1
|
State of the art in epitope mapping and opportunities in COVID-19. Future Sci OA 2023; 16:FSO832. [PMID: 36897962 PMCID: PMC9987558 DOI: 10.2144/fsoa-2022-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
The understanding of any disease calls for studying specific biological structures called epitopes. One important tool recently drawing attention and proving efficiency in both diagnosis and vaccine development is epitope mapping. Several techniques have been developed with the urge to provide precise epitope mapping for use in designing sensitive diagnostic tools and developing rpitope-based vaccines (EBVs) as well as therapeutics. In this review, we will discuss the state of the art in epitope mapping with a special emphasis on accomplishments and opportunities in combating COVID-19. These comprise SARS-CoV-2 variant analysis versus the currently available immune-based diagnostic tools and vaccines, immunological profile-based patient stratification, and finally, exploring novel epitope targets for potential prophylactic, therapeutic or diagnostic agents for COVID-19.
Collapse
|
2
|
Grifoni A, Zhang Y, Tarke A, Sidney J, Rubiro P, Reina-Campos M, Filaci G, Dan JM, Scheuermann RH, Sette A. Defining antigen targets to dissect vaccinia virus and monkeypox virus-specific T cell responses in humans. Cell Host Microbe 2022; 30:1662-1670.e4. [PMID: 36463861 PMCID: PMC9718645 DOI: 10.1016/j.chom.2022.11.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 12/04/2022]
Abstract
The monkeypox virus (MPXV) outbreak confirmed in May 2022 in non-endemic countries is raising concern about the pandemic potential of novel orthopoxviruses. Little is known regarding MPXV immunity in the context of MPXV infection or vaccination with vaccinia-based vaccines (VACV). As with vaccinia, T cells are likely to provide an important contribution to overall immunity to MPXV. Here, we leveraged the epitope information available in the Immune Epitope Database (IEDB) on VACV to predict potential MPXV targets recognized by CD4+ and CD8+ T cell responses. We found a high degree of conservation between VACV epitopes and MPXV and defined T cell immunodominant targets. These analyses enabled the design of peptide pools able to experimentally detect VACV-specific T cell responses and MPXV cross-reactive T cells in a cohort of vaccinated individuals. Our findings will facilitate the monitoring of cellular immunity following MPXV infection and vaccination.
Collapse
Affiliation(s)
- Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Yun Zhang
- Department of Informatics, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Alison Tarke
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA,Center of Excellence for Biomedical Research, Department of Experimental Medicine, University of Genoa, Genoa 16132, Italy
| | - John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Paul Rubiro
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Maria Reina-Campos
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Gilberto Filaci
- Center of Excellence for Biomedical Research, Department of Internal Medicine, University of Genoa, Genoa 16132, Italy,Biotherapy Unit, IRCCS Ospedale Policlinico San Martino, Genoa 16132, Italy
| | - Jennifer M. Dan
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA,Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA
| | - Richard H. Scheuermann
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA,Department of Informatics, J. Craig Venter Institute, La Jolla, CA 92037, USA,Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA,Global Virus Network, Baltimore, MD 21201, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA,Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA,Corresponding author
| |
Collapse
|
3
|
Dey S, Kamil Reza K, Wuethrich A, Korbie D, Ibn Sina AA, Trau M. Tracking antigen specific T-cells: Technological advancement and limitations. Biotechnol Adv 2018; 37:145-153. [PMID: 30508573 DOI: 10.1016/j.biotechadv.2018.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/30/2018] [Accepted: 11/20/2018] [Indexed: 11/18/2022]
Abstract
Assessing T-cell mediated immune status can help to understand the body's response to disease and also provide essential diagnostic information. However, detection and characterization of immune response are challenging due to the rarity of signature biomolecules in biological fluid and require highly sensitive and specific assay technique for the analysis. Until now, several techniques spanning from flow cytometry to microsensors have been developed or under investigation for T-cell mediated immune response monitoring. Most of the current assays are designed to estimate average immune responses, i.e., total functional protein analysis and detection of total T-cells irrespective of their antigen specificity. Although potential, immune response analysis without detecting and characterizing the rare subset of T-cell population could lead to over or underestimation of patient's immune status. Addressing this limitation, recently a number of technological advancements in biosensing have been developed for this. The potential of simple and precise micro-technologies including microarray and microfluidic platforms for assessing antigen-specific T-cells will be highlighted in this review, together with a discussion on existing challenges and future aspects of immune-sensor development.
Collapse
Affiliation(s)
- Shuvashis Dey
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, QLD 4072, Australia
| | - K Kamil Reza
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, QLD 4072, Australia
| | - Alain Wuethrich
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, QLD 4072, Australia
| | - Darren Korbie
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, QLD 4072, Australia
| | - Abu Ali Ibn Sina
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, QLD 4072, Australia.
| | - Matt Trau
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, QLD 4072, Australia; School of Chemistry and Molecular Biosciences, The University of Queensland, QLD 4072, Australia.
| |
Collapse
|
4
|
Reginald K, Chan Y, Plebanski M, Poh CL. Development of Peptide Vaccines in Dengue. Curr Pharm Des 2018; 24:1157-1173. [PMID: 28914200 PMCID: PMC6040172 DOI: 10.2174/1381612823666170913163904] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/30/2017] [Accepted: 09/06/2017] [Indexed: 12/11/2022]
Abstract
Dengue is one of the most important arboviral infections worldwide, infecting up to 390 million people and causing 25,000 deaths annually. Although a licensed dengue vaccine is available, it is not efficacious against dengue serotypes that infect people living in South East Asia, where dengue is an endemic disease. Hence, there is an urgent need to develop an efficient dengue vaccine for this region. Data from different clinical trials indicate that a successful dengue vaccine must elicit both neutralizing antibodies and cell mediated immunity. This can be achieved by designing a multi-epitope peptide vaccine comprising B, CD8+ and CD4+ T cell epitopes. As recognition of T cell epitopes are restricted by human leukocyte antigens (HLA), T cell epitopes which are able to recognize several major HLAs will be preferentially included in the vaccine design. While peptide vaccines are safe, biocompatible and cost-effective, it is poorly immunogenic. Strategies to improve its immunogenicity by the use of long peptides, adjuvants and nanoparticle delivery mechanisms are discussed.
Collapse
Affiliation(s)
| | | | | | - Chit Laa Poh
- Address correspondence to this author at the Research Centre for Biomedical Sciences, School of Science and Technology, Sunway University, 5 Jalan University, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia; Tel: +60-3-7491 8622 ext. 7338; E-mail:
| |
Collapse
|
5
|
Shen C, Xu T, Wu Y, Li X, Xia L, Wang W, Shahzad KA, Zhang L, Wan X, Qiu J. Frequency and reactivity of antigen-specific T cells were concurrently measured through the combination of artificial antigen-presenting cell, MACS and ELISPOT. Sci Rep 2017; 7:16400. [PMID: 29180767 PMCID: PMC5703716 DOI: 10.1038/s41598-017-16549-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 11/14/2017] [Indexed: 01/24/2023] Open
Abstract
Conventional peptide-major histocompatibility complex (pMHC) multimer staining, intracellular cytokine staining, and enzyme-linked immunospot (ELISPOT) assay cannot concurrently determine the frequency and reactivity of antigen-specific T cells (AST) in a single assay. In this report, pMHC multimer, magnetic-activated cell sorting (MACS), and ELISPOT techniques have been integrated into a micro well by coupling pMHC multimers onto cell-sized magnetic beads to characterize AST cell populations in a 96-well microplate which pre-coated with cytokine-capture antibodies. This method, termed AAPC-microplate, allows the enumeration and local cytokine production of AST cells in a single assay without using flow cytometry or fluorescence intensity scanning, thus will be widely applicable. Here, ovalbumin257-264-specific CD8+ T cells from OT-1 T cell receptor (TCR) transgenic mice were measured. The methodological accuracy, specificity, reproducibility, and sensitivity in enumerating AST cells compared well with conventional pMHC multimer staining. Furthermore, the AAPC-microplate was applied to detect the frequency and reactivity of Hepatitis B virus (HBV) core antigen18-27- and surface antigen183-191-specific CD8+ T cells for the patients, and was compared with conventional method. This method without the need of high-end instruments may facilitate the routine analysis of patient-specific cellular immune response pattern to a given antigen in translational studies.
Collapse
Affiliation(s)
- Chuanlai Shen
- Department of Microbiology and Immunology, Southeast University Medical School, Nanjing, Jiangsu, China.
