1
|
Qin Y, Chen X, Willner I. Nucleic Acid-Modified Nanoparticles for Cancer Therapeutic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2500843. [PMID: 40420627 DOI: 10.1002/smll.202500843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/20/2025] [Indexed: 05/28/2025]
Abstract
Nanomaterials including metal or metal oxide nanoparticles, carbonous nanomaterial (e.g., carbon dots) or metal-organic framework nanoparticles provide porous, catalytically active surfaces and functional interfaces for binding of ions or molecular agents. By the conjugation of nucleic acids to the nanoparticles, hybrid nanostructures revealing emerging multimodal catalytic/photocatalytic activities, high loading capacities, and effective targeted cell permeation efficacies are formed. The review article exemplifies the application of nucleic acid-modified nanoparticles conjugates for therapeutic treatment of cancer cells. Stimuli-responsive reconfiguration of nucleic acid strands and the specific recognition and catalytic function of oligonucleotides associated with porous, catalytic, and photocatalytic nanoparticles yield hybrid composites demonstrating cooperative synergistic properties for medical applications. The targeted chemodynamic, photodynamic, photothermal and chemotherapeutic treatment of cancer cells by the oligonucleotide/nanoparticle conjugates is addressed. In addition, the application of oligonucleotide/nanoparticle conjugates for gene therapy treatment of cancer cells is discussed.
Collapse
Affiliation(s)
- Yunlong Qin
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Xinghua Chen
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Itamar Willner
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
2
|
Vázquez-Domínguez I, Öktem M, Winkelaar FA, Nguyen TH, Hoogendoorn AD, Roschi E, Astuti GD, Timmermans R, Suárez-Herrera N, Bruno I, Ruiz-Llombart A, Brealey J, de Jong OG, Collin RW, Mastrobattista E, Garanto A. Lipopeptide-mediated Cas9 RNP delivery: A promising broad therapeutic strategy for safely removing deep-intronic variants in ABCA4. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102345. [PMID: 39494150 PMCID: PMC11531624 DOI: 10.1016/j.omtn.2024.102345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 09/24/2024] [Indexed: 11/05/2024]
Abstract
Deep-intronic (DI) variants represent approximately 10%-12% of disease-causing genetic defects in ABCA4-associated Stargardt disease (STGD1). Although many of these DI variants are amenable to antisense oligonucleotide-based splicing-modulation therapy, no treatment is currently available. These molecules are mostly variant specific, limiting their applicability to a broader patient population. In this study, we investigated the therapeutic potential of the CRISPR-Cas9 system combined with the amphipathic lipopeptide C18:1-LAH5 for intracellular delivery to correct splicing defects caused by different DI variants within the same intron. The combination of these components facilitated efficient editing of two target introns (introns 30 and 36) of ABCA4 in which several recurrent DI variants are found. The partial removal of these introns did not affect ABCA4 splicing or its expression levels when assessed in two different human cellular models: fibroblasts and induced pluripotent stem cell-derived photoreceptor precursor cells (PPCs). Furthermore, the DNA editing in STGD1 patient-derived PPCs led to a ∼50% reduction of the pseudoexon-containing transcripts resulting from the c.4539+2001G>A variant in intron 30. Overall, we provide proof-of-concept evidence of the use of C18:1-LAH5 as a delivery system for therapeutic genome editing for ABCA4-associated DI variants, offering new opportunities for clinical translation.
Collapse
Affiliation(s)
- Irene Vázquez-Domínguez
- Radboud University Medical Center, Department of Human Genetics, 6525 GA Nijmegen, the Netherlands
| | - Mert Öktem
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Florian A. Winkelaar
- Radboud University Medical Center, Department of Human Genetics, 6525 GA Nijmegen, the Netherlands
| | - Thai Hoang Nguyen
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Anita D.M. Hoogendoorn
- Radboud University Medical Center, Amalia Children’s Hospital, Department of Pediatrics, 6525 GA Nijmegen, the Netherlands
| | - Eleonora Roschi
- Radboud University Medical Center, Department of Human Genetics, 6525 GA Nijmegen, the Netherlands
| | - Galuh D.N. Astuti
- Radboud University Medical Center, Department of Human Genetics, 6525 GA Nijmegen, the Netherlands
- Center for Biomedical Research, Faculty of Medicine, Diponegoro University, Semarang 50275, Indonesia
| | - Raoul Timmermans
- Radboud University Medical Center, Department of Human Genetics, 6525 GA Nijmegen, the Netherlands
| | - Nuria Suárez-Herrera
- Radboud University Medical Center, Department of Human Genetics, 6525 GA Nijmegen, the Netherlands
| | - Ilaria Bruno
- Radboud University Medical Center, Department of Human Genetics, 6525 GA Nijmegen, the Netherlands
| | - Albert Ruiz-Llombart
- Radboud University Medical Center, Department of Human Genetics, 6525 GA Nijmegen, the Netherlands
| | - Joseph Brealey
- NanoFCM Co Ltd. MediCity, D6 Thane Road, Nottingham NG90 6BH, UK
| | - Olivier G. de Jong
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Rob W.J. Collin
- Radboud University Medical Center, Department of Human Genetics, 6525 GA Nijmegen, the Netherlands
| | - Enrico Mastrobattista
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Alejandro Garanto
- Radboud University Medical Center, Department of Human Genetics, 6525 GA Nijmegen, the Netherlands
- Radboud University Medical Center, Amalia Children’s Hospital, Department of Pediatrics, 6525 GA Nijmegen, the Netherlands
| |
Collapse
|
3
|
Dussouillez C, Lointier M, Sebane MK, Fournel S, Bechinger B, Kichler A. N-terminal modification of an LAH4-derived peptide increases mRNA delivery in the presence of serum. J Pept Sci 2024; 30:e3597. [PMID: 38523558 DOI: 10.1002/psc.3597] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/16/2024] [Accepted: 03/03/2024] [Indexed: 03/26/2024]
Abstract
The recently developed mRNA-based coronavirus SARS-CoV-2 vaccines highlighted the great therapeutic potential of the mRNA technology. Although the lipid nanoparticles used for the delivery of the mRNA are very efficient, they showed, in some cases, the induction of side effects as well as the production of antibodies directed against particle components. Thus, the development of alternative delivery systems is of great interest in the pursuit of more effective mRNA treatments. In the present work, we evaluated the mRNA transfection capacities of a series of cationic histidine-rich amphipathic peptides derived from LAH4. We found that while the LAH4-A1 peptide was an efficient carrier for mRNA, its activity was highly serum sensitive. Interestingly, modification of this cell penetrating peptide at the N-terminus with two tyrosines or with salicylic acid allowed to confer serum resistance to the carrier.
Collapse
Affiliation(s)
- Candice Dussouillez
- Laboratoire de Conception et Application de Molécules Bioactives UMR7199 CNRS, Université de Strasbourg, 3BioTeam, Faculté de Pharmacie, Illkirch, France
- Inserm UMR_S 1121, EMR 7003 CNRS, Université de Strasbourg, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg, France
| | - Morane Lointier
- Université de Strasbourg, CNRS, UMR7177, Institut de Chimie, Strasbourg, France
| | - Mohammed-Karim Sebane
- Laboratoire de Conception et Application de Molécules Bioactives UMR7199 CNRS, Université de Strasbourg, 3BioTeam, Faculté de Pharmacie, Illkirch, France
- Inserm UMR_S 1121, EMR 7003 CNRS, Université de Strasbourg, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg, France
| | - Sylvie Fournel
- Laboratoire de Conception et Application de Molécules Bioactives UMR7199 CNRS, Université de Strasbourg, 3BioTeam, Faculté de Pharmacie, Illkirch, France
- Inserm UMR_S 1121, EMR 7003 CNRS, Université de Strasbourg, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg, France
| | - Burkhard Bechinger
- Université de Strasbourg, CNRS, UMR7177, Institut de Chimie, Strasbourg, France
| | - Antoine Kichler
- Laboratoire de Conception et Application de Molécules Bioactives UMR7199 CNRS, Université de Strasbourg, 3BioTeam, Faculté de Pharmacie, Illkirch, France
- Inserm UMR_S 1121, EMR 7003 CNRS, Université de Strasbourg, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg, France
| |
Collapse
|
4
|
Grau M, Wagner E. Strategies and mechanisms for endosomal escape of therapeutic nucleic acids. Curr Opin Chem Biol 2024; 81:102506. [PMID: 39096817 DOI: 10.1016/j.cbpa.2024.102506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/25/2024] [Accepted: 07/12/2024] [Indexed: 08/05/2024]
Abstract
Despite impressive recent establishment of therapeutic nucleic acids as drugs and vaccines, their broader medical use is impaired by modest performance in intracellular delivery. Inefficient endosomal escape presents a major limitation responsible for inadequate cytosolic cargo release. Depending on the carrier, this endosomal barrier can strongly limit or even abolish nucleic acid delivery. Different recent endosomal escape strategies and their hypothesized mechanisms are reviewed.
Collapse
Affiliation(s)
- Melina Grau
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, 81377 Munich, Germany; CNATM - Cluster for Nucleic Acid Therapeutics Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, 81377 Munich, Germany; CNATM - Cluster for Nucleic Acid Therapeutics Munich, Germany; Center for Nanoscience (CeNS), LMU Munich, 80799 Munich, Germany.
| |
Collapse
|
5
|
Moço PD, Dash S, Kamen AA. Enhancement of adeno-associated virus serotype 6 transduction into T cells with cell-penetrating peptides. J Gene Med 2024; 26:e3627. [PMID: 37957034 DOI: 10.1002/jgm.3627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/28/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Adeno-associated viruses (AAVs) are gaining interest in the development of cellular immunotherapy. Compared to other viral vectors, AAVs can reduce the risk of insertional oncogenesis. AAV serotype 6 (AAV6) shows the highest efficiency for transducing T cells. Nevertheless, a multiplicity of infection (MOI) of up to one million viral genomes per cell is required to transduce the target cells effectively. Cell-penetrating peptides (CPPs) are short, positively charged peptides that easily translocate the plasma membranes and can facilitate the cellular uptake of a wide variety of cargoes, including small molecules, nucleic acids, drugs, proteins and viral vectors. METHODS The present study evaluated five CPPs (Antp, TAT-HA2, LAH4, TAT1 and TAT2) on their effects on enhancing transduction of AAV6 packaging a green fluorescent protein transgene into Jurkat T cell line. RESULTS Vector incubation with peptides TAT-HA2 and LAH4 at a final concentration of 0.2 mm resulted in an approximately two-fold increase in transduced cells. At the lowest MOI tested (1.25 × 104 ), using LAH4 resulted in a 10-fold increase in transduction efficiency. The peptide LAH4 increased the uptake of AAV6 viral particles in both Jurkat cells and mouse primary T cells. Regardless of the large size of the AAV6-LAH4 complexes, their internalization does not appear to depend on macropinocytosis. CONCLUSIONS Overall, the present study reports an approach to significantly improve the delivery of transgenes into T cells using AAV6 vectors. Notably, the peptides TAT-HA2 and LAH4 contribute to improving the use of AAV6 as a gene delivery vector for the engineering of T cells.
