1
|
Rajan A, Fame RM. Brain development and bioenergetic changes. Neurobiol Dis 2024; 199:106550. [PMID: 38849103 PMCID: PMC11495523 DOI: 10.1016/j.nbd.2024.106550] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/29/2024] [Accepted: 06/01/2024] [Indexed: 06/09/2024] Open
Abstract
Bioenergetics describe the biochemical processes responsible for energy supply in organisms. When these changes become dysregulated in brain development, multiple neurodevelopmental diseases can occur, implicating bioenergetics as key regulators of neural development. Historically, the discovery of disease processes affecting individual stages of brain development has revealed critical roles that bioenergetics play in generating the nervous system. Bioenergetic-dependent neurodevelopmental disorders include neural tube closure defects, microcephaly, intellectual disability, autism spectrum disorders, epilepsy, mTORopathies, and oncogenic processes. Developmental timing and cell-type specificity of these changes determine the long-term effects of bioenergetic disease mechanisms on brain form and function. Here, we discuss key metabolic regulators of neural progenitor specification, neuronal differentiation (neurogenesis), and gliogenesis. In general, transitions between glycolysis and oxidative phosphorylation are regulated in early brain development and in oncogenesis, and reactive oxygen species (ROS) and mitochondrial maturity play key roles later in differentiation. We also discuss how bioenergetics interface with the developmental regulation of other key neural elements, including the cerebrospinal fluid brain environment. While questions remain about the interplay between bioenergetics and brain development, this review integrates the current state of known key intersections between these processes in health and disease.
Collapse
Affiliation(s)
- Arjun Rajan
- Developmental Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Ryann M Fame
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
2
|
Wang D, Zhao X, Wang P, Liu JJ. SNX32 Regulates Sorting and Trafficking of Activated EGFR to the Lysosomal Degradation Pathway. Traffic 2024; 25:e12952. [PMID: 39073202 DOI: 10.1111/tra.12952] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024]
Abstract
SNX32 is a member of the evolutionarily conserved Phox (PX) homology domain- and Bin/Amphiphysin/Rvs (BAR) domain- containing sorting nexin (SNX-BAR) family of proteins, which play important roles in sorting and membrane trafficking of endosomal cargoes. Although SNX32 shares the highest amino acid sequence homology with SNX6, and has been believed to function redundantly with SNX5 and SNX6 in retrieval of the cation-independent mannose-6-phosphate receptor (CI-MPR) from endosomes to the trans-Golgi network (TGN), its role(s) in intracellular protein trafficking remains largely unexplored. Here, we report that it functions in parallel with SNX1 in mediating epidermal growth factor (EGF)-stimulated postendocytic trafficking of the epidermal growth factor receptor (EGFR). Moreover, SNX32 interacts directly with EGFR, and recruits SNX5 to promote sorting of EGF-EGFR into multivesicular bodies (MVBs) for lysosomal degradation. Thus, SNX32 functions distinctively from other SNX-BAR proteins to mediate signaling-coupled endolysosomal trafficking of EGFR.
Collapse
Affiliation(s)
- Dou Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xia Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Panpan Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jia-Jia Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Garcia Delgado L, Derome A, Longpré S, Giroux-Dansereau M, Basbous G, Lavoie C, Saucier C, Denault JB. Spatiotemporal regulation of the hepatocyte growth factor receptor MET activity by sorting nexins 1/2 in HCT116 colorectal cancer cells. Biosci Rep 2024; 44:BSR20240182. [PMID: 38836326 PMCID: PMC11196213 DOI: 10.1042/bsr20240182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/06/2024] Open
Abstract
Cumulative research findings support the idea that endocytic trafficking is crucial in regulating receptor signaling and associated diseases. Specifically, strong evidence points to the involvement of sorting nexins (SNXs), particularly SNX1 and SNX2, in the signaling and trafficking of the receptor tyrosine kinase (RTK) MET in colorectal cancer (CRC). Activation of hepatocyte growth factor (HGF) receptor MET is a key driver of CRC progression. In the present study, we utilized human HCT116 CRC cells with SNX1 and SNX2 genes knocked out to demonstrate that their absence leads to a delay in MET entering early endosomes. This delay results in increased phosphorylation of both MET and AKT upon HGF stimulation, while ERK1/2 (extracellular signal-regulated kinases 1 and 2) phosphorylation remains unaffected. Despite these changes, HGF-induced cell proliferation, scattering, and migration remain similar between the parental and the SNX1/2 knockout cells. However, in the absence of SNX1 and SNX2, these cells exhibit increased resistance to TRAIL-induced apoptosis. This research underscores the intricate relationship between intracellular trafficking, receptor signaling, and cellular responses and demonstrates for the first time that the modulation of MET trafficking by SNX1 and SNX2 is critical for receptor signaling that may exacerbate the disease.
