1
|
Burton TD, Carrera Montoya J, Frota T, Mackenzie JM. Human norovirus cultivation models, immune response and vaccine landscape. Adv Virus Res 2024; 120:1-37. [PMID: 39455167 DOI: 10.1016/bs.aivir.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Norovirus infections are a leading cause of gastroenteritis worldwide. Despite the substantial global health burden and economic impact, there are currently no approved antiviral therapeutics or vaccines. Additionally, much of our knowledge of norovirus comes from experiments using surrogate viruses, such as murine norovirus and feline calicivirus. The challenge surrounding human norovirus research arises from a lack of robust cell culture systems and efficient animal models. In this review, we explore recent advances in the in vitro cultivation of human norovirus and reverse genetics systems and discuss commonly used in vivo models. We summarize the current understanding of both innate and adaptive immune responses to norovirus infection and provide an overview of vaccine strategies and the current clinical trial landscape, with a focus on the only vaccine candidate that has reached phase III clinical development stage.
Collapse
Affiliation(s)
- Thomas D Burton
- Department of Microbiology and Immunology, University of Melbourne, within the Peter Doherty Institute for Infection and Immunity, Parkville, Melbourne, VIC, Australia
| | - Julio Carrera Montoya
- Department of Microbiology and Immunology, University of Melbourne, within the Peter Doherty Institute for Infection and Immunity, Parkville, Melbourne, VIC, Australia
| | - Thalia Frota
- Department of Microbiology and Immunology, University of Melbourne, within the Peter Doherty Institute for Infection and Immunity, Parkville, Melbourne, VIC, Australia
| | - Jason M Mackenzie
- Department of Microbiology and Immunology, University of Melbourne, within the Peter Doherty Institute for Infection and Immunity, Parkville, Melbourne, VIC, Australia.
| |
Collapse
|
2
|
Álvarez ÁL, Arboleya A, Abade dos Santos FA, García-Manso A, Nicieza I, Dalton KP, Parra F, Martín-Alonso JM. Highs and Lows in Calicivirus Reverse Genetics. Viruses 2024; 16:866. [PMID: 38932159 PMCID: PMC11209508 DOI: 10.3390/v16060866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
In virology, the term reverse genetics refers to a set of methodologies in which changes are introduced into the viral genome and their effects on the generation of infectious viral progeny and their phenotypic features are assessed. Reverse genetics emerged thanks to advances in recombinant DNA technology, which made the isolation, cloning, and modification of genes through mutagenesis possible. Most virus reverse genetics studies depend on our capacity to rescue an infectious wild-type virus progeny from cell cultures transfected with an "infectious clone". This infectious clone generally consists of a circular DNA plasmid containing a functional copy of the full-length viral genome, under the control of an appropriate polymerase promoter. For most DNA viruses, reverse genetics systems are very straightforward since DNA virus genomes are relatively easy to handle and modify and are also (with few notable exceptions) infectious per se. This is not true for RNA viruses, whose genomes need to be reverse-transcribed into cDNA before any modification can be performed. Establishing reverse genetics systems for members of the Caliciviridae has proven exceptionally challenging due to the low number of members of this family that propagate in cell culture. Despite the early successful rescue of calicivirus from a genome-length cDNA more than two decades ago, reverse genetics methods are not routine procedures that can be easily extrapolated to other members of the family. Reports of calicivirus reverse genetics systems have been few and far between. In this review, we discuss the main pitfalls, failures, and delays behind the generation of several successful calicivirus infectious clones.
Collapse
Affiliation(s)
- Ángel L. Álvarez
- Instituto Universitario de Biotecnología de Asturias (IUBA), Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Aroa Arboleya
- Instituto Universitario de Biotecnología de Asturias (IUBA), Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Fábio A. Abade dos Santos
- Instituto Universitario de Biotecnología de Asturias (IUBA), Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto Nacional de Investigação Agrária e Veterinária, 2780-157 Oeiras, Portugal
| | - Alberto García-Manso
- Instituto Universitario de Biotecnología de Asturias (IUBA), Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Inés Nicieza
- Instituto Universitario de Biotecnología de Asturias (IUBA), Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Kevin P. Dalton
- Instituto Universitario de Biotecnología de Asturias (IUBA), Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Francisco Parra
- Instituto Universitario de Biotecnología de Asturias (IUBA), Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain
| | - José M. Martín-Alonso
- Instituto Universitario de Biotecnología de Asturias (IUBA), Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
3
|
Lin SC, Bai GH, Lin PC, Chen CY, Hsu YH, Lee YC, Chen SY. Molecular and Genetics-Based Systems for Tracing the Evolution and Exploring the Mechanisms of Human Norovirus Infections. Int J Mol Sci 2023; 24:ijms24109093. [PMID: 37240438 DOI: 10.3390/ijms24109093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Human noroviruses (HuNoV) are major causes of acute gastroenteritis around the world. The high mutation rate and recombination potential of noroviruses are significant challenges in studying the genetic diversity and evolution pattern of novel strains. In this review, we describe recent advances in the development of technologies for not only the detection but also the analysis of complete genome sequences of noroviruses and the future prospects of detection methods for tracing the evolution and genetic diversity of human noroviruses. The mechanisms of HuNoV infection and the development of antiviral drugs have been hampered by failure to develop the infectious virus in a cell model. However, recent studies have demonstrated the potential of reverse genetics for the recovery and generation of infectious viral particles, suggesting the utility of this genetics-based system as an alternative for studying the mechanisms of viral infection, such as cell entry and replication.
Collapse
Affiliation(s)
- Sheng-Chieh Lin
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
- Division of Allergy, Asthma, and Immunology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Geng-Hao Bai
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei City 10002, Taiwan
| | - Pei-Chun Lin
- Division of Pediatric Gastroenterology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Chung-Yung Chen
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan City 32023, Taiwan
- Center for Nanotechnology, Institute of Biomedical Technology, Chung Yuan Christian University, Taoyuan City 32023, Taiwan
| | - Yi-Hsiang Hsu
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Yuan-Chang Lee
- Department of Infectious Diseases, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
- Department of Infectious Diseases, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Shih-Yen Chen
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
- Division of Pediatric Gastroenterology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei City 11031, Taiwan
| |
Collapse
|
4
|
Zhang Q, Zhu S, Zhang X, Su L, Ni J, Zhang Y, Fang L. Recent insights into reverse genetics of norovirus. Virus Res 2023; 325:199046. [PMID: 36657615 DOI: 10.1016/j.virusres.2023.199046] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/23/2022] [Accepted: 01/15/2023] [Indexed: 01/18/2023]
Abstract
Norovirus is the leading cause of viral gastroenteritis globally, and poses substantial threats to public health. Despite substantial progress made in preventing norovirus diseases, the lack of a robust virus culture system has hampered biological research and effective strategies to combat this pathogen. Reverse genetic system is the technique to generate infectious viruses from cloned genetic constructs, which is a powerful tool for the investigation of viral pathogenesis and for the development of novel drugs and vaccines. The strategies of reverse genetics include bacterial artificial chromosomes, vaccinia virus vectors, and entirely plasmid-based systems. Since each strategy has its pros and cons, choosing appropriate approaches will greatly improve the efficiency of virus rescue. Reverse genetic systems that have been employed for norovirus greatly extend its life cycle and facilitate the development of medical countermeasures. In this review, we summarize the current knowledge on the structure, transmission, genetic evolution and clinical manifestations of norovirus, and describe recent advances in the studies of norovirus reverse genetics as well as its future prospects for therapeutics and vaccine development.
Collapse
Affiliation(s)
- Qinyi Zhang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China; Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Shuirong Zhu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | | | - Lingxuan Su
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Jun Ni
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Yanjun Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China.
| | - Lei Fang
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
5
|
Reverse genetics in virology: A double edged sword. BIOSAFETY AND HEALTH 2022. [DOI: 10.1016/j.bsheal.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
6
|
Noroviruses-The State of the Art, Nearly Fifty Years after Their Initial Discovery. Viruses 2021; 13:v13081541. [PMID: 34452406 PMCID: PMC8402810 DOI: 10.3390/v13081541] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/06/2021] [Accepted: 07/31/2021] [Indexed: 12/11/2022] Open
Abstract
Human noroviruses are recognised as the major global cause of viral gastroenteritis. Here, we provide an overview of notable advances in norovirus research and provide a short recap of the novel model systems to which much of the recent progress is owed. Significant advances include an updated classification system, the description of alternative virus-like protein morphologies and capsid dynamics, and the further elucidation of the functions and roles of various viral proteins. Important milestones include new insights into cell tropism, host and microbial attachment factors and receptors, interactions with the cellular translational apparatus, and viral egress from cells. Noroviruses have been detected in previously unrecognised hosts and detection itself is facilitated by improved analytical techniques. New potential transmission routes and/or viral reservoirs have been proposed. Recent in vivo and in vitro findings have added to the understanding of host immunity in response to norovirus infection, and vaccine development has progressed to preclinical and even clinical trial testing. Ongoing development of therapeutics includes promising direct-acting small molecules and host-factor drugs.
Collapse
|
7
|
Bhatia S, Narayanan N, Nagpal S, Nair DT. Antiviral therapeutics directed against RNA dependent RNA polymerases from positive-sense viruses. Mol Aspects Med 2021; 81:101005. [PMID: 34311994 DOI: 10.1016/j.mam.2021.101005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 01/18/2023]
Abstract
Viruses with positive-sense single stranded RNA (+ssRNA) genomes are responsible for different diseases and represent a global health problem. In addition to developing new vaccines that protect against severe illness on infection, it is imperative to identify new antiviral molecules to treat infected patients. The genome of these RNA viruses generally codes for an enzyme with RNA dependent RNA polymerase (RdRP) activity. This molecule is centrally involved in the duplication of the RNA genome. Inhibition of this enzyme by small molecules will prevent duplication of the RNA genome and thus reduce the viral titer. An overview of the different therapeutic strategies used to inhibit RdRPs from +ssRNA viruses is provided, along with an analysis of these enzymes to highlight new binding sites for inhibitors.