| | - Tao Xu
- Department of Microbiology and Immunology, Southeast University Medical School, Nanjing, Jiangsu, China
| | - You Wu
- Department of Microbiology and Immunology, Southeast University Medical School, Nanjing, Jiangsu, China
| | - Xiaoe Li
- Department of Microbiology and Immunology, Southeast University Medical School, Nanjing, Jiangsu, China
| | - Lingzhi Xia
- Department of Laboratory Medicine, Nanjing KingMed Diagnostics Company Limited, Nanjing, Jiangsu, China
| | - Wei Wang
- Department of Microbiology and Immunology, Southeast University Medical School, Nanjing, Jiangsu, China
| | - Khawar Ali Shahzad
- Department of Microbiology and Immunology, Southeast University Medical School, Nanjing, Jiangsu, China
| | - Lei Zhang
- Department of Microbiology and Immunology, Southeast University Medical School, Nanjing, Jiangsu, China
| | - Xin Wan
- Department of Microbiology and Immunology, Southeast University Medical School, Nanjing, Jiangsu, China
| | - Jie Qiu
- Division of Infectious Diseases, Second Hospital of Nanjing, Affiliated Second Hospital of Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
6
|
Determining T-cell specificity to understand and treat disease. Nat Biomed Eng 2017; 1:784-795. [DOI: 10.1038/s41551-017-0143-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 09/05/2017] [Indexed: 02/06/2023]
|
7
|
Bentzen AK, Hadrup SR. Evolution of MHC-based technologies used for detection of antigen-responsive T cells. Cancer Immunol Immunother 2017; 66:657-666. [PMID: 28314956 PMCID: PMC5406421 DOI: 10.1007/s00262-017-1971-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 02/03/2017] [Indexed: 01/07/2023]
Abstract
T cell-mediated recognition of peptide-major histocompatibility complex (pMHC) class I and II molecules is crucial for the control of intracellular pathogens and cancer, as well as for stimulation and maintenance of efficient cytotoxic responses. Such interactions may also play a role in the development of autoimmune diseases. Novel insights into this mechanism are crucial to understanding disease development and establishing new treatment strategies. MHC multimers have been used for detection of antigen-responsive T cells since the first report by Altman et al. showed that tetramerization of pMHC class I molecules provided sufficient stability to T cell receptor (TCR)-pMHC interactions, allowing detection of MHC multimer-binding T cells using flow cytometry. Since this breakthrough the scientific community has aimed for expanding the capacity of MHC multimer-based detection technologies to facilitate large-scale epitope discovery and immune monitoring in limited biological material. Screening of T cell specificity using large libraries of pMHC molecules is suitable for analyses of T cell recognition potentially at genome-wide levels rather than analyses restricted to a selection of model antigens. Such strategies provide novel insights into the immune specificities involved in disease development and response to immunotherapy, and extend fundamental knowledge related to T cell recognition patterns and cross-recognition by TCRs. MHC multimer-based technologies have now evolved from detection of 1-2 different T cell specificities per cell sample, to include more than 1000 evaluable pMHC molecules using novel technologies. Here, we provide an overview of MHC multimer-based detection technologies developed over two decades, focusing primarily on MHC class I interactions.
Collapse
Affiliation(s)
- Amalie Kai Bentzen
- Section for Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark, Copenhagen, Denmark
| | - Sine Reker Hadrup
- Section for Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark, Copenhagen, Denmark.
| |
Collapse
|
8
|
Ahmad TA, Eweida AE, El-Sayed LH. T-cell epitope mapping for the design of powerful vaccines. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.vacrep.2016.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Abstract
In this chapter the state of the art of live cell microarrays for high-throughput biological assays are reviewed. The fabrication of novel microarrays with respect to material science and cell patterning methods is included. A main focus of the chapter is on various aspects of the application of cell microarrays by providing selected examples in research fields such as biomaterials, stem cell biology and neuroscience. Additionally, the importance of microfluidic technologies for high-throughput on-chip live-cell microarrays is highlighted for single-cell and multi-cell assays as well as for 3D tissue constructs.
Collapse
|
10
|
A Simple Microfluidic Platform for Long-Term Analysis and Continuous Dual-Imaging Detection of T-Cell Secreted IFN-γ and IL-2 on Antibody-Based Biochip. BIOSENSORS-BASEL 2015; 5:750-67. [PMID: 26690235 PMCID: PMC4697143 DOI: 10.3390/bios5040750] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/12/2015] [Accepted: 11/25/2015] [Indexed: 01/11/2023]
Abstract
The identification and characterization, at the cellular level, of cytokine productions present a high interest for both fundamental research and clinical studies. However, the majority of techniques currently available (ELISA, ELISpot, flow cytometry, etc.) have several shortcomings including, notably, the assessment of several cytokines in relation to individual secreting cells and the monitoring of living cell responses for a long incubation time. In the present work, we describe a system composed of a microfluidic platform coupled with an antibody microarray chip for continuous SPR imaging and immunofluorescence analysis of cytokines (IL-2 and IFN-γ) secreted by T-Lymphocytes, specifically, and stably captured on the biochip under flow upon continued long-term on-chip culture (more than 24 h).
Collapse
|
11
|
Drug-eluting microarrays to identify effective chemotherapeutic combinations targeting patient-derived cancer stem cells. Proc Natl Acad Sci U S A 2015; 112:8732-7. [PMID: 26124098 DOI: 10.1073/pnas.1505374112] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
A new paradigm in oncology establishes a spectrum of tumorigenic potential across the heterogeneous phenotypes within a tumor. The cancer stem cell hypothesis postulates that a minute fraction of cells within a tumor, termed cancer stem cells (CSCs), have a tumor-initiating capacity that propels tumor growth. An application of this discovery is to target this critical cell population using chemotherapy; however, the process of isolating these cells is arduous, and the rarity of CSCs makes it difficult to test potential drug candidates in a robust fashion, particularly for individual patients. To address the challenge of screening drug libraries on patient-derived populations of rare cells, such as CSCs, we have developed a drug-eluting microarray, a miniaturized platform onto which a minimal quantity of cells can adhere and be exposed to unique treatment conditions. Hundreds of drug-loaded polymer islands acting as drug depots colocalized with adherent cells are surrounded by a nonfouling background, creating isolated culture environments on a solid substrate. Significant results can be obtained by testing <6% of the cells required for a typical 96-well plate. Reliability was demonstrated by an average coefficient of variation of 14% between all of the microarrays and 13% between identical conditions within a single microarray. Using the drug-eluting array, colorectal CSCs isolated from two patients exhibited unique responses to drug combinations when cultured on the drug-eluting microarray, highlighting the potential as a prognostic tool to identify personalized chemotherapeutic regimens targeting CSCs.
Collapse
|
12
|
Braendstrup P, Mortensen BK, Justesen S, Østerby T, Rasmussen M, Hansen AM, Christiansen CB, Hansen MB, Nielsen M, Vindeløv L, Buus S, Stryhn A. Identification and HLA-tetramer-validation of human CD4+ and CD8+ T cell responses against HCMV proteins IE1 and IE2. PLoS One 2014; 9:e94892. [PMID: 24760079 PMCID: PMC3997423 DOI: 10.1371/journal.pone.0094892] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 03/20/2014] [Indexed: 01/26/2023] Open
Abstract
Human cytomegalovirus (HCMV) is an important human pathogen. It is a leading cause of congenital infection and a leading infectious threat to recipients of solid organ transplants as well as of allogeneic hematopoietic cell transplants. Moreover, it has recently been suggested that HCMV may promote tumor development. Both CD4+ and CD8+ T cell responses are important for long-term control of the virus, and adoptive transfer of HCMV-specific T cells has led to protection from reactivation and HCMV disease. Identification of HCMV-specific T cell epitopes has primarily focused on CD8+ T cell responses against the pp65 phosphoprotein. In this study, we have focused on CD4+ and CD8+ T cell responses against the immediate early 1 and 2 proteins (IE1 and IE2). Using overlapping peptides spanning the entire IE1 and IE2 sequences, peripheral blood mononuclear cells from 16 healthy, HLA-typed, donors were screened by ex vivo IFN-γ ELISpot and in vitro intracellular cytokine secretion assays. The specificities of CD4+ and CD8+ T cell responses were identified and validated by HLA class II and I tetramers, respectively. Eighty-one CD4+ and 44 CD8+ T cell responses were identified representing at least seven different CD4 epitopes and 14 CD8 epitopes restricted by seven and 11 different HLA class II and I molecules, respectively, in total covering 91 and 98% of the Caucasian population, respectively. Presented in the context of several different HLA class II molecules, two epitope areas in IE1 and IE2 were recognized in about half of the analyzed donors. These data may be used to design a versatile anti-HCMV vaccine and/or immunotherapy strategy.
Collapse
Affiliation(s)
- Peter Braendstrup
- Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- The Allogeneic Hematopoietic Cell Transplantation Laboratory, Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Bo Kok Mortensen
- Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- The Allogeneic Hematopoietic Cell Transplantation Laboratory, Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Sune Justesen
- Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Østerby
- Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Rasmussen
- Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Martin Hansen
- Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Claus Bohn Christiansen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Morten Bagge Hansen
- Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Morten Nielsen
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark and Instituto de Investigaciones Biotecnológicas, Universidad de San Martín, San Martín, Buenos Aires, Argentina
| | - Lars Vindeløv
- The Allogeneic Hematopoietic Cell Transplantation Laboratory, Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Søren Buus
- Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anette Stryhn
- Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
13
|
Sharma G, Holt RA. T-cell epitope discovery technologies. Hum Immunol 2014; 75:514-9. [PMID: 24755351 DOI: 10.1016/j.humimm.2014.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 03/18/2014] [Accepted: 03/27/2014] [Indexed: 01/21/2023]
Abstract
Despite tremendous potential utility in clinical medicine and research, the discovery and characterization of T-cell antigens has lagged behind most other areas of health research in joining the high-throughput '-omics' revolution. Partially responsible for this is the complex nature of the interactions between effector T cells and antigen-presenting cells. Further contributing to the challenge is the vastness of both the T-cell repertoire and the large number of potential T-cell epitopes. In this review, we trace the development of various discovery strategies, the technical platforms used to carry them out, and we assess the level of success achieved in the field today.
