1
|
Mathur Y, Boyd CM, Farnham JE, Monir MM, Islam MT, Sultana M, Ahmed T, Alam M, Seed KD. Capturing dynamic phage-pathogen coevolution by clinical surveillance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.29.635557. [PMID: 39975409 PMCID: PMC11838301 DOI: 10.1101/2025.01.29.635557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Bacteria harness diverse defense systems that protect against phage predation1, many of which are encoded on horizontally transmitted mobile genetic elements (MGEs)2. In turn, phages evolve counter-defenses3, driving a dynamic arms race that remains underexplored in human disease contexts. For the diarrheal pathogen Vibrio cholerae, a higher burden of its lytic phage, ICP1, in patient stool correlates with reduced disease severity4. However, direct molecular evidence of phage-driven selection of epidemic V. cholerae has not been demonstrated. Here, through clinical surveillance in cholera-endemic Bangladesh, we capture the acquisition of a parasitic anti-phage MGE, PLE11, that initiated a selective sweep coinciding with the largest cholera outbreak in recent records. PLE11 exhibited potent anti-phage activity against co-circulating ICP1, explaining its rapid and dominating emergence. We identify PLE11-encoded Rta as the novel defense responsible and provide evidence that Rta restricts phage tail assembly. Using experimental evolution, we predict phage counteradaptations against PLE11 and document the eventual emergence and selection of ICP1 that achieves a convergent evolutionary outcome. By probing how PLEs hijack phage structural proteins to drive their horizontal transmission while simultaneously restricting phage tail assembly, we discover that PLEs manipulate tail assembly to construct chimeric tails comprised of MGE and phage-encoded proteins. Collectively, our findings reveal the molecular basis of the natural selection of a globally significant pathogen and its virus in a clinically relevant context.
Collapse
Affiliation(s)
- Yamini Mathur
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Caroline M. Boyd
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jeannette E. Farnham
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Md Mamun Monir
- icddr,b, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Mohammad Tarequl Islam
- icddr,b, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Marzia Sultana
- icddr,b, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Tahmeed Ahmed
- icddr,b, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Munirul Alam
- icddr,b, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Kimberley D. Seed
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
2
|
Pang H, Fan F, Zheng J, Xiao H, Tan Z, Song J, Kan B, Liu H. Three-dimensional structures of Vibrio cholerae typing podophage VP1 in two states. Structure 2024; 32:2364-2374.e2. [PMID: 39471801 DOI: 10.1016/j.str.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/09/2024] [Accepted: 10/02/2024] [Indexed: 11/01/2024]
Abstract
Lytic podophages (VP1-VP5) play crucial roles in subtyping Vibrio cholerae O1 biotype El Tor. However, until now no structures of these phages have been available, which hindered our understanding of the molecular mechanisms of infection and DNA release. Here, we determined the cryoelectron microscopy (cryo-EM) structures of mature and DNA-ejected VP1 structures at near-atomic and subnanometer resolutions, respectively. The VP1 head is composed of 415 copies of the major capsid protein gp7 and 11 turret-shaped spikes. The VP1 tail consists of an adapter, a nozzle, a slender ring, and a tail needle, and is flanked by three extended fibers I and six trimeric fibers II. Conformational changes of fiber II in DNA-ejected VP1 may cause the release of the tail needle and core proteins, forming an elongated tail channel. Our structures provide insights into the molecular mechanisms of infection and DNA release for podophages with a tail needle.
Collapse
Affiliation(s)
- Hao Pang
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China
| | - Fenxia Fan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Jing Zheng
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China
| | - Hao Xiao
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China
| | - Zhixue Tan
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China
| | - Jingdong Song
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China.
| | - Biao Kan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Hongrong Liu
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China.
| |
Collapse
|
3
|
He T, Xie J, Jin L, Zhao J, Zhang X, Liu H, Li XD. Seasonal dynamics of the phage-bacterium linkage and associated antibiotic resistome in airborne PM 2.5 of urban areas. ENVIRONMENT INTERNATIONAL 2024; 194:109155. [PMID: 39647412 DOI: 10.1016/j.envint.2024.109155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 12/10/2024]
Abstract
Inhalable microorganisms in airborne fine particulate matter (PM2.5), including bacteria and phages, are major carriers of antibiotic resistance genes (ARGs) with strong ecological linkages and potential health implications for urban populations. A full-spectrum study on ARG carriers and phage-bacterium linkages will shed light on the environmental processes of antibiotic resistance from airborne dissemination to the human lung microbiome. Our metagenomic study reveals the seasonal dynamics of phage communities in PM2.5, their impacts on clinically important ARGs, and potential implications for the human respiratory microbiome in selected cities of China. Gene-sharing network comparisons show that air harbours a distinct phage community connected to human- and water-associated viromes, with 57 % of the predicted hosts being potential bacterial pathogens. The ARGs of common antibiotics, e.g., peptide and tetracycline, dominate both the antibiotic resistome associated with bacteria and phages in PM2.5. Over 60 % of the predicted hosts of vARG-carrying phages are potential bacterial pathogens, and about 67 % of these hosts have not been discovered as direct carriers of the same ARGs. The profiles of ARG-carrying phages are distinct among urban sites, but show a significant enrichment in abundance, diversity, temperate lifestyle, and matches of CRISPR (short for 'clustered regularly interspaced short palindromic repeats') to identified bacterial genomes in winter and spring. Moreover, phages putatively carry 52 % of the total mobile genetic element (MGE)-ARG pairs with a unique 'flu season' pattern in urban areas. This study highlights the role that phages play in the airborne dissemination of ARGs and their delivery of ARGs to specific opportunistic pathogens in human lungs, independent of other pathways of horizontal gene transfer. Natural and anthropogenic stressors, particularly wind speed, UV index, and level of ozone, potentially explained over 80 % of the seasonal dynamics of phage-bacterial pathogen linkages on antibiotic resistance. Therefore, understanding the phage-host linkages in airborne PM2.5, the full-spectrum of antibiotic resistomes, and the potential human pathogens involved, will be of benefit to protect human health in urban areas.
Collapse
Affiliation(s)
- Tangtian He
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Jiawen Xie
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Ling Jin
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China.
| | - Jue Zhao
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Xiaohua Zhang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Hang Liu
- The University Research Facility in Chemical and Environmental Analysis, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Xiang Dong Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
4
|
Castledine M, Buckling A. Critically evaluating the relative importance of phage in shaping microbial community composition. Trends Microbiol 2024; 32:957-969. [PMID: 38604881 DOI: 10.1016/j.tim.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 04/13/2024]
Abstract
The ubiquity of bacteriophages (phages) and the major evolutionary and ecological impacts they can have on their microbial hosts has resulted in phages often cited as key drivers shaping microbial community composition (the relative abundances of species). However, the evidence for the importance of phages is mixed. Here, we critically review the theory and data exploring the role of phages in communities, identifying the conditions when phages are likely to be important drivers of community composition. At ecological scales, we conclude that phages are often followers rather than drivers of microbial population and community dynamics. While phages can affect strain diversity within species, there is yet to be strong evidence suggesting that fluctuations in species' strains affects community composition.
Collapse
Affiliation(s)
- Meaghan Castledine
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK.
| | - Angus Buckling
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| |
Collapse
|
5
|
Djaouda M, Bouba RW, Nguimbous PN, Ehbiakbo P, Fils EMB, Nkenfou CN. Growth response of Vibrio cholerae O1 and V. cholerae non O1/non O139 strains to algae extracts from stream water in far north Cameroon. IRANIAN JOURNAL OF MICROBIOLOGY 2024; 16:631-638. [PMID: 39534287 PMCID: PMC11551652 DOI: 10.18502/ijm.v16i5.16796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Background and Objectives Vibrio cholerae O1 or non O1/non O139 is found in water ecosystems where it colonizes phytoplankton and has different lifestyle. This study aimed to investigate the impact of some algae extracts on the survival/growth of both V. cholerae strains. Materials and Methods Algae extracts consisting of three fractions, F1 containing chlorophyll-a, F2 containing chlorophyll-b, and F3 containing carotenoids, and raw extract (RAE) were obtained from the algal bloom collected in the Kaliao stream (Maroua, Cameroon). The survival and growth of V. cholerae O1 and V. cholerae non O1/non O139, in microcosms consisting of sterile saline with these extracts and peptone (PEP) respectively added at concentrations of 0.01, 0.05 and 0.1 mg/L, and 50/50 mixtures F1+F2, F2+F3, and F2+PEP at a concentration 0.05 mg/L, were compared during a 24h experiment. Results The microcosms F2 and RAE did not support the growth of O1 strain; V. cholerae non O1/non O139 count in all algae extract microcosms ranging from 3.97 log (CFU/mL) to 5.2 log (CFU/mL). In all PEP microcosms, the counts of both strains reached an uncountable value. Microcosms F1+F2 and F2+F3 supported the growth of V. cholerae O1 and V. cholerae non-O1/nonO139 strains. Conclusion The algae compounds showed strain-specific effect on the growth of V. cholerae.
Collapse
Affiliation(s)
- Moussa Djaouda
- Department of Life and Earth Sciences, Higher Teachers’ Training College, University of Maroua, Maroua, Cameroon
- Département des Enseignements Techniques et Fondamentaux de Base, Institut des Beaux Arts et de l’Innovation, Université de Garoua, Garoua, Cameroun
| | - Roméo Wakayansam Bouba
- Department of Biological Sciences, Faculty of Science, University of Maroua, Maroua, Cameroon
| | - Pierre Nestor Nguimbous
- Department of Biological Sciences, Faculty of Science, University of Maroua, Maroua, Cameroon
| | - Pagoui Ehbiakbo
- Department of Biological Sciences, Faculty of Science, University of Maroua, Maroua, Cameroon
| | - Eric Moïse Bakwo Fils
- Department of Biological Sciences, Faculty of Science, University of Maroua, Maroua, Cameroon
- Department of Environmental Sciences, Higher Institute of Agriculture, Forestry, Water and Environment, University of Ebolowa, Ebolowa, Cameroon
| | - Céline Nguefeu Nkenfou
- Department of Biological Sciences, Higher Teachers’ Training College, University of Yaoundé 1, Yaoundé, Cameroon
- Department of Biological Systems, Chantal Biya’s International Reference Centre (CBIRC), Centre for HIV/AIDS Prevention and Management, Yaoundé, Cameroon
| |
Collapse
|
6
|
Faruque SN, Yamasaki S, Faruque SM. Quorum regulated latent environmental cells of toxigenic Vibrio cholerae and their role in cholera outbreaks. Gut Pathog 2024; 16:52. [PMID: 39343919 PMCID: PMC11441007 DOI: 10.1186/s13099-024-00647-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Diverse bacterial group behaviors are controlled by quorum sensing, a regulatory network of bacterial gene expression based on cell density, and involving communication through chemical signal molecules called autoinducers. Multidisciplinary research in toxigenic Vibrio cholerae the etiologic agent of cholera, appear to suggest group behavior in the ecology, epidemiology, pathogenesis and transmission of the pathogen. This review summarizes latest advances and known aspects of quorum regulated environmental survival form of V. cholerae, and their role in cholera outbreaks, as well as the significance of this knowledge in tracking the pathogen for prevention of cholera. MAIN BODY Pathogenic V. cholerae naturally exists in aquatic reservoirs, and infects humans, often leading to epidemic outbreaks of cholera. Effective detection and monitoring of the pathogen in surface waters have been a research focus in preventing cholera outbreaks. However, in the aquatic reservoirs, V. cholerae persists mostly in a quiescent state referred to as viable but non-culturable (VBNC), or conditionally viable environmental cells (CVEC), which fail to grow in routine bacteriological culture. The presence of CVEC can, however, be observed by fluorescent antibody based microscopy, and they appear as clumps of cells embedded in an exopolysaccharide matrix. Current studies suggest that CVEC found in water are derived from in-vivo formed biofilms excreted by cholera patients. The transition to CVEC occurs when dilution of autoinducers in water blocks quorum-mediated regulatory responses that would normally disperse the cellular aggregates. Consequently, CVEC are resuscitated to actively growing cells if autoinducers are replenished, either in the laboratory, or naturally by other environmental bacteria or the intestinal microbiota when CVEC are ingested by humans or aquatic animals. CONCLUSION Quorum sensing plays a crucial role in the environmental persistence of toxigenic V. cholerae in a latent state, and their periodic emergence to cause cholera outbreaks. Furthermore, the autoinducer driven resuscitation of these cells may be a basis for improving the detection of V. cholerae in water samples, and monitoring V. cholerae in their aquatic reservoirs in cholera endemic areas.
