1
|
Du S, Chen X, Han X, Wang Y, Yu D, Li Y, Zhu C, Tong Y, Gao S, Wang J, Wei F, Cai Q. Lactate Induces Tumor Progression via LAR Motif-Dependent Yin-Yang 1 Degradation. Mol Cancer Res 2024; 22:957-972. [PMID: 38888574 DOI: 10.1158/1541-7786.mcr-23-0583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/22/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
The metabolic reprogramming of aerobic glycolysis contributes to tumorigenesis. High plasma lactate is a critical regulator in the development of many human malignancies; however, the underlying molecular mechanisms of cancer progression in response to lactate (LA) remain elusive. Here, we show that the reduction of Yin-Yang 1 (YY1) expression correlated with high LA commonly occurs in various cancer cell types, including B-lymphoma and cervical cancer. Mechanistically, LA induces YY1 nuclear export and degradation via HSP70-mediated autophagy adjacent to mitochondria in a histidine (His)-rich LA-responsive (LAR) motif-dependent manner. The mutation of the LAR motif blocks LA-mediated YY1 cytoplasmic accumulation and in turn enhances cell apoptosis. Furthermore, low expression of YY1 promotes colony formation, invasion, angiogenesis, and growth of cancer cells in response to LA in vitro and in vivo using a murine xenograft model. Taken together, our findings reveal a key LAR element and may serve as therapeutic target for intervening cancer progression. Implications: We have shown that lactate can induce YY1 degradation via its His-rich LAR motif and low expression of YY1 promotes cancer cell progression in response to lactate, leading to better prediction of YY1 targeting therapy.
Collapse
Affiliation(s)
- Shujuan Du
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Xiaoting Chen
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Xiao Han
- Center of Diagnosis and Treatment for Cervical and Uterine Cavity Disease, Obstetrics and Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Shanghai, China
| | - Yuyan Wang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Dan Yu
- Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Ying Li
- Division of Hematology, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Caixia Zhu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Yin Tong
- Division of Hematology, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Shujun Gao
- Center of Diagnosis and Treatment for Cervical and Uterine Cavity Disease, Obstetrics and Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Shanghai, China
| | - Junwen Wang
- Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Fang Wei
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Qiliang Cai
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| |
Collapse
|
2
|
Dillen A, Bui I, Jung M, Agioti S, Zaravinos A, Bonavida B. Regulation of PD-L1 Expression by YY1 in Cancer: Therapeutic Efficacy of Targeting YY1. Cancers (Basel) 2024; 16:1237. [PMID: 38539569 PMCID: PMC10968822 DOI: 10.3390/cancers16061237] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/23/2024] [Accepted: 03/11/2024] [Indexed: 05/14/2025] Open
Abstract
During the last decade, we have witnessed several milestones in the treatment of various resistant cancers including immunotherapeutic strategies that have proven to be superior to conventional treatment options, such as chemotherapy and radiation. This approach utilizes the host's immune response, which is triggered by cancer cells expressing tumor-associated antigens or neoantigens. The responsive immune cytotoxic CD8+ T cells specifically target and kill tumor cells, leading to tumor regression and prolongation of survival in some cancers; however, some cancers may exhibit resistance due to the inactivation of anti-tumor CD8+ T cells. One mechanism by which the anti-tumor CD8+ T cells become dysfunctional is through the activation of the inhibitory receptor programmed death-1 (PD-1) by the corresponding tumor cells (or other cells in the tumor microenvironment (TME)) that express the programmed death ligand-1 (PD-L1). Hence, blocking the PD-1/PD-L1 interaction via specific monoclonal antibodies (mAbs) restores the CD8+ T cells' functions, leading to tumor regression. Accordingly, the Food and Drug Administration (FDA) has approved several checkpoint antibodies which act as immune checkpoint inhibitors. Their clinical use in various resistant cancers, such as metastatic melanoma and non-small-cell lung cancer (NSCLC), has shown significant clinical responses. We have investigated an alternative approach to prevent the expression of PD-L1 on tumor cells, through targeting the oncogenic transcription factor Yin Yang 1 (YY1), a known factor overexpressed in many cancers. We report the regulation of PD-L1 by YY1 at the transcriptional, post-transcriptional, and post-translational levels, resulting in the restoration of CD8+ T cells' anti-tumor functions. We have performed bioinformatic analyses to further explore the relationship between both YY1 and PD-L1 in cancer and to corroborate these findings. In addition to its regulation of PD-L1, YY1 has several other anti-cancer activities, such as the regulation of proliferation and cell viability, invasion, epithelial-mesenchymal transition (EMT), metastasis, and chemo-immuno-resistance. Thus, targeting YY1 will have a multitude of anti-tumor activities resulting in a significant obliteration of cancer oncogenic activities. Various strategies are proposed to selectively target YY1 in human cancers and present a promising novel therapeutic approach for treating unresponsive cancer phenotypes. These findings underscore the distinct regulatory roles of YY1 and PD-L1 (CD274) in cancer progression and therapeutic response.
Collapse
Affiliation(s)
- Ana Dillen
- Department of Microbiology, Immunology & Molecular Genetics, Jonsson Comprehensive Cancer, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (A.D.); (I.B.)
| | - Indy Bui
- Department of Microbiology, Immunology & Molecular Genetics, Jonsson Comprehensive Cancer, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (A.D.); (I.B.)
| | - Megan Jung
- Department of Microbiology, Immunology & Molecular Genetics, Jonsson Comprehensive Cancer, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (A.D.); (I.B.)
| | - Stephanie Agioti
- Cancer Genetics, Genomic and Systems Biology Group, Basic and Translational Cancer Research Center (BTCRC), 1516 Nicosia, Cyprus (A.Z.)
| | - Apostolos Zaravinos
- Cancer Genetics, Genomic and Systems Biology Group, Basic and Translational Cancer Research Center (BTCRC), 1516 Nicosia, Cyprus (A.Z.)
- Department of Life Sciences, School of Sciences, European University Cyprus, 2404 Nicosia, Cyprus
| | - Benjamin Bonavida
- Department of Microbiology, Immunology & Molecular Genetics, Jonsson Comprehensive Cancer, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (A.D.); (I.B.)
| |
Collapse
|
3
|
Meo C, de Nigris F. Clinical Potential of YY1-Hypoxia Axis for Vascular Normalization and to Improve Immunotherapy. Cancers (Basel) 2024; 16:491. [PMID: 38339244 PMCID: PMC10854702 DOI: 10.3390/cancers16030491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Abnormal vasculature in solid tumors causes poor blood perfusion, hypoxia, low pH, and immune evasion. It also shapes the tumor microenvironment and affects response to immunotherapy. The combination of antiangiogenic therapy and immunotherapy has emerged as a promising approach to normalize vasculature and unlock the full potential of immunotherapy. However, the unpredictable and redundant mechanisms of vascularization and immune suppression triggered by tumor-specific hypoxic microenvironments indicate that such combination therapies need to be further evaluated to improve patient outcomes. Here, we provide an overview of the interplay between tumor angiogenesis and immune modulation and review the function and mechanism of the YY1-HIF axis that regulates the vascular and immune tumor microenvironment. Furthermore, we discuss the potential of targeting YY1 and other strategies, such as nanocarrier delivery systems and engineered immune cells (CAR-T), to normalize tumor vascularization and re-establish an immune-permissive microenvironment to enhance the efficacy of cancer therapy.
Collapse
Affiliation(s)
| | - Filomena de Nigris
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| |
Collapse
|
4
|
Tamkeen N, Farooqui A, Alam A, Najma, Tazyeen S, Ahmad MM, Ahmad N, Ishrat R. Identification of common candidate genes and pathways for Spina Bifida and Wilm's Tumor using an integrative bioinformatics analysis. J Biomol Struct Dyn 2024; 42:977-992. [PMID: 37051780 DOI: 10.1080/07391102.2023.2199080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/23/2023] [Indexed: 04/14/2023]
Abstract
Spina Bifida (SB) and Wilm's Tumor (WT) are conditions, both associated with children. Several studies have shown that WT later develops in SB patients, which led us to elucidate common key genes and linked pathways of both conditions, aimed at their concurrent therapeutic management. For this, integrated bioinformatics analysis was employed. A comprehensive manual curation of genes identified 133 and 139 genes associated with SB and WT, respectively, which were used to construct a single protein-protein interaction (PPI) network. Topological parameters analysis of the network showed its scale-free and hierarchical nature. Centrality-based analysis of the network identified 116 hubs, of which, 6 were called the key genes attributed to being common between SB and WT besides being the hubs. Gene enrichment analysis of the 5 most essential modules, identified important biological processes and pathways possibly linking SB to WT. Additionally, miRNA-key gene-transcription factor (TF) regulatory network elucidated a few important miRNAs and TFs that regulate our key genes. In closing, we put forward TP53, DICER1, NCAM1, PAX3, PTCH1, MTHFR; hsa-mir-107, hsa-mir-137, hsa-mir-122, hsa-let-7d; and YY1, SOX4, MYC, STAT3; key genes, miRNAs and TFs, respectively, as the key regulators. Further, MD simulation studies of wild and Glu429Ala forms of MTHFR proteins showed that there is a slight change in MTHFR protein structure due to Glu429Ala polymorphism. We anticipate that the interplay of these three entities will be an interesting area of research to explore the regulatory mechanism of SB and WT and may serve as candidate target molecules to diagnose, monitor, and treat SB and WT, parallelly.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Naaila Tamkeen
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
- Centre for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, New Delhi, India
| | - Anam Farooqui
- Centre for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, New Delhi, India
| | - Aftab Alam
- Centre for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, New Delhi, India
| | - Najma
- Centre for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, New Delhi, India
| | - Safia Tazyeen
- Centre for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, New Delhi, India
| | - Mohd Murshad Ahmad
- Centre for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, New Delhi, India
| | - Nadeem Ahmad
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Romana Ishrat
- Centre for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
5
|
Silva ARR, Silva PV, Soares AR, González-Alcaraz MN, van Gestel CAM, Roelofs D, Moura G, Soares AMVM, Loureiro S. Daphnia magna Multigeneration Exposure to Carbendazim: Gene Transcription Responses. TOXICS 2023; 11:918. [PMID: 37999570 PMCID: PMC10674461 DOI: 10.3390/toxics11110918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023]
Abstract
The world population is experiencing colossal growth and thus demand for food, leading to an increase in the use of pesticides. Persistent pesticide contamination, such as carbendazim, remains a pressing environmental concern, with potentially long-term impacts on aquatic ecosystems. In the present study, Daphnia magna was exposed to carbendazim (5 µg L-1) for 12 generations, with the aim of assessing gene transcription alterations induced by carbendazim (using a D. magna custom microarray). The results showed that carbendazim caused changes in genes involved in the response to stress, DNA replication/repair, neurotransmission, ATP production, and lipid and carbohydrate metabolism at concentrations already found in the environment. These outcomes support the results of previous studies, in which carbendazim induced genotoxic effects and reproduction impairment (increasing the number of aborted eggs with the decreasing number of neonates produced). The exposure of daphnids to carbendazim did not cause a stable change in gene transcription between generations, with more genes being differentially expressed in the F0 generation than in the F12 generation. This could show some possible daphnid acclimation after 12 generations and is aligned with previous multigenerational studies where few ecotoxicological effects at the individual and populational levels and other subcellular level effects (e.g., biochemical biomarkers) were found.
Collapse
Affiliation(s)
- Ana Rita R. Silva
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (P.V.S.); (A.M.V.M.S.); (S.L.)
| | - Patrícia V. Silva
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (P.V.S.); (A.M.V.M.S.); (S.L.)
| | - Ana Raquel Soares
- Department of Medical Sciences & Institute for Biomedicine (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal; (A.R.S.); (G.M.)
| | - M. Nazaret González-Alcaraz
- Department of Agricultural Engineering of the E.T.S.I.A., Technical University of Cartagena, 30203 Cartagena, Spain;
| | - Cornelis A. M. van Gestel
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands; (C.A.M.v.G.); (D.R.)
| | - Dick Roelofs
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands; (C.A.M.v.G.); (D.R.)
- Keygene N.V., Agro Business Park 90, 6708 PW Wageningen, The Netherlands
| | - Gabriela Moura
- Department of Medical Sciences & Institute for Biomedicine (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal; (A.R.S.); (G.M.)
| | - Amadeu M. V. M. Soares
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (P.V.S.); (A.M.V.M.S.); (S.L.)
| | - Susana Loureiro
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (P.V.S.); (A.M.V.M.S.); (S.L.)
| |
Collapse
|
6
|
Son SH, Kim MY, Choi S, Kim JS, Lee YS, Lee S, Lee YJ, Lee JY, Lee SE, Lim YS, Ha DH, Oh E, Won Y, Ji C, Park MA, Kim B, Byun KT, Chung MS, Jeong J, Choi D, Baek EJ, Cho E, Kim S, Je AR, Kweon H, Park HS, Park D, Bae JS, Jang SJ, Yun C, Chae JH, Lee J, Lee S, Kim CG, Kang HC, Uversky VN, Kim CG. A Cell-Penetrant Peptide Disrupting the Transcription Factor CP2c Complexes Induces Cancer-Specific Synthetic Lethality. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2305096. [PMID: 37845006 PMCID: PMC10667816 DOI: 10.1002/advs.202305096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/23/2023] [Indexed: 10/18/2023]
Abstract
Despite advances in precision oncology, cancer remains a global public health issue. In this report, proof-of-principle evidence is presented that a cell-penetrable peptide (ACP52C) dissociates transcription factor CP2c complexes and induces apoptosis in most CP2c oncogene-addicted cancer cells through transcription activity-independent mechanisms. CP2cs dissociated from complexes directly interact with and degrade YY1, leading to apoptosis via the MDM2-p53 pathway. The liberated CP2cs also inhibit TDP2, causing intrinsic genome-wide DNA strand breaks and subsequent catastrophic DNA damage responses. These two mechanisms are independent of cancer driver mutations but are hindered by high MDM2 p60 expression. However, resistance to ACP52C mediated by MDM2 p60 can be sensitized by CASP2 inhibition. Additionally, derivatives of ACP52C conjugated with fatty acid alone or with a CASP2 inhibiting peptide show improved pharmacokinetics and reduced cancer burden, even in ACP52C-resistant cancers. This study enhances the understanding of ACP52C-induced cancer-specific apoptosis induction and supports the use of ACP52C in anticancer drug development.
