activity during pyroptosis and in apoptotic Gsdmd-/- cells. Collectively, these results unveil a robust apoptotic caspase network that is activated in parallel to GSDMD-mediated plasma membrane permeabilization and safeguards cell death induction in pyroptotic macrophages.
Collapse
Affiliation(s)
- Nathalia Moraes de Vasconcelos
- Department of Internal Medicine and Pediatrics, Ghent University, 9052 Ghent, Belgium; VIB Center for Inflammation Research, 9052 Ghent, Belgium
| | - Nina Van Opdenbosch
- Department of Internal Medicine and Pediatrics, Ghent University, 9052 Ghent, Belgium; VIB Center for Inflammation Research, 9052 Ghent, Belgium; Janssen Immunosciences, World Without Disease Accelerator, Pharmaceutical Companies of Johnson & Johnson, Beerse 2340, Belgium
| | - Hanne Van Gorp
- Department of Internal Medicine and Pediatrics, Ghent University, 9052 Ghent, Belgium; VIB Center for Inflammation Research, 9052 Ghent, Belgium
| | - Rosa Martín-Pérez
- Janssen Immunosciences, World Without Disease Accelerator, Pharmaceutical Companies of Johnson & Johnson, Beerse 2340, Belgium
| | - Annalisa Zecchin
- Janssen Immunosciences, World Without Disease Accelerator, Pharmaceutical Companies of Johnson & Johnson, Beerse 2340, Belgium
| | - Peter Vandenabeele
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent 9052, Belgium; Methusalem program, Ghent University, Ghent 9052, Belgium
| | - Mohamed Lamkanfi
- Department of Internal Medicine and Pediatrics, Ghent University, 9052 Ghent, Belgium; VIB Center for Inflammation Research, 9052 Ghent, Belgium; Janssen Immunosciences, World Without Disease Accelerator, Pharmaceutical Companies of Johnson & Johnson, Beerse 2340, Belgium.
| |
Collapse
|
38
|
A single-embryo, single-cell time-resolved model for mouse gastrulation. Cell 2021; 184:2825-2842.e22. [PMID: 33932341 PMCID: PMC8162424 DOI: 10.1016/j.cell.2021.04.004] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/26/2021] [Accepted: 04/05/2021] [Indexed: 12/11/2022]
Abstract
Mouse embryonic development is a canonical model system for studying mammalian cell fate acquisition. Recently, single-cell atlases comprehensively charted embryonic transcriptional landscapes, yet inference of the coordinated dynamics of cells over such atlases remains challenging. Here, we introduce a temporal model for mouse gastrulation, consisting of data from 153 individually sampled embryos spanning 36 h of molecular diversification. Using algorithms and precise timing, we infer differentiation flows and lineage specification dynamics over the embryonic transcriptional manifold. Rapid transcriptional bifurcations characterize the commitment of early specialized node and blood cells. However, for most lineages, we observe combinatorial multi-furcation dynamics rather than hierarchical transcriptional transitions. In the mesoderm, dozens of transcription factors combinatorially regulate multifurcations, as we exemplify using time-matched chimeric embryos of Foxc1/Foxc2 mutants. Our study rejects the notion of differentiation being governed by a series of binary choices, providing an alternative quantitative model for cell fate acquisition.
Collapse
|
39
|
Bernardi A, Gobelli D, Serna J, Nawrocka P, March-Rosselló G, Orduña A, Kozlowski P, Simarro M, de la Fuente MA. Novel fluorescent-based reporter cell line engineered for monitoring homologous recombination events. PLoS One 2021; 16:e0237413. [PMID: 33930025 PMCID: PMC8087102 DOI: 10.1371/journal.pone.0237413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 04/13/2021] [Indexed: 12/19/2022] Open
Abstract
Homologous recombination (HR) faithfully restores DNA double-strand breaks. Defects in this HR repair pathway are associated with cancer predisposition. In genetic engineering, HR has been used extensively to study gene function and it represents an ideal method of gene therapy for single gene disorders. Here, we present a novel assay to measure HR in living cells. The HR substrate consisted of a non-fluorescent 3’ truncated form of the eGFP gene and was integrated into the AAVS1 locus, known as a safe harbor. The donor DNA template comprised a 5’ truncated eGFP copy and was delivered via AAV particles. HR mediated repair restored full-length eGFP coding sequence, resulting in eGFP+ cells. The utility of our assay in quantifying HR events was validated by exploring the impact of the overexpression of HR promoters and the siRNA-mediated silencing of genes known to play a role in DNA repair on the frequency of HR. We conclude that this novel assay represents a useful tool to further investigate the mechanisms that control HR and test continually emerging tools for HR-mediated genome editing.