Collapse
Affiliation(s)
- Shah Nayeem Faruque
- Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, 1212, Bangladesh
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Shinji Yamasaki
- Department of Veterinary Science, Graduate School of Veterinary Science, Osaka Metropolitan University, Osaka, 598-8531, Japan
- Osaka International Research Centre for Infectious Diseases, Osaka Metropolitan University, Osaka, 545-8585, Japan
| | - Shah M Faruque
- School of Environment and Life Sciences, Independent University, Bangladesh, Bashundhara R/A, Dhaka, 1229, Bangladesh.
| |
Collapse
|
7
|
Robins WP, Meader BT, Toska J, Mekalanos JJ. DdmABC-dependent death triggered by viral palindromic DNA sequences. Cell Rep 2024; 43:114450. [PMID: 39002129 PMCID: PMC11707656 DOI: 10.1016/j.celrep.2024.114450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 04/24/2024] [Accepted: 06/20/2024] [Indexed: 07/15/2024] Open
Abstract
Defense systems that recognize viruses provide important insights into both prokaryotic and eukaryotic innate immunity mechanisms. Such systems that restrict foreign DNA or trigger cell death have recently been recognized, but the molecular signals that activate many of these remain largely unknown. Here, we characterize one such system in pandemic Vibrio cholerae responsible for triggering cell density-dependent death (CDD) of cells in response to the presence of certain genetic elements. We show that the key component is the Lamassu DdmABC anti-phage/plasmid defense system. We demonstrate that signals that trigger CDD were palindromic DNA sequences in phages and plasmids that are predicted to form stem-loop hairpins from single-stranded DNA. Our results suggest that agents that damage DNA also trigger DdmABC activation and inhibit cell growth. Thus, any infectious process that results in damaged DNA, particularly during DNA replication, can in theory trigger DNA restriction and death through the DdmABC abortive infection system.
Collapse
Affiliation(s)
- William P Robins
- Department of Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| | - Bradley T Meader
- Department of Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Jonida Toska
- Department of Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - John J Mekalanos
- Department of Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| |
Collapse
|
8
|
Shackleton D, Memon FA, Nichols G, Phalkey R, Chen AS. Mechanisms of cholera transmission via environment in India and Bangladesh: state of the science review. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:313-329. [PMID: 36639850 DOI: 10.1515/reveh-2022-0201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
OBJECTIVES Cholera has a long history in India and Bangladesh, the region where six out of the past seven global pandemics have been seeded. The changing climate and growing population have led to global cholera cases remaining high despite a consistent improvement in the access to clean water and sanitation. We aim to provide a holistic overview of variables influencing environmental cholera transmission within the context of India and Bangladesh, with a focus on the mechanisms by which they act. CONTENT We identified 56 relevant texts (Bangladesh n = 40, India n = 7, Other n = 5). The results of the review found that cholera transmission is associated with several socio-economic and environmental factors, each associated variable is suggested to have at least one mediating mechanism. Increases in ambient temperature and coastal sea surface temperature support cholera transmission via increases in plankton and a preference of Vibrio cholerae for warmer waters. Increased rainfall can potentially support or reduce transmission via several mechanisms. SUMMARY AND OUTLOOK Common issues in the literature are co-variance of seasonal factors, limited access to high quality cholera data, high research bias towards research in Dhaka and Matlab (Bangladesh). A specific and detailed understanding of the relationship between SST and cholera incidence remains unclear.
Collapse
Affiliation(s)
- Debbie Shackleton
- College of Engineering, Mathematics, and Physical Sciences, University of Exeter, Exeter, EX4 4QF, UK
| | - Fayyaz A Memon
- College of Engineering, Mathematics, and Physical Sciences, University of Exeter, Exeter, EX4 4QF, UK
| | - Gordon Nichols
- European Centre for Environment and Human Health, University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Truro, Cornwall, UK
- University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Revati Phalkey
- Climate Change and Health Group, UK Health Security Agency, London, UK
- Heidelberg Institute of Global Health, University of Heidelberg, Heidelberg, Germany
- Division of Epidemiology and Public Health, School of Medicine, University of Nottingham, Nottingham, UK
| | - Albert S Chen
- College of Engineering, Mathematics, and Physical Sciences, University of Exeter, Exeter, EX4 4QF, UK
| |
Collapse
|
9
|
Madi N, Cato ET, Abu Sayeed M, Creasy-Marrazzo A, Cuénod A, Islam K, Khabir MIU, Bhuiyan MTR, Begum YA, Freeman E, Vustepalli A, Brinkley L, Kamat M, Bailey LS, Basso KB, Qadri F, Khan AI, Shapiro BJ, Nelson EJ. Phage predation, disease severity, and pathogen genetic diversity in cholera patients. Science 2024; 384:eadj3166. [PMID: 38669570 DOI: 10.1126/science.adj3166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 03/12/2024] [Indexed: 04/28/2024]
Abstract
Despite an increasingly detailed picture of the molecular mechanisms of bacteriophage (phage)-bacterial interactions, we lack an understanding of how these interactions evolve and impact disease within patients. In this work, we report a year-long, nationwide study of diarrheal disease patients in Bangladesh. Among cholera patients, we quantified Vibrio cholerae (prey) and its virulent phages (predators) using metagenomics and quantitative polymerase chain reaction while accounting for antibiotic exposure using quantitative mass spectrometry. Virulent phage (ICP1) and antibiotics suppressed V. cholerae to varying degrees and were inversely associated with severe dehydration depending on resistance mechanisms. In the absence of antiphage defenses, predation was "effective," with a high predator:prey ratio that correlated with increased genetic diversity among the prey. In the presence of antiphage defenses, predation was "ineffective," with a lower predator:prey ratio that correlated with increased genetic diversity among the predators. Phage-bacteria coevolution within patients should therefore be considered in the deployment of phage-based therapies and diagnostics.
Collapse
Affiliation(s)
- Naïma Madi
- Department of Microbiology & Immunology, McGill University, Montréal, QC, Canada
- McGill Genome Centre, McGill University, Montréal, QC, Canada
| | - Emilee T Cato
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Md Abu Sayeed
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Ashton Creasy-Marrazzo
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Aline Cuénod
- Department of Microbiology & Immunology, McGill University, Montréal, QC, Canada
- McGill Genome Centre, McGill University, Montréal, QC, Canada
| | - Kamrul Islam
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Md Imam Ul Khabir
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Md Taufiqur R Bhuiyan
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Yasmin A Begum
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Emma Freeman
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Anirudh Vustepalli
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Lindsey Brinkley
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Manasi Kamat
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Laura S Bailey
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Kari B Basso
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Firdausi Qadri
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Ashraful I Khan
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - B Jesse Shapiro
- Department of Microbiology & Immunology, McGill University, Montréal, QC, Canada
- McGill Genome Centre, McGill University, Montréal, QC, Canada
- McGill Centre for Microbiome Research, McGill University, Montréal, QC, Canada
| | - Eric J Nelson
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| |
Collapse
|
10
|
Wilinski M, Castro L, Keithley J, Manore C, Campos J, Romero-Severson E, Domman D, Lokhov AY. Congruity of genomic and epidemiological data in modelling of local cholera outbreaks. Proc Biol Sci 2024; 291:20232805. [PMID: 38503333 PMCID: PMC10950457 DOI: 10.1098/rspb.2023.2805] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
Cholera continues to be a global health threat. Understanding how cholera spreads between locations is fundamental to the rational, evidence-based design of intervention and control efforts. Traditionally, cholera transmission models have used cholera case-count data. More recently, whole-genome sequence data have qualitatively described cholera transmission. Integrating these data streams may provide much more accurate models of cholera spread; however, no systematic analyses have been performed so far to compare traditional case-count models to the phylodynamic models from genomic data for cholera transmission. Here, we use high-fidelity case-count and whole-genome sequencing data from the 1991 to 1998 cholera epidemic in Argentina to directly compare the epidemiological model parameters estimated from these two data sources. We find that phylodynamic methods applied to cholera genomics data provide comparable estimates that are in line with established methods. Our methodology represents a critical step in building a framework for integrating case-count and genomic data sources for cholera epidemiology and other bacterial pathogens.
Collapse
Affiliation(s)
- Mateusz Wilinski
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Lauren Castro
- Analytics, Intelligence and Technology Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Jeffrey Keithley
- Analytics, Intelligence and Technology Division, Los Alamos National Laboratory, Los Alamos, NM, USA
- Department of Computer Science, University of Iowa, Iowa City, IA, USA
| | - Carrie Manore
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Josefina Campos
- UO Centro Nacional de Genómica y Bioinformtica, ANLIS ‘Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | | | - Daryl Domman
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Andrey Y. Lokhov
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| |
Collapse
|
11
|
Madi N, Cato ET, Sayeed MA, Creasy-Marrazzo A, Cuénod A, Islam K, Khabir MIUL, Bhuiyan MTR, Begum YA, Freeman E, Vustepalli A, Brinkley L, Kamat M, Bailey LS, Basso KB, Qadri F, Khan AI, Shapiro BJ, Nelson EJ. Phage predation, disease severity and pathogen genetic diversity in cholera patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.14.544933. [PMID: 37398242 PMCID: PMC10312676 DOI: 10.1101/2023.06.14.544933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Despite an increasingly detailed picture of the molecular mechanisms of phage-bacterial interactions, we lack an understanding of how these interactions evolve and impact disease within patients. Here we report a year-long, nation-wide study of diarrheal disease patients in Bangladesh. Among cholera patients, we quantified Vibrio cholerae (prey) and its virulent phages (predators) using metagenomics and quantitative PCR, while accounting for antibiotic exposure using quantitative mass spectrometry. Virulent phage (ICP1) and antibiotics suppressed V. cholerae to varying degrees and were inversely associated with severe dehydration depending on resistance mechanisms. In the absence of anti-phage defenses, predation was 'effective,' with a high predator:prey ratio that correlated with increased genetic diversity among the prey. In the presence of anti-phage defenses, predation was 'ineffective,' with a lower predator:prey ratio that correlated with increased genetic diversity among the predators. Phage-bacteria coevolution within patients should therefore be considered in the deployment of phage-based therapies and diagnostics.
Collapse
Affiliation(s)
- Naïma Madi
- Department of Microbiology & Immunology, McGill University, Montréal, QC, Canada
- McGill Genome Centre, McGill University, Montréal, QC, Canada
| | - Emilee T. Cato
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Md. Abu Sayeed
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Ashton Creasy-Marrazzo
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Aline Cuénod
- Department of Microbiology & Immunology, McGill University, Montréal, QC, Canada
- McGill Genome Centre, McGill University, Montréal, QC, Canada
| | - Kamrul Islam
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Md. Imam UL. Khabir
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Md. Taufiqur R. Bhuiyan
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Yasmin A. Begum
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Emma Freeman
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Anirudh Vustepalli
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Lindsey Brinkley
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Manasi Kamat
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Laura S. Bailey
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Kari B. Basso
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Firdausi Qadri
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Ashraful I. Khan
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - B. Jesse Shapiro
- Department of Microbiology & Immunology, McGill University, Montréal, QC, Canada
- McGill Genome Centre, McGill University, Montréal, QC, Canada
- McGill Centre for Microbiome Research, McGill University, Montréal, QC, Canada
| | - Eric J. Nelson
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| |
Collapse
|
12
|
Hegde ST, Khan AI, Perez-Saez J, Khan II, Hulse JD, Islam MT, Khan ZH, Ahmed S, Bertuna T, Rashid M, Rashid R, Hossain MZ, Shirin T, Wiens KE, Gurley ES, Bhuiyan TR, Qadri F, Azman AS. Clinical surveillance systems obscure the true cholera infection burden in an endemic region. Nat Med 2024; 30:888-895. [PMID: 38378884 PMCID: PMC10957480 DOI: 10.1038/s41591-024-02810-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/09/2024] [Indexed: 02/22/2024]
Abstract
Our understanding of cholera transmission and burden largely relies on clinic-based surveillance, which can obscure trends, bias burden estimates and limit the impact of targeted cholera-prevention measures. Serological surveillance provides a complementary approach to monitoring infections, although the link between serologically derived infections and medically attended disease incidence-shaped by immunological, behavioral and clinical factors-remains poorly understood. We unravel this cascade in a cholera-endemic Bangladeshi community by integrating clinic-based surveillance, healthcare-seeking and longitudinal serological data through statistical modeling. Combining the serological trajectories with a reconstructed incidence timeline of symptomatic cholera, we estimated an annual Vibrio cholerae O1 infection incidence rate of 535 per 1,000 population (95% credible interval 514-556), with incidence increasing by age group. Clinic-based surveillance alone underestimated the number of infections and reported cases were not consistently correlated with infection timing. Of the infections, 4 in 3,280 resulted in symptoms, only 1 of which was reported through the surveillance system. These results impart insights into cholera transmission dynamics and burden in the epicenter of the seventh cholera pandemic, where >50% of our study population had an annual V. cholerae O1 infection, and emphasize the potential for a biased view of disease burden and infection risk when depending solely on clinical surveillance data.