Collapse
Affiliation(s)
- Sonam Bhatia
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| | - Naveen Narayanan
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| | - Shilpi Nagpal
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India; National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, 560065, India
| | - Deepak T Nair
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India.
| |
Collapse
|
8
|
Pairing of Parental Noroviruses with Unequal Competitiveness Provides a Clear Advantage for Emergence of Progeny Recombinants. Appl Environ Microbiol 2021; 87:AEM.02015-20. [PMID: 33187997 PMCID: PMC7848925 DOI: 10.1128/aem.02015-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/02/2020] [Indexed: 11/20/2022] Open
Abstract
Genetic recombination plays a pivotal role in the appearance of human norovirus recombinants that cause global epidemics. However, the factors responsible for the appearance of these recombinants remains largely unknown. In this study, we revealed a selective pressure that restricts parental combinations leading to the emergence of norovirus recombinants. To investigate traces of emerging novel recombinants and their parents in the human population, we isolated mass nucleotide sequence clones of human norovirus genogroups I and II in sewage-affected waters over a 4-year sampling period. Fourteen different phylogenetic combinations of recombinants and their parents were defined from the dozens of phylogenetic lineages circulating in the human population. To evaluate the probability of these combinations, parental lineages of each recombinant were categorized into two groups as HP (relatively higher-competitiveness parents) and LP (relatively lower-competitiveness parents), according to their relative detection frequency. Strong categorization of HP and LP was confirmed by tests with modified data and additional variables. An algorithm that was developed in this study to visualize the chance of mixed infection between parents revealed that HP lineages have a higher chance of mixed infection than LP lineages in the human population. Three parental pairing types in recombinants were defined: HP-HP, HP-LP, and LP-LP. Among these, most recombinants were identified as HP-LP, despite the prediction of dominant emergence of HP-HP-type recombinants. These results suggest that nature favors recombinants of human norovirus that originate from parental pairing of heterogeneous competitiveness.IMPORTANCE Novel recombinants, generated from inter- and intraspecies recombination of norovirus lineages, often emerge and pose a threat to public health. However, the factors determining emergence of these particular recombinants from all possible combinations of parental lineages remain largely unknown. Therefore, current investigations on these recombinants are inevitably limited to postepidemic analyses, which merely identify genetic or phenotypic changes in the newly emerged recombinants compared to their parents. Here, we provide a new theoretical concept that emergence of novel recombinants could be explained by a combination of parental noroviruses thriving in the human population and those circulating at lower levels. This study could provide an additional and important rationale for the proactive environmental monitoring of potential future epidemics due to viral recombinants.
Collapse
|
9
|
Vinjé J, Estes MK, Esteves P, Green KY, Katayama K, Knowles NJ, L'Homme Y, Martella V, Vennema H, White PA, Ictv Report Consortium. ICTV Virus Taxonomy Profile: Caliciviridae. J Gen Virol 2020; 100:1469-1470. [PMID: 31573467 PMCID: PMC7011698 DOI: 10.1099/jgv.0.001332] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The family Caliciviridae includes viruses with single-stranded, positive-sense RNA genomes of 7.4–8.3 kb. The most clinically important representatives are human noroviruses, which are a leading cause of acute gastroenteritis in humans. Virions are non-enveloped with icosahedral symmetry. Members of seven genera infect mammals (Lagovirus, Norovirus, Nebovirus, Recovirus, Sapovirus, Valovirus and Vesivirus), members of two genera infect birds (Bavovirus and Nacovirus), and members of two genera infect fish (Minovirus and Salovirus). This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Caliciviridae, which is available at ictv.global/report/caliciviridae.
Collapse
Affiliation(s)
- Jan Vinjé
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Pedro Esteves
- CIBIO/InBio - Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Kim Y Green
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kazuhiko Katayama
- Laboratory of Viral infection I, Kitasato Institute for Life Sciences Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | | | | | - Vito Martella
- Department of Veterinary Medicine, University Aldo Moro of Bari, Valenzano, Bari, Italy
| | - Harry Vennema
- Centre for Infectious Diseases Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Peter A White
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, Australia
| | | |
Collapse
|
10
|
Murakami K, Tenge VR, Karandikar UC, Lin SC, Ramani S, Ettayebi K, Crawford SE, Zeng XL, Neill FH, Ayyar BV, Katayama K, Graham DY, Bieberich E, Atmar RL, Estes MK. Bile acids and ceramide overcome the entry restriction for GII.3 human norovirus replication in human intestinal enteroids. Proc Natl Acad Sci U S A 2020; 117:1700-1710. [PMID: 31896578 PMCID: PMC6983410 DOI: 10.1073/pnas.1910138117] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Human noroviruses (HuNoVs) cause sporadic and epidemic outbreaks of gastroenteritis in all age groups worldwide. We previously reported that stem cell-derived human intestinal enteroid (HIE) cultures support replication of multiple HuNoV strains and that some strains (e.g., GII.3) replicate only in the presence of bile. Heat- and trypsin-treatment of bile did not reduce GII.3 replication, indicating a nonproteinaceous component in bile functions as an active factor. Here we show that bile acids (BAs) are critical for GII.3 replication and replication correlates with BA hydrophobicity. Using the highly effective BA, glycochenodeoxycholic acid (GCDCA), we show BAs act during the early stage of infection, BA-dependent replication in HIEs is not mediated by detergent effects or classic farnesoid X receptor or Takeda G protein-coupled receptor 5 signaling but involves another G protein-coupled receptor, sphingosine-1-phosphate receptor 2, and BA treatment of HIEs increases particle uptake. We also demonstrate that GCDCA induces multiple cellular responses that promote GII.3 replication in HIEs, including enhancement of 1) endosomal uptake, 2) endosomal acidification and subsequent activity of endosomal/lysosomal enzyme acid sphingomyelinase (ASM), and 3) ceramide levels on the apical membrane. Inhibitors of endosomal acidification or ASM reduce GII.3 infection and exogenous addition of ceramide alone permits infection. Furthermore, inhibition of lysosomal exocytosis of ASM, which is required for ceramide production at the apical surface, decreases GII.3 infection. Together, our results support a model where GII.3 exploits rapid BA-mediated cellular endolysosomal dynamic changes and cellular ceramide to enter and replicate in jejunal HIEs.
Collapse
Affiliation(s)
- Kosuke Murakami
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
- Department of Virology II, National Institute of Infectious Diseases, Musashi-murayama, Tokyo 208-0011, Japan
| | - Victoria R Tenge
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Umesh C Karandikar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Shih-Ching Lin
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Sasirekha Ramani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Khalil Ettayebi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Sue E Crawford
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Xi-Lei Zeng
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Frederick H Neill
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - B Vijayalakshmi Ayyar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Kazuhiko Katayama
- Department of Virology II, National Institute of Infectious Diseases, Musashi-murayama, Tokyo 208-0011, Japan
- Laboratory of Viral Infection I, Kitasato Institute for Life Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - David Y Graham
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
- Department of Medicine, Michael E. DeBakey VA Medical Center, Houston, TX 77030
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Erhard Bieberich
- Department of Physiology, University of Kentucky, Lexington, KY 40506
| | - Robert L Atmar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030;
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
11
|
Comas-Garcia M. Packaging of Genomic RNA in Positive-Sense Single-Stranded RNA Viruses: A Complex Story. Viruses 2019; 11:v11030253. [PMID: 30871184 PMCID: PMC6466141 DOI: 10.3390/v11030253] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 02/06/2023] Open
Abstract
The packaging of genomic RNA in positive-sense single-stranded RNA viruses is a key part of the viral infectious cycle, yet this step is not fully understood. Unlike double-stranded DNA and RNA viruses, this process is coupled with nucleocapsid assembly. The specificity of RNA packaging depends on multiple factors: (i) one or more packaging signals, (ii) RNA replication, (iii) translation, (iv) viral factories, and (v) the physical properties of the RNA. The relative contribution of each of these factors to packaging specificity is different for every virus. In vitro and in vivo data show that there are different packaging mechanisms that control selective packaging of the genomic RNA during nucleocapsid assembly. The goals of this article are to explain some of the key experiments that support the contribution of these factors to packaging selectivity and to draw a general scenario that could help us move towards a better understanding of this step of the viral infectious cycle.
Collapse
Affiliation(s)
- Mauricio Comas-Garcia
- Research Center for Health Sciences and Biomedicine (CICSaB), Universidad Autónoma de San Luis Potosí (UASLP), Av. Sierra Leona 550 Lomas 2da Seccion, 72810 San Luis Potosi, Mexico.
- Department of Sciences, Universidad Autónoma de San Luis Potosí (UASLP), Av. Chapultepec 1570, Privadas del Pedregal, 78295 San Luis Potosi, Mexico.
| |
Collapse
|
12
|
Todd KV, Tripp RA. Human Norovirus: Experimental Models of Infection. Viruses 2019; 11:v11020151. [PMID: 30759780 PMCID: PMC6410082 DOI: 10.3390/v11020151] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 12/21/2022] Open
Abstract
Human noroviruses (HuNoVs) are a leading cause of acute gastroenteritis worldwide. HuNoV infections lead to substantial societal and economic burdens. There are currently no licensed vaccines or therapeutics for the prevention or treatment of HuNoVs. A lack of well-characterized in vitro and in vivo infection models has limited the development of HuNoV countermeasures. Experimental infection of human volunteers and the use of related viruses such as murine NoV have provided helpful insights into HuNoV biology and vaccine and therapeutic development. There remains a need for robust animal models and reverse genetic systems to further HuNoV research. This review summarizes available HuNoV animal models and reverse genetic systems, while providing insight into their usefulness for vaccine and therapeutic development.