Collapse
Affiliation(s)
- Govinda Sharma
- Michael Smith Genome Sciences Centre, BC Cancer Agency, 675 W 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada; Department of Medical Genetics, University of British Columbia, C201 - 4500 Oak Street, Vancouver, British Columbia V6H 3N1, Canada.
| | - Robert A Holt
- Michael Smith Genome Sciences Centre, BC Cancer Agency, 675 W 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada; Department of Medical Genetics, University of British Columbia, C201 - 4500 Oak Street, Vancouver, British Columbia V6H 3N1, Canada; Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada.
| |
Collapse
|
14
|
Ge X, Eleftheriou NM, Dahoumane SA, Brennan JD. Sol–Gel-Derived Materials for Production of Pin-Printed Reporter Gene Living-Cell Microarrays. Anal Chem 2013; 85:12108-17. [DOI: 10.1021/ac403220g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Xin Ge
- Biointerfaces
Institute and Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada L8S 4L8
- Department
of Chemical and Environmental Engineering, University of California, Riverside, CA 92521
| | - Nikolas M. Eleftheriou
- Biointerfaces
Institute and Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada L8S 4L8
- Department
of Laboratory Medicine, Lund University, Lund, Sweden
| | - Si Amar Dahoumane
- Biointerfaces
Institute and Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada L8S 4L8
| | - John D. Brennan
- Biointerfaces
Institute and Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada L8S 4L8
| |
Collapse
|
15
|
Amore A, Wals K, Koekoek E, Hoppes R, Toebes M, Schumacher TNM, Rodenko B, Ovaa H. Development of a hypersensitive periodate-cleavable amino acid that is methionine- and disulfide-compatible and its application in MHC exchange reagents for T cell characterisation. Chembiochem 2013; 14:123-31. [PMID: 23280887 PMCID: PMC3561698 DOI: 10.1002/cbic.201200540] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Indexed: 12/02/2022]
Abstract
Incorporation of cleavable linkers into peptides and proteins is of particular value in the study of biological processes. Here we describe the synthesis of a cleavable linker that is hypersensitive to oxidative cleavage as the result of the periodate reactivity of a vicinal amino alcohol moiety. Two strategies directed towards the synthesis of a building block suitable for solid-phase peptide synthesis were developed: a chemoenzymatic route, involving L-threonine aldolase, and an enantioselective chemical route; these led to α,γ-diamino-β-hydroxybutanoic acids in diastereoisomerically mixed and enantiopure forms, respectively. Incorporation of the 1,2-amino alcohol linker into the backbone of a peptide generated a conditional peptide that was rapidly cleaved at very low concentrations of sodium periodate. This cleavable peptide ligand was applied in the generation of MHC exchange reagents for the detection of antigen-specific T cells in peripheral blood cells. The extremely low concentration of periodate required to trigger MHC peptide exchange allowed the co-oxidation of methionine and disulfide residues to be avoided. Conditional MHC reagents hypersensitive to periodate can now be applied without limitations when UV irradiation is undesired or less practical.
Collapse
Affiliation(s)
- Alessia Amore
- Division of Cell Biology, The Netherlands Cancer InstitutePlesmanlaan 121, 1066 CX Amsterdam (the Netherlands) E-mail:
| | - Kim Wals
- Division of Cell Biology, The Netherlands Cancer InstitutePlesmanlaan 121, 1066 CX Amsterdam (the Netherlands) E-mail:
| | - Evelyn Koekoek
- Division of Cell Biology, The Netherlands Cancer InstitutePlesmanlaan 121, 1066 CX Amsterdam (the Netherlands) E-mail:
| | - Rieuwert Hoppes
- Division of Cell Biology, The Netherlands Cancer InstitutePlesmanlaan 121, 1066 CX Amsterdam (the Netherlands) E-mail:
| | - Mireille Toebes
- Division of Immunology, The Netherlands Cancer InstitutePlesmanlaan 121, 1066 CX Amsterdam (the Netherlands)
| | - Ton N M Schumacher
- Division of Immunology, The Netherlands Cancer InstitutePlesmanlaan 121, 1066 CX Amsterdam (the Netherlands)
| | - Boris Rodenko
- Division of Cell Biology, The Netherlands Cancer InstitutePlesmanlaan 121, 1066 CX Amsterdam (the Netherlands) E-mail:
| | - Huib Ovaa
- Division of Cell Biology, The Netherlands Cancer InstitutePlesmanlaan 121, 1066 CX Amsterdam (the Netherlands) E-mail:
| |
Collapse
|
16
|
Suchard MS. Missing: a diagnostic technique to enumerate antigen-specific T cells. Crit Rev Oncol Hematol 2012; 83:276-82. [PMID: 22137827 PMCID: PMC3496851 DOI: 10.1016/j.critrevonc.2011.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 10/26/2011] [Accepted: 11/09/2011] [Indexed: 12/14/2022] Open
Abstract
T lymphocytes are responsible for immune responses against pathogens, immune surveillance against cancer and maintenance of tolerance to self. While techniques available to detect antigen-specific T cells have been well described, there is a missing technique in our repertoire. While fluorescent multimers can be used for limited research applications, there is no existing technique suitable for detection of antigen-specific T cells in a diagnostic setting. The absence of such a technology has inhibited the search for "correlates of protection" against infectious, autoimmune or malignant disease. This critical review of existing methods will highlight the limitations of the data on which our current understanding of the immune system is based, in an effort to stimulate development of improved techniques.
Collapse
Affiliation(s)
- Melinda Shelley Suchard
- Molecular Medicine and Haematology, National Health Laboratory Service, Faculty of Health Sciences, University of Witwatersrand, 7 York Road Parktown, Johannesburg 2192, South Africa.
| |
Collapse
|
17
|
Papp K, Szittner Z, Prechl J. Life on a microarray: assessing live cell functions in a microarray format. Cell Mol Life Sci 2012; 69:2717-25. [PMID: 22391673 PMCID: PMC11115177 DOI: 10.1007/s00018-012-0947-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 02/14/2012] [Accepted: 02/16/2012] [Indexed: 01/07/2023]
Abstract
Microarray technology outgrew the detection of simple intermolecular interactions, as incubation of slides with living cells opened new vistas. Cell-based array technology permits simultaneous detection of several different cell surface molecules, allowing the complex characterization of cells with an amount of information that is hardly assessed by any other technique. Furthermore, binding of cells to printed antibodies or ligands may induce their activation, and consequently the outcome of these interactions, such as phosphorylation, gene expression, secretion of various products; differentiation, proliferation and apoptosis of the cells are also measurable on arrays. Moreover, since cells can be transfected with printed vectors, over- or under-expression of selected genes is also achievable simultaneously, creating a nice tool for assessing the function of a given gene. The enormously high-throughput cell-based microarray technology enables testing the effect of external stimuli on a scale that was earlier unthinkable. This review summarizes the possible applications of cell-based arrays.
Collapse
Affiliation(s)
- Krisztián Papp
- Immunology Research Group, Hungarian Academy of Sciences, MTA-ELTE, Pázmány P.s. 1/C, Budapest 1117, Hungary.
| | | | | |
Collapse
|
18
|
Li Pira G, Ivaldi F, Manca F. Selective binding of CD4 and CD8 T-cells to antigen presenting cells for enrichment of CMV and HIV specific T-lymphocytes. J Immunol Methods 2012; 376:125-31. [DOI: 10.1016/j.jim.2012.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Revised: 12/29/2011] [Accepted: 01/03/2012] [Indexed: 10/14/2022]
|
19
|
Rice JM, Stern LJ, Guignon EF, Lawrence DA, Lynes MA. Antigen-specific T cell phenotyping microarrays using grating coupled surface plasmon resonance imaging and surface plasmon coupled emission. Biosens Bioelectron 2011; 31:264-9. [PMID: 22104646 DOI: 10.1016/j.bios.2011.10.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 10/10/2011] [Accepted: 10/17/2011] [Indexed: 11/30/2022]
Abstract
The circulating population of peripheral T lymphocytes obtained from a blood sample can provide a large amount of information about an individual's medical status and history. Recent evidence indicates that the detection and functional characterization of antigen-specific T cell subsets within the circulating population may provide a diagnostic indicator of disease and has the potential to predict an individual's response to therapy. In this report, a microarray detection platform that combines grating-coupled surface plasmon resonance imaging (GCSPRI) and grating-coupled surface plasmon coupled emission (SPCE) fluorescence detection modalities were used to detect and characterize CD4(+) T cells. The microspot regions of interest (ROIs) printed on the array consisted of immobilized antibodies or peptide loaded MHC monomers (p/MHC) as T cell capture ligands mixed with additional antibodies as cytokine capture ligands covalently bound to the surface of a corrugated gold sensor chip. Using optimized parameters, an unlabeled influenza peptide reactive T cell clone could be detected at a frequency of 0.1% in a mixed T cell sample using GCSPRI. Additionally, after cell binding was quantified, differential TH1 cytokine secretion patterns from a T cell clone cultured under TH1 or TH2 inducing conditions was detected using an SPCE fluorescence based assay. Differences in the secretion patterns of 3 cytokines, characteristic of the inducing conditions, indicated that differences were a consequence of the functional status of the captured cells. A dual mode GCSPRI/SPCE assay can provide a rapid, high content T cell screening/characterization tool that is useful for diagnosing disease, evaluating vaccination efficacy, or assessing responses to immunotherapeutics.
Collapse
Affiliation(s)
- James M Rice
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, BSP 318, Storrs, CT 06269, USA.
| | | | | | | | | |
Collapse
|
20
|
Adamczyk-Poplawska M, Markowicz S, Jagusztyn-Krynicka EK. Proteomics for development of vaccine. J Proteomics 2011; 74:2596-616. [PMID: 21310271 DOI: 10.1016/j.jprot.2011.01.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 01/26/2011] [Accepted: 01/31/2011] [Indexed: 12/20/2022]
Abstract
The success of genome projects has provided us with a vast amount of information on genes of many pathogenic species and has raised hopes for rapid progress in combating infectious diseases, both by construction of new effective vaccines and by creating a new generation of therapeutic drugs. Proteomics, a strategy complementary to the genomic-based approach, when combined with immunomics (looking for immunogenic proteins) and vaccinomics (characterization of host response to immunization), delivers valuable information on pathogen-host cell interaction. It also speeds the identification and detailed characterization of new antigens, which are potential candidates for vaccine development. This review begins with an overview of the global status of vaccinology based on WHO data. The main part of this review describes the impact of proteomic strategies on advancements in constructing effective antibacterial, antiviral and anticancer vaccines. Diverse aspects of disease mechanisms and disease preventions have been investigated by proteomics.
