1
|
Lee D, Shahandeh MP, Abuin L, Benton R. Comparative single-cell transcriptomic atlases of drosophilid brains suggest glial evolution during ecological adaptation. PLoS Biol 2025; 23:e3003120. [PMID: 40299832 PMCID: PMC12040179 DOI: 10.1371/journal.pbio.3003120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/17/2025] [Indexed: 05/01/2025] Open
Abstract
To explore how brains change upon species evolution, we generated single-cell transcriptomic atlases of the central brains of three closely related but ecologically distinct drosophilids: the generalists Drosophila melanogaster and Drosophila simulans, and the noni fruit specialist Drosophila sechellia. The global cellular composition of these species' brains is well-conserved, but we predicted a few cell types with different frequencies, notably perineurial glia of the blood-brain barrier, which we validate in vivo. Gene expression analysis revealed that distinct cell types evolve at different rates and patterns, with glial populations exhibiting the greatest divergence between species. Compared to the D. melanogaster brain, cellular composition and gene expression patterns are more divergent in D. sechellia than in D. simulans-despite their similar phylogenetic distance from D. melanogaster-indicating that the specialization of D. sechellia is reflected in the structure and function of its brain. Expression changes in D. sechellia include several metabolic signaling genes, suggestive of adaptations to its novel source of nutrition. Additional single-cell transcriptomic analysis on D. sechellia revealed genes and cell types responsive to dietary supplement with noni, pointing to glia as sites for both physiological and genetic adaptation to this fruit. Our atlases represent the first comparative datasets for "whole" central brains and provide a comprehensive foundation for studying the evolvability of nervous systems in a well-defined phylogenetic and ecological framework.
Collapse
Affiliation(s)
- Daehan Lee
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Department of Biological Sciences, College of Natural Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Michael P. Shahandeh
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Department of Biology, Hofstra University, Hempstead, New York, United States of America
| | - Liliane Abuin
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
2
|
Banerjee TD, Zhang L, Monteiro A. Mapping Gene Expression in Whole Larval Brains of Bicyclus anynana Butterflies. Methods Protoc 2025; 8:31. [PMID: 40126249 PMCID: PMC11932290 DOI: 10.3390/mps8020031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/09/2025] [Accepted: 03/11/2025] [Indexed: 03/25/2025] Open
Abstract
Butterfly larvae display intricate cognitive capacities and behaviors, but relatively little is known about how those behaviors alter their brains at the molecular level. Here, we optimized a hybridization chain reaction 3.0 (HCR v3.0) protocol to visualize the expression of multiple RNA molecules in fixed larval brains of the African butterfly Bicyclus anynana. We optimized the polyacrylamide gel mounting, fixation, and sample permeabilization steps, and mapped the expression domains of ten genes in whole larval brain tissue at single-cell resolution. The genes included optomotor blind (omb), yellow-like, zinc finger protein SNAI2-like (SNAI2), weary (wry), extradenticle (exd), Synapsin, Distal-less (Dll), bric-à-brac 1 (bab1), dachshund (dac), and acetyl coenzyme A acetyltransferase B (AcatB). This method can be used alongside single-cell sequencing to visualize the spatial location of brain cells that change in gene expression or splicing patterns in response to specific behaviors or cognitive experiences.
Collapse
Affiliation(s)
| | | | - Antónia Monteiro
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore;
| |
Collapse
|
3
|
Ordoñez JF, Wollesen T. Unfolding the ventral nerve center of chaetognaths. Neural Dev 2024; 19:5. [PMID: 38720353 PMCID: PMC11078758 DOI: 10.1186/s13064-024-00182-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Chaetognaths are a clade of marine worm-like invertebrates with a heavily debated phylogenetic position. Their nervous system superficially resembles the protostome type, however, knowledge regarding the molecular processes involved in neurogenesis is lacking. To better understand these processes, we examined the expression profiles of marker genes involved in bilaterian neurogenesis during post-embryonic stages of Spadella cephaloptera. We also investigated whether the transcription factor encoding genes involved in neural patterning are regionally expressed in a staggered fashion along the mediolateral axis of the nerve cord as it has been previously demonstrated in selected vertebrate, insect, and annelid models. METHODS The expression patterns of genes involved in neural differentiation (elav), neural patterning (foxA, nkx2.2, pax6, pax3/7, and msx), and neuronal function (ChAT and VAChT) were examined in S. cephaloptera hatchlings and early juveniles using whole-mount fluorescent in situ hybridization and confocal microscopy. RESULTS The Sce-elav + profile of S. cephaloptera hatchlings reveals that, within 24 h of post-embryonic development, the developing neural territories are not limited to the regions previously ascribed to the cerebral ganglion, the ventral nerve center (VNC), and the sensory organs, but also extend to previously unreported CNS domains that likely contribute to the ventral cephalic ganglia. In general, the neural patterning genes are expressed in distinct neural subpopulations of the cerebral ganglion and the VNC in hatchlings, eventually becoming broadly expressed with reduced intensity throughout the CNS in early juveniles. Neural patterning gene expression domains are also present outside the CNS, including the digestive tract and sensory organs. ChAT and VAChT domains within the CNS are predominantly observed in specific subpopulations of the VNC territory adjacent to the ventral longitudinal muscles in hatchlings. CONCLUSIONS The observed spatial expression domains of bilaterian neural marker gene homologs in S. cephaloptera suggest evolutionarily conserved roles in neurogenesis for these genes among bilaterians. Patterning genes expressed in distinct regions of the VNC do not show a staggered medial-to-lateral expression profile directly superimposable to other bilaterian models. Only when the VNC is conceptually laterally unfolded from the longitudinal muscle into a flat structure, an expression pattern bearing resemblance to the proposed conserved bilaterian mediolateral regionalization becomes noticeable. This finding supports the idea of an ancestral mediolateral patterning of the trunk nervous system in bilaterians.
Collapse
Affiliation(s)
- June F Ordoñez
- Unit for Integrative Zoology, Department of Evolutionary Biology, University of Vienna, 1030, Vienna, Austria
| | - Tim Wollesen
- Unit for Integrative Zoology, Department of Evolutionary Biology, University of Vienna, 1030, Vienna, Austria.
| |
Collapse
|
4
|
Fisher J, Verhagen M, Long Z, Moissidis M, Yan Y, He C, Wang J, Micoli E, Alastruey CM, Moors R, Marín O, Mi D, Lim L. Cortical somatostatin long-range projection neurons and interneurons exhibit divergent developmental trajectories. Neuron 2024; 112:558-573.e8. [PMID: 38086373 DOI: 10.1016/j.neuron.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 08/22/2023] [Accepted: 11/10/2023] [Indexed: 02/24/2024]
Abstract
The mammalian cerebral cortex contains an extraordinary diversity of cell types that emerge by implementing different developmental programs. Delineating when and how cellular diversification occurs is particularly challenging for cortical inhibitory neurons because they represent a small proportion of all cortical cells and have a protracted development. Here, we combine single-cell RNA sequencing and spatial transcriptomics to characterize the emergence of neuronal diversity among somatostatin-expressing (SST+) cells in mice. We found that SST+ inhibitory neurons segregate during embryonic stages into long-range projection (LRP) neurons and two types of interneurons, Martinotti cells and non-Martinotti cells, following distinct developmental trajectories. Two main subtypes of LRP neurons and several subtypes of interneurons are readily distinguishable in the embryo, although interneuron diversity is likely refined during early postnatal life. Our results suggest that the timing for cellular diversification is unique for different subtypes of SST+ neurons and particularly divergent for LRP neurons and interneurons.
Collapse
Affiliation(s)
- Josephine Fisher
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE1 1UL London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, SE1 1UL, London, UK
| | - Marieke Verhagen
- VIB Center for Brain and Disease, 3000 Leuven, Belgium; Department of Neurosciences, Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium
| | - Zhen Long
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Monika Moissidis
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE1 1UL London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, SE1 1UL, London, UK
| | - Yiming Yan
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chenyi He
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jingyu Wang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Elia Micoli
- VIB Center for Brain and Disease, 3000 Leuven, Belgium; Department of Neurosciences, Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium
| | - Clara Milían Alastruey
- VIB Center for Brain and Disease, 3000 Leuven, Belgium; Department of Neurosciences, Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium
| | - Rani Moors
- VIB Center for Brain and Disease, 3000 Leuven, Belgium; Department of Neurosciences, Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium
| | - Oscar Marín
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE1 1UL London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, SE1 1UL, London, UK.
| | - Da Mi
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Lynette Lim
- VIB Center for Brain and Disease, 3000 Leuven, Belgium; Department of Neurosciences, Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
5
|
Yang Y, Li C, Chen Z, Zhang Y, Tian Q, Sun M, Zhang S, Yu M, Wang G. An intellectual disability-related MED23 mutation dysregulates gene expression by altering chromatin conformation and enhancer activities. Nucleic Acids Res 2023; 51:2137-2150. [PMID: 36718943 PMCID: PMC10018335 DOI: 10.1093/nar/gkad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/21/2022] [Accepted: 01/12/2023] [Indexed: 02/01/2023] Open
Abstract
Transcriptional Mediator controls diverse gene programs for various developmental and pathological processes. The human Mediator MED23/R617Q mutation was reported in a familial intellectual disability (ID) disorder, although the underlying mechanisms remain poorly understood. Constructed by gene editing, the Med23/R617Q knock-in mutant mice exhibited embryonic lethality due to the largely reduced Med23/R617Q protein level, but the R617Q mutation in HEK293T cells didn't change its expression and incorporation into Mediator Complex. RNA-seq revealed that MED23/R617Q mutation disturbed gene expression, related to neural development, learning and memory. Specifically, R617Q mutation reduced the MED23-dependent activities of ELK1 and E1A, but in contrast, upregulated the MAPK/ELK1-driven early immediate genes (IEGs) JUN and FOS. ChIP-seq and Hi-C revealed that the MED23 R617Q mutation reprogramed a subset of enhancers and local chromatin interactions, which correlated well with the corresponding gene expression. Importantly, the enhancers and chromatin interactions surrounding IEGs were unchanged by the R617Q mutation, but DACH1, an upstream repressor of IEGs, showed reduced enhancer-promoter interactions and decreased expression in mutant cells, thus relieving its inhibition to the intellectual-related IEGs. Overall, unraveling the MED23-DACH1-IEG axis provides a mechanistic explanation for the effects of the MED23/R617Q mutation on gene dysregulation and inherited ID.