Collapse
Affiliation(s)
- Pablo D Moço
- Department of Bioengineering, McGill University, Montreal, QC, Canada
| | - Shantoshini Dash
- Department of Bioengineering, McGill University, Montreal, QC, Canada
| | - Amine A Kamen
- Department of Bioengineering, McGill University, Montreal, QC, Canada
| |
Collapse
|
6
|
Öktem M, Mastrobattista E, de Jong OG. Amphipathic Cell-Penetrating Peptide-Aided Delivery of Cas9 RNP for In Vitro Gene Editing and Correction. Pharmaceutics 2023; 15:2500. [PMID: 37896260 PMCID: PMC10609989 DOI: 10.3390/pharmaceutics15102500] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
The therapeutic potential of the CRISPR-Cas9 gene editing system in treating numerous genetic disorders is immense. To fully realize this potential, it is crucial to achieve safe and efficient delivery of CRISPR-Cas9 components into the nuclei of target cells. In this study, we investigated the applicability of the amphipathic cell-penetrating peptide LAH5, previously employed for DNA delivery, in the intracellular delivery of spCas9:sgRNA ribonucleoprotein (RNP) and the RNP/single-stranded homology-directed repair (HDR) template. Our findings reveal that the LAH5 peptide effectively formed nanocomplexes with both RNP and RNP/HDR cargo, and these nanocomplexes demonstrated successful cellular uptake and cargo delivery. The loading of all RNP/HDR components into LAH5 nanocomplexes was confirmed using an electrophoretic mobility shift assay. Functional screening of various ratios of peptide/RNP nanocomplexes was performed on fluorescent reporter cell lines to assess gene editing and HDR-mediated gene correction. Moreover, targeted gene editing of the CCR5 gene was successfully demonstrated across diverse cell lines. This LAH5-based delivery strategy represents a significant advancement toward the development of therapeutic delivery systems for CRISPR-Cas-based genetic engineering in in vitro and ex vivo applications.
Collapse
Affiliation(s)
| | | | - Olivier G. de Jong
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (M.Ö.); (E.M.)
| |
Collapse
|
7
|
Polash SA, Garlick-Trease K, Pyreddy S, Periasamy S, Bryant G, Shukla R. Amino Acid-Coated Zeolitic Imidazolate Framework for Delivery of Genetic Material in Prostate Cancer Cell. Molecules 2023; 28:4875. [PMID: 37375429 DOI: 10.3390/molecules28124875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Metal-organic frameworks (MOFs) are currently under progressive development as a tool for non-viral biomolecule delivery. Biomolecules such as proteins, lipids, carbohydrates, and nucleic acids can be encapsulated in MOFs for therapeutic purposes. The favorable physicochemical properties of MOFs make them an attractive choice for delivering a wide range of biomolecules including nucleic acids. Herein, a green fluorescence protein (GFP)-expressing plasmid DNA (pDNA) is used as a representative of a biomolecule to encapsulate within a Zn-based metal-organic framework (MOF) called a zeolitic imidazolate framework (ZIF). The synthesized biocomposites are coated with positively charged amino acids (AA) to understand the effect of surface functionalization on the delivery of pDNA to prostate cancer (PC-3) cells. FTIR and zeta potential confirm the successful preparation of positively charged amino acid-functionalized derivatives of pDNA@ZIF (i.e., pDNA@ZIFAA). Moreover, XRD and SEM data show that the functionalized derivates retain the pristine crystallinity and morphology of pDNA@ZIF. The coated biocomposites provide enhanced uptake of genetic material by PC-3 human prostate cancer cells. The AA-modulated fine-tuning of the surface charge of biocomposites results in better interaction with the cell membrane and enhances cellular uptake. These results suggest that pDNA@ZIFAA can be a promising alternative tool for non-viral gene delivery.
Collapse
Affiliation(s)
- Shakil Ahmed Polash
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
- Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory (NBRL), RMIT University, Melbourne, VIC 3000, Australia
| | | | - Suneela Pyreddy
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
- Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory (NBRL), RMIT University, Melbourne, VIC 3000, Australia
| | - Selvakannan Periasamy
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
- Centre for Advanced Materials and Industrial Chemistry, RMIT University, Melbourne, VIC 3000, Australia
| | - Gary Bryant
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Ravi Shukla
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
- Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory (NBRL), RMIT University, Melbourne, VIC 3000, Australia
- Centre for Advanced Materials and Industrial Chemistry, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
8
|
Wickline SA, Hou KK, Pan H. Peptide-Based Nanoparticles for Systemic Extrahepatic Delivery of Therapeutic Nucleotides. Int J Mol Sci 2023; 24:ijms24119455. [PMID: 37298407 DOI: 10.3390/ijms24119455] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Peptide-based nanoparticles (PBN) for nucleotide complexation and targeting of extrahepatic diseases are gaining recognition as potent pharmaceutical vehicles for fine-tuned control of protein production (up- and/or down-regulation) and for gene delivery. Herein, we review the principles and mechanisms underpinning self-assembled formation of PBN, cellular uptake, endosomal release, and delivery to extrahepatic disease sites after systemic administration. Selected examples of PBN that have demonstrated recent proof of concept in disease models in vivo are summarized to offer the reader a comparative view of the field and the possibilities for clinical application.
Collapse
Affiliation(s)
- Samuel A Wickline
- Division of Cardiology, Department of Medical Engineering, University of South Florida, Tampa, FL 33602, USA
| | - Kirk K Hou
- Department of Ophthalmology, Stein and Doheny Eye Institutes, University of California, Los Angeles, CA 90095, USA
| | - Hua Pan
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
9
|
Yang Y, Liu Z, Ma H, Cao M. Application of Peptides in Construction of Nonviral Vectors for Gene Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12224076. [PMID: 36432361 PMCID: PMC9693978 DOI: 10.3390/nano12224076] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 05/29/2023]
Abstract
Gene therapy, which aims to cure diseases by knocking out, editing, correcting or compensating abnormal genes, provides new strategies for the treatment of tumors, genetic diseases and other diseases that are closely related to human gene abnormalities. In order to deliver genes efficiently to abnormal sites in vivo to achieve therapeutic effects, a variety of gene vectors have been designed. Among them, peptide-based vectors show superior advantages because of their ease of design, perfect biocompatibility and safety. Rationally designed peptides can carry nucleic acids into cells to perform therapeutic effects by overcoming a series of biological barriers including cellular uptake, endosomal escape, nuclear entrance and so on. Moreover, peptides can also be incorporated into other delivery systems as functional segments. In this review, we referred to the biological barriers for gene delivery in vivo and discussed several kinds of peptide-based nonviral gene vectors developed for overcoming these barriers. These vectors can deliver different types of genetic materials into targeted cells/tissues individually or in combination by having specific structure-function relationships. Based on the general review of peptide-based gene delivery systems, the current challenges and future perspectives in development of peptidic nonviral vectors for clinical applications were also put forward, with the aim of providing guidance towards the rational design and development of such systems.
Collapse
Affiliation(s)
- Yujie Yang
- State Key Laboratory of Heavy Oil Processing, Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Zhen Liu
- State Key Laboratory of Heavy Oil Processing, Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Hongchao Ma
- State Key Laboratory of Heavy Oil Processing, Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Meiwen Cao
- State Key Laboratory of Heavy Oil Processing, Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| |
Collapse
|
10
|
Ahmad A, Khan JM. pH-sensitive endosomolytic peptides in gene and drug delivery: Endosomal escape and current challenges. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
11
|
Lipid Nanoparticles for mRNA Delivery to Enhance Cancer Immunotherapy. Molecules 2022; 27:molecules27175607. [PMID: 36080373 PMCID: PMC9458026 DOI: 10.3390/molecules27175607] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 12/24/2022] Open
Abstract
Messenger RNA (mRNA) is being developed by researchers as a novel drug for the treatment or prevention of many diseases. However, to enable mRNA to fully exploit its effects in vivo, researchers need to develop safer and more effective mRNA delivery systems that improve mRNA stability and enhance the ability of cells to take up and release mRNA. To date, lipid nanoparticles are promising nanodrug carriers for tumor therapy, which can significantly improve the immunotherapeutic effects of conventional drugs by modulating mRNA delivery, and have attracted widespread interest in the biomedical field. This review focuses on the delivery of mRNA by lipid nanoparticles for cancer treatment. We summarize some common tumor immunotherapy and mRNA delivery strategies, describe the clinical advantages of lipid nanoparticles for mRNA delivery, and provide an outlook on the current challenges and future developments of this technology.
Collapse
|
12
|
Terada K, Kurita T, Gimenez-Dejoz J, Masunaga H, Tsuchiya K, Numata K. Papain-Catalyzed, Sequence-Dependent Polymerization Yields Polypeptides Containing Periodic Histidine Residues. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kayo Terada
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Taichi Kurita
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Joan Gimenez-Dejoz
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-C1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiroyasu Masunaga
- Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Kousuke Tsuchiya
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Keiji Numata
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-C1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
13
|
Host–Bacterial Interactions: Outcomes of Antimicrobial Peptide Applications. MEMBRANES 2022; 12:membranes12070715. [PMID: 35877918 PMCID: PMC9317001 DOI: 10.3390/membranes12070715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023]
Abstract
The bacterial membrane is part of a secretion system which plays an integral role to secrete proteins responsible for cell viability and pathogenicity; pathogenic bacteria, for example, secrete virulence factors and other membrane-associated proteins to invade the host cells through various types of secretion systems (Type I to Type IX). The bacterial membrane can also mediate microbial communities’ communication through quorum sensing (QS), by secreting auto-stimulants to coordinate gene expression. QS plays an important role in regulating various physiological processes, including bacterial biofilm formation while providing increased virulence, subsequently leading to antimicrobial resistance. Multi-drug resistant (MDR) bacteria have emerged as a threat to global health, and various strategies targeting QS and biofilm formation have been explored by researchers worldwide. Since the bacterial secretion systems play such a crucial role in host–bacterial interactions, this review intends to outline current understanding of bacterial membrane systems, which may provide new insights for designing approaches aimed at antimicrobials discovery. Various mechanisms pertaining interaction of the bacterial membrane with host cells and antimicrobial agents will be highlighted, as well as the evolution of bacterial membranes in evasion of antimicrobial agents. Finally, the use of antimicrobial peptides (AMPs) as a cellular device for bacterial secretion systems will be discussed as emerging potential candidates for the treatment of multidrug resistance infections.
