1
|
Haisch C, Neumann-Cip AC, Imhof A, Schmidt A, Forne I, Hoelscher M, Wieser A. Dynamic Measurement of Protein Translation in Mycobacteria Using Nontargeted Stable Isotope Labeling in Combination with MALDI-TOF Mass Spectrometry-Based Readout. Anal Chem 2025; 97:4850-4859. [PMID: 39995216 PMCID: PMC11912119 DOI: 10.1021/acs.analchem.4c03931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Understanding the metabolic pathways of mycobacteria is essential to identify novel antibiotics and to compose synergistic antibiotic regimens against tuberculosis, one of the world's most deadly infectious diseases with >1.7 Mio yearly deaths. We present a novel proteomics approach for the dynamic measurement of the nascent fractions of specific proteins. We use nontargeted stable isotope incorporation to label the nascent proteins after adding glycerol-1,3-13C2. The analysis is performed using matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF-MS) with a self-programmed script, allowing quantitative data. We compared the de novo synthesis of proteins under regular growth conditions and the effect of four antimicrobials, including rifampicin as a first-line drug, linezolid and bedaquiline as second-line drugs, and benzithiazinone-043 as promising drug candidates against tuberculosis. Changes in the synthesis of individual proteins, either due to antimicrobial action or due to regulations in the organism, can be followed in high temporal resolution within the 1/2 doubling cycle of mycobacteria. The analysis of de novo protein synthesis offers a fast screening and testing tool, allowing assessment of the onset and extent of antimycobacterial activity or regulatory phenotypes in different organisms. Due to the untargeted approach, it can be used in model strains and clinical isolates alike and does not require genetic modifications. The dynamic readout and labeling reveal the onset of action of drugs or drug candidates and allow for the prediction of synergistic effects of several substances.
Collapse
Affiliation(s)
- Christoph Haisch
- Chair of Analytical Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Anna-Cathrine Neumann-Cip
- Division of Infectious Diseases and Tropical Medicine, LMU University Hospital, LMU Munich, 80802 Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 80802 Munich, Germany
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, 80802 Munich, Germany
| | - Axel Imhof
- Biomedical Center, Protein Analysis Unit, Faculty of Medicine, Ludwig-Maximilians University Munich, 82152 Planegg-Martinsried, Germany
| | - Andreas Schmidt
- Biomedical Center, Protein Analysis Unit, Faculty of Medicine, Ludwig-Maximilians University Munich, 82152 Planegg-Martinsried, Germany
| | - Ignasi Forne
- Biomedical Center, Protein Analysis Unit, Faculty of Medicine, Ludwig-Maximilians University Munich, 82152 Planegg-Martinsried, Germany
| | - Michael Hoelscher
- Division of Infectious Diseases and Tropical Medicine, LMU University Hospital, LMU Munich, 80802 Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 80802 Munich, Germany
| | - Andreas Wieser
- Division of Infectious Diseases and Tropical Medicine, LMU University Hospital, LMU Munich, 80802 Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 80802 Munich, Germany
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, 80802 Munich, Germany
| |
Collapse
|
2
|
Mate PS, Jasmin A T F, Nagpal A, Onteru SK, Rajput S, Ashutosh, Meena S. Expression and Immunolocalization of Aquaporins in the Buffalo Liver and Adipose Tissue. J Mol Histol 2024; 56:39. [PMID: 39661281 DOI: 10.1007/s10735-024-10305-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/09/2024] [Indexed: 12/12/2024]
Abstract
Increasing incidences of fatty liver in humans and animals worldwide is the leading cause of liver related morbidities. Currently, in the face of the growing global increase in fatty liver, and the necessity to explore new factors significantly affecting it, aquaporins (AQPs) have become the focus of interest for many researchers. AQPs are membrane integral proteins involved in the transport of water, glycerol and other small solutes. These are expressed in all tissues and play multiple roles under normal and pathophysiological conditions. Despite ongoing advancements in understanding the involvement of aquaporins in metabolic processes, there remains a notable lack of knowledge concerning cellular and subcellular localization of the AQPs in bovine tissues and organs. Understanding this could provide a new therapeutic target for metabolic syndromes such as fatty liver disease in bovine. In this study, AQPs in bovine liver, adipose tissue and gall bladder are examined using immunohistochemistry. AQP9 immunoreactivity is predominantly detected at the sinusoidal surfaces of hepatocytes. AQP8 is mostly intracellular and localized to the central vein and sinusoid, whereas AQP7 is found around the portal vein. Notably, AQP3 is observed in the bovine gall bladder and adipose tissue but not in the liver. In adipose tissue, AQP7 is also detected in the cytoplasmic membranes of adipocytes. AQPs in liver and adipose tissue were also studied using the western blotting technique. Higher AQP9 and AQP3 expression is observed in the liver and adipose tissue, respectively, indicating they are the dominant aquaporins in these tissues. This suggests they could be potential therapeutic targets for treating fatty liver disease and other metabolic disorders in bovine.
Collapse
Affiliation(s)
- Payal S Mate
- Animal Biochemsitry Division, National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Fathima Jasmin A T
- Animal Biochemsitry Division, National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Anju Nagpal
- Animal Biotechnology Center, National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Suneel Kumar Onteru
- Animal Biochemsitry Division, National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Shiveeli Rajput
- Animal Biotechnology Center, National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Ashutosh
- Animal Physiology Division, National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Sunita Meena
- Animal Biochemsitry Division, National Dairy Research Institute, Karnal, 132001, Haryana, India.
| |
Collapse
|
3
|
Liu J, Xia Z, Peng S, Xia J, Xu R, Wang X, Li F, Zhu W. The Important Role of Aquaglyceroporin 7 in Health and Disease. Biomolecules 2024; 14:1228. [PMID: 39456161 PMCID: PMC11505742 DOI: 10.3390/biom14101228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Aquaporins (AQPs) are highly conserved small transmembrane proteins that facilitate the transport of water and small solutes across cell membranes. Aquaglyceroporin 7 (AQP7), a significant member of the AQP family, is widely distributed throughout the body. For years, AQP7 was predominantly recognized for its role as a small-molecule transporter, facilitating the passage of small molecular substances. However, growing studies have revealed that AQP7 is also involved in the regulation of lipid synthesis, gluconeogenesis, and energy homeostasis, and it is intimately linked to a variety of diseases, such as obesity, type 2 diabetes mellitus, cardiovascular diseases, cancer, and inflammatory bowel disease. This article presents a comprehensive overview of the structure of AQP7, its regulatory mechanisms, its vital roles in both healthy and diseased states, and potential therapeutic advancements. We hope that these studies will serve as a valuable reference for the development of future treatments and diagnostic protocols targeting AQP7.
Collapse
Affiliation(s)
- Jing Liu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (J.L.); (Z.X.); (J.X.); (R.X.); (X.W.)
| | - Ziwei Xia
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (J.L.); (Z.X.); (J.X.); (R.X.); (X.W.)
| | - Shuhong Peng
- Research Center for Differentiation and Development of Traditional Chinese Medicine Basic Theory, Jiangxi University of Chinese Medicine, Nanchang 330004, China;
| | - Juanjuan Xia
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (J.L.); (Z.X.); (J.X.); (R.X.); (X.W.)
| | - Ruixiang Xu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (J.L.); (Z.X.); (J.X.); (R.X.); (X.W.)
| | - Xin Wang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (J.L.); (Z.X.); (J.X.); (R.X.); (X.W.)
| | - Fei Li
- Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Weifeng Zhu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (J.L.); (Z.X.); (J.X.); (R.X.); (X.W.)
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| |
Collapse
|
4
|
Fujii M, Bessho R, Akimoto T, Ishii Y. Cardioprotective effect of St. Thomas' Hospital No. 2 solution against age-related changes in aquaporin-7-deficient mice. Gen Thorac Cardiovasc Surg 2024; 72:368-375. [PMID: 37691043 PMCID: PMC11127861 DOI: 10.1007/s11748-023-01975-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 08/27/2023] [Indexed: 09/12/2023]
Abstract
OBJECTIVE This study aimed to investigate whether St. Thomas' Hospital No. 2 solution (STH2) is equally effective in both young and aged aquaporin-7-knockout (AQP7-KO) mice and the mechanisms by which the intra-myocardial adenosine triphosphate (ATP) content is altered during ischemia without aquaporin-7. METHODS In study 1, isolated hearts of male wild-type (WT) and AQP7-KO mice (< 12 weeks old) were Langendorff perfused with 5-min STH2 prior to a 20-min global ischemia (GI) or 25-min GI without STH2. Similarly, in Study 2, hearts from WT and AQP7-KO mice (≥ 24 weeks old) were subjected to 2-min STH2 infusion prior to GI. In study 3, intra-myocardial ATP content was compared before (sham) and after (control or STH2) ischemia in mature WT and AQP7-KO mice. RESULTS In study 1, troponin T levels (ng/g wet weight) of WT and AQP7-KO hearts were significantly lower in the STH2 groups (75.6 ± 45.9 and 80.2 ± 52.2, respectively) than in the GI groups (934.0 ± 341.1 and 1089.3 ± 182.5, respectively). In Study 2, troponin T levels in aged WT and AQP7-KO mice were 566.5 ± 550.0 and 547.8 ± 594.3, respectively (p = 0.9561). In Study 3, ATP levels (μmol/g protein) in the sham, control, and STH2 AQP7-KO mice groups were 4.45, 2.57, and 3.37, respectively(p = 0.0005). CONCLUSIONS The present study revealed the cardio-protective efficacy of STH2 in an experimental model of isolated AQP7-KO young and aged murine hearts. Further, STH2 preserved intra-myocardial ATP during ischemia with Krebs-Henseleit buffer perfusion in the Langendorff setting.
Collapse
Affiliation(s)
- Masahiro Fujii
- Cardiovascular Surgery, Nippon Medical School Chiba Hokusoh Hospital, 1715 Kamagari, Inzai, Chiba, 270-1694, Japan.
| | - Ryuzo Bessho
- Cardiovascular Surgery, Nippon Medical School Chiba Hokusoh Hospital, 1715 Kamagari, Inzai, Chiba, 270-1694, Japan
| | - Toshio Akimoto
- Laboratory Animal Science, Nippon Medical School, 1-1-5 Sendagi, Bunkyo, Tokyo, 113-8603, Japan
| | - Yosuke Ishii
- Cardiovascular Surgery, Nippon Medical School, 1-1-5 Sendagi, Bunkyo, Tokyo, 113-8603, Japan
| |
Collapse
|
5
|
Iizuka Y, Hirako S, Kim H, Wada N, Ohsaki Y, Yanagisawa N. Fish oil-derived n-3 polyunsaturated fatty acids downregulate aquaporin 9 protein expression of liver and white adipose tissues in diabetic KK mice and 3T3-L1 adipocytes. J Nutr Biochem 2024; 124:109514. [PMID: 37918450 DOI: 10.1016/j.jnutbio.2023.109514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Aquaporin 9 (AQP9) is an integral membrane protein that facilitates glycerol transport in hepatocytes and adipocytes. Glycerol is necessary as a substrate for gluconeogenesis in the physiological fasted state, suggesting that inhibiting AQP9 function may be beneficial for treating type 2 diabetes associated with fasting hyperglycemia. The n-3 polyunsaturated fatty acids (PUFAs), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are rich in fish oil and lower the risk of metabolic syndrome; however, the effects of EPA and DHA on AQP9 expression in obese and type 2 diabetes are unclear. The KK mouse is an animal model of obesity and type 2 diabetes because of the polymorphisms on leptin receptor gene, which results in a part of cause for obese and diabetic conditions. In this study, we determined the effect of fish oil-derived n-3 PUFA on AQP9 protein expression in the liver and white adipose tissue (WAT) of KK mice and mouse 3T3-L1 adipocytes. The expression of AQP9 protein in the liver, epididymal WAT, and inguinal WAT were markedly decreased following fish oil administration. We also demonstrated that n-3 PUFAs, such as DHA, and to a lesser extent EPA, downregulated AQP9 protein expression in 3T3-L1 adipocytes. Our results suggest that fish oil-derived n-3 PUFAs may regulate the protein expressions of AQP9 in glycerol metabolism-related organs in KK mice and 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- Yuzuru Iizuka
- Department of Microbiology and Immunology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan.