Collapse
Affiliation(s)
| | | | - Ziyin Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Yiyang Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Qing Tian
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Meiling Sun
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Shuai Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Miao Yu
- Correspondence may also be addressed to Miao Yu.
| | - Gang Wang
- To whom correspondence should be addressed. Tel: +86 021 31246766;
| |
Collapse
|
6
|
Palmateer CM, Artikis C, Brovero SG, Friedman B, Gresham A, Arbeitman MN. Single-cell transcriptome profiles of Drosophila fruitless-expressing neurons from both sexes. eLife 2023; 12:e78511. [PMID: 36724009 PMCID: PMC9891730 DOI: 10.7554/elife.78511] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 01/08/2023] [Indexed: 02/02/2023] Open
Abstract
Drosophila melanogaster reproductive behaviors are orchestrated by fruitless neurons. We performed single-cell RNA-sequencing on pupal neurons that produce sex-specifically spliced fru transcripts, the fru P1-expressing neurons. Uniform Manifold Approximation and Projection (UMAP) with clustering generates an atlas containing 113 clusters. While the male and female neurons overlap in UMAP space, more than half the clusters have sex differences in neuron number, and nearly all clusters display sex-differential expression. Based on an examination of enriched marker genes, we annotate clusters as circadian clock neurons, mushroom body Kenyon cell neurons, neurotransmitter- and/or neuropeptide-producing, and those that express doublesex. Marker gene analyses also show that genes that encode members of the immunoglobulin superfamily of cell adhesion molecules, transcription factors, neuropeptides, neuropeptide receptors, and Wnts have unique patterns of enriched expression across the clusters. In vivo spatial gene expression links to the clusters are examined. A functional analysis of fru P1 circadian neurons shows they have dimorphic roles in activity and period length. Given that most clusters are comprised of male and female neurons indicates that the sexes have fru P1 neurons with common gene expression programs. Sex-specific expression is overlaid on this program, to build the potential for vastly different sex-specific behaviors.
Collapse
Affiliation(s)
- Colleen M Palmateer
- Department of Biomedical Sciences, Florida State University, College of MedicineTallahasseeUnited States
| | - Catherina Artikis
- Department of Biomedical Sciences, Florida State University, College of MedicineTallahasseeUnited States
| | - Savannah G Brovero
- Department of Biomedical Sciences, Florida State University, College of MedicineTallahasseeUnited States
| | - Benjamin Friedman
- Department of Biomedical Sciences, Florida State University, College of MedicineTallahasseeUnited States
| | - Alexis Gresham
- Department of Biomedical Sciences, Florida State University, College of MedicineTallahasseeUnited States
| | - Michelle N Arbeitman
- Department of Biomedical Sciences, Florida State University, College of MedicineTallahasseeUnited States
- Program of Neuroscience, Florida State UniversityTallahasseeUnited States
| |
Collapse
|
7
|
Lin S. The making of the Drosophila mushroom body. Front Physiol 2023; 14:1091248. [PMID: 36711013 PMCID: PMC9880076 DOI: 10.3389/fphys.2023.1091248] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/02/2023] [Indexed: 01/14/2023] Open
Abstract
The mushroom body (MB) is a computational center in the Drosophila brain. The intricate neural circuits of the mushroom body enable it to store associative memories and process sensory and internal state information. The mushroom body is composed of diverse types of neurons that are precisely assembled during development. Tremendous efforts have been made to unravel the molecular and cellular mechanisms that build the mushroom body. However, we are still at the beginning of this challenging quest, with many key aspects of mushroom body assembly remaining unexplored. In this review, I provide an in-depth overview of our current understanding of mushroom body development and pertinent knowledge gaps.
Collapse
|
8
|
Chang Y, Yang B, Zhang Y, Dong C, Liu L, Zhao X, Wang G. Identification of sex-biased and neurodevelopment genes via brain transcriptome in Ostrinia furnacalis. Front Physiol 2022; 13:953538. [PMID: 36003649 PMCID: PMC9393524 DOI: 10.3389/fphys.2022.953538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
Insect brains play important roles in the regulation of sex-biased behaviors such as mating and oviposition. The neural structure and function of brain differences between males and females have been identified, in which the antenna lobes (AL) showed the most discrepancy, however, the whole repertoire of the genes expressed in the brains and the molecular mechanism of neural signaling and structural development are still unclear. In this study, high-throughput transcriptome analysis of male and female brains was carried on in the Asia corn borer, Ostrinia furnacalis, and a total of 39.23 Gb data and 34,092 unigenes were obtained. Among them, 276 genes displayed sex-biased expression by DEG analysis, of which 125 genes were highly expressed in the males and 151 genes were highly expressed in the females. Besides, by homology analysis against genes that have been confirmed to be related to brain neurodevelopment, a total of 24 candidate genes were identified in O. furnacalis. In addition, to further screen the core genes that may be important for sex-biased nerve signaling and neurodevelopment, protein-protein interaction networks were constructed for the sex-biased genes and neurodevelopment genes. We identified 10 (Mhc, Mlc1, Mlc2, Prm, Mf, wupA, TpnC25D, fln, l(2)efl, and Act5C), 11 (PPO2, GNBP3, Spn77Ba, Ppn, yellow-d2, PGRP-LB, PGRP-SD, PGRP-SC2, Hml, Cg25C, and vkg) and 8 (dac, wg, hh, ci, run, Lim1, Rbp9, and Bx) core hub genes that may be related to brain neural development from male-biased, female-biased, and neurodevelopment gene groups. Our results provide a reference for further analysis of the dimorphism of male and female brain structures in agricultural pests.
Collapse
Affiliation(s)
- Yajun Chang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Bin Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Guirong Wang, ; Bin Yang,
| | - Yu Zhang
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Chenxi Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xincheng Zhao
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Guirong Wang, ; Bin Yang,
| |
Collapse
|
9
|
Shields EJ, Sorida M, Sheng L, Sieriebriennikov B, Ding L, Bonasio R. Genome annotation with long RNA reads reveals new patterns of gene expression and improves single-cell analyses in an ant brain. BMC Biol 2021; 19:254. [PMID: 34838024 PMCID: PMC8626913 DOI: 10.1186/s12915-021-01188-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 11/10/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Functional genomic analyses rely on high-quality genome assemblies and annotations. Highly contiguous genome assemblies have become available for a variety of species, but accurate and complete annotation of gene models, inclusive of alternative splice isoforms and transcription start and termination sites, remains difficult with traditional approaches. RESULTS Here, we utilized full-length isoform sequencing (Iso-Seq), a long-read RNA sequencing technology, to obtain a comprehensive annotation of the transcriptome of the ant Harpegnathos saltator. The improved genome annotations include additional splice isoforms and extended 3' untranslated regions for more than 4000 genes. Reanalysis of RNA-seq experiments using these annotations revealed several genes with caste-specific differential expression and tissue- or caste-specific splicing patterns that were missed in previous analyses. The extended 3' untranslated regions afforded great improvements in the analysis of existing single-cell RNA-seq data, resulting in the recovery of the transcriptomes of 18% more cells. The deeper single-cell transcriptomes obtained with these new annotations allowed us to identify additional markers for several cell types in the ant brain, as well as genes differentially expressed across castes in specific cell types. CONCLUSIONS Our results demonstrate that Iso-Seq is an efficient and effective approach to improve genome annotations and maximize the amount of information that can be obtained from existing and future genomic datasets in Harpegnathos and other organisms.
Collapse
Affiliation(s)
- Emily J Shields
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Urology and Institute of Neuropathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Masato Sorida
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Lihong Sheng
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Bogdan Sieriebriennikov
- Department of Biology, New York University, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Long Ding
- Department of Biology, New York University, New York, NY, USA
| | - Roberto Bonasio
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Dapergola E, Menegazzi P, Raabe T, Hovhanyan A. Light Stimuli and Circadian Clock Affect Neural Development in Drosophila melanogaster. Front Cell Dev Biol 2021; 9:595754. [PMID: 33763414 PMCID: PMC7982892 DOI: 10.3389/fcell.2021.595754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 02/02/2021] [Indexed: 11/13/2022] Open
Abstract
Endogenous clocks enable organisms to adapt cellular processes, physiology, and behavior to daily variation in environmental conditions. Metabolic processes in cyanobacteria to humans are under the influence of the circadian clock, and dysregulation of the circadian clock causes metabolic disorders. In mouse and Drosophila, the circadian clock influences translation of factors involved in ribosome biogenesis and synchronizes protein synthesis. Notably, nutrition signals are mediated by the insulin receptor/target of rapamycin (InR/TOR) pathways to regulate cellular metabolism and growth. However, the role of the circadian clock in Drosophila brain development and the potential impact of clock impairment on neural circuit formation and function is less understood. Here we demonstrate that changes in light stimuli or disruption of the molecular circadian clock cause a defect in neural stem cell growth and proliferation. Moreover, we show that disturbed cell growth and proliferation are accompanied by reduced nucleolar size indicative of impaired ribosomal biogenesis. Further, we define that light and clock independently affect the InR/TOR growth regulatory pathway due to the effect on regulators of protein biosynthesis. Altogether, these data suggest that alterations in InR/TOR signaling induced by changes in light conditions or disruption of the molecular clock have an impact on growth and proliferation properties of neural stem cells in the developing Drosophila brain.
Collapse
Affiliation(s)
- Eleni Dapergola
- Institute of Medical Radiation and Cell Research, Biozentrum, University of Würzburg, Würzburg, Germany
| | - Pamela Menegazzi
- Neurobiology and Genetics, Theodor-Boveri Institute, Biozentrum, University of Würzburg, Würzburg, Germany
| | - Thomas Raabe
- Institute of Medical Radiation and Cell Research, Biozentrum, University of Würzburg, Würzburg, Germany
| | - Anna Hovhanyan
- Institute of Medical Radiation and Cell Research, Biozentrum, University of Würzburg, Würzburg, Germany
| |
Collapse
|
11
|
Kolb D, Kaspar P, Klöppel C, Walldorf U. The Drosophila homeodomain transcription factor Homeobrain is involved in the formation of the embryonic protocerebrum and the supraesophageal brain commissure. Cells Dev 2021; 165:203657. [PMID: 33993980 DOI: 10.1016/j.cdev.2021.203657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/06/2020] [Accepted: 12/09/2020] [Indexed: 11/28/2022]
Abstract
During the embryonic development of Drosophila melanogaster many transcriptional activators are involved in the formation of the embryonic brain. In our study we show that the transcription factor Homeobrain (Hbn), a member of the 57B homeobox gene cluster, is an additional factor involved in the formation of the embryonic Drosophila brain. Using a Hbn antibody and specific cell type markers a detailed expression analysis during embryonic brain development was conducted. We show that Hbn is expressed in several regions in the protocerebrum, including fibre tract founder cells closely associated with the supraesophageal brain commissure and also in the mushroom bodies. During the formation of the supraesophageal commissure, Hbn and FasII-positive founder cells build an interhemispheric bridge priming the commissure and thereby linking both brain hemispheres. The Hbn expression is restricted to neural but not glial cells in the embryonic brain. In a mutagenesis screen we generated two mutant hbn alleles that both show embryonic lethality. The phenotype of the hbn mutant alleles is characterized by a reduction of the protocerebrum, a loss of the supraesophageal commissure and mushroom body progenitors and also by a dislocation of the optic lobes. Extensive apoptosis correlates with the impaired formation of the embryonic protocerebrum and the supraesophageal commissure. Our results show that Hbn is another important factor for embryonic brain development in Drosophila melanogaster.