Collapse
|
7
|
Shi T, Yuan Z, He Y, Zhang D, Chen S, Wang X, Yao L, Shao J, Wang X. Competition between p53 and YY1 determines PHGDH expression and malignancy in bladder cancer. Cell Oncol (Dordr) 2023; 46:1457-1472. [PMID: 37326803 DOI: 10.1007/s13402-023-00823-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 06/17/2023] Open
Abstract
PURPOSE Serine metabolism is frequently dysregulated in many types of cancers and the tumor suppressor p53 is recently emerging as a key regulator of serine metabolism. However, the detailed mechanism remains unknown. Here, we investigate the role and underlying mechanisms of how p53 regulates the serine synthesis pathway (SSP) in bladder cancer (BLCA). METHODS Two BLCA cell lines RT-4 (WT p53) and RT-112 (p53 R248Q) were manipulated by applying CRISPR/Cas9 to examine metabolic differences under WT and mutant p53 status. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) and non-targeted metabolomics analysis were adopted to identify metabolomes changes between WT and p53 mutant BLCA cells. Bioinformatics analysis using the cancer genome atlas and Gene Expression Omnibus datasets and immunohistochemistry (IHC) staining was used to investigate PHGDH expression. Loss-of-function of PHGDH and subcutaneous xenograft model was adopted to investigate the function of PHGDH in mice BLCA. Chromatin immunoprecipitation (Ch-IP) assay was performed to analyze the relationships between YY1, p53, SIRT1 and PHGDH expression. RESULTS SSP is one of the most prominent dysregulated metabolic pathways by comparing the metabolomes changes between wild-type (WT) p53 and mutant p53 of BLCA cells. TP53 gene mutation shows a positive correlation with PHGDH expression in TCGA-BLCA database. PHGDH depletion disturbs the reactive oxygen species homeostasis and attenuates the xenograft growth in the mouse model. Further, we demonstrate WT p53 inhibits PHGDH expression by recruiting SIRT1 to the PHGDH promoter. Interestingly, the DNA binding motifs of YY1 and p53 in the PHGDH promoter are partially overlapped which causes competition between the two transcription factors. This competitive regulation of PHGDH is functionally linked to the xenograft growth in mice. CONCLUSION YY1 drives PHGDH expression in the context of mutant p53 and promotes bladder tumorigenesis, which preliminarily explains the relationship between high-frequency mutations of p53 and dysfunctional serine metabolism in bladder cancer.
Collapse
Affiliation(s)
- Tiezhu Shi
- Precise Genome Engineering Centre, School of Life Sciences, Guangzhou University, 510006, Guangzhou, China
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University, 200080, Shanghai, China
| | - Zhihao Yuan
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University, 200080, Shanghai, China
| | - Yanying He
- Precise Genome Engineering Centre, School of Life Sciences, Guangzhou University, 510006, Guangzhou, China
| | - Dongliang Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University, 200080, Shanghai, China
| | - Siteng Chen
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University, 200080, Shanghai, China
| | - Xiongjun Wang
- Precise Genome Engineering Centre, School of Life Sciences, Guangzhou University, 510006, Guangzhou, China
| | - Linli Yao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiaotong University School of Medicine, 200080, Shanghai, China.
| | - Jialiang Shao
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University, 200080, Shanghai, China.
| | - Xiang Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University, 200080, Shanghai, China.
| |
Collapse
|
8
|
Figiel M, Górka AK, Górecki A. Zinc Ions Modulate YY1 Activity: Relevance in Carcinogenesis. Cancers (Basel) 2023; 15:4338. [PMID: 37686614 PMCID: PMC10487186 DOI: 10.3390/cancers15174338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
YY1 is widely recognized as an intrinsically disordered transcription factor that plays a role in development of many cancers. In most cases, its overexpression is correlated with tumor progression and unfavorable patient outcomes. Our latest research focusing on the role of zinc ions in modulating YY1's interaction with DNA demonstrated that zinc enhances the protein's multimeric state and affinity to its operator. In light of these findings, changes in protein concentration appear to be just one element relevant to modulating YY1-dependent processes. Thus, alterations in zinc ion concentration can directly and specifically impact the regulation of gene expression by YY1, in line with reports indicating a correlation between zinc ion levels and advancement of certain tumors. This review concentrates on other potential consequences of YY1 interaction with zinc ions that may act by altering charge distribution, conformational state distribution, or oligomerization to influence its interactions with molecular partners that can disrupt gene expression patterns.
Collapse
Affiliation(s)
| | | | - Andrzej Górecki
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Physical Biochemistry, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.F.); (A.K.G.)
| |
Collapse
|
9
|
Hosea R, Hillary S, Wu S, Kasim V. Targeting Transcription Factor YY1 for Cancer Treatment: Current Strategies and Future Directions. Cancers (Basel) 2023; 15:3506. [PMID: 37444616 DOI: 10.3390/cancers15133506] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Cancer represents a significant and persistent global health burden, with its impact underscored by its prevalence and devastating consequences. Whereas numerous oncogenes could contribute to cancer development, a group of transcription factors (TFs) are overactive in the majority of tumors. Targeting these TFs may also combat the downstream oncogenes activated by the TFs, making them attractive potential targets for effective antitumor therapeutic strategy. One such TF is yin yang 1 (YY1), which plays crucial roles in the development and progression of various tumors. In preclinical studies, YY1 inhibition has shown efficacy in inhibiting tumor growth, promoting apoptosis, and sensitizing tumor cells to chemotherapy. Recent studies have also revealed the potential of combining YY1 inhibition with immunotherapy for enhanced antitumor effects. However, clinical translation of YY1-targeted therapy still faces challenges in drug specificity and delivery. This review provides an overview of YY1 biology, its role in tumor development and progression, as well as the strategies explored for YY1-targeted therapy, with a focus on their clinical implications, including those using small molecule inhibitors, RNA interference, and gene editing techniques. Finally, we discuss the challenges and current limitations of targeting YY1 and the need for further research in this area.
Collapse
Affiliation(s)
- Rendy Hosea
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Sharon Hillary
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing 400030, China
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing 400030, China
| |
Collapse
|
10
|
Li Y, Li S, Shi X, Xin Z, Yang Y, Zhao B, Li Y, Lv L, Ren P, Wu H. KLF12 promotes the proliferation of breast cancer cells by reducing the transcription of p21 in a p53-dependent and p53-independent manner. Cell Death Dis 2023; 14:313. [PMID: 37156774 PMCID: PMC10167366 DOI: 10.1038/s41419-023-05824-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023]
Abstract
Breast cancer is the most common cancer affecting women worldwide. Many genes are involved in the development of breast cancer, including the Kruppel Like Factor 12 (KLF12) gene, which has been implicated in the development and progression of several cancers. However, the comprehensive regulatory network of KLF12 in breast cancer has not yet been fully elucidated. This study examined the role of KLF12 in breast cancer and its associated molecular mechanisms. KLF12 was found to promote the proliferation of breast cancer and inhibit apoptosis in response to genotoxic stress. Subsequent mechanistic studies showed that KLF12 inhibits the activity of the p53/p21 axis, specifically by interacting with p53 and affecting its protein stability via influencing the acetylation and ubiquitination of lysine370/372/373 at the C-terminus of p53. Furthermore, KLF12 disrupted the interaction between p53 and p300, thereby reducing the acetylation of p53 and stability. Meanwhile, KLF12 also inhibited the transcription of p21 independently of p53. These results suggest that KLF12 might have an important role in breast cancer and serve as a potential prognostic marker and therapeutic target.
Collapse
Affiliation(s)
- Yanan Li
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, 116024, Dalian, China
| | - Shujing Li
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, 116024, Dalian, China
| | - Xiaoxia Shi
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, 116024, Dalian, China
| | - Zhiqiang Xin
- The Second Hospital of Dalian Medical University, 116000, Dalian, China
| | - Yuxi Yang
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, 116024, Dalian, China
| | - Binggong Zhao
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, 116024, Dalian, China
| | - Yvlin Li
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, 116024, Dalian, China
| | - Linlin Lv
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, 116024, Dalian, China
| | - Ping Ren
- The Second Hospital of Dalian Medical University, 116000, Dalian, China.
| | - Huijian Wu
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, 116024, Dalian, China.
| |
Collapse
|
11
|
Pajarillo E, Nyarko-Danquah I, Digman A, Vied C, Son DS, Lee J, Aschner M, Lee E. Astrocytic Yin Yang 1 is critical for murine brain development and protection against apoptosis, oxidative stress, and inflammation. Glia 2023; 71:450-466. [PMID: 36300569 PMCID: PMC9772165 DOI: 10.1002/glia.24286] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 12/24/2022]
Abstract
The transcription factor Yin Yang 1 (YY1) is ubiquitously expressed in mammalian cells, regulating the expression of a variety of genes involved in proliferation, differentiation, and apoptosis in a context-dependent manner. While it is well-established that global YY1 knockout (KO) leads to embryonic death in mice and that YY1 deletion in neurons or oligodendrocytes induces impaired brain function, the role of astrocytic YY1 in the brain remains unknown. We investigated the role of astrocytic YY1 in the brain using a glial fibrillary acidic protein (GFAP)-specific YY1 conditional KO (YY1 cKO) mouse model to delete astrocytic YY1. Astrocytic YY1 cKO mice were tested for behavioral phenotypes, such as locomotor activity, coordination, and cognition, followed by an assessment of relevant biological pathways using RNA-sequencing analysis, immunoblotting, and immunohistochemistry in the cortex, midbrain, and cerebellum. YY1 cKO mice showed abnormal phenotypes, movement deficits, and cognitive dysfunction. At the molecular level, astrocytic YY1 deletion altered the expression of genes associated with proliferation and differentiation, p53/caspase apoptotic pathways, oxidative stress response, and inflammatory signaling including NF-κB, STAT, and IRF in all regions. Astrocytic YY1 deletion significantly increased the expression of GFAP as astrocytic activation and Iba1 as microglial activation, indicating astrocytic YY1 deletion activated microglia as well. Accordingly, multiple inflammatory cytokines and chemokines including TNF-α and CXCL10 were elevated. Combined, these novel findings suggest that astrocytic YY1 is a critical transcription factor for normal brain development and locomotor activity, motor coordination, and cognition. Astrocytic YY1 is also essential in preventing pathological oxidative stress, apoptosis, and inflammation.
Collapse
Affiliation(s)
- Edward Pajarillo
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA 32307
| | - Ivan Nyarko-Danquah
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA 32307
| | - Alexis Digman
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA 32307
| | - Cynthia Vied
- Translational Science Laboratory, Florida State University College of Medicine, Tallahassee, FL, USA 32306
| | - Deok-Soo Son
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, USA 37208
| | - Jayden Lee
- Department of Speech, Language and Hearing Sciences, Boston University, Boston, MA, USA 02215
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, New York, USA, 10461
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA 32307
| |
Collapse
|
12
|
Rubin de Celis MF, Garcia-Martin R, Syed I, Lee J, Aguayo-Mazzucato C, Bonner-Weir S, Kahn BB. PAHSAs reduce cellular senescence and protect pancreatic beta cells from metabolic stress through regulation of Mdm2/p53. Proc Natl Acad Sci U S A 2022; 119:e2206923119. [PMID: 36375063 PMCID: PMC9704710 DOI: 10.1073/pnas.2206923119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
Senescence in pancreatic beta cells plays a major role in beta cell dysfunction, which leads to impaired glucose homeostasis and diabetes. Therefore, prevention of beta cell senescence could reduce the risk of diabetes. Treatment of nonobese diabetic (NOD) mice, a model of type 1 autoimmune diabetes (T1D), with palmitic acid hydroxy stearic acids (PAHSAs), a novel class of endogenous lipids with antidiabetic and antiinflammatory effects, delays the onset and reduces the incidence of T1D from 82% with vehicle treatment to 35% with PAHSAs. Here, we show that a major mechanism by which PAHSAs protect islets of the NOD mice is by directly preventing and reversing the initial steps of metabolic stress-induced senescence. In vitro PAHSAs increased Mdm2 expression, which decreases the stability of p53, a key inducer of senescence-related genes. In addition, PAHSAs enhanced expression of protective genes, such as those regulating DNA repair and glutathione metabolism and promoting autophagy. We demonstrate the translational relevance by showing that PAHSAs prevent and reverse early stages of senescence in metabolically stressed human islets by the same Mdm2 mechanism. Thus, a major mechanism for the dramatic effect of PAHSAs in reducing the incidence of type 1 diabetes in NOD mice is decreasing cellular senescence; PAHSAs may have a similar benefit in humans.
Collapse
Affiliation(s)
- Maria F. Rubin de Celis
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215
| | | | - Ismail Syed
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215
| | - Jennifer Lee
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215
| | | | | | - Barbara B. Kahn
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215
| |
Collapse
|
13
|
Firnau MB, Brieger A. CK2 and the Hallmarks of Cancer. Biomedicines 2022; 10:1987. [PMID: 36009534 PMCID: PMC9405757 DOI: 10.3390/biomedicines10081987] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
Cancer is a leading cause of death worldwide. Casein kinase 2 (CK2) is commonly dysregulated in cancer, impacting diverse molecular pathways. CK2 is a highly conserved serine/threonine kinase, constitutively active and ubiquitously expressed in eukaryotes. With over 500 known substrates and being estimated to be responsible for up to 10% of the human phosphoproteome, it is of significant importance. A broad spectrum of diverse types of cancer cells has been already shown to rely on disturbed CK2 levels for their survival. The hallmarks of cancer provide a rationale for understanding cancer's common traits. They constitute the maintenance of proliferative signaling, evasion of growth suppressors, resisting cell death, enabling of replicative immortality, induction of angiogenesis, the activation of invasion and metastasis, as well as avoidance of immune destruction and dysregulation of cellular energetics. In this work, we have compiled evidence from the literature suggesting that CK2 modulates all hallmarks of cancer, thereby promoting oncogenesis and operating as a cancer driver by creating a cellular environment favorable to neoplasia.