Collapse
Affiliation(s)
- Sonia T Hegde
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MA, USA
| | - Ashraful Islam Khan
- Infectious Disease Division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Javier Perez-Saez
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MA, USA
- Unit of Population Epidemiology, Geneva University Hospitals, Geneva, Switzerland
- Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Ishtiakul Islam Khan
- Infectious Disease Division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Juan Dent Hulse
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MA, USA
| | - Md Taufiqul Islam
- Infectious Disease Division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Zahid Hasan Khan
- Infectious Disease Division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Shakeel Ahmed
- Bangladesh Institute of Tropical and Infectious Diseases, Chattogram, Bangladesh
| | - Taner Bertuna
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MA, USA
| | - Mamunur Rashid
- Bangladesh Institute of Tropical and Infectious Diseases, Chattogram, Bangladesh
| | - Rumana Rashid
- Bangladesh Institute of Tropical and Infectious Diseases, Chattogram, Bangladesh
| | - Md Zakir Hossain
- Bangladesh Institute of Tropical and Infectious Diseases, Chattogram, Bangladesh
| | - Tahmina Shirin
- Institute of Epidemiology, Disease Control and Research, Dhaka, Bangladesh
| | - Kirsten E Wiens
- Department of Epidemiology, Temple University, Philadelphia, PA, USA
| | - Emily S Gurley
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MA, USA
| | - Taufiqur Rahman Bhuiyan
- Infectious Disease Division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Firdausi Qadri
- Infectious Disease Division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh.
| | - Andrew S Azman
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MA, USA.
- Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland.
- Division of Tropical and Humanitarian Medicine, Geneva University Hospitals, Geneva, Switzerland.
| |
Collapse
|
13
|
Hooda Y, Islam S, Kabiraj R, Rahman H, Sarkar H, da Silva KE, Raju RS, Luby SP, Andrews JR, Saha SK, Saha S. Old tools, new applications: Use of environmental bacteriophages for typhoid surveillance and evaluating vaccine impact. PLoS Negl Trop Dis 2024; 18:e0011822. [PMID: 38358956 PMCID: PMC10868810 DOI: 10.1371/journal.pntd.0011822] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/27/2023] [Indexed: 02/17/2024] Open
Abstract
Typhoid-conjugate vaccines (TCVs) provide an opportunity to reduce the burden of typhoid fever, caused by Salmonella Typhi, in endemic areas. As policymakers design vaccination strategies, accurate and high-resolution data on disease burden is crucial. However, traditional blood culture-based surveillance is resource-extensive, prohibiting its large-scale and sustainable implementation. Salmonella Typhi is a water-borne pathogen, and here, we tested the potential of Typhi-specific bacteriophage surveillance in surface water bodies as a low-cost tool to identify where Salmonella Typhi circulates in the environment. In 2021, water samples were collected and tested for the presence of Salmonella Typhi bacteriophages at two sites in Bangladesh: urban capital city, Dhaka, and a rural district, Mirzapur. Salmonella Typhi-specific bacteriophages were detected in 66 of 211 (31%) environmental samples in Dhaka, in comparison to 3 of 92 (3%) environmental samples from Mirzapur. In the same year, 4,620 blood cultures at the two largest pediatric hospitals of Dhaka yielded 215 (5%) culture-confirmed typhoid cases, and 3,788 blood cultures in the largest hospital of Mirzapur yielded 2 (0.05%) cases. 75% (52/69) of positive phage samples were collected from sewage. All isolated phages were tested against a panel of isolates from different Salmonella Typhi genotypes circulating in Bangladesh and were found to exhibit a diverse killing spectrum, indicating that diverse bacteriophages were isolated. These results suggest an association between the presence of Typhi-specific phages in the environment and the burden of typhoid fever, and the potential of utilizing environmental phage surveillance as a low-cost tool to assist policy decisions on typhoid control.
Collapse
Affiliation(s)
- Yogesh Hooda
- Child Health Research Foundation, Dhaka, Bangladesh
| | | | | | | | | | - Kesia E. da Silva
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | | | - Stephen P. Luby
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Jason R. Andrews
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Samir K. Saha
- Child Health Research Foundation, Dhaka, Bangladesh
- Department of Microbiology, Bangladesh Shishu Hospital and Institute, Dhaka, Bangladesh
| | - Senjuti Saha
- Child Health Research Foundation, Dhaka, Bangladesh
| |
Collapse
|
14
|
Shrestha S, Da Silva KE, Shakya J, Yu AT, Katuwal N, Shrestha R, Shakya M, Shahi SB, Naga SR, LeBoa C, Aiemjoy K, Bogoch II, Saha S, Tamrakar D, Andrews JR. Detection of Salmonella Typhi bacteriophages in surface waters as a scalable approach to environmental surveillance. PLoS Negl Trop Dis 2024; 18:e0011912. [PMID: 38329937 PMCID: PMC10852241 DOI: 10.1371/journal.pntd.0011912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/09/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Environmental surveillance, using detection of Salmonella Typhi DNA, has emerged as a potentially useful tool to identify typhoid-endemic settings; however, it is relatively costly and requires molecular diagnostic capacity. We sought to determine whether S. Typhi bacteriophages are abundant in water sources in a typhoid-endemic setting, using low-cost assays. METHODOLOGY We collected drinking and surface water samples from urban, peri-urban and rural areas in 4 regions of Nepal. We performed a double agar overlay with S. Typhi to assess the presence of bacteriophages. We isolated and tested phages against multiple strains to assess their host range. We performed whole genome sequencing of isolated phages, and generated phylogenies using conserved genes. FINDINGS S. Typhi-specific bacteriophages were detected in 54.9% (198/361) of river and 6.3% (1/16) drinking water samples from the Kathmandu Valley and Kavrepalanchok. Water samples collected within or downstream of population-dense areas were more likely to be positive (72.6%, 193/266) than those collected upstream from population centers (5.3%, 5/95) (p=0.005). In urban Biratnagar and rural Dolakha, where typhoid incidence is low, only 6.7% (1/15, Biratnagar) and 0% (0/16, Dolakha) river water samples contained phages. All S. Typhi phages were unable to infect other Salmonella and non-Salmonella strains, nor a Vi-knockout S. Typhi strain. Representative strains from S. Typhi lineages were variably susceptible to the isolated phages. Phylogenetic analysis showed that S. Typhi phages belonged to the class Caudoviricetes and clustered in three distinct groups. CONCLUSIONS S. Typhi bacteriophages were highly abundant in surface waters of typhoid-endemic communities but rarely detected in low typhoid burden communities. Bacteriophages recovered were specific for S. Typhi and required Vi polysaccharide for infection. Screening small volumes of water with simple, low-cost (~$2) plaque assays enables detection of S. Typhi phages and should be further evaluated as a scalable tool for typhoid environmental surveillance.
Collapse
Affiliation(s)
- Sneha Shrestha
- Center for Infectious Disease Research and Surveillance, Dhulikhel Hospital Kathmandu University Hospital, Kavre, Nepal
- Research and Development Division, Dhulikhel Hospital Kathmandu University Hospital, Kavre, Nepal
| | - Kesia Esther Da Silva
- Stanford University, Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford, California, United States of America
| | - Jivan Shakya
- Institute for Research in Science and Technology, Kathmandu, Nepal
| | - Alexander T. Yu
- Stanford University, Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford, California, United States of America
| | - Nishan Katuwal
- Center for Infectious Disease Research and Surveillance, Dhulikhel Hospital Kathmandu University Hospital, Kavre, Nepal
- Research and Development Division, Dhulikhel Hospital Kathmandu University Hospital, Kavre, Nepal
| | - Rajeev Shrestha
- Center for Infectious Disease Research and Surveillance, Dhulikhel Hospital Kathmandu University Hospital, Kavre, Nepal
- Research and Development Division, Dhulikhel Hospital Kathmandu University Hospital, Kavre, Nepal
- Department of Pharmacology, Kathmandu University School of Medical Sciences, Kathmandu, Nepal
| | - Mudita Shakya
- Center for Infectious Disease Research and Surveillance, Dhulikhel Hospital Kathmandu University Hospital, Kavre, Nepal
- Research and Development Division, Dhulikhel Hospital Kathmandu University Hospital, Kavre, Nepal
| | - Sabin Bikram Shahi
- Center for Infectious Disease Research and Surveillance, Dhulikhel Hospital Kathmandu University Hospital, Kavre, Nepal
- Research and Development Division, Dhulikhel Hospital Kathmandu University Hospital, Kavre, Nepal
| | - Shiva Ram Naga
- Center for Infectious Disease Research and Surveillance, Dhulikhel Hospital Kathmandu University Hospital, Kavre, Nepal
- Research and Development Division, Dhulikhel Hospital Kathmandu University Hospital, Kavre, Nepal
| | - Christopher LeBoa
- University of California Berkeley, Department of Environmental Health Sciences, Berkeley, California, United States of America
| | - Kristen Aiemjoy
- University of California Davis, School of Medicine, Department of Public Health Sciences, Davis, California, United States of America
| | - Isaac I. Bogoch
- Department of Medicine, Division of Infectious Diseases, University of Toronto, Toronto, Canada
| | - Senjuti Saha
- Child Health Research Foundation, Dhaka, Bangladesh
| | - Dipesh Tamrakar
- Center for Infectious Disease Research and Surveillance, Dhulikhel Hospital Kathmandu University Hospital, Kavre, Nepal
- Research and Development Division, Dhulikhel Hospital Kathmandu University Hospital, Kavre, Nepal
- Department of Community Medicine, Kathmandu University School of Medical Sciences, Kathmandu, Nepal
| | - Jason R. Andrews
- Stanford University, Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford, California, United States of America
| |
Collapse
|
15
|
Foxall RL, Means J, Marcinkiewicz AL, Schillaci C, DeRosia-Banick K, Xu F, Hall JA, Jones SH, Cooper VS, Whistler CA. Inoviridae prophage and bacterial host dynamics during diversification, succession, and Atlantic invasion of Pacific-native Vibrio parahaemolyticus. mBio 2024; 15:e0285123. [PMID: 38112441 PMCID: PMC10790759 DOI: 10.1128/mbio.02851-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 12/21/2023] Open
Abstract
IMPORTANCE An understanding of the processes that contribute to the emergence of pathogens from environmental reservoirs is critical as changing climate precipitates pathogen evolution and population expansion. Phylogeographic analysis of Vibrio parahaemolyticus hosts combined with the analysis of their Inoviridae phage resolved ambiguities of diversification dynamics which preceded successful Atlantic invasion by the epidemiologically predominant ST36 lineage. It has been established experimentally that filamentous phage can limit host recombination, but here, we show that phage loss is linked to rapid bacterial host diversification during epidemic spread in natural ecosystems alluding to a potential role for ubiquitous inoviruses in the adaptability of pathogens. This work paves the way for functional analyses to define the contribution of inoviruses in the evolutionary dynamics of environmentally transmitted pathogens.
Collapse
Affiliation(s)
- Randi L. Foxall
- Northeast Center for Vibrio Disease and Ecology, University of New Hampshire, Durham, New Hampshire, USA
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
| | - Jillian Means
- Northeast Center for Vibrio Disease and Ecology, University of New Hampshire, Durham, New Hampshire, USA
- Graduate Program in Microbiology, University of New Hampshire, Durham, New Hampshire, USA
| | - Ashely L. Marcinkiewicz
- Northeast Center for Vibrio Disease and Ecology, University of New Hampshire, Durham, New Hampshire, USA
- Graduate Program in Microbiology, University of New Hampshire, Durham, New Hampshire, USA
| | - Christopher Schillaci
- Northeast Center for Vibrio Disease and Ecology, University of New Hampshire, Durham, New Hampshire, USA
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, USA
| | - Kristin DeRosia-Banick
- Northeast Center for Vibrio Disease and Ecology, University of New Hampshire, Durham, New Hampshire, USA
| | - Feng Xu
- Northeast Center for Vibrio Disease and Ecology, University of New Hampshire, Durham, New Hampshire, USA
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
| | - Jeffrey A. Hall
- Northeast Center for Vibrio Disease and Ecology, University of New Hampshire, Durham, New Hampshire, USA
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, New Hampshire, USA
| | - Stephen H. Jones
- Northeast Center for Vibrio Disease and Ecology, University of New Hampshire, Durham, New Hampshire, USA
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, USA
| | - Vaughn S. Cooper
- Northeast Center for Vibrio Disease and Ecology, University of New Hampshire, Durham, New Hampshire, USA
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Cheryl A. Whistler
- Northeast Center for Vibrio Disease and Ecology, University of New Hampshire, Durham, New Hampshire, USA
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
| |
Collapse
|
16
|
Álvarez-Espejo DM, Rivera D, Moreno-Switt AI. Bacteriophage-Host Interactions and Coevolution. Methods Mol Biol 2024; 2738:231-243. [PMID: 37966603 DOI: 10.1007/978-1-0716-3549-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Bacteriophages are the most abundant entity on the planet and play very relevant roles in the diversity and abundance of their bacterial hosts. These interactions are subject to several factors, such as the first encounter of the phage with its host bacterium, in which molecular interactions are fundamental. Along with this, these interactions depend on the environment and other communities present. This chapter focuses on these phage-bacteria interactions, reviewing the knowledge of the early stage (receptor-binding proteins), host responses (resistance and counter-resistance), and ecological and evolutionary models described to date. In general, knowledge has focused on a few phage-bacteria models and has been deepened by sequencing and metagenomics. The study of phage-bacteria interactions is an essential step for the development of therapies and other applications of phages in the clinical and productive environment.