Collapse
Affiliation(s)
- Dieter Kolb
- Developmental Biology, Saarland University, Building 61, 66421 Homburg/Saar, Germany
| | - Petra Kaspar
- Developmental Biology, Saarland University, Building 61, 66421 Homburg/Saar, Germany
| | - Christine Klöppel
- Developmental Biology, Saarland University, Building 61, 66421 Homburg/Saar, Germany
| | - Uwe Walldorf
- Developmental Biology, Saarland University, Building 61, 66421 Homburg/Saar, Germany.
| |
Collapse
|
12
|
Game M, Smith FW. Loss of intermediate regions of perpendicular body axes contributed to miniaturization of tardigrades. Proc Biol Sci 2020; 287:20201135. [PMID: 33043863 DOI: 10.1098/rspb.2020.1135] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Tardigrades have a miniaturized body plan. Miniaturization in tardigrades is associated with the loss of several organ systems and an intermediate region of their anteroposterior (AP) axis. However, how miniaturization has affected tardigrade legs is unclear. In arthropods and in onychophorans, the leg gap genes are expressed in regionalized proximodistal (PD) patterns in the legs. Functional studies indicate that these genes regulate growth in their respective expression domains and establish PD identities, partly through mutually antagonistic regulatory interactions. Here, we investigated the expression patterns of tardigrade orthologs of the leg gap genes. Rather than being restricted to a proximal leg region, as in arthropods and onychophorans, we detected coexpression of orthologues of homothorax and extradenticle broadly across the legs of the first three trunk segments in the tardigrade Hypsibius exemplaris. We could not identify a dachshund orthologue in tardigrade genomes, a gene that is expressed in an intermediate region of developing legs in arthropods and onychophorans, suggesting that this gene was lost in the tardigrade lineage. We detected Distal-less expression broadly across all developing leg buds in H. exemplaris embryos, unlike in arthropods and onychophorans, in which it exhibits a distally restricted expression domain. The broad expression patterns of the remaining leg gap genes in H. exemplaris legs may reflect the loss of dachshund and the accompanying loss of an intermediate region of the legs in the tardigrade lineage. We propose that the loss of intermediate regions of both the AP and PD body axes contributed to miniaturization of Tardigrada.
Collapse
Affiliation(s)
- Mandy Game
- Biology Department, University of North Florida, USA
| | - Frank W Smith
- Biology Department, University of North Florida, USA
| |
Collapse
|
13
|
Castiglioni V, Faedo A, Onorati M, Bocchi VD, Li Z, Iennaco R, Vuono R, Bulfamante GP, Muzio L, Martino G, Sestan N, Barker RA, Cattaneo E. Dynamic and Cell-Specific DACH1 Expression in Human Neocortical and Striatal Development. Cereb Cortex 2020; 29:2115-2124. [PMID: 29688344 DOI: 10.1093/cercor/bhy092] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 04/12/2018] [Indexed: 02/06/2023] Open
Abstract
DACH1 is the human homolog of the Drosophila dachshund gene, which is involved in the development of the eye, nervous system, and limbs in the fly. Here, we systematically investigate DACH1 expression patterns during human neurodevelopment, from 5 to 21 postconceptional weeks. By immunodetection analysis, we found that DACH1 is highly expressed in the proliferating neuroprogenitors of the developing cortical ventricular and subventricular regions, while it is absent in the more differentiated cortical plate. Single-cell global transcriptional analysis revealed that DACH1 is specifically enriched in neuroepithelial and ventricular radial glia cells of the developing human neocortex. Moreover, we describe a previously unreported DACH1 expression in the human striatum, in particular in the striatal medium spiny neurons. This finding qualifies DACH1 as a new striatal projection neuron marker, together with PPP1R1B, BCL11B, and EBF1. We finally compared DACH1 expression profile in human and mouse forebrain, where we observed spatio-temporal similarities in its expression pattern thus providing a precise developmental description of DACH1 in the 2 mammalian species.
Collapse
Affiliation(s)
- Valentina Castiglioni
- Department of Biosciences, Istituto Nazionale di Genetica Molecolare, University of Milan and INGM, Milan, Italy
| | - Andrea Faedo
- Department of Biosciences, Istituto Nazionale di Genetica Molecolare, University of Milan and INGM, Milan, Italy.,Cell Biology Unit, Axxam, Bresso-Milan, Italy
| | - Marco Onorati
- Department of Biosciences, Istituto Nazionale di Genetica Molecolare, University of Milan and INGM, Milan, Italy.,Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, Pisa, Italy.,Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Vittoria Dickinson Bocchi
- Department of Biosciences, Istituto Nazionale di Genetica Molecolare, University of Milan and INGM, Milan, Italy
| | - Zhen Li
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Raffaele Iennaco
- Department of Biosciences, Istituto Nazionale di Genetica Molecolare, University of Milan and INGM, Milan, Italy
| | - Romina Vuono
- Department of Clinical Neuroscience, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Gaetano P Bulfamante
- Unit of Human Pathology and Developmental Pathology, Department of Health Sciences, Università degli Studi di Milano, San Paolo Hospital, Milan, Italy
| | - Luca Muzio
- Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Gianvito Martino
- Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Nenad Sestan
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA.,Department of Genetics, of Psychiatry and of Comparative Medicine, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | - Roger A Barker
- Department of Clinical Neuroscience, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Elena Cattaneo
- Department of Biosciences, Istituto Nazionale di Genetica Molecolare, University of Milan and INGM, Milan, Italy
| |
Collapse
|
14
|
Curt JR, Yaghmaeian Salmani B, Thor S. Anterior CNS expansion driven by brain transcription factors. eLife 2019; 8:45274. [PMID: 31271353 PMCID: PMC6634974 DOI: 10.7554/elife.45274] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 07/03/2019] [Indexed: 02/06/2023] Open
Abstract
During CNS development, there is prominent expansion of the anterior region, the brain. In Drosophila, anterior CNS expansion emerges from three rostral features: (1) increased progenitor cell generation, (2) extended progenitor cell proliferation, (3) more proliferative daughters. We find that tailless (mouse Nr2E1/Tlx), otp/Rx/hbn (Otp/Arx/Rax) and Doc1/2/3 (Tbx2/3/6) are important for brain progenitor generation. These genes, and earmuff (FezF1/2), are also important for subsequent progenitor and/or daughter cell proliferation in the brain. Brain TF co-misexpression can drive brain-profile proliferation in the nerve cord, and can reprogram developing wing discs into brain neural progenitors. Brain TF expression is promoted by the PRC2 complex, acting to keep the brain free of anti-proliferative and repressive action of Hox homeotic genes. Hence, anterior expansion of the Drosophila CNS is mediated by brain TF driven ‘super-generation’ of progenitors, as well as ‘hyper-proliferation’ of progenitor and daughter cells, promoted by PRC2-mediated repression of Hox activity.
Collapse
Affiliation(s)
- Jesús Rodriguez Curt
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping, Sweden
| | | | - Stefan Thor
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping, Sweden.,School of Biomedical Sciences, University of Queensland, Saint Lucia, Australia
| |
Collapse
|
15
|
E93 Integrates Neuroblast Intrinsic State with Developmental Time to Terminate MB Neurogenesis via Autophagy. Curr Biol 2019; 29:750-762.e3. [PMID: 30773368 DOI: 10.1016/j.cub.2019.01.039] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/05/2018] [Accepted: 01/14/2019] [Indexed: 12/17/2022]
Abstract
Most neurogenesis occurs during development, driven by the cell divisions of neural stem cells (NSCs). We use Drosophila to understand how neurogenesis terminates once development is complete, a process critical for neural circuit formation. We identified E93, a steroid-hormone-induced transcription factor that downregulates phosphatidylinositol 3-kinase (PI3K) levels to activate autophagy for elimination of mushroom body (MB) neuroblasts. MB neuroblasts are a subset of Drosophila NSCs that generate neurons important for memory and learning. MB neurogenesis extends into adulthood when E93 is reduced and terminates prematurely when E93 is overexpressed. E93 is expressed in MB neuroblasts during later stages of pupal development only, which includes the time when MB neuroblasts normally terminate their divisions. Cell intrinsic Imp and Syp temporal factors regulate timing of E93 expression in MB neuroblasts, and extrinsic steroid hormone receptor (EcR) activation boosts E93 levels high for termination. Imp inhibits premature expression of E93 in a Syp-dependent manner, and Syp positively regulates E93 to promote neurogenesis termination. Imp and Syp together with E93 form a temporal cassette, which consequently links early developmental neurogenesis with termination. Altogether, E93 functions as a late-acting temporal factor integrating extrinsic hormonal cues linked to developmental timing with neuroblast intrinsic temporal cues to precisely time neurogenesis ending during development.
Collapse
|
16
|
Kazeminasab S, Taskiran II, Fattahi Z, Bazazzadegan N, Hosseini M, Rahimi M, Oladnabi M, Haddadi M, Celik A, Ropers HH, Najmabadi H, Kahrizi K. CNKSR1 gene defect can cause syndromic autosomal recessive intellectual disability. Am J Med Genet B Neuropsychiatr Genet 2018; 177:691-699. [PMID: 30450701 DOI: 10.1002/ajmg.b.32648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The advent of high-throughput sequencing technologies has led to an exponential increase in the identification of novel disease-causing genes in highly heterogeneous diseases. A novel frameshift mutation in CNKSR1 gene was detected by Next-Generation Sequencing (NGS) in an Iranian family with syndromic autosomal recessive intellectual disability (ARID). CNKSR1 encodes a connector enhancer of kinase suppressor of Ras 1, which acts as a scaffold component for receptor tyrosine kinase in mitogen-activated protein kinase (MAPK) cascades. CNKSR1 interacts with proteins which have already been shown to be associated with intellectual disability (ID) in the MAPK signaling pathway and promotes cell migration through RhoA-mediated c-Jun N-terminal kinase (JNK) activation. Lack of CNKSR1 transcripts and protein was observed in lymphoblastoid cells derived from affected patients using qRT-PCR and western blot analysis, respectively. Furthermore, RNAi-mediated knockdown of cnk, the CNKSR1 orthologue in Drosophila melanogaster brain, led to defects in eye and mushroom body (MB) structures. In conclusion, our findings support the possible role of CNKSR1 in brain development which can lead to cognitive impairment.