Collapse
Affiliation(s)
- Monika Adamczyk-Poplawska
- Department of Virology, Institute of Microbiology, Biology Faculty, Warsaw University, Warsaw, Poland
| | | | | |
Collapse
|
21
|
Liu J, Zhang S, Tan S, Zheng B, Gao GF. Revival of the identification of cytotoxic T-lymphocyte epitopes for immunological diagnosis, therapy and vaccine development. Exp Biol Med (Maywood) 2011; 236:253-67. [PMID: 21330360 DOI: 10.1258/ebm.2010.010278] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Immunogenic T-cell epitopes have a central role in the cellular immunity against pathogens and tumors. However, in the early stage of cellular immunity studies, it was complicated and time-consuming to identify and characterize T-cell epitopes. Currently, the epitope screening is experiencing renewed enthusiasm due to advances in novel techniques and theories. Moreover, the application of T-cell epitope-based diagnoses for tuberculosis and new data on epitope-based vaccine development have also revived the field. There is a growing knowledge on the emphasis of epitope-stimulated T-cell immune responses in the elimination of pathogens and tumors. In this review, we outline the significance of the identification and characterization of T-cell epitopes. We also summarize the methods and strategies for epitope definition and, more importantly, address the relevance of cytotoxic T-lymphocyte epitopes to clinical diagnoses, therapy and vaccine development.
Collapse
Affiliation(s)
- Jun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | |
Collapse
|
22
|
Minor histocompatibility antigens: presentation principles, recognition logic and the potential for a healing hand. Curr Opin Organ Transplant 2010; 15:512-25. [PMID: 20616723 DOI: 10.1097/mot.0b013e32833c1552] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW There is ample evidence indicating a pathologic role for minor histocompatibility antigens in inciting graft-versus-host disease in major histocompatibility complex (MHC)-matched bone marrow transplantation and rejection of solid organ allografts. Here we review the current knowledge of the genetic and biochemical bases for the cause of minor histoincompatibility and the structural basis for the recognition of the resulting alloantigens by the T-cell receptor. RECENT FINDINGS Recent evidence indicates that we as independently conceived individuals are genetically unique, thus, offering a mechanism for minor histoincompatibility between MHC-identical donor-recipient pairs. Furthermore, advances in delineating the mechanisms underlying antigen cross-presentation by MHC class I molecules and a critical role for autophagy in presenting cytoplasmic antigens by MHC class II molecules have been made. These new insights coupled with the X-ray crystallographic solution of several peptide/MHC-T-cell receptor structures have revealed mechanisms of histoincompatibility. SUMMARY On the basis of these new insights, ways to test for allograft compatibility and concoction of immunotherapies are discussed.
Collapse
|
23
|
Yue C, Oelke M, Paulaitis ME, Schneck JP. Novel cellular microarray assay for profiling T-cell peptide antigen specificities. J Proteome Res 2010; 9:5629-37. [PMID: 20836567 DOI: 10.1021/pr100447b] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present a novel cellular microarray assay using soluble peptide-loaded HLA A2-Ig dimer complexes that optimizes the avidity of peptide-HLA binding by preserving the molecular flexibility of the dimer complex while attaining much higher concentrations of the complex relative to cognate T-cell receptors. A seminal advance in assay development is made by separating the molecular T-cell receptor recognition event from the binding interactions that lead to antigen-specific cell capture on the microarray. This advance enables the quantitative determination of antigen-specific frequencies in heterogeneous T-cell populations without enumerating the number of cells captured on the microarray. The specificity of cell capture, sensitivity to low antigen-specific frequencies, and quantitation of antigenic T-cell specificities are established using CD8 T-cell populations with prepared antigen-specific CTL frequencies and heterogeneous T cells isolated from peripheral blood. The results demonstrate several advantages for high-throughput broad-based, quantitative assessments of low-frequency antigen specificities. The assay enables the use of cellular microarrays to determine the stability and flux of antigen-specific T-cell responses within and across populations.
Collapse
Affiliation(s)
- C Yue
- Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
24
|
Hoff A, Bagû AC, André T, Roth G, Wiesmüller KH, Gückel B, Brock R. Peptide microarrays for the profiling of cytotoxic T-lymphocyte activity using minimum numbers of cells. Cancer Immunol Immunother 2010; 59:1379-87. [PMID: 20512327 PMCID: PMC2892610 DOI: 10.1007/s00262-010-0867-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 04/30/2010] [Indexed: 11/30/2022]
Abstract
The identification of epitopes that elicit cytotoxic T-lymphocyte activity is a prerequisite for the development of cancer-specific immunotherapies. However, especially the parallel characterization of several epitopes is limited by the availability of T cells. Microarrays have enabled an unprecedented miniaturization and parallelization in biological assays. Here, we developed peptide microarrays for the detection of CTL activity. MHC class I-binding peptide epitopes were pipetted onto polymer-coated glass slides. Target cells, loaded with the cell-impermeant dye calcein, were incubated on these arrays, followed by incubation with antigen-expanded CTLs. Cytotoxic activity was detected by release of calcein and detachment of target cells. With only 200,000 cells per microarray, CTLs could be detected at a frequency of 0.5% corresponding to 1,000 antigen-specific T cells. Target cells and CTLs only settled on peptide spots enabling a clear separation of individual epitopes. Even though no physical boundaries were present between the individual spots, peptide loading only occurred locally and cytolytic activity was confined to the spots carrying the specific epitope. The peptide microarrays provide a robust platform that implements the whole process from antigen presentation to the detection of CTL activity in a miniaturized format. The method surpasses all established methods in the minimum numbers of cells required. With antigen uptake occurring on the microarray, further applications are foreseen in the testing of antigen precursors that require uptake and processing prior to presentation.
Collapse
Affiliation(s)
- Antje Hoff
- Department of Molecular Biology, Interfaculty Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
- Present Address: Trinity Centre for Health Sciences, Institute for Molecular Medicine, Trinity College Dublin, St. James Street, Dublin 8, Ireland
| | - Ana-Cristina Bagû
- Department of Gynecology and Obstetrics, University Hospital Tübingen, Calwerstraße 7, 72076 Tübingen, Germany
| | - Thomas André
- Department of Molecular Biology, Interfaculty Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
- Present Address: Bachem AG, Hauptstrasse 144, 4416 Bubendorf, Switzerland
| | - Günter Roth
- Department of Molecular Biology, Interfaculty Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | | | - Brigitte Gückel
- Department of Gynecology and Obstetrics, University Hospital Tübingen, Calwerstraße 7, 72076 Tübingen, Germany
| | - Roland Brock
- Department of Molecular Biology, Interfaculty Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
- Department of Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
25
|
Hadrup SR, Schumacher TN. MHC-based detection of antigen-specific CD8+ T cell responses. Cancer Immunol Immunother 2010; 59:1425-33. [PMID: 20177676 PMCID: PMC2892606 DOI: 10.1007/s00262-010-0824-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 01/30/2010] [Indexed: 12/05/2022]
Abstract
The hallmark of adaptive immunity is its ability to recognise a wide range of antigens and technologies that capture this diversity are therefore of substantial interest. New methods have recently been developed that allow the parallel analysis of T cell reactivity against vast numbers of different epitopes in limited biological material. These technologies are based on the joint binding of differentially labelled MHC multimers on the T cell surface, thereby providing each antigen-specific T cell population with a unique multicolour code. This strategy of 'combinatorial encoding' enables detection of many (at least 25) different T cell populations per sample and should be of broad value for both T cell epitope identification and immunomonitoring.
Collapse
Affiliation(s)
- Sine Reker Hadrup
- Department of Hematology, Center for Cancer Immune Therapy, CCIT, University Hospital Herlev, Herlev, Denmark.
| | | |
Collapse
|
26
|
Ge X, Gebe JA, Bollyky PL, James EA, Yang J, Stern LJ, Kwok WW. Peptide-MHC cellular microarray with innovative data analysis system for simultaneously detecting multiple CD4 T-cell responses. PLoS One 2010; 5:e11355. [PMID: 20634998 PMCID: PMC2902358 DOI: 10.1371/journal.pone.0011355] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 06/07/2010] [Indexed: 11/21/2022] Open
Abstract
Background Peptide:MHC cellular microarrays have been proposed to simultaneously characterize multiple Ag-specific populations of T cells. The practice of studying immune responses to complicated pathogens with this tool demands extensive knowledge of T cell epitopes and the availability of peptide:MHC complexes for array fabrication as well as a specialized data analysis approach for result interpretation. Methodology/Principal Findings We co-immobilized peptide:DR0401 complexes, anti-CD28, anti-CD11a and cytokine capture antibodies on the surface of chamber slides to generate a functional array that was able to detect rare Ag-specific T cell populations from previously primed in vitro T cell cultures. A novel statistical methodology was also developed to facilitate batch processing of raw array-like data into standardized endpoint scores, which linearly correlated with total Ag-specific T cell inputs. Applying these methods to analyze Influenza A viral antigen-specific T cell responses, we not only revealed the most prominent viral epitopes, but also demonstrated the heterogeneity of anti-viral cellular responses in healthy individuals. Applying these methods to examine the insulin producing beta-cell autoantigen specific T cell responses, we observed little difference between autoimmune diabetic patients and healthy individuals, suggesting a more subtle association between diabetes status and peripheral autoreactive T cells. Conclusions/Significance The data analysis system is reliable for T cell specificity and functional testing. Peptide:MHC cellular microarrays can be used to obtain multi-parametric results using limited blood samples in a variety of translational settings.
Collapse
Affiliation(s)
- Xinhui Ge
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States of America
| | - John A. Gebe
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States of America
| | - Paul L. Bollyky
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States of America
| | - Eddie A. James
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States of America
| | - Junbao Yang
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States of America
| | - Lawrence J. Stern
- Department of Pathology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - William W. Kwok
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
27
|
High throughput T epitope mapping and vaccine development. J Biomed Biotechnol 2010; 2010:325720. [PMID: 20617148 PMCID: PMC2896667 DOI: 10.1155/2010/325720] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 02/18/2010] [Accepted: 04/20/2010] [Indexed: 11/22/2022] Open
Abstract
Mapping of antigenic peptide sequences from proteins of relevant pathogens recognized by T helper (Th) and by cytolytic T lymphocytes (CTL) is crucial for vaccine development. In fact, mapping of T-cell epitopes provides useful information for the design of peptide-based vaccines and of peptide libraries to monitor specific cellular immunity in protected individuals, patients and vaccinees. Nevertheless, epitope mapping is a challenging task. In fact, large panels of overlapping peptides need to be tested with lymphocytes to identify the sequences that induce a T-cell response. Since numerous peptide panels from antigenic proteins are to be screened, lymphocytes available from human subjects are a limiting factor. To overcome this limitation, high throughput (HTP) approaches based on miniaturization and automation of T-cell assays are needed. Here we consider the most recent applications of the HTP approach to T epitope mapping. The alternative or complementary use of in silico prediction and experimental epitope definition is discussed in the context of the recent literature. The currently used methods are described with special reference to the possibility of applying the HTP concept to make epitope mapping an easier procedure in terms of time, workload, reagents, cells and overall cost.