Collapse
|
14
|
Yuan X, Luo SZ, Chen L. Novel branched amphiphilic peptides for nucleic acids delivery. Int J Pharm 2022; 624:121983. [PMID: 35803534 DOI: 10.1016/j.ijpharm.2022.121983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/25/2022]
Abstract
Highly efficient and safe non-viral vectors for nucleic acids delivery have attracted much attention due to their potential applications in gene therapy, gene editing and vaccination against infectious diseases, and various materials have been investigated and designed as delivery vectors. Herein, we designed a series of branched amphiphilic peptides (BAPs) and tested their applications as pDNA/mRNA delivery vectors. The BAP structure was inspired by the phospholipids, in which lysine oligomers were used as the "polar head", segments containing phenylalanine, histidine and leucine were used as the "hydrophobic tails", and a lysine residue was used as the branching point. By comparing the gel retardation, particle sizes and zeta potentials of the BAP/pDNA complexes of the short-branch BAPs (BAP-V1 ∼ BAP-V4), we determined the optimal lysine oligomer was K6. However, their cell transfection efficiencies were not satisfactory, and thus three long-branch BAPs (BAP-V5 ∼ BAP-V7) were further designed. In these long-branch BAPs, more hydrophobic residues were added and the overall amphiphilicity increased accordingly. The results showed that these three BAPs could effectively compact the nucleic acids, including both pDNA and mRNA, and all could transfect nucleic acids into HEK 293 cells, with low cytotoxicity. Among the three long-branch BAPs, BAP-V7 (bis(FFLFFHHH)-K-K6) showed the best transfection efficiency at N/P = 10, which was better than the commercial transfection reagent PEI-25 K. These results indicate that increased amphiphilicity would also benefit for BAP mediated nucleic acid delivery. The designed BAPs provide more documents of such novel type of nucleic acids delivery vectors, which is worth of further investigation as a new gene theranostic platforms.
Collapse
Affiliation(s)
- Xiushuang Yuan
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shi-Zhong Luo
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Long Chen
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
15
|
Mejia F, Khan S, Omstead DT, Minetos C, Bilgicer B. Identification and optimization of tunable endosomal escape parameters for enhanced efficacy in peptide-targeted prodrug-loaded nanoparticles. NANOSCALE 2022; 14:1226-1240. [PMID: 34993530 DOI: 10.1039/d1nr05357d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Endosomal escape of nanoparticles (NPs) is a weighty consideration for engineering successful nanomedicines. Although it is well-established that incorporation of histidine (His) in particle design improves endosomal escape for NPs, our understanding of its effects for ligand-targeted nanoparticles (TNPs) remains incomplete. Here, we systematically evaluated the cooperativity between targeting ligands and endosomolytic elements using liposomal TNPs with precise stoichiometric control over functional moieties (>90% loading efficiency). We synthesized endosomolytic lipid conjugates consisting of 1 to 10 consecutive His residues presented at the end of linkers between 2 to 45 repeating units of ethylene glycol (Hisn-EGm). Hisn-EGm had minimal effect on NP size (∼115 nm) and had no significant effect on the receptor specificity of TNPs (>90% inhibition by competing peptide). We evaluated various formulations with 8 different targeting ligands relevant to two disease models. Incorporation of His1-EG8 resulted in up to ∼170- and ∼12.9-fold enhancement in intracellular accumulation relative to non-endosomolytic NP and TNP, respectively. These observations were time-dependent, targeted receptor-dependent, and showed different trends for NPs and TNPs. Further evaluation demonstrated short linkers (EG2-4) significantly enhanced nanoparticle internalization compared to EG8 or longer by up to ∼2.5-fold. Finally, rationally optimized formulation, His1-EG2-TNP, improved in vitro toxicity of a DM1 prodrug to SK-BR-3 cells by ∼4.2-fold, with IC50 ∼8.5 nM compared to ∼36 nM for no-His TNP, and >100 nM for non-targeted/no-His NP. This study uncovers an intricate relationship between endosomal escape and ligand-targeted drug delivery, as well as tunable parameters. Furthermore, our findings highlight the value of rational design and systematic analysis for optimization of multifunctional NPs.
Collapse
Affiliation(s)
- Franklin Mejia
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Sabrina Khan
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - David T Omstead
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Christina Minetos
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Basar Bilgicer
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
- Mike and Josie Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
- Berthiaume Institute for Precision Health, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
16
|
Ali S, Dussouillez C, Padilla B, Frisch B, Mason AJ, Kichler A. Design of a new cell penetrating peptide for DNA, siRNA and mRNA delivery. J Gene Med 2021; 24:e3401. [PMID: 34856643 DOI: 10.1002/jgm.3401] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Delivery systems, including peptide-based ones, that destabilize endosomes in a pH-dependent manner are increasingly used to deliver cargoes of therapeutic interest, such as nucleic acids and proteins into mammalian cells. METHODS The negatively charged amphipathic alpha-helicoidal forming peptide named HELP (Helical Erythrocyte Lysing Peptide) is a derivative from the bee venom melittin and was shown to have a pH-dependent activity with the highest lytic activity at pH 5.0 at the same time as becoming inactive when the pH is increased. The present study aimed to determine whether replacement in the HELP peptide of the glutamic acid residues by histidines, for which the protonation state is sensitive to the pH changes that occur during endosomal acidification, can transform this fusogenic peptide into a carrier able to deliver different nucleic acids into mammalian cells. RESULTS The resulting HELP-4H peptide displays high plasmid DNA, small interfering RNA and mRNA delivery capabilities. Importantly, in contrast to other cationic peptides, its transfection activity was only marginally affected by the presence of serum. Using circular dichroism, we found that acidic pH did not induce significant conformational changes for HELP-4H. CONCLUSIONS In summary, we were able to develop a new cationic histidine rich peptide able to efficiently deliver various nucleic acids into cells.
Collapse
Affiliation(s)
- Salif Ali
- 3Bio Team, CAMB 7199 CNRS - University of Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Candice Dussouillez
- 3Bio Team, CAMB 7199 CNRS - University of Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Beatriz Padilla
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, Franklin-Wilkins Building, London, UK
| | - Benoît Frisch
- 3Bio Team, CAMB 7199 CNRS - University of Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - A James Mason
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, Franklin-Wilkins Building, London, UK
| | - Antoine Kichler
- 3Bio Team, CAMB 7199 CNRS - University of Strasbourg, Faculté de Pharmacie, Illkirch, France
| |
Collapse
|
17
|
Le Guen C, Dussouillez C, Kichler A, Chan-Seng D. Insertion of hydrophobic spacers on dodecalysines as potential transfection enhancers. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Lointier M, Dussouillez C, Glattard E, Kichler A, Bechinger B. Different Biological Activities of Histidine-Rich Peptides Are Favored by Variations in Their Design. Toxins (Basel) 2021; 13:363. [PMID: 34065185 PMCID: PMC8160934 DOI: 10.3390/toxins13050363] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022] Open
Abstract
The protein transduction and antimicrobial activities of histidine-rich designer peptides were investigated as a function of their sequence and compared to gene transfection, lentivirus transduction and calcein release activities. In membrane environments, the peptides adopt helical conformations where the positioning of the histidine side chains defines a hydrophilic angle when viewed as helical wheel. The transfection of DNA correlates with calcein release in biophysical experiments, being best for small hydrophilic angles supporting a model where lysis of the endosomal membrane is the limiting factor. In contrast, antimicrobial activities show an inverse correlation suggesting that other interactions and mechanisms dominate within the bacterial system. Furthermore, other derivatives control the lentiviral transduction enhancement or the transport of proteins into the cells. Here, we tested the transport into human cell lines of luciferase (63 kDa) and the ribosome-inactivating toxin saporin (30 kDa). Notably, depending on the protein, different peptide sequences are required for the best results, suggesting that the interactions are manifold and complex. As such, designed LAH4 peptides assure a large panel of biological and biophysical activities whereby the optimal result can be tuned by the physico-chemical properties of the sequences.
Collapse
Affiliation(s)
- Morane Lointier
- Université de Strasbourg, CNRS, UMR7177, Institut de Chimie, 4, Rue Blaise Pascal, 67070 Strasbourg, France; (M.L.); (E.G.)
| | - Candice Dussouillez
- Laboratoire de Conception et Application de Molécules Bioactives, UMR7199 CNRS-Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France;
| | - Elise Glattard
- Université de Strasbourg, CNRS, UMR7177, Institut de Chimie, 4, Rue Blaise Pascal, 67070 Strasbourg, France; (M.L.); (E.G.)
| | - Antoine Kichler
- Laboratoire de Conception et Application de Molécules Bioactives, UMR7199 CNRS-Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France;
| | - Burkhard Bechinger
- Université de Strasbourg, CNRS, UMR7177, Institut de Chimie, 4, Rue Blaise Pascal, 67070 Strasbourg, France; (M.L.); (E.G.)
- Institut Universitaire de France, 75005 Paris, France
| |
Collapse
|
19
|
Ayad C, Libeau P, Lacroix-Gimon C, Ladavière C, Verrier B. LipoParticles: Lipid-Coated PLA Nanoparticles Enhanced In Vitro mRNA Transfection Compared to Liposomes. Pharmaceutics 2021; 13:377. [PMID: 33809164 PMCID: PMC7999670 DOI: 10.3390/pharmaceutics13030377] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
The approval of two mRNA vaccines as urgent prophylactic treatments against Covid-19 made them a realistic alternative to conventional vaccination methods. However, naked mRNA is rapidly degraded by the body and cannot effectively penetrate cells. Vectors capable of addressing these issues while allowing endosomal escape are therefore needed. To date, the most widely used vectors for this purpose have been lipid-based vectors. Thus, we have designed an innovative vector called LipoParticles (LP) consisting of poly(lactic) acid (PLA) nanoparticles coated with a 15/85 mol/mol DSPC/DOTAP lipid membrane. An in vitro investigation was carried out to examine whether the incorporation of a solid core offered added value compared to liposomes alone. To that end, a formulation strategy that we have named particulate layer-by-layer (pLbL) was used. This method permitted the adsorption of nucleic acids on the surface of LP (mainly by means of electrostatic interactions through the addition of LAH4-L1 peptide), allowing both cellular penetration and endosomal escape. After a thorough characterization of size, size distribution, and surface charge- and a complexation assessment of each vector-their transfection capacity and cytotoxicity (on antigenic presenting cells, namely DC2.4, and epithelial HeLa cells) were compared. LP have been shown to be significantly better transfecting agents than liposomes through pLbL formulation on both HeLa and DC 2.4 cells. These data illustrate the added value of a solid particulate core inside a lipid membrane, which is expected to rigidify the final assemblies and makes them less prone to early loss of mRNA. In addition, this assembly promoted not only efficient delivery of mRNA, but also of plasmid DNA, making it a versatile nucleic acid carrier that could be used for various vaccine applications. Finally, if the addition of the LAH4-L1 peptide systematically leads to toxicity of the pLbL formulation on DC 2.4 cells, the optimization of the nucleic acid/LAH4-L1 peptide mass ratio becomes an interesting strategy-essentially reducing the peptide intake to limit its cytotoxicity while maintaining a relevant transfection efficiency.