Collapse
Affiliation(s)
- Somayeh Kazeminasab
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | - Zohreh Fattahi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Niloofar Bazazzadegan
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Masoumeh Hosseini
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Maryam Rahimi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Morteza Oladnabi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mohammad Haddadi
- Department of Biology, Faculty of Science, University of Zabol, Zabol, Iran
| | - Arzu Celik
- Department of Molecular Biology and Genetics, Bogazici University, Istanbul, Turkey
| | - Hans-Hilger Ropers
- Department of Human Molecular Genetics, Max-Planck Institute for Molecular Genetics, Berlin, Germany
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
17
|
Mushroom Body Specific Transcriptome Analysis Reveals Dynamic Regulation of Learning and Memory Genes After Acquisition of Long-Term Courtship Memory in Drosophila. G3-GENES GENOMES GENETICS 2018; 8:3433-3446. [PMID: 30158319 PMCID: PMC6222587 DOI: 10.1534/g3.118.200560] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The formation and recall of long-term memory (LTM) requires neuron activity-induced gene expression. Transcriptome analysis has been used to identify genes that have altered expression after memory acquisition, however, we still have an incomplete picture of the transcriptional changes that are required for LTM formation. The complex spatial and temporal dynamics of memory formation creates significant challenges in defining memory-relevant gene expression changes. The Drosophila mushroom body (MB) is a signaling hub in the insect brain that integrates sensory information to form memories across several different experimental memory paradigms. Here, we performed transcriptome analysis in the MB at two time points after the acquisition of LTM: 1 hr and 24 hr. The MB transcriptome was compared to biologically paired whole head (WH) transcriptomes. In both, we identified more transcript level changes at 1 hr after memory acquisition (WH = 322, MB = 302) than at 24 hr (WH = 23, MB = 20). WH samples showed downregulation of developmental genes and upregulation of sensory response genes. In contrast, MB samples showed vastly different changes in transcripts involved in biological processes that are specifically related to LTM. MB-downregulated genes were highly enriched for metabolic function. MB-upregulated genes were highly enriched for known learning and memory processes, including calcium-mediated neurotransmitter release and cAMP signaling. The neuron activity inducible genes Hr38 and sr were also specifically induced in the MB. These results highlight the importance of sampling time and cell type in capturing biologically relevant transcript level changes involved in learning and memory. Our data suggests that MB cells transiently upregulate known memory-related pathways after memory acquisition and provides a critical frame of reference for further investigation into the role of MB-specific gene regulation in memory.
Collapse
|
18
|
Widmer YF, Fritsch C, Jungo MM, Almeida S, Egger B, Sprecher SG. Multiple neurons encode CrebB dependent appetitive long-term memory in the mushroom body circuit. eLife 2018; 7:39196. [PMID: 30346271 PMCID: PMC6234028 DOI: 10.7554/elife.39196] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/19/2018] [Indexed: 11/28/2022] Open
Abstract
Lasting changes in gene expression are critical for the formation of long-term memories (LTMs), depending on the conserved CrebB transcriptional activator. While requirement of distinct neurons in defined circuits for different learning and memory phases have been studied in detail, only little is known regarding the gene regulatory changes that occur within these neurons. We here use the fruit fly as powerful model system to study the neural circuits of CrebB-dependent appetitive olfactory LTM. We edited the CrebB locus to create a GFP-tagged CrebB conditional knockout allele, allowing us to generate mutant, post-mitotic neurons with high spatial and temporal precision. Investigating CrebB-dependence within the mushroom body (MB) circuit we show that MB α/β and α’/β’ neurons as well as MBON α3, but not in dopaminergic neurons require CrebB for LTM. Thus, transcriptional memory traces occur in different neurons within the same neural circuit. Our brains can store different types of memories. You may have forgotten what you had for lunch yesterday, but still be able to remember a song from your childhood. Short-term memories and long-term memories form via different mechanisms. To establish long-term memories, the brain must produce new proteins, many of which are common to all members of the animal kingdom. By studying these proteins in organisms such as fruit flies, we can learn more about their role in our own memories. Widmer et al. used this approach to explore how a protein called CrebB helps fruit flies to remember for several days that a specific odor is associated with a sugary reward. These odor-reward memories form in a brain region called the mushroom body, which has three lobes. Input neurons supply information about the odor and the reward to the region, while output neurons pass on information to other parts of the fly brain. CrebB regulates the production of new proteins required to form these long-term odor-reward memories: but where exactly does CrebB act during this process? Using a gene editing technique called CRISPR, Widmer et al. generated mutant flies. In these insects CrebB could be easily deactivated ‘at will’ in either the entire brain, the whole mushroom body, each of the three lobes or in specific output neurons. The flies were then trained on the odor-reward task, and their memory tested 24 hours later. The results revealed that for the memories to form, CrebB is only required in two of the three lobes of the mushroom body, and in certain output neurons. Future studies can now focus on the cells shown to need CrebB to create long-term memories, and identify the other proteins involved in this process. In humans, defects in CrebB are associated with intellectual disability, addiction and depression. The mutant fly created by Widmer et al. could be a useful model in which to investigate how the protein may play a role in these conditions.
Collapse
Affiliation(s)
- Yves F Widmer
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Cornelia Fritsch
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Magali M Jungo
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Silvia Almeida
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Boris Egger
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Simon G Sprecher
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
19
|
Crittenden JR, Skoulakis EMC, Goldstein ES, Davis RL. Drosophila mef2 is essential for normal mushroom body and wing development. Biol Open 2018; 7:bio.035618. [PMID: 30115617 PMCID: PMC6176937 DOI: 10.1242/bio.035618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
MEF2 (myocyte enhancer factor 2) transcription factors are found in the brain and muscle of insects and vertebrates and are essential for the differentiation of multiple cell types. We show that in the fruit fly Drosophila, MEF2 is essential for the formation of mushroom bodies in the embryonic brain and for the normal development of wings in the adult. In embryos mutant for mef2, there is a striking reduction in the number of mushroom body neurons and their axon bundles are not detectable. The onset of MEF2 expression in neurons of the mushroom bodies coincides with their formation in the embryo and, in larvae, expression is restricted to post-mitotic neurons. In flies with a mef2 point mutation that disrupts nuclear localization, we find that MEF2 is restricted to a subset of Kenyon cells that project to the α/β, and γ axonal lobes of the mushroom bodies, but not to those forming the α’/β’ lobes. Summary:Drosophila mef2 expression is restricted to subsets of mushroom body neurons, from the time of their differentiation to adulthood, and is essential for mushroom body formation.
Collapse
Affiliation(s)
- Jill R Crittenden
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Efthimios M C Skoulakis
- Division of Neuroscience, Biomedical Sciences Research Centre 'Alexander Fleming', Vari, 16672, Greece
| | - Elliott S Goldstein
- School of Life Science, Cellular, Molecular and Bioscience Program, Arizona State University, Tempe, AZ, 85287, USA
| | - Ronald L Davis
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| |
Collapse
|
20
|
Croset V, Treiber CD, Waddell S. Cellular diversity in the Drosophila midbrain revealed by single-cell transcriptomics. eLife 2018; 7:34550. [PMID: 29671739 PMCID: PMC5927767 DOI: 10.7554/elife.34550] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/18/2018] [Indexed: 12/12/2022] Open
Abstract
To understand the brain, molecular details need to be overlaid onto neural wiring diagrams so that synaptic mode, neuromodulation and critical signaling operations can be considered. Single-cell transcriptomics provide a unique opportunity to collect this information. Here we present an initial analysis of thousands of individual cells from Drosophila midbrain, that were acquired using Drop-Seq. A number of approaches permitted the assignment of transcriptional profiles to several major brain regions and cell-types. Expression of biosynthetic enzymes and reuptake mechanisms allows all the neurons to be typed according to the neurotransmitter or neuromodulator that they produce and presumably release. Some neuropeptides are preferentially co-expressed in neurons using a particular fast-acting transmitter, or monoamine. Neuromodulatory and neurotransmitter receptor subunit expression illustrates the potential of these molecules in generating complexity in neural circuit function. This cell atlas dataset provides an important resource to link molecular operations to brain regions and complex neural processes.
Collapse
Affiliation(s)
- Vincent Croset
- Centre for Neural Circuits and Behaviour, The University of Oxford, Oxford, United Kingdom
| | - Christoph D Treiber
- Centre for Neural Circuits and Behaviour, The University of Oxford, Oxford, United Kingdom
| | - Scott Waddell
- Centre for Neural Circuits and Behaviour, The University of Oxford, Oxford, United Kingdom
| |
Collapse
|
21
|
Sipe CW, Siegrist SE. Eyeless uncouples mushroom body neuroblast proliferation from dietary amino acids in Drosophila. eLife 2017; 6:26343. [PMID: 28826476 PMCID: PMC5576483 DOI: 10.7554/elife.26343] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 08/08/2017] [Indexed: 11/13/2022] Open
Abstract
Cell proliferation is coupled with nutrient availability. If nutrients become limited, proliferation ceases, because growth factor and/or PI3-kinase activity levels become attenuated. Here, we report an exception to this generality within a subpopulation of Drosophila neural stem cells (neuroblasts). We find that most neuroblasts enter and exit cell cycle in a nutrient-dependent manner that is reversible and regulated by PI3-kinase. However, a small subset, the mushroom body neuroblasts, which generate neurons important for memory and learning, divide independent of dietary nutrient conditions and PI3-kinase activity. This nutrient-independent proliferation is regulated by Eyeless, a Pax-6 orthologue, expressed in mushroom body neuroblasts. When Eyeless is knocked down, mushroom body neuroblasts exit cell cycle when nutrients are withdrawn. Conversely, when Eyeless is ectopically expressed, some non-mushroom body neuroblasts divide independent of dietary nutrient conditions. Therefore, Eyeless uncouples MB neuroblast proliferation from nutrient availability, allowing preferential neurogenesis in brain subregions during nutrient poor conditions.
Collapse
Affiliation(s)
- Conor W Sipe
- Department of Biology, University of Virginia, Charlottesville, United States
| | - Sarah E Siegrist
- Department of Biology, University of Virginia, Charlottesville, United States
| |
Collapse
|
22
|
Pinto-Teixeira F, Konstantinides N, Desplan C. Programmed cell death acts at different stages of Drosophila neurodevelopment to shape the central nervous system. FEBS Lett 2016; 590:2435-2453. [PMID: 27404003 DOI: 10.1002/1873-3468.12298] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 12/19/2022]
Abstract
Nervous system development is a process that integrates cell proliferation, differentiation, and programmed cell death (PCD). PCD is an evolutionary conserved mechanism and a fundamental developmental process by which the final cell number in a nervous system is established. In vertebrates and invertebrates, PCD can be determined intrinsically by cell lineage and age, as well as extrinsically by nutritional, metabolic, and hormonal states. Drosophila has been an instrumental model for understanding how this mechanism is regulated. We review the role of PCD in Drosophila central nervous system development from neural progenitors to neurons, its molecular mechanism and function, how it is regulated and implemented, and how it ultimately shapes the fly central nervous system from the embryo to the adult. Finally, we discuss ideas that emerged while integrating this information.
Collapse
Affiliation(s)
- Filipe Pinto-Teixeira
- Department of Biology, New York University 1009 Silver Center 100 Washington Square East, New York, NY 10003, USA.,Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi 129188, UAE
| | - Nikolaos Konstantinides
- Department of Biology, New York University 1009 Silver Center 100 Washington Square East, New York, NY 10003, USA
| | - Claude Desplan
- Department of Biology, New York University 1009 Silver Center 100 Washington Square East, New York, NY 10003, USA.,Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi 129188, UAE
| |
Collapse
|
23
|
Kraft KF, Massey EM, Kolb D, Walldorf U, Urbach R. Retinal homeobox promotes cell growth, proliferation and survival of mushroom body neuroblasts in the Drosophila brain. Mech Dev 2016; 142:50-61. [PMID: 27455861 DOI: 10.1016/j.mod.2016.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/14/2016] [Accepted: 07/18/2016] [Indexed: 12/29/2022]
Abstract
The Drosophila mushroom bodies, centers of olfactory learning and memory in the fly 'forebrain', develop from a set of neural stem cells (neuroblasts) that generate a large number of Kenyon cells (KCs) during sustained cell divisions from embryonic to late pupal stage. We show that retinal homeobox (rx), encoding for an evolutionarily conserved transcription factor, is required for proper development of the mushroom bodies. Throughout development rx is expressed in mushroom body neuroblasts (MBNBs), their ganglion mother cells (MB-GMCs) and young KCs. In the absence of rx function, MBNBs form correctly but exhibit a reduction in cell size and mitotic activity, whereas overexpression of rx increases growth of MBNBs. These data suggest that Rx is involved in the control of MBNB growth and proliferation. Rx also promotes cell cycling of MB-GMCs. Moreover, we show that Rx is important for the survival of MBNBs and Kenyon cells which undergo premature cell death in the absence of rx function. Simultaneous blocking of cell death restores the normal set of MBNBs and part of the KCs, demonstrating that both, impaired proliferation and premature cell death (of MBNBs and KCs) account for the observed defects in mushroom body development. We then show that Rx controls proliferation within the MBNB clones independently of Tailless (Tll) and Prospero (Pros), and does not regulate the expression of other key regulators of MB development, Eyeless (Ey) and Dachshund (Dac). Our data support that the role of Rx in forebrain development is conserved between vertebrates and fly.