Collapse
Affiliation(s)
- Diana M Álvarez-Espejo
- Escuela de Medicina Veterinaria, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Dácil Rivera
- Escuela de Medicina Veterinaria, Universidad Andres Bello, Santiago, Chile
| | - Andrea I Moreno-Switt
- Escuela de Medicina Veterinaria, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
17
|
Netter Z, Dunham DT, Seed KD. Adaptation to bile and anaerobicity limits Vibrio cholerae phage adsorption. mBio 2023; 14:e0198523. [PMID: 37882540 PMCID: PMC10746206 DOI: 10.1128/mbio.01985-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 09/19/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE Vibrio cholerae is the bacterial pathogen responsible for cholera, a diarrheal disease that impacts people in areas without access to potable water. In regions that lack such infrastructure, cholera represents a large proportion of disease outbreaks. Bacteriophages (phages, viruses that infect bacteria) have recently been examined as potential therapeutic and prophylactic agents to treat and prevent bacterial disease outbreaks like cholera due to their specificity and stability. This work examines the interaction between V. cholerae and vibriophages in consideration for a cholera prophylaxis regimen (M. Yen, L. S. Cairns, and A. Camilli, Nat Commun 8:14187, 2017, https://doi.org/10.1038/ncomms14187) in the context of stimuli found in the intestinal environment. We discover that common signals in the intestinal environment induce cell surface modifications in V. cholerae that also restrict some phages from binding and initiating infection. These findings could impact considerations for the design of phage-based treatments, as phage infection appears to be limited by bacterial adaptations to the intestinal environment.
Collapse
Affiliation(s)
- Zoe Netter
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Drew T. Dunham
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Kimberley D. Seed
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
18
|
Pirnay JP, Verbeken G. Magistral Phage Preparations: Is This the Model for Everyone? Clin Infect Dis 2023; 77:S360-S369. [PMID: 37932120 DOI: 10.1093/cid/ciad481] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
Phage therapy is increasingly put forward as a promising additional tool to help curb the global antimicrobial resistance crisis. However, industrially manufactured phage medicinal products are currently not available on the European Union and United States markets. In addition, it is expected that the business purpose-driven phage products that are supposed to be marketed in the future would mainly target commercially viable bacterial species and clinical indications, using fixed phage cocktails. hospitals or phage therapy centers aiming to help all patients with difficult-to-treat infections urgently need adequate phage preparations. We believe that national solutions based on the magistral preparation of personalized (preadapted) phage products by hospital and academic facilities could bring an immediate solution and could complement future industrially manufactured products. Moreover, these unlicensed phage preparations are presumed to be more efficient and to elicit less bacterial phage resistance issues than fixed phage cocktails, claims that need to be scientifically substantiated as soon as possible. Just like Belgium, other (European) countries could develop a magistral phage preparation framework that would exist next to the conventional medicinal product development and licensing pathways. However, it is important that the current producers of personalized phage products are provided with pragmatic quality and safety assurance requirements, which are preferably standardized (at least at the European level), and are tiered based on benefit-risk assessments at the individual patient level. Pro bono phage therapy providers should be supported and not stopped by the imposition of industry standards such as Good Manufacturing Practice requirements. Keywords: antimicrobial resistance; antibiotic resistance; bacterial infection; bacteriophage therapy; magistral preparation.
Collapse
Affiliation(s)
- Jean-Paul Pirnay
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Non-traditional Antibacterial Therapy (ESGNTA), Basel, Switzerland
| | - Gilbert Verbeken
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| |
Collapse
|
19
|
Carlson HK, Piya D, Moore ML, Magar RT, Elisabeth NH, Deutschbauer AM, Arkin AP, Mutalik VK. Geochemical constraints on bacteriophage infectivity in terrestrial environments. ISME COMMUNICATIONS 2023; 3:78. [PMID: 37596312 PMCID: PMC10439110 DOI: 10.1038/s43705-023-00297-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/26/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023]
Abstract
Lytic phages can be potent and selective inhibitors of microbial growth and can have profound impacts on microbiome composition and function. However, there is uncertainty about the biogeochemical conditions under which phage predation modulates microbial ecosystem function, particularly in terrestrial systems. Ionic strength is critical for infection of bacteria by many phages, but quantitative data is limited on the ion thresholds for phage infection that can be compared with environmental ion concentrations. Similarly, while carbon composition varies in the environment, we do not know how this variability influences the impact of phage predation on microbiome function. Here, we measured the half-maximal effective concentrations (EC50) of 80 different inorganic ions for the infection of E. coli with two canonical dsDNA and ssRNA phages, T4 and MS2, respectively. Many alkaline earth metals and alkali metals enabled lytic infection but the ionic strength thresholds varied for different ions between phages. Additionally, using a freshwater nitrate-reducing microbiome, we found that the ability of lytic phages to influence nitrate reduction end-products depended upon the carbon source as well as ionic strength. For all phage:host pairs, the ion EC50s for phage infection exceeded the ion concentrations found in many terrestrial freshwater systems. Thus, our findings support a model where phages most influence terrestrial microbial functional ecology in hot spots and hot moments such as metazoan guts, drought influenced soils, or biofilms where ion concentration is locally or transiently elevated and nutrients are available to support the growth of specific phage hosts.
Collapse
Affiliation(s)
- Hans K Carlson
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Lab, Berkeley, CA, 94720, USA.
| | - Denish Piya
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Madeline L Moore
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Lab, Berkeley, CA, 94720, USA
| | - Roniya T Magar
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Lab, Berkeley, CA, 94720, USA
| | - Nathalie H Elisabeth
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Lab, Berkeley, CA, 94720, USA
| | - Adam M Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Lab, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Adam P Arkin
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Lab, Berkeley, CA, 94720, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Vivek K Mutalik
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Lab, Berkeley, CA, 94720, USA.
| |
Collapse
|
20
|
Hegde S, Khan AI, Perez-Saez J, Khan II, Hulse JD, Islam MT, Khan ZH, Ahmed S, Bertuna T, Rashid M, Rashid R, Hossain MZ, Shirin T, Wiens K, Gurley ES, Bhuiyan TR, Qadri F, Azman AS. Estimating the gap between clinical cholera and true community infections: findings from an integrated surveillance study in an endemic region of Bangladesh. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.18.23292836. [PMID: 37502941 PMCID: PMC10371108 DOI: 10.1101/2023.07.18.23292836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Our understanding of cholera transmission and burden largely rely on clinic-based surveillance, which can obscure trends, bias burden estimates and limit the impact of targeted cholera-prevention measures. Serologic surveillance provides a complementary approach to monitoring infections, though the link between serologically-derived infections and medically-attended disease - shaped by immunological, behavioral, and clinical factors - remains poorly understood. We unravel this cascade in a cholera-endemic Bangladeshi community by integrating clinic-based surveillance, healthcare seeking, and longitudinal serological data through statistical modeling. We found >50% of the study population had a V. cholerae O1 infection annually, and infection timing was not consistently correlated with reported cases. Four in 2,340 infections resulted in symptoms, only one of which was reported through the surveillance system. These results provide new insights into cholera transmission dynamics and burden in the epicenter of the 7th cholera pandemic and provide a framework to synthesize serological and clinical surveillance data.
Collapse
Affiliation(s)
- Sonia Hegde
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | - Javier Perez-Saez
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Unit of Population Epidemiology, Geneva University Hospitals, Geneva, Switzerland
| | | | - Juan Dent Hulse
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | | | - Shakeel Ahmed
- Bangladesh Institute of Tropical and Infectious Diseases, Chattogram, Bangladesh
| | - Taner Bertuna
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Mamunur Rashid
- Bangladesh Institute of Tropical and Infectious Diseases, Chattogram, Bangladesh
| | - Rumuna Rashid
- Bangladesh Institute of Tropical and Infectious Diseases, Chattogram, Bangladesh
| | - Md Zakir Hossain
- Bangladesh Institute of Tropical and Infectious Diseases, Chattogram, Bangladesh
| | - Tahmina Shirin
- Institute of Epidemiology, Disease Control and Research, Dhaka, Bangladesh
| | - Kirsten Wiens
- Department of Epidemiology, Temple University, Philadelphia, USA
| | - Emily S Gurley
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | | | - Andrew S Azman
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland
- Division of Tropical and Humanitarian Medicine, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
21
|
Stress Responses in Pathogenic Vibrios and Their Role in Host and Environmental Survival. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:213-232. [PMID: 36792878 DOI: 10.1007/978-3-031-22997-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Vibrio is a genus of bacteria commonly found in estuarine, marine, and freshwater environments. Vibrio species have evolved to occupy diverse niches in the aquatic ecosystem, with some having complex lifestyles. About a dozen of the described Vibrio species have been reported to cause human disease, while many other species cause disease in other organisms. Vibrio cholerae causes epidemic cholera, a severe dehydrating diarrheal disease associated with the consumption of contaminated food or water. The human pathogenic non-cholera Vibrio species, Vibrio parahaemolyticus and Vibrio vulnificus, cause gastroenteritis, septicemia, and other extra-intestinal infections. Infections caused by V. parahaemolyticus and V. vulnificus are normally acquired through exposure to sea water or through consumption of raw or undercooked contaminated seafood. The human pathogenic Vibrios are exposed to numerous different stress-inducing agents and conditions in the aquatic environment and when colonizing a human host. Therefore, they have evolved a variety of mechanisms to survive in the presence of these stressors. Here we discuss what is known about important stress responses in pathogenic Vibrio species and their role in bacterial survival.
Collapse
|
22
|
Dunham DT, Angermeyer A, Seed KD. The RNA-RNA interactome between a phage and its satellite virus reveals a small RNA that differentially regulates gene expression across both genomes. Mol Microbiol 2023; 119:515-533. [PMID: 36786209 PMCID: PMC10392615 DOI: 10.1111/mmi.15046] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
Satellite viruses are present across all domains of life, defined as subviral parasites that require infection by another virus for satellite progeny production. Phage satellites exhibit various regulatory mechanisms to manipulate phage gene expression to the benefit of the satellite, redirecting resources from the phage to the satellite, and often inhibiting phage progeny production. While small RNAs (sRNAs) are well documented as regulators of prokaryotic gene expression, they have not been shown to play a regulatory role in satellite-phage conflicts. Vibrio cholerae encodes the phage inducible chromosomal island-like element (PLE), a phage satellite, to defend itself against the lytic phage ICP1. Here, we use Hi-GRIL-seq to identify a complex RNA-RNA interactome between PLE and ICP1. Both inter- and intragenome RNA interactions were detected, headlined by the PLE sRNA, SviR. SviR is involved in regulating both PLE and ICP1 gene expression uniquely, decreasing ICP1 target translation and affecting PLE transcripts. The striking conservation of SviR across all known PLEs suggests the sRNA is deeply rooted in the PLE-ICP1 conflict and implicates sRNAs as unidentified regulators of gene expression in phage-satellite interactions.
Collapse
Affiliation(s)
- Drew T Dunham
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Angus Angermeyer
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Kimberley D Seed
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
23
|
Khalifa AA, Hussien SM. The promising role of bacteriophage therapy in managing total hip and knee arthroplasty related periprosthetic joint infection, a systematic review. J Exp Orthop 2023; 10:18. [PMID: 36786898 PMCID: PMC9929010 DOI: 10.1186/s40634-023-00586-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
PURPOSE Total hip and knee arthroplasty periprosthetic joint infection (PJI) poses a management dilemma owing to the emergence of resistant organisms. A promising option is Bacteriophage therapy (BT) was used as an adjuvant for PJI management, aiming at treating resistant infections, decreasing morbidity, and mortality. The current review aimed to demonstrate the role and safety of using BT as an adjuvant to treat PJIs. METHODS A systematic search was performed through four databases (Embase, PubMed, Web of Science, and Scopus) up to March 2022, according to the predetermined inclusion and exclusion criteria. RESULTS Our systematic review included 11 case reports of 13 patients in which 14 joints (11 TKAs and three THAs) were treated. The patients' average age was 73.7 years, underwent an average of 4.5 previous surgeries. The most common organism was the Staphylococcus aureus species. All patients underwent surgical debridement; for the 13 patients, eight received a cocktail, and five received monophage therapy. All patients received postoperative suppressive antibiotic therapy. After an average follow-up of 14.5 months, all patients had satisfactory outcomes. No recurrence of infection in any patient. Transaminitis complicating BT was developed in three patients, needed stoppage in only one, and the condition was reversible and non-life-threatening. CONCLUSION BT is a safe and potentially effective adjuvant therapy for treating resistant and relapsing PJIs. However, further investigations are needed to clarify some BT-related issues to create effective and reproducible therapeutics. Furthermore, new ethical regulations should be implemented to facilitate its widespread use.