Collapse
|
28
|
Black M, Trent A, Tirrell M, Olive C. Advances in the design and delivery of peptide subunit vaccines with a focus on toll-like receptor agonists. Expert Rev Vaccines 2010; 9:157-73. [PMID: 20109027 DOI: 10.1586/erv.09.160] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Considerable success has been made with many peptide antigen formulations, and peptide-based vaccines are emerging as the next generation of prophylactic and remedial immunotherapy. However, finding an optimal platform balancing all of the requirements for an effective, specific and safe immune response remains a major challenge for many infectious and chronic diseases. This review outlines how peptide immunogenicity is influenced by the way in which peptides are presented to the immune system, underscoring the need for multifunctional delivery systems that couple antigen and adjuvant into a single construct. Particular attention is given to the ability of Toll-like receptor agonists to act as adjuvants. A survey of recent approaches to developing peptide antigen delivery systems is given, many of which incorporate Toll-like receptor agonists into the design.
Collapse
Affiliation(s)
- Matthew Black
- University of California, Santa Barbara, CA 93106, USA.
| | | | | | | |
Collapse
|
29
|
Rodenko B, Toebes M, Celie PHN, Perrakis A, Schumacher TNM, Ovaa H. Class I major histocompatibility complexes loaded by a periodate trigger. J Am Chem Soc 2009; 131:12305-13. [PMID: 19655751 DOI: 10.1021/ja9037565] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Class I major histocompatibility complexes (MHCs) present peptide ligands on the cell surface for recognition by appropriate cytotoxic T cells. The unstable nature of unliganded MHC necessitates the production of recombinant class I complexes through in vitro refolding reactions in the presence of an added excess of peptides. This strategy is not amenable to high-throughput production of vast collections of class I complexes. To address this issue, we recently designed photocaged MHC ligands that can be cleaved by a UV light trigger in the MHC bound state under conditions that do not affect the integrity of the MHC structure. The results obtained with photocaged MHC ligands demonstrate that conditional MHC ligands can form a generally applicable concept for the creation of defined peptide-MHCs. However, the use of UV exposure to mediate ligand exchange is unsuited for a number of applications, due to the lack of UV penetration through cell culture systems and due to the transfer of heat upon UV irradiation, which can induce evaporation. To overcome these limitations, here, we provide proof-of-concept for the generation of defined peptide-MHCs by chemical trigger-induced ligand exchange. The crystal structure of the MHC with the novel chemosensitive ligand showcases that the ligand occupies the expected binding site, in a conformation where the hydroxyl groups should be reactive to periodate. We proceed to validate this technology by producing peptide-MHCs that can be used for T cell detection. The methodology that we describe here should allow loading of MHCs with defined peptides in cell culture devices, thereby permitting antigen-specific T cell expansion and purification for cell therapy. In addition, this technology will be useful to develop miniaturized assay systems for performing high-throughput screens for natural and unnatural MHC ligands.
Collapse
Affiliation(s)
- Boris Rodenko
- Division of Cell Biology II, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
30
|
Maynard JA, Lindquist NC, Sutherland JN, Lesuffleur A, Warrington AE, Rodriguez M, Oh SH. Surface plasmon resonance for high-throughput ligand screening of membrane-bound proteins. Biotechnol J 2009; 4:1542-58. [PMID: 19918786 PMCID: PMC2790208 DOI: 10.1002/biot.200900195] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Technologies based on surface plasmon resonance (SPR) have allowed rapid, label-free characterization of protein-protein and protein-small molecule interactions. SPR has become the gold standard in industrial and academic settings, in which the interaction between a pair of soluble binding partners is characterized in detail or a library of molecules is screened for binding against a single soluble protein. In spite of these successes, SPR is only beginning to be adapted to the needs of membrane-bound proteins which are difficult to study in situ but represent promising targets for drug and biomarker development. Existing technologies, such as BIAcoreTM, have been adapted for membrane protein analysis by building supported lipid layers or capturing lipid vesicles on existing chips. Newer technologies, still in development, will allow membrane proteins to be presented in native or near-native formats. These include SPR nanopore arrays, in which lipid bilayers containing membrane proteins stably span small pores that are addressable from both sides of the bilayer. Here, we discuss current SPR instrumentation and the potential for SPR nanopore arrays to enable quantitative, high-throughput screening of G protein coupled receptor ligands and applications in basic cellular biology.
Collapse
Affiliation(s)
- Jennifer A. Maynard
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, 78705
| | - Nathan C. Lindquist
- Department of Electrical and Computer Engineering, University of Minnesota, Twin Cities, Minneapolis, MN 55455
| | - Jamie N. Sutherland
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, 78705
| | - Antoine Lesuffleur
- Department of Electrical and Computer Engineering, University of Minnesota, Twin Cities, Minneapolis, MN 55455
| | | | - Moses Rodriguez
- Departments of Neurology, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Sang-Hyun Oh
- Department of Electrical and Computer Engineering, University of Minnesota, Twin Cities, Minneapolis, MN 55455
| |
Collapse
|
31
|
Li Pira G, Kapp M, Manca F, Einsele H. Pathogen specific T-lymphocytes for the reconstitution of the immunocompromised host. Curr Opin Immunol 2009; 21:549-56. [DOI: 10.1016/j.coi.2009.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 08/24/2009] [Accepted: 08/24/2009] [Indexed: 11/26/2022]
|
32
|
Kwong GA, Radu CG, Hwang K, Shu CJ, Ma C, Koya RC, Comin-Anduix B, Hadrup SR, Bailey RC, Witte ON, Schumacher TN, Ribas A, Heath JR. Modular nucleic acid assembled p/MHC microarrays for multiplexed sorting of antigen-specific T cells. J Am Chem Soc 2009; 131:9695-703. [PMID: 19552409 PMCID: PMC2720314 DOI: 10.1021/ja9006707] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The human immune system consists of a large number of T cells capable of recognizing and responding to antigens derived from various sources. The development of peptide-major histocompatibility (p/MHC) tetrameric complexes has enabled the direct detection of these antigen-specific T cells. With the goal of increasing throughput and multiplexing of T cell detection, protein microarrays spotted with defined p/MHC complexes have been reported, but studies have been limited due to the inherent instability and reproducibility of arrays produced via conventional spotted methods. Herein, we report on a platform for the detection of antigen-specific T cells on glass substrates that offers significant advantages over existing surface-bound schemes. In this approach, called "Nucleic Acid Cell Sorting (NACS)", single-stranded DNA oligomers conjugated site-specifically to p/MHC tetramers are employed to immobilize p/MHC tetramers via hybridization to a complementary-printed substrate. Fully assembled p/MHC arrays are used to detect and enumerate T cells captured from cellular suspensions, including primary human T cells collected from cancer patients. NACS arrays outperform conventional spotted arrays assessed in key criteria such as repeatability and homogeneity. The versatility of employing DNA sequences for cell sorting is exploited to enable the programmed, selective release of target populations of immobilized T cells with restriction endonucleases for downstream analysis. Because of the performance, facile and modular assembly of p/MHC tetramer arrays, NACS holds promise as a versatile platform for multiplexed T cell detection.
Collapse
Affiliation(s)
- Gabriel A. Kwong
- NanoSystems Biology Cancer Center, California Institute of Technology, Pasadena, CA 91125
- Division of Engineering and Applied Science, Bioengineering, California Institute of Technology, Pasadena, CA 91125
| | - Caius G. Radu
- NanoSystems Biology Cancer Center, California Institute of Technology, Pasadena, CA 91125
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging, University of California, Los Angeles, CA 90095
| | - Kiwook Hwang
- NanoSystems Biology Cancer Center, California Institute of Technology, Pasadena, CA 91125
- Division of Chemistry and Chemical Engineering, MC 127-72, California Institute of Technology, Pasadena, CA 91125
| | - Chengyi J. Shu
- NanoSystems Biology Cancer Center, California Institute of Technology, Pasadena, CA 91125
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging, University of California, Los Angeles, CA 90095
| | - Chao Ma
- NanoSystems Biology Cancer Center, California Institute of Technology, Pasadena, CA 91125
- Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125
| | - Richard C. Koya
- NanoSystems Biology Cancer Center, California Institute of Technology, Pasadena, CA 91125
- Department of Surgery, Division of Surgical Oncology, University of California, Los Angeles, CA 90095
| | - Begonya Comin-Anduix
- NanoSystems Biology Cancer Center, California Institute of Technology, Pasadena, CA 91125
- Department of Surgery, Division of Surgical Oncology, University of California, Los Angeles, CA 90095
| | - Sine Reker Hadrup
- Department of Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Ryan C. Bailey
- NanoSystems Biology Cancer Center, California Institute of Technology, Pasadena, CA 91125
- Division of Chemistry and Chemical Engineering, MC 127-72, California Institute of Technology, Pasadena, CA 91125
| | - Owen N. Witte
- NanoSystems Biology Cancer Center, California Institute of Technology, Pasadena, CA 91125
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging, University of California, Los Angeles, CA 90095
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095
- Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095
| | - Ton N. Schumacher
- Department of Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Antoni Ribas
- NanoSystems Biology Cancer Center, California Institute of Technology, Pasadena, CA 91125
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles, CA 90095
- Department of Surgery, Division of Surgical Oncology, University of California, Los Angeles, CA 90095
| | - James R. Heath
- NanoSystems Biology Cancer Center, California Institute of Technology, Pasadena, CA 91125
- Division of Chemistry and Chemical Engineering, MC 127-72, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
33
|
Major histocompatibility complex class II molecule-human immunodeficiency virus peptide analysis using a microarray chip. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:567-73. [PMID: 19225081 DOI: 10.1128/cvi.00441-08] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Identification of major histocompatibility complex (MHC) class II binding peptides is a crucial step in rational vaccine design and immune monitoring. We designed a novel MHC class II molecule-peptide microarray binding assay and evaluated 346 peptides from already identified human immunodeficiency virus (HIV) epitopes and an additional set (n = 206) of 20-mer peptides, overlapping by 15 amino acid residues, from HIV type 1B (HIV-1B) gp160 and Nef as a paradigm. Peptides were attached via the N-terminal part to a linker that covalently binds to the epoxy glass slide. The 552 peptides were printed in triplicate on a single peptide microarray chip and tested for stable formation of MHC class II molecule-peptide complexes using recombinant soluble DRB1*0101(DR1), DRB1*1501(DR2), and DRB1*0401(DR4) molecules. Cluster analysis revealed unique patterns of peptide binding to all three, two, or a single MHC class II molecule. MHC class II binding peptides reside within previously described immunogenic regions of HIV gp160 and Nef, yet we could also identify new MHC class II binding peptides from gp160 and Nef. Peptide microarray chips allow the comprehensive and simultaneous screening of a high number of candidate peptide epitopes for MHC class II binding, guided by subsequent quality data extraction and binding pattern cluster analysis.