Collapse
Affiliation(s)
- Camille Ayad
- UMR 5305: Laboratoire de Biologie Tissulaire et d’Ingénierie Thérapeutique, Institut de Biologie et Chimie des Protéines, CNRS/Université Claude Bernard Lyon 1, 7 passage du Vercors, CEDEX 07, 69367 Lyon, France; (P.L.); (C.L.-G.)
| | - Pierre Libeau
- UMR 5305: Laboratoire de Biologie Tissulaire et d’Ingénierie Thérapeutique, Institut de Biologie et Chimie des Protéines, CNRS/Université Claude Bernard Lyon 1, 7 passage du Vercors, CEDEX 07, 69367 Lyon, France; (P.L.); (C.L.-G.)
| | - Céline Lacroix-Gimon
- UMR 5305: Laboratoire de Biologie Tissulaire et d’Ingénierie Thérapeutique, Institut de Biologie et Chimie des Protéines, CNRS/Université Claude Bernard Lyon 1, 7 passage du Vercors, CEDEX 07, 69367 Lyon, France; (P.L.); (C.L.-G.)
| | - Catherine Ladavière
- UMR 5223: Ingénierie des Matériaux Polymères, CNRS/Université Claude Bernard Lyon 1, Domaine Scientifique de la Doua, Bâtiment POLYTECH, 15 bd André Latarjet, CEDEX, 69622 Villeurbanne, France
| | - Bernard Verrier
- UMR 5305: Laboratoire de Biologie Tissulaire et d’Ingénierie Thérapeutique, Institut de Biologie et Chimie des Protéines, CNRS/Université Claude Bernard Lyon 1, 7 passage du Vercors, CEDEX 07, 69367 Lyon, France; (P.L.); (C.L.-G.)
| |
Collapse
|
20
|
Zhu W, Fang T, Zhang W, Liang A, Zhang H, Zhang ZP, Zhang XE, Li F. A ROS scavenging protein nanocage for in vitro and in vivo antioxidant treatment. NANOSCALE 2021; 13:4634-4643. [PMID: 33616146 DOI: 10.1039/d0nr08878a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Elevated levels of reactive oxygen species (ROS) are implicated in the onset and progression of many diseases, e.g., virus infection, ischemic stroke and neurodegenerative diseases. ROS-scavenging nanomaterials have attracted particular interest. Here, we report the development of a natural protein nanocage named Dps for in vitro and in vivo antioxidant treatment by inhibiting the Fenton reaction, a critical step in ROS generation and interconversion. Systematic surface engineering enabled cell penetration, good colloidal stability, and facile purification of Dps. With its intrinsic ferroxidase activity consuming both H2O2 and Fe2+, Dps not only protects human cells from oxidative stress but also effectively alleviates ROS-induced inflammation in a mouse dermatitis model. The protection is triggered by elevated H2O2 and thereby, in principle, avoids ROS imbalances. Thus, Dps has potential as a new bionano platform for different purposes, such as antiaging, anti-inflammation and cosmetics.
Collapse
Affiliation(s)
- Weiwei Zhu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China. and University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ti Fang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Wenjing Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China. and University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ao Liang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China. and University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Zhi-Ping Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Xian-En Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, China and National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Feng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China. and University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
21
|
Bornerie M, Brion A, Guichard G, Kichler A, Douat C. Delivery of siRNA by tailored cell-penetrating urea-based foldamers. Chem Commun (Camb) 2021; 57:1458-1461. [PMID: 33438700 DOI: 10.1039/d0cc06285e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Cell-penetrating foldamers (CPFs) have recently shown promise as efficient and safe nucleic acid delivery systems. However, the application of CPFs to siRNA transport remains scarce. Here, we report helical CPFs tailored with specific end-groups (pyridylthio- or n-octyl-ureas) as effective molecular systems in combination with helper lipids to intracellularly deliver biologically-relevant siRNA.
Collapse
Affiliation(s)
- Mégane Bornerie
- Univ. of Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, Pessac F-33607, France.
| | - Anaïs Brion
- Equipe 3Bio, CAMB 7199 CNRS-Univ., Strasbourg, Faculté de Pharmacie, 74 route du Rhin, Illkirch cedex F-67401, France.
| | - Gilles Guichard
- Univ. of Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, Pessac F-33607, France.
| | - Antoine Kichler
- Equipe 3Bio, CAMB 7199 CNRS-Univ., Strasbourg, Faculté de Pharmacie, 74 route du Rhin, Illkirch cedex F-67401, France.
| | - Céline Douat
- Univ. of Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, Pessac F-33607, France. and Department Pharmazie, Ludwig-Maximilians-Universität, Butenandtstraße 5-13, München D-81377, Germany.
| |
Collapse
|
22
|
Peptides as a material platform for gene delivery: Emerging concepts and converging technologies. Acta Biomater 2020; 117:40-59. [PMID: 32966922 DOI: 10.1016/j.actbio.2020.09.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/27/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023]
Abstract
Successful gene therapies rely on methods that safely introduce DNA into target cells and enable subsequent expression of proteins. To that end, peptides are an attractive materials platform for DNA delivery, facilitating condensation into nanoparticles, delivery into cells, and subcellular release to enable protein expression. Peptides are programmable materials that can be designed to address biocompatibility, stability, and subcellular barriers that limit efficiency of non-viral gene delivery systems. This review focuses on fundamental structure-function relationships regarding peptide design and their impact on nanoparticle physical properties, biologic activity, and biocompatibility. Recent peptide technologies utilize multi-dimensional structures, non-natural chemistries, and combinations of peptides with lipids to achieve desired properties and efficient transfection. Advances in DNA cargo design are also presented to highlight further opportunities for peptide-based gene delivery. Modern DNA designs enable prolonged expression compared to traditional plasmids, providing an additional component that can be synergized with peptide carriers for improved transfection. Peptide transfection systems are poised to become a flexible and efficient platform incorporating new chemistries, functionalities, and improved DNA cargos to usher in a new era of gene therapy.
Collapse
|
23
|
Abstract
Therapeutic viral gene delivery is an emerging technology which aims to correct genetic mutations by introducing new genetic information to cells either to correct a faulty gene or to initiate cell death in oncolytic treatments. In recent years, significant scientific progress has led to several clinical trials resulting in the approval of gene therapies for human treatment. However, successful therapies remain limited due to a number of challenges such as inefficient cell uptake, low transduction efficiency (TE), limited tropism, liver toxicity and immune response. To adress these issues and increase the number of available therapies, additives from a broad range of materials like polymers, peptides, lipids, nanoparticles, and small molecules have been applied so far. The scope of this review is to highlight these selected delivery systems from a materials perspective.
Collapse
Affiliation(s)
- Kübra Kaygisiz
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | | |
Collapse
|
24
|
Lin CY, Gobius I, Souza-Fonseca-Guimaraes F. Natural killer cell engineering – a new hope for cancer immunotherapy. Semin Hematol 2020; 57:194-200. [DOI: 10.1053/j.seminhematol.2020.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/20/2020] [Accepted: 10/14/2020] [Indexed: 01/04/2023]
|
25
|
Sánchez-Arribas N, Martínez-Negro M, Villar EM, Pérez L, Osío Barcina J, Aicart E, Taboada P, Guerrero-Martínez A, Junquera E. Protein Expression Knockdown in Cancer Cells Induced by a Gemini Cationic Lipid Nanovector with Histidine-Based Polar Heads. Pharmaceutics 2020; 12:E791. [PMID: 32825658 PMCID: PMC7558209 DOI: 10.3390/pharmaceutics12090791] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022] Open
Abstract
A histidine-based gemini cationic lipid, which had already demonstrated its efficiency as a plasmid DNA (pDNA) nanocarrier, has been used in this work to transfect a small interfering RNA (siRNA) into cancer cells. In combination with the helper lipid monoolein glycerol (MOG), the cationic lipid was used as an antiGFP-siRNA nanovector in a multidisciplinary study. Initially, a biophysical characterization by zeta potential (ζ) and agarose gel electrophoresis experiments was performed to determine the lipid effective charge and confirm siRNA compaction. The lipoplexes formed were arranged in Lα lamellar lyotropic liquid crystal phases with a cluster-type morphology, as cryo-transmission electron microscopy (cryo-TEM) and small-angle X-ray scattering (SAXS) studies revealed. Additionally, in vitro experiments confirmed the high gene knockdown efficiency of the lipid-based nanovehicle as detected by flow cytometry (FC) and epifluorescence microscopy, even better than that of Lipofectamine2000*, the transfecting reagent commonly used as a positive control. Cytotoxicity assays indicated that the nanovector is non-toxic to cells. Finally, using nano-liquid chromatography tandem mass spectrometry (nanoLC-MS/MS), apolipoprotein A-I and A-II followed by serum albumin were identified as the proteins with higher affinity for the surface of the lipoplexes. This fact could be beyond the remarkable silencing activity of the histidine-based lipid nanocarrier herein presented.