Collapse
Affiliation(s)
- Laiyen Garcia Delgado
- Department of Pharmacology and Physiology
- Pharmacology Institute of Sherbrooke (IPS)
- Université de Sherbrooke’s Cancer Research Institute (IRCUS), Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Amélie Derome
- Department of Pharmacology and Physiology
- Pharmacology Institute of Sherbrooke (IPS)
- Université de Sherbrooke’s Cancer Research Institute (IRCUS), Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Samantha Longpré
- Department of Pharmacology and Physiology
- Pharmacology Institute of Sherbrooke (IPS)
| | | | - Ghenwa Basbous
- Université de Sherbrooke’s Cancer Research Institute (IRCUS), Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences
| | - Christine Lavoie
- Department of Pharmacology and Physiology
- Pharmacology Institute of Sherbrooke (IPS)
- Université de Sherbrooke’s Cancer Research Institute (IRCUS), Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
- Centre de Recherche Clinique CHUS
| | - Caroline Saucier
- Université de Sherbrooke’s Cancer Research Institute (IRCUS), Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences
- Centre de Recherche Clinique CHUS
| | - Jean-Bernard Denault
- Department of Pharmacology and Physiology
- Pharmacology Institute of Sherbrooke (IPS)
- Université de Sherbrooke’s Cancer Research Institute (IRCUS), Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences
| |
Collapse
|
4
|
Balasubramaniam B, Topalidou I, Kelley M, Meadows SM, Funk O, Ailion M, Fay DS. Effectors of anterior morphogenesis in C. elegans embryos. Biol Open 2023; 12:bio059982. [PMID: 37345480 PMCID: PMC10339035 DOI: 10.1242/bio.059982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/19/2023] [Indexed: 06/23/2023] Open
Abstract
During embryogenesis the nascent Caenorhabditis elegans epidermis secretes an apical extracellular matrix (aECM) that serves as an external stabilizer, preventing deformation of the epidermis by mechanical forces exerted during morphogenesis. At present, the factors that contribute to aECM function are mostly unknown, including the aECM components themselves, their posttranslational regulators, and the pathways required for their secretion. Here we showed that two proteins previously linked to aECM function, SYM-3/FAM102A and SYM-4/WDR44, colocalize to intracellular and membrane-associated puncta and likely function in a complex. Proteomics experiments also suggested potential roles for SYM-3/FAM102A and SYM-4/WDR44 family proteins in intracellular trafficking. Nonetheless, we found no evidence to support a critical function for SYM-3 or SYM-4 in the apical deposition of two aECM components, NOAH-1 and FBN-1. Moreover, loss of a key splicing regulator of fbn-1, MEC-8/RBPMS2, had surprisingly little effect on the abundance or deposition of FBN-1. Using a focused screening approach, we identified 32 additional proteins that likely contribute to the structure and function of the embryonic aECM. We also characterized morphogenesis defects in embryos lacking mir-51 microRNA family members, which display a similar phenotype to mec-8; sym double mutants. Collectively, these findings add to our knowledge of factors controlling embryonic morphogenesis.