| | - Satoshi Hirako
- Department of Health and Nutrition, University of Human Arts and Sciences, Saitama, Japan
| | - Hyounju Kim
- Department of Nutrition and Health Sciences, Faculty of Food and Nutritional Sciences, Toyo University, Gunma, Japan
| | - Nobuhiro Wada
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuki Ohsaki
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Naoko Yanagisawa
- Department of Microbiology and Immunology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Navarro-Masip È, Manocchio F, Rodríguez RM, Bravo FI, Torres-Fuentes C, Muguerza B, Aragonès G. Photoperiod-Dependent Effects of Grape-Seed Proanthocyanidins on Adipose Tissue Metabolic Markers in Healthy Rats. Mol Nutr Food Res 2023; 67:e2300035. [PMID: 37423963 DOI: 10.1002/mnfr.202300035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/26/2023] [Indexed: 07/11/2023]
Abstract
SCOPE Variations in photoperiod patterns drive metabolic adaptations in mammals, involving important changes in body weight and adiposity. Moreover, (poly)phenols can help heterotrophs adopt metabolic adaptations to face the upcoming environmental conditions. Particularly, proanthocyanidins from grape-seeds show photoperiod-dependent effects on different metabolic parameters. The present study aims to explore whether grape-seed proanthocyanidin extract (GSPE) consumption differently affects the expression of metabolic markers in WAT (subcutaneous and visceral depots) and BAT in a photoperiod-dependent manner. METHODS AND RESULTS GSPE (25 mg kg-1 day-1 ) is orally administrated for 4 weeks to healthy rats exposed to three photoperiods (L6, L12, and L18). In WAT, GSPE consumption significantly upregulates the expression of lipolytic genes in all photoperiods, being accompanied by increased serum concentrations of glycerol and corticosterone only under the L6 photoperiod. Moreover, adiponectin mRNA levels are significantly upregulated in response to GSPE regardless of the photoperiod, whereas Tnfα and Il6 expression are only downregulated in L6 and L18 photoperiods but not in L12. In BAT, GSPE upregulates Pgc1α expression in all groups, whereas the expression of Pparα is only increased in L18. CONCLUSIONS The results indicate that GSPE modulates the expression of important metabolic markers of WAT and BAT in a photoperiod-dependent manner.
Collapse
Affiliation(s)
- Èlia Navarro-Masip
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, 43007, Spain
| | - Francesca Manocchio
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, 43007, Spain
- Institute of Health Research Pere Virgili (IISPV), Tarragona, 43007, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), Universitat Rovira i Virgili, Tarragona, 43007, Spain
| | - Romina M Rodríguez
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, 43007, Spain
| | - Francisca Isabel Bravo
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, 43007, Spain
| | - Cristina Torres-Fuentes
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, 43007, Spain
- Institute of Health Research Pere Virgili (IISPV), Tarragona, 43007, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), Universitat Rovira i Virgili, Tarragona, 43007, Spain
| | - Begoña Muguerza
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, 43007, Spain
- Institute of Health Research Pere Virgili (IISPV), Tarragona, 43007, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), Universitat Rovira i Virgili, Tarragona, 43007, Spain
| | - Gerard Aragonès
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, 43007, Spain
- Institute of Health Research Pere Virgili (IISPV), Tarragona, 43007, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), Universitat Rovira i Virgili, Tarragona, 43007, Spain
| |
Collapse
|
7
|
Calamita G, Delporte C. Insights into the Function of Aquaporins in Gastrointestinal Fluid Absorption and Secretion in Health and Disease. Cells 2023; 12:2170. [PMID: 37681902 PMCID: PMC10486417 DOI: 10.3390/cells12172170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023] Open
Abstract
Aquaporins (AQPs), transmembrane proteins permeable to water, are involved in gastrointestinal secretion. The secretory products of the glands are delivered either to some organ cavities for exocrine glands or to the bloodstream for endocrine glands. The main secretory glands being part of the gastrointestinal system are salivary glands, gastric glands, duodenal Brunner's gland, liver, bile ducts, gallbladder, intestinal goblet cells, exocrine and endocrine pancreas. Due to their expression in gastrointestinal exocrine and endocrine glands, AQPs fulfill important roles in the secretion of various fluids involved in food handling. This review summarizes the contribution of AQPs in physiological and pathophysiological stages related to gastrointestinal secretion.
Collapse
Affiliation(s)
- Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy;
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium
| |
Collapse
|
8
|
Qiu Z, Jiang T, Li Y, Wang W, Yang B. Aquaporins in Urinary System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:155-177. [PMID: 36717493 DOI: 10.1007/978-981-19-7415-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
There are at least eight aquaporins (AQPs) expressed in the kidney. Including AQP1 expressed in proximal tubules, thin descending limb of Henle and vasa recta; AQP2, AQP3, AQP4, AQP5, and AQP6 expressed in collecting ducts; AQP7 expressed in proximal tubules; AQP8 expressed in proximal tubules and collecting ducts; and AQP11 expressed in the endoplasmic reticulum of proximal tubular epithelial cells. Over years, researchers have constructed different AQP knockout mice and explored the effect of AQP knockout on kidney function. Thus, the roles of AQPs in renal physiology are revealed, providing very useful information for addressing fundamental questions about transepithelial water transport and the mechanism of near isoosmolar fluid reabsorption. This chapter introduces the localization and function of AQPs in the kidney and their roles in different kidney diseases to reveal the prospects of AQPs in further basic and clinical studies.
Collapse
Affiliation(s)
- Zhiwei Qiu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Tao Jiang
- College of Basic Medicine, Beihua University, Jilin, China
| | - Yingjie Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Weiling Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Baoxue Yang
- School of Basic Medical Sciences, Peking University, Beijing, China.
| |
Collapse
|
9
|
Xiong M, Li C, Wang W, Yang B. Protein Structure and Modification of Aquaporins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:15-38. [PMID: 36717484 DOI: 10.1007/978-981-19-7415-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Aquaporins (AQPs) allow water molecules and other small, neutral solutes to quickly pass through membrane. The protein structures of AQPs solved by crystallographic methods or cryo-electron microscopy technology show that AQP monomer consists of six membrane-spanning alpha-helices that form the central water-transporting pore. AQP monomers assemble to form tetramers, forming the functional units in the membrane, to transport water or other small molecules. The biological functions of AQPs are regulated by posttranslational modifications, e.g., phosphorylation, ubiquitination, glycosylation, subcellular distribution, degradation and protein interactions. Modifications of AQP combined with structural properties contribute to a better functional mechanism of AQPs. Insight into the molecular mechanisms responsible for AQP modifications as well as gating and transport properties proved to be fundamental to the development of new therapeutic targets or reliable diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Mengyao Xiong
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Chunling Li
- Institute of Hypertension and Kidney Research, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Weidong Wang
- Institute of Hypertension and Kidney Research, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| | - Baoxue Yang
- School of Basic Medical Sciences, Peking University, Beijing, China.
| |
Collapse
|
10
|
Zhu R, Chen S. Proteomic analysis reveals semaglutide impacts lipogenic protein expression in epididymal adipose tissue of obese mice. Front Endocrinol (Lausanne) 2023; 14:1095432. [PMID: 37025414 PMCID: PMC10070826 DOI: 10.3389/fendo.2023.1095432] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/28/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Obesity is a global health problem with few pharmacologic options. Semaglutide is a glucagon-like peptide-1 (GLP-1) analogue that induces weight loss. Yet, the role of semaglutide in adipose tissue has not yet been examined. The following study investigated the mechanism of semaglutide on lipid metabolism by analyzing proteomics of epididymal white adipose tissue (eWAT) in obese mice. METHODS A total of 36 C57BL/6JC mice were randomly divided into a normal-chow diet group (NCD, n = 12), high-fat diet (HFD, n = 12), and HFD+semaglutide group (Sema, n = 12). Mice in the Sema group were intraperitoneally administered semaglutide, and the HFD group and the NCD group were intraperitoneally administered an equal volume of normal saline. Serum samples were collected to detect fasting blood glucose and blood lipids. The Intraperitoneal glucose tolerance test (IPGTT) was used to measure the blood glucose value at each time point and calculate the area under the glucose curve. Tandem Mass Tag (TMT) combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used to study the expression of eWAT, while cellular processes, biological processes, corresponding molecular functions, and related network molecular mechanisms were analyzed by bioinformatics. RESULTS Compared with the model group, the semaglutide-treated mice presented 640 differentially expressed proteins (DEPs), including 292 up-regulated and 348 down-regulated proteins. Bioinformatics analysis showed a reduction of CD36, FABP5, ACSL, ACOX3, PLIN2, ANGPTL4, LPL, MGLL, AQP7, and PDK4 involved in the lipid metabolism in the Sema group accompanied by a decrease in visceral fat accumulation, blood lipids, and improvement in glucose intolerance. CONCLUSION Semaglutide can effectively reduce visceral fat and blood lipids and improve glucose metabolism in obese mice. Semaglutide treatment might have beneficial effects on adipose tissues through the regulation of lipid uptake, lipid storage, and lipolysis in white adipose tissue.
Collapse
Affiliation(s)
- Ruiyi Zhu
- Department of Internal Medical, Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Internal Medical, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Shuchun Chen
- Department of Internal Medical, Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Internal Medical, Hebei General Hospital, Shijiazhuang, Hebei, China
- *Correspondence: Shuchun Chen,
| |
Collapse
|
11
|
da Silva IV, Soveral G. Aquaporins in Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:289-302. [PMID: 36717502 DOI: 10.1007/978-981-19-7415-1_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Obesity is one of the most important metabolic disorders of this century and is associated with a cluster of the most dangerous cardiovascular disease risk factors, such as insulin resistance and diabetes, dyslipidemia, and hypertension, collectively named Metabolic Syndrome. The role of aquaporins (AQP) in glycerol metabolism facilitating glycerol release from the adipose tissue and distribution to various tissues and organs unveils these membrane channels as important players in lipid balance and energy homeostasis and points to their involvement in a variety of pathophysiological mechanisms including insulin resistance, obesity, and diabetes. This review summarizes the physiologic role of aquaglyceroporins in glycerol metabolism and lipid homeostasis, describing their specific tissue distribution, involvement in glycerol balance, and implication in obesity and fat-related metabolic complications. The development of specify pharmacologic modulators able to regulate aquaglyceroporins expression and function, in particular AQP7 in adipose tissue, might constitute a novel approach for controlling obesity and other metabolic disorders.
Collapse
Affiliation(s)
- Inês V da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Department Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
- Department Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
12
|
Costa IPD, Hautem N, Schiano G, Uchida S, Nishino T, Devuyst O. Fasting influences aquaporin expression, water transport and adipocyte metabolism in the peritoneal membrane. Nephrol Dial Transplant 2022; 38:1408-1420. [PMID: 36520078 DOI: 10.1093/ndt/gfac318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The water channels AQP1 and AQP7 are abundantly expressed in the peritoneal membrane. While AQP1 facilitates water transport during peritoneal dialysis (PD), the role of AQP7, which mediates glycerol transport during fasting, remains unknown. METHODS We investigated the distribution of AQP7 and AQP1 and used a mouse model of PD to investigate the role of AQP7 in the peritoneal membrane at baseline and after fasting. Results. Single nucleus RNA-sequencing revealed that AQP7 was mostly detected in mature adipocytes, whereas AQP1 was essentially expressed in endothelial cells. Fasting induced significant decreases in whole body fat, plasma glucose, insulin, and triglycerides, as well as higher plasma glycerol and corticosterone levels in mice, paralleled by major decreases in adipocyte size and levels of fatty acid synthase and leptin, and increased levels of hormone sensitive lipase mRNAs in the peritoneum. Mechanistically, fasting upregulated the expression of AQP1 and AQP7 in the peritoneum, with increased ultrafiltration but no change in small solute transport. Studies based on Aqp1 and Aqp7 knockout mice and RU-486 inhibition demonstrated that the glucocorticoid induction of AQP1 mediates the increase in ultrafiltration whereas AQP7 regulates the size of adipocytes in the peritoneum. CONCLUSIONS Fasting induces a coordinated regulation of lipolytic and lipogenic factors and aqua(glycero)porins in the peritoneum, driving structural and functional changes. These data yield novel information on the specific roles of aquaporins in the peritoneal membrane and indicate that fasting improves fluid removal in a mouse model of PD.
