1
|
Schwabe RF, Brenner DA. Hepatic stellate cells: balancing homeostasis, hepatoprotection and fibrogenesis in health and disease. Nat Rev Gastroenterol Hepatol 2025:10.1038/s41575-025-01068-6. [PMID: 40404839 DOI: 10.1038/s41575-025-01068-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/03/2025] [Indexed: 05/24/2025]
Abstract
In the past decades, the pathogenic role of hepatic stellate cells (HSCs) in the development of liver fibrosis and its complications has been deeply characterized, rendering HSCs a primary target for antifibrotic therapies. By contrast, the beneficial roles of HSCs in liver homeostasis and liver disease are only beginning to emerge, revealing critical regulatory and fibrosis-independent functions in hepatic zonation, metabolism, injury, regeneration and non-parenchymal cell identity. Here, we review how HSC mediators, such as R-spondin 3, hepatocyte growth factor and bone morphogenetic proteins, regulate critical and homeostatic liver functions in health and disease via cognate receptors in hepatocytes, Kupffer cells and endothelial cells. We highlight how the balance shifts from protective towards fibropathogenic HSC mediators during the progression of chronic liver disease (CLD) and the impact of this shifted balance on patient outcomes. Notably, the protective roles of HSCs are not accounted for in current therapeutic concepts for CLD. We discuss the concept that reverting the HSC balance from fibrogenesis towards hepatoprotection might represent a novel holistic treatment approach to inhibit fibrogenesis and restore epithelial health in CLD simultaneously.
Collapse
Affiliation(s)
- Robert F Schwabe
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, USA.
- Columbia University Digestive and Liver Disease Research Center, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, New York, NY, USA.
- Institute of Human Nutrition, New York, NY, USA.
| | - David A Brenner
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, UC San Diego, La Jolla, CA, USA
| |
Collapse
|
2
|
Tomiyama T, Takeishi K, Itoh S, Toshida K, Iseda N, Nakayama Y, Ishikawa T, Motomura T, Kurihara T, Toshima T, Florentino RM, Soto-Gutierrez A, Yoshizumi T. Induced pluripotent stem cell-derived stellate cells promote proliferation of induced pluripotent stem cell-derived hepatocytes through the mitogen-activated protein kinase pathway via hepatocyte growth factor. Surg Today 2025:10.1007/s00595-025-03061-7. [PMID: 40380997 DOI: 10.1007/s00595-025-03061-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 04/13/2025] [Indexed: 05/19/2025]
Abstract
PURPOSE Human-induced pluripotent stem cells (iPSCs) have the potential to differentiate into cells of various organs. Hepatocytes derived from iPSCs (i-Heps) have attracted much attention as an alternative treatment for liver transplantation in patients with liver failure. However, it is challenging to create sufficient i-Heps for clinical treatment, highlighting the need to develop an easier and more efficient culture method. In this study, we examined the effect of quiescent iPSC-derived stellate cells (i-Stes) on i-Hep proliferation. METHODS i-Stes and i-Heps were differentiated from iPSCs. RESULTS i-Stes expressed higher levels of hepatocyte growth factor (HGF) than the human hepatic stellate cell line LX-2. In addition, quiescent i-Sted promoted i-Hep proliferation via activation of the mitogen-activated protein kinase (MAPK) pathway in i-Heps, which was impaired by the activation of i-Sted with transforming growth factor beta. CONCLUSION This study provides evidence that i-Sted can effectively induce i-Hep proliferation through HGF activation of the MAPK signaling pathway. Quiescent-but not activated-i-Stes may contribute to the creation of large numbers of i-Heps.
Collapse
Affiliation(s)
- Takahiro Tomiyama
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-8582, Japan
| | - Kazuki Takeishi
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-8582, Japan.
- Department of Hepatobiliary and Pancreatic Surgery, Kyushu Medical Center, Fukuoka, Japan.
| | - Shinji Itoh
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-8582, Japan
| | - Katsuya Toshida
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-8582, Japan
| | - Norifumi Iseda
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-8582, Japan
| | - Yuki Nakayama
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-8582, Japan
| | - Takuma Ishikawa
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-8582, Japan
| | - Takashi Motomura
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-8582, Japan
| | - Takeshi Kurihara
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-8582, Japan
- Department of Pathology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, 423 Biomedical Science Tower, Pittsburgh, PA, 15261, USA
| | - Takeo Toshima
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-8582, Japan
| | - Rodrigo M Florentino
- Department of Pathology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, 423 Biomedical Science Tower, Pittsburgh, PA, 15261, USA
| | - Alejandro Soto-Gutierrez
- Department of Pathology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, 423 Biomedical Science Tower, Pittsburgh, PA, 15261, USA.
| | - Tomoharu Yoshizumi
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-8582, Japan
| |
Collapse
|
3
|
Martínez García de la Torre RA, Vallverdú J, Xu Z, Ariño S, Ferrer-Lorente R, Zanatto L, Mercado-Gómez M, Aguilar-Bravo B, Ruiz-Blázquez P, Fernandez-Fernandez M, Navarro-Gascon A, Blasco-Roset A, Sànchez-Fernàndez-de-Landa P, Pera J, Romero-Moya D, Ayuso Garcia P, Martínez Sánchez C, Sererols Viñas L, Cantallops Vilà P, Cárcamo Giráldez CI, McQuillin A, Morgan MY, Moya-Rull D, Montserrat N, Eberlé D, Staels B, Antoine B, Azkargorta M, Lozano JJ, Martínez-Chantar ML, Giorgetti A, Elortza F, Planavila A, Varela-Rey M, Woodhoo A, Zorzano A, Graupera I, Moles A, Coll M, Affo S, Sancho-Bru P. Trajectory analysis of hepatic stellate cell differentiation reveals metabolic regulation of cell commitment and fibrosis. Nat Commun 2025; 16:1489. [PMID: 39929812 PMCID: PMC11811062 DOI: 10.1038/s41467-025-56024-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 01/07/2025] [Indexed: 02/13/2025] Open
Abstract
Defining the trajectory of cells during differentiation and disease is key for uncovering the mechanisms driving cell fate and identity. However, trajectories of human cells remain largely unexplored due to the challenges of studying them with human samples. In this study, we investigate the proteome trajectory of iPSCs differentiation to hepatic stellate cells (diHSCs) and identify RORA as a key transcription factor governing the metabolic reprogramming of HSCs necessary for diHSCs' commitment, identity, and activation. Using RORA deficient iPSCs and pharmacologic interventions, we show that RORA is required for early differentiation and prevents diHSCs activation by reducing the high energetic state of the cells. While RORA knockout mice have enhanced fibrosis, RORA agonists rescue multi-organ fibrosis in in vivo models. Notably, RORA expression correlates negatively with liver fibrosis and HSCs activation markers in patients with liver disease. This study reveals that RORA regulates cell metabolic plasticity, important for mesoderm differentiation, pericyte quiescence, and fibrosis, influencing cell commitment and disease.
Collapse
Affiliation(s)
| | - Julia Vallverdú
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Zhenqing Xu
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Silvia Ariño
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Raquel Ferrer-Lorente
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Laura Zanatto
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Maria Mercado-Gómez
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Beatriz Aguilar-Bravo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Paloma Ruiz-Blázquez
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Department of Experimental Pathology, Institute of Biomedical Research of Barcelona, Spanish National Research Council (IIBB-CSIC), Barcelona, Spain
| | - Maria Fernandez-Fernandez
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Department of Experimental Pathology, Institute of Biomedical Research of Barcelona, Spanish National Research Council (IIBB-CSIC), Barcelona, Spain
| | - Artur Navarro-Gascon
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Institut de Biomedicina de la Universitat de Barcelona, Universitat de Barcelona, Barcelona, Spain
- CIBER Fisitopatologia de la Obesidad y Nutrición, Instituto de Salud Carlos III, Barcelona, Spain
| | - Albert Blasco-Roset
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Institut de Biomedicina de la Universitat de Barcelona, Universitat de Barcelona, Barcelona, Spain
- CIBER Fisitopatologia de la Obesidad y Nutrición, Instituto de Salud Carlos III, Barcelona, Spain
| | - Paula Sànchez-Fernàndez-de-Landa
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Institut de Biomedicina de la Universitat de Barcelona, Universitat de Barcelona, Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Joan Pera
- Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Damia Romero-Moya
- Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Paula Ayuso Garcia
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Celia Martínez Sánchez
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Laura Sererols Viñas
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Paula Cantallops Vilà
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | | | - Andrew McQuillin
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London, WC1E 6DE, UK
| | - Marsha Y Morgan
- UCL Institute for Liver & Digestive Health, Division of Medicine, Royal Free Campus, University College London, London, NW3 2PF, UK
| | - Daniel Moya-Rull
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri i Reixac, 15-21, Barcelona, Spain
| | - Núria Montserrat
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri i Reixac, 15-21, Barcelona, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), Passeig de Lluís Companys 23, Barcelona, Spain
| | - Delphine Eberlé
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000, Lille, France
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000, Lille, France
| | - Bénédicte Antoine
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, F-75012, Paris, France
| | - Mikel Azkargorta
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Proteomics Platform, CIC BioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park, Derio, Spain
| | - Juan-José Lozano
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Maria L Martínez-Chantar
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, Derio, Spain
| | - Alessandra Giorgetti
- Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Barcelona University, Barcelona, Spain
| | - Félix Elortza
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Proteomics Platform, CIC BioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park, Derio, Spain
| | - Anna Planavila
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Institut de Biomedicina de la Universitat de Barcelona, Universitat de Barcelona, Barcelona, Spain
- CIBER Fisitopatologia de la Obesidad y Nutrición, Instituto de Salud Carlos III, Barcelona, Spain
| | - Marta Varela-Rey
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Barcelona University, Barcelona, Spain
| | - Ashwin Woodhoo
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain
- Department of Biochemistry and Molecular Biology, University of Santiago de Compostela, Plaza do Obradoiro s/n, Santiago de Compostela, Spain
- Oportunius Research Professor at CIMUS/USC, Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, A Coruña, Spain
| | - Antonio Zorzano
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Institut de Biomedicina de la Universitat de Barcelona, Universitat de Barcelona, Barcelona, Spain
- CIBER Fisitopatologia de la Obesidad y Nutrición, Instituto de Salud Carlos III, Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Isabel Graupera
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Liver Unit, Hospital Clínic, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Anna Moles
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Department of Experimental Pathology, Institute of Biomedical Research of Barcelona, Spanish National Research Council (IIBB-CSIC), Barcelona, Spain
| | - Mar Coll
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- Medicine Department, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Silvia Affo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | - Pau Sancho-Bru
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain.
- Medicine Department, Faculty of Medicine, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
4
|
Du K, Jun JH, Dutta RK, Diehl AM. Plasticity, heterogeneity, and multifunctionality of hepatic stellate cells in liver pathophysiology. Hepatol Commun 2024; 8:e0411. [PMID: 38619452 PMCID: PMC11019831 DOI: 10.1097/hc9.0000000000000411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/26/2024] [Indexed: 04/16/2024] Open
Abstract
HSCs, the resident pericytes of the liver, have consistently been at the forefront of liver research due to their crucial roles in various hepatic pathological processes. Prior literature often depicted HSCs in a binary framework, categorizing them as either quiescent or activated. However, recent advances in HSC research, particularly the advent of single-cell RNA-sequencing, have revolutionized our understanding of these cells. This sophisticated technique offers an unparalleled, high-resolution insight into HSC populations, uncovering a spectrum of diversity and functional heterogeneity across various physiological states of the liver, ranging from liver development to the liver aging process. The single-cell RNA-sequencing revelations have also highlighted the intrinsic plasticity of HSCs and underscored their complex roles in a myriad of pathophysiological processes, including liver injury, repair, and carcinogenesis. This review aims to integrate and clarify these recent discoveries, focusing on how the inherent plasticity of HSCs is central to their dynamic roles both in maintaining liver homeostasis and orchestrating responses to liver injury. Future research will clarify whether findings from rodent models can be translated to human livers and guide how these insights are harnessed to develop targeted therapeutic interventions.
Collapse
|
5
|
Bendixen SM, Jakobsgaard PR, Hansen D, Hejn KH, Terkelsen MK, Bjerre FA, Thulesen AP, Eriksen NG, Hallenborg P, Geng Y, Dam TV, Larsen FT, Wernberg CW, Vijayathurai J, Scott EAH, Marcher AB, Detlefsen S, Grøntved L, Dimke H, Berdeaux R, de Aguiar Vallim TQ, Olinga P, Lauridsen MM, Krag A, Blagoev B, Ravnskjaer K. Single cell-resolved study of advanced murine MASH reveals a homeostatic pericyte signaling module. J Hepatol 2024; 80:467-481. [PMID: 37972658 DOI: 10.1016/j.jhep.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 10/06/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND & AIMS Metabolic dysfunction-associated steatohepatitis (MASH) is linked to insulin resistance and type 2 diabetes and marked by hepatic inflammation, microvascular dysfunction, and fibrosis, impairing liver function and aggravating metabolic derangements. The liver homeostatic interactions disrupted in MASH are still poorly understood. We aimed to elucidate the plasticity and changing interactions of non-parenchymal cells associated with advanced MASH. METHODS We characterized a diet-induced mouse model of advanced MASH at single-cell resolution and validated findings by assaying chromatin accessibility, bioimaging murine and human livers, and via functional experiments in vivo and in vitro. RESULTS The fibrogenic activation of hepatic stellate cells (HSCs) led to deterioration of a signaling module consisting of the bile acid receptor NR1H4/FXR and HSC-specific GS-protein-coupled receptors (GSPCRs) capable of preserving stellate cell quiescence. Accompanying HSC activation, we further observed the attenuation of HSC Gdf2 expression, and a MASH-associated expansion of a CD207-positive macrophage population likely derived from both incoming monocytes and Kupffer cells. CONCLUSION We conclude that HSC-expressed NR1H4 and GSPCRs of the healthy liver integrate postprandial cues, which sustain HSC quiescence and, through paracrine signals, overall sinusoidal health. Hence HSC activation in MASH not only drives fibrogenesis but may desensitize the hepatic sinusoid to liver homeostatic signals. IMPACT AND IMPLICATIONS Homeostatic interactions between hepatic cell types and their deterioration in metabolic dysfunction-associated steatohepatitis are poorly characterized. In our current single cell-resolved study of advanced murine metabolic dysfunction-associated steatohepatitis, we identified a quiescence-associated hepatic stellate cell-signaling module with potential to preserve normal sinusoid function. As expression levels of its constituents are conserved in the human liver, stimulation of the identified signaling module is a promising therapeutic strategy to restore sinusoid function in chronic liver disease.