Collapse
Affiliation(s)
- Boopathi Balasubramaniam
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie 82071-3944, WY, USA
| | - Irini Topalidou
- Department of Biochemistry, University of Washington, Seattle 98195-7350, WA, USA
| | - Melissa Kelley
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie 82071-3944, WY, USA
| | - Sarina M. Meadows
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie 82071-3944, WY, USA
| | - Owen Funk
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie 82071-3944, WY, USA
| | - Michael Ailion
- Department of Biochemistry, University of Washington, Seattle 98195-7350, WA, USA
| | - David S. Fay
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie 82071-3944, WY, USA
| |
Collapse
|
5
|
Simonetti B, Daly JL, Cullen PJ. Out of the ESCPE room: Emerging roles of endosomal SNX-BARs in receptor transport and host-pathogen interaction. Traffic 2023; 24:234-250. [PMID: 37089068 PMCID: PMC10768393 DOI: 10.1111/tra.12885] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/22/2023] [Accepted: 03/28/2023] [Indexed: 04/25/2023]
Abstract
Several functions of the human cell, such as sensing nutrients, cell movement and interaction with the surrounding environment, depend on a myriad of transmembrane proteins and their associated proteins and lipids (collectively termed "cargoes"). To successfully perform their tasks, cargo must be sorted and delivered to the right place, at the right time, and in the right amount. To achieve this, eukaryotic cells have evolved a highly organized sorting platform, the endosomal network. Here, a variety of specialized multiprotein complexes sort cargo into itineraries leading to either their degradation or their recycling to various organelles for further rounds of reuse. A key sorting complex is the Endosomal SNX-BAR Sorting Complex for Promoting Exit (ESCPE-1) that promotes the recycling of an array of cargos to the plasma membrane and/or the trans-Golgi network. ESCPE-1 recognizes a hydrophobic-based sorting motif in numerous cargoes and orchestrates their packaging into tubular carriers that pinch off from the endosome and travel to the target organelle. A wide range of pathogens mimic this sorting motif to hijack ESCPE-1 transport to promote their invasion and survival within infected cells. In other instances, ESCPE-1 exerts restrictive functions against pathogens by limiting their replication and infection. In this review, we discuss ESCPE-1 assembly and functions, with a particular focus on recent advances in the understanding of its role in membrane trafficking, cellular homeostasis and host-pathogen interaction.
Collapse
Affiliation(s)
- Boris Simonetti
- Charles River Laboratories, Discovery House, Quays Office ParkConference Avenue, PortisheadBristolUK
| | - James L. Daly
- Department of Infectious DiseasesSchool of Immunology and Microbial Sciences, Guy's Hospital, King's College LondonLondonUK
| | - Peter J. Cullen
- School of Biochemistry, Faculty of Life Sciences, Biomedical Sciences BuildingUniversity of BristolBristolUK
| |
Collapse
|
6
|
Boopathi B, Topalidou I, Kelley M, Meadows SM, Funk O, Ailion M, Fay DS. Pathways that affect anterior morphogenesis in C. elegans embryos. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.23.537986. [PMID: 37163004 PMCID: PMC10168279 DOI: 10.1101/2023.04.23.537986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
During embryogenesis the nascent Caenorhabditis elegans epidermis secretes an apical extracellular matrix (aECM) that serves as an external stabilizer, preventing deformation of the epidermis by mechanical forces exerted during morphogenesis. We showed that two conserved proteins linked to this process, SYM-3/FAM102A and SYM-4/WDR44, colocalize to intracellular and membrane-associated puncta and likely function together in a complex. Proteomics data also suggested potential roles for FAM102A and WDR44 family proteins in intracellular trafficking, consistent with their localization patterns. Nonetheless, we found no evidence to support a clear function for SYM-3 or SYM-4 in the apical deposition of two aECM components, FBN-1 and NOAH. Surprisingly, loss of MEC-8/RBPMS2, a conserved splicing factor and regulator of fbn-1 , had little effect on the abundance or deposition of FBN-1 to the aECM. Using a focused screening approach, we identified 32 additional proteins that likely contribute to the structure and function of the embryonic aECM. Lastly, we examined morphogenesis defects in embryos lacking mir-51 microRNA family members, which display a related embryonic phenotype to mec-8; sym double mutants. Collectively, our findings add to our knowledge of pathways controlling embryonic morphogenesis. SUMMARY STATEMENT We identify new proteins in apical ECM biology in C. elegans and provide evidence that SYM-3/FAM102A and SYM-4/WDR44 function together in trafficking but do not regulate apical ECM protein deposition.