Collapse
Affiliation(s)
- Natalia Sánchez-Arribas
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain; (N.S.-A.); (M.M.-N.); (E.A.); (A.G.-M.)
| | - María Martínez-Negro
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain; (N.S.-A.); (M.M.-N.); (E.A.); (A.G.-M.)
| | - Eva M. Villar
- Departamento de Física de Partículas, Facultad de Físicas e Instituto de Investigaciones Sanitarias (IDIS), Universidad de Santiago de Compostela, Campus Vida, E-15782 Santiago de Compostela, Spain; (E.M.V.); (P.T.)
| | - Lourdes Pérez
- Departamento de Tensioactivos y Nanobiotecnología, IQAC-CSIC, 08034 Barcelona, Spain;
| | - José Osío Barcina
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - Emilio Aicart
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain; (N.S.-A.); (M.M.-N.); (E.A.); (A.G.-M.)
| | - Pablo Taboada
- Departamento de Física de Partículas, Facultad de Físicas e Instituto de Investigaciones Sanitarias (IDIS), Universidad de Santiago de Compostela, Campus Vida, E-15782 Santiago de Compostela, Spain; (E.M.V.); (P.T.)
| | - Andrés Guerrero-Martínez
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain; (N.S.-A.); (M.M.-N.); (E.A.); (A.G.-M.)
| | - Elena Junquera
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain; (N.S.-A.); (M.M.-N.); (E.A.); (A.G.-M.)
| |
Collapse
|
26
|
He J, Xu S, Mixson AJ. The Multifaceted Histidine-Based Carriers for Nucleic Acid Delivery: Advances and Challenges. Pharmaceutics 2020; 12:E774. [PMID: 32823960 PMCID: PMC7465012 DOI: 10.3390/pharmaceutics12080774] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/17/2022] Open
Abstract
Histidines incorporated into carriers of nucleic acids may enhance the extracellular stability of the nanoparticle, yet aid in the intracellular disruption of the nanoparticle, enabling the release of the nucleic acid. Moreover, protonation of histidines in the endosomes may result in endosomal swelling with subsequent lysis. These properties of histidine are based on its five-member imidazole ring in which the two nitrogen atoms may form hydrogen bonds or act as a base in acidic environments. A wide variety of carriers have integrated histidines or histidine-rich domains, which include peptides, polyethylenimine, polysaccharides, platform delivery systems, viral phages, mesoporous silica particles, and liposomes. Histidine-rich carriers have played key roles in our understanding of the stability of nanocarriers and the escape of the nucleic acids from endosomes. These carriers show great promise and offer marked potential in delivering plasmids, siRNA, and mRNA to their intracellular targets.
Collapse
Affiliation(s)
| | | | - A. James Mixson
- Department of Pathology, University Maryland School of Medicine, 10 S. Pine St., University of Maryland, Baltimore, MD 21201, USA; (J.H.); (S.X.)
| |
Collapse
|
27
|
Bhattacharjya S, Straus SK. Design, Engineering and Discovery of Novel α-Helical and β-Boomerang Antimicrobial Peptides against Drug Resistant Bacteria. Int J Mol Sci 2020; 21:ijms21165773. [PMID: 32796755 PMCID: PMC7460851 DOI: 10.3390/ijms21165773] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022] Open
Abstract
In an era where the pipeline of new antibiotic development is drying up, the continuous rise of multi-drug resistant (MDR) and extensively drug resistant (XDR) bacteria are genuine threats to human health. Although antimicrobial peptides (AMPs) may serve as promising leads against drug resistant bacteria, only a few AMPs are in advanced clinical trials. The limitations of AMPs, namely their low in vivo activity, toxicity, and poor bioavailability, need to be addressed. Here, we review engineering of frog derived short α-helical AMPs (aurein, temporins) and lipopolysaccharide (LPS) binding designed β-boomerang AMPs for further development. The discovery of novel cell selective AMPs from the human proprotein convertase furin is also discussed.
Collapse
Affiliation(s)
- Surajit Bhattacharjya
- School of Biological Sciences, 60 Nanyang Drive, Nanyang Technological University, Singapore 637551, Singapore
- Correspondence: (S.B.); (S.K.S.)
| | - Suzana K. Straus
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
- Correspondence: (S.B.); (S.K.S.)
| |
Collapse
|
28
|
Lointier M, Aisenbrey C, Marquette A, Tan JH, Kichler A, Bechinger B. Membrane pore-formation correlates with the hydrophilic angle of histidine-rich amphipathic peptides with multiple biological activities. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183212. [DOI: 10.1016/j.bbamem.2020.183212] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 01/06/2023]
|
29
|
Insights into the mechanism of action of two analogues of aurein 2.2. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183262. [DOI: 10.1016/j.bbamem.2020.183262] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/29/2020] [Accepted: 03/04/2020] [Indexed: 01/28/2023]
|
30
|
Aisenbrey C, Douat C, Kichler A, Guichard G, Bechinger B. Characterization of the DNA and Membrane Interactions of a Bioreducible Cell-Penetrating Foldamer in its Monomeric and Dimeric Form. J Phys Chem B 2020; 124:4476-4486. [DOI: 10.1021/acs.jpcb.0c01853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Christopher Aisenbrey
- Institut de chimie, Université de Strasbourg/CNRS, UMR7177, 4, rue Blaise Pascal, 67070 Strasbourg, France
| | - Céline Douat
- Université Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607 Pessac, France
| | - Antoine Kichler
- Faculté de Pharmacie, Université de Strasbourg/CNRS, UMR7199, 74, route du Rhin, 67401 Illkirch, France
| | - Gilles Guichard
- Université Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607 Pessac, France
| | - Burkhard Bechinger
- Institut de chimie, Université de Strasbourg/CNRS, UMR7177, 4, rue Blaise Pascal, 67070 Strasbourg, France
- Institut Universitaire de France,
| |
Collapse
|
31
|
Nadal‐Bufí F, Henriques ST. How to overcome endosomal entrapment of cell‐penetrating peptides to release the therapeutic potential of peptides? Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24168] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ferran Nadal‐Bufí
- School of Biomedical Sciences, Faculty of Health, Institute of Health & Biomedical Innovation, Queensland University of Technology Translational Research Institute Brisbane Queensland Australia
| | - Sónia Troeira Henriques
- School of Biomedical Sciences, Faculty of Health, Institute of Health & Biomedical Innovation, Queensland University of Technology Translational Research Institute Brisbane Queensland Australia
| |
Collapse
|
32
|
Polylactide-Based Reactive Micelles as a Robust Platform for mRNA Delivery. Pharm Res 2020; 37:30. [PMID: 31915939 DOI: 10.1007/s11095-019-2749-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/07/2019] [Indexed: 01/09/2023]
Abstract
PURPOSE mRNA has recently emerged as a potent therapeutics and requires safe and effective delivery carriers, particularly prone to address its issues of poor stability and escape from endosomes. In this context, we designed poly(D,L-lactide) (PLA)-based micelles with N-succinimidyl (NS) ester decorated hydrophilic hairy corona to trap/couple a cationic fusogenic peptide and further complex mRNA. METHODS Two strategies were investigated, namely (i) sequential immobilization of peptide and mRNA onto the micelles (layer-by-layer, LbL) or (ii) direct immobilization of peptide-mRNA pre-complex (PC) on the micelles. After characterization by means of size, surface charge, peptide/mRNA coupling/complexation and mRNA serum stability, carrier cytotoxicity and transfection capacity were evaluated with dendritic cells (DCs) using both GFP and luciferase mRNAs. RESULTS Whatever the approach used, the micellar assemblies afforded full protection of mRNA in serum while the peptide-mRNA complex yielded complete mRNA degradation. In addition, the micellar assemblies allowed to significantly reduce the toxicity observed with the peptide-mRNA complex. They successfully transfected hard-to transfect DCs, with a superior efficiency for the LbL made ones (whatever mRNAs studied) showing the impact of the elaboration process on the carrier properties. CONCLUSIONS These results show the relevance and potential of this new PLA/peptide based micelle platform to improve mRNA stability and delivery, while offering the possibility of further multifunctionality through PLA core encapsulation.
Collapse
|
33
|
Radek C, Bernadin O, Drechsel K, Cordes N, Pfeifer R, Sträßer P, Mormin M, Gutierrez-Guerrero A, Cosset FL, Kaiser AD, Schaser T, Galy A, Verhoeyen E, Johnston IC. Vectofusin-1 Improves Transduction of Primary Human Cells with Diverse Retroviral and Lentiviral Pseudotypes, Enabling Robust, Automated Closed-System Manufacturing. Hum Gene Ther 2019; 30:1477-1493. [PMID: 31578886 PMCID: PMC6919281 DOI: 10.1089/hum.2019.157] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/21/2019] [Indexed: 01/07/2023] Open
Abstract
Cell and gene therapies are finally becoming viable patient treatment options, with both T cell- and hematopoietic stem cell (HSC)-based therapies being approved to market in Europe. However, these therapies, which involve the use of viral vector to modify the target cells, are expensive and there is an urgent need to reduce manufacturing costs. One major cost factor is the viral vector production itself, therefore improving the gene modification efficiency could significantly reduce the amount of vector required per patient. This study describes the use of a transduction enhancing peptide, Vectofusin-1®, to improve the transduction efficiency of primary target cells using lentiviral and gammaretroviral vectors (LV and RV) pseudotyped with a variety of envelope proteins. Using Vectofusin-1 in combination with LV pseudotyped with viral glycoproteins derived from baboon endogenous retrovirus, feline endogenous virus (RD114), and measles virus (MV), a strongly improved transduction of HSCs, B cells and T cells, even when cultivated under low stimulation conditions, could be observed. The formation of Vectofusin-1 complexes with MV-LV retargeted to CD20 did not alter the selectivity in mixed cell culture populations, emphasizing the precision of this targeting technology. Functional, ErbB2-specific chimeric antigen receptor-expressing T cells could be generated using a gibbon ape leukemia virus (GALV)-pseudotyped RV. Using a variety of viral vectors and target cells, Vectofusin-1 performed in a comparable manner to the traditionally used surface-bound recombinant fibronectin. As Vectofusin-1 is a soluble peptide, it was possible to easily transfer the T cell transduction method to an automated closed manufacturing platform, where proof of concept studies demonstrated efficient genetic modification of T cells with GALV-RV and RD114-RV and the subsequent expansion of mainly central memory T cells to a clinically relevant dose.