Collapse
Affiliation(s)
- Ahmed A. Khalifa
- Orthopaedic Department, Qena Faculty of Medicine and University Hospital, South Valley University, Kilo 6 Qena-Safaga Highway, Qena, 83523 Egypt
- Qena Faculty of Medicine, South Valley University, Qena, Egypt
| | | |
Collapse
|
24
|
Yang K, Wang X, Hou R, Lu C, Fan Z, Li J, Wang S, Xu Y, Shen Q, Friman VP, Wei Z. Rhizosphere phage communities drive soil suppressiveness to bacterial wilt disease. MICROBIOME 2023; 11:16. [PMID: 36721270 PMCID: PMC9890766 DOI: 10.1186/s40168-023-01463-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 01/09/2023] [Indexed: 05/28/2023]
Abstract
BACKGROUND Bacterial viruses, phages, play a key role in nutrient turnover and lysis of bacteria in terrestrial ecosystems. While phages are abundant in soils, their effects on plant pathogens and rhizosphere bacterial communities are poorly understood. Here, we used metagenomics and direct experiments to causally test if differences in rhizosphere phage communities could explain variation in soil suppressiveness and bacterial wilt plant disease outcomes by plant-pathogenic Ralstonia solanacearum bacterium. Specifically, we tested two hypotheses: (1) that healthy plants are associated with stronger top-down pathogen control by R. solanacearum-specific phages (i.e. 'primary phages') and (2) that 'secondary phages' that target pathogen-inhibiting bacteria play a stronger role in diseased plant rhizosphere microbiomes by indirectly 'helping' the pathogen. RESULTS Using a repeated sampling of tomato rhizosphere soil in the field, we show that healthy plants are associated with distinct phage communities that contain relatively higher abundances of R. solanacearum-specific phages that exert strong top-down pathogen density control. Moreover, 'secondary phages' that targeted pathogen-inhibiting bacteria were more abundant in the diseased plant microbiomes. The roles of R. solanacearum-specific and 'secondary phages' were directly validated in separate greenhouse experiments where we causally show that phages can reduce soil suppressiveness, both directly and indirectly, via top-down control of pathogen densities and by alleviating interference competition between pathogen-inhibiting bacteria and the pathogen. CONCLUSIONS Together, our findings demonstrate that soil suppressiveness, which is most often attributed to bacteria, could be driven by rhizosphere phage communities that regulate R. solanacearum densities and strength of interference competition with pathogen-suppressing bacteria. Rhizosphere phage communities are hence likely to be important in determining bacterial wilt disease outcomes and soil suppressiveness in agricultural fields. Video Abstract.
Collapse
Affiliation(s)
- Keming Yang
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xiaofang Wang
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Rujiao Hou
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Chunxia Lu
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Zhe Fan
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jingxuan Li
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Shuo Wang
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yangchun Xu
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Qirong Shen
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Ville-Petri Friman
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK.
- Department of Microbiology, University of Helsinki, 00014, Helsinki, Finland.
| | - Zhong Wei
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
25
|
Shaer Tamar E, Kishony R. Multistep diversification in spatiotemporal bacterial-phage coevolution. Nat Commun 2022; 13:7971. [PMID: 36577749 PMCID: PMC9797572 DOI: 10.1038/s41467-022-35351-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 11/29/2022] [Indexed: 12/29/2022] Open
Abstract
The evolutionary arms race between phages and bacteria, where bacteria evolve resistance to phages and phages retaliate with resistance-countering mutations, is a major driving force of molecular innovation and genetic diversification. Yet attempting to reproduce such ongoing retaliation dynamics in the lab has been challenging; laboratory coevolution experiments of phage and bacteria are typically performed in well-mixed environments and often lead to rapid stagnation with little genetic variability. Here, co-culturing motile E. coli with the lytic bacteriophage T7 on swimming plates, we observe complex spatiotemporal dynamics with multiple genetically diversifying adaptive cycles. Systematically quantifying over 10,000 resistance-infectivity phenotypes between evolved bacteria and phage isolates, we observe diversification into multiple coexisting ecotypes showing a complex interaction network with both host-range expansion and host-switch tradeoffs. Whole-genome sequencing of these evolved phage and bacterial isolates revealed a rich set of adaptive mutations in multiple genetic pathways including in genes not previously linked with phage-bacteria interactions. Synthetically reconstructing these new mutations, we discover phage-general and phage-specific resistance phenotypes as well as a strong synergy with the more classically known phage-resistance mutations. These results highlight the importance of spatial structure and migration for driving phage-bacteria coevolution, providing a concrete system for revealing new molecular mechanisms across diverse phage-bacterial systems.
Collapse
Affiliation(s)
- Einat Shaer Tamar
- grid.6451.60000000121102151Faculty of Biology, Technion–Israel Institute of Technology, Haifa, Israel
| | - Roy Kishony
- grid.6451.60000000121102151Faculty of Biology, Technion–Israel Institute of Technology, Haifa, Israel ,grid.6451.60000000121102151Faculty of Computer Science, Technion–Israel Institute of Technology, Haifa, Israel ,grid.6451.60000000121102151Faculty of Biomedical Engineering, Technion–Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
26
|
Alam MT, Mavian C, Paisie TK, Tagliamonte MS, Cash MN, Angermeyer A, Seed KD, Camilli A, Maisha FM, Senga RKK, Salemi M, Morris JG, Ali A. Emergence and Evolutionary Response of Vibrio cholerae to Novel Bacteriophage, Democratic Republic of the Congo 1. Emerg Infect Dis 2022; 28:2482-2490. [PMID: 36417939 PMCID: PMC9707599 DOI: 10.3201/eid2812.220572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cholera causes substantial illness and death in Africa. We analyzed 24 toxigenic Vibrio cholerae O1 strains isolated in 2015-2017 from patients in the Great Lakes region of the Democratic Republic of the Congo. Strains originating in southern Asia appeared to be part of the T10 introduction event in eastern Africa. We identified 2 main strain lineages, most recently a lineage corresponding to sequence type 515, a V. cholerae cluster previously reported in the Lake Kivu region. In 41% of fecal samples from cholera patients, we also identified a novel ICP1 (Bangladesh cholera phage 1) bacteriophage, genetically distinct from ICP1 isolates previously detected in Asia. Bacteriophage resistance occurred in distinct clades along both internal and external branches of the cholera phylogeny. This bacteriophage appears to have served as a major driver for cholera evolution and spread, and its appearance highlights the complex evolutionary dynamic that occurs between predatory phage and bacterial host.
Collapse
|
27
|
Tomofuji Y, Kishikawa T, Maeda Y, Ogawa K, Otake-Kasamoto Y, Kawabata S, Nii T, Okuno T, Oguro-Igashira E, Kinoshita M, Takagaki M, Oyama N, Todo K, Yamamoto K, Sonehara K, Yagita M, Hosokawa A, Motooka D, Matsumoto Y, Matsuoka H, Yoshimura M, Ohshima S, Shinzaki S, Nakamura S, Iijima H, Inohara H, Kishima H, Takehara T, Mochizuki H, Takeda K, Kumanogoh A, Okada Y. Prokaryotic and viral genomes recovered from 787 Japanese gut metagenomes revealed microbial features linked to diets, populations, and diseases. CELL GENOMICS 2022; 2:100219. [PMID: 36778050 PMCID: PMC9903723 DOI: 10.1016/j.xgen.2022.100219] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/27/2022] [Accepted: 10/31/2022] [Indexed: 12/03/2022]
Abstract
We reconstructed 19,084 prokaryotic and 31,395 viral genomes from 787 Japanese gut metagenomes as Japanese metagenome-assembled genomes (JMAG) and Japanese Virus Database (JVD), which are large microbial genome datasets for a single population. Population-specific enrichment of the Bacillus subtilis and β-porphyranase among the JMAG could derive from the Japanese traditional food natto (fermented soybeans) and nori (laver), respectively. Dairy-related Enterococcus_B lactis and Streptococcus thermophilus were nominally associated with the East Asian-specific missense variant rs671:G>A in ALDH2, which was associated with dairy consumption. Of the species-level viral genome clusters in the JVD, 62.9% were novel. The β crAss-like phage composition was low among the Japanese but relatively high among African and Oceanian peoples. Evaluations of the association between crAss-like phages and diseases showed significant disease-specific associations. Our large catalog of virus-host pairs identified the positive correlation between the abundance of the viruses and their hosts.
Collapse
Affiliation(s)
- Yoshihiko Tomofuji
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Japan,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita 565-0871, Japan,Corresponding author
| | - Toshihiro Kishikawa
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Japan,Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita 565-0871, Japan,Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya 464-8681, Japan
| | - Yuichi Maeda
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita 565-0871, Japan,Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan,Laboratory of Immune Regulation, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Kotaro Ogawa
- Department of Neurology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Yuriko Otake-Kasamoto
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Shuhei Kawabata
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Takuro Nii
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan,Laboratory of Immune Regulation, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Tatsusada Okuno
- Department of Neurology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Eri Oguro-Igashira
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan,Laboratory of Immune Regulation, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Makoto Kinoshita
- Department of Neurology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Masatoshi Takagaki
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Naoki Oyama
- Department of Stroke Medicine, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Kenichi Todo
- Department of Neurology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Kenichi Yamamoto
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Japan,Department of Pediatrics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan,Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita 565-0871, Japan
| | - Kyuto Sonehara
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Japan,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita 565-0871, Japan
| | - Mayu Yagita
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan,Laboratory of Immune Regulation, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Akiko Hosokawa
- Department of Neurology, Suita Municipal Hospital, Suita 564-8567, Japan
| | - Daisuke Motooka
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita 565-0871, Japan,Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan
| | - Yuki Matsumoto
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan
| | - Hidetoshi Matsuoka
- Department of Rheumatology and Allergology, NHO Osaka Minami Medical Center, Kawachinagano 586-8521, Japan
| | - Maiko Yoshimura
- Department of Rheumatology and Allergology, NHO Osaka Minami Medical Center, Kawachinagano 586-8521, Japan
| | - Shiro Ohshima
- Department of Rheumatology and Allergology, NHO Osaka Minami Medical Center, Kawachinagano 586-8521, Japan
| | - Shinichiro Shinzaki
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Shota Nakamura
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita 565-0871, Japan,Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan
| | - Hideki Iijima
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Hidenori Inohara
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan,WPI Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
| | - Atsushi Kumanogoh
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita 565-0871, Japan,Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan,Department of Immunopathology, Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Japan,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita 565-0871, Japan,Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita 565-0871, Japan,Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Tsurumi 230-0045, Japan,Center for Infectious Disease Education and Research, Osaka University, Suita 565-0871, Japan,Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan,Corresponding author
| |
Collapse
|
28
|
Wang J. Mathematical Models for Cholera Dynamics-A Review. Microorganisms 2022; 10:microorganisms10122358. [PMID: 36557611 PMCID: PMC9783556 DOI: 10.3390/microorganisms10122358] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 11/30/2022] Open
Abstract
Cholera remains a significant public health burden in many countries and regions of the world, highlighting the need for a deeper understanding of the mechanisms associated with its transmission, spread, and control. Mathematical modeling offers a valuable research tool to investigate cholera dynamics and explore effective intervention strategies. In this article, we provide a review of the current state in the modeling studies of cholera. Starting from an introduction of basic cholera transmission models and their applications, we survey model extensions in several directions that include spatial and temporal heterogeneities, effects of disease control, impacts of human behavior, and multi-scale infection dynamics. We discuss some challenges and opportunities for future modeling efforts on cholera dynamics, and emphasize the importance of collaborations between different modeling groups and different disciplines in advancing this research area.
Collapse
Affiliation(s)
- Jin Wang
- Department of Mathematics, University of Tennessee at Chattanooga, Chattanooga, TN 37403, USA
| |
Collapse
|
29
|
Amer AS, Mohamed WS. Assessment of Ismailia Canal for irrigation purposes by water quality indices. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:862. [PMID: 36214927 PMCID: PMC9550686 DOI: 10.1007/s10661-022-10350-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/11/2022] [Indexed: 06/16/2023]
Abstract
Ismailia Canal is one of the significant streams of the Nile River in Egypt. The study aimed to determine the water quality of Ismailia Canal based on the regional and seasonal variability of physicochemical parameters, irrigation criteria, and the irrigation water quality index (IWQI). It was observed that the physicochemical parameters were within the acceptable FAO irrigation limits. All cations and anions values were within the acceptable FAO limits for irrigation, except the potassium (K+) concentrations were over the permissible irrigation limits. The one-way analysis of variance (ANOVA) suggested a significant seasonal variation in the canal's water quality concerning all parameters (p value ˂ 0.05). However, the regional variation among various sites was statistically insignificant (p value > 0.05). Statistical analysis was used to calculate the correlation coefficient between different parameters, and the study showed highly significant correlation coefficients between different pairs of water quality parameters. The correlation matrix showed that the pH significantly affected IWQI (r = 0.661). The irrigation criterion values for Ismailia Canal were good, and the WQI levels for irrigation utilization at all studied sites were satisfactory. Deterioration of water quality may occur due to industrial, municipal, and agricultural activities. Drainage water should be treated before being mixed with irrigation water to improve its suitability for irrigation.