Collapse
Affiliation(s)
- Sofie M Bendixen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark; Center for Functional Genomics and Tissue Plasticity, University of Southern Denmark, Denmark
| | - Peter R Jakobsgaard
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark; Center for Functional Genomics and Tissue Plasticity, University of Southern Denmark, Denmark
| | - Daniel Hansen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark; Center for Functional Genomics and Tissue Plasticity, University of Southern Denmark, Denmark
| | - Kamilla H Hejn
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark; Center for Functional Genomics and Tissue Plasticity, University of Southern Denmark, Denmark
| | - Mike K Terkelsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark; Center for Functional Genomics and Tissue Plasticity, University of Southern Denmark, Denmark
| | - Frederik A Bjerre
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark; Center for Functional Genomics and Tissue Plasticity, University of Southern Denmark, Denmark
| | - Annemette P Thulesen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark; Center for Functional Genomics and Tissue Plasticity, University of Southern Denmark, Denmark
| | - Niels G Eriksen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark; Center for Functional Genomics and Tissue Plasticity, University of Southern Denmark, Denmark
| | - Philip Hallenborg
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark; Center for Functional Genomics and Tissue Plasticity, University of Southern Denmark, Denmark
| | - Yana Geng
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, the Netherlands
| | - Trine V Dam
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark; Center for Functional Genomics and Tissue Plasticity, University of Southern Denmark, Denmark
| | - Frederik T Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark; Center for Functional Genomics and Tissue Plasticity, University of Southern Denmark, Denmark
| | - Charlotte W Wernberg
- Department of Gastroenterology and Hepatology, Odense University Hospital, Denmark; Department of Gastroenterology and Hepatology, University Hospital of South Denmark Esbjerg, Denmark; Center for Functional Genomics and Tissue Plasticity, University of Southern Denmark, Denmark
| | - Janusa Vijayathurai
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark; Center for Functional Genomics and Tissue Plasticity, University of Southern Denmark, Denmark
| | - Emma A H Scott
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark; Center for Functional Genomics and Tissue Plasticity, University of Southern Denmark, Denmark
| | - Ann-Britt Marcher
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark; Center for Functional Genomics and Tissue Plasticity, University of Southern Denmark, Denmark
| | - Sönke Detlefsen
- Department of Pathology, Odense University Hospital, Denmark; Department of Clinical Research, University of Southern Denmark, Denmark
| | - Lars Grøntved
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark; Center for Functional Genomics and Tissue Plasticity, University of Southern Denmark, Denmark
| | - Henrik Dimke
- Department of Molecular Medicine, University of Southern Denmark, Denmark; Department of Nephrology, Odense University Hospital, Denmark
| | - Rebecca Berdeaux
- Department of Integrative Biology and Pharmacology, McGovern Medical School, UT Health Houston, USA
| | - Thomas Q de Aguiar Vallim
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, USA; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, the Netherlands
| | - Mette M Lauridsen
- Department of Gastroenterology and Hepatology, University Hospital of South Denmark Esbjerg, Denmark; Center for Functional Genomics and Tissue Plasticity, University of Southern Denmark, Denmark
| | - Aleksander Krag
- Department of Gastroenterology and Hepatology, Odense University Hospital, Denmark; Department of Clinical Research, University of Southern Denmark, Denmark; Center for Functional Genomics and Tissue Plasticity, University of Southern Denmark, Denmark
| | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark; Center for Functional Genomics and Tissue Plasticity, University of Southern Denmark, Denmark
| | - Kim Ravnskjaer
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark; Center for Functional Genomics and Tissue Plasticity, University of Southern Denmark, Denmark.
| |
Collapse
|
6
|
Wang S, Friedman SL. Found in translation-Fibrosis in metabolic dysfunction-associated steatohepatitis (MASH). Sci Transl Med 2023; 15:eadi0759. [PMID: 37792957 PMCID: PMC10671253 DOI: 10.1126/scitranslmed.adi0759] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 09/15/2023] [Indexed: 10/06/2023]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is a severe form of liver disease that poses a global health threat because of its potential to progress to advanced fibrosis, leading to cirrhosis and liver cancer. Recent advances in single-cell methodologies, refined disease models, and genetic and epigenetic insights have provided a nuanced understanding of MASH fibrogenesis, with substantial cellular heterogeneity in MASH livers providing potentially targetable cell-cell interactions and behavior. Unlike fibrogenesis, mechanisms underlying fibrosis regression in MASH are still inadequately understood, although antifibrotic targets have been recently identified. A refined antifibrotic treatment framework could lead to noninvasive assessment and targeted therapies that preserve hepatocellular function and restore the liver's architectural integrity.
Collapse
Affiliation(s)
- Shuang Wang
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Scott L. Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
7
|
Schmid CM, Gregor A, Costain G, Morel CF, Massingham L, Schwab J, Quélin C, Faoucher M, Kaplan J, Procopio R, Saunders CJ, Cohen ASA, Lemire G, Sacharow S, O'Donnell-Luria A, Segal RJ, Kianmahd Shamshoni J, Schweitzer D, Ebrahimi-Fakhari D, Monaghan K, Palculict TB, Napier MP, Tao A, Isidor B, Moradkhani K, Reis A, Sticht H, Chung WK, Zweier C. LHX2 haploinsufficiency causes a variable neurodevelopmental disorder. Genet Med 2023; 25:100839. [PMID: 37057675 DOI: 10.1016/j.gim.2023.100839] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/15/2023] Open
Abstract
PURPOSE LHX2 encodes the LIM homeobox 2 transcription factor (LHX2), which is highly expressed in brain and well conserved across species, but it has not been clearly linked to neurodevelopmental disorders (NDDs) to date. METHODS Through international collaboration, we identified 19 individuals from 18 families with variable neurodevelopmental phenotypes, carrying a small chromosomal deletion, likely gene-disrupting or missense variants in LHX2. Functional consequences of missense variants were investigated in cellular systems. RESULTS Affected individuals presented with developmental and/or behavioral abnormalities, autism spectrum disorder, variable intellectual disability, and microcephaly. We observed nucleolar accumulation for 2 missense variants located within the DNA-binding HOX domain, impaired interaction with co-factor LDB1 for another variant located in the protein-protein interaction-mediating LIM domain, and impaired transcriptional activation by luciferase assay for 4 missense variants. CONCLUSION We implicate LHX2 haploinsufficiency by deletion and likely gene-disrupting variants as causative for a variable NDD. Our findings suggest a loss-of-function mechanism also for likely pathogenic LHX2 missense variants. Together, our observations underscore the importance of LHX2 in the nervous system and for variable neurodevelopmental phenotypes.
Collapse
Affiliation(s)
- Cosima M Schmid
- Department of Human Genetics, Inselspital Bern, University of Bern, Bern, Switzerland; Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Anne Gregor
- Department of Human Genetics, Inselspital Bern, University of Bern, Bern, Switzerland; Department for Biomedical Research, University of Bern, Bern, Switzerland; Bern Center for Precision Medicine (BCPM), University of Bern, Bern, Switzerland
| | - Gregory Costain
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Chantal F Morel
- The Fred A. Litwin Family Centre in Genetic Medicine, University Health Network and Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Lauren Massingham
- Division of Human Genetics, Department of Pediatrics, Warren Alpert Medical School of Brown University, Hasbro Children's Hospital/Rhode Island Hospital, Providence, RI
| | - Jennifer Schwab
- Division of Human Genetics, Department of Pediatrics, Warren Alpert Medical School of Brown University, Hasbro Children's Hospital/Rhode Island Hospital, Providence, RI
| | - Chloé Quélin
- Clinical Genetics Department, CHU Hôspital Sud, Rennes, France
| | - Marie Faoucher
- Service de Génétique Moléculaire et Génomique, CHU, Rennes, France; Univ Rennes, CNRS, IGDR, UMR 6290, Rennes, France
| | - Julie Kaplan
- Division of Genetics, Department of Pediatrics, Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE
| | - Rebecca Procopio
- Division of Genetics, Department of Pediatrics, Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE
| | - Carol J Saunders
- Genomic Medicine Center, Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO; University of Missouri-Kansas City School of Medicine, Kansas City, MO
| | - Ana S A Cohen
- Genomic Medicine Center, Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO; University of Missouri-Kansas City School of Medicine, Kansas City, MO
| | - Gabrielle Lemire
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Stephanie Sacharow
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Anne O'Donnell-Luria
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Ranit Jaron Segal
- Schneider Children's Medical Center of Israel, Petach Tikvah, Israel
| | - Jessica Kianmahd Shamshoni
- Division of Medical Genetics, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA
| | - Daniela Schweitzer
- Division of Medical Genetics, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA
| | - Darius Ebrahimi-Fakhari
- Movement Disorders Program, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | | | | | | | - Alice Tao
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | | | | | - André Reis
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Centre for Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Heinrich Sticht
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University, New York, NY
| | - Christiane Zweier
- Department of Human Genetics, Inselspital Bern, University of Bern, Bern, Switzerland; Department for Biomedical Research, University of Bern, Bern, Switzerland; Bern Center for Precision Medicine (BCPM), University of Bern, Bern, Switzerland.
| |
Collapse
|
8
|
Niture S, Gadi S, Qi Q, Rios-Colon L, Khatiwada S, Vandana, Fernando RA, Levine KE, Kumar D. Cyanotoxins Increase Cytotoxicity and Promote Nonalcoholic Fatty Liver Disease Progression by Enhancing Cell Steatosis. Toxins (Basel) 2023; 15:411. [PMID: 37505679 PMCID: PMC10467139 DOI: 10.3390/toxins15070411] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 07/29/2023] Open
Abstract
Freshwater prokaryotic cyanobacteria within harmful algal blooms produce cyanotoxins which are considered major pollutants in the aquatic system. Direct exposure to cyanotoxins through inhalation, skin contact, or ingestion of contaminated drinking water can target the liver and may cause hepatotoxicity. In the current study, we investigated the effect of low concentrations of cyanotoxins on cytotoxicity, inflammation, modulation of unfolded protein response (UPR), steatosis, and fibrosis signaling in human hepatocytes and liver cell models. Exposure to low concentrations of microcystin-LR (MC-LR), microcystin-RR (MC-RR), nodularin (NOD), and cylindrospermopsin (CYN) in human bipotent progenitor cell line HepaRG and hepatocellular carcinoma (HCC) cell lines HepG2 and SK-Hep1 resulted in increased cell toxicity. MC-LR, NOD, and CYN differentially regulated inflammatory signaling, activated UPR signaling and lipogenic gene expression, and induced cellular steatosis and fibrotic signaling in HCC cells. MC-LR, NOD, and CYN also regulated AKT/mTOR signaling and inhibited autophagy. Chronic exposure to MC-LR, NOD, and CYN upregulated the expression of lipogenic and fibrosis biomarkers. Moreover, RNA sequencing (RNA seq) data suggested that exposure of human hepatocytes, HepaRG, and HCC HepG2 cells to MC-LR and CYN modulated expression levels of several genes that regulate non-alcoholic fatty liver disease (NAFLD). Our data suggest that low concentrations of cyanotoxins can cause hepatotoxicity and cell steatosis and promote NAFLD progression.
Collapse
Affiliation(s)
- Suryakant Niture
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - Sashi Gadi
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - Qi Qi
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - Leslimar Rios-Colon
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - Sabin Khatiwada
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - Vandana
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - Reshan A. Fernando
- NCCU-RTI Center for Applied Research in Environmental Sciences (CARES), RTI International, Durham, NC 27707, USA
| | - Keith E. Levine
- NCCU-RTI Center for Applied Research in Environmental Sciences (CARES), RTI International, Durham, NC 27707, USA
| | - Deepak Kumar
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| |
Collapse
|
9
|
Filliol A, Saito Y, Nair A, Dapito DH, Yu LX, Ravichandra A, Bhattacharjee S, Affo S, Fujiwara N, Su H, Sun Q, Savage TM, Wilson-Kanamori JR, Caviglia JM, Chin L, Chen D, Wang X, Caruso S, Kang JK, Amin AD, Wallace S, Dobie R, Yin D, Rodriguez-Fiallos OM, Yin C, Mehal A, Izar B, Friedman RA, Wells RG, Pajvani UB, Hoshida Y, Remotti HE, Arpaia N, Zucman-Rossi J, Karin M, Henderson NC, Tabas I, Schwabe RF. Opposing roles of hepatic stellate cell subpopulations in hepatocarcinogenesis. Nature 2022; 610:356-365. [PMID: 36198802 PMCID: PMC9949942 DOI: 10.1038/s41586-022-05289-6] [Citation(s) in RCA: 184] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/30/2022] [Indexed: 01/21/2023]
Abstract
Hepatocellular carcinoma (HCC), the fourth leading cause of cancer mortality worldwide, develops almost exclusively in patients with chronic liver disease and advanced fibrosis1,2. Here we interrogated functions of hepatic stellate cells (HSCs), the main source of liver fibroblasts3, during hepatocarcinogenesis. Genetic depletion, activation or inhibition of HSCs in mouse models of HCC revealed their overall tumour-promoting role. HSCs were enriched in the preneoplastic environment, where they closely interacted with hepatocytes and modulated hepatocarcinogenesis by regulating hepatocyte proliferation and death. Analyses of mouse and human HSC subpopulations by single-cell RNA sequencing together with genetic ablation of subpopulation-enriched mediators revealed dual functions of HSCs in hepatocarcinogenesis. Hepatocyte growth factor, enriched in quiescent and cytokine-producing HSCs, protected against hepatocyte death and HCC development. By contrast, type I collagen, enriched in activated myofibroblastic HSCs, promoted proliferation and tumour development through increased stiffness and TAZ activation in pretumoural hepatocytes and through activation of discoidin domain receptor 1 in established tumours. An increased HSC imbalance between cytokine-producing HSCs and myofibroblastic HSCs during liver disease progression was associated with increased HCC risk in patients. In summary, the dynamic shift in HSC subpopulations and their mediators during chronic liver disease is associated with a switch from HCC protection to HCC promotion.