Collapse
Affiliation(s)
- Alejandra Bernardi
- Institute of Biomedicine and Molecular Genetics (IBGM) of Valladolid, Valladolid, Spain
| | - Dino Gobelli
- Institute of Biomedicine and Molecular Genetics (IBGM) of Valladolid, Valladolid, Spain
| | - Julia Serna
- Institute of Biomedicine and Molecular Genetics (IBGM) of Valladolid, Valladolid, Spain
| | - Paulina Nawrocka
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | | | - Antonio Orduña
- Division of Microbiology, Hospital Clínico of Valladolid, Valladolid, Spain.,Microbiology Department, University of Valladolid, Valladolid, Spain
| | - Piotr Kozlowski
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - María Simarro
- Institute of Biomedicine and Molecular Genetics (IBGM) of Valladolid, Valladolid, Spain.,Department of Nursing-"Grupo de Investigación en Cuidados de Enfermería" GICE, University of Valladolid, Valladolid, Spain
| | - Miguel A de la Fuente
- Institute of Biomedicine and Molecular Genetics (IBGM) of Valladolid, Valladolid, Spain.,Department of Cell Biology, Histology and Pharmacology, University of Valladolid, Valladolid, Spain
| |
Collapse
|
40
|
Sánchez-Navarro M. Advances in peptide-mediated cytosolic delivery of proteins. Adv Drug Deliv Rev 2021; 171:187-198. [PMID: 33561452 DOI: 10.1016/j.addr.2021.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/26/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023]
Abstract
The number of protein-based drugs is exponentially increasing. However, development of protein therapeutics against intracellular targets is hampered by the lack of efficient cytosolic delivery strategies. In recent years, the use of cell-penetrating peptides has been proposed as a strategy to promote protein internalization. In this article, we provide the reader with a succinct update on the strategies exploited to enable peptide-mediated cytosolic delivery of proteins. First, we analyse the various methods available for delivery. We then describe the most popular and the in vitro assays designed to assess the intracellular distribution of protein cargo.
Collapse
|
41
|
Li J, Røise JJ, He M, Das R, Murthy N. Non-viral strategies for delivering genome editing enzymes. Adv Drug Deliv Rev 2021; 168:99-117. [PMID: 32931860 DOI: 10.1016/j.addr.2020.09.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 08/02/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022]
Abstract
Genome-editing tools such as Cre recombinase (Cre), zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and most recently the clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein system have revolutionized biomedical research, agriculture, microbial engineering, and therapeutic development. Direct delivery of genome editing enzymes, as opposed to their corresponding DNA and mRNA precursors, is advantageous since they do not require transcription and/or translation. In addition, prolonged overexpression is a problem when delivering viral vector or plasmid DNA which is bypassed when delivering whole proteins. This lowers the risk of insertional mutagenesis and makes for relatively easier manufacturing. However, a major limitation of utilizing genome editing proteins in vivo is their low delivery efficiency, and currently the most successful strategy involves using potentially immunogenic viral vectors. This lack of safe and effective non-viral delivery systems is still a big hurdle for the clinical translation of such enzymes. This review discusses the challenges of non-viral delivery strategies of widely used genome editing enzymes, including Cre recombinase, ZFNs and TALENs, CRISPR/Cas9, and Cas12a (Cpf1) in their protein format and highlights recent innovations of non-viral delivery strategies which have the potential to overcome current delivery limitations and advance the clinical translation of genome editing.