Collapse
Affiliation(s)
| | - Angela Brieger
- Department of Internal Medicine I, Biomedical Research Laboratory, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| |
Collapse
|
14
|
Spaeth JM, Dhawan S. The Yin and Yang of Modulating β-Cell DNA Damage Response and Functional Mass. Diabetes 2022; 71:1614-1616. [PMID: 35881837 PMCID: PMC9490355 DOI: 10.2337/dbi22-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022]
Affiliation(s)
- Jason M. Spaeth
- Department of Biochemistry and Molecular Biology and Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| | - Sangeeta Dhawan
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA
| |
Collapse
|
15
|
Martins Peçanha FL, Jaafar R, Werneck-de-Castro JP, Apostolopolou CC, Bhushan A, Bernal-Mizrachi E. The Transcription Factor YY1 Is Essential for Normal DNA Repair and Cell Cycle in Human and Mouse β-Cells. Diabetes 2022; 71:1694-1705. [PMID: 35594378 PMCID: PMC9490361 DOI: 10.2337/db21-0908] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 04/21/2022] [Indexed: 11/13/2022]
Abstract
Identifying the mechanisms behind the β-cell adaptation to failure is important to develop strategies to manage type 2 diabetes (T2D). Using db/db mice at early stages of the disease process, we took advantage of unbiased RNA sequencing to identify genes/pathways regulated by insulin resistance in β-cells. We demonstrate herein that islets from 4-week-old nonobese and nondiabetic leptin receptor-deficient db/db mice exhibited downregulation of several genes involved in cell cycle regulation and DNA repair. We identified the transcription factor Yin Yang 1 (YY1) as a common gene between both pathways. The expression of YY1 and its targeted genes was decreased in the db/db islets. We confirmed the reduction in YY1 expression in β-cells from diabetic db/db mice, mice fed a high-fat diet (HFD), and individuals with T2D. Chromatin immunoprecipitation sequencing profiling in EndoC-βH1 cells, a human pancreatic β-cell line, indicated that YY1 binding regions regulate cell cycle control and DNA damage recognition and repair. We then generated mouse models with constitutive and inducible YY1 deficiency in β-cells. YY1-deficient mice developed diabetes early in life due to β-cell loss. β-Cells from these mice exhibited higher DNA damage, cell cycle arrest, and cell death as well as decreased maturation markers. Tamoxifen-induced YY1 deficiency in mature β-cells impaired β-cell function and induced DNA damage. In summary, we identified YY1 as a critical factor for β-cell DNA repair and cell cycle progression.
Collapse
Affiliation(s)
| | - Rami Jaafar
- Diabetes Center, University of California, San Francisco, San Francisco, CA
| | - Joao Pedro Werneck-de-Castro
- Division of Endocrinology, Diabetes and Metabolism, University of Miami, Miller School of Medicine, Miami, FL
- Miami Veterans Affairs Health Care System, Miami, FL
| | | | - Anil Bhushan
- Diabetes Center, University of California, San Francisco, San Francisco, CA
| | - Ernesto Bernal-Mizrachi
- Division of Endocrinology, Diabetes and Metabolism, University of Miami, Miller School of Medicine, Miami, FL
- Miami Veterans Affairs Health Care System, Miami, FL
- Corresponding author: Ernesto Bernal-Mizrachi,
| |
Collapse
|
16
|
Zhou S, Li P, Qin L, Huang S, Dang N. Transcription factor YY1 contributes to human melanoma cell growth through modulating the p53 signaling pathway. Exp Dermatol 2022; 31:1563-1578. [PMID: 35730240 DOI: 10.1111/exd.14628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/07/2022] [Accepted: 06/19/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Melanoma has a higher mortality rate than any other skin cancer, and its cases are increasing. The transcription factor YY1 has been proven to be involved in tumor progression; however, the role of YY1 in melanoma is not well understood. METHODS This study investigates how YY1 functions in melanoma progression, and it also elucidates the underlying mechanisms involved. RESULTS We have found that in clinical human melanoma tissues, YY1 is overexpressed compared to YY1 expression in normal melanocytes and skin tissues. Cellular immunofluorescence shows that YY1 is mainly located in the nucleus. YY1 knockdown reduces proliferation, migration, and invasion of melanoma cell lines. Moreover, the apoptosis rate of cells is significantly increased in low-YY1 environments. The overexpression of YY1 resulted in decreased apoptotic rates in melanoma cells. YY1 also affects the expression of EMT-related proteins. Additional experiments reveal that YY1 knockdown disrupts the interaction of MDM2-p53, and that it both stabilizes and increases p53 activity. The upregulation of p53 expression in turn stimulates p21 expression just as it suppresses CDK4 expression, which then induces cells that were arrested in the G1 phase. The effect then is to constrain cell proliferation in melanoma cells. Upon activation of the p53 pathway, Bax, a pro-apoptotic protein, is upregulated, and Bcl-2, an anti-apoptotic protein, was downregulated in A375 cells. CONCLUSIONS The findings of this study provide novel insights into the pathology of melanoma as well as the role that YY1 plays in tumor progression. The findings also suggest that targeting YY1 has the potential to improve the diagnosis and treatment of melanoma.
Collapse
Affiliation(s)
- Shumin Zhou
- School of Clinical Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.,Linyi people's Hospital, Linyi, Shandong, China
| | - Pin Li
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China
| | - Li Qin
- School of Clinical Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Shuhong Huang
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China.,Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ningning Dang
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
17
|
Wang W, Qiao S, Li G, Cheng J, Yang C, Zhong C, Stovall DB, Shi J, Teng C, Li D, Sui G. A histidine cluster determines YY1-compartmentalized coactivators and chromatin elements in phase-separated enhancer clusters. Nucleic Acids Res 2022; 50:4917-4937. [PMID: 35390165 PMCID: PMC9122595 DOI: 10.1093/nar/gkac233] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 03/19/2022] [Accepted: 04/05/2022] [Indexed: 12/28/2022] Open
Abstract
As an oncogenic transcription factor, Yin Yang 1 (YY1) regulates enhancer and promoter connection. However, gaps still exist in understanding how YY1 coordinates coactivators and chromatin enhancer elements to assemble enhancers and super-enhancers. Here, we demonstrate that a histidine cluster in YY1’s transactivation domain is essential for its formation of phase separation condensates, which can be extended to additional proteins. The histidine cluster is also required for YY1-promoted cell proliferation, migration, clonogenicity and tumor growth. YY1-rich nuclear puncta contain coactivators EP300, BRD4, MED1 and active RNA polymerase II, and colocalize with histone markers of gene activation, but not that of repression. Furthermore, YY1 binds to the consensus motifs in the FOXM1 promoter to activate its expression. Wild-type YY1, but not its phase separation defective mutant, connects multiple enhancer elements and the FOXM1 promoter to form an enhancer cluster. Consistently, fluorescent in situ hybridization (FISH) assays reveal the colocalization of YY1 puncta with both the FOXM1 gene locus and its nascent RNA transcript. Overall, this study demonstrates that YY1 activates target gene expression through forming liquid-liquid phase separation condensates to compartmentalize both coactivators and enhancer elements, and the histidine cluster of YY1 plays a determinant role in this regulatory mechanism.
Collapse
Affiliation(s)
- Wenmeng Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Shiyao Qiao
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Guangyue Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Jiahui Cheng
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Cuicui Yang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Chen Zhong
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Daniel B Stovall
- College of Arts and Sciences, Winthrop University, Rock Hill, SC 29733, USA
| | - Jinming Shi
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Chunbo Teng
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Dangdang Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Guangchao Sui
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
18
|
YY1 Oligomerization Is Regulated by Its OPB Domain and Competes with Its Regulation of Oncoproteins. Cancers (Basel) 2022; 14:cancers14071611. [PMID: 35406384 PMCID: PMC8996997 DOI: 10.3390/cancers14071611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary YY1 regulates various cancer-related genes and activates key oncoproteins. In this study, we discovered that the oncoprotein binding (OPB) domain of YY1 is both necessary and stimulatory to its oligomerization. The hydrophobic residues, especially F219, in the OPB are essential to YY1 intermolecular interaction. Strikingly, the mutations of the hydrophobic residues showed better ability than wild-type YY1 in promote breast cancer cell proliferation and migration. Our further study revealed that YY1 proteins with mutated hydrophobic residues in the OPB domain showed improved binding affinity to EZH2. Overall, our data support the model of a mutually exclusive process between oligomerization of YY1 and its regulation of the oncoproteins EZH2, AKT and MDM2. Abstract Yin Yang 1 (YY1) plays an oncogenic role through regulating the expression of various cancer-related genes and activating key oncoproteins. Previous research reported that YY1 protein formed dimers or oligomers without definite biological implications. In this study, we first demonstrated the oncoprotein binding (OPB) and zinc finger (ZF) domains of YY1 as the regions involved in its intermolecular interactions. ZFs are well-known for protein dimerization, so we focused on the OPB domain. After mutating three hydrophobic residues in the OPB to alanines, we discovered that YY1(F219A) and YY1(3A), three residues simultaneously replaced by alanines, were defective of intermolecular interaction. Meanwhile, the OPB peptide could robustly facilitate YY1 protein oligomerization. When expressed in breast cancer cells with concurrent endogenous YY1 knockdown, YY1(F219A) and (3A) mutants showed better capacity than wt in promoting cell proliferation and migration, while their interactions with EZH2, AKT and MDM2 showed differential alterations, especially with improved EZH2 binding affinity. Our study revealed a crucial role of the OPB domain in facilitating YY1 oligomerization and suggested a mutually exclusive regulation between YY1-mediated enhancer formation and its activities in promoting oncoproteins.
Collapse
|
19
|
Gupta S, Silveira DA, Hashimoto RF, Mombach JCM. A Boolean Model of the Proliferative Role of the lncRNA XIST in Non-Small Cell Lung Cancer Cells. BIOLOGY 2022; 11:biology11040480. [PMID: 35453680 PMCID: PMC9024590 DOI: 10.3390/biology11040480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/12/2022] [Accepted: 03/13/2022] [Indexed: 12/15/2022]
Abstract
The long non-coding RNA X inactivate-specific transcript (lncRNA XIST) has been verified as an oncogenic gene in non-small cell lung cancer (NSCLC) whose regulatory role is largely unknown. The important tumor suppressors, microRNAs: miR-449a and miR-16 are regulated by lncRNA XIST in NSCLC, these miRNAs share numerous common targets and experimental evidence suggests that they synergistically regulate the cell-fate regulation of NSCLC. LncRNA XIST is known to sponge miR-449a and miR-34a, however, the regulatory network connecting all these non-coding RNAs is still unknown. Here we propose a Boolean regulatory network for the G1/S cell cycle checkpoint in NSCLC contemplating the involvement of these non-coding RNAs. Model verification was conducted by comparison with experimental knowledge from NSCLC showing good agreement. The results suggest that miR-449a regulates miR-16 and p21 activity by targeting HDAC1, c-Myc, and the lncRNA XIST. Furthermore, our circuit perturbation simulations show that five circuits are involved in cell fate determination between senescence and apoptosis. The model thus allows pinpointing the direct cell fate mechanisms of NSCLC. Therefore, our results support that lncRNA XIST is an attractive target of drug development in tumor growth and aggressive proliferation of NSCLC, and promising results can be achieved through tumor suppressor miRNAs.
Collapse
Affiliation(s)
- Shantanu Gupta
- Departamento de Ciência da Computação, Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, São Paulo 05508-090, SP, Brazil;
- Correspondence: (S.G.); (J.C.M.M.); Tel.: +55-11-30916135 (S.G.); +55-55-32209521 (J.C.M.M.)
| | - Daner A. Silveira
- Departamento de Física, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil;
| | - Ronaldo F. Hashimoto
- Departamento de Ciência da Computação, Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, São Paulo 05508-090, SP, Brazil;
| | - Jose Carlos M. Mombach
- Departamento de Física, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil;
- Correspondence: (S.G.); (J.C.M.M.); Tel.: +55-11-30916135 (S.G.); +55-55-32209521 (J.C.M.M.)
| |
Collapse
|
20
|
Huang Y, Li L, Chen H, Liao Q, Yang X, Yang D, Xia X, Wang H, Wang WE, Chen L, Zeng C. The Protective Role of Yin-Yang 1 in Cardiac Injury and Remodeling After Myocardial Infarction. J Am Heart Assoc 2021; 10:e021895. [PMID: 34713723 PMCID: PMC8751820 DOI: 10.1161/jaha.121.021895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Exploring potential therapeutic target is of great significance for myocardial infarction (MI) and post-MI heart failure. Transcription factor Yin-Yang 1 (YY1) is an essential regulator of apoptosis and angiogenesis, but its role in MI is unclear. Methods and Results The expression of YY1 was assessed in the C57BL/6J mouse heart following MI. Overexpression or silencing of YY1 in the mouse heart was achieved by adeno-associated virus 9 injection. The survival, cardiac function, and scar size, as well as the apoptosis, angiogenesis, cardiac fibrosis, T helper 2 lymphocyte cytokine production, and macrophage polarization were assessed. The effects of YY1 on Akt phosphorylation and vascular endothelial growth factor production were also investigated. The expression of YY1 in heart was significantly stimulated by MI. The survival rate, cardiac function, scar size, and left ventricular volume of mice were improved by YY1 overexpression but worsened by YY1 silencing. YY1 alleviated cardiac apoptosis and fibrosis, promoted angiogenesis, T helper 2 cytokine production, and M2 macrophage polarization in the post-MI heart, it also enhanced the tube formation and migration ability of endothelial cells. Enhanced Akt phosphorylation, along with the increased vascular endothelial growth factor levels were observed in presence of YY1 overexpression. Conclusions YY1 ameliorates cardiac injury and remodeling after MI by repressing cardiomyocyte apoptosis and boosting angiogenesis, which might be ascribed to the enhancement of Akt phosphorylation and the subsequent vascular endothelial growth factor up-regulation. Increased T helper 2 cytokine production and M2 macrophage polarization may also be involved in YY1's cardioprotective effects. These findings supported YY1 as a potential target for therapeutic investigation of MI.