Collapse
Affiliation(s)
| | | | - Gugliemo Schiano
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Shinichi Uchida
- Department of Nephrology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomoya Nishino
- IREC, UCLouvain, Brussels, Belgium.,Department of Nephrology, Nagasaki University Hospital, Nagasaki, Japan
| | - Olivier Devuyst
- IREC, UCLouvain, Brussels, Belgium.,Institute of Physiology, University of Zurich, Zurich, Switzerland.,Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
13
|
Liver group 2 innate lymphoid cells regulate blood glucose levels through IL-13 signaling and suppression of gluconeogenesis. Nat Commun 2022; 13:5408. [PMID: 36109558 PMCID: PMC9478157 DOI: 10.1038/s41467-022-33171-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 09/04/2022] [Indexed: 12/12/2022] Open
Abstract
The liver stores glycogen and releases glucose into the blood upon increased energy demand. Group 2 innate lymphoid cells (ILC2) in adipose and pancreatic tissues are known for their involvement in glucose homeostasis, but the metabolic contribution of liver ILC2s has not been studied in detail. Here we show that liver ILC2s are directly involved in the regulation of blood glucose levels. Mechanistically, interleukin (IL)-33 treatment induces IL-13 production in liver ILC2s, while directly suppressing gluconeogenesis in a specific Hnf4a/G6pc-high primary hepatocyte cluster via Stat3. These hepatocytes significantly interact with liver ILC2s via IL-13/IL-13 receptor signaling. The results of transcriptional complex analysis and GATA3-ChIP-seq, ATAC-seq, and scRNA-seq trajectory analyses establish a positive regulatory role for the transcription factor GATA3 in IL-13 production by liver ILC2s, while AP-1 family members are shown to suppress IL-13 release. Thus, we identify a regulatory role and molecular mechanism by which liver ILC2s contribute to glucose homeostasis. Besides hepatocytes, resident immune cells of the liver are also contributing to the body’s energy homeostasis. Here authors show that group 2 innate lymphoid cells interact with a specific set of hepatocytes in suppressing gluconeogenesis and regulate blood glucose levels via Interleukin-13 signalling.
Collapse
|
14
|
Immunolocalization of Metabolite Transporter Proteins in a Model Cnidarian-Dinoflagellate Symbiosis. Appl Environ Microbiol 2022; 88:e0041222. [PMID: 35678605 DOI: 10.1128/aem.00412-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bidirectional nutrient flow between partners is integral to the cnidarian-dinoflagellate endosymbiosis. However, our current knowledge of the transporter proteins that regulate nutrient and metabolite trafficking is nascent. Four transmembrane transporters that likely play an important role in interpartner nitrogen and carbon exchange were investigated with immunocytochemistry in the model sea anemone Exaiptasia diaphana ("Aiptasia"; strain NZ1): ammonium transporter 1 (AMT1), V-type proton ATPase (VHA), facilitated glucose transporter member 8 (GLUT8), and aquaporin-3 (AQP3). Anemones lacking symbionts were compared with those in symbiosis with either their typical, homologous dinoflagellate symbiont, Breviolum minutum, or the heterologous species, Durusdinium trenchii and Symbiodinium microadriaticum. AMT1 and VHA were only detected in symbiotic Aiptasia, irrespective of symbiont type. However, GLUT8 and AQP3 were detected in both symbiotic and aposymbiotic states. All transporters were localized to both the epidermis and gastrodermis, though localization patterns in host tissues were heavily influenced by symbiont identity, with S. microadriaticum-colonized anemones showing the most distinct patterns. These patterns suggested disruption of fixed carbon and inorganic nitrogen fluxes when in symbiosis with heterologous versus homologous symbionts. This study enhances our understanding of nutrient transport and host-symbiont integration, while providing a platform for further investigation of nutrient transporters and the host-symbiont interface in the cnidarian-dinoflagellate symbiosis. IMPORTANCE Coral reefs are in serious decline, in particular due to the thermally induced dysfunction of the cnidarian-dinoflagellate symbiosis that underlies their success. Yet our ability to react to this crisis is hindered by limited knowledge of how this symbiosis functions. Indeed, we still have much to learn about the cellular integration that determines whether a particular host-symbiont combination can persist, and hence whether corals might be able to adapt by acquiring new, more thermally resistant symbionts. Here, we employed immunocytochemistry to localize and quantify key nutrient transporters in tissues of the sea anemone Aiptasia, a globally adopted model system for this symbiosis, and compared the expression of these transporters when the host is colonized by native versus nonnative symbionts. We showed a clear link between transporter expression and symbiont identity, elucidating the cellular events that dictate symbiosis success, and we provide a methodological platform for further examination of cellular integration in this ecologically important symbiosis.
Collapse
|
15
|
Teng GC, Boo MV, Lam SH, Pang CZ, Chew SF, Ip YK. Molecular characterization and light-dependent expression of glycerol facilitator (GlpF) in coccoid Symbiodiniaceae dinoflagellates of the giant clam Tridacna squamosa. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Affiliation(s)
- Douglas J Taatjes
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA.
| | - Jürgen Roth
- University of Zurich, 8091, Zurich, Switzerland
| |
Collapse
|
17
|
Localization of aquaglyceroporins in human and murine white adipose tissue. Histochem Cell Biol 2022; 157:623-639. [PMID: 35235046 DOI: 10.1007/s00418-022-02090-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2022] [Indexed: 11/04/2022]
Abstract
The glycerol channel AQP7 facilitates glycerol efflux from adipose tissue (AT), and AQP7 deficiency has been suggested to promote obesity. However, the release of glycerol from AT is not fully blocked in AQP7-deficient mice, which suggests that either alternative glycerol channels are present in AT or significant simple diffusion of glycerol occurs. Previous investigations of the expression of other aquaglyceroporins (AQP3, AQP9, AQP10) than AQP7 in AT are contradictory. Therefore, we here aim at determining the cellular localization of AQP3 and AQP9 in addition to AQP7 in human and mouse AT using well-characterized antibodies for immunohistochemistry (IHC) and immunoblotting as well as available single-cell transcriptomic data from human and mouse AT. We confirm that AQP7 is expressed in endothelial cells and adipocytes in human AT and find ex vivo evidence for interaction between AQP7 and perilipin-1 in adipocytes. In addition, labeling for AQP7 in human AT also includes CD68-positive cells. No labeling for AQP3 or AQP9 was identified in endothelial cells or adipocytes in human or mouse AT using IHC. Instead, in human AT, AQP3 was predominantly found in erythrocytes, whereas AQP9 expression was observed in a small number of CD15-positive cells. The transcriptomic data revealed that AQP3 mRNA was found in a low number of cells in most of the identified cell clusters, whereas AQP9 mRNA was found in myeloid cell clusters as well as in clusters likely representing mesothelial progenitor cells. No AQP10 mRNA was identified in human AT. In conclusion, the presented results do not suggest a functional overlap between AQP3/AQP9/AQP10 and AQP7 in human or mouse white AT.
Collapse
|
18
|
Ishihama S, Yoshida S, Yoshida T, Mori Y, Ouchi N, Eguchi S, Sakaguchi T, Tsuda T, Kato K, Shimizu Y, Ohashi K, Okumura T, Bando YK, Yagyu H, Wettschureck N, Kubota N, Offermanns S, Kadowaki T, Murohara T, Takefuji M. LPL/AQP7/GPD2 promotes glycerol metabolism under hypoxia and prevents cardiac dysfunction during ischemia. FASEB J 2021; 35:e22048. [PMID: 34807469 DOI: 10.1096/fj.202100882r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/21/2021] [Accepted: 11/03/2021] [Indexed: 11/11/2022]
Abstract
In the heart, fatty acid is a major energy substrate to fuel contraction under aerobic conditions. Ischemia downregulates fatty acid metabolism to adapt to the limited oxygen supply, making glucose the preferred substrate. However, the mechanism underlying the myocardial metabolic shift during ischemia remains unknown. Here, we show that lipoprotein lipase (LPL) expression in cardiomyocytes, a principal enzyme that converts triglycerides to free fatty acids and glycerol, increases during myocardial infarction (MI). Cardiomyocyte-specific LPL deficiency enhanced cardiac dysfunction and apoptosis following MI. Deficiency of aquaporin 7 (AQP7), a glycerol channel in cardiomyocytes, increased the myocardial infarct size and apoptosis in response to ischemia. Ischemic conditions activated glycerol-3-phosphate dehydrogenase 2 (GPD2), which converts glycerol-3-phosphate into dihydroxyacetone phosphate to facilitate adenosine triphosphate (ATP) synthesis from glycerol. Conversely, GPD2 deficiency exacerbated cardiac dysfunction after acute MI. Moreover, cardiomyocyte-specific LPL deficiency suppressed the effectiveness of peroxisome proliferator-activated receptor alpha (PPARα) agonist treatment for MI-induced cardiac dysfunction. These results suggest that LPL/AQP7/GPD2-mediated glycerol metabolism plays an important role in preventing myocardial ischemia-related damage.
Collapse
Affiliation(s)
- Sohta Ishihama
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Satoya Yoshida
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Tatsuya Yoshida
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Yu Mori
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Noriyuki Ouchi
- Department of Molecular Medicine and Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Shunsuke Eguchi
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Teruhiro Sakaguchi
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Takuma Tsuda
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Katsuhiro Kato
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Yuuki Shimizu
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Koji Ohashi
- Department of Molecular Medicine and Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Takahiro Okumura
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Yasuko K Bando
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Hiroaki Yagyu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Nina Wettschureck
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Naoto Kubota
- Department of Diabetes and Metabolic Diseases Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Mikito Takefuji
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| |
Collapse
|
19
|
Galli M, Hameed A, Żbikowski A, Zabielski P. Aquaporins in insulin resistance and diabetes: More than channels! Redox Biol 2021; 44:102027. [PMID: 34090243 PMCID: PMC8182305 DOI: 10.1016/j.redox.2021.102027] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/09/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
Aquaporins (AQPs) are part of the family of the integral membrane proteins. Their function is dedicated to the transport of water, glycerol, ammonia, urea, H2O2, and other small molecules across the biological membranes. Although for many years they were scarcely considered, AQPs have a relevant role in the development of many diseases. Recent discoveries suggest, that AQPs may play an important role in the process of fat accumulation and regulation of oxidative stress, two crucial aspects of insulin resistance and type-2 diabetes (T2D). Insulin resistance (IR) and T2D are multi-faceted systemic diseases with multiple connections to obesity and other comorbidities such as hypertension, dyslipidemia and metabolic syndrome. Both IR and T2D transcends different tissues and organs, creating the maze of mutual relationships between adipose fat depots, skeletal muscle, liver and other insulin-sensitive organs. AQPs with their heterogenous properties, distinctive tissue distribution and documented involvement in both the lipid metabolism and regulation of the oxidative stress appear to be feasible candidates in the search for the explanation to this third-millennium plague. A lot of research has been assigned to adipose tissue AQP7 and liver tissue AQP9, clarifying their relationship and coordinated work in the induction of hepatic insulin resistance. Novel research points also to other aquaporins, such as AQP11 which may be associated with the induction of insulin resistance and T2D through its involvement in hydrogen peroxide transport. In this review we collected recent discoveries in the field of AQP's involvement in the insulin resistance and T2D. Novel paths which connect AQPs with metabolic disorders can give new fuel to the research on obesity, insulin resistance and T2D - one of the most worrying problems of the modern society.