Collapse
Affiliation(s)
- Kyle V Todd
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
| | - Ralph A Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
13
|
Subcellular Localization and Functional Characterization of GII.4 Norovirus-Encoded NTPase. J Virol 2018; 92:JVI.01824-17. [PMID: 29212938 PMCID: PMC5809722 DOI: 10.1128/jvi.01824-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 11/29/2017] [Indexed: 12/27/2022] Open
Abstract
The genotype II.4 (GII.4) variants of human noroviruses (HuNVs) are recognized as the major agent of global gastroenteritis outbreaks. Due to the lack of an efficient cell culture system for HuNV propagation, the exact roles of HuNV-encoded nonstructural proteins (including Nterm, NTPase, P22, VPg, Pro, and RdRp) in viral replication or pathogenesis have not yet been fully understood. Here, we report the molecular characterization of the GII.4 HuNV-encoded NTPase (designated GII-NTPase). Results from our studies showed that GII-NTPase forms vesicular or nonvesicular textures in the cell cytoplasm, and the nonvesicular fraction of GII-NTPase significantly localizes to the endoplasmic reticulum (ER) or mitochondria. Deletion analysis revealed that the N-terminal 179-amino-acid (aa) region of GII-NTPase is required for vesicle formation and for ER colocalization, whereas the C-terminal region is involved in mitochondrial colocalization. In particular, two mitochondrion-targeting domains were identified in the C-terminal region of GII-NTPase which perfectly colocalized with mitochondria when the N-terminal region of GII-NTPase was deleted. However, the corresponding C-terminal portions of NTPase derived from the GI HuNV did not show mitochondrial colocalization. We also found that GII-NTPase physically interacts with itself as well as with Nterm and P22, but not VPg, Pro, and RdRp, in cells. The Nterm- and P22-interacting region was mapped to the N-terminal 179-aa region of GII-NTPase, whereas the self-assembly of GII-NTPase could be achieved via a head-to-head, tail-to-tail, or head-to-tail configuration. More importantly, we demonstrate that GII-NTPase possesses a proapoptotic activity, which can be further enhanced by coexpression with Nterm or P22. IMPORTANCE Despite the importance of human norovirus GII.4 variants in global gastroenteritis outbreaks, the basic biological functions of the viral nonstructural proteins in cells remain rarely investigated. In this report, we focus our studies on characteristics of the GII.4 norovirus-encoded NTPase (GII-NTPase). We unexpectedly find that GII-NTPase can perfectly colocalize with mitochondria after its N-terminal region is deleted. However, such a phenomenon is not observed for NTPase encoded by a GI strain. We further reveal that the N-terminal 179-aa region of GII-NTPase is sufficient to mediate (i) vesicle formation, (ii) ER colocalization, (iii) the interaction with two other nonstructural proteins, including Nterm and P22, (iv) the formation of homodimers or homo-oligomers, and (v) the induction of cell apoptosis. Taken together, our findings emphasize that the virus-encoded NTPase must have multiple activities during viral replication or pathogenesis; however, these activities may vary somewhat among different genogroups.
Collapse
|
14
|
Enosi Tuipulotu D, Netzler NE, Lun JH, Mackenzie JM, White PA. RNA Sequencing of Murine Norovirus-Infected Cells Reveals Transcriptional Alteration of Genes Important to Viral Recognition and Antigen Presentation. Front Immunol 2017; 8:959. [PMID: 28848558 PMCID: PMC5554501 DOI: 10.3389/fimmu.2017.00959] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/26/2017] [Indexed: 01/02/2023] Open
Abstract
Viruses inherently exploit normal cellular functions to promote replication and survival. One mechanism involves transcriptional control of the host, and knowledge of the genes modified and their molecular function can aid in understanding viral-host interactions. Norovirus pathogenesis, despite the recent advances in cell cultivation, remains largely uncharacterized. Several studies have utilized the related murine norovirus (MNV) to identify innate response, antigen presentation, and cellular recognition components that are activated during infection. In this study, we have used next-generation sequencing to probe the transcriptomic changes of MNV-infected mouse macrophages. Our in-depth analysis has revealed that MNV is a potent stimulator of the innate response including genes involved in interferon and cytokine production pathways. We observed that genes involved in viral recognition, namely IFIH1, DDX58, and DHX58 were significantly upregulated with infection, whereas we observed significant downregulation of cytokine receptors (Il17rc, Il1rl1, Cxcr3, and Cxcr5) and TLR7. Furthermore, we identified that pathways involved in protein degradation (including genes Psmb3, Psmb4, Psmb5, Psmb9, and Psme2), antigen presentation, and lymphocyte activation are downregulated by MNV infection. Thus, our findings illustrate that MNV induces perturbations in the innate immune transcriptome, particularly in MHC maturation and viral recognition that can contribute to disease pathogenesis.
Collapse
Affiliation(s)
- Daniel Enosi Tuipulotu
- Faculty of Science, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Natalie E Netzler
- Faculty of Science, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Jennifer H Lun
- Faculty of Science, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Jason M Mackenzie
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Peter A White
- Faculty of Science, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
15
|
Qu L, Murakami K, Broughman JR, Lay MK, Guix S, Tenge VR, Atmar RL, Estes MK. Replication of Human Norovirus RNA in Mammalian Cells Reveals Lack of Interferon Response. J Virol 2016; 90:8906-23. [PMID: 27466422 PMCID: PMC5021416 DOI: 10.1128/jvi.01425-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 07/18/2016] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED Human noroviruses (HuNoVs), named after the prototype strain Norwalk virus (NV), are a leading cause of acute gastroenteritis outbreaks worldwide. Studies on the related murine norovirus (MNV) have demonstrated the importance of an interferon (IFN) response in host control of virus replication, but this remains unclear for HuNoVs. Despite the lack of an efficient cell culture infection system, transfection of stool-isolated NV RNA into mammalian cells leads to viral RNA replication and virus production. Using this system, we show here that NV RNA replication is sensitive to type I (α/β) and III (interleukin-29 [IL-29]) IFN treatment. However, in cells capable of a strong IFN response to Sendai virus (SeV) and poly(I·C), NV RNA replicates efficiently and generates double-stranded RNA without inducing a detectable IFN response. Replication of HuNoV genogroup GII.3 strain U201 RNA, generated from a reverse genetics system, also does not induce an IFN response. Consistent with a lack of IFN induction, NV RNA replication is enhanced neither by neutralization of type I/III IFNs through neutralizing antibodies or the soluble IFN decoy receptor B18R nor by short hairpin RNA (shRNA) knockdown of mitochondrial antiviral signaling protein (MAVS) or interferon regulatory factor 3 (IRF3) in the IFN induction pathways. In contrast to other positive-strand RNA viruses that block IFN induction by targeting MAVS for degradation, MAVS is not degraded in NV RNA-replicating cells, and an SeV-induced IFN response is not blocked. Together, these results indicate that HuNoV RNA replication in mammalian cells does not induce an IFN response, suggesting that the epithelial IFN response may play a limited role in host restriction of HuNoV replication. IMPORTANCE Human noroviruses (HuNoVs) are a leading cause of epidemic gastroenteritis worldwide. Due to lack of an efficient cell culture system and robust small-animal model, little is known about the innate host defense to these viruses. Studies on murine norovirus (MNV) have shown the importance of an interferon (IFN) response in host control of MNV replication, but this remains unclear for HuNoVs. Here, we investigated the IFN response to HuNoV RNA replication in mammalian cells using Norwalk virus stool RNA transfection, a reverse genetics system, IFN neutralization reagents, and shRNA knockdown methods. Our results show that HuNoV RNA replication in mammalian epithelial cells does not induce an IFN response, nor can it be enhanced by blocking the IFN response. These results suggest a limited role of the epithelial IFN response in host control of HuNoV RNA replication, providing important insights into our understanding of the host defense to HuNoVs that differs from that to MNV.
Collapse
Affiliation(s)
- Lin Qu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Kosuke Murakami
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - James R Broughman
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Margarita K Lay
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Susana Guix
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Victoria R Tenge
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Robert L Atmar
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
16
|
O'Donnell TB, Hyde JL, Mintern JD, Mackenzie JM. Mouse Norovirus infection promotes autophagy induction to facilitate replication but prevents final autophagosome maturation. Virology 2016; 492:130-9. [PMID: 26922001 DOI: 10.1016/j.virol.2016.02.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/12/2016] [Accepted: 02/21/2016] [Indexed: 11/17/2022]
Abstract
Autophagy is a cellular process used to eliminate intracellular pathogens. Many viruses however are able to manipulate this cellular process for their own advantage. Here we demonstrate that Mouse Norovirus (MNV) infection induces autophagy but does not appear to utilise the autophagosomal membrane for establishment and formation of the viral replication complex. We have observed that MNV infection results in lipidation and recruitment of LC3 to the autophagosome membrane but prevents subsequent fusion of the autophagosomes with lysosomes, as SQSTM1 (an autophagy receptor) accumulates and Lysosome-Associated Membrane Protein1 is sequestered to the MNV replication complex (RC) rather than to autophagosomes. We have additionally observed that chemical modulation of autophagy differentially affects MNV replication. From this study we can conclude that MNV infection induces autophagy, however suppresses the final maturation step of this response, indicating that autophagy induction contributes to MNV replication independently of RC biogenesis.
Collapse
Affiliation(s)
- Tanya B O'Donnell
- Department of Microbiology and Immunology, at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne 3010, Australia
| | - Jennifer L Hyde
- School of Chemical and Biological Sciences, University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Justine D Mintern
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne 3010, Australia
| | - Jason M Mackenzie
- Department of Microbiology and Immunology, at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne 3010, Australia.
| |
Collapse
|
17
|
Lei S, Samuel H, Twitchell E, Bui T, Ramesh A, Wen K, Weiss M, Li G, Yang X, Jiang X, Yuan L. Enterobacter cloacae inhibits human norovirus infectivity in gnotobiotic pigs. Sci Rep 2016; 6:25017. [PMID: 27113278 PMCID: PMC4845002 DOI: 10.1038/srep25017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/06/2016] [Indexed: 02/06/2023] Open
Abstract
Human noroviruses (HuNoVs) are the leading cause of epidemic gastroenteritis worldwide. Study of HuNoV biology has been hampered by the lack of an efficient cell culture system. Recently, enteric commensal bacteria Enterobacter cloacae has been recognized as a helper in HuNoV infection of B cells in vitro. To test the influences of E. cloacae on HuNoV infectivity and to determine whether HuNoV infects B cells in vivo, we colonized gnotobiotic pigs with E. cloacae and inoculated pigs with 2.74 × 10(4) genome copies of HuNoV. Compared to control pigs, reduced HuNoV shedding was observed in E. cloacae colonized pigs, characterized by significantly shorter duration of shedding in post-inoculation day 10 subgroup and lower cumulative shedding and peak shedding in individual pigs. Colonization of E. cloacae also reduced HuNoV titers in intestinal tissues and in blood. In both control and E. cloacae colonized pigs, HuNoV infection of enterocytes was confirmed, however infection of B cells was not observed in ileum, and the entire lamina propria in sections of duodenum, jejunum, and ileum were HuNoV-negative. In summary, E. cloacae inhibited HuNoV infectivity, and B cells were not a target cell type for HuNoV in gnotobiotic pigs, with or without E. cloacae colonization.