Collapse
|
42
|
Schmidt K, Sack U, Graf R, Winkler W, Popp O, Mertins P, Sommermann T, Kocks C, Rajewsky K. B-Cell-Specific Myd88 L252P Expression Causes a Premalignant Gammopathy Resembling IgM MGUS. Front Immunol 2020; 11:602868. [PMID: 33343574 PMCID: PMC7747680 DOI: 10.3389/fimmu.2020.602868] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/19/2020] [Indexed: 12/20/2022] Open
Abstract
A highly recurrent somatic L265P mutation in the TIR domain of the signaling adapter MYD88 constitutively activates NF-κB. It occurs in nearly all human patients with Waldenström’s macroglobulinemia (WM), a B cell malignancy caused by IgM-expressing cells. Here, we introduced an inducible leucine to proline point mutation into the mouse Myd88 locus, at the orthologous position L252P. When the mutation was introduced early during B cell development, B cells developed normally. However, IgM-expressing plasma cells accumulated with age in spleen and bone, leading to more than 20-fold elevated serum IgM titers. When introduced into germinal center B cells in the context of an immunization, the Myd88L252P mutation caused prolonged persistence of antigen-specific serum IgM and elevated numbers of antigen-specific IgM plasma cells. Myd88L252P-expressing B cells switched normally, but plasma cells expressing other immunoglobulin isotypes did not increase in numbers, implying that IgM expression may be required for the observed cellular expansion. In order to test whether the Myd88L252P mutation can cause clonal expansions, we introduced it into a small fraction of CD19-positive B cells. In this scenario, five out of five mice developed monoclonal IgM serum paraproteins accompanied by an expansion of clonally related plasma cells that expressed mostly hypermutated VDJ regions. Taken together, our data suggest that the Myd88L252P mutation is sufficient to promote aberrant survival and expansion of IgM-expressing plasma cells which in turn can cause IgM monoclonal gammopathy of undetermined significance (MGUS), the premalignant condition that precedes WM.
Collapse
Affiliation(s)
- Kristin Schmidt
- Immune Regulation and Cancer, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Ulrike Sack
- Immune Regulation and Cancer, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Robin Graf
- Immune Regulation and Cancer, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Wiebke Winkler
- Biology of Malignant Lymphomas, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Oliver Popp
- Proteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Philipp Mertins
- Proteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Thomas Sommermann
- Immune Regulation and Cancer, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Christine Kocks
- Immune Regulation and Cancer, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Transgenics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Klaus Rajewsky
- Immune Regulation and Cancer, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
43
|
Chen K, Pei D. Engineering Cell-Permeable Proteins through Insertion of Cell-Penetrating Motifs into Surface Loops. ACS Chem Biol 2020; 15:2568-2576. [PMID: 32786266 DOI: 10.1021/acschembio.0c00593] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Effective delivery of proteins into the cytosol of mammalian cells would open the door to a wide range of applications. However, despite great efforts from numerous investigators, effective protein delivery in a clinical setting is yet to be accomplished. Herein we report a potentially general approach to engineering cell-permeable proteins by genetically grafting a short cell-penetrating peptide (CPP) to an exposed loop of a protein of interest. The grafted peptide is conformationally constrained, exhibiting enhanced proteolytic stability and cellular entry efficiency. Applying this technique to enhanced green fluorescent protein (EGFP), protein-tyrosine phosphatase 1B (PTP1B), and purine nucleoside phosphorylase (PNP) rendered all three proteins cell-permeable and biologically active in cellular assays. When added into growth medium at 0.5-5 μM concentrations, the engineered PTP1B dose-dependently reduced the phosphotyrosine levels of intracellular proteins, while the modified PNP corrected the metabolic deficiency of PNP-deficient mouse T lymphocytes, providing a potential enzyme replacement therapy for a rare genetic disease.