Collapse
Affiliation(s)
- Mauro Galli
- Department of Medical Biology, Medical University of Bialystok, 15-089, Bialystok, Poland.
| | - Ahsan Hameed
- Clinical Research Center, Medical University of Bialystok, 15-089, Bialystok, Poland.
| | - Arkadiusz Żbikowski
- Department of Medical Biology, Medical University of Bialystok, 15-089, Bialystok, Poland.
| | - Piotr Zabielski
- Department of Medical Biology, Medical University of Bialystok, 15-089, Bialystok, Poland.
| |
Collapse
|
20
|
Klaus VS, Schriever SC, Monroy Kuhn JM, Peter A, Irmler M, Tokarz J, Prehn C, Kastenmüller G, Beckers J, Adamski J, Königsrainer A, Müller TD, Heni M, Tschöp MH, Pfluger PT, Lutter D. Correlation guided Network Integration (CoNI) reveals novel genes affecting hepatic metabolism. Mol Metab 2021; 53:101295. [PMID: 34271221 PMCID: PMC8361260 DOI: 10.1016/j.molmet.2021.101295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/24/2021] [Accepted: 07/09/2021] [Indexed: 11/19/2022] Open
Abstract
Objective Technological advances have brought a steady increase in the availability of various types of omics data, from genomics to metabolomics. Integrating these multi-omics data is a chance and challenge for systems biology; yet, tools to fully tap their potential remain scarce. Methods We present here a fully unsupervised and versatile correlation-based method – termed Correlation guided Network Integration (CoNI) – to integrate multi-omics data into a hypergraph structure that allows for the identification of effective modulators of metabolism. Our approach yields single transcripts of potential relevance that map to specific, densely connected, metabolic subgraphs or pathways. Results By applying our method on transcriptomics and metabolomics data from murine livers under standard Chow or high-fat diet, we identified eleven genes with potential regulatory effects on hepatic metabolism. Five candidates, including the hepatokine INHBE, were validated in human liver biopsies to correlate with diabetes-related traits such as overweight, hepatic fat content, and insulin resistance (HOMA-IR). Conclusion Our method's successful application to an independent omics dataset confirmed that the novel CoNI framework is a transferable, entirely data-driven, flexible, and versatile tool for multiple omics data integration and interpretation.
Collapse
Affiliation(s)
- Valentina S Klaus
- Computational Discovery Research Unit, Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany; TUM School of Medicine, Neurobiology of Diabetes, Technical University Munich, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Germany
| | - Sonja C Schriever
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Germany; Research Unit Neurobiology of Diabetes, Helmholtz Zentrum München, Neuherberg, Germany
| | - José Manuel Monroy Kuhn
- Computational Discovery Research Unit, Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Germany
| | - Andreas Peter
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, Germany
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Janina Tokarz
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, Neuherberg, Germany
| | - Cornelia Prehn
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, Neuherberg, Germany
| | - Gabi Kastenmüller
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Johannes Beckers
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany; Chair of Experimental Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Neuherberg, Germany
| | - Jerzy Adamski
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, Neuherberg, Germany; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Chair of Experimental Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Neuherberg, Germany
| | - Alfred Königsrainer
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Germany
| | - Timo D Müller
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Germany; Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany
| | - Martin Heni
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; Department of Internal Medicine, Division of Endocrinology, Diabetology, and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Matthias H Tschöp
- TUM School of Medicine, Neurobiology of Diabetes, Technical University Munich, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Germany; Division of Metabolic Diseases, Department of Medicine, Technical University Munich, Munich, Germany
| | - Paul T Pfluger
- TUM School of Medicine, Neurobiology of Diabetes, Technical University Munich, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Germany; Research Unit Neurobiology of Diabetes, Helmholtz Zentrum München, Neuherberg, Germany
| | - Dominik Lutter
- Computational Discovery Research Unit, Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Germany.
| |
Collapse
|
21
|
Tardelli M, Stulnig TM. Aquaporin regulation in metabolic organs. VITAMINS AND HORMONES 2021; 112:71-93. [PMID: 32061350 DOI: 10.1016/bs.vh.2019.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aquaporins (AQPs) are a family of 13 small trans-membrane proteins, which facilitate shuttling of glycerol, water and urea. The peculiar role of AQPs in glycerol transport makes them attractive targets in metabolic organs since glycerol represents the backbone of triglyceride synthesis. Importantly, AQPs are known to be regulated by various nuclear receptors which in turn govern lipid and glucose metabolism as well as inflammatory cascades. Here, we review the role of AQPs regulation in metabolic organs exploring their physiological impact in health and disease.
Collapse
Affiliation(s)
- Matteo Tardelli
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Cornell Department of Medicine, Weill Cornell Medical College, New York, NY, United States; Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Thomas M Stulnig
- Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
22
|
Calamita G, Delporte C. Involvement of aquaglyceroporins in energy metabolism in health and disease. Biochimie 2021; 188:20-34. [PMID: 33689852 DOI: 10.1016/j.biochi.2021.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 11/27/2022]
Abstract
Aquaglyceroporins are a group of the aquaporin (AQP) family of transmembrane water channels. While AQPs facilitate the passage of water, small solutes, and gases across biological membranes, aquaglyceroporins allow passage of water, glycerol, urea and some other solutes. Thanks to their glycerol permeability, aquaglyceroporins are involved in energy homeostasis. This review provides an overview of what is currently known concerning the functional implication and control of aquaglyceroporins in tissues involved in energy metabolism, i.e. liver, adipose tissue and endocrine pancreas. The expression, role and (dys)regulation of aquaglyceroporins in disorders affecting energy metabolism, and the potential relevance of aquaglyceroporins as drug targets to treat the alterations of the energy balance is also addressed.
Collapse
Affiliation(s)
- Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
23
|
Badavi M, Grootveld M, Jafari F, Dianat M, Faraji Shahrivar F. Supplement therapy with apelin for improving the TSH level and lipid disorders in PTU-induced hypothyroid rats. Biotechnol Appl Biochem 2021; 69:668-675. [PMID: 33660355 DOI: 10.1002/bab.2142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 02/22/2021] [Indexed: 11/09/2022]
Abstract
Hyperlipidemia is a common metabolic disorder in the general population, which may arise in hypothyroidism. Apelin is an endogenous ligand that acts as an adiponectin, and is involved in energy storage and metabolism. This study evaluated the effects of apelin administration per se or in combination with T4 on the serum level of thyroid-stimulating hormone (TSH), body weight, and lipid profile, along with the serum level of apelin, and its mRNA expression in heart, in 6-propyl-2-thiouracil (PTU)-induced hypothyroid rats. Male Wistar rats were assigned to five different groups: control, H (hypothyroid), H+A, H+T, and H+A+T. All groups except the control one received PTU (0.05%) in the drinking water for 6 weeks. In addition to PTU, the H+A, H+T, and H+A+T groups received apelin (200 μg/kg/day, i.p.), l-thyroxin (T4) (20 μg/kg/day, via gavage tube), and apelin+T4 during the last 14 days of the trial, respectively. A combined application of T4 and apelin in the H+A+T group effectively diminished mean TSH level, low-density-lipoprotein cholesterol/high-density-lipoprotein cholesterol ratio, and atherogenic index in these animals when compared with these values for the H group. Coadministration of apelin with T4 may offer valuable therapeutic benefits, specifically lowering blood plasma TSH, lipid disorder, and atherosclerosis biomarkers in PTU-induced hypothyroid rats.
Collapse
Affiliation(s)
- Mohammad Badavi
- Physiology Research Center, Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Martin Grootveld
- Leicester School of Pharmacy, The Gateway, Leicester, United Kingdom
| | - Fereshteh Jafari
- Leicester School of Pharmacy, The Gateway, Leicester, United Kingdom
| | - Mahin Dianat
- Physiology Research Center, Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farzaneh Faraji Shahrivar
- Department of Physiology, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran
| |
Collapse
|
24
|
Raje V, Ahern KW, Martinez BA, Howell NL, Oenarto V, Granade ME, Kim JW, Tundup S, Bottermann K, Gödecke A, Keller SR, Kadl A, Bland ML, Harris TE. Adipocyte lipolysis drives acute stress-induced insulin resistance. Sci Rep 2020; 10:18166. [PMID: 33097799 PMCID: PMC7584576 DOI: 10.1038/s41598-020-75321-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
Stress hyperglycemia and insulin resistance are evolutionarily conserved metabolic adaptations to severe injury including major trauma, burns, or hemorrhagic shock (HS). In response to injury, the neuroendocrine system increases secretion of counterregulatory hormones that promote rapid mobilization of nutrient stores, impair insulin action, and ultimately cause hyperglycemia, a condition known to impair recovery from injury in the clinical setting. We investigated the contributions of adipocyte lipolysis to the metabolic response to acute stress. Both surgical injury with HS and counterregulatory hormone (epinephrine) infusion profoundly stimulated adipocyte lipolysis and simultaneously triggered insulin resistance and hyperglycemia. When lipolysis was inhibited, the stress-induced insulin resistance and hyperglycemia were largely abolished demonstrating an essential requirement for adipocyte lipolysis in promoting stress-induced insulin resistance. Interestingly, circulating non-esterified fatty acid levels did not increase with lipolysis or correlate with insulin resistance during acute stress. Instead, we show that impaired insulin sensitivity correlated with circulating levels of the adipokine resistin in a lipolysis-dependent manner. Our findings demonstrate the central importance of adipocyte lipolysis in the metabolic response to injury. This insight suggests new approaches to prevent insulin resistance and stress hyperglycemia in trauma and surgery patients and thereby improve outcomes.
Collapse
Affiliation(s)
- Vidisha Raje
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Katelyn W Ahern
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Brittany A Martinez
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Nancy L Howell
- Department of Medicine, Endocrinology and Metabolism, University of Virginia, Charlottesville, VA, USA
| | - Vici Oenarto
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA.,Institute of Cardiovascular Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Mitchell E Granade
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Jae Woo Kim
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Smanla Tundup
- Department of Medicine, Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, VA, USA
| | | | - Axel Gödecke
- Institute of Cardiovascular Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Susanna R Keller
- Department of Medicine, Endocrinology and Metabolism, University of Virginia, Charlottesville, VA, USA
| | - Alexandra Kadl
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA.,Department of Medicine, Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, VA, USA
| | - Michelle L Bland
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Thurl E Harris
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
25
|
Dai C, Charlestin V, Wang M, Walker ZT, Miranda-Vergara MC, Facchine BA, Wu J, Kaliney WJ, Dovichi NJ, Li J, Littlepage LE. Aquaporin-7 Regulates the Response to Cellular Stress in Breast Cancer. Cancer Res 2020; 80:4071-4086. [PMID: 32631905 PMCID: PMC7899076 DOI: 10.1158/0008-5472.can-19-2269] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 04/07/2020] [Accepted: 06/29/2020] [Indexed: 11/16/2022]
Abstract
The complex yet interrelated connections between cancer metabolism, gene expression, and oncogenic driver genes have the potential to identify novel biomarkers and drug targets with prognostic and therapeutic value. Here we effectively integrated metabolomics and gene expression data from breast cancer mouse models through a novel unbiased correlation-based network analysis. This approach identified 35 metabolite and 34 gene hubs with the most network correlations. These hubs have prognostic value and are likely integral to tumor metabolism and breast cancer. The gene hub Aquaporin-7 (Aqp7), a water and glycerol channel, was identified as a novel regulator of breast cancer. AQP7 was prognostic of overall survival in patients with breast cancer. In mouse breast cancer models, reduced expression of Aqp7 caused reduced primary tumor burden and lung metastasis. Metabolomics and complex lipid profiling of cells and tumors with reduced Aqp7 revealed significantly altered lipid metabolism, glutathione metabolism, and urea/arginine metabolism compared with controls. These data identify AQP7 as a critical regulator of metabolic and signaling responses to environmental cellular stresses in breast cancer, highlighting AQP7 as a potential cancer-specific therapeutic vulnerability. SIGNIFICANCE: Aquaporin-7 is identified as a critical regulator of nutrient availability and signaling that responds to cellular stresses, making it an attractive therapeutic target in breast cancer. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/19/4071/F1.large.jpg.
Collapse
Affiliation(s)
- Chen Dai
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana
- Harper Cancer Research Institute, South Bend, Indiana
| | - Verodia Charlestin
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana
- Harper Cancer Research Institute, South Bend, Indiana
| | - Man Wang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana
- Harper Cancer Research Institute, South Bend, Indiana
| | - Zachary T Walker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana
- Harper Cancer Research Institute, South Bend, Indiana
| | - Maria Cristina Miranda-Vergara
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana
- Harper Cancer Research Institute, South Bend, Indiana
| | - Beth A Facchine
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana
- Harper Cancer Research Institute, South Bend, Indiana
| | - Junmin Wu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana
- Harper Cancer Research Institute, South Bend, Indiana
| | | | - Norman J Dovichi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana
- Harper Cancer Research Institute, South Bend, Indiana
| | - Jun Li
- Harper Cancer Research Institute, South Bend, Indiana
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, Indiana
| | - Laurie E Littlepage
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana.