Collapse
Affiliation(s)
| | - Ornellie Bernadin
- CIRI—International Center for Infectiology Research, Team EVIR, Université de Lyon, Lyon, France
- Inserm, U1111, Ecole Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, CNRS, UMR5308, Lyon, France
| | | | - Nicole Cordes
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Rita Pfeifer
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Pia Sträßer
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Mirella Mormin
- Integrare Research Unit UMR_S951, Genethon, INSERM, University Evry, EPHE, Evry, France
| | - Alejandra Gutierrez-Guerrero
- CIRI—International Center for Infectiology Research, Team EVIR, Université de Lyon, Lyon, France
- Inserm, U1111, Ecole Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, CNRS, UMR5308, Lyon, France
| | - François-loïc Cosset
- CIRI—International Center for Infectiology Research, Team EVIR, Université de Lyon, Lyon, France
- Inserm, U1111, Ecole Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, CNRS, UMR5308, Lyon, France
| | | | - Thomas Schaser
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Anne Galy
- Integrare Research Unit UMR_S951, Genethon, INSERM, University Evry, EPHE, Evry, France
| | - Els Verhoeyen
- CIRI—International Center for Infectiology Research, Team EVIR, Université de Lyon, Lyon, France
- Inserm, U1111, Ecole Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, CNRS, UMR5308, Lyon, France
- Université Côte d'Azur, INSERM, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France
| | | |
Collapse
|
34
|
Peng L, Wagner E. Polymeric Carriers for Nucleic Acid Delivery: Current Designs and Future Directions. Biomacromolecules 2019; 20:3613-3626. [DOI: 10.1021/acs.biomac.9b00999] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
35
|
Abstract
Membrane permeabilizing peptides (MPPs) are as ubiquitous as the lipid bilayer membranes they act upon. Produced by all forms of life, most membrane permeabilizing peptides are used offensively or defensively against the membranes of other organisms. Just as nature has found many uses for them, translational scientists have worked for decades to design or optimize membrane permeabilizing peptides for applications in the laboratory and in the clinic ranging from antibacterial and antiviral therapy and prophylaxis to anticancer therapeutics and drug delivery. Here, we review the field of membrane permeabilizing peptides. We discuss the diversity of their sources and structures, the systems and methods used to measure their activities, and the behaviors that are observed. We discuss the fact that "mechanism" is not a discrete or a static entity for an MPP but rather the result of a heterogeneous and dynamic ensemble of structural states that vary in response to many different experimental conditions. This has led to an almost complete lack of discrete three-dimensional active structures among the thousands of known MPPs and a lack of useful or predictive sequence-structure-function relationship rules. Ultimately, we discuss how it may be more useful to think of membrane permeabilizing peptides mechanisms as broad regions of a mechanistic landscape rather than discrete molecular processes.
Collapse
Affiliation(s)
- Shantanu Guha
- Department of Biochemistry and Molecular Biology Tulane University School of Medicine , New Orleans , Louisiana 70112 , United States
| | - Jenisha Ghimire
- Department of Biochemistry and Molecular Biology Tulane University School of Medicine , New Orleans , Louisiana 70112 , United States
| | - Eric Wu
- Department of Biochemistry and Molecular Biology Tulane University School of Medicine , New Orleans , Louisiana 70112 , United States
| | - William C Wimley
- Department of Biochemistry and Molecular Biology Tulane University School of Medicine , New Orleans , Louisiana 70112 , United States
| |
Collapse
|
36
|
Strategies in the design of endosomolytic agents for facilitating endosomal escape in nanoparticles. Biochimie 2019; 160:61-75. [DOI: 10.1016/j.biochi.2019.02.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/19/2019] [Indexed: 12/23/2022]
|
37
|
Douat C, Bornerie M, Antunes S, Guichard G, Kichler A. Hybrid Cell-Penetrating Foldamer with Superior Intracellular Delivery Properties and Serum Stability. Bioconjug Chem 2019; 30:1133-1139. [PMID: 30860823 DOI: 10.1021/acs.bioconjchem.9b00075] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sequence specific molecules with high folding ability (i.e., foldamers) can be used to precisely control the distribution and projection of side chains in space and have recently been introduced as tailored systems for delivering nucleic acids into cells. Designed oligourea sequences with an amphipathic distribution of Arg- and His-type residues were shown to form tight complexes with plasmid DNA, and to effectively promote the release of DNA from the endosomes. Herein, we report the synthesis of new cell-penetrating foldamer sequences in which the foldamer segment is conjugated via a reducible disulfide bond to a ligand that binds cell-surface expressed nucleoproteins with the idea that this system could facilitate both assemblies with nucleic acids and cell entry. This new system was evaluated for delivery of DNA in several cell lines and was found to compare favorably with all comparators tested (DOTAP and b-PEI as well as a number of known cell penetrating peptides) in various cell lines and particularly in culture medium containing up to 50% of serum. These results suggest that this dual molecular platform which is long lasting and noncytotoxic could be of practical use for in vivo applications.
Collapse
Affiliation(s)
- Céline Douat
- Université de Bordeaux, CNRS, CBMN, UMR 5248 , Institut Européen de Chimie et Biologie , 2 rue Robert Escarpit , F-33607 Pessac , France.,Department Pharmazie , Ludwig-Maximilians-Universität , Butenandtstraße 5-13 , D-81377 München , Germany
| | - Mégane Bornerie
- Université de Bordeaux, CNRS, CBMN, UMR 5248 , Institut Européen de Chimie et Biologie , 2 rue Robert Escarpit , F-33607 Pessac , France
| | - Stéphanie Antunes
- Université de Bordeaux, CNRS, CBMN, UMR 5248 , Institut Européen de Chimie et Biologie , 2 rue Robert Escarpit , F-33607 Pessac , France
| | - Gilles Guichard
- Université de Bordeaux, CNRS, CBMN, UMR 5248 , Institut Européen de Chimie et Biologie , 2 rue Robert Escarpit , F-33607 Pessac , France
| | - Antoine Kichler
- Equipe 3Bio , CAMB 7199 CNRS-Univ. Strasbourg, Faculté de Pharmacie , 74 route du Rhin , F-67401 Illkirch cedex, France
| |
Collapse
|
38
|
Rouet R, Christ D. Efficient Intracellular Delivery of CRISPR-Cas Ribonucleoproteins through Receptor Mediated Endocytosis. ACS Chem Biol 2019; 14:554-561. [PMID: 30779874 DOI: 10.1021/acschembio.9b00116] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We recently reported a new delivery system harnessing surface receptors for targeted uptake of CRISPR-Cas9 ribonucleoprotein into mammalian cells (Rouet et al., JACS 2018). For this purpose, Cas9 protein was labeled with the small molecule ligand ASGRL, specific for the asialoglycoprotein receptor, enabling endosomal uptake of the ribonucleoprotein into human cells expressing the receptor. However, detailed mechanistic insights had remained unknown and editing efficiency low. Here we investigate the mechanism of endosomal escape as mediated by the ppTG21 endosomolytic peptide and outline the development of novel Cas9 or Cas12a ribonucleoprotein complexes with increased editing efficiency.
Collapse
Affiliation(s)
- Romain Rouet
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- The University of New South Wales Sydney, Faculty of Medicine, St. Vincent’s Clinical School, Darlinghurst, New South Wales Australia
| | - Daniel Christ
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- The University of New South Wales Sydney, Faculty of Medicine, St. Vincent’s Clinical School, Darlinghurst, New South Wales Australia
| |
Collapse
|
39
|
Gross DA, Leborgne C, Chappert P, Masurier C, Leboeuf M, Monteilhet V, Boutin S, Lemonnier FA, Davoust J, Kichler A. Induction of tumor-specific CTL responses using the C-terminal fragment of Viral protein R as cell penetrating peptide. Sci Rep 2019; 9:3937. [PMID: 30850685 PMCID: PMC6408526 DOI: 10.1038/s41598-019-40594-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 12/14/2018] [Indexed: 12/30/2022] Open
Abstract
The discovery of tumor-associated antigens recognized by T lymphocytes opens the possibility of vaccinating cancer patients with defined antigens. However, one of the major limitation of peptide-based vaccines is the low immunogenicity of antigenic peptides. Interestingly, if these epitopes are directly delivered into the cytoplasm of antigen presenting cells, they can be efficiently presented via the direct MHC class I presentation pathway. To improve antigen entry, one promising approach is the use of cell penetrating peptides (CPPs). However, most studies use a covalent binding of the CPP with the antigen. In the present study, we focused on the C-terminal domain of Vpr which was previously demonstrated to efficiently deliver plasmid DNA into cells. We provide evidence that the peptides Vpr55-91 and Vpr55-82 possess the capacity of delivering proteins and epitopes into cell lines as well as into human primary dendritic cells, without the necessicity for a chemical linkage. Moreover, immunization of HLA-A2 transgenic mice with Vpr55-91 as the sole adjuvant is able to induce antigen-specific cytotoxic T lymphocytes against multiple tumor epitopes.
Collapse
Affiliation(s)
- D A Gross
- Genethon, 91002, Evry cedex, France. .,INSERM U1151, Institut Necker Enfants Malades, CNRS, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, UMR8253, Paris, France.
| | | | - P Chappert
- Genethon, 91002, Evry cedex, France.,INSERM U1151, Institut Necker Enfants Malades, CNRS, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, UMR8253, Paris, France
| | | | | | | | - S Boutin
- Genethon, 91002, Evry cedex, France
| | - F A Lemonnier
- INSERM, Unité 1016, Institut Cochin, Université Paris Descartes, Sorbonne Paris Cité, 75014, Paris, France
| | - J Davoust
- Genethon, 91002, Evry cedex, France.,INSERM U1151, Institut Necker Enfants Malades, CNRS, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, UMR8253, Paris, France
| | - A Kichler
- Genethon, 91002, Evry cedex, France. .,Laboratoire de Conception et Application de Molécules Bioactives UMR7199 CNRS - Université de Strasbourg, Faculté de Pharmacie, 67401, Illkirch, France.
| |
Collapse
|
40
|
Xing H, Lu M, Yang T, Liu H, Sun Y, Zhao X, Xu H, Yang L, Ding P. Structure-function relationships of nonviral gene vectors: Lessons from antimicrobial polymers. Acta Biomater 2019; 86:15-40. [PMID: 30590184 DOI: 10.1016/j.actbio.2018.12.041] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/22/2018] [Accepted: 12/21/2018] [Indexed: 01/13/2023]
Abstract
In recent years, substantial advances have been achieved in the design and synthesis of nonviral gene vectors. However, lack of effective and biocompatible vectors still remains a major challenge that hinders their application in clinical settings. In the past decade, there has been a rapid expansion of cationic antimicrobial polymers, due to their potent, rapid, and broad-spectrum biocidal activity against resistant microbes, and biocompatible features. Given that antimicrobial polymers share common features with nonviral gene vectors in various aspects, such as membrane affinity, functional groups, physicochemical characteristics, and unique macromolecular architectures, these polymers may provide us with inspirations to overcome challenges in the design of novel vectors toward more safe and efficient gene delivery in clinic. Building off these observations, we provide here an overview of the structure-function relationships of polymers for both antimicrobial applications and gene delivery by elaborating some key structural parameters, including functional groups, charge density, hydrophobic/hydrophilic balance, MW, and macromolecular architectures. By borrowing a leaf from antimicrobial agents, great advancement in the development of newer nonviral gene vectors with high transfection efficiency and biocompatibility will be more promising. STATEMENT OF SIGNIFICANCE: The development of gene delivery is still in the preclinical stage for the lack of effective and biocompatible vectors. Given that antimicrobial polymers share common features with gene vectors in various aspects, such as membrane affinity, functional groups, physicochemical characteristics, and unique macromolecular architectures, these polymers may provide us with inspirations to overcome challenges in the design of novel vectors toward more safe and efficient gene delivery in clinic. In this review, we systematically summarized the structure-function relationships of antimicrobial polymers and gene vectors, with which the design of more advanced nonviral gene vectors is anticipated to be further boosted in the future.