Collapse
Affiliation(s)
- Kuangyu Chen
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
44
|
Ozguldez HO, Fan R, Bedzhov I. Placental gene editing via trophectoderm-specific Tat-Cre/loxP recombination. Development 2020; 147:dev.190371. [PMID: 32541013 DOI: 10.1242/dev.190371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/05/2020] [Indexed: 11/20/2022]
Abstract
The ways in which placental defects affect embryonic development are largely overlooked because of the lack of a trophoblast-specific approach for conditional gene ablation. To tackle this, we have established a simple, fast and efficient method for trophectodermal Tat-Cre/loxP recombination. We used the natural permeability barrier in mouse blastocysts in combination with off-the-shelf Tat-Cre recombinase to achieve editing of conditional alleles in the trophoblast lineage. This direct approach enables gene function analysis during implantation and placentation in mice, thereby crucially helping to broaden our understanding of human reproduction and development.
Collapse
Affiliation(s)
- Hatice O Ozguldez
- Embryonic Self-Organization research group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Rui Fan
- Embryonic Self-Organization research group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Ivan Bedzhov
- Embryonic Self-Organization research group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| |
Collapse
|
45
|
Knox SL, Steinauer A, Alpha-Cobb G, Trexler A, Rhoades E, Schepartz A. Quantification of protein delivery in live cells using fluorescence correlation spectroscopy. Methods Enzymol 2020; 641:477-505. [PMID: 32713536 DOI: 10.1016/bs.mie.2020.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Fluorescence correlation spectroscopy (FCS) is a quantitative single-molecule method that measures the concentration and rate of diffusion of fluorophore-tagged molecules, both large and small, in vitro and within live cells, and even within discrete cellular compartments. FCS is exceptionally well-suited to directly quantify the efficiency of intracellular protein delivery-specifically, how well different "cell-penetrating" proteins and peptides guide proteinaceous materials into the cytosol and nuclei of live mammalian cells. This article provides an overview of the procedures necessary to execute robust FCS experiments and evaluate endosomal escape efficiencies: preparation of fluorophore-tagged proteins, incubation with mammalian cells and preparation of FCS samples, setup and execution of an FCS experiment, and a detailed discussion of and custom MATLAB® script for analyzing the resulting autocorrelation curves in the context of appropriate diffusion models.
Collapse
Affiliation(s)
- Susan L Knox
- Department of Chemistry, University of California, Berkeley, CA, United States
| | - Angela Steinauer
- Department of Chemistry and Applied Biosciences, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Garrett Alpha-Cobb
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Adam Trexler
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Elizabeth Rhoades
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States
| | - Alanna Schepartz
- Department of Chemistry, University of California, Berkeley, CA, United States; Department of Molecular and Cell Biology, University of California, Berkeley, CA, United States.
| |
Collapse
|
46
|
Huang X, Zou X, Xu Z, Tang F, Shi J, Zheng E, Liu D, Moisyadi S, Urschitz J, Wu Z, Li Z. Efficient deletion of LoxP-flanked selectable marker genes from the genome of transgenic pigs by an engineered Cre recombinase. Transgenic Res 2020; 29:307-319. [PMID: 32410183 DOI: 10.1007/s11248-020-00200-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/17/2020] [Indexed: 11/26/2022]
Abstract
Genetically modified (GM) pigs hold great promises for pig genetic improvement, human health and life science. When GM pigs are produced, selectable marker genes (SMGs) are usually introduced into their genomes for host cell or animal recognition. However, the SMGs that remain in GM pigs might have multiple side effects. To avoid the possible side effects caused by the SMGs, they should be removed from the genome of GM pigs before their commercialization. The Cre recombinase is commonly used to delete the LoxP sites-flanked SMGs from the genome of GM animals. Although SMG-free GM pigs have been generated by Cre-mediated recombination, more efficient and cost-effective approaches are essential for the commercialization of SMG-free GM pigs. In this article we describe the production of a recombinant Cre protein containing a cell-penetrating and a nuclear localization signal peptide in one construct. This engineered Cre enzyme can efficiently excise the LoxP-flanked SMGs in cultured fibroblasts isolated from a transgenic pig, which then can be used as nuclear donor cells to generate live SMG-free GM pigs harboring a desired transgene by somatic cell nuclear transfer. This study describes an efficient and far-less costly method for production of SMG-free GM pigs.