Collapse
Affiliation(s)
- Amany S Amer
- Biology and Environmental Indicators Department, Central Laboratory for Environmental Quality Monitoring (CLEQM), National Water Research Center (NWRC), Cairo, Egypt
| | - Walaa S Mohamed
- Biology and Environmental Indicators Department, Central Laboratory for Environmental Quality Monitoring (CLEQM), National Water Research Center (NWRC), Cairo, Egypt.
| |
Collapse
|
30
|
Sequence Polymorphisms in Vibrio cholerae HapR Affect Biofilm Formation under Aerobic and Anaerobic Conditions. Appl Environ Microbiol 2022; 88:e0104422. [PMID: 35969071 PMCID: PMC9469714 DOI: 10.1128/aem.01044-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the influence of hapR sequence mutations on the biofilm formation of Vibrio cholerae. In this study, hapR sequences from 85 V. cholerae strains belonging to both pandemic and nonpandemic serogroup were investigated through phylogenetic and sequence analyses. Biofilm formation assays under aerobic and anaerobic conditions were also performed. Sequence variations include single point mutations and insertions/deletions (indels) leading to either truncated or frameshifted HapR. Population structure analysis revealed two major hapR haplogroups, hapR1 and hapR2. Phylogenetic reconstruction displayed a hypothetical ancestral hapR sequence located within the hapR1 haplogroup. Higher numbers of single nucleotide polymorphisms and genetic diversity indices were observed in hapR1, while indels occurred dominantly in hapR2. Aerobic conditions supported more robust biofilms compared to anaerobic conditions. Strains with frameshifted HapR produced the largest amount of biofilm under both oxygen conditions. Quantitative real-time PCR assay confirmed that strains with truncated and frameshifted HapR resulted in a nonfunctional regulator as exhibited by the significantly low hapA gene expression. The present study shows that HapR mutations had a strong influence on biofilm formation and that sequence polymorphisms leading to the disruption of DNA-binding sites or dimerization of the HapR will result in more-robust V. cholerae biofilms. IMPORTANCE Our study revealed an ancestral hapR sequence from a phylogenetic reconstruction that displayed the evolutionary lineage of the nonpandemic to the pandemic strains. Here, we established hapR1 and hapR2 as major hapR haplogroups. The association of the O1 and O139 serogroups with the hapR2 haplogroup demonstrated the distinction of hapR2 in causing cholera infection. Moreover, mutations in this regulator that could lead to the disruption of transcription factor-binding sites or dimerization of the HapR can significantly affect the biofilm formation of V. cholerae. These observations on the relationship of the hapR polymorphism and V. cholerae biofilm formation will provide additional considerations for future biofilm studies and insights into the epidemiology of the pathogen that could ultimately help in the surveillance and mitigation of future cholera disease outbreaks.
Collapse
|
31
|
Development of a Monoclonal Antibody to a Vibriophage as a Proxy for Vibrio cholerae Detection. Infect Immun 2022; 90:e0016122. [PMID: 35862704 PMCID: PMC9387236 DOI: 10.1128/iai.00161-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cholera is an acute watery, diarrheal disease that causes high rates of morbidity and mortality without treatment. Early detection of the etiologic agent of toxigenic Vibrio cholerae is important to mobilize treatment and mitigate outbreaks. Monoclonal antibody (mAb) based rapid diagnostic tests (RDTs) enable early detection in settings without laboratory capacity. However, the odds of an RDT testing positive are reduced by nearly 90% when the common virulent bacteriophage ICP1 is present. We hypothesize that adding a mAb for the common, and specific, virulent bacteriophage ICP1 as a proxy for V. cholerae to an RDT will increase diagnostic sensitivity when virulent ICP1 phage is present. In this study, we used an in-silico approach to identify immunogenic ICP1 protein targets that were conserved across disparate time periods and locations. Specificity of targets to cholera patients with known ICP1 was determined, and specific targets were used to produce mAbs in a murine model. Candidate mAbs to the head protein demonstrated specificity to ICP1 by Enzyme linked immunosorbent assay (ELISA) and an ICP1 phage neutralization assay. The limit of detection of the final mAb candidate for ICP1 phage particles spiked into cholera stool matrix was 8 × 105 PFU by Western blotting analysis. This mAb will be incorporated into a RDT prototype for evaluation in a future diagnostic study to test the guiding hypothesis behind this study.
Collapse
|
32
|
Rouard C, Njamkepo E, Quilici ML, Weill FX. Contribution of microbial genomics to cholera epidemiology. C R Biol 2022; 345:37-56. [DOI: 10.5802/crbiol.77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/28/2022] [Indexed: 11/24/2022]
|
33
|
Skurnik M. Can Bacteriophages Replace Antibiotics? Antibiotics (Basel) 2022; 11:575. [PMID: 35625219 PMCID: PMC9137811 DOI: 10.3390/antibiotics11050575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 12/23/2022] Open
Abstract
Increasing antibiotic resistance numbers force both scientists and politicians to tackle the problem, and preferably without any delay. The application of bacteriophages as precision therapy to treat bacterial infections, phage therapy, has received increasing attention during the last two decades. While it looks like phage therapy is here to stay, there is still a lot to do. Medicine regulatory authorities are working to deliver clear instructions to carry out phage therapy. Physicians need to get more practical experience on treatments with phages. In this opinion article I try to place phage therapy in the context of the health care system and state that the use phages for precision treatments will require a seamless chain of events from the patient to the phage therapy laboratory to allow for the immediate application of phages therapeutically. It is not likely that phages will replace antibiotics, however, they will be valuable in the treatment of infections caused by multidrug resistant bacteria. Antibiotics will nevertheless remain the main treatment for a majority of infections.
Collapse
Affiliation(s)
- Mikael Skurnik
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; ; Tel.: +358-50-3360981
- Division of Clinical Microbiology, HUSLAB, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
| |
Collapse
|
34
|
Barman RK, Chakrabarti AK, Dutta S. Screening of Potential Vibrio cholerae Bacteriophages for Cholera Therapy: A Comparative Genomic Approach. Front Microbiol 2022; 13:803933. [PMID: 35422793 PMCID: PMC9002330 DOI: 10.3389/fmicb.2022.803933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Cholera continues to be a major burden for developing nations, especially where sanitation, quality of water supply, and hospitalization have remained an issue. Recently, growing antimicrobial-resistant strains of Vibrio cholerae underscores alternative therapeutic strategies for cholera. Bacteriophage therapy is considered one of the best alternatives for antibiotic treatment. For the identification of potential therapeutic phages for cholera, we have introduced a comprehensive comparative analysis of whole-genome sequences of 86 Vibrio cholerae phages. We have witnessed extensive variation in genome size (ranging from 33 to 148 kbp), GC (G + C) content (varies from 34.5 to 50.8%), and the number of proteins (ranging from 15 to 232). We have identified nine clusters and three singletons using BLASTn, confirmed by nucleotide dot plot and sequence identity. A high degree of sequence and functional similarities in both the genomic and proteomic levels have been observed within the clusters. Evolutionary analysis confirms that phages are conserved within the clusters but diverse between the clusters. For each therapeutic phage, the top 2 closest phages have been identified using a system biology approach and proposed as potential therapeutic phages for cholera. This method can be applied for the classification of the newly isolated Vibrio cholerae phage. Furthermore, this systematic approach might be useful as a model for screening potential therapeutic phages for other bacterial diseases.
Collapse
Affiliation(s)
- Ranjan Kumar Barman
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Alok Kumar Chakrabarti
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
35
|
Hoque MM, Noorian P, Espinoza-Vergara G, Manuneedhi Cholan P, Kim M, Rahman MH, Labbate M, Rice SA, Pernice M, Oehlers SH, McDougald D. Adaptation to an amoeba host drives selection of virulence-associated traits in Vibrio cholerae. THE ISME JOURNAL 2022; 16:856-867. [PMID: 34654895 PMCID: PMC8857207 DOI: 10.1038/s41396-021-01134-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 09/20/2021] [Accepted: 09/29/2021] [Indexed: 12/02/2022]
Abstract
Predation by heterotrophic protists drives the emergence of adaptive traits in bacteria, and often these traits lead to altered interactions with hosts and persistence in the environment. Here we studied adaptation of the cholera pathogen, Vibrio cholerae during long-term co-incubation with the protist host, Acanthamoeba castellanii. We determined phenotypic and genotypic changes associated with long-term intra-amoebal host adaptation and how this impacts pathogen survival and fitness. We showed that adaptation to the amoeba host leads to temporal changes in multiple phenotypic traits in V. cholerae that facilitate increased survival and competitive fitness in amoeba. Genome sequencing and mutational analysis revealed that these altered lifestyles were linked to non-synonymous mutations in conserved regions of the flagellar transcriptional regulator, flrA. Additionally, the mutations resulted in enhanced colonisation in zebrafish, establishing a link between adaptation of V. cholerae to amoeba predation and enhanced environmental persistence. Our results show that pressure imposed by amoeba on V. cholerae selects for flrA mutations that serves as a key driver for adaptation. Importantly, this study provides evidence that adaptive traits that evolve in pathogens in response to environmental predatory pressure impact the colonisation of eukaryotic organisms by these pathogens.
Collapse
Affiliation(s)
- M. Mozammel Hoque
- grid.117476.20000 0004 1936 7611The iThree Institute, University of Technology Sydney, Sydney, NSW Australia
| | - Parisa Noorian
- grid.117476.20000 0004 1936 7611The iThree Institute, University of Technology Sydney, Sydney, NSW Australia
| | - Gustavo Espinoza-Vergara
- grid.117476.20000 0004 1936 7611The iThree Institute, University of Technology Sydney, Sydney, NSW Australia
| | - Pradeep Manuneedhi Cholan
- grid.1013.30000 0004 1936 834XTuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, NSW Australia ,grid.1013.30000 0004 1936 834XFaculty of Medicine and Health & Marie Bashir Institute, The University of Sydney, Camperdown, NSW Australia
| | - Mikael Kim
- grid.117476.20000 0004 1936 7611Climate Change Cluster, University of Technology Sydney, Sydney, NSW Australia
| | - Md Hafizur Rahman
- grid.117476.20000 0004 1936 7611School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW Australia
| | - Maurizio Labbate
- grid.117476.20000 0004 1936 7611School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW Australia
| | - Scott A. Rice
- grid.117476.20000 0004 1936 7611The iThree Institute, University of Technology Sydney, Sydney, NSW Australia ,grid.59025.3b0000 0001 2224 0361Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Mathieu Pernice
- grid.117476.20000 0004 1936 7611Climate Change Cluster, University of Technology Sydney, Sydney, NSW Australia
| | - Stefan H. Oehlers
- grid.1013.30000 0004 1936 834XTuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, NSW Australia ,grid.1013.30000 0004 1936 834XFaculty of Medicine and Health & Marie Bashir Institute, The University of Sydney, Camperdown, NSW Australia
| | - Diane McDougald
- grid.117476.20000 0004 1936 7611The iThree Institute, University of Technology Sydney, Sydney, NSW Australia ,grid.59025.3b0000 0001 2224 0361Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
36
|
Jones IJ, Sokolow SH, De Leo GA. Three reasons why expanded use of natural enemy solutions may offer sustainable control of human infections. PEOPLE AND NATURE 2022; 4:32-43. [PMID: 35450207 PMCID: PMC9017516 DOI: 10.1002/pan3.10264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1. Many infectious pathogens spend a significant portion of their life cycles in the environment or in animal hosts, where ecological interactions with natural enemies may influence pathogen transmission to people. Yet, our understanding of natural enemy opportunities for human disease control is lacking, despite widespread uptake and success of natural enemy solutions for pest and parasite management in agriculture. 2. Here we explore three reasons why conserving, restoring, or augmenting specific natural enemies in the environment could offer a promising complement to conventional clinical strategies to fight environmentally mediated pathogens and parasites. (1) Natural enemies of human infections abound in nature, largely understudied and undiscovered. (2) Natural enemy solutions could provide ecological options for infectious disease control where conventional interventions are lacking. And, (3) Many natural enemy solutions could provide important co-benefits for conservation and human well-being. 3. We illustrate these three arguments with a broad set of examples whereby natural enemies of human infections have been used or proposed to curb human disease burden, with some clear successes. However, the evidence base for most proposed solutions is sparse, and many opportunities likely remain undiscovered, highlighting opportunities for future research.