Collapse
Affiliation(s)
- Haonan Xing
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Mei Lu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Tianzhi Yang
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, Husson University, Bangor, ME, USA
| | - Hui Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yanping Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaoyun Zhao
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Hui Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Li Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China.
| | - Pingtian Ding
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
41
|
Abstract
Amphipathic, pH-responsive, membrane-active peptides such as LAH4 and derivatives thereof have the ability to effectively deliver genes and small interfering RNA (siRNA) into mammalian cells. Their ability to bind and protect nucleic acids and then disrupt membranes when activated at low pH enables them to harness the endocytic machinery to deliver cargo efficiently and with low associated toxicity. This chapter describes protocols for the chemical synthesis of transfection peptides of the LAH4 family, complex formation with nucleic acids, and their use for the in vitro delivery of either plasmid DNA or siRNA into mammalian cell lines.
Collapse
|
42
|
Martínez-Negro M, Blanco-Fernández L, Tentori PM, Pérez L, Pinazo A, Tros de Ilarduya C, Aicart E, Junquera E. A Gemini Cationic Lipid with Histidine Residues as a Novel Lipid-Based Gene Nanocarrier: A Biophysical and Biochemical Study. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E1061. [PMID: 30558369 PMCID: PMC6316511 DOI: 10.3390/nano8121061] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 01/08/2023]
Abstract
This work reports the synthesis of a novel gemini cationic lipid that incorporates two histidine-type head groups (C₃(C16His)₂). Mixed with a helper lipid 1,2-dioleoyl-sn-glycero-3-phosphatidyl ethanol amine (DOPE), it was used to transfect three different types of plasmid DNA: one encoding the green fluorescence protein (pEGFP-C3), one encoding a luciferase (pCMV-Luc), and a therapeutic anti-tumoral agent encoding interleukin-12 (pCMV-IL12). Complementary biophysical experiments (zeta potential, gel electrophoresis, small-angle X-ray scattering (SAXS), and fluorescence anisotropy) and biological studies (FACS, luminometry, and cytotoxicity) of these C₃(C16His)₂/DOPE-pDNA lipoplexes provided vast insight into their outcomes as gene carriers. They were found to efficiently compact and protect pDNA against DNase I degradation by forming nanoaggregates of 120⁻290 nm in size, which were further characterized as very fluidic lamellar structures based in a sandwich-type phase, with alternating layers of mixed lipids and an aqueous monolayer where the pDNA and counterions are located. The optimum formulations of these nanoaggregates were able to transfect the pDNAs into COS-7 and HeLa cells with high cell viability, comparable or superior to that of the standard Lipo2000*. The vast amount of information collected from the in vitro studies points to this histidine-based lipid nanocarrier as a potentially interesting candidate for future in vivo studies investigating specific gene therapies.
Collapse
Affiliation(s)
- María Martínez-Negro
- Grupo de Química Coloidal y Supramolecular, Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Laura Blanco-Fernández
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain.
| | - Paolo M Tentori
- Grupo de Química Coloidal y Supramolecular, Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Lourdes Pérez
- Dpto. Tecnología Química y Tensioactivos, IQAC-CSIC, 08034 Barcelona, Spain.
| | - Aurora Pinazo
- Dpto. Tecnología Química y Tensioactivos, IQAC-CSIC, 08034 Barcelona, Spain.
| | - Conchita Tros de Ilarduya
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain.
| | - Emilio Aicart
- Grupo de Química Coloidal y Supramolecular, Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Elena Junquera
- Grupo de Química Coloidal y Supramolecular, Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| |
Collapse
|
43
|
Bono N, Pennetta C, Sganappa A, Giupponi E, Sansone F, Volonterio A, Candiani G. Design and synthesis of biologically active cationic amphiphiles built on the calix[4]arene scaffold. Int J Pharm 2018; 549:436-445. [DOI: 10.1016/j.ijpharm.2018.08.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 07/27/2018] [Accepted: 08/13/2018] [Indexed: 12/14/2022]
|
44
|
Zeng Z, Zhang R, Hong W, Cheng Y, Wang H, Lang Y, Ji Z, Wu Y, Li W, Xie Y, Cao Z. Histidine-rich Modification of a Scorpion-derived Peptide Improves Bioavailability and Inhibitory Activity against HSV-1. Theranostics 2018; 8:199-211. [PMID: 29290802 PMCID: PMC5743469 DOI: 10.7150/thno.21425] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/04/2017] [Indexed: 12/31/2022] Open
Abstract
Rationale: HSV is one of the most widespread human viral pathogens. HSV-1 infects a large portion of the human population and causes severe diseases. The current clinical treatment for HSV-1 is based on nucleoside analogues, the use of which is limited due to drug resistance, side effects and poor bioavailability. AMPs have been identified as potential antiviral agents that may overcome these limitations. Therefore, we screened anti-HSV-1 peptides from a scorpion-derived AMP library and engineered one candidate into a histidine-rich peptide with significantly improved antiviral activity and development potential. Methods: A venomous gland cDNA library was constructed from the scorpion Euscorpiops validus in the Yunnan Province of China. Six putative AMPs were characterized from this cDNA library, and the synthesized peptides were screened via plaque-forming assays to determine their virucidal potential. Time of addition experiments according to the infection progress of HSV-1 were used to identify the modes of action for peptides of interest. The histidine-rich modification was designed based on structural analysis of peptides by a helical wheel model and CD spectroscopy. Peptide cellular uptake and distribution were measured by flow cytometry and confocal microscopy, respectively. Results: The peptide Eval418 was found to have high clearance activity in an HSV-1 plaque reduction assay. Eval418 exhibited dose-dependent and time-dependent inactivation of HSV-1 and dose-dependent inhibition of HSV-1 attachment to host cells. However, Eval418 scarcely suppressed an established HSV-1 infection due to poor cellular uptake. We further designed and modified Eval418 into four histidine-rich derivative peptides with enhanced antiviral activities and lower cytotoxicities. All of the derivative peptides suppressed established HSV-1 infections. One of these peptides, Eval418-FH5, not only had strong viral inactivation activity and enhanced attachment inhibitory activity but also had high inhibitory activity against intracellular HSV-1, which was consistent with its improved intracellular uptake and distribution as confirmed by confocal microscopy and flow cytometry. Conclusion: We successfully identified an anti-HSV-1 peptide, Eval418, from a scorpion venom peptide library and designed a histidine-rich Eval418 derivative with significantly improved potential for further development as an anti-HSV-1 drug. This successful modification can provide a design strategy to improve the bioavailability, cellular distribution and antiviral activity of peptide agents.
Collapse
|
45
|
Vermeer LS, Hamon L, Schirer A, Schoup M, Cosette J, Majdoul S, Pastré D, Stockholm D, Holic N, Hellwig P, Galy A, Fenard D, Bechinger B. Vectofusin-1, a potent peptidic enhancer of viral gene transfer forms pH-dependent α-helical nanofibrils, concentrating viral particles. Acta Biomater 2017; 64:259-268. [PMID: 29017974 DOI: 10.1016/j.actbio.2017.10.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 10/02/2017] [Accepted: 10/06/2017] [Indexed: 01/13/2023]
Abstract
Gene transfer using lentiviral vectors has therapeutic applications spanning from monogenic and infectious diseases to cancer. Such gene therapy has to be improved by enhancing the levels of viral infection of target cells and/or reducing the amount of lentivirus for greater safety and reduced costs. Vectofusin-1, a recently developed cationic amphipathic peptide with a pronounced capacity to enhance such viral transduction, strongly promotes the entry of several retroviral pseudotypes into target cells when added to the culture medium. To clarify the molecular basis of its action the peptide was investigated on a molecular and a supramolecular level by a variety of biophysical approaches. We show that in culture medium vectofusin-1 rapidly forms complexes in the 10 nm range that further assemble into annular and extended nanofibrils. These associate with viral particles allowing them to be easily pelleted for optimal virus-cell interaction. Thioflavin T fluorescence, circular dichroism and infrared spectroscopies indicate that these fibrils have a unique α-helical structure whereas most other viral transduction enhancers form β-amyloid fibrils. A vectofusin-1 derivative (LAH2-A4) is inefficient in biological assays and does not form nanofibrils, suggesting that supramolecular assembly is essential for transduction enhancement. Our observations define vectofusin-1 as a member of a new class of α-helical enhancers of lentiviral infection. Its fibril formation is reversible which bears considerable advantages in handling the peptide in conditions well-adapted to Good Manufacturing Practices and scalable gene therapy protocols.
Collapse
Affiliation(s)
- Louic S Vermeer
- CNRS, Univ. of Strasbourg, Institut de Chimie UMR_7177, Strasbourg, France
| | - Loic Hamon
- INSERM, Univ. of Evry, UMR_S1204, Evry, France
| | | | - Michel Schoup
- CNRS, Univ. of Strasbourg, Institut de Chimie UMR_7177, Strasbourg, France
| | | | - Saliha Majdoul
- Genethon, INSERM, Univ. of Evry, EPHE-PSL Research University, Research Unit Integrare UMR_S951, Evry, France
| | | | - Daniel Stockholm
- Genethon, INSERM, Univ. of Evry, EPHE-PSL Research University, Research Unit Integrare UMR_S951, Evry, France
| | - Nathalie Holic
- Genethon, INSERM, Univ. of Evry, EPHE-PSL Research University, Research Unit Integrare UMR_S951, Evry, France
| | - Petra Hellwig
- CNRS, Univ. of Strasbourg, UMR 7140, Strasbourg, France
| | - Anne Galy
- Genethon, INSERM, Univ. of Evry, EPHE-PSL Research University, Research Unit Integrare UMR_S951, Evry, France
| | | | - Burkhard Bechinger
- CNRS, Univ. of Strasbourg, Institut de Chimie UMR_7177, Strasbourg, France.