Collapse
Affiliation(s)
- Xiaoling Huang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Guangken Animal Husbandry Engineering Research Institute Co., Ltd., Guangzhou, 510610, Guangdong, China
| | - Xian Zou
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Zhiqian Xu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Fei Tang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Junsong Shi
- Guangdong Wens Pig Breeding Technology Co., Ltd., Wens Foodstuff Group Co., Ltd., Yunfu, 527400, Guangdong, China
| | - Enqin Zheng
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Dewu Liu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Stefan Moisyadi
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
- Manoa BioSciences, 1717 Mott-Smith Dr. #3213, Honolulu, HI, 96822, USA
| | - Johann Urschitz
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
47
|
Wittstatt J, Weider M, Wegner M, Reiprich S. MicroRNA miR‐204 regulates proliferation and differentiation of oligodendroglia in culture. Glia 2020; 68:2015-2027. [DOI: 10.1002/glia.23821] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/21/2020] [Accepted: 03/02/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Jan Wittstatt
- Institut für Biochemie, Emil‐Fischer‐ZentrumFriedrich‐Alexander‐Universität Erlangen‐Nürnberg Erlangen Germany
| | - Matthias Weider
- Institut für Biochemie, Emil‐Fischer‐ZentrumFriedrich‐Alexander‐Universität Erlangen‐Nürnberg Erlangen Germany
| | - Michael Wegner
- Institut für Biochemie, Emil‐Fischer‐ZentrumFriedrich‐Alexander‐Universität Erlangen‐Nürnberg Erlangen Germany
| | - Simone Reiprich
- Institut für Biochemie, Emil‐Fischer‐ZentrumFriedrich‐Alexander‐Universität Erlangen‐Nürnberg Erlangen Germany
| |
Collapse
|
48
|
Kim K, Shin W, Kang M, Lee S, Kim D, Kang R, Jung Y, Cho Y, Yang E, Kim H, Bae YC, Kim E. Presynaptic PTPσ regulates postsynaptic NMDA receptor function through direct adhesion-independent mechanisms. eLife 2020; 9:54224. [PMID: 32142410 PMCID: PMC7069723 DOI: 10.7554/elife.54224] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/04/2020] [Indexed: 12/14/2022] Open
Abstract
Synaptic adhesion molecules regulate synapse development and function. However, whether and how presynaptic adhesion molecules regulate postsynaptic NMDAR function remains largely unclear. Presynaptic LAR family receptor tyrosine phosphatases (LAR-RPTPs) regulate synapse development through mechanisms that include trans-synaptic adhesion; however, whether they regulate postsynaptic receptor functions remains unknown. Here we report that presynaptic PTPσ, a LAR-RPTP, enhances postsynaptic NMDA receptor (NMDAR) currents and NMDAR-dependent synaptic plasticity in the hippocampus. This regulation does not involve trans-synaptic adhesions of PTPσ, suggesting that the cytoplasmic domains of PTPσ, known to have tyrosine phosphatase activity and mediate protein-protein interactions, are important. In line with this, phosphotyrosine levels of presynaptic proteins, including neurexin-1, are strongly increased in PTPσ-mutant mice. Behaviorally, PTPσ-dependent NMDAR regulation is important for social and reward-related novelty recognition. These results suggest that presynaptic PTPσ regulates postsynaptic NMDAR function through trans-synaptic and direct adhesion-independent mechanisms and novelty recognition in social and reward contexts.