- Harper Cancer Research Institute, South Bend, Indiana
| |
Collapse
|
26
|
da Silva IV, Cardoso C, Méndez-Giménez L, Camoes SP, Frühbeck G, Rodríguez A, Miranda JP, Soveral G. Aquaporin-7 and aquaporin-12 modulate the inflammatory phenotype of endocrine pancreatic beta-cells. Arch Biochem Biophys 2020; 691:108481. [PMID: 32735865 DOI: 10.1016/j.abb.2020.108481] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 02/08/2023]
Abstract
Aquaporins (AQPs) facilitate water and glycerol movement across membranes. AQP7 is the main aquaglyceroporin in pancreatic β-cells and was proposed to play a role in insulin exocytosis. Although AQP7-null mice display adult-onset obesity, impaired insulin secretion and insulin resistance, AQP7 loss-of-function homozygous mutations in humans do not correlate with obesity nor type-2 diabetes. In addition, AQP12 is upregulated in pancreatitis. However, the implication of this isoform in endocrine pancreas inflammation is still unclear. Here, we investigated AQP7 and AQP12 involvement in cellular and inflammatory processes using RIN-m5F beta cells, a model widely used for their high insulin secretion. AQP7 and AQP12 expression were directly associated with cell proliferation, adhesion and migration. While tumor necrosis factor-alpha (TNFα)-induced inflammation impaired AQP7 expression and drastically reduced insulin secretion, lipopolysaccharides (LPS) prompted AQP7 upregulation, and both TNFα and LPS upregulated AQP12. Importantly, cells overexpressing AQP12 are more resistant to inflammation, revealing lower levels of proinflammatory markers. Altogether, these data document AQP7 involvement in insulin secretion and AQP12 implication in inflammation, highlighting their fundamental role in pancreatic β-cell function.
Collapse
Affiliation(s)
- Inês Vieira da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal; Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal
| | - Carlos Cardoso
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal; Clinical Chemistry Laboratory, Dr. Joaquim Chaves, 1495-068, Algés, Portugal
| | - Leire Méndez-Giménez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, IdiSNA, 31008, Pamplona, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008, Pamplona, Spain
| | - Sérgio Povoas Camoes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal; Department of Toxicological and Bromatological Sciences, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, IdiSNA, 31008, Pamplona, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008, Pamplona, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, IdiSNA, 31008, Pamplona, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008, Pamplona, Spain
| | - Joana Paiva Miranda
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal; Department of Toxicological and Bromatological Sciences, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal.
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal; Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal.
| |
Collapse
|
27
|
Wang X, Yang J, Yao Y, Shi X, Yang G, Li X. AQP3 Facilitates Proliferation and Adipogenic Differentiation of Porcine Intramuscular Adipocytes. Genes (Basel) 2020; 11:genes11040453. [PMID: 32331274 PMCID: PMC7230797 DOI: 10.3390/genes11040453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 12/16/2022] Open
Abstract
The meat quality of animal products is closely related to the intramuscular fat content. Aquaglyceroporin (AQP) defines a class of water/glycerol channels that primarily facilitate the passive transport of glycerol and water across biological membranes. In this study, the AQP3 protein of the AQP family was mainly studied in the adipogenic function of intramuscular adipocytes in pigs. Here, we found that AQP3 was increased at both mRNA and protein levels upon adipogenic stimuli in porcine intramuscular adipocytes in vitro. Western blot results showed knockdown of AQP3 by siRNA significantly suppressed the expression of adipogenic genes (PPARγ, aP2, etc.), repressed Akt phosphorylation, as well as reducing lipid accumulation. Furthermore, deletion of AQP3 by siRNA significantly downregulated expression of cell cycle genes (cyclin D, E), and decreased the number of EdU-positive cells as well as cell viability. Collectively, our data indicate that AQP3 is of great importance in both adipogenic differentiation and proliferation in intramuscular adipocytes, providing a potential target for modulating fat infiltration in skeletal muscles.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiao Li
- Correspondence: ; Tel.: +86-29-870-81531
| |
Collapse
|
28
|
Hu J, Li X, Judd RL, Easley CJ. Rapid lipolytic oscillations in ex vivo adipose tissue explants revealed through microfluidic droplet sampling at high temporal resolution. LAB ON A CHIP 2020; 20:1503-1512. [PMID: 32239045 PMCID: PMC7380261 DOI: 10.1039/d0lc00103a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Our understanding of adipose tissue biology has steadily evolved. While structural and energy storage functionalities have been in the forefront, a key endocrine role for adipocytes was revealed only over the last few decades. In contrast to the wealth of information on dynamic function of other endocrine tissues, few studies have focused on dynamic adipose tissue function or on tool development toward that end. Here, we apply our unique droplet-based microfluidic devices to culture, perfuse, and sample secretions from primary murine epididymal white adipose tissue (eWAT), and from predifferentiated clusters of 3T3-L1 adipocytes. Through automated control, oil-segmented aqueous droplets (∼2.6 nL) were sampled from tissue or cells at 3.5 second temporal resolution (including sample and reference droplets), with integrated enzyme assays enabling real-time quantification of glycerol (down to 1.9 fmol per droplet). This high resolution revealed previously unreported oscillations in secreted glycerol at frequencies of 0.2 to 2.0 min-1 (∼30-300 s periods) present in the primary tissue but not in clustered cells. Low-level bursts (∼50 fmol) released in basal conditions were contrasted with larger bursts (∼300 fmol) during stimulation. Further, both fold changes and burst magnitudes were decreased in eWAT of aged and obese mice. These results, combined with immunostaining and photobleaching analyses, suggest that gap-junctional coupling or nerve cell innervation within the intact ex vivo tissue explants play important roles in this apparent tissue-level, lipolytic synchronization. High-resolution, quantitative sampling by droplet microfluidics thus permitted unique biological information to be observed, giving an analytical framework poised for future studies of dynamic oscillatory function of adipose and other tissues.
Collapse
Affiliation(s)
- Juan Hu
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA.
| | | | | | | |
Collapse
|
29
|
Transcriptome Analysis Reveals Long Intergenic Non-Coding RNAs Contributed to Intramuscular Fat Content Differences between Yorkshire and Wei Pigs. Int J Mol Sci 2020; 21:ijms21051732. [PMID: 32138348 PMCID: PMC7084294 DOI: 10.3390/ijms21051732] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/23/2020] [Accepted: 03/01/2020] [Indexed: 12/12/2022] Open
Abstract
Intramuscular fat (IMF) content is closely related to various meat traits, such as tenderness, juiciness, and flavor. The IMF content varies considerably among pig breeds with different genetic backgrounds. Long intergenic non-coding RNAs (lincRNAs) have been widely identified in many species and found to be an important class of regulators that can participate in multiple biological processes. However, the mechanism behind lincRNAs regulation of pig IMF content remains unknown and requires further study. In our study, we identified a total of 156 lincRNAs in the longissimus dorsi muscle of Wei (fat-type) and Yorkshire (lean-type) pigs using previously published data. These identified lincRNAs have shorter transcript length, longer exon length, lower exon number, and lower expression level as compared with protein-coding transcripts. We predicted potential target genes (PTGs) that are potentially regulated by lincRNAs in cis or trans regulation. Gene ontology and pathway analyses indicated that many potential lincRNAs target genes are involved in IMF-related processes or pathways, such as fatty acid catabolic process and adipocytokine signaling pathway. In addition, we analyzed quantitative trait locus (QTL) sites that differentially expressed lincRNAs (DE lincRNAs) between Wei and Yorkshire pigs co-localized. The QTL sites where DE lincRNAs co-localize are mostly related to IMF content. Furthermore, we constructed a co-expressed network between DE lincRNAs and their differentially expressed PTGs (DEPTGs). On the basis of their expression levels, we suggest that many DE lincRNAs can affect IMF development by positively or negatively regulating their PTGs. This study identified and analyzed some lincRNAs- and PTGs-related IMF development of the two pig breeds and provided new insight into research on the roles of lincRNAs in the two types of breeds.
Collapse
|
30
|
de Maré SW, Venskutonytė R, Eltschkner S, de Groot BL, Lindkvist-Petersson K. Structural Basis for Glycerol Efflux and Selectivity of Human Aquaporin 7. Structure 2020; 28:215-222.e3. [DOI: 10.1016/j.str.2019.11.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 10/07/2019] [Accepted: 11/15/2019] [Indexed: 10/25/2022]
|
31
|
Iena FM, Jul JB, Vegger JB, Lodberg A, Thomsen JS, Brüel A, Lebeck J. Sex-Specific Effect of High-Fat Diet on Glycerol Metabolism in Murine Adipose Tissue and Liver. Front Endocrinol (Lausanne) 2020; 11:577650. [PMID: 33193093 PMCID: PMC7609944 DOI: 10.3389/fendo.2020.577650] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/30/2020] [Indexed: 12/25/2022] Open
Abstract
Obesity is associated with increased plasma glycerol levels. The coordinated regulation of glycerol channels in adipose tissue (AQP7) and the liver (AQP9) has been suggested as an important contributor to the pathophysiology of type-2-diabetes mellitus, as it would provide glycerol for hepatic synthesis of glucose and triglycerides. The regulation of AQP7 and AQP9 is influenced by sex. This study investigates the effect of a high-fat diet (HFD) on glycerol metabolism in mice and the influence of sex and GLP-1-receptor agonist treatment. Female and male C57BL/6JRj mice were fed either a control diet or a HFD for 12 or 24 weeks. Liraglutide was administered (1 mg/kg/day) to a subset of female mice. After 12 weeks of HFD, females had gained less weight than males. In adipose tissue, only females demonstrated an increased abundance of AQP7, whereas only males demonstrated a significant increase in glycerol kinase abundance and adipocyte size. 24 weeks of HFD resulted in a more comparable effect on weight gain and adipose tissue in females and males. HFD resulted in marked hepatic steatosis in males only and had no significant effect on the hepatic abundance of AQP9. Liraglutide treatment generally attenuated the effects of HFD on glycerol metabolism. In conclusion, no coordinated upregulation of glycerol channels in adipose tissue and liver was observed in response to HFD. The effect of HFD on glycerol metabolism is sex-specific in mice, and we propose that the increased AQP7 abundance in female adipose tissue could contribute to their less severe response to HFD.
Collapse
|
32
|
Park S, Oh TS, Kim S, Kim EK. Palmitate-induced autophagy liberates monounsaturated fatty acids and increases Agrp expression in hypothalamic cells. Anim Cells Syst (Seoul) 2019; 23:384-391. [PMID: 31853375 PMCID: PMC6913639 DOI: 10.1080/19768354.2019.1696407] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/15/2019] [Indexed: 12/13/2022] Open
Abstract
Fatty acids regulate food intake, although the exact mechanism remains unknown. Emerging evidence suggests that intracellular free fatty acids generated by starvation-induced autophagy regulate food intake. Starvation for 6 h elevated fatty acids such as palmitate, oleate, arachidonate, eicosatrienoate, and docosahexaenoate in the mouse serum. Among them, palmitate induced lipophagy, an autophagic degradation of cellular lipid droplets, in agouti-related peptide (Agrp)-expressing hypothalamic cells. Palmitate-induced lipophagy increased both Agrp expression and the contents of monounsaturated fatty acids such as palmitoleate, oleate, and (E)-9-octadecanoate, whereas these effects were blunted by autophagy deficiency. These findings support the role of free fatty acids in hypothalamic autophagy that regulates the appetite by changing the expression of orexigenic neuropeptides.
Collapse
Affiliation(s)
- Seokjae Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea.,Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Tae Seok Oh
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Seolsong Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Eun-Kyoung Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea.,Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| |
Collapse
|
33
|
Fujii M, Ota K, Bessho R. Cardioprotective effect of hyperkalemic cardioplegia in an aquaporin 7-deficient murine heart. Gen Thorac Cardiovasc Surg 2019; 68:578-584. [PMID: 31707553 DOI: 10.1007/s11748-019-01243-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/25/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Hyperkalemic cardioplegia using St. Thomas' Hospital solution No. 2 (STH2) is commonly used to protect the myocardium during surgery. Mice deficient in the myocyte channel aquaporin 7 (AQP7) show significantly reduced glycerol and ATP contents and develop obesity; however, the influence of AQP7 on cardioplegia effectiveness remains unclear. METHODS After determining the influence of ischemic duration on cardiac function, isolated hearts of male wild-type (WT) and AQP7-knockout (KO) mice (> 13 weeks old) were aerobically Langendorff-perfused with bicarbonate buffer, and randomly allocated to the control group (25 min of global ischemia) and STH2 group (5 min of STH2 infusion before 20 min of global ischemia, followed by 60 min of reperfusion). RESULTS Final recovery of left ventricular developed pressure (LVDP) of WT and AQP7-KO hearts in the control group was 24.5 ± 12.4% and 20.6 ± 8.4%, respectively, which were significantly lower than those of the STH2 group (96.4 ± 12.7% and 92.9 ± 27.6%). Troponin T levels of WT and AQP-KO hearts significantly decreased in the STH2 groups (142.9 ± 27.2 and 219.9 ± 197.3) compared to those of the control (1725.0 ± 768.6 and 1710 ± 819.9). CONCLUSIONS AQP7 was not involved in the protective efficacy of STH2 in this mouse model, suggesting its clinical utility even in complications of metabolic disease.