Collapse
Affiliation(s)
- Shaohua Lei
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Helen Samuel
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Erica Twitchell
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Tammy Bui
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Ashwin Ramesh
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Ke Wen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Mariah Weiss
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Guohua Li
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Xingdong Yang
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Xi Jiang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Lijuan Yuan
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
18
|
Cuevas JM, Combe M, Torres-Puente M, Garijo R, Guix S, Buesa J, Rodríguez-Díaz J, Sanjuán R. Human norovirus hyper-mutation revealed by ultra-deep sequencing. INFECTION GENETICS AND EVOLUTION 2016; 41:233-239. [PMID: 27094861 PMCID: PMC7172324 DOI: 10.1016/j.meegid.2016.04.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/11/2016] [Accepted: 04/15/2016] [Indexed: 02/02/2023]
Abstract
Human noroviruses (NoVs) are a major cause of gastroenteritis worldwide. It is thought that, similar to other RNA viruses, high mutation rates allow NoVs to evolve fast and to undergo rapid immune escape at the population level. However, the rate and spectrum of spontaneous mutations of human NoVs have not been quantified previously. Here, we analyzed the intra-patient diversity of the NoV capsid by carrying out RT-PCR and ultra-deep sequencing with 100,000-fold coverage of 16 stool samples from symptomatic patients. This revealed the presence of low-frequency sequences carrying large numbers of U-to-C or A-to-G base transitions, suggesting a role for hyper-mutation in NoV diversity. To more directly test for hyper-mutation, we performed transfection assays in which the production of mutations was restricted to a single cell infection cycle. This confirmed the presence of sequences with multiple U-to-C/A-to-G transitions, and suggested that hyper-mutation contributed a large fraction of the total NoV spontaneous mutation rate. The type of changes produced and their sequence context are compatible with ADAR-mediated editing of the viral RNA. Norovirus U-to-C hyper-mutants are present in patient samples. Analysis of hyper-mutants in cell culture suggests ADAR-mediated RNA edition. Hyper-mutation may contribute to norovirus diversity and evolution.
Collapse
Affiliation(s)
- José M Cuevas
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, Valencia, Spain
| | - Marine Combe
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, Valencia, Spain
| | - Manoli Torres-Puente
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, Valencia, Spain
| | - Raquel Garijo
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, Valencia, Spain
| | - Susana Guix
- Departament de Microbiologia, Universitat de Barcelona, Barcelona, Spain
| | - Javier Buesa
- Departament de Microbiologia, Universitat de València, Valencia, Spain
| | | | - Rafael Sanjuán
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, Valencia, Spain; Departament de Genètica, Universitat de València, Valencia, Spain.
| |
Collapse
|
19
|
Infection models of human norovirus: challenges and recent progress. Arch Virol 2016; 161:779-88. [PMID: 26780772 DOI: 10.1007/s00705-016-2748-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 12/30/2015] [Indexed: 10/22/2022]
Abstract
Human norovirus (hNoV) infections cause acute gastroenteritis, accounting for millions of disease cases and more than 200,000 deaths annually. However, the lack of in vitro infection models and robust small-animal models has posed barriers to the development of virus-specific therapies and preventive vaccines. Promising recent progress in the development of a norovirus infection model is reviewed in this article, as well as attempts and efforts made since the discovery of hNoV more than 40 years ago. Because suitable experimental animal models for human norovirus are lacking, attractive alternatives are also discussed.
Collapse
|
20
|
|
21
|
Tao Y, Rotem A, Zhang H, Chang CB, Basu A, Kolawole AO, Koehler SA, Ren Y, Lin JS, Pipas JM, Feldman AB, Wobus CE, Weitz DA. Rapid, targeted and culture-free viral infectivity assay in drop-based microfluidics. LAB ON A CHIP 2015; 15:3934-40. [PMID: 26304791 DOI: 10.1039/c5lc00556f] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A key viral property is infectivity, and its accurate measurement is crucial for the understanding of viral evolution, disease and treatment. Currently viral infectivity is measured using plaque assays, which involve prolonged culturing of host cells, and whose measurement is unable to differentiate between specific strains and is prone to low number fluctuation. We developed a rapid, targeted and culture-free infectivity assay using high-throughput drop-based microfluidics. Single infectious viruses are incubated in a large number of picoliter drops with host cells for one viral replication cycle followed by in-drop gene-specific amplification to detect infection events. Using murine noroviruses (MNV) as a model system, we measure their infectivity and determine the efficacy of a neutralizing antibody for different variants of MNV. Our results are comparable to traditional plaque-based assays and plaque reduction neutralization tests. However, the fast, low-cost, highly accurate genomic-based assay promises to be a superior method for drug screening and isolation of resistant viral strains. Moreover our technique can be adapted to measuring the infectivity of other pathogens, such as bacteria and fungi.
Collapse
Affiliation(s)
- Ye Tao
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Huo Y, Wan X, Ling T, Wu J, Wang Z, Meng S, Shen S. Prevailing Sydney like Norovirus GII.4 VLPs induce systemic and mucosal immune responses in mice. Mol Immunol 2015; 68:367-72. [PMID: 26375574 DOI: 10.1016/j.molimm.2015.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/29/2015] [Accepted: 09/05/2015] [Indexed: 02/08/2023]
Abstract
The newly emerged Norovirus (NoV) Sydney 2012 strain has been sweeping all over the world, causing acute non-bacterial gastroenteritis in adults and children. Due to a lack of cell culture system, virus like particles (VLPs) has been assembled and used as vaccine candidates in preclinical and clinical studies. Expression of the major capsid protein of NoVs using recombinant baculovirus expression system in Sf9 cells leads to formation of VLPs that are morphologically and antigenically similar to true virions. In this study, VLPs were successfully produced using the VP1 of Sydney-2012-like strain and its immunogenicity was evaluated by different routes and its capability in inducing mucosal immune responses in the presence and absence of adjuvants in BALB/c mice. Administration of NoV VLPs in the presence of Al(OH)3 or monophosphoryl lipid A (MPL-A) led to high titers of VLP-specific IgG antibodies. Administration of VLPs orally in the presence of cholera toxin subunit B (CTB) didn't enhance mucosal immune response as less fecal IgA positive mice were observed when compared with those given VLPs only. Our study represents the first immunogenicity study of VLPs derived from current pandemic Sydney 2012 strain and which might have implications in the development of NoVs vaccine in china.
Collapse
Affiliation(s)
- Yuqi Huo
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, PR China.
| | - Xin Wan
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, PR China
| | - Tong Ling
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, PR China
| | - Jie Wu
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, PR China
| | - Zejun Wang
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, PR China
| | - Shengli Meng
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, PR China
| | - Shuo Shen
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, PR China.
| |
Collapse
|
23
|
Niwa S, Tsukagoshi H, Ishioka T, Sasaki Y, Yoshizumi M, Morita Y, Kimura H, Kozawa K. Triplex real-time polymerase chain reaction assay for detection and quantification of norovirus (GI and GII) and sapovirus. Microbiol Immunol 2014; 58:68-71. [PMID: 24117901 DOI: 10.1111/1348-0421.12107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 09/27/2013] [Accepted: 10/02/2013] [Indexed: 11/30/2022]
Abstract
To improve detection of norovirus (NoVGI, NoVGII) and sapovirus (SaV), a simultaneous quantitative RT-PCR method was established. This triplex real-time PCR method was evaluated using a combination of optimized specific primers and probes. The performance of the developed PCR assay was equivalent to that of monoplex real-time PCR across a broad dynamic range of 10(2) -10(7) copies/assay using plasmid DNA standards. The limit of detection was 10(2) copies/assay. The quantitative value was comparable with that of monoplex real-time PCR of stool samples. Our triplex real-time PCR is useful for detection of NoV and SaV infections.
Collapse
Affiliation(s)
- Shoichi Niwa
- Gunma Prefectural Institute of Public Health and Environmental Sciences, 378 Kamioki-machi, Maebashi-shi, Gunma, 371-0052
| | | | | | | | | | | | | | | |
Collapse
|
24
|
The murine norovirus core subgenomic RNA promoter consists of a stable stem-loop that can direct accurate initiation of RNA synthesis. J Virol 2014; 89:1218-29. [PMID: 25392209 DOI: 10.1128/jvi.02432-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
UNLABELLED All members of the Caliciviridae family of viruses produce a subgenomic RNA during infection. The subgenomic RNA typically encodes only the major and minor capsid proteins, but in murine norovirus (MNV), the subgenomic RNA also encodes the VF1 protein, which functions to suppress host innate immune responses. To date, the mechanism of norovirus subgenomic RNA synthesis has not been characterized. We have previously described the presence of an evolutionarily conserved RNA stem-loop structure on the negative-sense RNA, the complementary sequence of which codes for the viral RNA-dependent RNA polymerase (NS7). The conserved stem-loop is positioned 6 nucleotides 3' of the start site of the subgenomic RNA in all caliciviruses. We demonstrate that the conserved stem-loop is essential for MNV viability. Mutant MNV RNAs with substitutions in the stem-loop replicated poorly until they accumulated mutations that revert to restore the stem-loop sequence and/or structure. The stem-loop sequence functions in a noncoding context, as it was possible to restore the replication of an MNV mutant by introducing an additional copy of the stem-loop between the NS7- and VP1-coding regions. Finally, in vitro biochemical data suggest that the stem-loop sequence is sufficient for the initiation of viral RNA synthesis by the recombinant MNV RNA-dependent RNA polymerase, confirming that the stem-loop forms the core of the norovirus subgenomic promoter. IMPORTANCE Noroviruses are a significant cause of viral gastroenteritis, and it is important to understand the mechanism of norovirus RNA synthesis. Here we describe the identification of an RNA stem-loop structure that functions as the core of the norovirus subgenomic RNA promoter in cells and in vitro. This work provides new insights into the molecular mechanisms of norovirus RNA synthesis and the sequences that determine the recognition of viral RNA by the RNA-dependent RNA polymerase.