Collapse
Affiliation(s)
- Yu Huang
- Department of Cardiology Daping Hospital Third Military Medical University Chongqing P. R. China.,Department of Cardiology Fujian Heart Medical Center Fujian Institute of Coronary Heart Disease Fujian Medical University Union Hospital Fuzhou P. R. China
| | - Liangpeng Li
- Department of Cardiology Daping Hospital Third Military Medical University Chongqing P. R. China.,Chongqing Key Laboratory for Hypertension Research Chongqing Cardiovascular Clinical Research Center Chongqing Institute of Cardiology Chongqing P. R. China
| | - Hongmei Chen
- Department of Cardiology Daping Hospital Third Military Medical University Chongqing P. R. China.,Chongqing Key Laboratory for Hypertension Research Chongqing Cardiovascular Clinical Research Center Chongqing Institute of Cardiology Chongqing P. R. China
| | - Qiao Liao
- Department of Cardiology Daping Hospital Third Military Medical University Chongqing P. R. China.,Chongqing Key Laboratory for Hypertension Research Chongqing Cardiovascular Clinical Research Center Chongqing Institute of Cardiology Chongqing P. R. China
| | - Xiaoli Yang
- Department of Cardiology Daping Hospital Third Military Medical University Chongqing P. R. China.,Chongqing Key Laboratory for Hypertension Research Chongqing Cardiovascular Clinical Research Center Chongqing Institute of Cardiology Chongqing P. R. China
| | - Dezhong Yang
- Department of Cardiology Daping Hospital Third Military Medical University Chongqing P. R. China.,Chongqing Key Laboratory for Hypertension Research Chongqing Cardiovascular Clinical Research Center Chongqing Institute of Cardiology Chongqing P. R. China
| | - Xuewei Xia
- Department of Cardiology Daping Hospital Third Military Medical University Chongqing P. R. China.,Chongqing Key Laboratory for Hypertension Research Chongqing Cardiovascular Clinical Research Center Chongqing Institute of Cardiology Chongqing P. R. China
| | - Hongyong Wang
- Department of Cardiology Daping Hospital Third Military Medical University Chongqing P. R. China.,Chongqing Key Laboratory for Hypertension Research Chongqing Cardiovascular Clinical Research Center Chongqing Institute of Cardiology Chongqing P. R. China
| | - Wei Eric Wang
- Department of Cardiology Daping Hospital Third Military Medical University Chongqing P. R. China.,Chongqing Key Laboratory for Hypertension Research Chongqing Cardiovascular Clinical Research Center Chongqing Institute of Cardiology Chongqing P. R. China
| | - Lianglong Chen
- Department of Cardiology Fujian Heart Medical Center Fujian Institute of Coronary Heart Disease Fujian Medical University Union Hospital Fuzhou P. R. China
| | - Chunyu Zeng
- Department of Cardiology Daping Hospital Third Military Medical University Chongqing P. R. China.,Chongqing Key Laboratory for Hypertension Research Chongqing Cardiovascular Clinical Research Center Chongqing Institute of Cardiology Chongqing P. R. China.,State Key Laboratory of Trauma, Burns and Combined Injury Daping Hospital The Third Military Medical University Chongqing P. R. China.,Department of Cardiology of Chongqing General Hospital Cardiovascular Research Center of Chongqing College University of Chinese Academy of Sciences Chongqing P. R. China.,Department of Cardiology Fujian Heart Medical Center Fujian Institute of Coronary Heart Disease Fujian Medical University Union Hospital Fuzhou P. R. China
| |
Collapse
|
21
|
Bazrgar M, Khodabakhsh P, Prudencio M, Mohagheghi F, Ahmadiani A. The role of microRNA-34 family in Alzheimer's disease: A potential molecular link between neurodegeneration and metabolic disorders. Pharmacol Res 2021; 172:105805. [PMID: 34371173 DOI: 10.1016/j.phrs.2021.105805] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/27/2021] [Accepted: 08/05/2021] [Indexed: 02/09/2023]
Abstract
Growing evidence indicates that overexpression of the microRNA-34 (miR-34) family in the brain may play a crucial role in Alzheimer's disease (AD) pathogenesis by targeting and downregulating genes associated with neuronal survival, synapse formation and plasticity, Aβ clearance, mitochondrial function, antioxidant defense system, and energy metabolism. Additionally, elevated levels of the miR-34 family in the liver and pancreas promote the development of metabolic syndromes (MetS), such as diabetes and obesity. Importantly, MetS represent a well-documented risk factor for sporadic AD. This review focuses on the recent findings regarding the role of the miR-34 family in the pathogenesis of AD and MetS, and proposes miR-34 as a potential molecular link between both disorders. A comprehensive understanding of the functional roles of miR-34 family in the molecular and cellular pathogenesis of AD brains may lead to the discovery of a breakthrough treatment strategy for this disease.
Collapse
Affiliation(s)
- Maryam Bazrgar
- Neuroscience Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Pariya Khodabakhsh
- Department of Pharmacology, Shahid Beheshti University of Medical Science, Tehran, Iran
| | | | - Fatemeh Mohagheghi
- Institute of Experimental Hematology, Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran.
| |
Collapse
|
22
|
Wei X, Liu F, Jiang X, Xu X, Zhou T, Kang C. YY1 Promotes Telomerase Activity and Laryngeal Squamous Cell Carcinoma Progression Through Impairment of GAS5-Mediated p53 Stability. Front Oncol 2021; 11:692405. [PMID: 34497757 PMCID: PMC8421032 DOI: 10.3389/fonc.2021.692405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/29/2021] [Indexed: 11/13/2022] Open
Abstract
Yin Yang 1 (YY1) is a key transcription factor that exerts functional roles in the cell biological process of various cancers. The current study aimed to elucidate the role and mechanism of YY1 in laryngeal squamous cell carcinoma (LSCC). YY1 mRNA and protein expression in human LSCC cell lines was detected by RT-qPCR and Western blot analysis. An interaction of YY1, GAS5, and p53 protein stability was predicted and confirmed by bioinformatics, ChIP, Co-IP, RIP, and FISH assays. Following loss- and gain-function assays, LSCC cell proliferation, colony formation, cell cycle, telomere length and telomerase activity were evaluated by CCK-8 assay, colony formation assay, flow cytometry, and PCR-ELISA, respectively. Nude mice were xenografted with the tumor in vivo. LSCC cell lines presented with upregulated expression of YY1, downregulated GAS5 expression, and decreased p53 stability. YY1 inhibited the expression of GAS5, which in turn recruited p300 and bound to p53, thus stabilizing it. Moreover, YY1 could directly interact with p300 and suppressp53 stability, leading to enhancement of cell proliferation, telomere length and telomerase activity in vitro along with tumor growth in vivo. Collectively, YY1 can stimulate proliferation and telomerase activity of LSCC cells through suppression of GAS5-dependent p53 stabilization or by decreasing p53 stability via a direct interaction with p300, suggesting that YY1 presents a therapeutic target as a potential oncogene in LSCC development and progression.
Collapse
Affiliation(s)
- Xudong Wei
- Department of E.N.T., Gansu Provincial Hospital, Lanzhou, China.,The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Fenglei Liu
- Department of E.N.T., Gansu Provincial Hospital, Lanzhou, China.,The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Xuelian Jiang
- Department of E.N.T., Gansu Provincial Hospital, Lanzhou, China.,The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Xiaoyan Xu
- Department of E.N.T., Gansu Provincial Hospital, Lanzhou, China.,The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Tianhao Zhou
- Department of E.N.T., Gansu Provincial Hospital, Lanzhou, China.,The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Chengfang Kang
- Department of E.N.T., Gansu Provincial Hospital, Lanzhou, China.,The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| |
Collapse
|
23
|
Mazor G, Smirnov D, Ben David H, Khrameeva E, Toiber D, Rotblat B. TP73-AS1 is induced by YY1 during TMZ treatment and highly expressed in the aging brain. Aging (Albany NY) 2021; 13:14843-14861. [PMID: 34115613 PMCID: PMC8221307 DOI: 10.18632/aging.203182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022]
Abstract
Aging is a factor associated with poor prognosis in glioblastoma (GBM). It is therefore important to understand the molecular features of aging contributing to GBM morbidity. TP73-AS1 is a long noncoding RNA (lncRNA) over expressed in GBM tumors shown to promote resistance to the chemotherapeutic temozolomide (TMZ), and tumor aggressiveness. How the expression of TP73-AS1 is regulated is not known, nor is it known if its expression is associated with aging. By analyzing transcriptional data obtained from natural and pathological aging brain, we found that the expression of TP73-AS1 is high in pathological and naturally aging brains. YY1 physically associates with the promoter of TP73-AS1 and we found that along with TP73-AS1, YY1 is induced by TMZ. We found that the TP73-AS1 promoter is activated by TMZ, and by YY1 over expression. Using CRISPRi to deplete YY1, we found that YY1 promotes up regulation of TP73-AS1 and the activation of its promoter during TMZ treatment. In addition, we identified two putative YY1 binding sites within the TP73-AS1 promoter, and used mutagenesis to find that they are essential for TMZ mediated promoter activation. Together, our data positions YY1 as an important TP73-AS1 regulator, demonstrating that TP73-AS1 is expressed in the natural and pathological aging brain, including during neurodegeneration and cancer. Our findings advance our understanding of TP73-AS1 expression, bringing forth a new link between TMZ resistance and aging, both of which contribute to GBM morbidity.
Collapse
Affiliation(s)
- Gal Mazor
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Dmitri Smirnov
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 121205, Russia.,The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Hila Ben David
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Ekaterina Khrameeva
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Debra Toiber
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel.,The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Barak Rotblat
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel.,The National Institute for Biotechnology in the Negev, Beer Sheva 8410501, Israel
| |
Collapse
|
24
|
Disruption of YY1-EZH2 Interaction Using Synthetic Peptides Inhibits Breast Cancer Development. Cancers (Basel) 2021; 13:cancers13102402. [PMID: 34065631 PMCID: PMC8156467 DOI: 10.3390/cancers13102402] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Both Yin Yang 1 (YY1) and enhancer of zeste homolog 2 (EZH2) are oncogenes with overexpressed statuses in cancers. As a transcription factor, YY1 recruits EZH2 through its oncoprotein binding (OPB) domain to repress gene expression. In this study, we identified the interaction domain of YY1 on EZH2 protein with amino acids 493–519, named the YY1 protein binding (YPB) domain. Synthetic peptides using YPB and OPB domain sequences effectively blocked endogenous YY1-EZH2 interaction. Functionally, YPB and OPB peptides could efficiently inhibit the proliferation of breast cancer cells, promote their apoptosis, and reduce tumor growth in a xenograft mouse model. Using chromatin immunoprecipitation DNA sequencing (ChIP-seq) analysis, we discovered that YPB and OPB peptides could interfere with H3K27 trimethylation of multiple genes. Eventually, we identified that YPB and OPB peptides primarily targeted the PTENP1 gene and validated its importance in the anticancer activity of the two peptides. Abstract Enhancer of zeste homolog 2 (EZH2) is a methyltransferase to mediate lysine 27 trimethylation in histone H3 (i.e., H3K27me3) and repress gene expression. In solid tumors, EZH2 promotes oncogenesis and is considered a therapeutic target. As a transcription factor, Yin Yang 1 (YY1) recruits EZH2 through its oncoprotein binding (OPB) domain to establish gene repression. In this study, we mapped the YY1 protein binding (YPB) domain on EZH2 to a region of 27 amino acids. Both YPB and OPB domain synthetic peptides could disrupt YY1EZH2 interaction, markedly reduce breast cancer cell viability, and efficiently inhibit tumor growth in a xenograft mouse model. We analyzed MDA-MB-231 cells treated with YPB, OPB, and control peptides by chromatin immunoprecipitation DNA sequencing (ChIP-seq) using an antibody against H3K27me3. YPB and OPB treatments altered H3K27me3 on 465 and 1137 genes, respectively, compared to the control. Of these genes, 145 overlapped between the two peptides. Among them, PTENP1, the PTEN pseudogene, showed reduced H3K27me3 signal when treated by either YPB or OPB peptide. Consistently, the two peptides enhanced both PTENP1 and PTEN expression with concomitantly reduced AKT activation. Further studies validated PTENP1′s contribution to the anticancer activity of YPB and OPB peptides.
Collapse
|
25
|
Abstract
Accumulating evidence strongly indicates that the presence of cancer stem cells (CSCs) leads to the emergence of worse clinical scenarios, such as chemo- and radiotherapy resistance, metastasis, and cancer recurrence. CSCs are a highly tumorigenic population characterized by self-renewal capacity and differentiation potential. Thus, CSCs establish a hierarchical intratumor organization that enables tumor adaptation to evade the immune response and resist anticancer therapy. YY1 functions as a transcription factor, RNA-binding protein, and 3D chromatin regulator. Thus, YY1 has multiple effects and regulates several molecular processes. Emerging evidence indicates that the development of lethal YY1-mediated cancer phenotypes is associated with the presence of or enrichment in cancer stem-like cells. Therefore, it is necessary to investigate whether and to what extent YY1 regulates the CSC phenotype. Since CSCs mirror the phenotypic behavior of stem cells, we initially describe the roles played by YY1 in embryonic and adult stem cells. Next, we scrutinize evidence supporting the contributions of YY1 in CSCs from a number of various cancer types. Finally, we identify new areas for further investigation into the YY1-CSCs axis, including the participation of YY1 in the CSC niche.