Collapse
Affiliation(s)
- Masahiro Fujii
- Department of Cardiovascular Surgery, Nippon Medical School Chiba Hokusoh Hospital, 1715 Kamagari, Inzai, Chiba, 270-1694, Japan.
| | - Keisuke Ota
- Department of Cardiovascular Surgery, Nippon Medical School Chiba Hokusoh Hospital, 1715 Kamagari, Inzai, Chiba, 270-1694, Japan
| | - Ryuzo Bessho
- Department of Cardiovascular Surgery, Nippon Medical School Chiba Hokusoh Hospital, 1715 Kamagari, Inzai, Chiba, 270-1694, Japan
| |
Collapse
|
34
|
Arsenijevic T, Perret J, Van Laethem JL, Delporte C. Aquaporins Involvement in Pancreas Physiology and in Pancreatic Diseases. Int J Mol Sci 2019; 20:E5052. [PMID: 31614661 PMCID: PMC6834120 DOI: 10.3390/ijms20205052] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/14/2022] Open
Abstract
Aquaporins are a family of transmembrane proteins permeable to water. In mammals, they are subdivided into classical aquaporins that are permeable to water; aquaglyceroporins that are permeable to water, glycerol and urea; peroxiporins that facilitate the diffusion of H2O2 through cell membranes; and so called unorthodox aquaporins. Aquaporins ensure important physiological functions in both exocrine and endocrine pancreas. Indeed, they are involved in pancreatic fluid secretion and insulin secretion. Modification of aquaporin expression and/or subcellular localization may be involved in the pathogenesis of pancreatic insufficiencies, diabetes and pancreatic cancer. Aquaporins may represent useful drug targets for the treatment of pathophysiological conditions affecting pancreatic function, and/or diagnostic/predictive biomarker for pancreatic cancer. This review summarizes the current knowledge related to the involvement of aquaporins in the pancreas physiology and physiopathology.
Collapse
Affiliation(s)
- Tatjana Arsenijevic
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, 1070 Brussels, Belgium.
- Department of Gastroenterology, Hepatology and Digestive Oncology, Hôpital Erasme, Université Libre de Bruxelles, 808, Route de Lennik, 1070 Brussels, Belgium.
| | - Jason Perret
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium.
| | - Jean-Luc Van Laethem
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, 1070 Brussels, Belgium.
- Department of Gastroenterology, Hepatology and Digestive Oncology, Hôpital Erasme, Université Libre de Bruxelles, 808, Route de Lennik, 1070 Brussels, Belgium.
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium.
| |
Collapse
|
35
|
Xing L, Jin B, Fu X, Zhu J, Guo X, Xu W, Mou X, Wang Z, Jiang F, Zhou Y, Chen X, Shu J. Identification of functional estrogen response elements in glycerol channel Aquaporin-7 gene. Climacteric 2019; 22:466-471. [PMID: 30888885 DOI: 10.1080/13697137.2019.1580255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- L. Xing
- Department of Reproductive Endocrinology, Zhejiang Provincial People‘s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China
| | - B. Jin
- Department of Reproductive Endocrinology, Zhejiang Provincial People‘s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China
| | - X. Fu
- Department of Reproductive Endocrinology, Zhejiang Provincial People‘s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China
| | - J. Zhu
- Department of Reproductive Endocrinology, Zhejiang Provincial People‘s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China
| | - X. Guo
- Department of Reproductive Endocrinology, Zhejiang Provincial People‘s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China
| | - W. Xu
- Department of Reproductive Endocrinology, Zhejiang Provincial People‘s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China
| | - X. Mou
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, Hangzhou, Zhejiang, P.R. China
| | - Z. Wang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, Hangzhou, Zhejiang, P.R. China
| | - F. Jiang
- The First Clinical Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Y. Zhou
- The First Clinical Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - X. Chen
- Department of Reproductive Endocrinology, Zhejiang Provincial People‘s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, Hangzhou, Zhejiang, P.R. China
| | - J. Shu
- Department of Reproductive Endocrinology, Zhejiang Provincial People‘s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China
- The First Clinical Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| |
Collapse
|
36
|
Sonntag Y, Gena P, Maggio A, Singh T, Artner I, Oklinski MK, Johanson U, Kjellbom P, Nieland JD, Nielsen S, Calamita G, Rützler M. Identification and characterization of potent and selective aquaporin-3 and aquaporin-7 inhibitors. J Biol Chem 2019; 294:7377-7387. [PMID: 30862673 DOI: 10.1074/jbc.ra118.006083] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 03/04/2019] [Indexed: 01/21/2023] Open
Abstract
The aquaglyceroporins are a subfamily of aquaporins that conduct both water and glycerol. Aquaporin-3 (AQP3) has an important physiological function in renal water reabsorption, and AQP3-mediated hydrogen peroxide (H2O2) permeability can enhance cytokine signaling in several cell types. The related aquaglyceroporin AQP7 is required for dendritic cell chemokine responses and antigen uptake. Selective small-molecule inhibitors are desirable tools for investigating the biological and pathological roles of these and other AQP isoforms. Here, using a calcein fluorescence quenching assay, we screened a library of 7360 drug-like small molecules for inhibition of mouse AQP3 water permeability. Hit confirmation and expansion with commercially available substances identified the ortho-chloride-containing compound DFP00173, which inhibited mouse and human AQP3 with an IC50 of ∼0.1-0.4 μm but had low efficacy toward mouse AQP7 and AQP9. Surprisingly, inhibitor specificity testing revealed that the methylurea-linked compound Z433927330, a partial AQP3 inhibitor (IC50, ∼0.7-0.9 μm), is a potent and efficacious inhibitor of mouse AQP7 water permeability (IC50, ∼0.2 μm). Stopped-flow light scattering measurements confirmed that DFP00173 and Z433927330 inhibit AQP3 glycerol permeability in human erythrocytes. Moreover, DFP00173, Z433927330, and the previously identified AQP9 inhibitor RF03176 blocked aquaglyceroporin H2O2 permeability. Molecular docking to AQP3, AQP7, and AQP9 homology models suggested interactions between these inhibitors and aquaglyceroporins at similar binding sites. DFP00173 and Z433927330 constitute selective and potent AQP3 and AQP7 inhibitors, respectively, and contribute to a set of isoform-specific aquaglyceroporin inhibitors that will facilitate the evaluation of these AQP isoforms as drug targets.
Collapse
Affiliation(s)
- Yonathan Sonntag
- From the Division of Biochemistry and Structural Biology, Department of Chemistry, Lund University, 22100 Lund, Sweden
| | - Patrizia Gena
- the Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari "Aldo Moro," 70125 Bari, Italy
| | - Anna Maggio
- the Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari "Aldo Moro," 70125 Bari, Italy
| | - Tania Singh
- the Stem Cell Center, Lund University, 22184 Lund, Sweden, and
| | - Isabella Artner
- the Stem Cell Center, Lund University, 22184 Lund, Sweden, and
| | - Michal K Oklinski
- the Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark
| | - Urban Johanson
- From the Division of Biochemistry and Structural Biology, Department of Chemistry, Lund University, 22100 Lund, Sweden
| | - Per Kjellbom
- From the Division of Biochemistry and Structural Biology, Department of Chemistry, Lund University, 22100 Lund, Sweden
| | - John Dirk Nieland
- the Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark
| | - Søren Nielsen
- the Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark
| | - Giuseppe Calamita
- the Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari "Aldo Moro," 70125 Bari, Italy
| | - Michael Rützler
- the Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark
| |
Collapse
|
37
|
Cao Y, He Y, Wei C, Li J, Qu L, Zhang H, Cheng Y, Qiao B. Aquaporins Alteration Profiles Revealed Different Actions of Senna, Sennosides, and Sennoside A in Diarrhea-Rats. Int J Mol Sci 2018; 19:E3210. [PMID: 30336596 PMCID: PMC6213963 DOI: 10.3390/ijms19103210] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/21/2018] [Accepted: 10/12/2018] [Indexed: 01/18/2023] Open
Abstract
Senna and its main components sennosides are well-known effective laxative drugs and are used in the treatment of intestinal constipation in the world. Their potential side effects have attracted more attention in clinics but have little scientific justification. In this study, senna extract (SE), sennosides (SS), and sennoside A (SA) were prepared and used to generate diarrhea rats. The diarrhea rats were investigated with behaviors, clinical signs, organ index, pathological examination, and gene expression on multiple aquaporins (Aqps) including Aqp1, Aqp2, Aqp3, Aqp4, Aqp5, Aqp6, Aqp7, Aqp8, Aqp9, and Aqp11. Using qRT-PCR, the Aqp expression profiles were constructed for six organs including colon, kidney, liver, spleen, lung, and stomach. The Aqp alteration profiles were characterized and was performed with Principle Component Analysis (PCA). The SE treatments on the rats resulted in a significant body weight loss (p < 0.001), significant increases (p < 0.001) on the kidney index (27.72%) and liver index (42.55%), and distinguished changes with up-regulation on Aqps expressions in the kidneys and livers. The SS treatments showed prominent laxative actions and down regulation on Aqps expression in the colons. The study results indicated that the SE had more influence/toxicity on the kidneys and livers. The SS showed more powerful actions on the colons. We suggest that the caution should be particularly exercised in the patients with kidney and liver diseases when chronic using senna-based products.
Collapse
Affiliation(s)
- Yixin Cao
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an 710069, China.
- Shaanxi Traditional Chinese Medicine Innovation Engineering Technology Research Center, No. 229 Taibai North Road, Xi'an 710069, China.
| | - Ying He
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an 710069, China.
- Shaanxi Traditional Chinese Medicine Innovation Engineering Technology Research Center, No. 229 Taibai North Road, Xi'an 710069, China.
| | - Cong Wei
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an 710069, China.
- Shaanxi Traditional Chinese Medicine Innovation Engineering Technology Research Center, No. 229 Taibai North Road, Xi'an 710069, China.
| | - Jing Li
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an 710069, China.
- Shaanxi Traditional Chinese Medicine Innovation Engineering Technology Research Center, No. 229 Taibai North Road, Xi'an 710069, China.
| | - Lejing Qu
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an 710069, China.
- Shaanxi Traditional Chinese Medicine Innovation Engineering Technology Research Center, No. 229 Taibai North Road, Xi'an 710069, China.
| | - Huiqin Zhang
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an 710069, China.
- Shaanxi Traditional Chinese Medicine Innovation Engineering Technology Research Center, No. 229 Taibai North Road, Xi'an 710069, China.
| | - Ying Cheng
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an 710069, China.
- Shaanxi Traditional Chinese Medicine Innovation Engineering Technology Research Center, No. 229 Taibai North Road, Xi'an 710069, China.
| | - Boling Qiao
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an 710069, China.