Collapse
|
25
|
A novel reverse genetics system for human norovirus. Trends Microbiol 2014; 22:604-6. [PMID: 25438616 DOI: 10.1016/j.tim.2014.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 10/06/2014] [Indexed: 11/23/2022]
Abstract
Human noroviruses cause significant morbidity, mortality, and economic losses worldwide. The inability to grow human noroviruses in cell culture has hampered our collective understanding of virus-host interactions and development of therapeutics. A newly described single-plasmid reverse genetics system for noroviruses has the potential to facilitate basic and applied research.
Collapse
|
26
|
Plasmid-based human norovirus reverse genetics system produces reporter-tagged progeny virus containing infectious genomic RNA. Proc Natl Acad Sci U S A 2014; 111:E4043-52. [PMID: 25192933 DOI: 10.1073/pnas.1415096111] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Human norovirus (HuNoV) is the leading cause of gastroenteritis worldwide. HuNoV replication studies have been hampered by the inability to grow the virus in cultured cells. The HuNoV genome is a positive-sense single-stranded RNA (ssRNA) molecule with three open reading frames (ORFs). We established a reverse genetics system driven by a mammalian promoter that functions without helper virus. The complete genome of the HuNoV genogroup II.3 U201 strain was cloned downstream of an elongation factor-1α (EF-1α) mammalian promoter. Cells transfected with plasmid containing the full-length genome (pHuNoVU201F) expressed the ORF1 polyprotein, which was cleaved by the viral protease to produce the mature nonstructural viral proteins, and the capsid proteins. Progeny virus produced from the transfected cells contained the complete NoV genomic RNA (VP1, VP2, and VPg) and exhibited the same density in isopycnic cesium chloride gradients as native infectious NoV particles from a patient's stool. This system also was applied to drive murine NoV RNA replication and produced infectious progeny virions. A GFP reporter construct containing the GFP gene in ORF1 produced complete virions that contain VPg-linked RNA. RNA from virions containing the encapsidated GFP-genomic RNA was successfully transfected back into cells producing fluorescent puncta, indicating that the encapsidated RNA is replication-competent. The EF-1α mammalian promoter expression system provides the first reverse genetics system, to our knowledge, generalizable for human and animal NoVs that does not require a helper virus. Establishing a complete reverse genetics system expressed from cDNA for HuNoVs now allows the manipulation of the viral genome and production of reporter virions.
Collapse
|
27
|
Development of a Gaussia luciferase-based human norovirus protease reporter system: cell type-specific profile of Norwalk virus protease precursors and evaluation of inhibitors. J Virol 2014; 88:10312-26. [PMID: 25008934 DOI: 10.1128/jvi.01111-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
UNLABELLED Norwalk virus (NV) is the prototype strain of human noroviruses (HuNoVs), a group of positive-strand RNA viruses in the Caliciviridae family and the leading cause of epidemic gastroenteritis worldwide. Investigation of HuNoV replication and development of antiviral therapeutics in cell culture remain challenging tasks. Here, we present NoroGLuc, a HuNoV protease reporter system based on a fusion of NV p41 protein with a naturally secreted Gaussia luciferase (GLuc), linked by the p41/p22 cleavage site for NV protease (Pro). trans cleavage of NoroGLuc by NV Pro or Pro precursors results in release and secretion of an active GLuc. Using this system, we observed a cell type-specific activity profile of NV Pro and Pro precursors, suggesting that the activity of NV Pro is modulated by other viral proteins in the precursor forms and strongly influenced by cellular factors. NoroGLuc was also cleaved by Pro and Pro precursors generated from replication of NV stool RNA in transfected cells, resulting in a measurable increase of secreted GLuc. Truncation analysis revealed that the N-terminal membrane association domain of NV p41 is critical for NoroGLuc activity. Although designed for NV, a genogroup GI.1 norovirus, NoroGLuc also efficiently detects Pro activities from GII.3 and GII.4 noroviruses. At noncytotoxic concentrations, protease inhibitors ZnCl2 and Nα-p-tosyl-l-lysine chloromethyl ketone (TLCK) exhibited dose-dependent inhibitory effects on a GII.4 Pro by NoroGLuc assay. These results establish NoroGLuc as a pan-genogroup HuNoV protease reporter system that can be used for the study of HuNoV proteases and precursors, monitoring of viral RNA replication, and evaluation of antiviral agents. IMPORTANCE Human noroviruses are the leading cause of epidemic gastroenteritis worldwide. Currently, there are no vaccines or antiviral drugs available to counter these highly contagious viruses. These viruses are currently noncultivatable in cell culture. Here, we report the development of a novel cell-based reporter system called NoroGLuc that can be used for studying norovirus replication and also for screening/evaluation of antiviral agents. This system is based on the fusion between viral protein p41 and a naturally secreted Gaussia luciferase (GLuc) with a cleavage site that can be recognized by the viral protease. Cleavage of this fusion protein by the viral protease results in the release and secretion of an active GLuc. Using NoroGLuc, we demonstrated a cell type-specific activity profile of the viral protease and its precursors and dose-dependent inhibitory effects of two protease inhibitors. This novel reporter system should be useful in probing norovirus replication and evaluating antiviral agents.
Collapse
|
28
|
Abstract
Noroviruses are small, positive-sense RNA viruses within the family Caliciviridae, and are now accepted widely as a major cause of acute gastroenteritis in both developed and developing countries. Despite their impact, our understanding of the life cycle of noroviruses has lagged behind that of other RNA viruses due to the inability to culture human noroviruses (HuNVs). Our knowledge of norovirus biology has improved significantly over the past decade as a result of numerous technological advances. The use of a HuNV replicon, improved biochemical and cell-based assays, combined with the discovery of a murine norovirus capable of replication in cell culture, has improved greatly our understanding of the molecular mechanisms of norovirus genome translation and replication, as well as the interaction with host cell processes. In this review, the current state of knowledge of the intracellular life of noroviruses is discussed with particular emphasis on the mechanisms of viral gene expression and viral genome replication.
Collapse
Affiliation(s)
- Lucy G Thorne
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Ian G Goodfellow
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| |
Collapse
|
29
|
Abstract
Gastroenteritis (GE) and its associated diarrheal diseases remain as one of the top causes of death in the world. Noroviruses (NoVs) are a group of genetically diverse RNA viruses that cause the great majority of nonbacterial gastroenteritis in humans. However, there is still no vaccine licensed for human use to prevent NoV GE. The lack of a tissue culture system and a small animal model further hinders the development of NoV vaccines. Virus-like particles (VLPs) that mimic the antigenic architecture of authentic virions, however, can be produced in insect, mammalian, and plant cells by the expression of the capsid protein. The particulate nature and high-density presentation of viral structure proteins on their surface render VLPs as a premier vaccine platform with superior safety, immunogenicity, and manufacturability. Therefore, this chapter focuses on the development of effective NoV vaccines based on VLPs of capsid proteins. The expression and structure of NoV VLPs, especially VLPs of Norwalk virus, the prototype NoV, are extensively discussed. The ability of NoV VLPs in stimulating a potent systemic and mucosal anti-NoV immunity through oral and intranasal delivery in mice is presented. The advantages of plant expression systems as a novel production platform for VLP-based NoV vaccines are discussed in light of their cost-effectiveness, production speed, and scalability. Recent achievements from the first successful demonstration of NoV VLP production in plant expression system under the current Good Manufacture Practice (cGMP) regulation by the US Food and Drug Administration (FDA) are detailed. Moreover, results of human clinical trials demonstrating the safety and efficacy of insect and plant-derived NoV VLPs are also presented. Due to the diversity of capsid protein among different NoV strains and its rapid antigenic drift, we speculate that vaccine development should focus on multivalent VLP vaccines derived from capsid proteins of the most prevalent strains. With the very recent approval of the first plant-made biologics by the FDA, we also speculate that plant-based production systems will play an important role in manufacturing such multivalent VLP-based NoV vaccines.
Collapse
|
30
|
Vongpunsawad S, Venkataram Prasad BV, Estes MK. Norwalk Virus Minor Capsid Protein VP2 Associates within the VP1 Shell Domain. J Virol 2013; 87:4818-25. [PMID: 23408637 PMCID: PMC3624303 DOI: 10.1128/jvi.03508-12] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/08/2013] [Indexed: 11/20/2022] Open
Abstract
The major capsid protein of norovirus VP1 assembles to form an icosahedral viral particle. Despite evidence that the Norwalk virus (NV) minor structural protein VP2 is present in infectious virions, the available crystallographic and electron cryomicroscopy structures of NV have not revealed the location of VP2. In this study, we determined that VP1 associates with VP2 at the interior surface of the capsid, specifically with the shell (S) domain of VP1. We mapped the interaction site to amino acid 52 of VP1, an isoleucine located within a sequence motif IDPWI in the S domain that is highly conserved across norovirus genogroups. Mutation of this isoleucine abrogated VP2 incorporation into virus-like particles without affecting the ability for VP1 to dimerize and form particles. The highly basic nature of VP2 and its location interior to the viral particle are consistent with its potential role in assisting capsid assembly and genome encapsidation.
Collapse
Affiliation(s)
- Sompong Vongpunsawad
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | | | | |
Collapse
|
31
|
Deng L, Muhaxhiri Z, Estes MK, Palzkill T, Prasad BVV, Song Y. Synthesis, Activity and Structure-Activity Relationship of Noroviral Protease Inhibitors. MEDCHEMCOMM 2013; 4. [PMID: 24244836 DOI: 10.1039/c3md00219e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The protease of norovirus, an important human pathogen, is essential for the viral replication and, therefore, represents a potential drug target. A series of tripeptide-based inhibitors of the protease were designed, synthesized and tested, among which several potent inhibitors were identified with Ki values as low as 75 nM. The structure-activity relationships of these inhibitors are discussed.