Collapse
Affiliation(s)
- Aveline Filliol
- Department of Medicine, Columbia University, New York, NY, USA
| | - Yoshinobu Saito
- Department of Medicine, Columbia University, New York, NY, USA
| | - Ajay Nair
- Department of Medicine, Columbia University, New York, NY, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Dianne H Dapito
- Department of Medicine, Columbia University, New York, NY, USA
| | - Le-Xing Yu
- Department of Medicine, Columbia University, New York, NY, USA
| | - Aashreya Ravichandra
- Department of Medicine, Columbia University, New York, NY, USA
- Klinikum Rechts der Isar, Technical University of Munich (TUM), Munich, Germany
| | | | - Silvia Affo
- Department of Medicine, Columbia University, New York, NY, USA
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Naoto Fujiwara
- Liver Tumor Translational Research Program, Harold C. Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hua Su
- Department of Pharmacology, School of Medicine, University of California, San Diego, San Diego, CA, USA
| | - Qiuyan Sun
- Department of Medicine, Columbia University, New York, NY, USA
| | - Thomas M Savage
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - John R Wilson-Kanamori
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Jorge M Caviglia
- Department of Medicine, Columbia University, New York, NY, USA
- Department of Health and Nutrition Sciences, Brooklyn College, City University of New York, New York, NY, USA
| | - LiKang Chin
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biomedical Engineering, Widener University, Chester, PA, USA
| | - Dongning Chen
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaobo Wang
- Department of Medicine, Columbia University, New York, NY, USA
| | - Stefano Caruso
- Functional Genomics of Solid Tumors Laboratory, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Jin Ku Kang
- Department of Medicine, Columbia University, New York, NY, USA
- Institute of Human Nutrition, Columbia University, New York, NY, USA
| | - Amit Dipak Amin
- Department of Medicine, Columbia University, New York, NY, USA
| | - Sebastian Wallace
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Ross Dobie
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Deqi Yin
- Department of Medicine, Columbia University, New York, NY, USA
| | | | - Chuan Yin
- Department of Medicine, Columbia University, New York, NY, USA
- Department of Gastroenterology, Changzheng Hospital, Shanghai, China
| | - Adam Mehal
- Department of Medicine, Columbia University, New York, NY, USA
| | - Benjamin Izar
- Department of Medicine, Columbia University, New York, NY, USA
| | - Richard A Friedman
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center, and Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA
| | - Rebecca G Wells
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Utpal B Pajvani
- Department of Medicine, Columbia University, New York, NY, USA
- Institute of Human Nutrition, Columbia University, New York, NY, USA
| | - Yujin Hoshida
- Liver Tumor Translational Research Program, Harold C. Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Helen E Remotti
- Department of Pathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Nicholas Arpaia
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jessica Zucman-Rossi
- Functional Genomics of Solid Tumors Laboratory, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Michael Karin
- Department of Pharmacology, School of Medicine, University of California, San Diego, San Diego, CA, USA
| | - Neil C Henderson
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Ira Tabas
- Department of Medicine, Columbia University, New York, NY, USA
- Institute of Human Nutrition, Columbia University, New York, NY, USA
- Department of Pathology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Physiology, Columbia University, New York, NY, USA
| | - Robert F Schwabe
- Department of Medicine, Columbia University, New York, NY, USA.
- Institute of Human Nutrition, Columbia University, New York, NY, USA.
| |
Collapse
|
10
|
Garbuzenko DV. Pathophysiological mechanisms of hepatic stellate cells activation in liver fibrosis. World J Clin Cases 2022; 10:3662-3676. [PMID: 35647163 PMCID: PMC9100727 DOI: 10.12998/wjcc.v10.i12.3662] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/17/2021] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is a complex pathological process controlled by a variety of cells, mediators and signaling pathways. Hepatic stellate cells play a central role in the development of liver fibrosis. In chronic liver disease, hepatic stellate cells undergo dramatic phenotypic activation and acquire fibrogenic properties. This review focuses on the pathophysiological mechanisms of hepatic stellate cells activation in liver fibrosis. They enter the cell cycle under the influence of various triggers. The "Initiation" phase of hepatic stellate cells activation overlaps and continues with the "Perpetuation" phase, which is characterized by a pronounced inflammatory and fibrogenic reaction. This is followed by a resolution phase if the injury subsides. Knowledge of these pathophysiological mechanisms paved the way for drugs aimed at preventing the development and progression of liver fibrosis. In this respect, impairments in intracellular signaling, epigenetic changes and cellular stress response can be the targets of therapy where the goal is to deactivate hepatic stellate cells. Potential antifibrotic therapy may focus on inducing hepatic stellate cells to return to an inactive state through cellular aging, apoptosis, and/or clearance by immune cells, and serve as potential antifibrotic therapy. It is especially important to prevent the formation of liver cirrhosis since the only radical approach to its treatment is liver transplantation which can be performed in only a limited number of countries.
Collapse
|
11
|
Singh N, Singh D, Bhide A, Sharma R, Sahoo S, Jolly MK, Modi D. Lhx2 in germ cells suppresses endothelial cell migration in the developing ovary. Exp Cell Res 2022; 415:113108. [PMID: 35337816 DOI: 10.1016/j.yexcr.2022.113108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/03/2022] [Accepted: 03/13/2022] [Indexed: 12/11/2022]
Abstract
LIM-homeobox genes play multiple roles in developmental processes, but their roles in gonad development are not completely understood. Herein, we report that Lhx2, Ils2, Lmx1a, and Lmx1b are expressed in a sexually dimorphic manner in mouse, rat, and human gonads during sex determination. Amongst these, Lhx2 has female biased expression in the developing gonads of species with environmental and genetic modes of sex determination. Single-cell RNAseq analysis revealed that Lhx2 is exclusively expressed in the germ cells of the developing mouse ovaries. To elucidate the roles of Lhx2 in the germ cells, we analyzed the phenotypes of Lhx2 knockout XX gonads. While the gonads developed appropriately in Lhx2 knockout mice and the somatic cells were correctly specified in the developing ovaries, transcriptome analysis revealed enrichment of genes in the angiogenesis pathway. There was an elevated expression of several pro-angiogenic factors in the Lhx2 knockout ovaries. The elevated expression of pro-angiogenic factors was associated with an increase in numbers of endothelial cells in the Lhx2-/- ovaries at E13.5. Gonad recombination assays revealed that the increased numbers of endothelial cells in the XX gonads in absence of Lhx2 was due to ectopic migration of endothelial cells in a cell non-autonomous manner. We also found that, there was increased expression of several endothelial cell-enriched male-biased genes in Lhx2 knockout ovaries. Also, in absence of Lhx2, the migrated endothelial cells formed an angiogenic network similar to that of the wild type testis, although the coelomic blood vessel did not form. Together, our results suggest that Lhx2 in the germ cells is required to suppress vascularization in the developing ovary. These results suggest a need to explore the roles of germ cells in the control of vascularization in developing gonads. Preprint version of the article is available on BioRxiv at https://doi.org/10.1101/2022.03.07.483280.
Collapse
Affiliation(s)
- Neha Singh
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research (ICMR), JM Street, Parel, Mumbai, 400012, India
| | - Domdatt Singh
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research (ICMR), JM Street, Parel, Mumbai, 400012, India
| | - Anshul Bhide
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research (ICMR), JM Street, Parel, Mumbai, 400012, India
| | - Richa Sharma
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research (ICMR), JM Street, Parel, Mumbai, 400012, India
| | - Sarthak Sahoo
- Center for BioSystems Science and Engineering, Indian Institute of Science, CV Raman Rd, Bangalore, 560012, India
| | - Mohit Kumar Jolly
- Center for BioSystems Science and Engineering, Indian Institute of Science, CV Raman Rd, Bangalore, 560012, India
| | - Deepak Modi
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research (ICMR), JM Street, Parel, Mumbai, 400012, India.
| |
Collapse
|
12
|
Physical Interaction between Embryonic Stem Cell-Expressed Ras (ERas) and Arginase-1 in Quiescent Hepatic Stellate Cells. Cells 2022; 11:cells11030508. [PMID: 35159317 PMCID: PMC8834437 DOI: 10.3390/cells11030508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/18/2022] [Accepted: 01/27/2022] [Indexed: 12/20/2022] Open
Abstract
Embryonic stem cell-expressed Ras (ERas) is an atypical constitutively active member of the Ras family and controls distinct signaling pathways, which are critical, for instance, for the maintenance of quiescent hepatic stellate cells (HSCs). Unlike classical Ras paralogs, ERas has a unique N-terminal extension (Nex) with as yet unknown function. In this study, we employed affinity pull-down and quantitative liquid chromatography-tandem mass spectrometry (LC–MS/MS) analyses and identified 76 novel binding proteins for human and rat ERas Nex peptides, localized in different subcellular compartments and involved in various cellular processes. One of the identified Nex-binding proteins is the nonmitochondrial, cytosolic arginase 1 (ARG1), a key enzyme of the urea cycle and involved in the de novo synthesis of polyamines, such as spermidine and spermine. Here, we show, for the first time, a high-affinity interaction between ERas Nex and purified ARG1 as well as their subcellular colocalization. The inhibition of ARG1 activity strikingly accelerates the activation of HSCs ex vivo, suggesting a central role of ARG1 activity in the maintenance of HSC quiescence.
Collapse
|
13
|
Mosca N, Khoubai FZ, Fedou S, Carrillo-Reixach J, Caruso S, Del Rio-Alvarez A, Dubois E, Avignon C, Dugot-Senant N, Guettier C, Mussini C, Zucman-Rossi J, Armengol C, Thiébaud P, Veschambre P, Grosset CF. LIM Homeobox-2 Suppresses Hallmarks of Adult and Pediatric Liver Cancers by Inactivating MAPK/ERK and Wnt/Beta-Catenin Pathways. Liver Cancer 2021; 11:126-140. [PMID: 35634422 PMCID: PMC9109075 DOI: 10.1159/000521595] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 12/18/2021] [Indexed: 02/04/2023] Open
Abstract
INTRODUCTION Hepatocellular carcinoma and hepatoblastoma are two liver cancers characterized by gene deregulations, chromosomal rearrangements, and mutations in Wnt/beta-catenin (Wnt) pathway-related genes. LHX2, a transcriptional factor member of the LIM homeobox gene family, has important functions in embryogenesis and liver development. LHX2 is oncogenic in many solid tumors and leukemia, but its role in liver cancer is unknown. METHODS We analyzed the expression of LHX2 in hepatocellular carcinoma and hepatoblastoma samples using various transcriptomic datasets and biological samples. The role of LHX2 was studied using lentiviral transduction, in vitro cell-based assays (growth, migration, senescence, and apoptosis), molecular approaches (phosphokinase arrays and RNA-seq), bioinformatics, and two in vivo models in chicken and Xenopus embryos. RESULTS We found a strong connection between LHX2 downregulation and Wnt activation in these two liver cancers. In hepatoblastoma, LHX2 downregulation correlated with multiple poor outcome parameters including higher patient age, intermediate- and high-risk tumors, and low patient survival. Forced expression of LHX2 reduced the proliferation, migration, and survival of liver cancer cells in vitro through the inactivation of MAPK/ERK and Wnt signals. In vivo, LHX2 impeded the development of tumors in chick embryos and repressed the Wnt pathway in Xenopus embryos. RNA-sequencing data and bioinformatic analyses confirmed the deregulation of many biological functions and molecular processes associated with cell migration, cell survival, and liver carcinogenesis in LHX2-expressing hepatoma cells. At a mechanistic level, LHX2 mediated the disassembling of beta-catenin/T-cell factor 4 complex and induced expression of multiple inhibitors of Wnt (e.g., TLE/Groucho) and MAPK/ERK (e.g., DUSPs) pathways. CONCLUSION Collectively, our findings demonstrate a tumor suppressive function of LHX2 in adult and pediatric liver cancers.
Collapse
Affiliation(s)
- Nicola Mosca
- MIRCADE Team, Univ. Bordeaux, Inserm, BMGIC, Biotherapy of Genetic Diseases, Inflammatory Disorders and Cancers, U1035, Bordeaux, France
| | - Fatma Zohra Khoubai
- MIRCADE Team, Univ. Bordeaux, Inserm, BMGIC, Biotherapy of Genetic Diseases, Inflammatory Disorders and Cancers, U1035, Bordeaux, France
| | - Sandrine Fedou
- MIRCADE Team, Univ. Bordeaux, Inserm, BMGIC, Biotherapy of Genetic Diseases, Inflammatory Disorders and Cancers, U1035, Bordeaux, France,XenoFish, Univ. Bordeaux, Inserm, BMGIC, Biotherapy of Genetic Diseases, Inflammatory Disorders and Cancers, U1035, Bordeaux, France
| | - Juan Carrillo-Reixach
- Childhood Liver Oncology Group, Germans Trias i Pujol Research Institute (IGTP), Program for Predictive and Personalized Medicine of Cancer (PMPPC), Badalona, Spain,CIBER, Hepatic and Digestive Diseases, Barcelona, Spain
| | - Stefano Caruso
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Functional Genomics of Solid Tumors Laboratory, Paris, France
| | - Alvaro Del Rio-Alvarez
- Childhood Liver Oncology Group, Germans Trias i Pujol Research Institute (IGTP), Program for Predictive and Personalized Medicine of Cancer (PMPPC), Badalona, Spain
| | - Emeric Dubois
- Montpellier GenomiX, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Christophe Avignon
- Department of Pathology, Bicêtre University Hospital, University of Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | | | - Catherine Guettier
- Department of Pathology, Bicêtre University Hospital, University of Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Charlotte Mussini
- Department of Pathology, Bicêtre University Hospital, University of Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Functional Genomics of Solid Tumors Laboratory, Paris, France,Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Carolina Armengol
- Childhood Liver Oncology Group, Germans Trias i Pujol Research Institute (IGTP), Program for Predictive and Personalized Medicine of Cancer (PMPPC), Badalona, Spain,CIBER, Hepatic and Digestive Diseases, Barcelona, Spain
| | - Pierre Thiébaud
- MIRCADE Team, Univ. Bordeaux, Inserm, BMGIC, Biotherapy of Genetic Diseases, Inflammatory Disorders and Cancers, U1035, Bordeaux, France,XenoFish, Univ. Bordeaux, Inserm, BMGIC, Biotherapy of Genetic Diseases, Inflammatory Disorders and Cancers, U1035, Bordeaux, France
| | - Philippe Veschambre
- MIRCADE Team, Univ. Bordeaux, Inserm, BMGIC, Biotherapy of Genetic Diseases, Inflammatory Disorders and Cancers, U1035, Bordeaux, France
| | - Christophe François Grosset
- MIRCADE Team, Univ. Bordeaux, Inserm, BMGIC, Biotherapy of Genetic Diseases, Inflammatory Disorders and Cancers, U1035, Bordeaux, France,*Christophe François Grosset,
| |
Collapse
|
14
|
Ma Y, Nenkov M, Chen Y, Press AT, Kaemmerer E, Gassler N. Fatty acid metabolism and acyl-CoA synthetases in the liver-gut axis. World J Hepatol 2021; 13:1512-1533. [PMID: 34904027 PMCID: PMC8637682 DOI: 10.4254/wjh.v13.i11.1512] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/28/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023] Open
Abstract
Fatty acids are energy substrates and cell components which participate in regulating signal transduction, transcription factor activity and secretion of bioactive lipid mediators. The acyl-CoA synthetases (ACSs) family containing 26 family members exhibits tissue-specific distribution, distinct fatty acid substrate preferences and diverse biological functions. Increasing evidence indicates that dysregulation of fatty acid metabolism in the liver-gut axis, designated as the bidirectional relationship between the gut, microbiome and liver, is closely associated with a range of human diseases including metabolic disorders, inflammatory disease and carcinoma in the gastrointestinal tract and liver. In this review, we depict the role of ACSs in fatty acid metabolism, possible molecular mechanisms through which they exert functions, and their involvement in hepatocellular and colorectal carcinoma, with particular attention paid to long-chain fatty acids and small-chain fatty acids. Additionally, the liver-gut communication and the liver and gut intersection with the microbiome as well as diseases related to microbiota imbalance in the liver-gut axis are addressed. Moreover, the development of potentially therapeutic small molecules, proteins and compounds targeting ACSs in cancer treatment is summarized.