- Shaanxi Traditional Chinese Medicine Innovation Engineering Technology Research Center, No. 229 Taibai North Road, Xi'an 710069, China.
| |
Collapse
|
38
|
Gómez-Zorita S, Trepiana J, Fernández-Quintela A, González M, Portillo MP. Resveratrol and Pterostilbene, Two Analogue Phenolic Compounds, Affect Aquaglyceroporin Expression in a Different Manner in Adipose Tissue. Int J Mol Sci 2018; 19:ijms19092654. [PMID: 30205436 PMCID: PMC6165208 DOI: 10.3390/ijms19092654] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/25/2018] [Accepted: 09/03/2018] [Indexed: 12/19/2022] Open
Abstract
Aquaglyceroporins (AQPs) are transmembrane channels that mediate glycerol release and glycerol uptake. They are involved in fat metabolism, with implications in obesity. The aim was to determine whether the administration of resveratrol and pterostilbene during the six weeks of the experimental period would modify AQPs expression in white and brown adipose tissues from Wistar rats fed an obesogenic diet, and to establish a potential relationship with the delipidating properties of these compounds. Consequently, thirty-six rats were divided into four groups: (a) group fed a standard diet; and three more groups fed a high-fat high-sucrose diet: (b) high-fat high-sucrose group: (c) pterostilbene-treated group (30 mg/kg/d): (d) resveratrol-treated group (30 mg/kg/d). Epididymal, subcutaneous white adipose tissues and interscapular brown adipose tissue were dissected. AQPs gene expression (RT-PCR) and protein expression (western-blot) were measured. In white adipose tissue, pterostilbene reduced subcutaneous adipose tissue weight and prevented the decrease in AQP9 induced by obesogenic feeding, and thus glycerol uptake for triglyceride accumulation. Resveratrol reduced epididymal adipose tissue weight and avoided the decrease in AQPs related to glycerol release induced by high-fat high-sucrose feeding, suggesting the involvement of lipolysis in its body-fat lowering effect. Regarding brown adipose tissue, AQP7 seemed not to be involved in the previously reported thermogenic activity of both phenolic compounds.
Collapse
Affiliation(s)
- Saioa Gómez-Zorita
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 48940 Vitoria, Spain.
- Biomedical Research Networking Centres, Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, 28029 Madrid, Spain.
| | - Jenifer Trepiana
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 48940 Vitoria, Spain.
| | - Alfredo Fernández-Quintela
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 48940 Vitoria, Spain.
- Biomedical Research Networking Centres, Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, 28029 Madrid, Spain.
| | - Marcela González
- Nutrition and Food Science Department, Faculty of Biochemistry and Biological Sciences, National University of Litoral and National Scientific and Technical Research Council (CONICET), 3000 Santa Fe, Argentina.
| | - María P Portillo
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 48940 Vitoria, Spain.
- Biomedical Research Networking Centres, Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
39
|
Calamita G, Perret J, Delporte C. Aquaglyceroporins: Drug Targets for Metabolic Diseases? Front Physiol 2018; 9:851. [PMID: 30042691 PMCID: PMC6048697 DOI: 10.3389/fphys.2018.00851] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/15/2018] [Indexed: 12/29/2022] Open
Abstract
Aquaporins (AQPs) are a family of transmembrane channel proteins facilitating the transport of water, small solutes, and gasses across biological membranes. AQPs are expressed in all tissues and ensure multiple roles under normal and pathophysiological conditions. Aquaglyceroporins are a subfamily of AQPs permeable to glycerol in addition to water and participate thereby to energy metabolism. This review focalizes on the present knowledge of the expression, regulation and physiological roles of AQPs in adipose tissue, liver and endocrine pancreas, that are involved in energy metabolism. In addition, the review aims at summarizing the involvement of AQPs in metabolic disorders, such as obesity, diabetes and liver diseases. Finally, challenges and recent advances related to pharmacological modulation of AQPs expression and function to control and treat metabolic diseases are discussed.
Collapse
Affiliation(s)
- Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Jason Perret
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, Brussels, Belgium
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
40
|
Tardelli M, Claudel T, Bruschi FV, Trauner M. Nuclear Receptor Regulation of Aquaglyceroporins in Metabolic Organs. Int J Mol Sci 2018; 19:E1777. [PMID: 29914059 PMCID: PMC6032257 DOI: 10.3390/ijms19061777] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 02/07/2023] Open
Abstract
Nuclear receptors, such as the farnesoid X receptor (FXR) and the peroxisome proliferator-activated receptors gamma and alpha (PPAR-γ, -α), are major metabolic regulators in adipose tissue and the liver, where they govern lipid, glucose, and bile acid homeostasis, as well as inflammatory cascades. Glycerol and free fatty acids are the end products of lipid droplet catabolism driven by PPARs. Aquaporins (AQPs), a family of 13 small transmembrane proteins, facilitate the shuttling of water, urea, and/or glycerol. The peculiar role of AQPs in glycerol transport makes them pivotal targets in lipid metabolism, especially considering their tissue-specific regulation by the nuclear receptors PPARγ and PPARα. Here, we review the role of nuclear receptors in the regulation of glycerol shuttling in liver and adipose tissue through the function and expression of AQPs.
Collapse
Affiliation(s)
- Matteo Tardelli
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology & Hepatology, Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| | - Thierry Claudel
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology & Hepatology, Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| | - Francesca Virginia Bruschi
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology & Hepatology, Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology & Hepatology, Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| |
Collapse
|
41
|
Ho-Palma AC, Rotondo F, Romero MDM, Fernández-López JA, Remesar X, Alemany M. Use of 14C-glucose by primary cultures of mature rat epididymal adipocytes. Marked release of lactate and glycerol, but limited lipogenesis in the absence of external stimuli. Adipocyte 2018; 7:204-217. [PMID: 29708458 DOI: 10.1080/21623945.2018.1460020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
White adipose tissue can metabolize large amounts of glucose to glycerol and lactate. We quantitatively traced glucose label to lactate, glycerol and fats in primary cultures of mature rat epididymal adipocytes. Cells were incubated with 7/14 mM 14C-glucose for 24/48 h. Medium metabolites and the label in them and in cells' components were measured. Gene expression analysis was done using parallel incubations. Glucose concentration did not affect lactate efflux and most parameters. Glycerol efflux increased after 24 h, coinciding with arrested lipogenesis. Steady production of lactate was maintained in parallel to glycerogenesis. Changes in adipocyte metabolism were paralleled by gene expression. Glucose use for lipogenesis was minimal, and stopped (24 h-onwards) when glycerol efflux increased because of triacylglycerol turnover. Lactate steady efflux showed that anaerobic glycolysis was the main adipocyte source of energy. We can assume that adipose tissue may play a quantitatively significant effect on glycaemia, returning 3C fragments thus minimizing lipogenesis.
Collapse
Affiliation(s)
- Ana Cecilia Ho-Palma
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Floriana Rotondo
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - María del Mar Romero
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine, University of Barcelona, Barcelona, Spain
- CIBER-OBN Research Web, Barcelona, Spain
| | - José Antonio Fernández-López
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine, University of Barcelona, Barcelona, Spain
- CIBER-OBN Research Web, Barcelona, Spain
| | - Xavier Remesar
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine, University of Barcelona, Barcelona, Spain
- CIBER-OBN Research Web, Barcelona, Spain
| | - Marià Alemany
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine, University of Barcelona, Barcelona, Spain
- CIBER-OBN Research Web, Barcelona, Spain
| |
Collapse
|
42
|
Méndez-Giménez L, Ezquerro S, da Silva IV, Soveral G, Frühbeck G, Rodríguez A. Pancreatic Aquaporin-7: A Novel Target for Anti-diabetic Drugs? Front Chem 2018; 6:99. [PMID: 29675407 PMCID: PMC5895657 DOI: 10.3389/fchem.2018.00099] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/20/2018] [Indexed: 12/26/2022] Open
Abstract
Aquaporins comprise a family of 13 members of water channels (AQP0-12) that facilitate a rapid transport of water across cell membranes. In some cases, these pores are also permeated by small solutes, particularly glycerol, urea or nitric oxide, among other solutes. Several aquaporins have been identified in the pancreas, an exocrine and endocrine organ that plays an essential role in the onset of insulin resistance and type 2 diabetes. The exocrine pancreas, which accounts for 90% of the total pancreas, secretes daily large volumes of a near-isotonic fluid containing digestive enzymes into the duodenum. AQP1, AQP5, and AQP8 contribute to fluid secretion especially from ductal cells, whereas AQP12 allows the proper maturation and exocytosis of secretory granules in acinar cells of the exocrine pancreas. The endocrine pancreas (10% of the total pancreatic cells) is composed by the islets of Langerhans, which are distributed in α, β, δ, ε, and pancreatic polypeptide (PP) cells that secrete glucagon, insulin, somatostatin, ghrelin and PP, respectively. AQP7, an aquaglyceroporin permeated by water and glycerol, is expressed in pancreatic β-cells and murine studies have confirmed its participation in insulin secretion, triacylglycerol synthesis and proliferation of these endocrine cells. In this regard, transgenic AQP7-knockout mice develop adult-onset obesity, hyperinsulinemia, increased intracellular triacylglycerol content and reduced β-cell mass in Langerhans islets. Moreover, we have recently reported that AQP7 upregulation in β-cells after bariatric surgery, an effective weight loss surgical procedure, contributes, in part, to the improvement of pancreatic steatosis and insulin secretion through the increase of intracytoplasmic glycerol in obese rats. Human studies remain scarce and controversial, with some rare cases of loss-of function mutations of the AQP7 gene being associated with the onset of type 2 diabetes. The present Review is focused on the role of aquaporins in the physiology and pathophysiology of the pancreas, highlighting the role of pancreatic AQP7 as a novel player in the control of β-cell function and a potential anti-diabetic-drug.
Collapse
Affiliation(s)
- Leire Méndez-Giménez
- Metabolic Research Laboratory, University of Navarra, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Silvia Ezquerro
- Metabolic Research Laboratory, University of Navarra, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Inês V da Silva
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Lisboa, Portugal
| | - Graça Soveral
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Lisboa, Portugal
| | - Gema Frühbeck
- Metabolic Research Laboratory, University of Navarra, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain.,Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, University of Navarra, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
43
|
Body condition score prior to parturition is associated with plasma and adipose tissue biomarkers of lipid metabolism and inflammation in Holstein cows. J Anim Sci Biotechnol 2018; 9:12. [PMID: 29387386 PMCID: PMC5775576 DOI: 10.1186/s40104-017-0221-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 12/19/2017] [Indexed: 02/07/2023] Open
Abstract
Background Previous research has revealed a strong inflammatory response within adipose (AT) tissue during the transition into lactation. Whether this effect is a result of oxidative stress induced by lipolysis and fatty acid oxidation associated with differences in prepartum body condition score remains to be determined. The objectives of this study were to investigate systemic biomarkers of energy balance and inflammation and the expression of lipid metabolism- and inflammation-related genes in AT during the transition period in dairy cows. Results Twenty multiparous Holstein cows were retrospectively divided by body condition score (BCS) prior to parturition into two groups (10 cows/group): BCS ≤ 3.25 (LoBCS) and BCS ≥ 3.75 (HiBCS). Subcutaneous adipose tissue was biopsied from the tail-head region at d − 10, 7 and 20 relative to parturition. Plasma was used to evaluate biomarkers of energy balance (EBAL) [free fatty acids (NEFA), glycerol, insulin] and inflammation [IL-1β, haptoglobin, myeloperoxidase, and reactive oxygen metabolites (ROM)]. Although insulin concentration was not affected by BCS, NEFA was overall greater and glycerol lower in HiBCS cows. Greater activity of myeloperoxidase in plasma coincided with increased haptoglobin and IL-1β postpartum in LoBCS cows. Among genes related with oxidative stress, the expression of the cytosolic antioxidant enzyme SOD1 was greater in LoBCS compared to HiBCS. Cows in LoBCS compared with HiBCS had greater overall expression of ABDH5 and ATGL along with ADIPOQ, indicating enhanced basal lipolysis and secretion of adiponectin. Expression of CPT1A, ACADVL, and ACOX1 was greater overall in HiBCS than LoBCS indicating enhanced NEFA oxidation. Although the temporal increase in plasma NEFA regardless of BCS coincided with the profile of CPT1A, the gradual decrease in genes related with re-esterification of NEFA (PCK1) and glycerol efflux (AQP7) coupled with an increase in glycerol kinase (GK) suggested some stimulation of NEFA utilization within adipose tissue. This idea is supported in part by the gradual decrease in insulin regardless of BCS. Although expression of the inflammation-related gene toll-like receptor 4 (TLR4) was greater in HiBCS versus LoBCS cows at −10 d, expression of TLR9 was greater in HiBCS versus LoBCS at 20 d. These profiles did not seem to be associated with concentrations of pro-inflammatory biomarkers or ROM. Conclusions Overall, data indicated that cows with BCS 3.25 or lower before calving experienced greater alterations in systemic inflammation and basal lipolysis without excessive increases in NEFA plasma concentrations. Despite the greater plasma NEFA around parturition, cows with BCS 3.75 or higher seemed to have a more active system for catabolism of NEFA and utilization of glycerol within adipose tissue. A linkage between those pathways and risk of disorders postpartum remains to be determined. Electronic supplementary material The online version of this article (10.1186/s40104-017-0221-1) contains supplementary material, which is available to authorized users.