Collapse
Affiliation(s)
- IJ Jones
- Hopkins Marine Station of Stanford University, Pacific Grove, CA, 93950,Corresponding Author: Isabel J. Jones, , 415-309-3125
| | - SH Sokolow
- Woods Institute for the Environment, Stanford University, Stanford, CA, 94305,Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - GA De Leo
- Hopkins Marine Station of Stanford University, Pacific Grove, CA, 93950,Woods Institute for the Environment, Stanford University, Stanford, CA, 94305
| |
Collapse
|
37
|
Kruger SE, Lorah PA, Okamoto KW. Mapping climate change's impact on cholera infection risk in Bangladesh. PLOS GLOBAL PUBLIC HEALTH 2022; 2:e0000711. [PMID: 36962590 PMCID: PMC10021506 DOI: 10.1371/journal.pgph.0000711] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/10/2022] [Indexed: 03/26/2023]
Abstract
Several studies have investigated how Vibrio cholerae infection risk changes with increased rainfall, temperature, and water pH levels for coastal Bangladesh, which experiences seasonal surges in cholera infections associated with heavy rainfall events. While coastal environmental conditions are understood to influence V. cholerae propagation within brackish waters and transmission to and within human populations, it remains unknown how changing climate regimes impact the risk for cholera infection throughout Bangladesh. To address this, we developed a random forest species distribution model to predict the occurrence probability of cholera incidence within Bangladesh for 2015 and 2050. We developed a random forest model trained on cholera incidence data and spatial environmental raster data to be predicted to environmental data for the year of training (2015) and 2050. From our model's predictions, we generated risk maps for cholera occurrence for 2015 and 2050. Our best-fitting model predicted cholera occurrence given elevation and distance to water. Generally, we find that regions within every district in Bangladesh experience an increase in infection risk from 2015 to 2050. We also find that although cells of high risk cluster along the coastline predominantly in 2015, by 2050 high-risk areas expand from the coast inland, conglomerating around surface waters across Bangladesh, reaching all but the northwestern-most district. Mapping the geographic distribution of cholera infections given projected environmental conditions provides a valuable tool for guiding proactive public health policy tailored to areas most at risk of future disease outbreaks.
Collapse
Affiliation(s)
- Sophia E Kruger
- Department of Biology, University of St. Thomas, St. Paul, Minnesota, United States of America
- School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Paul A Lorah
- Department of Earth, Environment and Society, University of St. Thomas, St. Paul, Minnesota, United States of America
| | - Kenichi W Okamoto
- Department of Biology, University of St. Thomas, St. Paul, Minnesota, United States of America
| |
Collapse
|
38
|
Shen C, Wu S, Meng Q. Construction of portable drinking water device using an agricultural biomass-derived material of polyethylenimine-grafted-corncob. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Novel PhoH-encoding vibriophages with lytic activity against environmental Vibrio strains. Arch Microbiol 2021; 203:5321-5331. [PMID: 34379161 DOI: 10.1007/s00203-021-02511-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 07/23/2021] [Accepted: 08/04/2021] [Indexed: 12/29/2022]
Abstract
Cholera is a devastating diarrheal disease that accounts for more than 10% of children's lives worldwide, but its treatment is hampered by a rise in antibiotic resistance. One promising alternative to antibiotic therapy is the use of bacteriophages to treat antibiotic-resistant cholera infections, and control Vibrio cholera in clinical cases and in the environment, respectively. Here, we report four novel, closely related environmental myoviruses, VP4, VP6, VP18, and VP24, which we isolated from two environmental toxigenic Vibrio cholerae strains from river Kuja and Usenge beach in Kenya. High-throughput sequencing followed by bioinformatics analysis indicated that the genomes of the four bacteriophages have closely related sequences, with sizes of 148,180 bp, 148,181 bp, 148,179 bp, and 148,179 bp, and a G + C content of 36.4%. The four genomes carry the phoH gene, which is overrepresented in marine cyanophages. The isolated phages displayed a lytic activity against 15 environmental, as well as one clinical, Vibrio cholerae strains. Thus, these novel lytic vibriophages represent potential biocontrol candidates for water decontamination against pathogenic Vibrio cholerae and ought to be considered for future studies of phage therapy.
Collapse
|
40
|
Brumfield KD, Usmani M, Chen KM, Gangwar M, Jutla AS, Huq A, Colwell RR. Environmental parameters associated with incidence and transmission of pathogenic Vibrio spp. Environ Microbiol 2021; 23:7314-7340. [PMID: 34390611 DOI: 10.1111/1462-2920.15716] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/27/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022]
Abstract
Vibrio spp. thrive in warm water and moderate salinity, and they are associated with aquatic invertebrates, notably crustaceans and zooplankton. At least 12 Vibrio spp. are known to cause infection in humans, and Vibrio cholerae is well documented as the etiological agent of pandemic cholera. Pathogenic non-cholera Vibrio spp., e.g., Vibrio parahaemolyticus and Vibrio vulnificus, cause gastroenteritis, septicemia, and other extra-intestinal infections. Incidence of vibriosis is rising globally, with evidence that anthropogenic factors, primarily emissions of carbon dioxide associated with atmospheric warming and more frequent and intense heatwaves, significantly influence environmental parameters, e.g., temperature, salinity, and nutrients, all of which can enhance growth of Vibrio spp. in aquatic ecosystems. It is not possible to eliminate Vibrio spp., as they are autochthonous to the aquatic environment and many play a critical role in carbon and nitrogen cycling. Risk prediction models provide an early warning that is essential for safeguarding public health. This is especially important for regions of the world vulnerable to infrastructure instability, including lack of 'water, sanitation, and hygiene' (WASH), and a less resilient infrastructure that is vulnerable to natural calamity, e.g., hurricanes, floods, and earthquakes, and/or social disruption and civil unrest, arising from war, coups, political crisis, and economic recession. Incorporating environmental, social, and behavioural parameters into such models allows improved prediction, particularly of cholera epidemics. We have reported that damage to WASH infrastructure, coupled with elevated air temperatures and followed by above average rainfall, promotes exposure of a population to contaminated water and increases the risk of an outbreak of cholera. Interestingly, global predictive risk models successful for cholera have the potential, with modification, to predict diseases caused by other clinically relevant Vibrio spp. In the research reported here, the focus was on environmental parameters associated with incidence and distribution of clinically relevant Vibrio spp. and their role in disease transmission. In addition, molecular methods designed for detection and enumeration proved useful for predictive modelling and are described, namely in the context of prediction of environmental conditions favourable to Vibrio spp., hence human health risk.
Collapse
Affiliation(s)
- Kyle D Brumfield
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA.,University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, USA
| | - Moiz Usmani
- Geohealth and Hydrology Laboratory, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| | - Kristine M Chen
- Geohealth and Hydrology Laboratory, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| | - Mayank Gangwar
- Geohealth and Hydrology Laboratory, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| | - Antarpreet S Jutla
- Geohealth and Hydrology Laboratory, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| | - Anwar Huq
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA
| | - Rita R Colwell
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA.,University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, USA
| |
Collapse
|
41
|
Chevallereau A, Pons BJ, van Houte S, Westra ER. Interactions between bacterial and phage communities in natural environments. Nat Rev Microbiol 2021; 20:49-62. [PMID: 34373631 DOI: 10.1038/s41579-021-00602-y] [Citation(s) in RCA: 263] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/28/2021] [Indexed: 12/20/2022]
Abstract
We commonly acknowledge that bacterial viruses (phages) shape the composition and evolution of bacterial communities in nature and therefore have important roles in ecosystem functioning. This view stems from studies in the 1990s to the first decade of the twenty-first century that revealed high viral abundance, high viral diversity and virus-induced microbial death in aquatic ecosystems as well as an association between collapses in bacterial density and peaks in phage abundance. The recent surge in metagenomic analyses has provided deeper insight into the abundance, genomic diversity and spatio-temporal dynamics of phages in a wide variety of ecosystems, ranging from deep oceans to soil and the mammalian digestive tract. However, the causes and consequences of variations in phage community compositions remain poorly understood. In this Review, we explore current knowledge of the composition and evolution of phage communities, as well as their roles in controlling the population and evolutionary dynamics of bacterial communities. We discuss the need for greater ecological realism in laboratory studies to capture the complexity of microbial communities that thrive in natural environments.
Collapse
Affiliation(s)
- Anne Chevallereau
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn, UK. .,Department of Infection, Immunity and Inflammation, Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris, Paris, France.
| | - Benoît J Pons
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn, UK
| | - Stineke van Houte
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn, UK
| | - Edze R Westra
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn, UK.
| |
Collapse
|
42
|
LeGault KN, Hays SG, Angermeyer A, McKitterick AC, Johura FT, Sultana M, Ahmed T, Alam M, Seed KD. Temporal shifts in antibiotic resistance elements govern phage-pathogen conflicts. Science 2021; 373:eabg2166. [PMID: 34326207 PMCID: PMC9064180 DOI: 10.1126/science.abg2166] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 06/06/2021] [Indexed: 12/23/2022]
Abstract
Bacteriophage predation selects for diverse antiphage systems that frequently cluster on mobilizable defense islands in bacterial genomes. However, molecular insight into the reciprocal dynamics of phage-bacterial adaptations in nature is lacking, particularly in clinical contexts where there is need to inform phage therapy efforts and to understand how phages drive pathogen evolution. Using time-shift experiments, we uncovered fluctuations in Vibrio cholerae's resistance to phages in clinical samples. We mapped phage resistance determinants to SXT integrative and conjugative elements (ICEs), which notoriously also confer antibiotic resistance. We found that SXT ICEs, which are widespread in γ-proteobacteria, invariably encode phage defense systems localized to a single hotspot of genetic exchange. We identified mechanisms that allow phage to counter SXT-mediated defense in clinical samples, and document the selection of a novel phage-encoded defense inhibitor. Phage infection stimulates high-frequency SXT ICE conjugation, leading to the concurrent dissemination of phage and antibiotic resistances.
Collapse
Affiliation(s)
- Kristen N LeGault
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Stephanie G Hays
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Angus Angermeyer
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Amelia C McKitterick
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Fatema-Tuz Johura
- icddr,b, formerly International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Marzia Sultana
- icddr,b, formerly International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Tahmeed Ahmed
- icddr,b, formerly International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Munirul Alam
- icddr,b, formerly International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Kimberley D Seed
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
43
|
Boyd CM, Angermeyer A, Hays SG, Barth ZK, Patel KM, Seed KD. Bacteriophage ICP1: A Persistent Predator of Vibrio cholerae. Annu Rev Virol 2021; 8:285-304. [PMID: 34314595 PMCID: PMC9040626 DOI: 10.1146/annurev-virology-091919-072020] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteriophages or phages—viruses of bacteria—are abundant and considered to be highly diverse. Interestingly, a particular group of lytic Vibrio cholerae–specific phages (vibriophages) of the International Centre for Diarrheal Disease Research, Bangladesh cholera phage 1 (ICP1) lineage show high levels of genome conservation over large spans of time and geography, despite a constant coevolutionary arms race with their host. From a collection of 67 sequenced ICP1 isolates, mostly from clinical samples, we find these phages have mosaic genomes consisting of large, conserved modules disrupted by variable sequences that likely evolve mostly through mobile endonuclease-mediated recombination during coinfection. Several variable regions have been associated with adaptations against antiphage elements in V. cholerae; notably, this includes ICP1’s CRISPR-Cas system. The ongoing association of ICP1 and V. cholerae in cholera-endemic regions makes this system a rich source for discovery of novel defense and counterdefense strategies in bacteria-phage conflicts in nature.
Collapse
Affiliation(s)
- Caroline M Boyd
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA;
| | - Angus Angermeyer
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA;
| | - Stephanie G Hays
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA;
| | - Zachary K Barth
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA;
| | - Kishen M Patel
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA;
| | - Kimberley D Seed
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA; .,Chan Zuckerberg Biohub, San Francisco, California 94158, USA
| |
Collapse
|
44
|
Lata K, Misra AK, Takeuchi Y. Modeling the Effectiveness of TV and Social Media Advertisements on the Dynamics of Water-Borne Diseases. INT J BIOMATH 2021. [DOI: 10.1142/s1793524521500698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cholera is a serious threat to the health of human-kind all over the world and its control is a problem of great concern. In this context, a nonlinear mathematical model to control the prevalence of cholera disease is proposed and analyzed by incorporating TV and social media advertisements as a dynamic variable. It is considered that TV and social media ads propagate the knowledge among the people regarding the severe effects of cholera disease on human health along with its precautionary measures. It is also assumed that the mode of transmission of cholera disease among susceptible individuals is due to consumption of contaminated drinking water containing Vibrio cholerae. Moreover, the propagation of knowledge through TV and social media ads makes the people aware to adopt precautionary measures and also the aware people make some effectual efforts to washout the bacteria from the aquatic environment. Model analysis reveals that increase in the washout rate of bacteria due to aware individuals causes the stability switch. It is found that TV and social media ads have the potential to reduce the number of infectives in the region and thus control the cholera epidemic. Numerical simulation is performed for a particular set of parameter values to support the analytical findings.