Collapse
Affiliation(s)
- Karoline F Kraft
- Institute of Genetics, University of Mainz, D-55099 Mainz, Germany
| | - Eva M Massey
- Institute of Genetics, University of Mainz, D-55099 Mainz, Germany
| | - Dieter Kolb
- Institute of Developmental Biology, Saarland University, D-66421 Homburg/Saar, Germany
| | - Uwe Walldorf
- Institute of Developmental Biology, Saarland University, D-66421 Homburg/Saar, Germany
| | - Rolf Urbach
- Institute of Genetics, University of Mainz, D-55099 Mainz, Germany.
| |
Collapse
|
24
|
Cattenoz PB, Giangrande A. Revisiting the role of the Gcm transcription factor, from master regulator to Swiss army knife. Fly (Austin) 2016; 10:210-8. [PMID: 27434165 DOI: 10.1080/19336934.2016.1212793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Master genes are known to induce the differentiation of a multipotent cell into a specific cell type. These molecules are often transcription factors that switch on the regulatory cascade that triggers cell specification. Gcm was first described as the master gene of the glial fate in Drosophila as it induces the differentiation of neuroblasts into glia in the developing nervous system. Later on, Gcm was also shown to regulate the differentiation of blood, tendon and peritracheal cells as well as that of neuronal subsets. Thus, the glial master gene is used in at least 4 additional systems to promote differentiation. To understand the numerous roles of Gcm, we recently reported a genome-wide screen of Gcm direct targets in the Drosophila embryo. This screen provided new insight into the role and mode of action of this powerful transcription factor, notably on the interactions between Gcm and major differentiation pathways such as the Hedgehog, Notch and JAK/STAT. Here, we discuss the mode of action of Gcm in the different systems, we present new tissues that require Gcm and we revise the concept of 'master gene'.
Collapse
Affiliation(s)
- Pierre B Cattenoz
- a Department of Functional Genomics and Cancer , Institut de Génétique et de Biologie Moléculaire et Cellulaire , Illkirch , France
| | - Angela Giangrande
- a Department of Functional Genomics and Cancer , Institut de Génétique et de Biologie Moléculaire et Cellulaire , Illkirch , France
| |
Collapse
|
25
|
Abstract
DNA does not make phenotypes on its own. In this volume entitled "Genes and Phenotypic Evolution," the present review draws the attention on the process of phenotype construction-including development of multicellular organisms-and the multiple interactions and feedbacks between DNA, organism, and environment at various levels and timescales in the evolutionary process. First, during the construction of an individual's phenotype, DNA is recruited as a template for building blocks within the cellular context and may in addition be involved in dynamical feedback loops that depend on the environmental and organismal context. Second, in the production of phenotypic variation among individuals, stochastic, environmental, genetic, and parental sources of variation act jointly. While in controlled laboratory settings, various genetic and environmental factors can be tested one at a time or in various combinations, they cannot be separated in natural populations because the environment is not controlled and the genotype can rarely be replicated. Third, along generations, genotype and environment each have specific properties concerning the origin of their variation, the hereditary transmission of this variation, and the evolutionary feedbacks. Natural selection acts as a feedback from phenotype and environment to genotype. This review integrates recent results and concrete examples that illustrate these three points. Although some themes are shared with recent calls and claims to a new conceptual framework in evolutionary biology, the viewpoint presented here only means to add flesh to the standard evolutionary synthesis.
Collapse
Affiliation(s)
- M-A Félix
- Institut de Biologie Ecole Normale Supérieure, CNRS, Paris, France.
| |
Collapse
|
26
|
Kellermayer Z, Hayasaka H, Kajtár B, Simon D, Robles EF, Martinez-Climent JA, Balogh P. Divergence of Vascular Specification in Visceral Lymphoid Organs-Genetic Determinants and Differentiation Checkpoints. Int Rev Immunol 2015; 35:489-502. [PMID: 26186200 DOI: 10.3109/08830185.2015.1059427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Despite their functional similarities, peripheral lymphoid tissues are remarkably different according to their developmental properties and structural characteristics, including their specified vasculature. Access of leukocytes to these organs critically depends on their interactions with the local endothelium, where endothelial cells are patterned to display a restricted set of adhesion molecules and other regulatory compounds necessary for extravasation. Recent advances in high throughput analyses of highly purified endothelial subsets in various lymphoid tissues as well as the expansion of various transgenic animal models have shed new light on the transcriptional complexities of lymphoid tissue vascular endothelium. This review is aimed at providing a comprehensive analysis linking the functional competence of spleen and intestinal lymphoid tissues with the developmental programming and functional divergence of their vascular specification, with particular emphasis on the transcriptional control of endothelial cells exerted by Nkx2.3 homeodomain transcription factor.
Collapse
Affiliation(s)
- Zoltán Kellermayer
- a Department of Immunology and Biotechnology.,b Lymphoid Organogenesis Research Group Szentágothai Research Center, University of Pécs , Pécs , Hungary
| | - Haruko Hayasaka
- c Laboratory of Immunoregulation, Osaka University Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University , Osaka , Japan
| | - Béla Kajtár
- d Department of Pathology , University of Pécs , Pécs , Hungary
| | - Diána Simon
- a Department of Immunology and Biotechnology
| | - Eloy F Robles
- e Centro de Investigación Médica Aplicada of the University of Navarra , Pamplona , Spain
| | | | - Péter Balogh
- a Department of Immunology and Biotechnology.,b Lymphoid Organogenesis Research Group Szentágothai Research Center, University of Pécs , Pécs , Hungary
| |
Collapse
|
27
|
Berlin S, Carroll EC, Newman ZL, Okada HO, Quinn CM, Kallman B, Rockwell NC, Martin SS, Lagarias JC, Isacoff EY. Photoactivatable genetically encoded calcium indicators for targeted neuronal imaging. Nat Methods 2015; 12:852-8. [PMID: 26167640 PMCID: PMC4597790 DOI: 10.1038/nmeth.3480] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/01/2015] [Indexed: 12/11/2022]
Abstract
Circuit mapping requires knowledge of both structural and functional connectivity between cells. Although optical tools have been made to assess either the morphology and projections of neurons or their activity and functional connections, few probes integrate this information. We have generated a family of photoactivatable genetically encoded Ca(2+) indicators that combines attributes of high-contrast photolabeling with high-sensitivity Ca(2+) detection in a single-color protein sensor. We demonstrated in cultured neurons and in fruit fly and zebrafish larvae how single cells could be selected out of dense populations for visualization of morphology and high signal-to-noise measurements of activity, synaptic transmission and connectivity. Our design strategy is transferrable to other sensors based on circularly permutated GFP (cpGFP).
Collapse
Affiliation(s)
- Shai Berlin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA.,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, USA
| | - Elizabeth C Carroll
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Zachary L Newman
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Hitomi O Okada
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Carson M Quinn
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Benjamin Kallman
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA.,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, USA
| | - Nathan C Rockwell
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, California, USA
| | - Shelley S Martin
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, California, USA
| | - J Clark Lagarias
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, California, USA
| | - Ehud Y Isacoff
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA.,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, USA.,Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
28
|
Glossop NRJ, Gummadova JO, Ghangrekar I, Hardin PE, Coutts GA. Effects of TWIN-OF-EYELESS on Clock Gene Expression and Central-Pacemaker Neuron Development in Drosophila. J Biol Rhythms 2014; 29:151-166. [PMID: 24916389 PMCID: PMC4262727 DOI: 10.1177/0748730414534819] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Circadian oscillators are autonomous molecular rhythms that reside in cells to align whole-organism physiology and behavior to the 24-h day. In flies, as in mammals, the oscillator operates in cells that coexpress CLOCK (CLK) and CYCLE (CYC). Recent work in Drosophila has shown that CLK is unique in its ability to generate heterologous oscillators, indicating that Clk gene expression defines the circadian cell fate. Here, using standard in vitro and in vivo techniques, we show that TWIN-OF-EYELESS (TOY; dPax6) regulates Clk expression in small ventrolateral neurons (s-LNvs) that coordinate sleep-wake cycles. Crucially, toy binds multiple sites at the Clk locus, is expressed independent of CLK-CYC in LNvs, regulates CLK protein levels under optimal photoperiodic conditions, and sets clock-speed during endogenous free-run. Furthermore, TOY is necessary for the onset of Clk expression in LNvs during embryogenesis. We propose that TOY contributes to a transcription complex that functions upstream of the oscillator to promote Clk expression in s-LNvs.
Collapse
Affiliation(s)
| | | | - Indrayani Ghangrekar
- Faculty of Life Sciences, University of Manchester, Manchester, UK Cancer Research UK, London, UK
| | | | - Graham A Coutts
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
29
|
Wu K, Chen K, Wang C, Jiao X, Wang L, Zhou J, Wang J, Li Z, Addya S, Sorensen PH, Lisanti MP, Quong A, Ertel A, Pestell RG. Cell fate factor DACH1 represses YB-1-mediated oncogenic transcription and translation. Cancer Res 2013; 74:829-39. [PMID: 24335958 DOI: 10.1158/0008-5472.can-13-2466] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The epithelial-mesenchymal transition (EMT) enhances cellular invasiveness and confers tumor cells with cancer stem cell-like characteristics, through transcriptional and translational mechanisms. The mechanisms maintaining transcriptional and translational repression of EMT and cellular invasion are poorly understood. Herein, the cell fate determination factor Dachshund (DACH1), suppressed EMT via repression of cytoplasmic translational induction of Snail by inactivating the Y box-binding protein (YB-1). In the nucleus, DACH1 antagonized YB-1-mediated oncogenic transcriptional modules governing cell invasion. DACH1 blocked YB-1-induced mammary tumor growth and EMT in mice. In basal-like breast cancer, the reduced expression of DACH1 and increased YB-1 correlated with poor metastasis-free survival. The loss of DACH1 suppression of both cytoplasmic translational and nuclear transcriptional events governing EMT and tumor invasion may contribute to poor prognosis in basal-like forms of breast cancer, a relatively aggressive disease subtype.