Collapse
Affiliation(s)
- Lisheng Deng
- Department of Pharmacology, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030, United States
| | | | | | | | | | | |
Collapse
|
32
|
Stals A, Mathijs E, Baert L, Botteldoorn N, Denayer S, Mauroy A, Scipioni A, Daube G, Dierick K, Herman L, Van Coillie E, Thiry E, Uyttendaele M. Molecular detection and genotyping of noroviruses. FOOD AND ENVIRONMENTAL VIROLOGY 2012; 4:153-67. [PMID: 23412888 DOI: 10.1007/s12560-012-9092-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 10/06/2012] [Indexed: 05/13/2023]
Abstract
Noroviruses (NoVs) are a major cause of gastroenteritis worldwide in humans and animals and are known as very infectious viral agents. They are spread through feces and vomit via several transmission routes involving person-to-person contact, food, and water. Investigation of these transmission routes requires sensitive methods for detection of NoVs. As NoVs cannot be cultivated to date, detection of these viruses relies on the use of molecular methods such as (real-time) reverse transcriptase polymerase chain reaction (RT-PCR). Regardless of the matrix, detection of NoVs generally requires three subsequent steps: a virus extraction step, RNA purification, and molecular detection of the purified RNA, occasionally followed by molecular genotyping. The current review mainly focused on the molecular detection and genotyping of NoVs. The most conserved region in the genome of human infective NoVs is the ORF1/ORF2 junction and has been used as a preferred target region for molecular detection of NoVs by methods such as (real-time) RT-PCR, NASBA, and LAMP. In case of animal NoVs, broad range molecular assays have most frequently been applied for molecular detection. Regarding genotyping of NoVs, five regions situated in the polymerase and capsid genes have been used for conventional RT-PCR amplification and sequencing. As the expected levels of NoVs on food and in water are very low and inhibition of molecular methods can occur in these matrices, quality control including adequate positive and negative controls is an essential part of NoV detection. Although the development of molecular methods for NoV detection has certainly aided in the understanding of NoV transmission, it has also led to new problems such as the question whether low levels of human NoV detected on fresh produce and shellfish could pose a threat to public health.
Collapse
Affiliation(s)
- Ambroos Stals
- Laboratory of Food Microbiology and Food Preservation, Faculty of Bioscience Engineering, Department of Food Safety and Food Quality, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Knight A, Li D, Uyttendaele M, Jaykus LA. A critical review of methods for detecting human noroviruses and predicting their infectivity. Crit Rev Microbiol 2012; 39:295-309. [DOI: 10.3109/1040841x.2012.709820] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
34
|
Mouse norovirus 1 utilizes the cytoskeleton network to establish localization of the replication complex proximal to the microtubule organizing center. J Virol 2012; 86:4110-22. [PMID: 22301146 DOI: 10.1128/jvi.05784-11] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human noroviruses (family Caliciviridae) are the leading cause of nonbacterial gastroenteritis worldwide. Although Human noroviruses are significant enteric pathogens, there exists no reliable vaccine or therapy to treat infected individuals. To date, attempts to cultivate Human noroviruses within the laboratory have met with little success; however, the related murine norovirus mouse norovirus 1 (MNV-1) has provided an ideal model system to study norovirus replication due to the ease with which the virus is cultivated and the ability to infect a small animal model with this virus. Previously we have identified the association between MNV-1 and components of the host secretory pathway and proposed a role for the viral open reading frame 1 proteins in the replication cycle. Here we describe for the first time a role for cytoskeletal components in early MNV-1 replication events. We show that the MNV-1 utilizes microtubules to position the replication complex adjacent to the microtubule organizing center. Chemical disruption of the microtubule network disperses the sites of MNV-1 replication throughout the cell and impairs production of viral protein and infectious virus. Furthermore, we demonstrate the ability of MNV-1 to redistribute acetylated tubulin to the replication complex and that this association is potentially mediated via the MNV-1 major structural protein, VP1. Transient expression of MNV-1 VP1 exhibited extensive colocalization with both α-tubulin and acetylated tubulin and was observed to alter the distribution of acetylated tubulin in transfected cells. This study highlights the role of the cytoskeleton in early virus replication events and demonstrates the importance of this interaction in establishing the intracellular location of MNV-1 replication complexes.
Collapse
|
35
|
Straub TM, Bartholomew RA, Valdez CO, Valentine NB, Dohnalkova A, Ozanich RM, Bruckner-Lea CJ, Call DR. Human norovirus infection of caco-2 cells grown as a three-dimensional tissue structure. JOURNAL OF WATER AND HEALTH 2011; 9:225-240. [PMID: 21942189 PMCID: PMC3187569 DOI: 10.2166/wh.2010.106] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Human norovirus (hNoV) infectivity was studied using a three-dimensional model of large intestinal epithelium. Large intestine Caco-2 cells were grown in rotating wall vessel bioreactors for 18-21 days at 37 degrees C and then transferred to 24-well tissue culture plates where they were infected with GI.1 and GII.4 human noroviruses collected from human challenge trials and various outbreak settings, respectively. Compared with uninfected cells, transmission micrographs of norovirus-infected cells displayed evidence of shortening or total loss of apical microvilli, and vacuolization. Quantitative reverse transcription real-time PCR (qRT-PCR) indicated an approximate 2-3 log10 increase in viral RNA copies for the infected cells. A passage experiment examined both the ability for continued viral RNA and viral antigen detection. In the passaged samples 1.01x10(6) copies ml(-1) were detected by qRT-PCR. Immune electron microscopy using primary antibody to hNoV GI.1 capsids in conjunction with 6 nm gold-labelled secondary antibodies was performed on crude cellular lysates. Localization of antibody was observed in infected but not for uninfected cells. Our present findings, coupled with earlier work with the three-dimensional small intestinal INT407 model, demonstrate the utility of 3-D cell culture methods to develop infectivity assays for enteric viruses that do not readily infect mammalian cell cultures.
Collapse
Affiliation(s)
- Timothy M. Straub
- Timothy M. Straub, Pacific Northwest National Laboratory, Chemical and Biological Signature Sciences Group, National Security Directorate, P.O. Box 999 MS P7-50, Richland, WA 99354, (509) 371-6961,
| | - Rachel A. Bartholomew
- Timothy M. Straub, Pacific Northwest National Laboratory, Chemical and Biological Signature Sciences Group, National Security Directorate, P.O. Box 999 MS P7-50, Richland, WA 99354, (509) 371-6961,
| | - Catherine O. Valdez
- Timothy M. Straub, Pacific Northwest National Laboratory, Chemical and Biological Signature Sciences Group, National Security Directorate, P.O. Box 999 MS P7-50, Richland, WA 99354, (509) 371-6961,
| | - Nancy B. Valentine
- Timothy M. Straub, Pacific Northwest National Laboratory, Chemical and Biological Signature Sciences Group, National Security Directorate, P.O. Box 999 MS P7-50, Richland, WA 99354, (509) 371-6961,
| | - Alice Dohnalkova
- Timothy M. Straub, Pacific Northwest National Laboratory, Chemical and Biological Signature Sciences Group, National Security Directorate, P.O. Box 999 MS P7-50, Richland, WA 99354, (509) 371-6961,
| | - Richard M. Ozanich
- Timothy M. Straub, Pacific Northwest National Laboratory, Chemical and Biological Signature Sciences Group, National Security Directorate, P.O. Box 999 MS P7-50, Richland, WA 99354, (509) 371-6961,
| | - Cynthia J. Bruckner-Lea
- Timothy M. Straub, Pacific Northwest National Laboratory, Chemical and Biological Signature Sciences Group, National Security Directorate, P.O. Box 999 MS P7-50, Richland, WA 99354, (509) 371-6961,
| | - Douglas R. Call
- Douglas R. Call, Washington State University, Veterinary Microbiology and Pathology, 402 Bustad Hall, P.O. Box 647040, Pullman, WA 99164-7040, (509) 335-6313,
| |
Collapse
|
36
|
Abstract
Human caliciviruses, noroviruses in particular, are a common cause of gastroenteritis in persons of all age groups. Although both antigen detection and serologic methods for diagnosis of infection with these viruses have been described, the best and most common methods used for diagnosis are molecular assays. Traditional RT-PCR methods are commonly used for diagnosis, but these require the use of a confirmatory test (such as probe hybridization or sequencing of amplicons). More recently, real-time RT-PCR assays have been developed that allow the rapid and accurate identification of caliciviruses in fecal samples. There is no single primer set that allows the detection of all strains within a calicivirus species, and separate primer pairs are generally used to identify strains belonging to different norovirus genogroups. Inhibition of nucleic acid amplification by substances contained within fecal samples is a common problem facing the diagnostician, but protocols to effectively remove the majority of such inhibitors have now been developed. This chapter describes methods for sample collection and processing of fecal specimens for molecular detection of enteric viruses, and it also describes both traditional and real-time RT-PCR assays for norovirus diagnosis.
Collapse
|
37
|
Abstract
Norovirus (NoV) is the most common cause of infectious gastroenteritis in the world. Gastroenteritis caused by bacterial and parasitic pathogens is commonly linked to food sources, but the link between NoV and contaminated foods has been more difficult to establish. Even when epidemiological information indicates that an outbreak originated with food, the presence of NoV in the suspect product may not be confirmed. If food is found to contain a common strain of NoV that circulates widely in the community, it is not possible to use strain typing to link the contamination to patient cases. Although food is certainly implicated in NoV spread, there are additional person-to-person and fomite transmission routes that have been shown to be important. NoV has an extremely low infectious dose, is stable in the environment, and resists disinfection. Cell culture methods are not available, so viability cannot be determined. Finally, many NoV outbreaks originate with when an infected food handler contaminates ready-to-eat food, which can be interpreted as foodborne or person-to-person transmission. This review will discuss both the physical characteristics of NoVs and the available epidemiological information with particular reference to the role of foods in NoV transmission.
Collapse
Affiliation(s)
- Kirsten Mattison
- Bureau of Microbial Hazards, Health Canada, PL2204E, Ottawa, Ontario, Canada.
| |
Collapse
|
38
|
Hillenbrand B, Günzel D, Richter JF, Höhne M, Schreier E, Schulzke JD, Mankertz J. Norovirus non-structural protein p20 leads to impaired restitution of epithelial defects by inhibition of actin cytoskeleton remodelling. Scand J Gastroenterol 2010; 45:1307-19. [PMID: 20695836 DOI: 10.3109/00365521.2010.483013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Norovirus is the most common cause of acute gastroenteritis in humans worldwide. Typical symptoms are vomiting, nausea and severe watery diarrhea. Because of the lack of cell lines susceptible to human norovirus infection, pathomechanisms and replication cycle are largely unknown. Here, we address the issue of how norovirus infection could lead to epithelial barrier dysfunction. MATERIAL AND METHODS Expression of the non-structural norovirus protein p20 in the epithelial cell line HT-29/B6 was activated through a tetracycline sensitive promoter. Tight junction proteins were studied by Western blot and confocal laser scanning microscopy. Apoptoses were detected in TUNEL stainings. Epithelial restitution was monitored by conductance scanning after induction of single cell lesions. RESULTS Changes in the expression or localization of the tight junction proteins occludin and/or claudin-1, -2,- 3, -4, -5, -7 and -8 could be ruled out to mediate epithelial barrier modulation. Cell motility was also unaltered by p20. Investigation of epithelial apoptosis revealed an accumulation of apoptic cells in epithelial monolayers after induction of p20 expression. In epithelial cell restitution assays, an arrest was identified in p20 expressing cells. Fluorescence microscopy revealed an inability for condensation and redistribution of cellular actin, which led to a reduced transepithelial electrical resistance. CONCLUSIONS Functional data for norovirus protein p20 suggest a role in modulation of the actin cytoskeleton leading to barrier dysfunction through impairment of restitution of epithelial defects.