Collapse
|
34
|
Abstract
Recombinant major histocompatibility complex (MHC) class I molecules complexed with pathogen-specific or other disease-associated antigens have become essential reagents for the analysis of adaptive T-cell responses. However, conventional techniques for the production of recombinant peptide-MHC (pMHC) complexes are highly involved and thereby limit the use of pMHC complexes in terms of antigen diversity. To make pMHC-based techniques suitable for high-throughput analyses we developed an MHC peptide exchange technology based on the use of conditional MHC ligands. This technology enables the parallel production of thousands of different pMHC complexes within hours, allowing the development of high-throughput MHC-based assay systems to identify MHC ligands and cytotoxic T-cell responses. These high-throughput assays should prove valuable for the screening of entire disease-associated proteomes, including pathogen-encoded proteomes, tumor-associated antigens, and autoimmune antigens.
Collapse
|
35
|
Köhler K, Ganser A, André T, Roth G, Grosse-Hovest L, Jung G, Brock R. Stimulus dependence of the action of small-molecule inhibitors in the CD3/CD28 signalling network. ChemMedChem 2008; 3:1404-11. [PMID: 18604819 DOI: 10.1002/cmdc.200800134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cells in the body are exposed simultaneously to a multitude of various signals. Inside a cell, molecular signalling networks integrate this information into a physiologically meaningful response. Interestingly, in the cellular testing of drug candidates, this complexity is largely ignored. Compounds are tested for cells that are challenged with one stimulus only. The activation of T lymphocytes through engagement of the T cell receptor (TCR)-CD3 complex and CD28 coreceptor is a prominent example for a cellular response that depends on the integration of signals. We investigated the cellular response characteristics of this network at different strengths of receptor and coreceptor activation. A novel cellular microarray-based approach, in which various combinations of antibodies directed against the CD3 complex and CD28 were spotted, was employed for analysing the stimulus dependence of activation of the transcription factor NFAT and actin reorganisation. For both responses, quantitative differences in inhibitor activity were observed. Remarkably, for IL-2 expression, which was detected by standard ELISA, low doses of the Src-family kinase inhibitor PP2 strongly potentiated IL-2 expression at high-level, but not at low-level, CD28 co-engagement. Therefore, for a physiologically highly relevant signalling network, the cellular response might vary qualitatively with only quantitative variations of a stimulus. This level of complexity should be considered in early cellular drug testing.
Collapse
Affiliation(s)
- Karsten Köhler
- Department of Molecular Biology, Interfaculty Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Jing L, Davies DH, Chong TM, Chun S, McClurkan CL, Huang J, Story BT, Molina DM, Hirst S, Felgner PL, Koelle DM. An extremely diverse CD4 response to vaccinia virus in humans is revealed by proteome-wide T-cell profiling. J Virol 2008; 82:7120-34. [PMID: 18480455 PMCID: PMC2446988 DOI: 10.1128/jvi.00453-08] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Accepted: 05/02/2008] [Indexed: 12/18/2022] Open
Abstract
CD4 T cells are required for the maintenance and recall of antiviral CD8 T cells and for antibody responses. Little is known concerning the overall architecture of the CD4 response to complex microbial pathogens. In a whole-proteome approach, 180 predicted open reading frames (ORFs) in the vaccinia virus genome were expressed and tested using responder cells from 20 blood samples from 11 vaccinees. Validation assays established the sensitivity and specificity of the system. Overall, CD4 responses were detected for 122 ORFs (68%). A mean of 39 ORFs were recognized per person (range, 13 to 63). The most frequently recognized ORFS were present in virions, including A3L and A10L (core proteins), WR148 (a fragmented homolog of an orthopoxvirus protein that forms inclusions in cells), H3L (a membrane protein), D13L (a membrane scaffold protein), and L4R (a nucleic acid binding protein). Serum immunoglobulin G profiling by proteome microarray detected responses to 45 (25%) of the ORFs and confirmed recent studies showing a diverse response directed to membrane and nonmembrane antigens. Our results provide the first empirical whole-proteome data set regarding the global CD4 response to full-length proteins in a complex virus and are consistent with the theory that abundant structural proteins are immunodominant.
Collapse
Affiliation(s)
- Lichen Jing
- Department of Medicine, University of Washington, Seattle, Washington 98102, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Wen F, Esteban O, Zhao H. Rapid identification of CD4+ T-cell epitopes using yeast displaying pathogen-derived peptide library. J Immunol Methods 2008; 336:37-44. [PMID: 18448115 DOI: 10.1016/j.jim.2008.03.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 03/13/2008] [Accepted: 03/13/2008] [Indexed: 10/22/2022]
Abstract
Identification of CD4+ T-cell epitopes is a critical step in studying and modulating the immune responses to tumors, infectious agents, and autoantigens. Here we report a facile, accurate, and high-throughput method for CD4+ T-cell epitope identification using yeast displaying pathogen-derived peptide library. A library of DNA fragments that encode all the possible peptides with 10-20 amino acids from the antigens (single antigenic proteins or pathogenic organisms) are fused to the gene encoding the restriction single-chain MHC class II molecule in a yeast display vector. The resultant library of recombinant yeast cells are analyzed by FACS to identify those containing peptides with high affinity towards the restriction MHC molecule, which are subsequently screened for their ability to induce antigen-specific T-cell activation. DNA sequence analysis of selected positive clones results in direct identification of the antigenic peptides. We show that this method can be used to rapidly pinpoint the HA(306-322) epitope from the haemagglutinin protein and the entire influenza virus X31/A/Aichi/68 genome, respectively.
Collapse
Affiliation(s)
- Fei Wen
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | | | | |
Collapse
|
38
|
Bakker AH, Hoppes R, Linnemann C, Toebes M, Rodenko B, Berkers CR, Hadrup SR, van Esch WJE, Heemskerk MHM, Ovaa H, Schumacher TNM. Conditional MHC class I ligands and peptide exchange technology for the human MHC gene products HLA-A1, -A3, -A11, and -B7. Proc Natl Acad Sci U S A 2008; 105:3825-30. [PMID: 18308940 PMCID: PMC2268811 DOI: 10.1073/pnas.0709717105] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Indexed: 01/28/2023] Open
Abstract
Major histocompatibility complex (MHC) class I multimer technology has become an indispensable immunological assay system to dissect antigen-specific cytotoxic CD8(+) T cell responses by flow cytometry. However, the development of high-throughput assay systems, in which T cell responses against a multitude of epitopes are analyzed, has been precluded by the fact that for each T cell epitope, a separate in vitro MHC refolding reaction is required. We have recently demonstrated that conditional ligands that disintegrate upon exposure to long-wavelength UV light can be designed for the human MHC molecule HLA-A2. To determine whether this peptide-exchange technology can be developed into a generally applicable approach for high throughput MHC based applications we set out to design conditional ligands for the human MHC gene products HLA-A1, -A3, -A11, and -B7. Here, we describe the development and characterization of conditional ligands for this set of human MHC molecules and apply the peptide-exchange technology to identify melanoma-associated peptides that bind to HLA-A3 with high affinity. The conditional ligand technology developed here will allow high-throughput MHC-based analysis of cytotoxic T cell immunity in the vast majority of Western European individuals.
Collapse
Affiliation(s)
| | - Rieuwert Hoppes
- Cellular Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | | | | | - Boris Rodenko
- Cellular Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Celia R. Berkers
- Cellular Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | | | | | - Mirjam H. M. Heemskerk
- Department of Hematology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Huib Ovaa
- Cellular Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | | |
Collapse
|
39
|
Britten CM, Gouttefangeas C, Welters MJP, Pawelec G, Koch S, Ottensmeier C, Mander A, Walter S, Paschen A, Müller-Berghaus J, Haas I, Mackensen A, Køllgaard T, thor Straten P, Schmitt M, Giannopoulos K, Maier R, Veelken H, Bertinetti C, Konur A, Huber C, Stevanović S, Wölfel T, van der Burg SH. The CIMT-monitoring panel: a two-step approach to harmonize the enumeration of antigen-specific CD8+ T lymphocytes by structural and functional assays. Cancer Immunol Immunother 2008; 57:289-302. [PMID: 17721783 PMCID: PMC2150627 DOI: 10.1007/s00262-007-0378-0] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Accepted: 07/17/2007] [Indexed: 01/08/2023]
Abstract
The interpretation of the results obtained from immunomonitoring of clinical trials is a difficult task due to the variety of methods and protocols available to detect vaccine-specific T-cell responses. This heterogeneity as well as the lack of standards has led to significant scepticism towards published results. In February 2005, a working group was therefore founded under the aegis of the Association for Immunotherapy of Cancer ("CIMT") in order to compare techniques and protocols applied for the enumeration of antigen-specific T-cell responses. Here we present the results from two consecutive phases of an international inter-laboratory testing project referred to as the "CIMT monitoring panel". A total of 13 centers from six European countries participated in the study in which pre-tested PBMC samples, synthetic peptides and PE-conjugated HLA-tetramers were prepared centrally and distributed to participants. All were asked to determine the number of antigen-specific T-cells in each sample using tetramer staining and one functional assay. The results of the first testing round revealed that the total number of cells analyzed was the most important determinant for the sensitive detection of antigen-specific CD8(+) T-cells by tetramer staining. Analysis by ELISPOT was influenced by a combination of cell number and a resting phase after thawing of peripheral blood mononuclear cells. Therefore, the experiments were repeated in a second phase but now the participants were asked to change their protocols according to the new guidelines distilled from the results of the first phase. The recommendations improved the number of antigen-specific T-cell responses that were detected and decreased the variability between the laboratories. We conclude that a two-step approach in inter-laboratory testing allows the identification of distinct variables that influence the sensitivity of different T-cell assays and to formally show that a defined correction to the protocols successfully increases the sensitivity and reduces the inter-center variability. Such "two-step" inter-laboratory projects could define rational bases for accepted international guidelines and thereby lead to the harmonization of the techniques used for immune monitoring.