Collapse
Affiliation(s)
- Yunxia Ma
- Section Pathology, Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Jena 07747, Germany
| | - Miljana Nenkov
- Section Pathology, Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Jena 07747, Germany
| | - Yuan Chen
- Section Pathology, Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Jena 07747, Germany
| | - Adrian T Press
- Department of Anesthesiology and Intensive Care Medicine and Center for Sepsis Control and Care, Jena University Hospital, Friedrich Schiller University Jena, Jena 07747, Germany
| | - Elke Kaemmerer
- Department of Pediatrics, Jena University Hospital, Friedrich Schiller University Jena, Jena 07747, Germany
| | - Nikolaus Gassler
- Section Pathology, Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Jena 07747, Germany.
| |
Collapse
|
15
|
Peng Y, Li Z, Chen S, Zhou J. DHFR silence alleviated the development of liver fibrosis by affecting the crosstalk between hepatic stellate cells and macrophages. J Cell Mol Med 2021; 25:10049-10060. [PMID: 34626074 PMCID: PMC8572769 DOI: 10.1111/jcmm.16935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 01/20/2023] Open
Abstract
Liver fibrogenesis is a dynamic cellular and tissue process which has the potential to progress into cirrhosis of even liver cancer and liver failure. The activation of hepatic stellate cells (HSCs) is the central event underlying liver fibrosis. Besides, hepatic macrophages have been proposed as potential targets in combatting fibrosis. As for the relationship between HSCs and hepatic macrophages in liver fibrosis, it is generally considered that macrophages promoted liver fibrosis via activating HSCs. However, whether activated HSCs could in turn affect macrophage polarization has rarely been studied. In this study, mRNAs with significant differences were explored using exosomal RNA‐sequencing of activated Lx‐2 cells and normal RNA‐sequencing of DHFR loss‐of‐function Lx‐2 cell models. Cell functional experiments in both Lx‐2 cells and macrophages animal model experiments were performed. The results basically confirmed exosomes secreted from activated HSCs could promote M1 polarization of macrophages further. Exosome harbouring DHFR played an important role in this process. DHFR silence in HSCs could decrease Lx‐2 activation and M1 polarization of M0 macrophages and then alleviate the development of liver fibrosis both in vitro and vivo. Our work brought a new insight that exosomal DHFR derived from HSCs had a crucial role in crosstalk between HSCs activation and macrophage polarization, which may be a potential therapeutic target in liver fibrosis.
Collapse
Affiliation(s)
- Yu Peng
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zedong Li
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Sheng Chen
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jun Zhou
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
16
|
Lee Y, Leslie J, Yang Y, Ding L. Hepatic stellate and endothelial cells maintain hematopoietic stem cells in the developing liver. J Exp Med 2021; 218:211519. [PMID: 33151261 PMCID: PMC7649724 DOI: 10.1084/jem.20200882] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/21/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022] Open
Abstract
The liver maintains hematopoietic stem cells (HSCs) during development. However, it is not clear what cells are the components of the developing liver niche in vivo. Here, we genetically dissected the developing liver niche by systematically determining the cellular source of a key HSC niche factor, stem cell factor (SCF). Most HSCs were closely associated with sinusoidal vasculature. Using Scfgfp knockin mice, we found that Scf was primarily expressed by endothelial and perisinusoidal hepatic stellate cells. Conditional deletion of Scf from hepatocytes, hematopoietic cells, Ng2+ cells, or endothelial cells did not affect HSC number or function. Deletion of Scf from hepatic stellate cells depleted HSCs. Nearly all HSCs were lost when Scf was deleted from both endothelial and hepatic stellate cells. The expression of several niche factors was down-regulated in stellate cells around birth, when HSCs egress the developing liver. Thus, hepatic stellate and endothelial cells create perisinusoidal vascular HSC niche in the developing liver by producing SCF.
Collapse
Affiliation(s)
- Yeojin Lee
- Columbia Stem Cell Initiative, Department of Rehabilitation and Regenerative Medicine, Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY
| | - Juliana Leslie
- Columbia Stem Cell Initiative, Department of Rehabilitation and Regenerative Medicine, Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY
| | - Ying Yang
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY
| | - Lei Ding
- Columbia Stem Cell Initiative, Department of Rehabilitation and Regenerative Medicine, Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
17
|
Payen VL, Lavergne A, Alevra Sarika N, Colonval M, Karim L, Deckers M, Najimi M, Coppieters W, Charloteaux B, Sokal EM, El Taghdouini A. Single-cell RNA sequencing of human liver reveals hepatic stellate cell heterogeneity. JHEP Rep 2021; 3:100278. [PMID: 34027339 PMCID: PMC8121977 DOI: 10.1016/j.jhepr.2021.100278] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 02/11/2021] [Accepted: 02/28/2021] [Indexed: 02/07/2023] Open
Abstract
Background & Aims The multiple vital functions of the human liver are performed by highly specialised parenchymal and non-parenchymal cells organised in complex collaborative sinusoidal units. Although crucial for homeostasis, the cellular make-up of the human liver remains to be fully elucidated. Here, single-cell RNA-sequencing was used to unravel the heterogeneity of human liver cells, in particular of hepatocytes (HEPs) and hepatic stellate cells (HSCs). Method The transcriptome of ~25,000 freshly isolated human liver cells was profiled using droplet-based RNA-sequencing. Recently published data sets and RNA in situ hybridisation were integrated to validate and locate newly identified cell populations. Results In total, 22 cell populations were annotated that reflected the heterogeneity of human parenchymal and non-parenchymal liver cells. More than 20,000 HEPs were ordered along the portocentral axis to confirm known, and reveal previously undescribed, zonated liver functions. The existence of 2 subpopulations of human HSCs with unique gene expression signatures and distinct intralobular localisation was revealed (i.e. portal and central vein-concentrated GPC3+ HSCs and perisinusoidally located DBH+ HSCs). In particular, these data suggest that, although both subpopulations collaborate in the production and organisation of extracellular matrix, GPC3+ HSCs specifically express genes involved in the metabolism of glycosaminoglycans, whereas DBH+ HSCs display a gene signature that is reminiscent of antigen-presenting cells. Conclusions This study highlights metabolic zonation as a key determinant of HEP transcriptomic heterogeneity and, for the first time, outlines the existence of heterogeneous HSC subpopulations in the human liver. These findings call for further research on the functional implications of liver cell heterogeneity in health and disease. Lay summary This study resolves the cellular landscape of the human liver in an unbiased manner and at high resolution to provide new insights into human liver cell biology. The results highlight the physiological heterogeneity of human hepatic stellate cells. A cell atlas from the near-native transcriptome of >25,000 human liver cells is presented. Hepatocytes were ordered along the portocentral axis to reveal previously undescribed gene expression patterns and zonated liver functions. Two subpopulations of human hepatic stellate cells (HSCs) are reported, characterised by different spatial distribution in the native tissue. Characteristic gene signatures of HSC subpopulations are suggestive of far-reaching functional differences.
Collapse
Key Words
- BSA, bovine serum albumin
- CC, cholangiocyte
- CV, central vein
- DEG, differentially expressed gene
- EC, endothelial cell
- ECM, extracellular matrix
- Extracellular matrix
- FFPE, formaldehyde-fixed paraffin embedded
- GAG, glycosaminoglycan
- GEO, Gene Expression Omnibus
- GO, gene ontology
- HEP, hepatocyte
- HLA, human leukocyte antigen
- HRP, horseradish peroxidase
- HSC, hepatic stellate cell
- Hepatocyte
- ISH, in situ hybridisation
- KLR, killer lectin-like receptor
- LP, lymphoid cell
- Liver cell atlas
- MP, macrophage
- MZ, midzonal
- PC, pericentral
- PP, periportal
- PV, portal vein
- TBS, Tris buffered saline
- TSA, tyramide signal amplification
- UMAP, uniform manifold approximation and projection
- UMI, unique molecular identifier
- VIM, vimentin
- Zonation
- scRNA-seq, single-cell RNA-sequencing
Collapse
Affiliation(s)
- Valéry L. Payen
- Laboratory of Pediatric Hepatology and Cell Therapy (PEDI), IREC Institute, Université catholique de Louvain, Brussels, Belgium
- Laboratory of Advanced Drug Delivery and Biomaterials (ADDB), LDRI Institute, Université catholique de Louvain, Brussels, Belgium
| | - Arnaud Lavergne
- Genomics Platform, GIGA Institute, Université de Liège, Liège, Belgium
| | - Niki Alevra Sarika
- Laboratory of Pediatric Hepatology and Cell Therapy (PEDI), IREC Institute, Université catholique de Louvain, Brussels, Belgium
- Laboratory of Advanced Drug Delivery and Biomaterials (ADDB), LDRI Institute, Université catholique de Louvain, Brussels, Belgium
| | - Megan Colonval
- Genomics Platform, GIGA Institute, Université de Liège, Liège, Belgium
| | - Latifa Karim
- Genomics Platform, GIGA Institute, Université de Liège, Liège, Belgium
| | - Manon Deckers
- Genomics Platform, GIGA Institute, Université de Liège, Liège, Belgium
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy (PEDI), IREC Institute, Université catholique de Louvain, Brussels, Belgium
| | - Wouter Coppieters
- Genomics Platform, GIGA Institute, Université de Liège, Liège, Belgium
| | | | - Etienne M. Sokal
- Laboratory of Pediatric Hepatology and Cell Therapy (PEDI), IREC Institute, Université catholique de Louvain, Brussels, Belgium
- Corresponding authors. Address: Laboratory of Pediatric Hepatology and Cell Therapy (PEDI), IREC Institute, Université catholique de Louvain, Avenue Mounier 52 Box B1.52.03, 1200 Brussels, Belgium.
| | - Adil El Taghdouini
- Laboratory of Pediatric Hepatology and Cell Therapy (PEDI), IREC Institute, Université catholique de Louvain, Brussels, Belgium
- Corresponding authors. Address: Laboratory of Pediatric Hepatology and Cell Therapy (PEDI), IREC Institute, Université catholique de Louvain, Avenue Mounier 52 Box B1.52.03, 1200 Brussels, Belgium.
| |
Collapse
|
18
|
Nakano Y, Kamiya A, Sumiyoshi H, Tsuruya K, Kagawa T, Inagaki Y. A Deactivation Factor of Fibrogenic Hepatic Stellate Cells Induces Regression of Liver Fibrosis in Mice. Hepatology 2020; 71:1437-1452. [PMID: 31549421 DOI: 10.1002/hep.30965] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/17/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND AND AIMS Hepatic stellate cells (HSCs), a key player in the progression of liver fibrosis, are activated by various inflammatory stimuli and converted to myofibroblast-like cells with excessive collagen production. Despite many attempts to suppress activation of HSCs or inhibit collagen production in activated HSCs, their clinical applications have not been established yet. Recently, the deactivation of HSCs has been reported as a mechanism underlying the reversibility of experimental liver fibrosis. In the present study, we sought for deactivation factors of HSCs that induce regression of established liver fibrosis. APPROACH AND RESULTS We identified transcription factor 21 (Tcf21) as one of the transcription factors whose expression was up-regulated in parallel to the differentiation of fetal HSCs. Expression of Tcf21 in HSCs remarkably decreased during culture-induced activation in vitro and in murine and human fibrotic liver tissue in vivo. This reduced Tcf21 expression was recovered during the spontaneous regression of murine liver fibrosis. Tcf21 was also examined for its effects by adeno-associated virus serotype 6-mediated Tcf21 gene transfer into cultured activated HSCs and mice with carbon tetrachloride- or methionine-choline deficient diet-induced liver fibrosis. Overexpression of Tcf21 in activated HSCs not only suppressed fibrogenic gene expression but also restored cells, at least in part, to a quiescent phenotype both in vitro and in vivo. These phenotypic changes of HSCs were accompanied by the regression of steatohepatitis and fibrosis and improved hepatic architecture and function. CONCLUSIONS Tcf21 has been identified as a deactivation factor of fibrogenic HSCs, providing insight into a treatment strategy for the otherwise intractable liver fibrosis.
Collapse
Affiliation(s)
- Yasuhiro Nakano
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara, Japan
- Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan
| | - Akihide Kamiya
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara, Japan
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Japan
| | - Hideaki Sumiyoshi
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara, Japan
- Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan
| | - Kota Tsuruya
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Tatehiro Kagawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Yutaka Inagaki
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara, Japan
- Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan
- Institute of Medical Sciences, Tokai University, Isehara, Japan
| |
Collapse
|
19
|
Ohtani N, Kawada N. Role of the Gut-Liver Axis in Liver Inflammation, Fibrosis, and Cancer: A Special Focus on the Gut Microbiota Relationship. Hepatol Commun 2019; 3:456-470. [PMID: 30976737 PMCID: PMC6442695 DOI: 10.1002/hep4.1331] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/11/2019] [Indexed: 12/20/2022] Open
Abstract
The gut and the liver are anatomically and physiologically connected, and this “gut–liver axis” exerts various influences on liver pathology. The gut microbiota consists of various microorganisms that normally coexist in the human gut and have a role of maintaining the homeostasis of the host. However, once homeostasis is disturbed, metabolites and components derived from the gut microbiota translocate to the liver and induce pathologic effects in the liver. In this review, we introduce and discuss the mechanisms of liver inflammation, fibrosis, and cancer that are influenced by gut microbial components and metabolites; we include recent advances in molecular‐based therapeutics and novel mechanistic findings associated with the gut–liver axis and gut microbiota.