Collapse
|
44
|
Aquaglyceroporin PbAQP is required for efficient progression through the liver stage of Plasmodium infection. Sci Rep 2018; 8:655. [PMID: 29330527 PMCID: PMC5766620 DOI: 10.1038/s41598-017-18987-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 12/19/2017] [Indexed: 12/04/2022] Open
Abstract
The discovery of aquaglyceroporins (AQP) has highlighted a new mechanism of membrane solute transport that may hold therapeutic potential for controlling parasitic infections, including malaria. Plasmodium parasites express a single AQP at the plasma membrane that functions as a channel for water, nutrients and waste into and out cells. We previously demonstrated that Plasmodium berghei targeted for PbAQP deletion are deficient in glycerol import and less virulent than wild-type parasites during the blood developmental stage. Here, we have examined the contribution of PbAQP to the infectivity of P. berghei in the liver. PbAQP is expressed in the sporozoite mosquito stage and is detected at low levels in intrahepatic parasites at the onset of hepatocyte infection. As the parasites progress to late hepatic stages, PbAQP transcription increases and PbAQP localizes to the plasma membrane of hepatic merozoites. Compared to wild-type parasites, PbAQP-null sporozoites exhibit a delay in blood stage infection due to slower replication in hepatocytes, resulting in retardation of merosome production. Furthermore, PbAQP disruption results in a significant reduction in erythrocyte infectivity by hepatocyte-derived merozoites. Hepatic merozoites incorporate exogenous glycerol into glycerophospholipids and PbAQP-null merozoites contain less phosphatidylcholine than wild-type merozoites, underlining the contribution of Plasmodium AQP to phospholipid syntheses.
Collapse
|
45
|
Iena FM, Lebeck J. Implications of Aquaglyceroporin 7 in Energy Metabolism. Int J Mol Sci 2018; 19:ijms19010154. [PMID: 29300344 PMCID: PMC5796103 DOI: 10.3390/ijms19010154] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 12/29/2017] [Accepted: 12/31/2017] [Indexed: 12/14/2022] Open
Abstract
The aquaglyceroporin AQP7 is a pore-forming transmembrane protein that facilitates the transport of glycerol across cell membranes. Glycerol is utilized both in carbohydrate and lipid metabolism. It is primarily stored in white adipose tissue as part of the triglyceride molecules. During states with increased lipolysis, such as fasting and diabetes, glycerol is released from adipose tissue and metabolized in other tissues. AQP7 is expressed in adipose tissue where it facilitates the efflux of glycerol, and AQP7 deficiency has been linked to increased glycerol kinase activity and triglyceride accumulation in adipose tissue, leading to obesity and secondary development of insulin resistance. However, AQP7 is also expressed in a wide range of other tissues, including kidney, muscle, pancreatic β-cells and liver, where AQP7 also holds the potential to influence whole body energy metabolism. The aim of the review is to summarize the current knowledge on AQP7 in adipose tissue, as well as AQP7 expressed in other tissues where AQP7 might play a significant role in modulating whole body energy metabolism.
Collapse
Affiliation(s)
- Francesco Maria Iena
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, 8000 Aarhus, Denmark.
| | - Janne Lebeck
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, 8000 Aarhus, Denmark.
| |
Collapse
|
46
|
Lipopolysaccharide Modifies Glycerol Permeability and Metabolism in 3T3-L1 Adipocytes. Int J Mol Sci 2017; 18:ijms18122566. [PMID: 29186031 PMCID: PMC5751169 DOI: 10.3390/ijms18122566] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/09/2017] [Accepted: 11/25/2017] [Indexed: 12/15/2022] Open
Abstract
Aquaglyceroporins-aquaporin membrane channels (AQP) that conduct glycerol and other small neutral solutes in addition to water-play major roles in obesity. In adipocytes, aquaglyceroporins mediate glycerol uptake and release across the plasma membrane, which are two key steps for triacylglycerols (TAGs) synthesis (lipogenesis) and hydrolysis (lipolysis). The aim of this study was to assess both glycerol permeability and metabolism in undifferentiated 3T3-L1 cells (UDCs) as well as in untreated (CTL-DCs) versus lipopolysaccharide (LPS-DCs)-treated differentiated 3T3-L1 adipocytes. Glycerol release, TAGs content and whole membrane glycerol permeability were significantly increased in DCs as compared to UDCs. Moreover, in DCs, LPS treatment significantly increased TAGs content and decreased glycerol permeability. In addition, a significant reduction in whole membrane glycerol permeability was observed in LPS-DCs as compared to CTL-DCs. The relative contributions of AQP3, AQP7 and AQP9 (facilitated diffusion), as well as that of the phospholipid bilayer (simple diffusion), to the whole membrane glycerol permeability, were estimated biophysically in UDCs, CTL-DCs and LPS-DCs, using selective AQP inhibitors. Further studies will be required to determine if modifications in either subcellular localization and/or activity of aquaglyceroporins could account for the data herein. Nevertheless, our findings provide novel insights in understanding the LPS-induced adipocyte hypertrophy that accompanies obesity.
Collapse
|
47
|
Xue LL, Chen HH, Jiang JG. Implications of glycerol metabolism for lipid production. Prog Lipid Res 2017; 68:12-25. [PMID: 28778473 DOI: 10.1016/j.plipres.2017.07.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 07/06/2017] [Accepted: 07/31/2017] [Indexed: 12/13/2022]
Abstract
Triacylglycerol (TAG) is an important product in oil-producing organisms. Biosynthesis of TAG can be completed through either esterification of fatty acids to glycerol backbone, or through esterification of 2-monoacylglycerol. This review will focus on the former pathway in which two precursors, fatty acid and glycerol-3-phosphate (G3P), are required for TAG formation. Tremendous progress has been made about the enzymes or genes that regulate the biosynthetic pathway of TAG. However, much attention has been paid to the fatty acid provision and the esterification process, while the possible role of G3P is largely neglected. Glycerol is extensively studied on its usage as carbon source for value-added products, but the modification of glycerol metabolism, which is directly associated with G3P synthesis, is seldom recognized in lipid investigations. The relevance among glycerol metabolism, G3P synthesis and lipid production is described, and the role of G3P in glycerol metabolism and lipid production are discussed in detail with an emphasis on how G3P affects lipid production through the modulation of glycerol metabolism. Observations of lipid metabolic changes due to glycerol related disruption in mammals, plants, and microorganisms are introduced. Altering glycerol metabolism results in the changes of final lipid content. Possible regulatory mechanisms concerning the relationship between glycerol metabolism and lipid production are summarized.
Collapse
Affiliation(s)
- Lu-Lu Xue
- (a)College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China; (b)Industrial Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Hao-Hong Chen
- (a)College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China
| | - Jian-Guo Jiang
- (a)College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
48
|
Wawrzkiewicz-Jałowiecka A, Kowalczyk K, Pluta D, Blukacz Ł, Madej P. The role of aquaporins in polycystic ovary syndrome - A way towards a novel drug target in PCOS. Med Hypotheses 2017; 102:23-27. [PMID: 28478824 DOI: 10.1016/j.mehy.2017.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/05/2017] [Indexed: 11/25/2022]
Abstract
Aquaporins (AQPs) are transmembrane proteins, able to transport water (and in some cases also small solutes, e. g. glycerol) through the cell membrane. There are twelve types of aquaporins (AQP1-AQP12) expressed in mammalian reproductive systems. According to literature, many diseases of the reproductive organs are correlated with changes of AQPs expression and their malfunction. That is the case in the polycystic ovary syndrome (PCOS), where dysfunctions of AQPs 7-9 and alterations in its levels occur. In this work, we postulate how AQPs are involved in PCOS-related disorders, in order to emphasize their potential therapeutic meaning as a drug target. Our research allows for a surprising inference, that genetic mutation causing malfunction and/or decreased expression of aquaporins, may be incorporated in the popular insulin-dependent hypothesis of PCOS pathogenesis. What is more, changes in AQP's expression may affect the folliculogenesis and follicular atresia in PCOS.
Collapse
Affiliation(s)
- Agata Wawrzkiewicz-Jałowiecka
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Ks. M. Strzody 9, Poland.
| | - Karolina Kowalczyk
- Department of Gynecological Endocrinology, Medical Faculty in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Dagmara Pluta
- Department of Gynecological Endocrinology, Medical Faculty in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Łukasz Blukacz
- Department of Gynecological Endocrinology, Medical Faculty in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Paweł Madej
- Department of Gynecological Endocrinology, Medical Faculty in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| |
Collapse
|
49
|
Nagao H, Nishizawa H, Bamba T, Nakayama Y, Isozumi N, Nagamori S, Kanai Y, Tanaka Y, Kita S, Fukuda S, Funahashi T, Maeda N, Fukusaki E, Shimomura I. Increased Dynamics of Tricarboxylic Acid Cycle and Glutamate Synthesis in Obese Adipose Tissue: IN VIVO METABOLIC TURNOVER ANALYSIS. J Biol Chem 2017; 292:4469-4483. [PMID: 28119455 DOI: 10.1074/jbc.m116.770172] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/06/2017] [Indexed: 01/20/2023] Open
Abstract
Obesity is closely associated with various metabolic disorders. However, little is known about abnormalities in the metabolic change of obese adipose tissue. Here we use static metabolic analysis and in vivo metabolic turnover analysis to assess metabolic dynamics in obese mice. The static metabolic analyses showed that glutamate and constitutive metabolites of the TCA cycle were increased in the white adipose tissue (WAT) of ob/ob and diet-induced obesity mice but not in the liver or skeletal muscle of these obese mice. Moreover, in vivo metabolic turnover analyses demonstrated that these glucose-derived metabolites were dynamically and specifically produced in obese WAT compared with lean WAT. Glutamate rise in obese WAT was associated with down-regulation of glutamate aspartate transporter (GLAST), a major glutamate transporter for adipocytes, and low uptake of glutamate into adipose tissue. In adipocytes, glutamate treatment reduced adiponectin secretion and insulin-mediated glucose uptake and phosphorylation of Akt. These data suggest that a high intra-adipocyte glutamate level potentially relates to adipocyte dysfunction in obesity. This study provides novel insights into metabolic dysfunction in obesity through comprehensive application of in vivo metabolic turnover analysis in two obese animal models.
Collapse
Affiliation(s)
| | | | - Takeshi Bamba
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yasumune Nakayama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | - Shunbun Kita
- From the Departments of Metabolic Medicine.,Metabolism and Atherosclerosis, Graduate School of Medicine, and
| | | | - Tohru Funahashi
- From the Departments of Metabolic Medicine.,Metabolism and Atherosclerosis, Graduate School of Medicine, and
| | - Norikazu Maeda
- From the Departments of Metabolic Medicine.,Metabolism and Atherosclerosis, Graduate School of Medicine, and
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | | |
Collapse
|
50
|
Abstract
Obesity is one of the most important metabolic disorders of this century and is associated with a cluster of the most dangerous cardiovascular disease risk factors, such as insulin resistance and diabetes , dyslipidemia and hypertension , collectively named Metabolic Syndrome. The role of aquaporins in glycerol metabolism facilitating glycerol release from the adipose tissue and distribution to various tissues and organs, unveils these membrane channels as important players in lipid balance and energy homeostasis and points to their involvement in a variety of pathophysiological mechanisms including insulin resistance, obesity and diabetes.This review summarizes the physiologic role of aquaglyceroporins in glycerol metabolism and lipid homeostasis, describing their specific tissue distribution, their involvement in glycerol balance and their implication in obesity and fat-related metabolic complications. The development of specify pharmacologic modulators able to regulate aquaglyceroporins expression and function , in particular AQP7 in adipose tissue, might constitute a novel approach for controlling obesity and other metabolic disorders.
Collapse
Affiliation(s)
- Inês Vieira da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, 1649-003, Portugal
- Department of Bioquimica e Biologia Humana, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, 1649-003, Portugal.
- Department of Bioquimica e Biologia Humana, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|