Collapse
Affiliation(s)
- C. M. Britten
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - C. Gouttefangeas
- Department of Immunology, University of Tuebingen, Tuebingen, Germany
| | - M. J. P. Welters
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - G. Pawelec
- Centre for Medical Research, University of Tuebingen, Tuebingen, Germany
| | - S. Koch
- Centre for Medical Research, University of Tuebingen, Tuebingen, Germany
| | - C. Ottensmeier
- Cancer Sciences Division, Southampton University Hospitals, Southampton, UK
| | - A. Mander
- Cancer Sciences Division, Southampton University Hospitals, Southampton, UK
| | - S. Walter
- Immatics Biotechnologies, Tuebingen, Germany
| | - A. Paschen
- Skin Cancer Unit of the German Cancer Research Centre, University Clinics of Mannheim, Mannheim, Germany
| | | | - I. Haas
- Department of Haematology and Oncology, University of Regensburg, Regensburg, Germany
| | - A. Mackensen
- Department of Haematology and Oncology, University of Regensburg, Regensburg, Germany
| | - T. Køllgaard
- Department of Haematology, Centre for Cancer Immune Therapy, Herlev, Denmark
| | - P. thor Straten
- Department of Haematology, Centre for Cancer Immune Therapy, Herlev, Denmark
| | - M. Schmitt
- Third Department of Internal Medicine, University of Ulm, Ulm, Germany
| | - K. Giannopoulos
- Clinical Immunology Department, Medical University of Lublin, Lublin, Poland
| | - R. Maier
- Research Department, Kantonal Hospital St Gallen, St Gallen, Switzerland
| | - H. Veelken
- Department of Haematology and Oncology, Freiburg University Medical Centre, Freiburg, Germany
| | - C. Bertinetti
- Department of Haematology and Oncology, Freiburg University Medical Centre, Freiburg, Germany
| | - A. Konur
- Third Medical Department, University Mainz, Mainz, Germany
| | - C. Huber
- Third Medical Department, University Mainz, Mainz, Germany
| | - S. Stevanović
- Department of Immunology, University of Tuebingen, Tuebingen, Germany
| | - T. Wölfel
- Third Medical Department, University Mainz, Mainz, Germany
| | - S. H. van der Burg
- Department of Clinical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
40
|
Calvo-Calle JM, Strug I, Nastke MD, Baker SP, Stern LJ. Human CD4+ T cell epitopes from vaccinia virus induced by vaccination or infection. PLoS Pathog 2007; 3:1511-29. [PMID: 17937498 PMCID: PMC2014795 DOI: 10.1371/journal.ppat.0030144] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 08/17/2007] [Indexed: 12/17/2022] Open
Abstract
Despite the importance of vaccinia virus in basic and applied immunology, our knowledge of the human immune response directed against this virus is very limited. CD4+ T cell responses are an important component of immunity induced by current vaccinia-based vaccines, and likely will be required for new subunit vaccine approaches, but to date vaccinia-specific CD4+ T cell responses have been poorly characterized, and CD4+ T cell epitopes have been reported only recently. Classical approaches used to identify T cell epitopes are not practical for large genomes like vaccinia. We developed and validated a highly efficient computational approach that combines prediction of class II MHC-peptide binding activity with prediction of antigen processing and presentation. Using this approach and screening only 36 peptides, we identified 25 epitopes recognized by T cells from vaccinia-immune individuals. Although the predictions were made for HLA-DR1, eight of the peptides were recognized by donors of multiple haplotypes. T cell responses were observed in samples of peripheral blood obtained many years after primary vaccination, and were amplified after booster immunization. Peptides recognized by multiple donors are highly conserved across the poxvirus family, including variola, the causative agent of smallpox, and may be useful in development of a new generation of smallpox vaccines and in the analysis of the immune response elicited to vaccinia virus. Moreover, the epitope identification approach developed here should find application to other large-genome pathogens. Although the routine use of vaccinia virus for vaccination against smallpox was stopped after eradication of this disease, there is a possibility for an accidental or intentional release of this virus. In response to this challenge, vaccination of at least emergency personnel has been suggested. However, adverse reactions induced by the smallpox vaccine have had a negative impact in the success of this program. For these reasons development of new smallpox vaccines is a public health priority. Identification of strong helper T cell epitopes is central to these efforts. However, identification of T cell epitopes in large genomes like vaccinia is difficult using current screening methods. In this work, we develop a new computational approach for prediction of T cell epitopes, validate it using epitopes already identified by classical methods, and apply it to the prediction of vaccinia epitopes. Twenty-five of 36 peptides containing predicted sequences were recognized by T cells from individuals exposed to vaccinia virus. These peptides are highly conserved across the orthopox virus family and may be useful in development of a new generation of smallpox vaccines and in the analysis of the immune response against vaccinia virus.
Collapse
Affiliation(s)
- J. Mauricio Calvo-Calle
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Iwona Strug
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Maria-Dorothea Nastke
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Stephen P Baker
- Department of Information Services, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Lawrence J Stern
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
41
|
Li Pira G, Ivaldi F, Bottone L, Manca F. High throughput functional microdissection of pathogen-specific T-cell immunity using antigen and lymphocyte arrays. J Immunol Methods 2007; 326:22-32. [PMID: 17673252 DOI: 10.1016/j.jim.2007.06.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 05/28/2007] [Accepted: 06/22/2007] [Indexed: 11/15/2022]
Abstract
The analysis of the human T-cell response specific for relevant pathogens is useful for diagnostic purposes and for research. Several methods enumerate antigen specific T-cells and measure their functions. Since screening of numerous antigens from pathogens is often needed to evaluate immunocompetence, lymphocytes, labor and cost are limiting factors. To examine pathogen-specific T-cell immunity, we have miniaturized the analysis of T-cell responses using an array approach in 384- and 1536-well plates with as few as 10 x 10(3) PBMC per well instead of the 500 x 10(3) PBMC used for current assays. Secreted cytokines were detected in the same wells used for lymphocyte cultures. The method can detect about ten CMV specific T-cells diluted into 50 x 10(3) PBMC (0.02%), and can quantify secreted cytokines. The microarray approach allowed evaluation of T-cell immunity in children with a sensitivity higher than current methods. When applied to CMV epitope mapping, the data obtained with conventional methods were confirmed. The assay could be automated, allowing high throughput processing. The assay provides quantitative information on cytokines induced by antigen stimulation and can be applied in a simplified format as a field test to monitor T-cell immunity in vaccine trials or in veterinary medicine.
Collapse
Affiliation(s)
- Giuseppina Li Pira
- Cellular Immunology Unit, Advanced Biotechnology Center, Largo Benzi 10, 16132 Genoa, Italy.
| | | | | | | |
Collapse
|
42
|
Pollard HB, Srivastava M, Eidelman O, Jozwik C, Rothwell SW, Mueller GP, Jacobowitz DM, Darling T, Guggino WB, Wright J, Zeitlin PL, Paweletz CP. Protein microarray platforms for clinical proteomics. Proteomics Clin Appl 2007; 1:934-52. [PMID: 21136748 DOI: 10.1002/prca.200700154] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Indexed: 11/12/2022]
Abstract
Proteomics for clinical applications is presently in a state of transition. It has become clear that the classical approaches based on 2-DE and/or MS need to be complemented by different kinds of technologies. The well-known problems include sample complexity, sensitivity, quantitation, reproducibility, and analysis time. We suggest that the new technologies for clinical proteomics can be supported by antibody-centric protein microarray platforms. These platforms presently include antibody microarrays and lysate, or reverse capture/reverse phase protein microarrays. Other forms of these arrays are in less mature developmental stages, including ORF and self assembling protein microarrays. Bioinformatic support for interpreting these arrays is becoming more available as the whole field of systems biology begins to mature. The present set of applications for these platforms is profoundly focused on certain common cancers, immunology, and cystic fibrosis. However, we predict that many more disease entities will become studied as knowledge of the power and availability of these platforms becomes more widely established. We anticipate that these platforms will eventually evolve to accommodate label-free detection technologies, human genome-scale numbers of analytes, and increases in analytic and bioinformatic speeds.