Collapse
Affiliation(s)
- Naoko Ohtani
- Department of Pathophysiology Osaka City University, Graduate School of Medicine Osaka Japan
| | - Norifumi Kawada
- Department of Hepatology Osaka City University, Graduate School of Medicine Osaka Japan
| |
Collapse
|
20
|
LIM homeobox 2 promotes interaction between human iPS-derived hepatic progenitors and iPS-derived hepatic stellate-like cells. Sci Rep 2019; 9:2072. [PMID: 30765795 PMCID: PMC6376133 DOI: 10.1038/s41598-018-37430-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/06/2018] [Indexed: 02/01/2023] Open
Abstract
Human induced pluripotent stem (iPS) cells can differentiate into hepatocyte lineages, although the phenotype of the differentiated cells is immature compared to adult hepatocytes. Improvement of cell-cell interactions between epithelium and mesenchyme is a potential approach to address this phenotype issue. In this study, we developed a model system for improving interactions between human iPS-derived hepatic progenitor cells (iPS-HPCs) and human iPS-derived hepatic stellate cell-like cells (iPS-HSCs). The phenotype of iPS-HSCs, including gene and protein expression profiles and vitamin A storage, resembled that of hepatic stellate cells. Direct co-culture of iPS-HSCs with iPS-HPCs significantly improved hepatocytic maturation in iPS-HPCs, such as their capacity for albumin production. Next, we generated iPS cell lines overexpressing LIM homeobox 2 (LHX2), which suppresses myofibroblastic changes in HSCs in mice. Hepatocytic maturation in iPS-HPCs was significantly increased in direct co-culture with iPS-HSCs overexpressing LHX2, but not in co-culture with a human hepatic stellate cell line (LX-2) overexpressing LHX2. LHX2 regulated the expression of extracellular matrices, such as laminin and collagen, in iPS-HSCs. In conclusion, this study provides an evidence that LHX2 upregulation in iPS-HSCs promotes hepatocytic maturation of iPS-HPCs, and indicates that genetically modified iPS-HSCs will be of value for research into cell-cell interactions.
Collapse
|
21
|
Taşkiran EZ, Karaosmanoğlu B. Transcriptome analysis reveals differentially expressed genes between human primary bone marrow mesenchymal stem cells and human primary dermal fibroblasts. ACTA ACUST UNITED AC 2019; 43:21-27. [PMID: 30930632 PMCID: PMC6426640 DOI: 10.3906/biy-1808-81] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Stromal cells have been widely used in biomedical research and disease modeling studies in vitro. The most commonly used types of stromal cells are mesenchymal stem cells and fibroblasts. Their cellular phenotypes and differentiation capabilities are quite similar and there are no specific distinction criteria. In order to identify transcriptomic differences between these 2 cell types, we performed next-generation RNA sequencing. Using the global gene expression profile and pathway analysis, we showed that human primary bone marrow mesenchymal stem cells and human primary dermal fibroblasts have different molecular signatures. We also identified critical transcription factors that are differentially expressed between these cells. We then proposed that homeobox genes and some other sequence-specific transcription factors are not only responsible for transcriptional differences, but also discriminate bone marrow mesenchymal stem cells and dermal fibroblasts at the transcriptional level.
Collapse
Affiliation(s)
- Ekim Zihni Taşkiran
- Department of Medical Genetics, Faculty of Medicine, Hacettepe University , Ankara , Turkey
| | - Beren Karaosmanoğlu
- Department of Medical Genetics, Faculty of Medicine, Hacettepe University , Ankara , Turkey
| |
Collapse
|
22
|
Yang L, Li LC, Wang X, Wang WH, Wang YC, Xu CR. The contributions of mesoderm-derived cells in liver development. Semin Cell Dev Biol 2018; 92:63-76. [PMID: 30193996 DOI: 10.1016/j.semcdb.2018.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 08/31/2018] [Accepted: 09/02/2018] [Indexed: 02/07/2023]
Abstract
The liver is an indispensable organ for metabolism and drug detoxification. The liver consists of endoderm-derived hepatobiliary lineages and various mesoderm-derived cells, and interacts with the surrounding tissues and organs through the ventral mesentery. Liver development, from hepatic specification to liver maturation, requires close interactions with mesoderm-derived cells, such as mesothelial cells, hepatic stellate cells, mesenchymal cells, liver sinusoidal endothelial cells and hematopoietic cells. These cells affect liver development through precise signaling events and even direct physical contact. Through the use of new techniques, emerging studies have recently led to a deeper understanding of liver development and its related mechanisms, especially the roles of mesodermal cells in liver development. Based on these developments, the current protocols for in vitro hepatocyte-like cell induction and liver-like tissue construction have been optimized and are of great importance for the treatment of liver diseases. Here, we review the roles of mesoderm-derived cells in the processes of liver development, hepatocyte-like cell induction and liver-like tissue construction.
Collapse
Affiliation(s)
- Li Yang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Lin-Chen Li
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Xin Wang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, China
| | - Wei-Hua Wang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Yan-Chun Wang
- Haidian Maternal & Child Health Hospital, Beijing, 100080, China
| | - Cheng-Ran Xu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, China.
| |
Collapse
|
23
|
Ogawa T, Li Y, Lua I, Hartner A, Asahina K. Isolation of a unique hepatic stellate cell population expressing integrin α8 from embryonic mouse livers. Dev Dyn 2018; 247:867-881. [PMID: 29665133 DOI: 10.1002/dvdy.24634] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/16/2018] [Accepted: 04/10/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Hepatic stellate cells (HSCs) play an important role in liver fibrogenesis. However, little is known about their phenotype and role in liver development. The aim of this study is to identify specific markers for embryonic HSCs. RESULTS Using antibodies against ALCAM and PDPN, we separated mesothelial cells (MCs) and HSCs from developing livers and identified integrin α8 (ITGA8) as a marker for embryonic desmin+ HSCs that are preferentially localized near the developing liver surface and α-smooth muscle actin+ perivascular mesenchymal cells around the vein. A cell lineage-tracing study revealed that upon differentiation, MC-derived HSCs or perivascular mesenchymal cells express ITGA8 during liver development. Using anti-ITGA8 antibodies, we succeeded in isolating MC-derived HSCs and perivascular mesenchymal cells from embryonic livers. In direct co-culture, ITGA8+ mesenchymal cells promoted the expression of hepatocyte and cholangiocyte markers in hepatoblasts. In the normal adult liver, expression of ITGA8 was restricted to portal fibroblasts in the portal triad. Upon liver injury, myofibroblasts increased the expression of ITGA8. CONCLUSIONS ITGA8 is a specific cell surface marker of MC-derived HSCs and perivascular mesenchymal cells in the developing liver. Our data suggest that ITGA8+ mesenchymal cells maintain the phenotype of hepatoblast in liver development. Developmental Dynamics 247:867-881, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tomohiro Ogawa
- Southern California Research Center for ALPD and Cirrhosis and Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California.,Center for the Advancement of Higher Education, Faculty of Engineering, Kindai University, Hiroshima, Japan
| | - Yuchang Li
- Southern California Research Center for ALPD and Cirrhosis and Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Ingrid Lua
- Southern California Research Center for ALPD and Cirrhosis and Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Andrea Hartner
- Department of Pediatrics and Adolescent Medicine, University Hospital of Erlangen, Erlangen, Germany
| | - Kinji Asahina
- Southern California Research Center for ALPD and Cirrhosis and Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California
| |
Collapse
|
24
|
Hepatic stellate cells as key target in liver fibrosis. Adv Drug Deliv Rev 2017; 121:27-42. [PMID: 28506744 DOI: 10.1016/j.addr.2017.05.007] [Citation(s) in RCA: 1026] [Impact Index Per Article: 128.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/21/2017] [Accepted: 05/09/2017] [Indexed: 02/06/2023]
Abstract
Progressive liver fibrosis, induced by chronic viral and metabolic disorders, leads to more than one million deaths annually via development of cirrhosis, although no antifibrotic therapy has been approved to date. Transdifferentiation (or "activation") of hepatic stellate cells is the major cellular source of matrix protein-secreting myofibroblasts, the major driver of liver fibrogenesis. Paracrine signals from injured epithelial cells, fibrotic tissue microenvironment, immune and systemic metabolic dysregulation, enteric dysbiosis, and hepatitis viral products can directly or indirectly induce stellate cell activation. Dysregulated intracellular signaling, epigenetic changes, and cellular stress response represent candidate targets to deactivate stellate cells by inducing reversion to inactivated state, cellular senescence, apoptosis, and/or clearance by immune cells. Cell type- and target-specific pharmacological intervention to therapeutically induce the deactivation will enable more effective and less toxic precision antifibrotic therapies.
Collapse
|
25
|
Abstract
Hepatic fibrosis is a dynamic process characterized by the net accumulation of extracellular matrix resulting from chronic liver injury of any aetiology, including viral infection, alcoholic liver disease and NASH. Activation of hepatic stellate cells (HSCs) - transdifferentiation of quiescent, vitamin-A-storing cells into proliferative, fibrogenic myofibroblasts - is now well established as a central driver of fibrosis in experimental and human liver injury. Yet, the continued discovery of novel pathways and mediators, including autophagy, endoplasmic reticulum stress, oxidative stress, retinol and cholesterol metabolism, epigenetics and receptor-mediated signals, reveals the complexity of HSC activation. Extracellular signals from resident and inflammatory cells including macrophages, hepatocytes, liver sinusoidal endothelial cells, natural killer cells, natural killer T cells, platelets and B cells further modulate HSC activation. Finally, pathways of HSC clearance have been greatly clarified, and include apoptosis, senescence and reversion to an inactivated state. Collectively, these findings reinforce the remarkable complexity and plasticity of HSC activation, and underscore the value of clarifying its regulation in hopes of advancing the development of novel diagnostics and therapies for liver disease.
Collapse
Affiliation(s)
- Takuma Tsuchida
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1123, New York, New York 10029, USA.,Research Division, Mitsubishi Tanabe Pharma Corporation, 2-2-50, Kawagishi, Toda-shi, Saitama 335-8505, Japan
| | - Scott L Friedman
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1123, New York, New York 10029, USA
| |
Collapse
|
26
|
Nilsson J, Ericsson M, Joibari MM, Anderson F, Carlsson L, Nilsson SK, Sjödin A, Burén J. A low-carbohydrate high-fat diet decreases lean mass and impairs cardiac function in pair-fed female C57BL/6J mice. Nutr Metab (Lond) 2016; 13:79. [PMID: 27891164 PMCID: PMC5111238 DOI: 10.1186/s12986-016-0132-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 10/13/2016] [Indexed: 11/29/2022] Open
Abstract
Background Excess body fat is a major health issue and a risk factor for the development of numerous chronic diseases. Low-carbohydrate diets like the Atkins Diet are popular for rapid weight loss, but the long-term consequences remain the subject of debate. The Scandinavian low-carbohydrate high-fat (LCHF) diet, which has been popular in Scandinavian countries for about a decade, has very low carbohydrate content (~5 E %) but is rich in fat and includes a high proportion of saturated fatty acids. Here we investigated the metabolic and physiological consequences of a diet with a macronutrient composition similar to the Scandinavian LCHF diet and its effects on the organs, tissues, and metabolism of weight stable mice. Methods Female C57BL/6J mice were iso-energetically pair-fed for 4 weeks with standard chow or a LCHF diet. We measured body composition using echo MRI and the aerobic capacity before and after 2 and 4 weeks on diet. Cardiac function was assessed by echocardiography before and after 4 weeks on diet. The metabolic rate was measured by indirect calorimetry the fourth week of the diet. Mice were sacrificed after 4 weeks and the organ weight, triglyceride levels, and blood chemistry were analyzed, and the expression of key ketogenic, metabolic, hormonal, and inflammation genes were measured in the heart, liver, and adipose tissue depots of the mice using real-time PCR. Results The increase in body weight of mice fed a LCHF diet was similar to that in controls. However, while control mice maintained their body composition throughout the study, LCHF mice gained fat mass at the expense of lean mass after 2 weeks. The LCHF diet increased cardiac triglyceride content, impaired cardiac function, and reduced aerobic capacity. It also induced pronounced alterations in gene expression and substrate metabolism, indicating a unique metabolic state. Conclusions Pair-fed mice eating LCHF increased their percentage of body fat at the expense of lean mass already after 2 weeks, and after 4 weeks the function of the heart deteriorated. These findings highlight the urgent need to investigate the effects of a LCHF diet on health parameters in humans.
Collapse
Affiliation(s)
- Jessica Nilsson
- Department of Medical Biosciences, Physiological Chemistry, Umeå University, SE-901 87 Umeå, Sweden.,Department of Public Health and Clinical Medicine, Medicine, Umeå University, Umeå, Sweden
| | - Madelene Ericsson
- Department of Medical Biosciences, Physiological Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | | | - Fredrick Anderson
- Department of Medical Biosciences, Physiological Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Leif Carlsson
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Stefan K Nilsson
- Department of Medical Biosciences, Physiological Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Anna Sjödin
- Department of Food and Nutrition, Umeå University, Umeå, Sweden
| | - Jonas Burén
- Department of Public Health and Clinical Medicine, Medicine, Umeå University, Umeå, Sweden.,Department of Food and Nutrition, Umeå University, Umeå, Sweden
| |
Collapse
|
27
|
Shi X, Zhan L, Xiao C, Lei Z, Yang H, Wang L, Zhao J, Zhang HT. miR-1238 inhibits cell proliferation by targeting LHX2 in non-small cell lung cancer. Oncotarget 2016; 6:19043-54. [PMID: 26189214 PMCID: PMC4662474 DOI: 10.18632/oncotarget.4232] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 05/13/2015] [Indexed: 01/01/2023] Open
Abstract
In human cancers, dysregulated expression of LIM-homeobox gene 2 (LHX2) and downregulation of miR-1238 has been reported separately. However, the relationship between them remains unclear. We investigated the functional contribution of miR-1238 to the regulation of LHX2 in non-small cell lung cancer (NSCLC). Here, computational algorithms predicted that the 3′-untranslated region (3′-UTR) of LHX2 is a target of miR-1238. Luciferase assays validated that miR-1238 directly bound to 3′-UTR of LHX2. qRT-PCR and western blot analyses further confirmed that overexpression of miR-1238 mimic in NSCLC A549 and LTEP-α-2 cells inhibited endogenous expression of LHX2 mRNA and protein. Moreover, ectopic expression of miR-1238 in NSCLC A549 and LTEP-α-2 cells suppressed cellular viability and proliferation. siRNA-induced knockdown of LHX2 copied the phenotype of miR-1238 overexpression in NSCLC A549 and LTEP-α-2 cells and LHX2 knockdown inhibited cell cycle. In addition, miR-1238 expression was frequently decreased in human NSCLC tissues and reversely correlated with LHX2 expression, which was increased in NSCLC tissues. Collectively, our findings demonstrate that miR-1238 inhibit the proliferation of NSCLC cells at least partly via repression of LHX2, shedding light on the mechanistic interaction of miR-1238 and LHX2 in NSCLC carcinogenesis. Furthermore, our data suggest that expression of miR-1238 could be a promising therapeutic strategy for NSCLC treatment.