Collapse
|
26
|
Katoch A, Tripathi SK, Pal A, Das S. Regulation of miR-186-YY1 axis by the p53 translational isoform ∆40p53: implications in cell proliferation. Cell Cycle 2021; 20:561-574. [PMID: 33629930 DOI: 10.1080/15384101.2021.1875670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have earlier shown that p53-FL and its translational isoform ∆40p53 are differentially regulated. In this study, we have investigated the cellular effect of ∆40p53 regulation on downstream gene expression, specifically miRNAs. Interestingly, ∆40p53 showed antagonistic regulation of miR-186-5p as compared to either p53 alone or a combination of both the isoforms. We have elucidated the miR-186-5p mediated effect of ∆40p53 in cell proliferation. Upon expression of ∆40p53, we observed a significant decrease in YY1 levels, an established target of miR-186-5p, which is involved in cell proliferation. Further assays with anti-miR-186 established the interdependence of ∆40p53- miR-186-5p-YY1- cell proliferation. The results unravel a new dimension toward the understanding of ∆40p53 functions, which seems to regulate cellular fate independent of p53FL.
Collapse
Affiliation(s)
- Aanchal Katoch
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Sachin Kumar Tripathi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Apala Pal
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Saumitra Das
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India.,National Institute of Biomedical Genomics, Kalyani, India
| |
Collapse
|
27
|
Zhong Y, Lin H, Li Q, Liu C, Zhong L. Downregulation of long non‑coding RNA GACAT1 suppresses proliferation and induces apoptosis of NSCLC cells by sponging microRNA‑422a. Int J Mol Med 2021; 47:659-667. [PMID: 33416153 PMCID: PMC7797425 DOI: 10.3892/ijmm.2020.4826] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence has demonstrated the important roles of long non‑coding (lnc) RNA in non‑small cell lung cancer (NSCLC). lncRNA gastric cancer‑associated transcript 1 (GACAT1) has been reported to play an oncogenic role in different types of cancer; however, the function of GACAT1 in NSCLC remains unclear. The present study found that GACAT1 was overexpressed in NSCLC tissues and was associated with poor outcomes in patients with NSCLC. Functional experiments revealed that GACAT1 downregulation inhibited proliferation, induced apoptosis and cell cycle arrest of 2 NSCLC cell lines. GACAT1 was found to target microRNA(miR)‑422a mechanically and negatively regulated miR‑422a expression. Reduced expression of miR‑422a in NSCLC tissues was inversely correlated with that of GACAT1. Furthermore, YY1 transcription factor (YY1) was identified as a downstream miR‑422a target. Reduced expression of GACAT1 inactivated YY1 by sponging miR‑422a in NSCLC cells. YY1 reintroduction reversed the reduced proliferation of NSCLC cells via GACAT1 knockdown. Taken together, these results revealed the novel role of the GACAT1/miR‑422a pathway in the progression of NSCLC cell lines, providing a possible therapeutic strategy for NSCLC treatment.
Collapse
Affiliation(s)
- Youqing Zhong
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 571100
| | - Hui Lin
- Department of Anesthesia, Hainan General Hospital, Haikou, Hainan 570311
| | - Qi Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 571100
| | - Chang Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 571100
| | - Lei Zhong
- Clinical Laboratory, Ganzhou People's Hospital of Jiangxi Province, Ganzhou, Jiangxi 341000, P.R. China
| |
Collapse
|
28
|
Xu X, Zhang C, Xu H, Wu L, Hu M, Song L. Autophagic feedback-mediated degradation of IKKα requires CHK1- and p300/CBP-dependent acetylation of p53. J Cell Sci 2020; 133:jcs246868. [PMID: 33097607 DOI: 10.1242/jcs.246868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 10/12/2020] [Indexed: 12/20/2022] Open
Abstract
In our previous report, we demonstrated that one of the catalytic subunits of the IκB kinase (IKK) complex, IKKα (encoded by CHUK), performs an NF-κB-independent cytoprotective role in human hepatoma cells under the treatment of the anti-tumor therapeutic reagent arsenite. IKKα triggers its own degradation, as a feedback loop, by activating p53-dependent autophagy, and therefore contributes substantially to hepatoma cell apoptosis induced by arsenite. Interestingly, IKKα is unable to interact with p53 directly but plays a critical role in mediating p53 phosphorylation (at Ser15) by promoting CHK1 activation and CHK1-p53 complex formation. In the current study, we found that p53 acetylation (at Lys373 and/or Lys382) was also critical for the induction of autophagy and the autophagic degradation of IKKα during the arsenite response. Furthermore, IKKα was involved in p53 acetylation through interaction with the acetyltransferases for p53, p300 (also known as EP300) and CBP (also known as CREBBP) (collectively p300/CBP), inducing CHK1-dependent p300/CBP activation and promoting p300-p53 or CBP-p53 complex formation. Therefore, taken together with the previous report, we conclude that both IKKα- and CHK1-dependent p53 phosphorylation and acetylation contribute to mediating selective autophagy feedback degradation of IKKα during the arsenite-induced proapoptotic responses.
Collapse
Affiliation(s)
- Xiuduan Xu
- Institute of Military Cognitive and Brain Sciences, 27 Taiping Road, Beijing 100850, P. R. China
- Department of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, P. R. China
| | - Chongchong Zhang
- Institute of Military Cognitive and Brain Sciences, 27 Taiping Road, Beijing 100850, P. R. China
- Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng 475004, P. R. China
| | - Huan Xu
- Institute of Military Cognitive and Brain Sciences, 27 Taiping Road, Beijing 100850, P. R. China
- Department of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, P. R. China
| | - Lin Wu
- Institute of Military Cognitive and Brain Sciences, 27 Taiping Road, Beijing 100850, P. R. China
| | - Meiru Hu
- Institute of Military Cognitive and Brain Sciences, 27 Taiping Road, Beijing 100850, P. R. China
| | - Lun Song
- Institute of Military Cognitive and Brain Sciences, 27 Taiping Road, Beijing 100850, P. R. China
- Department of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, P. R. China
| |
Collapse
|
29
|
Li L, Li Y, Timothy Sembiring Meliala I, Kasim V, Wu S. Biological roles of Yin Yang 2: Its implications in physiological and pathological events. J Cell Mol Med 2020; 24:12886-12899. [PMID: 32969187 PMCID: PMC7754051 DOI: 10.1111/jcmm.15919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/15/2022] Open
Abstract
Yin yang 2 (YY2) is a multifunctional zinc finger protein that belongs to the yin yang (YY) family. YY2 has dual function in regulating gene expression, as it could act either as a transcriptional activator or as a repressor of its target genes. YY2 could regulate genes that have been previously identified as targets of yin yang 1 (YY1), another member of the YY family, by binding to their common binding sequences. However, recent studies revealed that YY2 also has its own specific binding sequences, leading to its particular biological functions distinct from those of YY1. Furthermore, they have different levels or even opposite regulatory effects on common target genes, suggesting the importance of balanced YY1 and YY2 regulations in maintaining proper cellular homeostasis and biological functions. Recent studies revealed that YY2 plays crucial roles in maintaining stemness and regulating differentiation potential of embryonic stem cells, as well as in the development of the brain, nervous and cardiovascular systems. YY2 expression is also closely related to diseases, as it could act as a tumour suppressor gene that regulates tumour cell proliferation and metastasis. Moreover, YY2 is also involved in immune regulation and immune surveillance. Herein, we summarize recent perspectives regarding the regulatory functions of YY2, as well as its biological functions and relation with diseases.
Collapse
Affiliation(s)
- Lang Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China
| | - Yanjun Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China
| | - Ian Timothy Sembiring Meliala
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, China
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, China
| |
Collapse
|
30
|
Qi Y, Yan T, Chen L, Zhang Q, Wang W, Han X, Li D, Shi J, Sui G. Characterization of YY1 OPB Peptide for its Anticancer Activity. Curr Cancer Drug Targets 2020; 19:504-511. [PMID: 30381079 DOI: 10.2174/1568009618666181031153151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 10/02/2018] [Accepted: 10/18/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND The oncoprotein binding (OPB) domain of Yin Yang 1 (YY1) consists of 26 amino acids between G201 and S226, and is involved in YY1 interaction with multiple oncogene products, including MDM2, AKT, EZH2 and E1A. Through the OPB domain, YY1 promotes the oncogenic or proliferative regulation of these oncoproteins in cancer cells. We previously demonstrated that a peptide with the OPB sequence blocked YY1-AKT interaction and inhibited breast cancer cell proliferation. OBJECTIVE In the current study, we characterized the OPB domain and determined a minimal region for peptide design to suppress cancer cells. METHODS Using alanine-scan method, we identified that the amino acids at OPB C-terminal are essential to YY1 binding to AKT. Further studies suggested that serine and threonine residues, but not lysines, in OPB play a key role in YY1-AKT interaction. We generated GFP fusion expression vectors to express OPB peptides with serially deleted N-terminal and found that OPB1 (i.e. G201-S226) is cytoplasmic, but OPB2 (i.e. E206-S226), OPB3 (i.e. E206-S226) and control peptide were both nuclear and cytoplasmic. RESULTS Both OPB1 and 2 inhibited breast cancer cell proliferation and migration, but OPB3 exhibited similar effects to control. OPB1 and 2 caused cell cycle arrest at G1 phase, increased p53 and p21 expression, and reduced AKT(S473) phosphorylation in MCF-7 cells, but not in MDA-MB-231 cells. CONCLUSION Overall, the serines and threonines of OPB are essential to YY1 binding to oncoproteins, and OPB peptide can be minimized to E206-S226 that maintain inhibitory activity to YY1- promoted cell proliferation.
Collapse
Affiliation(s)
- Yige Qi
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Ting Yan
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Lu Chen
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Qiang Zhang
- College of Life Science, Northeast Forestry University, Harbin, China.,Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States
| | - Weishu Wang
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Xu Han
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Dangdang Li
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Jinming Shi
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Guangchao Sui
- College of Life Science, Northeast Forestry University, Harbin, China.,Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States
| |
Collapse
|
31
|
Song P, Hong J, Wang Y, Yao X, Zhan Y, Yin R, Yu M, Li C, Yang X, Ge C. Transcriptional regulation of human abraxas brother protein 1 expression by yin yang 1. Biochem Cell Biol 2020; 99:223-230. [PMID: 32845162 DOI: 10.1139/bcb-2019-0279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Abraxas brother protein 1 (ABRO1) is a subunit of the deubiquitinating enzyme BRCC36-containing isopeptidase complex and plays important roles in cellular responses to stress by interacting with its binding partners, such as ubiquitin-specific peptidase 7, p53, activating transcription factor 4, THAP-domain containing 5, and serine hydroxymethyltransferase. However, the transcriptional regulation of ABRO1 remains unexplored. In this study, we identified and characterized the core regulatory elements of the human ABRO1 gene and mapped them to the ABRO1 promoter region. Additionally, 5' rapid amplification of cDNA ends revealed that the transcriptional start site (TSS) was located -13 bp upstream from the start codon. Reporter gene, chromatin immunoprecipitation, and electrophoretic mobility shift assays demonstrated that ABRO1 transcription was regulated through cis-acting elements located in the region -89 to -59 bp upstream of the ABRO1 TSS and that these elements were targeted by yin yang 1 transcription factor (YY1). Moreover, YY1 overexpression increased human ABRO1 mRNA and protein expression, and small-interfering RNA-mediated downregulation of YY1 attenuated ABRO1 expression. These results suggested that YY1 positively regulated human ABRO1 expression by binding to cis-acting elements located in the ABRO1 TSS.
Collapse
Affiliation(s)
- Pan Song
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China.,College of Life Science and Bio-engineering, Beijing University of Technology, Beijing 100022, China
| | - Jian Hong
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China.,8th Medical Center, the General Hospital of Chinese People's Liberation Army, Beijing 100091, China
| | - Yuan Wang
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xuelian Yao
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China.,Graduate School, Anhui Medical University, Hefei 230032, China
| | - Yiqun Zhan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Ronghua Yin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Miao Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Changyan Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xiaoming Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Changhui Ge
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China.,Graduate School, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
32
|
Dong X, Kwan KM. Yin Yang 1 is critical for mid-hindbrain neuroepithelium development and involved in cerebellar agenesis. Mol Brain 2020; 13:104. [PMID: 32703236 PMCID: PMC7376712 DOI: 10.1186/s13041-020-00643-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/15/2020] [Indexed: 12/14/2022] Open
Abstract
The highly conserved and ubiquitously expressed transcription factor Yin Yang 1 (Yy1), was named after its dual functions of both activating and repressing gene transcription. Yy1 plays complex roles in various fundamental biological processes such as the cell cycle progression, cell proliferation, survival, and differentiation. Patients with dominant Yy1 mutations suffer from central nervous system (CNS) developmental defects. However, the role of Yy1 in mammalian CNS development remains to be fully elucidated. The isthmus organizer locates to the mid-hindbrain (MHB) boundary region and serves as the critical signaling center during midbrain and cerebellar early patterning. To study the function of Yy1 in mesencephalon/ rhombomere 1 (mes/r1) neuroepithelium development, we utilized the tissue-specific Cre-LoxP system and generated a conditional knockout mouse line to inactivate Yy1 in the MHB region. Mice with Yy1 deletion in the mes/r1 region displayed cerebellar agenesis and dorsal midbrain hypoplasia. The Yy1 deleted neuroepithelial cells underwent cell cycle arrest and apoptosis, with the concurrent changes of cell cycle regulatory genes expression, as well as activation of the p53 pathway. Moreover, we found that Yy1 is involved in the transcriptional activation of Wnt1 in neural stem cells. Thus, our work demonstrates the involvement of Yy1 in cerebellar agenesis and the critical function of Yy1 in mouse early MHB neuroepithelium maintenance and development.