Collapse
Affiliation(s)
- Kongming Wu
- Authors' Affiliations: Department of Cancer Biology; Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania; Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China; and Department of Molecular Oncology, British Columbia Cancer Research Center, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Combinatorial temporal patterning in progenitors expands neural diversity. Nature 2013; 498:449-55. [PMID: 23783519 PMCID: PMC3941985 DOI: 10.1038/nature12266] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 05/01/2013] [Indexed: 12/11/2022]
Abstract
Human outer subventricular zone (OSVZ) neural progenitors and Drosophila type II neuroblasts both generate intermediate neural progenitors (INPs) that populate the adult cerebral cortex or central complex, respectively. It is unknown whether INPs simply expand or also diversify neural cell types. Here we show that Drosophila INPs sequentially generate distinct neural subtypes; that INPs sequentially express Dichaete>Grainyhead>Eyeless transcription factors; and that these transcription factors are required for the production of distinct neural subtypes. Moreover, parental type II neuroblasts also sequentially express transcription factors and generate different neuronal/glial progeny over time, providing a second temporal identity axis. We conclude that neuroblast and INP temporal patterning axes act combinatorially to generate increased neural diversity within adult central complex; OSVZ progenitors may use similar mechanisms to increase neural diversity in the human brain.
Collapse
|
31
|
Ghezzi A, Al-Hasan YM, Krishnan HR, Wang Y, Atkinson NS. Functional mapping of the neuronal substrates for drug tolerance in Drosophila. Behav Genet 2013; 43:227-40. [PMID: 23371357 DOI: 10.1007/s10519-013-9583-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 01/10/2013] [Indexed: 12/20/2022]
Abstract
Physical dependence on alcohol and anesthetics stems from neuroadaptive changes that act to counter the effects of sedation in the brain. In Drosophila, exposure to either alcohol or solvent anesthetics have been shown to induce changes in expression of the BK-type Ca(2+)-activated K(+) channel gene slo. An increase in slo expression produces an adaptive modulation of neural activity that generates resistance to sedation and promotes drug tolerance and dependence. Increased BK channel activity counteracts the sedative effects of these drugs by reducing the neuronal refractory period and enhancing the capacity of neurons for repetitive firing. However, the brain regions or neuronal populations capable of producing inducible resistance or tolerance remain unknown. Here we map the neuronal substrates relevant for the slo-dependent modulation of drug sensitivity. Using spatially-controlled induction of slo expression we identify the mushroom bodies, the ellipsoid body and a subset of the circadian clock neurons as pivotal regions for the control of recovery from sedation.
Collapse
Affiliation(s)
- Alfredo Ghezzi
- Section of Neurobiology and Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 1 University Station C0920, Austin, TX 78712-0248, USA
| | | | | | | | | |
Collapse
|
32
|
Henry GL, Davis FP, Picard S, Eddy SR. Cell type-specific genomics of Drosophila neurons. Nucleic Acids Res 2012; 40:9691-704. [PMID: 22855560 PMCID: PMC3479168 DOI: 10.1093/nar/gks671] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Many tools are available to analyse genomes but are often challenging to use in a cell type–specific context. We have developed a method similar to the isolation of nuclei tagged in a specific cell type (INTACT) technique [Deal,R.B. and Henikoff,S. (2010) A simple method for gene expression and chromatin profiling of individual cell types within a tissue. Dev. Cell, 18, 1030–1040; Steiner,F.A., Talbert,P.B., Kasinathan,S., Deal,R.B. and Henikoff,S. (2012) Cell-type-specific nuclei purification from whole animals for genome-wide expression and chromatin profiling. Genome Res., doi:10.1101/gr.131748.111], first developed in plants, for use in Drosophila neurons. We profile gene expression and histone modifications in Kenyon cells and octopaminergic neurons in the adult brain. In addition to recovering known gene expression differences, we also observe significant cell type–specific chromatin modifications. In particular, a small subset of differentially expressed genes exhibits a striking anti-correlation between repressive and activating histone modifications. These genes are enriched for transcription factors, recovering those known to regulate mushroom body identity and predicting analogous regulators of octopaminergic neurons. Our results suggest that applying INTACT to specific neuronal populations can illuminate the transcriptional regulatory networks that underlie neuronal cell identity.
Collapse
Affiliation(s)
- Gilbert L Henry
- Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.
| | | | | | | |
Collapse
|
33
|
Kunz T, Kraft KF, Technau GM, Urbach R. Origin of Drosophila mushroom body neuroblasts and generation of divergent embryonic lineages. Development 2012; 139:2510-22. [DOI: 10.1242/dev.077883] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Key to understanding the mechanisms that underlie the specification of divergent cell types in the brain is knowledge about the neurectodermal origin and lineages of their stem cells. Here, we focus on the origin and embryonic development of the four neuroblasts (NBs) per hemisphere in Drosophila that give rise to the mushroom bodies (MBs), which are central brain structures essential for olfactory learning and memory. We show that these MBNBs originate from a single field of proneural gene expression within a specific mitotic domain of procephalic neuroectoderm, and that Notch signaling is not needed for their formation. Subsequently, each MBNB occupies a distinct position in the developing MB cortex and expresses a specific combination of transcription factors by which they are individually identifiable in the brain NB map. During embryonic development each MBNB generates an individual cell lineage comprising different numbers of neurons, including intrinsic γ-neurons and various types of non-intrinsic neurons that do not contribute to the MB neuropil. This contrasts with the postembryonic phase of MBNB development during which they have been shown to produce identical populations of intrinsic neurons. We show that different neuron types are produced in a lineage-specific temporal order and that neuron numbers are regulated by differential mitotic activity of the MBNBs. Finally, we demonstrate that γ-neuron axonal outgrowth and spatiotemporal innervation of the MB lobes follows a lineage-specific mode. The MBNBs are the first stem cells of the Drosophila CNS for which the origin and complete cell lineages have been determined.
Collapse
Affiliation(s)
- Thomas Kunz
- Institute of Genetics, University of Mainz, D-55099 Mainz, Germany
| | | | | | - Rolf Urbach
- Institute of Genetics, University of Mainz, D-55099 Mainz, Germany
| |
Collapse
|
34
|
Herrmann C, Van de Sande B, Potier D, Aerts S. i-cisTarget: an integrative genomics method for the prediction of regulatory features and cis-regulatory modules. Nucleic Acids Res 2012; 40:e114. [PMID: 22718975 PMCID: PMC3424583 DOI: 10.1093/nar/gks543] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The field of regulatory genomics today is characterized by the generation of high-throughput data sets that capture genome-wide transcription factor (TF) binding, histone modifications, or DNAseI hypersensitive regions across many cell types and conditions. In this context, a critical question is how to make optimal use of these publicly available datasets when studying transcriptional regulation. Here, we address this question in Drosophila melanogaster for which a large number of high-throughput regulatory datasets are available. We developed i-cisTarget (where the 'i' stands for integrative), for the first time enabling the discovery of different types of enriched 'regulatory features' in a set of co-regulated sequences in one analysis, being either TF motifs or 'in vivo' chromatin features, or combinations thereof. We have validated our approach on 15 co-expressed gene sets, 21 ChIP data sets, 628 curated gene sets and multiple individual case studies, and show that meaningful regulatory features can be confidently discovered; that bona fide enhancers can be identified, both by in vivo events and by TF motifs; and that combinations of in vivo events and TF motifs further increase the performance of enhancer prediction.
Collapse
Affiliation(s)
- Carl Herrmann
- TAGC - Inserm U1090 and Aix-Marseille Université, Campus de Luminy, 13288 Marseille, France.
| | | | | | | |
Collapse
|
35
|
Kurusu M, Katsuki T, Zinn K, Suzuki E. Developmental changes in expression, subcellular distribution, and function of Drosophila N-cadherin, guided by a cell-intrinsic program during neuronal differentiation. Dev Biol 2012; 366:204-17. [PMID: 22542600 DOI: 10.1016/j.ydbio.2012.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 04/02/2012] [Accepted: 04/03/2012] [Indexed: 10/28/2022]
Abstract
Cell adhesion molecules (CAMs) perform numerous functions during neural development. An individual CAM can play different roles during each stage of neuronal differentiation; however, little is known about how such functional switching is accomplished. Here we show that Drosophila N-cadherin (CadN) is required at multiple developmental stages within the same neuronal population and that its sub-cellular expression pattern changes between the different stages. During development of mushroom body neurons and motoneurons, CadN is expressed at high levels on growing axons, whereas expression becomes downregulated and restricted to synaptic sites in mature neurons. Phenotypic analysis of CadN mutants reveals that developing axons require CadN for axon guidance and fasciculation, whereas mature neurons for terminal growth and receptor clustering. Furthermore, we demonstrate that CadN downregulation can be achieved in cultured neurons without synaptic contact with other cells. Neuronal silencing experiments using Kir(2.1) indicate that neuronal excitability is also dispensable for CadN downregulation in vivo. Interestingly, downregulation of CadN can be prematurely induced by ectopic expression of a nonselective cation channel, dTRPA1, in developing neurons. Together, we suggest that switching of CadN expression during neuronal differentiation involves regulated cation influx within neurons.
Collapse
Affiliation(s)
- Mitsuhiko Kurusu
- Structural Biology Center, National Institute of Genetics and Department of Genetics, The Graduate University for Advanced Studies, Mishima 411-8540, Japan.
| | | | | | | |
Collapse
|
36
|
Qamar L, Deitsch E, Patrick AN, Post MD, Spillman MA, Iwanaga R, Thorburn A, Ford HL, Behbakht K. Specificity and prognostic validation of a polyclonal antibody to detect Six1 homeoprotein in ovarian cancer. Gynecol Oncol 2012; 125:451-7. [PMID: 22333994 DOI: 10.1016/j.ygyno.2012.02.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 01/18/2012] [Accepted: 02/04/2012] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The presence of Six1 mRNA gene portends a poor prognosis in ovarian cancer. We describe validation of a Six1 specific antibody and evaluate its association with tumorigenicity and prognosis in ovarian cancer. METHODS A Six1 antibody (Six1cTerm) was raised to residues downstream of the Six1 homeodomain, representing its unique C-terminus as compared to other Six family members. Cells were transfected with Six1-Six6 and Western blot was performed to demonstrate Six1 specificity. Ovarian cancer cell lines were analyzed for Six1 mRNA and Six1cTerm and tumorigenicity was evaluated. Ovarian cancer tissue microarrays (OTMA) were analyzed for Six1cTerm by immunohistochemistry and scored by two blinded observers. The metastatic tumors of 15 stage IIIC high grade serous ovarian cancers were analyzed with Six1 mRNA and Six1cTerm and expression was compared to clinical factors and survival. RESULTS The Six1cTerm antibody is specific for Six1. Cell line tumorigenicity in SCID mice correlates with Six1 levels both by mRNA(p=0.001, Mann-Whitney U test) and by protein (presence vs. absence, p=0.05 Fischer's Exact test). Six1 protein was present in up to 54% of OTMA specimens. Six1 protein expression in omental/peritoneal metastases correlated with worsened survival in a sample (n=15) of high grade serous stage IIIC ovarian cancers (p=0.001). CONCLUSIONS The Six1cTerm antibody is specific and able to detect Six1 in cell lines and tumor tissue. Six1 protein detection is common in ovarian cancer and is associated with tumorigenicity and poor prognosis in this group of patient samples. Six1cTerm antibody should be further validated as prognostic tool.