Collapse
Affiliation(s)
- Xiangguang Shi
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Molecular Cancer Genetics, Suzhou, China
| | - Lei Zhan
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Molecular Cancer Genetics, Suzhou, China
| | - Can Xiao
- The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou, China
| | - Zhe Lei
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Molecular Cancer Genetics, Suzhou, China
| | - Haiping Yang
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Molecular Cancer Genetics, Suzhou, China
| | - Longqiang Wang
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Molecular Cancer Genetics, Suzhou, China
| | - Jun Zhao
- Suzhou Key Laboratory for Molecular Cancer Genetics, Suzhou, China.,The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou, China
| | - Hong-Tao Zhang
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Molecular Cancer Genetics, Suzhou, China
| |
Collapse
|
28
|
Tsuruya K, Chikada H, Ida K, Anzai K, Kagawa T, Inagaki Y, Mine T, Kamiya A. A Paracrine Mechanism Accelerating Expansion of Human Induced Pluripotent Stem Cell-Derived Hepatic Progenitor-Like Cells. Stem Cells Dev 2015; 24:1691-1702. [PMID: 25808356 PMCID: PMC4499795 DOI: 10.1089/scd.2014.0479] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 03/21/2015] [Indexed: 01/08/2023] Open
Abstract
Hepatic stem/progenitor cells in liver development have a high proliferative potential and the ability to differentiate into both hepatocytes and cholangiocytes. In this study, we focused on the cell surface molecules of human induced pluripotent stem (iPS) cell-derived hepatic progenitor-like cells (HPCs) and analyzed how these molecules modulate expansion of these cells. Human iPS cells were differentiated into immature hepatic lineage cells by cytokines. In addition to hepatic progenitor markers (CD13 and CD133), the cells were coimmunostained for various cell surface markers (116 types). The cells were analyzed by flow cytometry and in vitro colony formation culture with feeder cells. Twenty types of cell surface molecules were highly expressed in CD13(+)CD133(+) cells derived from human iPS cells. Of these molecules, CD221 (insulin-like growth factor receptor), which was expressed in CD13(+)CD133(+) cells, was quickly downregulated after in vitro expansion. The proliferative ability was suppressed by a neutralizing antibody and specific inhibitor of CD221. Overexpression of CD221 increased colony-forming ability. We also found that inhibition of CD340 (erbB2) and CD266 (fibroblast growth factor-inducible 14) signals suppressed proliferation. In addition, both insulin-like growth factor (a ligand of CD221) and tumor necrosis factor-like weak inducer of apoptosis (a ligand of CD266) were provided by feeder cells in our culture system. This study revealed the expression profiles of cell surface molecules in human iPS cell-derived HPCs and that the paracrine interactions between HPCs and other cells through specific receptors are important for proliferation.
Collapse
Affiliation(s)
- Kota Tsuruya
- Laboratory of Stem Cell Therapy, Institute of Innovative Science and Technology, Tokai University, Isehara, Japan
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, Tokai University, Isehara, Japan
| | - Hiromi Chikada
- Laboratory of Stem Cell Therapy, Institute of Innovative Science and Technology, Tokai University, Isehara, Japan
| | - Kinuyo Ida
- Laboratory of Stem Cell Therapy, Institute of Innovative Science and Technology, Tokai University, Isehara, Japan
| | - Kazuya Anzai
- Laboratory of Stem Cell Therapy, Institute of Innovative Science and Technology, Tokai University, Isehara, Japan
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, Tokai University, Isehara, Japan
| | - Tatehiro Kagawa
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, Tokai University, Isehara, Japan
| | - Yutaka Inagaki
- Department of Regenerative Medicine, School of Medicine and Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara, Japan
| | - Tetsuya Mine
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, Tokai University, Isehara, Japan
| | - Akihide Kamiya
- Laboratory of Stem Cell Therapy, Institute of Innovative Science and Technology, Tokai University, Isehara, Japan
| |
Collapse
|
29
|
Yanagida A, Chikada H, Ito K, Umino A, Kato-Itoh M, Yamazaki Y, Sato H, Kobayashi T, Yamaguchi T, Nakayama KI, Nakauchi H, Kamiya A. Liver maturation deficiency in p57(Kip2)-/- mice occurs in a hepatocytic p57(Kip2) expression-independent manner. Dev Biol 2015; 407:331-43. [PMID: 26165599 DOI: 10.1016/j.ydbio.2015.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 07/02/2015] [Accepted: 07/06/2015] [Indexed: 12/29/2022]
Abstract
Fetal hepatic stem/progenitor cells, hepatoblasts, are highly proliferative cells and the source of both hepatocytes and cholangiocytes. In contrast, mature hepatocytes have a low proliferative potency and high metabolic functions. Cell proliferation is regulated by cell cycle-related molecules. However, the correlation between cell cycle regulation and hepatic maturation are still unknown. To address this issue, we revealed that the cell cycle inhibitor p57(Kip2) was expressed in the hepatoblasts and mesenchymal cells of fetal liver in a spatiotemporal manner. In addition, we found that hepatoblasts in p57(Kip2)-/- mice were highly proliferative and had deficient maturation compared with those in wild-type (WT) mice. However, there were no remarkable differences in the expression levels of cell cycle- and bipotency-related genes except for Ccnd2. Furthermore, p57(Kip2)-/- hepatoblasts could differentiate into mature hepatocytes in p57(Kip2)-/- and WT chimeric mice, suggesting that the intrinsic activity of p57(Kip2) does not simply regulate hepatoblast maturation.
Collapse
Affiliation(s)
- Ayaka Yanagida
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Hiromi Chikada
- Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Keiichi Ito
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Ayumi Umino
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Megumi Kato-Itoh
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yuji Yamazaki
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Hideyuki Sato
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Toshihiro Kobayashi
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Tomoyuki Yamaguchi
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hiromitsu Nakauchi
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305-5461, USA
| | - Akihide Kamiya
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.
| |
Collapse
|
30
|
Abstract
Hepatic stellate cells are resident perisinusoidal cells distributed throughout the liver, with a remarkable range of functions in normal and injured liver. Derived embryologically from septum transversum mesenchyme, their precursors include submesothelial cells that invade the liver parenchyma from the hepatic capsule. In normal adult liver, their most characteristic feature is the presence of cytoplasmic perinuclear droplets that are laden with retinyl (vitamin A) esters. Normal stellate cells display several patterns of intermediate filaments expression (e.g., desmin, vimentin, and/or glial fibrillary acidic protein) suggesting that there are subpopulations within this parental cell type. In the normal liver, stellate cells participate in retinoid storage, vasoregulation through endothelial cell interactions, extracellular matrix homeostasis, drug detoxification, immunotolerance, and possibly the preservation of hepatocyte mass through secretion of mitogens including hepatocyte growth factor. During liver injury, stellate cells activate into alpha smooth muscle actin-expressing contractile myofibroblasts, which contribute to vascular distortion and increased vascular resistance, thereby promoting portal hypertension. Other features of stellate cell activation include mitogen-mediated proliferation, increased fibrogenesis driven by connective tissue growth factor, and transforming growth factor beta 1, amplified inflammation and immunoregulation, and altered matrix degradation. Evolving areas of interest in stellate cell biology seek to understand mechanisms of their clearance during fibrosis resolution by either apoptosis, senescence, or reversion, and their contribution to hepatic stem cell amplification, regeneration, and hepatocellular cancer.
Collapse
Affiliation(s)
- Juan E Puche
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai Hospital, New York, New York, New York
| | | | | |
Collapse
|
31
|
Abstract
BACKGROUND Cirrhosis is diagnosed in patients of all ages and is the end result of many different diseases. The aim of this study was to characterize clinical and ethnic features of adult patients who were admitted to the hospital at different (young/old) ages and examine associations between age and ethnicity within these groups. METHODS In this retrospective analysis of a diverse cohort of 2017 patients with a clinical diagnosis of cirrhosis between January 2001 and December 2011, we focused on age, ethnicity, and outcome of patients with cirrhosis. RESULTS We identified 219 patients younger than the age of 40 years, including 87 (11%) of 802 white, 31 (6%) of 550 African American, and 89 (16%) of 550 Hispanic patients (P < 0.001). Ethnicity and causes of cirrhosis were found to have a significant correlation with age. Overall, Hispanic and white patients together were more than twice as likely to be diagnosed with cirrhosis at an age younger than 40 years compared with African American patients (P < 0.001). Autoimmune hepatitis caused cirrhosis at a younger age regardless of ethnicity (P < 0.001), whereas cryptogenic/nonalcoholic fatty liver disease/nonalcoholic steatohepatitis was more likely identified at an older age (P = 0.008). African American patients with cirrhosis due to either alcohol or hepatitis C virus were older than Hispanic (P < 0.001 and P = 0.003, respectively) and white patients (P < 0.001 and P < 0.001, respectively) at presentation. Finally, younger patients admitted with cirrhosis had a higher in-hospital mortality rate (P < 0.001). CONCLUSIONS The data suggest an association between ethnicity and age of cirrhosis diagnosis, both overall and in patients with certain cirrhosis etiologies. This work raises the possibility of an ethnic and/or genetic basis for cirrhosis.
Collapse
Affiliation(s)
- Krishna C. Sajja
- Division of Digestive and Liver Diseases, University of Texas Southwestern Medical Center and Parkland Memorial Hospital, Dallas, TX, USA
| | - Desh P. Mohan
- Division of Digestive and Liver Diseases, University of Texas Southwestern Medical Center and Parkland Memorial Hospital, Dallas, TX, USA
| | - Don C. Rockey
- Department of Internal Medicine, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
32
|
Ito K, Yanagida A, Okada K, Yamazaki Y, Nakauchi H, Kamiya A. Mesenchymal progenitor cells in mouse foetal liver regulate differentiation and proliferation of hepatoblasts. Liver Int 2014; 34:1378-90. [PMID: 24238062 DOI: 10.1111/liv.12387] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 11/09/2013] [Indexed: 02/13/2023]
Abstract
BACKGROUND & AIMS Hepatoblasts are somatic progenitor cells of the foetal liver that possess high proliferative capacity and bi-potency for differentiation into both hepatocytes and cholangiocytes. Although mesenchymal cells are known to be important for liver ontogeny, current understanding of their interaction with hepatoblasts remains obscure. Mesenchymal cell populations in the developing liver were purified and their potential to support proliferation and differentiation of hepatoblasts was examined. METHODS Foetal liver cells were fractionated with a flow cytometer using antibodies against cell surface markers. Gene expression of mesenchymal-specific transcripts and morphological characteristics were analysed. The ability of the mesenchymal cells to support hepatoblast function was analysed using a transwell and direct coculture system. RESULTS CD45(-) Ter119(-) CD71(-) Dlk1(mid) PDGFRα(+) cells from the mid-foetal stage liver expressed the mesenchymal cell-specific transcription factors H2.0-like homeobox 1 and LIM homeobox 2 at high levels. Foetal mesenchymal cells make contact with hepatoblasts in vivo and possess the potential to differentiate into chondrocytes, osteocytes and adipocytes under appropriate cell culture conditions, indicating that these cells are possible candidates for mesenchymal stem/progenitor cells. Foetal mesenchymal cells expressed pleiotrophin, hepatocyte growth factor and midkine 1, which are involved in the growth of hepatoblasts. Using the coculture system with hepatoblasts and foetal mesenchymal cells, these cells were shown to support proliferation and maturation of hepatoblasts through indirect and direct interactions respectively. CONCLUSIONS Dlk1(mid) PDGFRα(+) cells in non-haematopoetic fraction derived from the foetal liver exhibit mesenchymal stem/progenitor cell characteristics and have abilities to support proliferation and differentiation of hepatoblasts.
Collapse
Affiliation(s)
- Keiichi Ito
- Division of Stem Cell Therapy, Center for Stem Cell and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
33
|
Genz B, Thomas M, Pützer BM, Siatkowski M, Fuellen G, Vollmar B, Abshagen K. Adenoviral overexpression of Lhx2 attenuates cell viability but does not preserve the stem cell like phenotype of hepatic stellate cells. Exp Cell Res 2014; 328:429-43. [PMID: 24995995 DOI: 10.1016/j.yexcr.2014.06.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/13/2014] [Accepted: 06/14/2014] [Indexed: 01/04/2023]
Abstract
Hepatic stellate cells (HSC) are well known initiators of hepatic fibrosis. After liver cell damage, HSC transdifferentiate into proliferative myofibroblasts, representing the major source of extracellular matrix in the fibrotic organ. Recent studies also demonstrate a role of HSC as progenitor or stem cell like cells in liver regeneration. Lhx2 is described as stem cell maintaining factor in different organs and as an inhibitory transcription factor in HSC activation. Here we examined whether a continuous expression of Lhx2 in HSC could attenuate their activation and whether Lhx2 could serve as a potential target for antifibrotic gene therapy. Therefore, we evaluated an adenoviral mediated overexpression of Lhx2 in primary HSC and investigated mRNA expression patterns by qRT-PCR as well as the activation status by different in vitro assays. HSC revealed a marked increase in activation markers like smooth muscle actin alpha (αSMA) and collagen 1α independent from adenoviral transduction. Lhx2 overexpression resulted in attenuated cell viability as shown by a slightly hampered migratory and contractile phenotype of HSC. Expression of stem cell factors or signaling components was also unaffected by Lhx2. Summarizing these results, we found no antifibrotic or stem cell maintaining effect of Lhx2 overexpression in primary HSC.