Collapse
Affiliation(s)
- Xiaonan Dong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Kin Ming Kwan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China. .,Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China. .,State Key Laboratory of Agrobiotechnology (CUHK), The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
33
|
Nandi S, Liang G, Sindhava V, Angireddy R, Basu A, Banerjee S, Hodawadekar S, Zhang Y, Avadhani NG, Sen R, Atchison ML. YY1 control of mitochondrial-related genes does not account for regulation of immunoglobulin class switch recombination in mice. Eur J Immunol 2020; 50:822-838. [PMID: 32092784 PMCID: PMC8287517 DOI: 10.1002/eji.201948385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/30/2019] [Accepted: 02/18/2020] [Indexed: 12/18/2022]
Abstract
Immunoglobulin class switch recombination (CSR) occurs in activated B cells with increased mitochondrial mass and membrane potential. Transcription factor Yin Yang 1 (YY1) is critical for CSR and for formation of the DNA loops involved in this process. We therefore sought to determine if YY1 knockout impacts mitochondrial gene expression and mitochondrial function in murine splenic B cells, providing a potential mechanism for regulating CSR. We identified numerous genes in splenic B cells differentially regulated when cells are induced to undergo CSR. YY1 conditional knockout caused differential expression of 1129 genes, with 59 being mitochondrial-related genes. ChIP-seq analyses showed YY1 was directly bound to nearly half of these mitochondrial-related genes. Surprisingly, at the time when YY1 knockout dramatically reduces DNA loop formation and CSR, mitochondrial mass and membrane potential were not significantly impacted, nor was there a significant change in mitochondrial oxygen consumption, extracellular acidification rate, or mitochondrial complex I or IV activities. Our results indicate that YY1 regulates numerous mitochondrial-related genes in splenic B cells, but this does not account for the impact of YY1 on CSR or long-distance DNA loop formation.
Collapse
Affiliation(s)
- Satabdi Nandi
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Guanxiang Liang
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vishal Sindhava
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rajesh Angireddy
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Arindam Basu
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarmistha Banerjee
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Suchita Hodawadekar
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yue Zhang
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Narayan G. Avadhani
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ranjan Sen
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | - Michael L. Atchison
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
34
|
Sasik MUT, Eravsar ETK, Kinali M, Ergul AA, Adams MM. Expression Levels of SMAD Specific E3 Ubiquitin Protein Ligase 2 (Smurf2) and its Interacting Partners Show Region-specific Alterations During Brain Aging. Neuroscience 2020; 436:46-73. [PMID: 32278060 DOI: 10.1016/j.neuroscience.2020.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 02/08/2023]
Abstract
Aging occurs due to a combination of several factors, such as telomere attrition, cellular senescence, and stem cell exhaustion. The telomere attrition-dependent cellular senescence is regulated by increased levels of SMAD specific E3 ubiquitin protein ligase 2 (smurf2). With age smurf2 expression increases and Smurf2 protein interacts with several regulatory proteins including, Smad7, Ep300, Yy1, Sirt1, Mdm2, and Tp53, likely affecting its function related to cellular aging. The current study aimed at analyzing smurf2 expression in the aged brain because of its potential regulatory roles in the cellular aging process. Zebrafish were used because like humans they age gradually and their genome has 70% similarity. In the current study, we demonstrated that smurf2 gene and protein expression levels altered in a region-specific manner during the aging process. Also, in both young and old brains, Smurf2 protein was enriched in the cytosol. These results imply that during aging Smurf2 is regulated by several mechanisms including post-translational modifications (PTMs) and complex formation. Also, the expression levels of its interacting partners defined by the STRING database, tp53, mdm2, ep300a, yy1a, smad7, and sirt1, were analyzed. Multivariate analysis indicated that smurf2, ep300a, and sirt1, whose proteins regulate ubiquitination, acetylation, and deacetylation of target proteins including Smad7 and Tp53, showed age- and brain region-dependent patterns. Our data suggest a likely balance between Smurf2- and Mdm2-mediated ubiquitination, and Ep300a-mediated acetylation/Sirt1-mediated deacetylation, which most possibly affects the functionality of other interacting partners in regulating cellular and synaptic aging and ultimately cognitive dysfunction.
Collapse
Affiliation(s)
- Melek Umay Tuz- Sasik
- Interdisciplinary Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey; National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey; Department of Molecular Biology and Genetics, Zebrafish Facility, Bilkent University, Ankara, Turkey
| | - Elif Tugce Karoglu- Eravsar
- Interdisciplinary Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey; National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey; Department of Molecular Biology and Genetics, Zebrafish Facility, Bilkent University, Ankara, Turkey; Department of Psychology, Selcuk University, Konya, Turkey
| | - Meric Kinali
- Graduate School of Informatics, Department of Health Informatics, Middle East Technical University, Ankara, Turkey
| | - Ayca Arslan- Ergul
- Stem Cell Research and Application Center, Hacettepe University, Ankara, Turkey
| | - Michelle M Adams
- Interdisciplinary Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey; National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey; Department of Molecular Biology and Genetics, Zebrafish Facility, Bilkent University, Ankara, Turkey; Department of Psychology, Bilkent University, Ankara, Turkey.
| |
Collapse
|
35
|
Meliala ITS, Hosea R, Kasim V, Wu S. The biological implications of Yin Yang 1 in the hallmarks of cancer. Theranostics 2020; 10:4183-4200. [PMID: 32226547 PMCID: PMC7086370 DOI: 10.7150/thno.43481] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 02/09/2020] [Indexed: 12/24/2022] Open
Abstract
Tumorigenesis is a multistep process characterized by the acquisition of genetic and epigenetic alterations. During the course of malignancy development, tumor cells acquire several features that allow them to survive and adapt to the stress-related conditions of the tumor microenvironment. These properties, which are known as hallmarks of cancer, include uncontrolled cell proliferation, metabolic reprogramming, tumor angiogenesis, metastasis, and immune system evasion. Zinc-finger protein Yin Yang 1 (YY1) regulates numerous genes involved in cell death, cell cycle, cellular metabolism, and inflammatory response. YY1 is highly expressed in many cancers, whereby it is associated with cell proliferation, survival, and metabolic reprogramming. Furthermore, recent studies also have demonstrated the important role of YY1-related non-coding RNAs in acquiring cancer-specific characteristics. Therefore, these YY1-related non-coding RNAs are also crucial for YY1-mediated tumorigenesis. Herein, we summarize recent progress with respect to YY1 and its biological implications in the context of hallmarks of cancer.
Collapse
|
36
|
Sarvagalla S, Kolapalli SP, Vallabhapurapu S. The Two Sides of YY1 in Cancer: A Friend and a Foe. Front Oncol 2019; 9:1230. [PMID: 31824839 PMCID: PMC6879672 DOI: 10.3389/fonc.2019.01230] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022] Open
Abstract
Yin Yang 1 (YY1), a dual function transcription factor, is known to regulate transcriptional activation and repression of many genes associated with multiple cellular processes including cellular differentiation, DNA repair, autophagy, cell survival vs. apoptosis, and cell division. Owing to its role in processes that upon deregulation are linked to malignant transformation, YY1 has been implicated as a major driver of many cancers. While a large body of evidence supports the role of YY1 as a tumor promoter, recent reports indicated that YY1 also functions as a tumor suppressor. The mechanism by which YY1 brings out opposing outcome in tumor growth vs. suppression is not completely clear and some of the recent reports have provided significant insight into this. Likewise, the mechanism by which YY1 functions both as a transcriptional activator and repressor is not completely clear. It is likely that the proteins with which YY1 interacts might determine its function as an activator or repressor of transcription as well as its role as a tumor suppressor or promoter. Hence, a collection of YY1-protein interactions in the context of different cancers would help us gain an insight into how YY1 promotes or suppresses cancers. This review focuses on the YY1 interacting partners and its target genes in different cancer models. Finally, we discuss the possibility of therapeutically targeting the YY1 in cancers where it functions as a tumor promoter.
Collapse
Affiliation(s)
| | | | - Sivakumar Vallabhapurapu
- Division of Biology, Indian Institute of Science Education and Research Tirupati, Tirupati, India
| |
Collapse
|
37
|
Li Y, Kasim V, Yan X, Li L, Meliala ITS, Huang C, Li Z, Lei K, Song G, Zheng X, Wu S. Yin Yang 1 facilitates hepatocellular carcinoma cell lipid metabolism and tumor progression by inhibiting PGC-1β-induced fatty acid oxidation. Theranostics 2019; 9:7599-7615. [PMID: 31695789 PMCID: PMC6831470 DOI: 10.7150/thno.34931] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 09/08/2019] [Indexed: 12/11/2022] Open
Abstract
Lipid accumulation is a driving force in tumor development, as it provides tumor cells with both energy and the building blocks of phospholipids for construction of cell membranes. Aberrant homeostasis of lipid metabolism has been observed in various tumors; however, the molecular mechanism has not been fully elucidated. Methods: Yin yang 1 (YY1) expression in hepatocellular carcinoma (HCC) was analyzed using clinical specimens, and its roles in HCC in lipid metabolism were examined using gain- and loss-of function experiments. The mechanism of YY1 regulation on peroxisome proliferator-activated receptor gamma coactivator-1β (PGC-1β) and its downstream genes medium-chain acyl-CoA dehydrogenase (MCAD) and long-chain acyl-CoA dehydrogenase (LCAD) were investigated using molecular biology and biochemical methods. The role of YY1/ PGC-1β axis in hepatocarcinogenesis was studied using xenograft experiment. Results: This study showed that YY1 suppresses fatty acid β-oxidation, leading to increase of cellular triglyceride level and lipid accumulation in HCC cells, and subsequently induction of the tumorigenesis potential of HCC cells. Molecular mechanistic study revealed that YY1 blocks the expression of PGC-1β, an activator of fatty acid β-oxidation, by directly binding to its promoter; and thus downregulates PGC-1β/MCAD and PGC1-β/LCAD axis. Importantly, we revealed that YY1 inhibition on PGC-1β occurs irrespective of the expression of hypoxia-inducible factor-1α (HIF1-α), enabling it to promote lipid accumulation under both normoxic and hypoxic conditions. Conclusion: Our study reveals the critical role of YY1/PGC-1β axis in HCC cell lipid metabolism, providing novel insight into the molecular mechanisms associated with tumor cell lipid metabolism, and a new perspective regarding the function of YY1 in tumor progression. Thus, our study provides evidences regarding the potential of YY1 as a target for lipid metabolism-based anti-tumor therapy.
Collapse
|
38
|
Zurkirchen L, Varum S, Giger S, Klug A, Häusel J, Bossart R, Zemke M, Cantù C, Atak ZK, Zamboni N, Basler K, Sommer L. Yin Yang 1 sustains biosynthetic demands during brain development in a stage-specific manner. Nat Commun 2019; 10:2192. [PMID: 31097699 PMCID: PMC6522535 DOI: 10.1038/s41467-019-09823-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 03/26/2019] [Indexed: 12/12/2022] Open
Abstract
The transcription factor Yin Yang 1 (YY1) plays an important role in human disease. It is often overexpressed in cancers and mutations can lead to a congenital haploinsufficiency syndrome characterized by craniofacial dysmorphisms and neurological dysfunctions, consistent with a role in brain development. Here, we show that Yy1 controls murine cerebral cortex development in a stage-dependent manner. By regulating a wide range of metabolic pathways and protein translation, Yy1 maintains proliferation and survival of neural progenitor cells (NPCs) at early stages of brain development. Despite its constitutive expression, however, the dependence on Yy1 declines over the course of corticogenesis. This is associated with decreasing importance of processes controlled by Yy1 during development, as reflected by diminished protein synthesis rates at later developmental stages. Thus, our study unravels a novel role for Yy1 as a stage-dependent regulator of brain development and shows that biosynthetic demands of NPCs dynamically change throughout development. The transcription factor Yin Yang 1 (YY1) plays an important role in human disease, yet little is known about its role in brain development. This study shows that YY1 controls cerebral cortex development by maintaining proliferation and survival of neural progenitor cells via transcriptional regulation of genes involved in metabolism and protein translation.
Collapse
Affiliation(s)
- Luis Zurkirchen
- Institute of Anatomy, University of Zurich, 8057, Zurich, Switzerland
| | - Sandra Varum
- Institute of Anatomy, University of Zurich, 8057, Zurich, Switzerland
| | - Sonja Giger
- Institute of Anatomy, University of Zurich, 8057, Zurich, Switzerland
| | - Annika Klug
- Institute of Anatomy, University of Zurich, 8057, Zurich, Switzerland
| | - Jessica Häusel
- Institute of Anatomy, University of Zurich, 8057, Zurich, Switzerland
| | - Raphaël Bossart
- Institute of Anatomy, University of Zurich, 8057, Zurich, Switzerland
| | - Martina Zemke
- Institute of Anatomy, University of Zurich, 8057, Zurich, Switzerland
| | - Claudio Cantù
- Institute of Molecular Life Sciences, University of Zurich, Zurich, 8057, Switzerland.,Wallenberg Centre for Molecular Medicine (WCMM), Department of Clinical and Experimental Medicine (IKE), Linköping University, Linköping, 58183, Sweden
| | - Zeynep Kalender Atak
- Laboratory of Computational Biology, KU Leuven Center for Human Genetics, Leuven, 3000, Belgium
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, 8093, Switzerland
| | - Konrad Basler
- Institute of Molecular Life Sciences, University of Zurich, Zurich, 8057, Switzerland
| | - Lukas Sommer
- Institute of Anatomy, University of Zurich, 8057, Zurich, Switzerland.
| |
Collapse
|
39
|
Hays E, Bonavida B. YY1 regulates cancer cell immune resistance by modulating PD-L1 expression. Drug Resist Updat 2019; 43:10-28. [PMID: 31005030 DOI: 10.1016/j.drup.2019.04.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 02/08/2023]
Abstract
Recent advances in the treatment of various cancers have resulted in the adaptation of several novel immunotherapeutic strategies. Notably, the recent intervention through immune checkpoint inhibitors has resulted in significant clinical responses and prolongation of survival in patients with several therapy-resistant cancers (melanoma, lung, bladder, etc.). This intervention was mediated by various antibodies directed against inhibitory receptors expressed on cytotoxic T-cells or against corresponding ligands expressed on tumor cells and other cells in the tumor microenvironment (TME). However, the clinical responses were only observed in a subset of the treated patients; it was not clear why the remaining patients did not respond to checkpoint inhibitor therapies. One hypothesis stated that the levels of PD-L1 expression correlated with poor clinical responses to cell-mediated anti-tumor immunotherapy. Hence, exploring the underlying mechanisms that regulate PD-L1 expression on tumor cells is one approach to target such mechanisms to reduce PD-L1 expression and, therefore, sensitize the resistant tumor cells to respond to PD-1/PD-L1 antibody treatments. Various investigations revealed that the overexpression of the transcription factor Yin Yang 1 (YY1) in most cancers is involved in the regulation of tumor cells' resistance to cell-mediated immunotherapies. We, therefore, hypothesized that the role of YY1 in cancer immune resistance may be correlated with PD-L1 overexpression on cancer cells. This hypothesis was investigated and analysis of the reported literature revealed that several signaling crosstalk pathways exist between the regulations of both YY1 and PD-L1 expressions. Such pathways include p53, miR34a, STAT3, NF-kB, PI3K/AKT/mTOR, c-Myc, and COX-2. Noteworthy, many clinical and pre-clinical drugs have been utilized to target these above pathways in various cancers independent of their roles in the regulation of PD-L1 expression. Therefore, the direct inhibition of YY1 and/or the use of the above targeted drugs in combination with checkpoint inhibitors should result in enhancing the cell-mediated anti-tumor cell response and also reverse the resistance observed with the use of checkpoint inhibitors alone.