Collapse
Affiliation(s)
- Lubna Qamar
- Department of Obstetrics and Gynecology and Section of Basic Reproductive Sciences, University of Colorado Denver and Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Homeobox gene distal-less is required for neuronal differentiation and neurite outgrowth in the Drosophila olfactory system. Proc Natl Acad Sci U S A 2012; 109:1578-83. [PMID: 22307614 DOI: 10.1073/pnas.1016741109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vertebrate Dlx genes have been implicated in the differentiation of multiple neuronal subtypes, including cortical GABAergic interneurons, and mutations in Dlx genes have been linked to clinical conditions such as epilepsy and autism. Here we show that the single Drosophila Dlx homolog, distal-less, is required both to specify chemosensory neurons and to regulate the morphologies of their axons and dendrites. We establish that distal-less is necessary for development of the mushroom body, a brain region that processes olfactory information. These are important examples of distal-less function in an invertebrate nervous system and demonstrate that the Drosophila larval olfactory system is a powerful model in which to understand distal-less functions during neurogenesis.
Collapse
|
38
|
Posnien N, Koniszewski NDB, Hein HJ, Bucher G. Candidate gene screen in the red flour beetle Tribolium reveals six3 as ancient regulator of anterior median head and central complex development. PLoS Genet 2011; 7:e1002416. [PMID: 22216011 PMCID: PMC3245309 DOI: 10.1371/journal.pgen.1002416] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 10/13/2011] [Indexed: 11/19/2022] Open
Abstract
Several highly conserved genes play a role in anterior neural plate patterning of vertebrates and in head and brain patterning of insects. However, head involution in Drosophila has impeded a systematic identification of genes required for insect head formation. Therefore, we use the red flour beetle Tribolium castaneum in order to comprehensively test the function of orthologs of vertebrate neural plate patterning genes for a function in insect head development. RNAi analysis reveals that most of these genes are indeed required for insect head capsule patterning, and we also identified several genes that had not been implicated in this process before. Furthermore, we show that Tc-six3/optix acts upstream of Tc-wingless, Tc-orthodenticle1, and Tc-eyeless to control anterior median development. Finally, we demonstrate that Tc-six3/optix is the first gene known to be required for the embryonic formation of the central complex, a midline-spanning brain part connected to the neuroendocrine pars intercerebralis. These functions are very likely conserved among bilaterians since vertebrate six3 is required for neuroendocrine and median brain development with certain mutations leading to holoprosencephaly.
Collapse
Affiliation(s)
- Nico Posnien
- Center for Molecular Physiology of the Brain (CMPB), Göttingen Center of Molecular Biology, Caspari-Haus, Georg-August-University Göttingen, Göttingen, Germany
- School of Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Nikolaus Dieter Bernhard Koniszewski
- Center for Molecular Physiology of the Brain (CMPB), Göttingen Center of Molecular Biology, Caspari-Haus, Georg-August-University Göttingen, Göttingen, Germany
| | | | - Gregor Bucher
- Center for Molecular Physiology of the Brain (CMPB), Göttingen Center of Molecular Biology, Caspari-Haus, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
39
|
Farris SM, Pettrey C, Daly KC. A subpopulation of mushroom body intrinsic neurons is generated by protocerebral neuroblasts in the tobacco hornworm moth, Manduca sexta (Sphingidae, Lepidoptera). ARTHROPOD STRUCTURE & DEVELOPMENT 2011; 40:395-408. [PMID: 21040804 PMCID: PMC3049923 DOI: 10.1016/j.asd.2010.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 10/07/2010] [Accepted: 10/20/2010] [Indexed: 05/30/2023]
Abstract
Subpopulations of Kenyon cells, the intrinsic neurons of the insect mushroom bodies, are typically sequentially generated by dedicated neuroblasts that begin proliferating during embryogenesis. When present, Class III Kenyon cells are thought to be the first born population of neurons by virtue of the location of their cell somata, farthest from the position of the mushroom body neuroblasts. In the adult tobacco hornworm moth Manduca sexta, the axons of Class III Kenyon cells form a separate Y tract and dorsal and ventral lobelet; surprisingly, these distinctive structures are absent from the larval Manduca mushroom bodies. BrdU labeling and immunohistochemical staining reveal that Class III Kenyon cells are in fact born in the mid-larval through adult stages. The peripheral position of their cell bodies is due to their genesis from two previously undescribed protocerebral neuroblasts distinct from the mushroom body neuroblasts that generate the other Kenyon cell types. These findings challenge the notion that all Kenyon cells are produced solely by the mushroom body neuroblasts, and may explain why Class III Kenyon cells are found sporadically across the insects, suggesting that when present, they may arise through de novo recruitment of neuroblasts outside of the mushroom bodies. In addition, lifelong neurogenesis by both the Class III neuroblasts and the mushroom body neuroblasts was observed, raising the possibility that adult neurogenesis may play a role in mushroom body function in Manduca.
Collapse
Affiliation(s)
- Sarah M Farris
- Department of Biology, West Virginia University, Morgantown, USA.
| | | | | |
Collapse
|
40
|
Mochizuki H, Toda H, Ando M, Kurusu M, Tomoda T, Furukubo-Tokunaga K. Unc-51/ATG1 controls axonal and dendritic development via kinesin-mediated vesicle transport in the Drosophila brain. PLoS One 2011; 6:e19632. [PMID: 21589871 PMCID: PMC3093397 DOI: 10.1371/journal.pone.0019632] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 04/11/2011] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Members of the evolutionary conserved Ser/Thr kinase Unc-51 family are key regulatory proteins that control neural development in both vertebrates and invertebrates. Previous studies have suggested diverse functions for the Unc-51 protein, including axonal elongation, growth cone guidance, and synaptic vesicle transport. METHODOLOGY/PRINCIPAL FINDINGS In this work, we have investigated the functional significance of Unc-51-mediated vesicle transport in the development of complex brain structures in Drosophila. We show that Unc-51 preferentially accumulates in newly elongating axons of the mushroom body, a center of olfactory learning in flies. Mutations in unc-51 cause disintegration of the core of the developing mushroom body, with mislocalization of Fasciclin II (Fas II), an IgG-family cell adhesion molecule important for axonal guidance and fasciculation. In unc-51 mutants, Fas II accumulates in the cell bodies, calyx, and the proximal peduncle. Furthermore, we show that mutations in unc-51 cause aberrant overshooting of dendrites in the mushroom body and the antennal lobe. Loss of unc-51 function leads to marked accumulation of Rab5 and Golgi components, whereas the localization of dendrite-specific proteins, such as Down syndrome cell adhesion molecule (DSCAM) and No distributive disjunction (Nod), remains unaltered. Genetic analyses of kinesin light chain (Klc) and unc-51 double heterozygotes suggest the importance of kinesin-mediated membrane transport for axonal and dendritic development. Moreover, our data demonstrate that loss of Klc activity causes similar axonal and dendritic defects in mushroom body neurons, recapitulating the salient feature of the developmental abnormalities caused by unc-51 mutations. CONCLUSIONS/SIGNIFICANCE Unc-51 plays pivotal roles in the axonal and dendritic development of the Drosophila brain. Unc-51-mediated membrane vesicle transport is important in targeted localization of guidance molecules and organelles that regulate elongation and compartmentalization of developing neurons.
Collapse
Affiliation(s)
- Hiroaki Mochizuki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Hirofumi Toda
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Division of Neurosciences, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
| | - Mai Ando
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Mitsuhiko Kurusu
- Structural Biology Center, National Institute of Genetics, and Department of Genetics, The Graduate University for Advanced Studies, Shizuoka, Japan
| | - Toshifumi Tomoda
- Division of Neurosciences, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
| | - Katsuo Furukubo-Tokunaga
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- * E-mail:
| |
Collapse
|
41
|
Goossens T, Kang YY, Wuytens G, Zimmermann P, Callaerts-Végh Z, Pollarolo G, Islam R, Hortsch M, Callaerts P. The Drosophila L1CAM homolog Neuroglian signals through distinct pathways to control different aspects of mushroom body axon development. Development 2011; 138:1595-605. [PMID: 21389050 DOI: 10.1242/dev.052787] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The spatiotemporal integration of adhesion and signaling during neuritogenesis is an important prerequisite for the establishment of neuronal networks in the developing brain. In this study, we describe the role of the L1-type CAM Neuroglian protein (NRG) in different steps of Drosophila mushroom body (MB) neuron axonogenesis. Selective axon bundling in the peduncle requires both the extracellular and the intracellular domain of NRG. We uncover a novel role for the ZO-1 homolog Polychaetoid (PYD) in axon branching and in sister branch outgrowth and guidance downstream of the neuron-specific isoform NRG-180. Furthermore, genetic analyses show that the role of NRG in different aspects of MB axonal development not only involves PYD, but also TRIO, SEMA-1A and RAC1.
Collapse
Affiliation(s)
- Tim Goossens
- Laboratory of Developmental Genetics, Department of Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Datta RR, Cruickshank T, Kumar JP. Differential selection within the Drosophila retinal determination network and evidence for functional divergence between paralog pairs. Evol Dev 2011; 13:58-71. [PMID: 21210943 PMCID: PMC3040041 DOI: 10.1111/j.1525-142x.2010.00456.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The retinal determination (RD) network in Drosophila comprises 14 known nuclear proteins that include DNA-binding proteins, transcriptional coactivators, kinases, and phosphatases. The composition of the network varies considerably throughout the animal kingdom, with the network in several basal insects having fewer members and with vertebrates having potentially significantly higher numbers of RD genes. One important contributing factor for the variation in gene number within the network is gene duplication. For example, 10 members of the RD network in Drosophila are derived from duplication events. Here we present an analysis of the coding regions of the five pairs of duplicate genes from within the RD network of several different Drosophila species. We demonstrate that there is differential selection across the coding regions of all RD genes. Additionally, some of the most significant differences in ratios of non-silent-to-silent site substitutions (d(N)/d(S)) between paralog pairs are found within regions that have no ascribed function. Previous structure/function analyses of several duplicate genes have identified areas within one gene that contain novel activities when compared with its paralog. The evolutionary analysis presented here identifies these same areas in the paralogs as being under high levels of relaxed selection. We suggest that sequence divergence between paralogs and selection signatures can be used as a reasonable predictor of functional changes in rapidly evolving motifs.