Collapse
Affiliation(s)
- Kusum Lata
- Department of Mathematical & Statistical Sciences, Shri Ramswaroop Memorial University, Barabanki 225 003, India
| | - A. K. Misra
- Department of Mathematics, Institute of Science, Banaras Hindu University, Varanasi - 221 005, India
| | - Y. Takeuchi
- College of Science and Engineering, Department of Physics and Mathematics, Aoyama Gakuin University, Kanagawa 252-5258, Japan
| |
Collapse
|
45
|
A Tail Fiber Protein and a Receptor-Binding Protein Mediate ICP2 Bacteriophage Interactions with Vibrio cholerae OmpU. J Bacteriol 2021; 203:e0014121. [PMID: 33875544 DOI: 10.1128/jb.00141-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
ICP2 is a virulent bacteriophage (phage) that preys on Vibrio cholerae. ICP2 was first isolated from cholera patient stool samples. Some of these stools also contained ICP2-resistant isogenic V. cholerae strains harboring missense mutations in the trimeric outer membrane porin protein OmpU, identifying it as the ICP2 receptor. In this study, we identify the ICP2 proteins that mediate interactions with OmpU by selecting for ICP2 host range mutants within infant rabbits infected with a mixture of wild-type and OmpU mutant strains. ICP2 host range mutants that can now infect OmpU mutant strains have missense mutations in the putative tail fiber gene gp25 and the putative adhesin gene gp23. Using site-specific mutagenesis, we show that single or double mutations in gp25 are sufficient to generate the host range mutant phenotype. However, at least one additional mutation in gp23 is required for robust plaque formation on specific OmpU mutants. Mutations in gp23 alone were insufficient to produce a host range mutant phenotype. All ICP2 host range mutants retained the ability to form plaques on wild-type V. cholerae cells. The strength of binding of host range mutants to V. cholerae correlated with plaque morphology, indicating that the selected mutations in gp25 and gp23 restore molecular interactions with the receptor. We propose that ICP2 host range mutants evolve by a two-step process. First, gp25 mutations are selected for their broad host range, albeit accompanied by low-level phage adsorption. Subsequent selection occurs for gp23 mutations that further increase productive binding to specific OmpU alleles, allowing for near-wild-type efficiencies of adsorption and subsequent phage multiplication. IMPORTANCE Concern over multidrug-resistant bacterial pathogens, including Vibrio cholerae, has led to renewed interest in phage biology and the potential for phage therapy. ICP2 is a genetically unique virulent phage isolated from cholera patient stool samples. It is also one of three phages in a prophylactic cocktail that have been shown to be effective in animal models of infection and the only one of the three that requires a protein receptor (OmpU). This study identifies an ICP2 tail fiber and a receptor binding protein and examines how ICP2 responds to the selective pressures of phage-resistant OmpU mutants. We found that this particular coevolutionary arms race presents fitness costs to both ICP2 and V. cholerae.
Collapse
|
46
|
Cruz-López EA, Rivera G, Cruz-Hernández MA, Martínez-Vázquez AV, Castro-Escarpulli G, Flores-Magallón R, Vázquez K, Cruz-Pulido WL, Bocanegra-García V. Identification and Characterization of the CRISPR/Cas System in Staphylococcus aureus Strains From Diverse Sources. Front Microbiol 2021; 12:656996. [PMID: 34149645 PMCID: PMC8206494 DOI: 10.3389/fmicb.2021.656996] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/05/2021] [Indexed: 12/20/2022] Open
Abstract
The CRISPR-Cas [clustered regularly interspaced short palindromic repeats and the CRISPR-associated genes (Cas)] system provides defense mechanisms in bacteria and archaea vs. mobile genetic elements (MGEs), such as plasmids and bacteriophages, which can either be harmful or add sequences that can provide virulence or antibiotic resistance. Staphylococcus aureus is a Gram-positive bacterium that could be the etiological agent of important soft tissue infections that can lead to bacteremia and sepsis. The role of the CRISPR-Cas system in S. aureus is not completely understood since there is a lack of knowledge about it. We analyzed 716 genomes and 1 genomic island from GENOMES-NCBI and ENA-EMBL searching for the CRISPR-Cas systems and their spacer sequences (SSs). Our bioinformatic analysis shows that only 0.83% (6/716) of the analyzed genomes harbored the CRISPR-Cas system, all of them were subtype III-A, which is characterized by the presence of the cas10/csm1 gene. Analysis of SSs showed that 91% (40/44) had no match to annotated MGEs and 9% of SSs corresponded to plasmids and bacteriophages, indicating that those phages had infected those S. aureus strains. Some of those phages have been proposed as an alternative therapy in biofilm-forming or infection with S. aureus strains, but these findings indicate that such antibiotic phage strategy would be ineffective. More research about the CRISPR/Cas system is necessary for a bigger number of S. aureus strains from different sources, so additional features can be studied.
Collapse
Affiliation(s)
- Erick Adrian Cruz-López
- Laboratorio Interacción Ambiente-Microorganismo, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Tamaulipas, Mexico
| | - Gildardo Rivera
- Laboratorio Interacción Ambiente-Microorganismo, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Tamaulipas, Mexico
| | - María Antonia Cruz-Hernández
- Laboratorio Interacción Ambiente-Microorganismo, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Tamaulipas, Mexico
| | - Ana Verónica Martínez-Vázquez
- Laboratorio Interacción Ambiente-Microorganismo, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Tamaulipas, Mexico
| | - Graciela Castro-Escarpulli
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Rebeca Flores-Magallón
- Centro Interdisciplinario de Investigación Para el Desarrollo Integral Regional, Unidad Michoacán, Instituto Politécnico Nacional, Jiquilpan, Mexico
| | - Karina Vázquez
- Facultad de Medicina Veterinaria, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | | | - Virgilio Bocanegra-García
- Laboratorio Interacción Ambiente-Microorganismo, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Tamaulipas, Mexico
| |
Collapse
|
47
|
Optimal Control Analysis of Cholera Dynamics in the Presence of Asymptotic Transmission. AXIOMS 2021. [DOI: 10.3390/axioms10020060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Many mathematical models have explored the dynamics of cholera but none have been used to predict the optimal strategies of the three control interventions (the use of hygiene promotion and social mobilization; the use of treatment by drug/oral re-hydration solution; and the use of safe water, hygiene, and sanitation). The goal here is to develop (deterministic and stochastic) mathematical models of cholera transmission and control dynamics, with the aim of investigating the effect of the three control interventions against cholera transmission in order to find optimal control strategies. The reproduction number Rp was obtained through the next generation matrix method and sensitivity and elasticity analysis were performed. The global stability of the equilibrium was obtained using the Lyapunov functional. Optimal control theory was applied to investigate the optimal control strategies for controlling the spread of cholera using the combination of control interventions. The Pontryagin’s maximum principle was used to characterize the optimal levels of combined control interventions. The models were validated using numerical experiments and sensitivity analysis was done. Optimal control theory showed that the combinations of the control intervention influenced disease progression. The characterisation of the optimal levels of the multiple control interventions showed the means for minimizing cholera transmission, mortality, and morbidity in finite time. The numerical experiments showed that there are fluctuations and noise due to its dependence on the corresponding population size and that the optimal control strategies to effectively control cholera transmission, mortality, and morbidity was through the combinations of all three control interventions. The developed models achieved the reduction, control, and/or elimination of cholera through incorporating multiple control interventions.
Collapse
|
48
|
A PolyQ Membrane Protein of Vibrio cholerae Acts as the Receptor for Phage Infection. J Virol 2021; 95:JVI.02245-20. [PMID: 33408174 DOI: 10.1128/jvi.02245-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 12/21/2020] [Indexed: 11/20/2022] Open
Abstract
Bacteriophage VP1 is a typing phage used for the phage subtyping of Vibrio cholerae O1 biotype El Tor, but the molecular mechanisms of its receptor recognition and the resistance of its host to infection are mostly unknown. In this study, we aimed to identify the host receptor and its role in resistance in natural VP1-resistant strains. Generating spontaneous resistance mutations and genome sequencing mutant strains found the polyQ protein VcpQ, which carries 46 glutamine residues in its Q-rich region, to be responsible for infection by VP1. VcpQ is a membrane protein and possibly forms homotrimers. VP1 adsorbed to V. cholerae through VcpQ. Sequence comparisons showed that 72% of natural VP1-resistant strains have fewer glutamines in the VcpQ Q-rich stretch than VP1-sensitive strains. This difference did not affect the membrane location and oligomer of VcpQ but abrogated VP1 adsorption. These mutant VcpQs did not recover VP1 infection sensitivity in a V. cholerae strain with vcpQ deleted. Our study revealed that the polyQ protein VcpQ is responsible for the binding of VP1 during its infection of V. cholerae and that glutamine residue reduction in VcpQ affects VP1 adsorption to likely be the main cause of VP1 resistance in natural resistant strains. The physiological functions of this polyQ protein in bacteria need further clarification; however, mutations in the polyQ stretch may endow V. cholerae with phage resistance and enhance survival against VP1 or related phages.IMPORTANCE Receptor recognition and binding by bacteriophage are the first step for its infection of bacterial cells. In this study, we found the Vibrio cholerae subtyping phage VP1 uses a polyQ protein named VcpQ (V. cholerae polyQ protein) as the receptor for VP1 infection. Our study reveals the receptor's recognition of phage VP1 during its adsorption and the VP1 resistance mechanism of the wild resistant V. cholerae strains bearing the mutagenesis in the receptor VcpQ. These mutations may confer the survival advantage on these resistant strains in the environment containing VP1 or its similar phages.
Collapse
|
49
|
Khalid A, Lin RCY, Iredell JR. A Phage Therapy Guide for Clinicians and Basic Scientists: Background and Highlighting Applications for Developing Countries. Front Microbiol 2021; 11:599906. [PMID: 33643225 PMCID: PMC7904893 DOI: 10.3389/fmicb.2020.599906] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022] Open
Abstract
Approximately 10% of global health research is devoted to 90% of global disease burden (the so-called “10/90 Gap”) and it often neglects those diseases most prevalent in low-income countries. Antibiotic resistant bacterial infections are known to impact on healthcare, food security, and socio-economic fabric in the developing countries. With a global antibiotic resistance crisis currently reaching a critical level, the unmet needs in the developing countries are even more striking. The failure of traditional antimicrobials has led to renewed interest in century-old bacteriophage (phage) therapy in response to the urgent need to develop alternative therapies to treat infections. Phage therapy may have particular value in developing countries where relevant phages can be sourced and processed locally and efficiently, breaking specifically the economic barrier of access to expensive medicine. Hence this makes phage therapy an attractive and feasible option. In this review, we draw our respective clinical experience as well as phage therapy research and clinical trial, and discuss the ways in which phage therapy might reduce the burden of some of the most important bacterial infections in developing countries.
Collapse
Affiliation(s)
- Ali Khalid
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Sydney, NSW, Australia.,Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Ruby C Y Lin
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Sydney, NSW, Australia.,Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Jonathan R Iredell
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Sydney, NSW, Australia.,Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.,Westmead Hospital, Western Sydney Local Health District, Sydney, NSW, Australia
| |
Collapse
|
50
|
Nasreen T, Hussain NAS, Islam MT, Orata FD, Kirchberger PC, Case RJ, Alam M, Yanow SK, Boucher YF. Simultaneous Quantification of Vibrio metoecus and Vibrio cholerae with Its O1 Serogroup and Toxigenic Subpopulations in Environmental Reservoirs. Pathogens 2020; 9:pathogens9121053. [PMID: 33339261 PMCID: PMC7766680 DOI: 10.3390/pathogens9121053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 12/14/2022] Open
Abstract
Vibrio metoecus is a recently described aquatic bacterium and opportunistic pathogen, closely related to and often coexisting with Vibrio cholerae. To study the relative abundance and population dynamics of both species in aquatic environments of cholera-endemic and cholera-free regions, we developed a multiplex qPCR assay allowing simultaneous quantification of total V. metoecus and V. cholerae (including toxigenic and O1 serogroup) cells. The presence of V. metoecus was restricted to samples from regions that are not endemic for cholera, where it was found at 20% of the abundance of V. cholerae. In this environment, non-toxigenic O1 serogroup V. cholerae represents almost one-fifth of the total V. cholerae population. In contrast, toxigenic O1 serogroup V. cholerae was also present in low abundance on the coast of cholera-endemic regions, but sustained in relatively high proportions throughout the year in inland waters. The majority of cells from both Vibrio species were recovered from particles rather than free-living, indicating a potential preference for attached versus planktonic lifestyles. This research further elucidates the population dynamics underpinning V. cholerae and its closest relative in cholera-endemic and non-endemic regions through culture-independent quantification from environmental samples.
Collapse
Affiliation(s)
- Tania Nasreen
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; (T.N.); (N.A.S.H.); (M.T.I.); (F.D.O.); (R.J.C.)
| | - Nora A. S. Hussain
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; (T.N.); (N.A.S.H.); (M.T.I.); (F.D.O.); (R.J.C.)
| | - Mohammad Tarequl Islam
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; (T.N.); (N.A.S.H.); (M.T.I.); (F.D.O.); (R.J.C.)
| | - Fabini D. Orata
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; (T.N.); (N.A.S.H.); (M.T.I.); (F.D.O.); (R.J.C.)
| | - Paul C. Kirchberger
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA;
| | - Rebecca J. Case
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; (T.N.); (N.A.S.H.); (M.T.I.); (F.D.O.); (R.J.C.)
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore 637551, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Munirul Alam
- Centre for Communicable Diseases, International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR, B), Dhaka 1000, Bangladesh;
| | - Stephanie K. Yanow
- School of Public Health, University of Alberta, Edmonton, AB T6G 1C9, Canada;
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Yann F. Boucher
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; (T.N.); (N.A.S.H.); (M.T.I.); (F.D.O.); (R.J.C.)
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), National University of Singapore, Singapore 637551, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549, Singapore
- Correspondence:
| |
Collapse
|