Collapse
Affiliation(s)
- Berit Genz
- Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Maria Thomas
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | - Brigitte M Pützer
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - Marcin Siatkowski
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | - Georg Fuellen
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | - Brigitte Vollmar
- Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Kerstin Abshagen
- Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany.
| |
Collapse
|
34
|
Delgado I, Carrasco M, Cano E, Carmona R, García-Carbonero R, Marín-Gómez LM, Soria B, Martín F, Cano DA, Muñoz-Chápuli R, Rojas A. GATA4 loss in the septum transversum mesenchyme promotes liver fibrosis in mice. Hepatology 2014; 59:2358-70. [PMID: 24415412 DOI: 10.1002/hep.27005] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 01/08/2014] [Indexed: 01/15/2023]
Abstract
UNLABELLED The zinc finger transcription factor GATA4 controls specification and differentiation of multiple cell types during embryonic development. In mouse embryonic liver, Gata4 is expressed in the endodermal hepatic bud and in the adjacent mesenchyme of the septum transversum. Previous studies have shown that Gata4 inactivation impairs liver formation. However, whether these defects are caused by loss of Gata4 in the hepatic endoderm or in the septum transversum mesenchyme remains to be determined. In this study, we have investigated the role of mesenchymal GATA4 activity in liver formation. We have conditionally inactivated Gata4 in the septum transversum mesenchyme and its derivatives by using Cre/loxP technology. We have generated a mouse transgenic Cre line, in which expression of Cre recombinase is controlled by a previously identified distal Gata4 enhancer. Conditional inactivation of Gata4 in hepatic mesenchymal cells led to embryonic lethality around mouse embryonic stage 13.5, likely as a consequence of fetal anemia. Gata4 knockout fetal livers exhibited reduced size, advanced fibrosis, accumulation of extracellular matrix components and hepatic stellate cell (HSC) activation. Haploinsufficiency of Gata4 accelerated CCl4 -induced liver fibrosis in adult mice. Moreover, Gata4 expression was dramatically reduced in advanced hepatic fibrosis and cirrhosis in humans. CONCLUSIONS Our data demonstrate that mesenchymal GATA4 activity regulates HSC activation and inhibits the liver fibrogenic process.
Collapse
Affiliation(s)
- Irene Delgado
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Sevilla, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kong XY, Nesset CK, Damme M, Løberg EM, Lübke T, Mæhlen J, Andersson KB, Lorenzo PI, Roos N, Thoresen GH, Rustan AC, Kase ET, Eskild W. Loss of lysosomal membrane protein NCU-G1 in mice results in spontaneous liver fibrosis with accumulation of lipofuscin and iron in Kupffer cells. Dis Model Mech 2014; 7:351-62. [PMID: 24487409 PMCID: PMC3944495 DOI: 10.1242/dmm.014050] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human kidney predominant protein, NCU-G1, is a highly conserved protein with an unknown biological function. Initially described as a nuclear protein, it was later shown to be a bona fide lysosomal integral membrane protein. To gain insight into the physiological function of NCU-G1, mice with no detectable expression of this gene were created using a gene-trap strategy, and Ncu-g1gt/gt mice were successfully characterized. Lysosomal disorders are mainly caused by lack of or malfunctioning of proteins in the endosomal-lysosomal pathway. The clinical symptoms vary, but often include liver dysfunction. Persistent liver damage activates fibrogenesis and, if unremedied, eventually leads to liver fibrosis/cirrhosis and death. We demonstrate that the disruption of Ncu-g1 results in spontaneous liver fibrosis in mice as the predominant phenotype. Evidence for an increased rate of hepatic cell death, oxidative stress and active fibrogenesis were detected in Ncu-g1gt/gt liver. In addition to collagen deposition, microscopic examination of liver sections revealed accumulation of autofluorescent lipofuscin and iron in Ncu-g1gt/gt Kupffer cells. Because only a few transgenic mouse models have been identified with chronic liver injury and spontaneous liver fibrosis development, we propose that the Ncu-g1gt/gt mouse could be a valuable new tool in the development of novel treatments for the attenuation of fibrosis due to chronic liver damage.
Collapse
Affiliation(s)
- Xiang Y Kong
- Department of Bioscience, University of Oslo, 0316 Oslo, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Development of murine models to study Hepatitis C virus induced liver pathogenesis. INDIAN JOURNAL OF VIROLOGY : AN OFFICIAL ORGAN OF INDIAN VIROLOGICAL SOCIETY 2014; 24:151-6. [PMID: 24426270 DOI: 10.1007/s13337-013-0152-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 07/26/2013] [Indexed: 10/26/2022]
Abstract
Hepatitis C virus (HCV) is involved in different liver pathologies worldwide. In contemporary scenario, HCV treatment is lagging behind owing to absence of vaccines against virus. The only consideration for HCV treatment is pegylated interferon-alpha and ribavirin that results in sustained virological response in 50 % of patients. Two feasible hosts for HCV infection are chimpanzee and humans. For decades, chimpanzees are sole host to study HCV pathogenesis, but their use is limited due to ethical issues. The dilemma behind HCV therapy is the need of sustainable animal models that can help simulate in vivo conditions. We have assembled recent advances in animal models to study liver diseases for targeted therapy.
Collapse
|
37
|
Kuzmanov A, Hopfer U, Marti P, Meyer-Schaller N, Yilmaz M, Christofori G. LIM-homeobox gene 2 promotes tumor growth and metastasis by inducing autocrine and paracrine PDGF-B signaling. Mol Oncol 2013; 8:401-16. [PMID: 24423492 DOI: 10.1016/j.molonc.2013.12.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 12/11/2013] [Accepted: 12/16/2013] [Indexed: 12/17/2022] Open
Abstract
An epithelial-mesenchymal transition (EMT) is a critical process during embryonic development and the progression of epithelial tumors to metastatic cancers. Gene expression profiling has uncovered the transcription factor LIM homeobox gene 2 (Lhx2) with up-regulated expression during TGFβ-induced EMT in normal and cancerous breast epithelial cells. Loss and gain of function experiments in transgenic mouse models of breast cancer and of insulinoma in vivo and in breast cancer cells in vitro indicate that Lhx2 plays a critical role in primary tumor growth and metastasis. Notably, the transgenic expression of Lhx2 during breast carcinogenesis promotes vessel maturation, primary tumor growth, tumor cell intravasation and metastasis by directly inducing the expression of platelet-derived growth factor (PDGF)-B in tumor cells and by indirectly increasing the expression of PDGF receptor-β (PDGFRβ) on tumor cells and pericytes. Pharmacological inhibition of PDGF-B/PDGFRβ signaling reduces vessel functionality and tumor growth and Lhx2-induced cell migration and cell invasion. The data indicate a dual role of Lhx2 during EMT and tumor progression: by inducing the expression of PDGF-B, Lhx2 provokes an autocrine PDGF-B/PDGFRβ loop required for cell migration, invasion and metastatic dissemination and paracrine PDGF-B/PDGFRβ signaling to support blood vessel functionality and, thus, primary tumor growth.
Collapse
Affiliation(s)
- Aleksandar Kuzmanov
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Ulrike Hopfer
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland; Novartis, Basel, Switzerland
| | - Patricia Marti
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland; Novartis, Basel, Switzerland
| | | | - Mahmut Yilmaz
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland; Roche, Basel, Switzerland
| | - Gerhard Christofori
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland.
| |
Collapse
|
38
|
Yin C, Evason KJ, Asahina K, Stainier DYR. Hepatic stellate cells in liver development, regeneration, and cancer. J Clin Invest 2013; 123:1902-10. [PMID: 23635788 DOI: 10.1172/jci66369] [Citation(s) in RCA: 563] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatic stellate cells are liver-specific mesenchymal cells that play vital roles in liver physiology and fibrogenesis. They are located in the space of Disse and maintain close interactions with sinusoidal endothelial cells and hepatic epithelial cells. It is becoming increasingly clear that hepatic stellate cells have a profound impact on the differentiation, proliferation, and morphogenesis of other hepatic cell types during liver development and regeneration. In this Review, we summarize and evaluate the recent advances in our understanding of the formation and characteristics of hepatic stellate cells, as well as their function in liver development, regeneration, and cancer. We also discuss how improved knowledge of these processes offers new perspectives for the treatment of patients with liver diseases.
Collapse
Affiliation(s)
- Chunyue Yin
- Department of Biochemistry and Biophysics, Programs in Developmental and Stem Cell Biology, Genetics and Human Genetics, Liver Center and Diabetes Center, Institute for Regeneration Medicine, UCSF, San Francisco, California, USA
| | | | | | | |
Collapse
|
39
|
Ghiassi-Nejad Z, Hernandez-Gea V, Woodrell C, Lang UE, Dumic K, Kwong A, Friedman SL. Reduced hepatic stellate cell expression of Kruppel-like factor 6 tumor suppressor isoforms amplifies fibrosis during acute and chronic rodent liver injury. Hepatology 2013; 57:786-96. [PMID: 22961688 PMCID: PMC3522757 DOI: 10.1002/hep.26056] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 08/27/2012] [Indexed: 12/12/2022]
Abstract
UNLABELLED Kruppel-like factor 6 (KLF6), a zinc finger transcription factor and tumor suppressor, is induced as an immediate-early gene during hepatic stellate cell (HSC) activation. The paradoxical induction of a tumor suppressor in HSCs during proliferation led us to explore the biology of wildtype KLF6 (KLF6(WT) ) and its antagonistic, alternatively spliced isoform KLF6(SV1) in cultured HSCs and animal models. The animal models generated include a global heterozygous KLF6 mouse (Klf6+/-), and transgenic mice expressing either hKLF6(WT) or hKLF6(SV1) under the control of the Collagen α2 (I) promoter to drive HSC-specific gene expression following injury. The rat Klf6 transcript has multiple splice forms that are homologous to those of the human KLF6 gene. Following a transient increase, all rat Klf6 isoforms decreased in response to acute carbon tetrachloride (CCl(4)) liver injury and culture-induced activation. After acute CCl(4), Klf6+/- mice developed significantly increased fibrosis and enhanced fibrogenic messenger RNA (mRNA) and protein expression. In contrast, HSC-specific transgenic mice overexpressing KLF6(WT) or KLF6(SV1) developed significantly diminished fibrosis with reduced expression of fibrogenic genes. Chromatin IP and quantitative reverse-transcription polymerase chain reaction in mouse HSCs overexpressing KLF6(WT) demonstrated KLF6(WT) binding to GC boxes in promoters of Colα1 (I), Colα2 (I), and beta-platelet-derived growth factor receptor (β-Pdgfr) with reduced gene expression, consistent with transcriptional repression by KLF6. Stellate cells overexpressing either KLF6(WT) or KLF6(SV1) were more susceptible to apoptotic stress based on poly (ADP-ribose) polymerase (PARP) cleavage. CONCLUSION KLF6 reduces fibrogenic activity of HSCs by way of two distinct mechanisms, direct transcriptional repression of target fibrogenic genes and increased apoptosis of activated HSCs. These results suggest that following its initial induction, sustained down-regulation of KLF6 in liver injury may allow de-repression of fibrogenic genes and decreased stellate cell clearance by inhibiting apoptosis.
Collapse
Affiliation(s)
- Zahra Ghiassi-Nejad
- Division of Liver Diseases, Mount Sinai School of Medicine, New York, NY Department of Gastroenterology and Hepatology
| | - Virginia Hernandez-Gea
- Division of Liver Diseases, Mount Sinai School of Medicine, New York, NY Department of Gastroenterology and Hepatology
| | - Christopher Woodrell
- Division of Liver Diseases, Mount Sinai School of Medicine, New York, NY Department of Gastroenterology and Hepatology
| | - Ursula E. Lang
- Division of Liver Diseases, Mount Sinai School of Medicine, New York, NY Department of Gastroenterology and Hepatology
| | - Katja Dumic
- Division of Clinical Genetics, Clinical Hospital Centre “Sisters of Mercy”, Zagreb Croatia, Department of Pediatrics
| | - Allison Kwong
- Division of Liver Diseases, Mount Sinai School of Medicine, New York, NY Department of Gastroenterology and Hepatology
| | - Scott L. Friedman
- Division of Liver Diseases, Mount Sinai School of Medicine, New York, NY Department of Gastroenterology and Hepatology
| |
Collapse
|
40
|
Eipel C, Menschikow E, Sigal M, Kuhla A, Abshagen K, Vollmar B. Hepatoprotection in bile duct ligated mice mediated by darbepoetin-α is not caused by changes in hepatobiliary transporter expression. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2012; 6:80-90. [PMID: 23236546 PMCID: PMC3515984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 11/10/2012] [Indexed: 06/01/2023]
Abstract
AIMS Darbepoetin-α (DPO), a long-acting erythropoietin analog, has been shown to protect the liver against cholestatic injury, to exert an antifibrotic effect, and to increase the survival time in a model of common bile duct ligation. Here we evaluate whether these tissue-protective effects are caused by DPO induced regulation of hepatobiliary transporters. MAIN METHODS C57BL/6J mice underwent common bile duct ligation and were treated with either DPO or physiological saline. Time dependent (2, 5, 14, 28 days after bile duct ligation) protein expression of different hepatobiliary transporters which have been established to play an important role in hepatocellular (i) bile acid uptake, (ii) bile acid excretion, and (iii) retrograde bile acid efflux were assessed. mRNA and protein expression of Lhx2, an important negative regulator of hepatic stellate cell activation, was determined. KEY FINDINGS Saline treated cholestatic mice impress with increased mRNA expression of Lhx2 as a defense mechanism, while there is less need for such an upregulation in mice treated with DPO. Whereas Ntcp (slc10a1) protein expression is suppressed as early as 2 days after bile duct ligation to 40% in untreated animals, DPO treated mice exhibit decreased protein level not before day 5. Similarly, the steady decline of Mrp4 (abcc4) protein level during extrahepatic cholestasis in control treated animals does not occur upon DPO application. SIGNIFICANCE The collected data show that DPO affects expression of hepatobilliary transporters during obstructive cholestasis but do not provide sufficient evidence to demonstrate a direct correlation between this regulation and hepatoprotection by DPO.
Collapse
Affiliation(s)
- Christian Eipel
- Institute for Experimental Surgery, University of Rostock Schillingallee 69 a, 18055 Rostock, Germany.
| | | | | | | | | | | |
Collapse
|
41
|
Park KS, Kim KK, Kim KE. Histone modification-mediated Lhx2 gene expression. Biochem Biophys Res Commun 2012; 427:718-24. [PMID: 23036195 DOI: 10.1016/j.bbrc.2012.09.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 09/23/2012] [Indexed: 11/17/2022]
Abstract
Lhx2, a member of LIM homeobox transcription factors, plays a key role in central nervous system (CNS) and embryonic tissue development. However, molecular mechanism of Lhx2 gene regulation remains largely unknown. Here, we identified and characterized a regulatory region of Lhx2 gene which mediates responses to two different signals such as inhibition of HDAC3 and stimulation by E2F1. In particular, the promoter region of -229 to -126 was responsible not only for basal expression but also for a inhibitor of histone deacetylase, trichostatin A (TSA)-mediated activation of Lhx2 gene. Intriguingly, transcription factor E2F1 also activates Lhx2 gene via direct binding to the same -229 to -126 region. Based on these observations, we could have demonstrated that E2F1 is necessary for TSA-mediated activation of Lhx2 gene and acetylation of histone 3 is involved in this event. This study provides evidence that the histone modification and E2F1 binding are integral parts of the mechanism for Lhx2 gene expression.