Collapse
Affiliation(s)
- Rhea R. Datta
- Department of Biology, Indiana University Bloomington, IN 47405
| | | | - Justin P. Kumar
- Department of Biology, Indiana University Bloomington, IN 47405
| |
Collapse
|
43
|
Venkatesh CR, Shyamala BV. GAL4 enhancer trap strains with reporter gene expression during the development of adult brain in Drosophila melanogaster. J Genet 2010; 89:e38-42. [PMID: 21273707 DOI: 10.1007/s12041-011-0007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- C R Venkatesh
- Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore 570 006, India.
| | | |
Collapse
|
44
|
Bates KE, Sung CS, Robinow S. The unfulfilled gene is required for the development of mushroom body neuropil in Drosophila. Neural Dev 2010; 5:4. [PMID: 20122139 PMCID: PMC2829026 DOI: 10.1186/1749-8104-5-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 02/01/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The mushroom bodies (MBs) of Drosophila are required for complex behaviors and consist of three types of neurons, gamma, alpha'/beta' and alpha/beta. Previously, roles for transcription factors in MB neuronal differentiation have only been described for a subset of MB neurons. We are investigating the roles of unfulfilled (unf; HR51, CG16801) in MB development. unf encodes a nuclear receptor that is orthologous to the nuclear receptors fasciculation of axons defective 1 (FAX-1) of the nematode and photoreceptor specific nuclear receptor (PNR) of mammals. Based on our previous observations that unf transcripts accumulate in MB neurons at all developmental stages and the presence of axon pathfinding defects in fax-1 mutants, we hypothesized that unf regulates MB axon growth and pathfinding. RESULTS We show that unf mutants exhibit a range of highly penetrant axon stalling phenotypes affecting all neurons of the larval and adult MBs. Phenotypic analysis of unfX1 mutants revealed that alpha'/beta' and alpha/beta neurons initially project axons but stall prior to the formation of medial or dorsal MB lobes. unfZ0001 mutants form medial lobes, although these axons fail to branch, which results in a failure to form the alpha or alpha' dorsal lobes. In either mutant background, gamma neurons fail to develop larval-specific dorsal projections. These mutant gamma neurons undergo normal pruning, but fail to re-extend axons medially during pupal development. unfRNAi animals displayed phenotypes similar to those seen in unfZ0001 mutants. Unique asymmetrical phenotypes were observed in unfX1/unfZ0001 compound heterozygotes. Expression of UAS-unf transgenes in MB neurons rescues the larval and adult unf mutant phenotypes. CONCLUSIONS These data support the hypothesis that unf plays a common role in the development of all types of MB neurons. Our data indicate that unf is necessary for MB axon extension and branching and that the formation of dorsal collaterals is more sensitive to the loss of unf function than medial projections. The asymmetrical phenotypes observed in compound heterozygotes support the hypothesis that the earliest MB axons may serve as pioneers for the later-born MB neurons, providing evidence for pioneer MB axon guidance in post-embryonic development.
Collapse
Affiliation(s)
- Karen E Bates
- Department of Zoology, University of Hawaii, Honolulu, HI 96822, USA
| | | | | |
Collapse
|
45
|
Clements J, Hens K, Merugu S, Dichtl B, de Couet HG, Callaerts P. Mutational analysis of the eyeless gene and phenotypic rescue reveal that an intact Eyeless protein is necessary for normal eye and brain development in Drosophila. Dev Biol 2009; 334:503-12. [PMID: 19666017 PMCID: PMC2792711 DOI: 10.1016/j.ydbio.2009.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 07/28/2009] [Accepted: 08/03/2009] [Indexed: 11/20/2022]
Abstract
Pax6 genes encode evolutionarily highly conserved transcription factors that are required for eye and brain development. Despite the characterization of mutations in Pax6 homologs in a range of organisms, and despite functional studies, it remains unclear what the relative importance is of the various parts of the Pax6 protein. To address this, we have studied the Drosophila Pax6 homolog eyeless. Specifically, we have generated new eyeless alleles, each with single missense mutations in one of the four domains of the protein. We show that these alleles result in abnormal eye and brain development while maintaining the OK107 eyeless GAL4 activity from which they were derived. We performed in vivo functional rescue experiments by expressing in an eyeless-specific pattern Eyeless proteins in which either the paired domain, the homeodomain, or the C-terminal domain was deleted. Rescue of the eye and brain phenotypes was only observed when full-length Eyeless was expressed, while all deletion constructs failed to rescue. These data, along with the phenotypes observed in the four newly characterized eyeless alleles, demonstrate the requirement for an intact Eyeless protein for normal Drosophila eye and brain development. They also suggest that some endogenous functions may be obscured in ectopic expression experiments.
Collapse
Affiliation(s)
- Jason Clements
- Laboratory of Developmental Genetics, VIB, and Center of Human Genetics, Katholieke Universiteit Leuven, Herestraat 49, Box 602, B-3000, Leuven, Belgium
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| | - Korneel Hens
- Laboratory of Developmental Genetics, VIB, and Center of Human Genetics, Katholieke Universiteit Leuven, Herestraat 49, Box 602, B-3000, Leuven, Belgium
| | - Srinivas Merugu
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| | - Beatriz Dichtl
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| | - H. Gert de Couet
- Department of Zoology, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Patrick Callaerts
- Laboratory of Developmental Genetics, VIB, and Center of Human Genetics, Katholieke Universiteit Leuven, Herestraat 49, Box 602, B-3000, Leuven, Belgium
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| |
Collapse
|
46
|
Conway Morris S. The predictability of evolution: glimpses into a post-Darwinian world. Naturwissenschaften 2009; 96:1313-37. [PMID: 19784612 DOI: 10.1007/s00114-009-0607-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 08/17/2009] [Accepted: 08/27/2009] [Indexed: 01/01/2023]
Abstract
The very success of the Darwinian explanation, in not only demonstrating evolution from multiple lines of evidence but also in providing some plausible explanations, paradoxically seems to have served to have stifled explorations into other areas of investigation. The fact of evolution is now almost universally yoked to the assumption that its outcomes are random, trends are little more than drunkard's walks, and most evolutionary products are masterpieces of improvisation and far from perfect. But is this correct? Let us consider some alternatives. Is there evidence that evolution could in anyway be predictable? Can we identify alternative forms of biological organizations and if so how viable are they? Why are some molecules so extraordinarily versatile, while others can be spoken of as "molecules of choice"? How fortuitous are the major transitions in the history of life? What implications might this have for the Tree of Life? To what extent is evolutionary diversification constrained or facilitated by prior states? Are evolutionary outcomes merely sufficient or alternatively are they highly efficient, even superb? Here I argue that in sharp contradistinction to an orthodox Darwinian view, not only is evolution much more predictable than generally assumed but also investigation of its organizational substrates, including those of sensory systems, which indicates that it is possible to identify a predictability to the process and outcomes of evolution. If correct, the implications may be of some significance, not least in separating the unexceptional Darwinian mechanisms from underlying organizational principles, which may indicate evolutionary inevitabilities.
Collapse
Affiliation(s)
- Simon Conway Morris
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK.
| |
Collapse
|
47
|
Yang X, Weber M, ZarinKamar N, Posnien N, Friedrich F, Wigand B, Beutel R, Damen WG, Bucher G, Klingler M, Friedrich M. Probing the Drosophila retinal determination gene network in Tribolium (II): The Pax6 genes eyeless and twin of eyeless. Dev Biol 2009; 333:215-27. [DOI: 10.1016/j.ydbio.2009.06.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 05/18/2009] [Accepted: 06/07/2009] [Indexed: 11/15/2022]
|
48
|
Yang X, ZarinKamar N, Bao R, Friedrich M. Probing the Drosophila retinal determination gene network in Tribolium (I): The early retinal genes dachshund, eyes absent and sine oculis. Dev Biol 2009; 333:202-14. [DOI: 10.1016/j.ydbio.2009.02.040] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 02/18/2009] [Accepted: 02/19/2009] [Indexed: 12/24/2022]
|
49
|
Amin NM, Lim SE, Shi H, Chan TL, Liu J. A conserved Six-Eya cassette acts downstream of Wnt signaling to direct non-myogenic versus myogenic fates in the C. elegans postembryonic mesoderm. Dev Biol 2009; 331:350-60. [PMID: 19427847 PMCID: PMC2703692 DOI: 10.1016/j.ydbio.2009.05.538] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 05/04/2009] [Indexed: 01/29/2023]
Abstract
The subdivision of mesodermal cells into muscle and non-muscle cells is crucial to animal development. In the C. elegans postembryonic mesoderm, this subdivision is a result of an asymmetric cell division that leads to the formation of striated body wall muscles and non-muscle coelomocytes. Here we report that the Six homeodomain protein CEH-34 and its cofactor Eyes Absent, EYA-1, function synergistically to promote the non-muscle fate in cells also competent to form muscles. We further show that the asymmetric expression of ceh-34 and eya-1 is regulated by a combination of 1) mesodermal intrinsic factors MAB-5, HLH-1 and FOZI-1, 2) differential POP-1 (TCF/LEF) transcriptional activity along the anterior-posterior axis, and 3) coelomocyte competence factor(s). These factors are conserved in both vertebrates and invertebrates, suggesting a conserved paradigm for mesoderm development in metazoans.
Collapse
Affiliation(s)
- Nirav M. Amin
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Sung-Eun Lim
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Herong Shi
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Tiffany L. Chan
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Jun Liu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| |
Collapse
|
50
|
Higuchi N, Kohno K, Kadowaki T. Specific retention of the protostome-specific PsGEF may parallel with the evolution of mushroom bodies in insect and lophotrochozoan brains. BMC Biol 2009; 7:21. [PMID: 19422675 PMCID: PMC2684095 DOI: 10.1186/1741-7007-7-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2009] [Accepted: 05/07/2009] [Indexed: 11/24/2022] Open
Abstract
Background Gene gain and subsequent retention or loss during evolution may be one of the underlying mechanisms involved in generating the diversity of metazoan nervous systems. However, the causal relationships acting therein have not been studied extensively. Results We identified the gene PsGEF (protostome-specific GEF), which is present in all the sequenced genomes of insects and limpet but absent in those of sea anemones, deuterostomes, and nematodes. In Drosophila melanogaster, PsGEF encodes a short version of a protein with the C2 and PDZ domains, as well as a long version with the C2, PDZ, and RhoGEF domains through alternative splicing. Intriguingly, the exons encoding the RhoGEF domain are specifically deleted in the Daphnia pulex genome, suggesting that Daphnia PsGEF contains only the C2 and PDZ domains. Thus, the distribution of PsGEF containing the C2, PDZ, and RhoGEF domains among metazoans appears to coincide with the presence of mushroom bodies. Mushroom bodies are prominent neuropils involved in the processing of multiple sensory inputs as well as associative learning in the insect, platyhelminth, and annelid brains. In the adult Drosophila brain, PsGEF is expressed in mushroom bodies, antennal lobe, and optic lobe, where it is necessary for the correct axon branch formation of alpha/beta neurons in mushroom bodies. PsGEF genetically interacts with Rac1 but not other Rho family members, and the RhoGEF domain of PsGEF induces actin polymerization in the membrane, thus resulting in the membrane ruffling that is observed in cultured cells with activated forms of Rac. Conclusion The specific acquisition of PsGEF by the last common ancestor of protostomes followed by its retention or loss in specific animal species during evolution demonstrates that there are some structural and/or functional features common between insect and lophotrochozoan nervous systems (for example, mushroom bodies), which are absent in all deuterostomes and cnidarians. PsGEF is therefore one of genes associated with the diversity of metazoan nervous systems.
Collapse
Affiliation(s)
- Nozomu Higuchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan.
| | | | | |
Collapse
|