Collapse
Affiliation(s)
- Emily Hays
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, United States
| | - Benjamin Bonavida
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, United States.
| |
Collapse
|
40
|
Galloway NR, Ball KF, Stiff T, Wall NR. Yin Yang 1 (YY1): Regulation of Survivin and Its Role In Invasion and Metastasis. Crit Rev Oncog 2019; 22:23-36. [PMID: 29604934 DOI: 10.1615/critrevoncog.2017020836] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Despite significant clinical and basic science advancements, cancer remains a devastating disease that affects people of all ages, races, and backgrounds. The pathogenesis of cancer has recently been described to result from eight biological capabilities or hallmarks and two enabling characteristics. These eight hallmarks are: deregulation of cellular energetics, avoiding immune destruction, enabling replicative immortality, inducing angiogenesis, sustaining proliferative signaling, evading growth suppressors, resisting cell death, and activating invasion and metastasis. The enabling characteristics are: genome instability and mutation and tumor-promoting inflammation. Survivin, the fourth most common transcript found in cancer cells, is a protein that is thought to be involved in the enhanced proliferation, survival, and metastasis and possibly other key hallmarks of cancer cells. Understanding how this gene is turned on and off is vitally important for attempt improving cancer management and therapy. Our work has identified a novel transcriptional regulator of survivin called Yin Yang 1 (YY1), which has been observed to activate some gene promoters and repress others and is gaining increasing interest as a target of cancer therapy. Our work shows for the first time that YY1 represses survivin transcription by physically interacting with the survivin promoter. Furthermore, YY1 appears to contribute to basal survivin transcriptional activity, indicating that disruption of its binding may in part contribute to survivin overexpression after cellular stress events including chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Nicholas R Galloway
- Department of Basic Science and Division of Biochemistry, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California 92350
| | - Kathryn F Ball
- Department of Basic Science and Division of Biochemistry, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California 92350
| | - TessaRae Stiff
- Department of Basic Science and Division of Biochemistry, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California 92350
| | - Nathan R Wall
- Department of Basic Science and Division of Biochemistry, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California 92350
| |
Collapse
|
41
|
Wong LL, Saw EL, Lim JY, Zhou Y, Richards AM, Wang P. MicroRNA Let-7d-3p Contributes to Cardiac Protection via Targeting HMGA2. Int J Mol Sci 2019; 20:ijms20071522. [PMID: 30934671 PMCID: PMC6480063 DOI: 10.3390/ijms20071522] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 01/01/2023] Open
Abstract
We tested the hypothesis that Let-7d-3p contributes to cardiac cell protection during hypoxic challenge. Myoblast H9c2 cells and primary neonatal rat ventricular cardiomyocytes (NRVM) were transfected with five selected miRNA mimics. Both cell lines were subjected to 0.2% oxygen hypoxia. The protective effects of these miRNAs were determined by assessment of cell metabolic activity by CCK8 assay and measurement of lactate dehydrogenase (LDH) release as a marker of cell injury. Apoptosis and autophagy flux were assessed by Annexin V/7-AAD double staining and the ratio of LC3 II/I with Baf-A1 treatment, an autophagy flux inhibitor, respectively. Luciferase-reporter assay, RT-qPCR and Western blots were performed to identify the changes of relevant gene targets. Among five miRNA mimic transfections, Let-7d-3p increased CCK8 activity, and decreased LDH release in both H9c2 and NRVM during hypoxia. Apoptosis was significantly reduced in H9c2 cells transfected with Let-7d-3p mimic. Autophagy and autophagy flux were not affected. In silico, mRNAs of HMGA2, YY1, KLF9, KLF12, and MEX3C are predicted targets for Let-7d-3p. Luciferase-reporter assay confirmed that Let-7d-3p bound directly to the 3’-UTR region of HMGA2, MEX3C, and YY1, the down-regulations of these mRNAs were verified in both H9c2 and NRVM. The protein expression of HMGA2, but not others, was downregulated in H9c2 and NRVM. It is known that HMGA2 is a strong apoptosis trigger through the blocking of DNA repair. Thus, we speculate that the anti-apoptotic effects of Let-7d-3p mimic during hypoxia challenge are due to direct targeting of HMGA2.
Collapse
Affiliation(s)
- Lee Lee Wong
- Cardiovascular Research Institute, National University Heart Centre, Singapore 117599, Singapore.
- Department of Medicine, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.
| | - Eng Leng Saw
- Cardiovascular Research Institute, National University Heart Centre, Singapore 117599, Singapore.
- Department of Medicine, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.
| | - Jia Yuen Lim
- Cardiovascular Research Institute, National University Heart Centre, Singapore 117599, Singapore.
- Department of Medicine, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.
| | - Yue Zhou
- Cardiovascular Research Institute, National University Heart Centre, Singapore 117599, Singapore.
- Department of Medicine, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.
| | - Arthur Mark Richards
- Cardiovascular Research Institute, National University Heart Centre, Singapore 117599, Singapore.
- Department of Medicine, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.
- Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch 8014, New Zealand.
| | - Peipei Wang
- Cardiovascular Research Institute, National University Heart Centre, Singapore 117599, Singapore.
- Department of Medicine, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.
| |
Collapse
|
42
|
Zhong B, Shingyoji M, Hanazono M, Nguyễn TTT, Morinaga T, Tada Y, Hiroshima K, Shimada H, Tagawa M. A p53-stabilizing agent, CP-31398, induces p21 expression with increased G2/M phase through the YY1 transcription factor in esophageal carcinoma defective of the p53 pathway. Am J Cancer Res 2019; 9:79-93. [PMID: 30755813 PMCID: PMC6356922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 12/20/2018] [Indexed: 06/09/2023] Open
Abstract
Restoration of p53 functions is one of the therapeutic strategies for esophageal carcinoma which is often defective of the p53 pathway. We examined effects of CP-31398 which potentially increased expression of wild-type p53 or converted mutated p53 to the wild-type. We used 9 kinds of human squamous esophageal carcinoma cells with different p53 genotypes and examined expression of p53 and the related molecules in CP-31398-treated cells. Cisplatin, a DNA damaging agent, induced cleavages of PARP and caspase-3 without increase of p53 levels, indicating that the p53 down-stream pathway was disrupted in these cells. CP-31398 induced growth retardation but the cytotoxic effects were irrelevant to p53 genotype. CP-31398 influenced expression of p53 and the downstream molecules in a cell-dependent manner, but constantly increased p21 expression at the transcriptional level with decreased YY1 expression. Knockdown experiments with siRNA demonstrated that the CP-31398-mediated p21 up-regulation was unrelated with p53 expression but was associated with YY1 expression. We also showed that CP-31398-induced cell cycle changes including increase of G2/M populations was attributable to the up-regulated p21. These data collectively indicated that CP-31398 augmented endogenous p21 levels and induced cell cycle changes through regulation of YY1, and that YY1 was a novel target of CP-31398 in p53 dysfunctional cells.
Collapse
Affiliation(s)
- Boya Zhong
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute666-2 Nitona, Chuo-ku, Chiba 260-8717, Japan
- Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Masato Shingyoji
- Division of Respirology, Chiba Cancer Center666-2 Nitona, Chuo-ku, Chiba 260-8717, Japan
| | - Michiko Hanazono
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute666-2 Nitona, Chuo-ku, Chiba 260-8717, Japan
| | - Thảo Thi Thanh Nguyễn
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute666-2 Nitona, Chuo-ku, Chiba 260-8717, Japan
- Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Takao Morinaga
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute666-2 Nitona, Chuo-ku, Chiba 260-8717, Japan
| | - Yuji Tada
- Department of Respirology, Graduate School of Medicine, Chiba UniversityChiba, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Kenzo Hiroshima
- Department of Pathology, Tokyo Women’s Medical University Yachiyo Medical Center477-96 Ohwadashinden, Yachiyo, Chiba 276-8524, Japan
| | - Hideaki Shimada
- Department of Surgery, School of Medicine, Toho University6-11-1 Oomori-nishi, Oota-ku, Tokyo 143-8541, Japan
| | - Masatoshi Tagawa
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute666-2 Nitona, Chuo-ku, Chiba 260-8717, Japan
- Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| |
Collapse
|
43
|
Yuniarti L, Mustofa M, Aryandono T, Haryana SM. Synergistic Action of 1,2-Epoxy-3 (3- (3,4-dimethoxyphenyl)- 4H-1-benzopiyran-4-on) Propane with Doxorubicin and Cisplatin through Increasing of p53, TIMP-3, and MicroRNA-34a in Cervical Cancer Cell Line (HeLa). Asian Pac J Cancer Prev 2018; 19:2955-2962. [PMID: 30362332 PMCID: PMC6291055 DOI: 10.22034/apjcp.2018.19.10.2955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/09/2018] [Indexed: 12/17/2022] Open
Abstract
Objective: Cervical cancer is the second most common cancer among women worldwide, with a high mortality rate especially in developing countries. Insufficient treatment for cervical cancer, multiple side effects, and high drug prices encourage researchers to look for effective and selective cancer drugs with appropriate molecular targets. This study explored the cytotoxicity of (1,2-epoxy-3(3-(3,4-dimethoxyphenyl)-4H-1-benzopyran-4-on) propane (EPI) synthesized from clove leaves oil on HeLa cells, its combination with doxorubicin (DOX) and cisplatin (CIS), and also their influence on p53, TIMP-3, and miR-34a as therapeutic targets. Materials and Methods: This research was an experimental in vitro study on cervical cancer uteri culture. The cytotoxicity was analyzed by MTT assay. The drug combination synergisms were indicated by the combination index (CI) (using CompuSyn 1.4). HeLa cells in 32 wells were divided into eight groups as negative control, which were given EPI ½IC50, EPI IC50, EPI 2IC50, DOX IC50, combination of EPI+DOX, CIS, and the combination of EPI+CIS. The p53 and TIMP-3 concentrations were measured using ELISA, and expressions of miR-34a with qRT-PCR. One-way ANOVA and post hoc Tukey tests were performed to determine the mean difference of all variables between the study groups. Results: IC50 for EPI was 33.24 (±3.01) μg/ml, while DOX and CIS were 4.8 μg/ml (±0.1), and 23.34 μg/ml (±3.01), respectively, while CI values for EPI-DOX were <0.1 and for EPI-CIS <0.9. Expression of p53 in group 6 (1.67±0.31) μg/ml and 8 (1.18±0.18) μg/ml, TIMP-3 6 (3.81±0.49) μg/ml and 8 (2.93±0.42) μg/ml were significantly higher compared to the control group (p<0.05). All treatment groups showed significantly increased miR-34a expressions compared to the control group (p<0.05). Conclusion: The combinations showed a very strong synergism and a moderate slight synergism for EPI-DOX and EPI-CIS. Both combinations were able to increase the expressions of p53, TIMP-3 proteins, and MiR-34a in the HeLa cells.
Collapse
Affiliation(s)
- Lelly Yuniarti
- Department of Biochemistry, Faculty of Medicine Universitas Islam Bandung, Bandung, Indonesia
- Doctorate Program, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Mustofa Mustofa
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Teguh Aryandono
- Department of Surgery, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Sofia Mubarika Haryana
- Department of Histology Faculty of Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
44
|
Odewumi C, Latinwo LM, Ii RLL, Badisa VL, Ahkinyala CA, Kent-First M. Comparative whole genome transcriptome analysis and fenugreek leaf extract modulation on cadmium‑induced toxicity in liver cells. Int J Mol Med 2018; 42:735-744. [PMID: 29749534 PMCID: PMC6034912 DOI: 10.3892/ijmm.2018.3669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/23/2018] [Indexed: 01/15/2023] Open
Abstract
Cadmium (Cd), an economically valuable metal, is widely used in various industrial processes. Although it is of economic value, it is hazardous to human health. Cd accumulates in vital organs where it causes various diseases. Natural compounds with chelating or antioxidant properties have been tested to reduce the toxic effect of Cd. The anti‑oxidant, anti‑diabetic and hypocholesterolemic properties of fenugreek (Trigonella foenum-graecum) leaves make it a candidate for investigation as protective agent against Cd‑induced toxicity. In the present study, the protective effects of fenugreek leaf extract (FLE) on cell viability, morphology, and whole genomic transcription in cadmium chloride (CdCl2)‑treated rat liver cells were analyzed. The cells were treated with 25 µM CdCl2 alone, or co‑treated with 5 µg/ml FLE for 48 h. The co‑treated cells were pretreated with FLE for 2 or 4 h, followed by CdCl2 treatment. Genomic transcription analysis was performed in the CdCl2‑treated cells following treatment for 6 h. The CdCl2 caused a significant decrease in viability (35.8±4.1%) and morphological distortion of the cells, compared with the untreated control cells; whereas 4 h pretreatment with FLE (5 µg/ml) reversed the Cd‑induced morphology alteration and increased the cell viability to 102±3.8%. Genomic transcription analysis of the CdCl2 only‑treated cells showed 61 upregulated and 124 downregulated genes, compared with 180 upregulated and 162 downregulated genes in the FLE pretreated cells. Furthermore, 37 and 26% of the affected total genomic genes in the CdCl2 only‑treated cells were involved in binding and catalytic activities, respectively, whereas 50 and 20% of the genes in the FLE pretreated cells were involved in binding and catalytic activities, respectively. In conclusion, these results suggested that genome transcriptome modulation may be important in the protective effect of FLE against Cd‑induced toxicity in normal rat liver cells.