Collapse
Affiliation(s)
- Harvey B Pollard
- Department of Anatomy, Physiology and Genetics, Uniformed Services University School of Medicine, USUHS, Bethesda, MD, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Rong J, Chris Bleackley R, Kane KP. Direct detection of cytolytic T lymphocyte-mediated cytotoxicity on antigen-transfected cell microarray. J Immunol Methods 2007; 326:1-9. [PMID: 17673228 DOI: 10.1016/j.jim.2007.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 06/11/2007] [Accepted: 06/19/2007] [Indexed: 12/15/2022]
Abstract
CD8(+) T lymphocytes are capable of recognizing and destroying cancer cells or virally infected cells and can thus offer protection from cellular malignant transformation and pathogenic challenges. With large numbers of genes discovered in genome analyses, rapid identification of cancer or viral antigens would facilitate better exploitation of CD8(+) T lymphocyte-mediated immune protection. Reverse transfection microarray technology allows expression of individual cDNAs at defined positions in a cell monolayer and direct detection of corresponding phenotypic changes of transfected cells at specific locations. In this study, we have integrated reverse transfection with image-based fluorometric detection of antigen-specific CTL-mediated cytotoxicity on transfected cell microarrays. As a result, the antigen recognition of cloned CTL cells has been successfully detected on the cell microarray, in which the specific or non-specific mini-gene DNA in the expression vector or vector alone was spotted. Moreover, the cellular capability of antigen processing and presentation on microarray has also been evaluated by using chimeric DNA constructs containing the antigen-encoding mini-gene sequence. This novel approach may facilitate high throughput screens of cancer cell or virus cDNA libraries to identify individual cDNAs that encode targets for immune intervention.
Collapse
Affiliation(s)
- Jianhui Rong
- Department of Medical Microbiology and Immunology, University of Alberta, 660 Heritage Medical Research Centre, Edmonton, AB, Canada T6G 2S2
| | | | | |
Collapse
|
44
|
Castel D, Pitaval A, Debily MA, Gidrol X. Cell microarrays in drug discovery. Drug Discov Today 2007; 11:616-22. [PMID: 16793530 DOI: 10.1016/j.drudis.2006.05.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 04/24/2006] [Accepted: 05/22/2006] [Indexed: 11/29/2022]
Abstract
There is an increasing need for systematic cell-based assays in a high-throughput screening (HTS) format to analyze the phenotypic consequences of perturbing mammalian cells with drugs, genes, interfering RNA. Taking advantage of the recent progress in microtechnology, new cell microarrays are being developed and applied to a large range of issues in metazoan cells. This article compares different approaches and evaluates their potential use in the drug discovery process. Although still an emerging technology, cell microarrays hold great promise to optimize the efficiency:cost ratio in cell-based HTS.
Collapse
Affiliation(s)
- David Castel
- CEA, DSV, DRR, Service de Génomique Fonctionnelle, 2 rue Gaston Crémieux-CP 22, 91057 Evry Cedex, France
| | | | | | | |
Collapse
|
45
|
Rodenko B, Toebes M, Hadrup SR, van Esch WJE, Molenaar AM, Schumacher TNM, Ovaa H. Generation of peptide-MHC class I complexes through UV-mediated ligand exchange. Nat Protoc 2007; 1:1120-32. [PMID: 17406393 DOI: 10.1038/nprot.2006.121] [Citation(s) in RCA: 262] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Major histocompatibility complex (MHC) class I molecules present peptide ligands on the cell surface for recognition by appropriate cytotoxic T cells. MHC-bound peptides are critical for the stability of the MHC complex, and standard strategies for the production of recombinant MHC complexes are based on in vitro refolding reactions with specific peptides. This strategy is not amenable to high-throughput production of vast collections of MHC molecules. We have developed conditional MHC ligands that form stable complexes with MHC molecules but can be cleaved upon UV irradiation. The resulting empty, peptide-receptive MHC molecules can be charged with epitopes of choice under native conditions. Here we describe in-depth procedures for the high-throughput production of peptide-MHC (pMHC) complexes by MHC exchange, the analysis of peptide exchange efficiency by ELISA and the parallel production of MHC tetramers for T-cell detection. The production of the conditional pMHC complex by an in vitro refolding reaction can be achieved within 2 weeks, and the actual high-throughput MHC peptide exchange and subsequent MHC tetramer formation require less than a day.
Collapse
Affiliation(s)
- Boris Rodenko
- Division of Cellular Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
46
|
Maynard JA, Myhre R, Roy B. Microarrays in infection and immunity. Curr Opin Chem Biol 2007; 11:306-15. [PMID: 17500025 PMCID: PMC7108391 DOI: 10.1016/j.cbpa.2007.01.727] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Accepted: 01/08/2007] [Indexed: 01/21/2023]
Abstract
Over the past decade, microarrays have revolutionized the scientific world as dramatically as the internet has changed everyday life. From the initial applications of DNA microarrays to uncover gene expression patterns that are diagnostic and prognostic of cancer, understanding the interplay between immune responses and disease has been a prime application of this technology. More recent efforts have moved beyond genetic analysis to functional analysis of the molecules involved, including identification of immunodominant antigens and peptides as well as the role of post-translational glycosylation. Here, we focus on recent applications of microarray technology in understanding the detailed chemical biology of immune responses to disease in an effort to guide development of vaccines and other protective therapies.
Collapse
Affiliation(s)
- Jennifer A Maynard
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
47
|
Deviren G, Gupta K, Paulaitis ME, Schneck JP. Detection of antigen-specific T cells on p/MHC microarrays. J Mol Recognit 2007; 20:32-8. [PMID: 17094178 DOI: 10.1002/jmr.805] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The development of high-throughput protein microarrays for rapidly determining antigen-specific T-cell receptor repertoires of diverse T-cell populations can enable comprehensive, broad-based analyses of T-cell responses. Promising applications include medical diagnostics, vaccine development, treatment of autoimmune diseases and detection of potential agents of bioterrorism. In this study, we examined the feasibility of using peptide/major histocompatibility complex (p/MHC) microarrays to selectively capture and enumerate antigen-specific T cells. Results are presented for p/MHC microarrays consisting of a dimeric MHC-immunoglobulin complex, K(b)-Ig, loaded with either a cognate or non-cognate peptide for binding CD8(+) T cells. We quantified the sensitivity of these K(b)-Ig microarrays by measuring a lower detection limit of 0.05% antigen-specific CD8(+) T cells mixed with splenocytes from C57BL/6J mouse. A fivefold increase in this lower detection limit (0.01%) was achieved using a secondary capture anti-Ig antibody to coat the microarray surface. This higher sensitivity is comparable to that obtained using standard state-of-the-art fluorescence activated cell sorting (FACS) instruments. We also found that contacting the T-cell suspension with the K(b)-Ig microarrays under mild shear flow conditions produced more uniform distributions of captured T cells on the individual spots and better spot-to-spot reproducibility across the entire microarray.
Collapse
Affiliation(s)
- Gokhan Deviren
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
48
|
Díaz-Mochón JJ, Tourniaire G, Bradley M. Microarray platforms for enzymatic and cell-based assays. Chem Soc Rev 2007; 36:449-57. [PMID: 17325784 DOI: 10.1039/b511848b] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This tutorial review introduces the uninitiated to the world of microarrays (or so-called chips) and covers a number of basic concepts such as substrates and surfaces, printing and analysis. It then moves on to look at some newer applications of microarray technology, which include enzyme analysis (notably kinases and proteases) as well as the growing enchantment with so-called cell-based microarrays that offer a unique approach to high-throughput cellular analysis. Finally, it looks forwards and highlights future possible trends and directions in the microarray arena.
Collapse
Affiliation(s)
- Juan J Díaz-Mochón
- School of Chemistry, University of Edinburgh, Kings Buildings, West Mains Road, Edinburgh, EH9 3JJ, UK
| | | | | |
Collapse
|
49
|
de Witte MA, Toebes M, Song JY, Wolkers MC, Schumacher TNM. Effective graft depletion of MiHAg T-cell specificities and consequences for graft-versus-host disease. Blood 2007; 109:3830-8. [PMID: 17202318 DOI: 10.1182/blood-2006-07-037713] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Minor histocompatibility antigen (MiHAg) differences between donor and recipient in MHC-matched allogeneic hematopoietic stem cell transplantation (allo-HSCT) often result in graft-versus-host disease (GVHD). While MiHAg-specific T-cell responses can in theory be directed against a large number of polymorphic differences between donor and recipient, in practice, T-cell responses against only a small set of MiHAgs appear to dominate the immune response, and it has been suggested that immunodominance may predict an important contribution to the development of GVHD. Here, we addressed the feasibility of graft engineering by ex vivo removal of T cells with 1 or more defined antigen specificities in a well-characterized experimental HSCT model (B6 → BALB.B). We demonstrate that immunodominant H60- and H4-specific CD8+ T-cell responses can be effectively suppressed through MHC class I tetramer–mediated purging of the naive CD8+ T cell repertoire. Importantly, the development of GVHD occurs unimpeded upon suppression of the immunodominant MiHAg-specific T-cell response. These data indicate that antigen-specific graft engineering is feasible, but that parameters other than immunodominance may be required to select T-cell specificities that are targeted for removal.
Collapse
Affiliation(s)
- Moniek A de Witte
- Division of Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
50
|
Li Pira G, Kern F, Gratama J, Roederer M, Manca F. Measurement of antigen specific immune responses: 2006 update. CYTOMETRY PART B-CLINICAL CYTOMETRY 2007; 72:77-85. [PMID: 17285633 DOI: 10.1002/cyto.b.20186] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Measuring antigen-specific immune responses (MASIR) is essential for basic immunological research and in the clinical setting. Numerous techniques have been used and the recent years have witnessed a flourishing of flow cytometry based methods for the identification of antigen specific T cells, in addition to other methodologies. The second MASIR conference held in Santorini, Greece, from 14 to 18 June 2006 has been a forum for the discussion of methodological issues and for research or clinical applications of these techniques, as reviewed here. In addition to flow cytometry based techniques, other emerging techniques with different degrees of complexity can be applied. These novel methods are highly promising in numerous conditions to look for correlates of protection, to test responses to natural infections or to vaccination trials, to evaluate the immune status of immunocompromised patients and to monitor persistence and function of specific T cells administered as adoptive therapy.
Collapse
Affiliation(s)
- Giuseppina Li Pira
- Viral Immunology, Advanced Biotechnology Center, Largo Benzi 10, 16132 Genoa, Italy.
| | | | | | | | | |
Collapse
|