Collapse
Affiliation(s)
- Kyungdeok Kim
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Wangyong Shin
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea.,Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Muwon Kang
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Suho Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Doyoun Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Ryeonghwa Kang
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Yewon Jung
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Yisul Cho
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Esther Yang
- Department of Anatomy and Division of Brain Korea 21, Biomedical Science, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Hyun Kim
- Department of Anatomy and Division of Brain Korea 21, Biomedical Science, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Eunjoon Kim
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea.,Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| |
Collapse
|
49
|
Kim AH, Lee S, Jeon S, Kim GT, Lee EJ, Kim D, Kim Y, Park TS. Addition of an N-Terminal Poly-Glutamate Fusion Tag Improves Solubility and Production of Recombinant TAT-Cre Recombinase in Escherichia coli. J Microbiol Biotechnol 2020; 30:109-117. [PMID: 31693834 PMCID: PMC9728232 DOI: 10.4014/jmb.1909.09028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cre recombinase is widely used to manipulate DNA sequences for both in vitro and in vivo research. Attachment of a trans-activator of transcription (TAT) sequence to Cre allows TATCre to penetrate the cell membrane, and the addition of a nuclear localization signal (NLS) helps the enzyme to translocate into the nucleus. Since the yield of recombinant TAT-Cre is limited by formation of inclusion bodies, we hypothesized that the positively charged arginine-rich TAT sequence causes the inclusion body formation, whereas its neutralization by the addition of a negatively charged sequence improves solubility of the protein. To prove this, we neutralized the positively charged TAT sequence by proximally attaching a negatively charged poly-glutamate (E12) sequence. We found that the E12 tag improved the solubility and yield of E12-TAT-NLS-Cre (E12-TAT-Cre) compared with those of TAT-NLS-Cre (TATCre) when expressed in E. coli. Furthermore, the growth of cells expressing E12-TAT-Cre was increased compared with that of the cells expressing TAT-Cre. Efficacy of the purified TATCre was confirmed by a recombination test on a floxed plasmid in a cell-free system and 293 FT cells. Taken together, our results suggest that attachment of the E12 sequence to TAT-Cre improves its solubility during expression in E. coli (possibly by neutralizing the ionic-charge effects of the TAT sequence) and consequently increases the yield. This method can be applied to the production of transducible proteins for research and therapeutic purposes.
Collapse
Affiliation(s)
- A-Hyeon Kim
- Department of Life Sciences, Gachon University, Sungnam 320, Republic of Korea
| | - Soohyun Lee
- Department of Research and Development, LumiMac, Inc., Seoul 05844, Republic of Korea
| | - Suwon Jeon
- Department of Life Sciences, Gachon University, Sungnam 320, Republic of Korea
| | - Goon-Tae Kim
- Department of Life Sciences, Gachon University, Sungnam 320, Republic of Korea
| | - Eun Jig Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 0722, Republic of Korea
| | - Daham Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 0722, Republic of Korea
| | - Younggyu Kim
- Department of Research and Development, LumiMac, Inc., Seoul 05844, Republic of Korea
| | - Tae-Sik Park
- Department of Life Sciences, Gachon University, Sungnam 320, Republic of Korea,Corresponding author Phone: +82-31-750-8824 Fax: +82-31-750-8573 E-mail:
| |
Collapse
|
50
|
Abstract
Malignant transformation entails important changes in the control of cell proliferation through the rewiring of selected signaling pathways. Cancer cells then become very dependent on the proper function of those pathways, and their inhibition offers therapeutic opportunities. Here we identify the stress kinase p38α as a nononcogenic signaling molecule that enables the progression of KrasG12V-driven lung cancer. We demonstrate in vivo that, despite acting as a tumor suppressor in healthy alveolar progenitor cells, p38α contributes to the proliferation and malignization of lung cancer epithelial cells. We show that high expression levels of p38α correlate with poor survival in lung adenocarcinoma patients, and that genetic or chemical inhibition of p38α halts tumor growth in lung cancer mouse models. Moreover, we reveal a lung cancer epithelial cell-autonomous function for p38α promoting the expression of TIMP-1, which in turn stimulates cell proliferation in an autocrine manner. Altogether, our results suggest that epithelial p38α promotes KrasG12V-driven lung cancer progression via maintenance of cellular self-growth stimulatory signals.
Collapse
|