Collapse
Affiliation(s)
- Key Sun Park
- Department of Biochemistry, Chungnam National University, Daejeon 305-764, Republic of Korea
| | | | | |
Collapse
|
42
|
LeCluyse EL, Witek RP, Andersen ME, Powers MJ. Organotypic liver culture models: meeting current challenges in toxicity testing. Crit Rev Toxicol 2012; 42:501-48. [PMID: 22582993 PMCID: PMC3423873 DOI: 10.3109/10408444.2012.682115] [Citation(s) in RCA: 248] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 03/26/2012] [Accepted: 03/30/2012] [Indexed: 02/07/2023]
Abstract
Prediction of chemical-induced hepatotoxicity in humans from in vitro data continues to be a significant challenge for the pharmaceutical and chemical industries. Generally, conventional in vitro hepatic model systems (i.e. 2-D static monocultures of primary or immortalized hepatocytes) are limited by their inability to maintain histotypic and phenotypic characteristics over time in culture, including stable expression of clearance and bioactivation pathways, as well as complex adaptive responses to chemical exposure. These systems are less than ideal for longer-term toxicity evaluations and elucidation of key cellular and molecular events involved in primary and secondary adaptation to chemical exposure, or for identification of important mediators of inflammation, proliferation and apoptosis. Progress in implementing a more effective strategy for in vitro-in vivo extrapolation and human risk assessment depends on significant advances in tissue culture technology and increasing their level of biological complexity. This article describes the current and ongoing need for more relevant, organotypic in vitro surrogate systems of human liver and recent efforts to recreate the multicellular architecture and hemodynamic properties of the liver using novel culture platforms. As these systems become more widely used for chemical and drug toxicity testing, there will be a corresponding need to establish standardized testing conditions, endpoint analyses and acceptance criteria. In the future, a balanced approach between sample throughput and biological relevance should provide better in vitro tools that are complementary with animal testing and assist in conducting more predictive human risk assessment.
Collapse
Affiliation(s)
- Edward L LeCluyse
- The Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, NC, USA.
| | | | | | | |
Collapse
|
43
|
Pérez C, Dastot-Le Moal F, Collot N, Legendre M, Abadie I, Bertrand AM, Amselem S, Sobrier ML. Screening of LHX2 in patients presenting growth retardation with posterior pituitary and ocular abnormalities. Eur J Endocrinol 2012; 167:85-91. [PMID: 22535646 DOI: 10.1530/eje-12-0026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND In humans, pituitary hormone deficiency may be part of a syndrome including extra-pituitary defects like ocular abnormalities. Very few genes have been linked to this particular phenotype. In the mouse, Lhx2, which encodes a member of the LIM (Lin-11, Isl-1, and Mec-3) class of homeodomain proteins, was shown to be expressed during early development in the posterior pituitary, eye, and liver, and its expression persists in adulthood in the central nervous system Lhx2(-/-) mice display absence of posterior pituitary and intermediate lobes, malformation of the anterior lobe, anophthalmia, and they die from anemia. METHODS We tested the implication of the LHX2 gene in patients presenting pituitary hormone deficiency associated with ectopic or nonvisible posterior pituitary and developmental ocular defects. A cohort of 59 patients, including two familial cases, was studied. Direct sequencing of the LHX2 coding sequence and intron/exon boundaries was performed. LHX2 transcriptional activity on several pituitary promoters (AGSU, PRL, POU1F1, and TSHB) was tested in vitro. RESULTS Six heterozygous sequence variations were identified, among which two are novel missense changes (p.Ala203Thr and p.Val333Met). In vitro, LHX2 activates transcription of TSHB, PRL, and POU1F1 promoters in the HEK293 cell line. A synergistic action of POU1F1 and LHX2 was also shown on these promoters. The two missense variations were tested and no significant difference was observed, leading to the conclusion that they are not deleterious. CONCLUSIONS These results suggest that if LHX2 is involved in pituitary hormone deficiency associated with posterior pituitary and ocular defects, it would be a rare cause of this disease condition.
Collapse
Affiliation(s)
- Christelle Pérez
- Inserm U.933, Hôpital Armand-Trousseau, Université Pierre et Marie Curie-Paris 6, 75571 Paris Cedex 12, France
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Hepatic stellate cells (HSCs) are recognized as a major player in liver fibrogenesis. Upon liver injury, HSCs differentiate into myofibroblasts and participate in progression of fibrosis and cirrhosis. Additional cell types such as resident liver fibroblasts/myofibroblasts or bone marrow cells are also known to generate myofibroblasts. One of the major obstacles to understanding the mechanism of liver fibrogenesis is the lack of knowledge regarding the developmental origin of HSCs and other liver mesenchymal cells. Recent cell lineage analyses demonstrate that HSCs are derived from mesoderm during liver development. MesP1-expressing mesoderm gives rise to the septum transversum mesenchyme before liver formation and then to the liver mesothelium and mesenchymal cells, including HSCs and perivascular mesenchymal cells around the veins during liver development. During the growth of embryonic liver, the mesothelium, consisting of mesothelial cells and submesothelial cells, migrates inward from the liver surface and gives rise to HSCs and perivascular mesenchymal cells, including portal fibroblasts, smooth muscle cells around the portal vein, and fibroblasts around the central vein. Cell lineage analyses indicate that mesothelial cells are HSC progenitor cells capable of differentiating into HSCs and other liver mesenchymal cells during liver development.
Collapse
Affiliation(s)
- Kinji Asahina
- Southern California Research Center for ALPD and Cirrhosis and Department of Pathology, Keck School of Medicine of the University of Southern California
| |
Collapse
|
45
|
Zheng Q, Zhao Y. The diverse biofunctions of LIM domain proteins: determined by subcellular localization and protein-protein interaction. Biol Cell 2012; 99:489-502. [PMID: 17696879 DOI: 10.1042/bc20060126] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The LIM domain is a cysteine- and histidine-rich motif that has been proposed to direct protein-protein interactions. A diverse group of proteins containing LIM domains have been identified, which display various functions including gene regulation and cell fate determination, tumour formation and cytoskeleton organization. LIM domain proteins are distributed in both the nucleus and the cytoplasm, and they exert their functions through interactions with various protein partners.
Collapse
Affiliation(s)
- Quanhui Zheng
- Transplantation Biology Research Division, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | |
Collapse
|
46
|
Kato T, Ishikawa A, Yoshida S, Sano Y, Kitahara K, Nakayama M, Susa T, Kato Y. Molecular cloning of LIM homeodomain transcription factor Lhx2 as a transcription factor of porcine follicle-stimulating hormone beta subunit (FSHβ) gene. J Reprod Dev 2011; 58:147-55. [PMID: 22134063 DOI: 10.1262/jrd.11-099s] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We cloned the LIM-homeodomain protein LHX2 as a transcription factor for the porcine follicle-stimulating hormone β subunit gene (Fshβ) by the Yeast One-Hybrid Cloning System using the upstream region of -852/-746 bases (b) from the transcription start site, called Fd2, as a bait sequence. The reporter assay in LβT2 and CHO cells revealed the presence of an LHX2-responsive region other than Fd2. A potential LHX2 binding sequence was confirmed as AATTAAT containing a consensus homeodomain binding core sequence AATT by Systematic Evolution of Ligands by Exponential Enrichment analysis. DNase I footprinting demonstrated three AATTAAT sequences located at regions -835/-829, -818/-812 and -806/-800 b in the Fd2 region and 12 binding sites in the distal and proximal regions mostly containing an AATT-core sequence. RT-PCR analysis of Lhx2 expression during porcine fetal and postnatal pituitary development showed a gradual increase from fetal day (f) 40 to postnatal day (p) 8 followed by a slight decrease to p230, suggesting that LHX2 may play its role largely in the late fetal and postnatal periods. The analyses of Lhx2 expression in pituitary tumor-derived cell lines showed their expressions in cell lines including αT31, LβT2 and others. Since LHX2 was previously identified as a transcription factor for Cga and the in vitro experiments in the present study suggested that LHX2 regulated the expression of Fshβ, it is possible that LHX2 controls the synthesis of FSH at the transcription level.
Collapse
Affiliation(s)
- Takako Kato
- Institute of Reproduction and Endocrinology, Meiji University, Kanagawa 214-8571, Japan
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Lee AP, Brenner S, Venkatesh B. Mouse transgenesis identifies conserved functional enhancers and cis-regulatory motif in the vertebrate LIM homeobox gene Lhx2 locus. PLoS One 2011; 6:e20088. [PMID: 21629789 PMCID: PMC3100342 DOI: 10.1371/journal.pone.0020088] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 04/17/2011] [Indexed: 12/03/2022] Open
Abstract
The vertebrate Lhx2 is a member of the LIM homeobox family of transcription factors. It is essential for the normal development of the forebrain, eye, olfactory system and liver as well for the differentiation of lymphoid cells. However, despite the highly restricted spatio-temporal expression pattern of Lhx2, nothing is known about its transcriptional regulation. In mammals and chicken, Crb2, Dennd1a and Lhx2 constitute a conserved linkage block, while the intervening Dennd1a is lost in the fugu Lhx2 locus. To identify functional enhancers of Lhx2, we predicted conserved noncoding elements (CNEs) in the human, mouse and fugu Crb2-Lhx2 loci and assayed their function in transgenic mouse at E11.5. Four of the eight CNE constructs tested functioned as tissue-specific enhancers in specific regions of the central nervous system and the dorsal root ganglia (DRG), recapitulating partial and overlapping expression patterns of Lhx2 and Crb2 genes. There was considerable overlap in the expression domains of the CNEs, which suggests that the CNEs are either redundant enhancers or regulating different genes in the locus. Using a large set of CNEs (810 CNEs) associated with transcription factor-encoding genes that express predominantly in the central nervous system, we predicted four over-represented 8-mer motifs that are likely to be associated with expression in the central nervous system. Mutation of one of them in a CNE that drove reporter expression in the neural tube and DRG abolished expression in both domains indicating that this motif is essential for expression in these domains. The failure of the four functional enhancers to recapitulate the complete expression pattern of Lhx2 at E11.5 indicates that there must be other Lhx2 enhancers that are either located outside the region investigated or divergent in mammals and fishes. Other approaches such as sequence comparison between multiple mammals are required to identify and characterize such enhancers.
Collapse
Affiliation(s)
- Alison P. Lee
- Comparative Genomics Laboratory, Institute of Molecular and Cell Biology,
A*STAR (Agency for Science, Technology and Research), Singapore,
Singapore
| | - Sydney Brenner
- Comparative Genomics Laboratory, Institute of Molecular and Cell Biology,
A*STAR (Agency for Science, Technology and Research), Singapore,
Singapore
| | - Byrappa Venkatesh
- Comparative Genomics Laboratory, Institute of Molecular and Cell Biology,
A*STAR (Agency for Science, Technology and Research), Singapore,
Singapore
| |
Collapse
|
48
|
Hernandez-Gea V, Friedman SL. Pathogenesis of liver fibrosis. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2011; 6:425-56. [PMID: 21073339 DOI: 10.1146/annurev-pathol-011110-130246] [Citation(s) in RCA: 1360] [Impact Index Per Article: 97.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Liver fibrosis is a major cause of morbidity and mortality worldwide due to chronic viral hepatitis and, more recently, from fatty liver disease associated with obesity. Hepatic stellate cell activation represents a critical event in fibrosis because these cells become the primary source of extracellular matrix in liver upon injury. Use of cell-culture and animal models has expanded our understanding of the mechanisms underlying stellate cell activation and has shed new light on genetic regulation, the contribution of immune signaling, and the potential reversibility of the disease. As pathways of fibrogenesis are increasingly clarified, the key challenge will be translating new advances into the development of antifibrotic therapies for patients with chronic liver disease.
Collapse
|
49
|
Lee UE, Friedman SL. Mechanisms of hepatic fibrogenesis. BEST PRACTICE & RESEARCH. CLINICAL GASTROENTEROLOGY 2011. [PMID: 21497738 DOI: 10.1016/j.bpg.2011.02.005.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/01/2022]
Abstract
Multiple etiologies of liver disease lead to liver fibrosis through integrated signaling networks that regulate the deposition of extracellular matrix. This cascade of responses drives the activation of hepatic stellate cells (HSCs) into a myofibroblast-like phenotype that is contractile, proliferative and fibrogenic. Collagen and other extracellular matrix (ECM) components are deposited as the liver generates a wound-healing response to encapsulate injury. Sustained fibrogenesis leads to cirrhosis, characterized by a distortion of the liver parenchyma and vascular architecture. Uncovering the intricate mechanisms that underlie liver fibrogenesis forms the basis for efforts to develop targeted therapies to reverse the fibrotic response and improve the outcomes of patients with chronic liver disease.
Collapse
Affiliation(s)
- Ursula E Lee
- Division of Liver Diseases, Mount Sinai School of Medicine, 1425 Madison Ave, Room 11-76, New York, NY 10029, USA.
| | | |
Collapse
|
50
|
Abstract
Multiple etiologies of liver disease lead to liver fibrosis through integrated signaling networks that regulate the deposition of extracellular matrix. This cascade of responses drives the activation of hepatic stellate cells (HSCs) into a myofibroblast-like phenotype that is contractile, proliferative and fibrogenic. Collagen and other extracellular matrix (ECM) components are deposited as the liver generates a wound-healing response to encapsulate injury. Sustained fibrogenesis leads to cirrhosis, characterized by a distortion of the liver parenchyma and vascular architecture. Uncovering the intricate mechanisms that underlie liver fibrogenesis forms the basis for efforts to develop targeted therapies to reverse the fibrotic response and improve the outcomes of patients with chronic liver disease.
Collapse
Affiliation(s)
- Ursula E Lee
- Division of Liver Diseases, Mount Sinai School of Medicine, 1425 Madison Ave, Room 11-76, New York, NY 10029, USA.
| | | |
Collapse
|