Collapse
Affiliation(s)
- Bernd Hillenbrand
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
39
|
Bull RA, Hyde J, Mackenzie JM, Hansman GS, Oka T, Takeda N, White PA. Comparison of the replication properties of murine and human calicivirus RNA-dependent RNA polymerases. Virus Genes 2010; 42:16-27. [PMID: 20960046 DOI: 10.1007/s11262-010-0535-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 09/28/2010] [Indexed: 11/28/2022]
Abstract
The human caliciviruses (CV), norovirus (NoV) and sapovirus (SaV), are major causes of outbreak gastroenteritis worldwide. To date, the investigation of human NoV and SaV replication cycles has been impeded as neither is culturable. Consequently, the recently discovered murine NoV (MNV) has been adopted as a surrogate replication model for the human CVs. In this study, we sought to compare the biochemical properties of the MNV RNA-dependent RNA polymerase (RdRp) with related human NoV and SaV-RdRps to address the suitability of MNV as a model for the human CVs. Three human NoV-RdRps (GII.b, GII.4 and GII.7), an MNV-RdRp and two human SaV-RdRps (GI and GII) were overexpressed in Escherichia coli, purified and their enzymatic activity and fidelity compared. Despite ~70% amino acid variation between the RdRp from the two different CV genera, the majority of the physiological characteristics of the RdRps were similar. All RdRps exhibited co-operative dimerisation and had optimal activity at 25°C, a pH range between 7 and 8, required 2-5 mM MnCl(2) and were inhibited with increasing NaCl concentrations. We observed RdRp activity at temperatures as low as 5°C and as high as 65°C. Using an in vitro fidelity assay, similar mutation rates were observed for the separate RdRps (1 × 10(-4)-1 × 10(-5)). This is the first report to compare the physiological, biochemical and mutational properties of the MNV-RdRp to those of the human CV-RdRps and it suggests that MNV may be directly applicable to the study of human NoV.
Collapse
Affiliation(s)
- Rowena A Bull
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, The University of New South Wales, Sydney, NSW 2052, Australia.
| | | | | | | | | | | | | |
Collapse
|
40
|
Lay MK, Atmar RL, Guix S, Bharadwaj U, He H, Neill FH, Sastry KJ, Yao Q, Estes MK. Norwalk virus does not replicate in human macrophages or dendritic cells derived from the peripheral blood of susceptible humans. Virology 2010. [PMID: 20667573 DOI: 10.1016/j.virol.2010.07/001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Human noroviruses are difficult to study due to the lack of an efficient in vitro cell culture system or small animal model. Murine norovirus replicates in murine macrophages (MPhi) and dendritic cells (DCs), raising the possibility that human NoVs might replicate in such human cell types. To test this hypothesis, we evaluated DCs and MPhi derived from monocyte subsets and CD11c(+) DCs isolated from peripheral blood mononuclear cells of individuals susceptible to Norwalk virus (NV) infection. These cells were exposed to NV and replication was evaluated by immunofluorescence and by quantitative RT-PCR. A few PBMC-derived DCs expressed NV proteins. However, NV RNA did not increase in any of the cells tested. These results demonstrate that NV does not replicate in human CD11c(+) DCs, monocyte-derived DCs and MPhi, but abortive infection may occur in a few DCs. These results suggest that NV tropism is distinct from that of murine noroviruses.
Collapse
Affiliation(s)
- Margarita K Lay
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Lay MK, Atmar RL, Guix S, Bharadwaj U, He H, Neill FH, Sastry JK, Yao Q, Estes MK. Norwalk virus does not replicate in human macrophages or dendritic cells derived from the peripheral blood of susceptible humans. Virology 2010; 406:1-11. [PMID: 20667573 PMCID: PMC2933743 DOI: 10.1016/j.virol.2010.07.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 01/08/2010] [Accepted: 07/01/2010] [Indexed: 12/20/2022]
Abstract
Human noroviruses are difficult to study due to the lack of an efficient in vitro cell culture system or small animal model. Murine norovirus replicates in murine macrophages (MPhi) and dendritic cells (DCs), raising the possibility that human NoVs might replicate in such human cell types. To test this hypothesis, we evaluated DCs and MPhi derived from monocyte subsets and CD11c(+) DCs isolated from peripheral blood mononuclear cells of individuals susceptible to Norwalk virus (NV) infection. These cells were exposed to NV and replication was evaluated by immunofluorescence and by quantitative RT-PCR. A few PBMC-derived DCs expressed NV proteins. However, NV RNA did not increase in any of the cells tested. These results demonstrate that NV does not replicate in human CD11c(+) DCs, monocyte-derived DCs and MPhi, but abortive infection may occur in a few DCs. These results suggest that NV tropism is distinct from that of murine noroviruses.
Collapse
Affiliation(s)
- Margarita K. Lay
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Robert L. Atmar
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Susana Guix
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Uddalak Bharadwaj
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hong He
- Department of Immunology, the University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Frederick H. Neill
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jagannadha K. Sastry
- Department of Immunology, the University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Qizhi Yao
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mary K. Estes
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
42
|
[Survival strategies of human norovirus]. Uirusu 2010; 60:21-32. [PMID: 20848862 DOI: 10.2222/jsv.60.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Human norovirus is a mutatable non-enveloped RNA virus capable of causing acute gastroenteritis in humans. Thus far, no experimental systems can propagate this virus in large amounts. Recent progresses in viral genomics and bioinformatics have led to a better understanding of molecular evolution of this virus in human populations. In addition, progresses in studies of the related noroviruses, those are replicable in laboratory systems, have led to a rapid accumulation of information on structural biology of norovirus. Furthermore, progresses in public health and water environment researches have led to a better understanding of viral ecology. In this review, I will first summarize fundamental characteristics of norovirus and its molecules. Then, I will summarize structure and molecular evolution of norovirus GII/4 subtype, which is now responsible for majorities of norovirus outbreaks in the world. Finally I will discuss survival strategies of human norovirus in nature by integrating the information.
Collapse
|
43
|
Zheng H, Liu C, Zhuang J, Yuan S. Baculovirus expression of cloned porcine arterivirus generates infectious particles in both insect and mammalian cells. J Biotechnol 2010; 150:251-8. [PMID: 20728481 PMCID: PMC7114269 DOI: 10.1016/j.jbiotec.2010.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 07/29/2010] [Accepted: 08/02/2010] [Indexed: 12/28/2022]
Abstract
Studies on several viral pathogens have been hampered by the lack of appropriate in vitro systems for their propagation and amplification. Porcine reproductive and respiratory syndrome virus (PRRSV), an arterivirus containing a single-stranded positive-sense RNA genome (∼15kb), was served as a model virus and its genomic cDNA was recombinated into baculovirus. We investigated whether infectious virus particles could be generated by expression of the full-length cloned genome from the modified baculovirus vector. The recombinant baculovirus, AcAPRRS, was used to infect sf9 cells. Immunofluorescence assay demonstrated the presence of PRRSV nonstructural protein (nsp) 2 and nucleocapsid (N) protein and electron microscopy revealed PRRSV particles in the culture supernatant. Infectious PRRSV particles were also produced in susceptible MARC-145 cells inoculated with AcAPRRS, and the growth characteristics of the PRRSV generated were similar to those of the parental PRRSV strain. Infectious PRRSV particles were also generated following AcAPRRS transduction of BHK-21 cells and Vero cells that are not sensitive to PRRSV. Titers of PRRSV obtained from BHK-21 and Vero cells were up to 10(4.05)TCID(50)/ml. These findings open a new route to the propagation of the virus in vitro and will be of utility in vaccine development.
Collapse
Affiliation(s)
- Hao Zheng
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518 Ziyue Road, The Key Laboratory of Animal Parasitology, Chinese Ministry of Agriculture, Shanghai 200241, People's Republic of China
| | | | | | | |
Collapse
|
44
|
Georgiadis S, Pilger DA, Pereira F, Cantarelli VV. Avaliação molecular de norovírus em pacientes com gastroenterite aguda. Rev Soc Bras Med Trop 2010; 43:277-80. [DOI: 10.1590/s0037-86822010000300013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 04/06/2010] [Indexed: 11/22/2022] Open
Abstract
INTRODUÇÃO: O norovírus foi recentemente identificado como o principal causador de surtos de gastroenterite aguda de origem não bacteriana em todo o mundo e está envolvido em episódios de origem alimentar. Neste estudo, foram avaliados pacientes com sintomas de gastroenterite aguda pelo período de um ano, a fim de se avaliar duas metodologias na identificação do NoV - a reação em cadeia por polimerase convencional e em tempo real -, incidência, sazonalidade e genótipo predominante. MÉTODOS: Após a extração do RNA, 50 amostras foram analisadas pela metodologia de PCR convencional e 365 amostras foram analisadas pela metodologia de PCR em tempo real. Todas as amostras que apresentaram resultado positivo pelas duas metodologias ou discordante foram sequenciadas, ao todo, 13 amostras foram sequenciadas. RESULTADOS: Das 50 amostras testadas pelas duas metodologias, 7 apresentaram resultado positivo pelo método convencional e 15 pelo método da PCR em tempo real. Do total de 365 amostras testadas pela metodologia de PCR, em tempo real, 48 foram positivas. Em relação às amostras sequenciadas, todas mostraram ser NoV do genogrupo II. Em relação à distribuição da incidência de amostras, positivas para NoV, ao longo do ano, pôde ser observada uma frequência de casos positivos maior na primavera, chegando a 29,7% em novembro. CONCLUSÕES: Observamos que o PCR em tempo real é o método mais sensível para a identificação do Nov, que a incidência do NoV é de 13,2% e o genogrupo II prevalece na população avaliada, sendo a primavera o período de maior taxa de infecção.