| |
Collapse
|
46
|
Kangarlou S, Ramezanpour S, Balalaie S, Roudbar Mohammadi S, Haririan I. Curcumin-loaded nanoliposomes linked to homing peptides for integrin targeting and neuropilin-1-mediated internalization. PHARMACEUTICAL BIOLOGY 2017; 55:277-285. [PMID: 27937055 PMCID: PMC6130459 DOI: 10.1080/13880209.2016.1261301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 08/17/2016] [Accepted: 11/07/2016] [Indexed: 06/06/2023]
Abstract
CONTEXT Curcumin, a naturally occurring polyphenol, has been extensively studied for its broad-spectrum anticancer effects. The potential benefits are, however, limited due to its poor water solubility and rapid degradation which result in low bioavailability on administration. OBJECTIVES This study encapsulates curcumin in nanoliposomes including an integrin-homing peptide combined with a C end R neuropilin-1 targeting motif for targeted delivery and receptor-mediated internalization, respectively. MATERIALS AND METHODS The linear GHHNGR (Glycine-Histidine-Histidine-Asparagine-Glycine-Arginine) was synthesized through F-moc chemistry on 2-chlorotrityl chloride resin and conjugated to oleic acid. The lipoyl-peptide units were then co-assembled with lecithin and 0-75 mole % Tween-80 into liposomes. Curcumin was passively entrapped using a film hydration technique and its degradation profile was examined within seven consecutive days. The cytotoxic effects of the curcumin-loaded liposomes were studied on MCF-7 and MDA-MB-468, during 24 h exposure in MTT assay. RESULTS The maximum curcumin entrapment (15.5% W/W) and minimum degradation (< 23%) were obtained in a pH switch loading method from 5.7 to 8, in nanoliposomes (< 50 nm) containing oleyl-peptide, lecithin and Tween-80 (1:1:0.75 mole ratio). The oleyl-peptide did not prove any haemolytic activity (< 1.5%) up to 10-fold of its experimental concentration. The curcumin-loaded liposomes displayed significant reduction in the viabilities of MCF-7 (IC50 3.8 μM) and MDA-MB-468 (IC50 5.4 μM). DISCUSSION AND CONCLUSION This study indicated potential advantages of the peptide-conjugated liposomes in drug transport to the cancer cells. This feature might be an outcome of probable interactions between the targeted nanoliposomes with the integrin and neuropilin-1 receptors.
Collapse
Affiliation(s)
- Sogol Kangarlou
- Department of Pharmaceutical Biomaterials School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sorour Ramezanpour
- Peptide Chemistry Research Center, K.N. Toosi University of Technology, Tehran, Iran
| | - Saeed Balalaie
- Peptide Chemistry Research Center, K.N. Toosi University of Technology, Tehran, Iran
| | - Shahla Roudbar Mohammadi
- Department of Medical Mycology School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ismaeil Haririan
- Department of Pharmaceutical Biomaterials School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Medical Biomaterials Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
47
|
Enhancement of lung gene delivery after aerosol: a new strategy using non-viral complexes with antibacterial properties. Biosci Rep 2017; 37:BSR20160618. [PMID: 29046368 PMCID: PMC5691145 DOI: 10.1042/bsr20160618] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 02/06/2023] Open
Abstract
The pathophysiology of obstructive pulmonary diseases, such as cystic fibrosis (CF), leads to the development of chronic infections in the respiratory tract. Thus, the symptomatic management of the disease requires, in particular, repetitive antibiotherapy. Besides these antibacterial treatments, certain pathologies, such as CF or chronic obstructive pulmonary disease (COPD), require the intake of many drugs. This simultaneous absorption may lead to undesirable drug interactions. For example, Orkambi® (lumacaftor/Ivacaftor, Vertex), a pharmacological drug employed to treat F508del patients, cannot be used with antibiotics such as rifampicin or rifabutin (rifamycin family) which are necessary to treat Mycobacteriaceae. As far as gene therapy is concerned, bacteria and/or biofilm in the airways present an additional barrier for gene transfer. Thus, aerosol administration of nanoparticles have to overcome many obstacles before allowing cellular penetration of therapeutic compounds. This review focusses on the development of aerosol formulations adapted to the respiratory tract and its multiple barriers. Then, formulations that are currently used in clinical applications are summarized depending on the active molecule delivered. Finally, we focus on new therapeutic approaches to reduce possible drug interactions by transferring the antibacterial activity to the nanocarrier while ensuring the transfection efficiency.
Collapse
|
48
|
Krhac Levacic A, Morys S, Wagner E. Solid-phase supported design of carriers for therapeutic nucleic acid delivery. Biosci Rep 2017; 37:BSR20160617. [PMID: 28963371 PMCID: PMC5662914 DOI: 10.1042/bsr20160617] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 12/21/2022] Open
Abstract
Nucleic acid molecules are important therapeutic agents in the field of antisense oligonucleotide, RNA interference, and gene therapies. Since nucleic acids are not able to cross cell membranes and enter efficiently into cells on their own, the development of efficient, safe, and precise delivery systems is the crucial challenge for development of nucleic acid therapeutics. For the delivery of nucleic acids to their intracellular site of action, either the cytosol or the nucleus, several extracellular and intracellular barriers have to be overcome. Multifunctional carriers may handle the different special requirements of each barrier. The complexity of such macromolecules however poses a new hurdle in medical translation, which is the chemical production in reproducible and well-defined form. Solid-phase assisted synthesis (SPS) presents a solution for this challenge. The current review provides an overview on the design and SPS of precise sequence-defined synthetic carriers for nucleic acid cargos.
Collapse
Affiliation(s)
- Ana Krhac Levacic
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, D-81377 Munich, Germany
| | - Stephan Morys
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, D-81377 Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, D-81377 Munich, Germany
- Nanosystems Initiative Munich, Schellingstrasse 4, D-80799 Munich, Germany
| |
Collapse
|
49
|
Liu N, Bechinger B, Süss R. The histidine-rich peptide LAH4-L1 strongly promotes PAMAM-mediated transfection at low nitrogen to phosphorus ratios in the presence of serum. Sci Rep 2017; 7:9585. [PMID: 28852016 PMCID: PMC5575053 DOI: 10.1038/s41598-017-10049-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/02/2017] [Indexed: 11/09/2022] Open
Abstract
Non-viral vectors are widely used and investigated for the delivery of genetic material into cells. However, gene delivery barriers like lysosomal degradation, serum inhibition and transient gene expression so far still limit their clinical applications. Aiming to overcome these limitations, a pH-sensitive hybrid gene vector (PSL complex) was designed by self-assembly of poly(amidoamine) (PAMAM) dendrimers, the histidine-rich peptide LAH4-L1 and the sleeping beauty transposon system (SB transposon system, a plasmid system capable of efficient and precise genomic insertion). Transfection studies revealed that PSL complexes achieved excellent efficiency in all investigated cell lines (higher than 90% in HeLa cells and over 30% in MDCK cells, a difficult-to-transfect cell line). Additionally, the PSL complexes showed high serum tolerance and exhibited outstanding transfection efficiency even in medium containing 50% serum (higher than 90% in HeLa cells). Moreover, a high level of long-term gene expression (over 30% in HeLa cells) was observed. Furthermore, PSL complexes not only resulted in high endocytosis, but also showed enhanced ability of endosomal escape compared to PAMAM/DNA complexes. These results demonstrate that simple association of PAMAM dendrimers, LAH4-L1 peptides and the SB transposon system by self-assembly is a general and promising strategy for efficient and safe gene delivery.
Collapse
Affiliation(s)
- Nan Liu
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy and Freiburger Materialforschungszentrum (FMF), Albert Ludwig University Freiburg, Sonnenstr. 5, 79104, Freiburg, Germany.
| | - Burkhard Bechinger
- University of Strasbourg/CNRS, Membrane Biophysics and NMR, Chemistry Institute UMR7177, rue Blaise Pascal 1, 67008, Strasbourg, France
| | - Regine Süss
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy and Freiburger Materialforschungszentrum (FMF), Albert Ludwig University Freiburg, Sonnenstr. 5, 79104, Freiburg, Germany.
| |
Collapse
|
50
|
Wolf J, Aisenbrey C, Harmouche N, Raya J, Bertani P, Voievoda N, Süss R, Bechinger B. pH-Dependent Membrane Interactions of the Histidine-Rich Cell-Penetrating Peptide LAH4-L1. Biophys J 2017; 113:1290-1300. [PMID: 28734478 DOI: 10.1016/j.bpj.2017.06.053] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 06/01/2017] [Accepted: 06/23/2017] [Indexed: 01/17/2023] Open
Abstract
The histidine-rich designer peptide LAH4-L1 exhibits antimicrobial and potent cell-penetrating activities for a wide variety of cargo including nucleic acids, polypeptides, adeno-associated viruses, and nanodots. The non-covalent complexes formed between the peptide and cargo enter the cell via an endosomal pathway where the pH changes from neutral to acidic. Here, we investigated the membrane interactions of the peptide with phospholipid bilayers and its membrane topology using static solid-state NMR spectroscopy. Oriented 15N solid-state NMR indicates that in membranes composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine (POPS) 3:1 mol/mole and at neutral pH, the peptide adopts transmembrane topologies. Furthermore, 31P and 2H solid-state NMR spectra show that liquid crystalline 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and POPC/POPS 3:1 liposomes retain a bilayer macroscopic phase even at the highest peptide concentrations investigated, with an oblate orientational distribution of the phospholipids at a peptide/lipid ratio of 1:5. At pH 5, as it occurs in the endosome, the alignment of LAH4-L1 at a peptide/lipid ratio of 1:25 is predominantly parallel to POPC/POPS 3:1 bilayers (prolate deformation) when at the same time it induces a considerable decrease of the deuterium order parameter of POPC/2H31-POPS 3:1. In addition, when studied in mechanically supported lipid membranes, a pronounced disordering of the phospholipid alignment is observed. In the presence of even higher peptide concentrations, lipid spectra are observed that suggest the formation of magnetically oriented or isotropic bicelles. This membrane-disruptive effect is enhanced for gel phase DMPC membranes. By protonation of the four histidines in acidic environments, the overall charge and hydrophobic moment of LAH4-L1 considerably change, and much of the peptide is released from the cargo. Thus, the amphipathic peptide sequences become available to disrupt the endosomal membrane and to assure highly efficient release from this organelle.
Collapse
Affiliation(s)
- Justine Wolf
- Institut de Chimie, UMR7177, Université de Strasbourg, CNRS, Strasbourg, France
| | | | - Nicole Harmouche
- Institut de Chimie, UMR7177, Université de Strasbourg, CNRS, Strasbourg, France
| | - Jesus Raya
- Institut de Chimie, UMR7177, Université de Strasbourg, CNRS, Strasbourg, France
| | - Philippe Bertani
- Institut de Chimie, UMR7177, Université de Strasbourg, CNRS, Strasbourg, France
| | - Natalia Voievoda
- Institut de Chimie, UMR7177, Université de Strasbourg, CNRS, Strasbourg, France
| | - Regine Süss
- Albert-Ludwigs-Universität Freiburg, Pharmazeutische Technologie und Biopharmazie, Freiburg, Germany
| | - Burkhard Bechinger
- Institut de Chimie, UMR7177, Université de Strasbourg, CNRS, Strasbourg, France.
| |
Collapse
|