Collapse
Affiliation(s)
- Caroline Odewumi
- Department of Biological Sciences, Florida A&M University, Tallahassee, FL 32307
| | - Lekan M. Latinwo
- Department of Biological Sciences, Florida A&M University, Tallahassee, FL 32307
| | | | - Veera L.D. Badisa
- Department of Biological Sciences, Florida A&M University, Tallahassee, FL 32307
| | | | - Marijo Kent-First
- Department of Biological Sciences, Florida A&M University, Tallahassee, FL 32307
| |
Collapse
|
45
|
Wang Y, Wu S, Huang C, Li Y, Zhao H, Kasim V. Yin Yang 1 promotes the Warburg effect and tumorigenesis via glucose transporter GLUT3. Cancer Sci 2018; 109:2423-2434. [PMID: 29869834 PMCID: PMC6113438 DOI: 10.1111/cas.13662] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 05/28/2018] [Indexed: 12/21/2022] Open
Abstract
Cancer cells typically shift their metabolism to aerobic glycolysis to fulfill the demand of energy and macromolecules to support their proliferation. Glucose transporter (GLUT) family‐mediated glucose transport is the pacesetter of aerobic glycolysis and, thus, is critical for tumor cell metabolism. Yin Yang 1 (YY1) is an oncogene crucial for tumorigenesis; however, its role in tumor cell glucose metabolism remains unclear. Here, we revealed that YY1 activates GLUT3 transcription by directly binding to its promoter and, concomitantly, enhances tumor cell aerobic glycolysis. This regulatory effect of YY1 on glucose entry into the cells is critical for YY1‐induced tumor cell proliferation and tumorigenesis. Intriguingly, YY1 regulation of GLUT3 expression, and, subsequently, of tumor cell aerobic glycolysis and tumorigenesis, occurs p53‐independently. Our results also showed that clinical drug oxaliplatin suppresses colon carcinoma cell proliferation by inhibiting the YY1/GLUT3 axis. Together, these results link YY1's tumorigenic potential with the critical first step of aerobic glycolysis. Thus, our novel findings not only provide new insights into the complex role of YY1 in tumorigenesis but also indicate the potential of YY1 as a target for cancer therapy irrespective of the p53 status.
Collapse
Affiliation(s)
- Yali Wang
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China
| | - Shourong Wu
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, China
| | - Can Huang
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China
| | - Yanjun Li
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China
| | - Hezhao Zhao
- Cancer Hospital and Chongqing Cancer Institute, Chongqing University, Chongqing, China
| | - Vivi Kasim
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China.,State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, China
| |
Collapse
|
46
|
Knockdown of Yin Yang 1 enhances anticancer effects of cisplatin through protein phosphatase 2A-mediated T308 dephosphorylation of AKT. Cell Death Dis 2018; 9:747. [PMID: 29970878 PMCID: PMC6030060 DOI: 10.1038/s41419-018-0774-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/23/2018] [Accepted: 05/28/2018] [Indexed: 11/16/2022]
Abstract
Cisplatin is still one of the first-line drugs for chemotherapy of head and neck squamous cell carcinoma (HNSCC) and shows a survival advantage for HNSCC. However, a substantial proportion of HNSCC eventually becomes resistance to cisplatin and the underlying mechanisms remain to be fully understood. Yin Yang 1 (YY1) is a multifunctional protein regulating both gene transcription and protein modifications and also plays a role in chemotherapy resistance. Here, we reported that knockdown of YY1 by lentivirus-mediated short hairpin RNA or tetracycline-inducible short hairpin RNA enhanced cisplatin-induced apoptosis and inhibition of cell proliferation, migration and invasion in the HNSCC cell lines, and inhibition of the xenograft tumor growth. The underlying mechanisms were revealed that knockdown of YY1 downregulated both S473 and T308 phosphorylation of AKT (protein kinase B), which was mainly responsible for cisplatin resistance, whereas overexpression of YY1 upregulated both S473 and T308 phosphorylation. Cisplatin upregulated YY1 mRNA and protein expression and both S473 and T308 phosphorylation of AKT. In the presence of cisplatin, knockdown of YY1 not only blocked cisplatin-induced increase in S473 and T308 phosphorylation of AKT, but still downregulated T308 phosphorylation. Moreover, protein phosphatase 2A (PP2A) antagonist, okadaic acid, upregulated T308, but not S473, phosphorylation, and simultaneously abolished YY1 knockdown-mediated enhancement of cisplatin-induced inhibition of cell proliferation. In addition, knockdown of YY1 promoted PP2A activity through upregulating mRNA and protein expressions of PP2A catalytic subunit alpha (PPP2CA) through the binding of YY1 in the promoter of PPP2CA. Conversely, activating PP2A by forskolin also promoted YY1 degradation and subsequently inhibited T308 phosphorylation. These results suggested that knockdown of YY1 enhanced anticancer effects of cisplatin through PP2A mediating T308 dephosphorylation of AKT, and that targeting YY1 or PP2A would enhance the efficiency of cisplatin chemotherapy in treatment of HNSCC.
Collapse
|
47
|
Wu S, Wang H, Li Y, Xie Y, Huang C, Zhao H, Miyagishi M, Kasim V. Transcription Factor YY1 Promotes Cell Proliferation by Directly Activating the Pentose Phosphate Pathway. Cancer Res 2018; 78:4549-4562. [PMID: 29921695 DOI: 10.1158/0008-5472.can-17-4047] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 05/02/2018] [Accepted: 06/14/2018] [Indexed: 11/16/2022]
Abstract
Tumor cells alter their metabolism to meet their demand for macromolecules and support a high rate of proliferation as well as cope with oxidative stress. The transcription factor yin yang 1 (YY1) is upregulated in various types of tumors and is crucial for tumor cell proliferation and metastasis. However, its role in tumor cell metabolic reprogramming is poorly understood. Here, we show that YY1 alters tumor cell metabolism by activating glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme in the pentose phosphate pathway. By stimulating the pentose phosphate pathway, YY1 enhanced production of nucleotides and DNA synthesis, decreased intracellular reactive oxygen species levels, and promoted antioxidant defense by supplying increased reducing power in the form of NADPH. Importantly, YY1-mediated regulation of the pentose phosphate pathway in tumor cells occurred not through p53, but rather through direct activation of G6PD transcription by YY1. Regulation of pentose phosphate pathway activity through G6PD was strongly related to YY1-induced proliferation of tumor cells and tumorigenesis. Together, our results describe a novel role for YY1 in regulating G6PD in a p53-independent manner, which links its function in tumorigenesis to metabolic reprogramming in tumor cells.Significance: This study reveals a novel role for YY1 in regulating G6PD and activating the pentose phosphate pathway, linking its function in tumorigenesis to metabolic reprogramming. Cancer Res; 78(16); 4549-62. ©2018 AACR.
Collapse
Affiliation(s)
- Shourong Wu
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China. .,The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China
| | - Huimin Wang
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China
| | - Yanjun Li
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China
| | - Yudan Xie
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China
| | - Can Huang
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China
| | - Hezhao Zhao
- Chongqing University Cancer Hospital, Chongqing, China
| | - Makoto Miyagishi
- Molecular Composite Medicine Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Vivi Kasim
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China. .,The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
48
|
Daraiseh SI, Kassardjian A, Alexander KE, Rizkallah R, Hurt MM. c-Abl phosphorylation of Yin Yang 1's conserved tyrosine 254 in the spacer region modulates its transcriptional activity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1173-1186. [PMID: 29807053 DOI: 10.1016/j.bbamcr.2018.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/02/2018] [Accepted: 05/24/2018] [Indexed: 12/31/2022]
Abstract
Yin Yang 1 (YY1) is a multifunctional transcription factor that can activate or repress transcription depending on the promotor and/or the co-factors recruited. YY1 is phosphorylated in various signaling pathways and is critical for different biological functions including embryogenesis, apoptosis, proliferation, cell-cycle regulation and tumorigenesis. Here we report that YY1 is a substrate for c-Abl kinase phosphorylation at conserved residue Y254 in the spacer region. Pharmacological inhibition of c-Abl kinase by imatinib, nilotinib and GZD824, knock-down of c-Abl using siRNA, and the use of c-Abl kinase-dead drastically reduces tyrosine phosphorylation of YY1. Both radioactive and non-radioactive in vitro kinase assays, as well as co-immunoprecipitation in different cell lines, show that the target of c-Abl phosphorylation is tyrosine residue 254. c-Abl phosphorylation has little effect on YY1 DNA binding ability or cellular localization in asynchronous cells. However, functional studies reveal that c-Abl mediated phosphorylation of YY1 regulates YY1's transcriptional ability in vivo. In conclusion, we demonstrate the novel role of c-Abl kinase in regulation of YY1's transcriptional activity, linking YY1 regulation with c-Abl tyrosine kinase signaling pathways.
Collapse
Affiliation(s)
- Susan I Daraiseh
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Ari Kassardjian
- David Geffen School of Medicine, Department of Pathology and Laboratory Medicine at UCLA, Los Angeles, CA, USA
| | - Karen E Alexander
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Raed Rizkallah
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Myra M Hurt
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
49
|
Agarwal S, Milazzo G, Rajapakshe K, Bernardi R, Chen Z, Barbieri E, Koster J, Perini G, Coarfa C, Shohet JM. MYCN acts as a direct co-regulator of p53 in MYCN amplified neuroblastoma. Oncotarget 2018; 9:20323-20338. [PMID: 29755654 PMCID: PMC5945521 DOI: 10.18632/oncotarget.24859] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/06/2018] [Indexed: 12/30/2022] Open
Abstract
The MYC oncogenes and p53 have opposing yet interrelated roles in normal development and tumorigenesis. How MYCN expression alters the biology and clinical responsiveness of pediatric neuroblastoma remains poorly defined. Neuroblastoma is p53 wild type at diagnosis and repression of p53 signaling is required for tumorigenesis. Here, we tested the hypothesis that MYCN amplification alters p53 transcriptional activity in neuroblastoma. Interestingly, we found that MYCN directly binds to the tetrameric form of p53 at its C-terminal domain, and this interaction is independent of MYCN/MAX heterodimer formation. Chromatin analysis of MYCN and p53 targets reveals dramatic changes in binding, as well as co-localization of the MYCN-p53 complex at p53-REs and E-boxes of genes critical to DNA damage responses and cell cycle progression. RNA sequencing studies show that MYCN-p53 co-localization significantly modulated the expression of p53 target genes. Furthermore, MYCN-p53 interaction leads to regulation of alternative p53 targets not regulated in the presence of low MYCN levels. These novel targets include a number of genes involved in lipid metabolism, DNA repair, and apoptosis. Taken together, our findings demonstrate a novel oncogenic role of MYCN as a transcriptional co-regulator of p53 in high-risk MYCN amplified neuroblastoma. Targeting this novel oncogenic function of MYCN may enhance p53-mediated responses and sensitize MYCN amplified tumors to chemotherapy.
Collapse
Affiliation(s)
- Saurabh Agarwal
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Giorgio Milazzo
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Kimal Rajapakshe
- Dan L Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Ronald Bernardi
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Zaowen Chen
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Eveline Barbieri
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Jan Koster
- Department of Oncogenomics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Giovanni Perini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Cristian Coarfa
- Dan L Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Jason M Shohet
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
50
|
Jiang W, Zhao S, Shen J, Guo L, Sun Y, Zhu Y, Ma Z, Zhang X, Hu Y, Xiao W, Li K, Li S, Zhou L, Huang L, Lu Z, Feng Y, Xiao J, Zhang EE, Yang L, Wan R. The MiR-135b-BMAL1-YY1 loop disturbs pancreatic clockwork to promote tumourigenesis and chemoresistance. Cell Death Dis 2018; 9:149. [PMID: 29396463 PMCID: PMC5833454 DOI: 10.1038/s41419-017-0233-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/03/2017] [Accepted: 12/12/2017] [Indexed: 02/07/2023]
Abstract
Circadian disruption has been implicated in tumour development, but the underlying mechanism remains unclear. Here, we show that the molecular clockwork within malignant human pancreatic epithelium is disrupted and that this disruption is mediated by miR-135b-induced BMAL1 repression. miR-135b directly targets the BMAL1 3'-UTR and thereby disturbs the pancreatic oscillator, and the downregulation of miR-135b is essential for the realignment of the cellular clock. Asynchrony between miR-135b and BMAL1 expression impairs the local circadian gating control of tumour suppression and significantly promotes tumourigenesis and resistance to gemcitabine in pancreatic cancer (PC) cells, as demonstrated by bioinformatics analyses of public PC data sets and in vitro and in vivo functional studies. Moreover, we found that YY1 transcriptionally activated miR-135b and formed a 'miR-135b-BMAL1-YY1' loop, which holds significant predictive and prognostic value for patients with PC. Thus, our work has identified a novel signalling loop that mediates pancreatic clock disruption as an important mechanism of PC progression and chemoresistance.
Collapse
Affiliation(s)
- Weiliang Jiang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Senlin Zhao
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Shen
- Tumour Initiation and Maintenance Program, NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Lihong Guo
- Department of Gastroenterology, Central Hospital of Shengli Oil-field, Dongying, Shandong, China
| | - Yi Sun
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuntian Zhu
- Department of Anesthesiology, Zhejiang Cancer Hospital, Hangzhou, Zhejing, China
| | - Zhixiong Ma
- National Institute of Biological Sciences, Beijing, China
| | - Xin Zhang
- Department of Pathology, Zhejiang Province People's Hospital, Hangzhou, Zhejiang, China
| | - Yangyang Hu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenqin Xiao
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kai Li
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sisi Li
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Zhou
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Huang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhanjun Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Feng
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junhua Xiao
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | | | - Lijuan Yang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Rong Wan
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|