Collapse
|
45
|
Rohayem J, Bergmann M, Gebhardt J, Gould E, Tucker P, Mattevi A, Unge T, Hilgenfeld R, Neyts J. Antiviral strategies to control calicivirus infections. Antiviral Res 2010; 87:162-78. [PMID: 20471996 PMCID: PMC7114105 DOI: 10.1016/j.antiviral.2010.05.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 05/01/2010] [Accepted: 05/04/2010] [Indexed: 11/29/2022]
Abstract
Caliciviridae are human or non-human pathogenic viruses with a high diversity. Some members of the Caliciviridae, i.e. human pathogenic norovirus or rabbit hemorrhagic disease virus (RHDV), are worldwide emerging pathogens. The norovirus is the major cause of viral gastroenteritis worldwide, accounting for about 85% of the outbreaks in Europe between 1995 and 2000. In the United States, 25 million cases of infection are reported each year. Since its emergence in 1984 as an agent of fatal hemorrhagic diseases in rabbits, RHDV has killed millions of rabbits and has been dispersed to all of the inhabitable continents. In view of their successful and apparently increasing emergence, the development of antiviral strategies to control infections due to these viral pathogens has now become an important issue in medicine and veterinary medicine. Antiviral strategies have to be based on an understanding of the epidemiology, transmission, clinical symptoms, viral replication and immunity to infection resulting from infection by these viruses. Here, we provide an overview of the mechanisms underlying calicivirus infection, focusing on the molecular aspects of replication in the host cell. Recent experimental data generated through an international collaboration on structural biology, virology and drug design within the European consortium VIZIER is also presented. Based on this analysis, we propose antiviral strategies that may significantly impact on the epidemiological characteristics of these highly successful viral pathogens.
Collapse
Affiliation(s)
- Jacques Rohayem
- The Calicilab, Institute of Virology, Dresden University of Technology, Dresden, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Karakasiliotis I, Vashist S, Bailey D, Abente EJ, Green KY, Roberts LO, Sosnovtsev SV, Goodfellow IG. Polypyrimidine tract binding protein functions as a negative regulator of feline calicivirus translation. PLoS One 2010; 5:e9562. [PMID: 20224775 PMCID: PMC2835748 DOI: 10.1371/journal.pone.0009562] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 02/15/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Positive strand RNA viruses rely heavily on host cell RNA binding proteins for various aspects of their life cycle. Such proteins interact with sequences usually present at the 5' or 3' extremities of the viral RNA genome, to regulate viral translation and/or replication. We have previously reported that the well characterized host RNA binding protein polypyrimidine tract binding protein (PTB) interacts with the 5'end of the feline calicivirus (FCV) genomic and subgenomic RNAs, playing a role in the FCV life cycle. PRINCIPAL FINDINGS We have demonstrated that PTB interacts with at least two binding sites within the 5'end of the FCV genome. In vitro translation indicated that PTB may function as a negative regulator of FCV translation and this was subsequently confirmed as the translation of the viral subgenomic RNA in PTB siRNA treated cells was stimulated under conditions in which RNA replication could not occur. We also observed that PTB redistributes from the nucleus to the cytoplasm during FCV infection, partially localizing to viral replication complexes, suggesting that PTB binding may be involved in the switch from translation to replication. Reverse genetics studies demonstrated that synonymous mutations in the PTB binding sites result in a cell-type specific defect in FCV replication. CONCLUSIONS Our data indicates that PTB may function to negatively regulate FCV translation initiation. To reconcile this with efficient virus replication in cells, we propose a putative model for the function of PTB in the FCV life cycle. It is possible that during the early stages of infection, viral RNA is translated in the absence of PTB, however, as the levels of viral proteins increase, the nuclear-cytoplasmic shuttling of PTB is altered, increasing the cytoplasmic levels of PTB, inhibiting viral translation. Whether PTB acts directly to repress translation initiation or via the recruitment of other factors remains to be determined but this may contribute to the stimulation of viral RNA replication via clearance of ribosomes from viral RNA.
Collapse
Affiliation(s)
| | - Surender Vashist
- Department of Virology, Imperial College London, London, United Kingdom
| | - Dalan Bailey
- Department of Virology, Imperial College London, London, United Kingdom
| | - Eugenio J. Abente
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Kim Y. Green
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lisa O. Roberts
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Stanislav V. Sosnovtsev
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ian G. Goodfellow
- Department of Virology, Imperial College London, London, United Kingdom
| |
Collapse
|
47
|
Karst SM. Pathogenesis of noroviruses, emerging RNA viruses. Viruses 2010; 2:748-781. [PMID: 21994656 PMCID: PMC3185648 DOI: 10.3390/v2030748] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 03/15/2010] [Accepted: 03/15/2010] [Indexed: 12/13/2022] Open
Abstract
Human noroviruses in the family Caliciviridae are a major cause of epidemic gastroenteritis. They are responsible for at least 95% of viral outbreaks and over 50% of all outbreaks worldwide. Transmission of these highly infectious plus-stranded RNA viruses occurs primarily through contaminated food or water, but also through person-to-person contact and exposure to fomites. Norovirus infections are typically acute and self-limited. However, disease can be much more severe and prolonged in infants, elderly, and immunocompromised individuals. Norovirus outbreaks frequently occur in semi-closed communities such as nursing homes, military settings, schools, hospitals, cruise ships, and disaster relief situations. Noroviruses are classified as Category B biodefense agents because they are highly contagious, extremely stable in the environment, resistant to common disinfectants, and associated with debilitating illness. The number of reported norovirus outbreaks has risen sharply since 2002 suggesting the emergence of more infectious strains. There has also been increased recognition that noroviruses are important causes of childhood hospitalization. Moreover, noroviruses have recently been associated with multiple clinical outcomes other than gastroenteritis. It is unclear whether these new observations are due to improved norovirus diagnostics or to the emergence of more virulent norovirus strains. Regardless, it is clear that human noroviruses cause considerable morbidity worldwide, have significant economic impact, and are clinically important emerging pathogens. Despite the impact of human norovirus-induced disease and the potential for emergence of highly virulent strains, the pathogenic features of infection are not well understood due to the lack of a cell culture system and previous lack of animal models. This review summarizes the current understanding of norovirus pathogenesis from the histological to the molecular level, including contributions from new model systems.
Collapse
Affiliation(s)
- Stephanie M. Karst
- Center for Molecular and Tumor Virology, Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932, USA; E-Mail: ; Tel.: +1-318-675-8122; Fax: +1-318-675-5764
| |
Collapse
|
48
|
Kim M, Lee H, Chang KO, Ko G. Molecular characterization of murine norovirus isolates from South Korea. Virus Res 2009; 147:1-6. [PMID: 19799947 DOI: 10.1016/j.virusres.2009.08.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 08/25/2009] [Accepted: 08/27/2009] [Indexed: 11/30/2022]
Abstract
The recently discovered murine norovirus (MNV) is an important surrogate virus for studying the human norovirus (NoV) because of its ability to replicate in conventional cell cultures using mouse macrophage cell lines. In addition, the impact of MNV is significant due to the high prevalence of MNV in commonly used laboratory animals in biomedical research. The prevalence and molecular characteristics of MNV could differ in various regions of the world. Therefore, the objectives of this study were (1) to determine the prevalence of MNV in animal laboratories in South Korea and (2) to compare and characterize novel MNV isolates with reported MNV isolates. We investigated 115 mouse specimens, including feces and tissues collected at five major animal facilities in South Korea, using both cell cultivation and RT-PCR assays. More than 20% of the investigated samples were positive for the virus by RT-PCR. When the complete genomes of two MNV isolates were sequenced and their sequences were compared to MNVs previously identified in North America and Germany, distinct nucleic acid sequences were identified in our new isolates.
Collapse
Affiliation(s)
- Misoon Kim
- Department of Environmental Health, School of Public Health, Seoul National University, 28 Yeongeon-dong, Chongro-gu, Seoul 110-799, Republic of Korea
| | | | | | | |
Collapse
|
49
|
González-Reyes S, García-Manso A, Del Barrio G, Dalton KP, González-Molleda L, Arrojo-Fernández J, Nicieza I, Parra F. Role of annexin A2 in cellular entry of rabbit vesivirus. J Gen Virol 2009; 90:2724-2730. [PMID: 19605586 DOI: 10.1099/vir.0.013276-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mechanisms of calicivirus attachment and internalization are not well understood, mainly due to the lack of a reliable cell-culture system for most of its members. In this study, rabbit vesivirus (RaV) virions were shown to bind annexin A2 (ANXA2) in a membrane protein fraction from HEK293T cells, using a virus overlay protein-binding assay and matrix-assisted laser desorption/ionization time-of-flight analysis. A monoclonal anti-ANXA2 antibody and small interfering RNA-mediated knockdown of ANXA2 expression in HEK293T cells reduced virus infection significantly, further supporting the role of ANXA2 in RaV attachment and/or internalization.
Collapse
Affiliation(s)
- Salomé González-Reyes
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Alberto García-Manso
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Gloria Del Barrio
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Kevin P Dalton
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Lorenzo González-Molleda
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, 33006 Oviedo, Spain
| | - José Arrojo-Fernández
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Inés Nicieza
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Francisco Parra
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
50
|
Vashist S, Bailey D, Putics A, Goodfellow I. Model systems for the study of human norovirus Biology. Future Virol 2009; 4:353-367. [PMID: 21516251 PMCID: PMC3079900 DOI: 10.2217/fvl.09.18] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The relative contribution of norovirus to disease burden on society has only recently been established and they are now established as a major cause of gastroenteritis in the developed world. However, despite the medical relevance of these viruses, an efficient in vitro cell culture system for human noroviruses has yet to be developed. As a result, much of our knowledge on the basic mechanisms of norovirus biology has come from studies using other members of the Caliciviridae family of small positive stranded RNA viruses. Here we aim to summarise the recent advances in the field, highlighting how model systems have played a key role in increasing our knowledge of this prevalent pathogen.
Collapse
|