Collapse
Affiliation(s)
- Balasubramaniam Boopathi
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Irini Topalidou
- Department of Biochemistry, University of Washington, Seattle, United States of America
| | - Melissa Kelley
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Sarina M Meadows
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Owen Funk
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| | - Michael Ailion
- Department of Biochemistry, University of Washington, Seattle, United States of America
| | - David S Fay
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, Wyoming, United States of America
| |
Collapse
|
7
|
Huang J, Tiu AC, Jose PA, Yang J. Sorting nexins: role in the regulation of blood pressure. FEBS J 2023; 290:600-619. [PMID: 34847291 PMCID: PMC9149145 DOI: 10.1111/febs.16305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 10/13/2021] [Accepted: 11/29/2021] [Indexed: 02/06/2023]
Abstract
Sorting nexins (SNXs) are a family of proteins that regulate cellular cargo sorting and trafficking, maintain intracellular protein homeostasis, and participate in intracellular signaling. SNXs are also important in the regulation of blood pressure via several mechanisms. Aberrant expression and dysfunction of SNXs participate in the dysregulation of blood pressure. Genetic studies show a correlation between SNX gene variants and the response to antihypertensive drugs. In this review, we summarize the progress in SNX-mediated regulation of blood pressure, discuss the potential role of SNXs in the pathophysiology and treatment of hypertension, and propose novel strategies for the medical therapy of hypertension.
Collapse
Affiliation(s)
- Juan Huang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 410020, P.R. China
| | - Andrew C. Tiu
- Department of Medicine, Einstein Medical Center Philadelphia, Philadelphia, PA 19141, USA
| | - Pedro A. Jose
- Division of Renal Diseases & Hypertension, Department of Medicine, and Department of Physiology and Pharmacology, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA
| | - Jian Yang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 410020, P.R. China
| |
Collapse
|
8
|
Lu Y, He P, Zhang Y, Ren Y, Zhang L. The emerging roles of retromer and sorting nexins in the life cycle of viruses. Virol Sin 2022; 37:321-330. [PMID: 35513271 PMCID: PMC9057928 DOI: 10.1016/j.virs.2022.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/12/2022] [Indexed: 02/06/2023] Open
Abstract
Retromer and sorting nexins (SNXs) transport cargoes from endosomes to the trans-Golgi network or plasma membrane. Recent studies have unveiled the emerging roles for retromer and SNXs in the life cycle of viruses, including members of Coronaviridae, Flaviviridae and Retroviridae. Key components of retromer/SNXs, such as Vps35, Vps26, SNX5 and SNX27, can affect multiple steps of the viral life cycle, including facilitating the entry of viruses into cells, participating in viral replication, and promoting the assembly of virions. Here we present a comprehensive updated review on the interplay between retromer/SNXs and virus, which will shed mechanistic insights into controlling virus infection.
Collapse
Affiliation(s)
- Yue Lu
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250013, China; Department of Pathogen Biology, School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Ping He
- Department of Pathogen Biology, School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Yuxuan Zhang
- Department of Pathogen Biology, School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Yongwen Ren
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250013, China; Department of Pathogen Biology, School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Leiliang Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250013, China; Department of Pathogen Biology, School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China.
| |
Collapse
|
9
|
Xie S, Dierlam C, Smith E, Duran R, Williams A, Davis A, Mathew D, Naslavsky N, Iyer J, Caplan S. The retromer complex regulates C. elegans development and mammalian ciliogenesis. J Cell Sci 2022; 135:jcs259396. [PMID: 35510502 PMCID: PMC9189432 DOI: 10.1242/jcs.259396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 04/11/2022] [Indexed: 11/20/2022] Open
Abstract
The mammalian retromer consists of subunits VPS26 (either VPS26A or VPS26B), VPS29 and VPS35, and a loosely associated sorting nexin (SNX) heterodimer or a variety of other SNX proteins. Despite involvement in yeast and mammalian cell trafficking, the role of retromer in development is poorly understood, and its impact on primary ciliogenesis remains unknown. Using CRISPR/Cas9 editing, we demonstrate that vps-26-knockout worms have reduced brood sizes, impaired vulval development and decreased body length, all of which have been linked to ciliogenesis defects. Although preliminary studies did not identify worm ciliary defects, and impaired development limited additional ciliogenesis studies, we turned to mammalian cells to investigate the role of retromer in ciliogenesis. VPS35 localized to the primary cilium of mammalian cells, and depletion of VPS26, VPS35, VPS29, SNX1, SNX2, SNX5 or SNX27 led to decreased ciliogenesis. Retromer also coimmunoprecipitated with the centriolar protein, CP110 (also known as CCP110), and was required for its removal from the mother centriole. Herein, we characterize new roles for retromer in C. elegans development and in the regulation of ciliogenesis in mammalian cells, suggesting a novel role for retromer in CP110 removal from the mother centriole.
Collapse
Affiliation(s)
- Shuwei Xie
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Carter Dierlam
- Department of Chemistry and Biochemistry, University of Tulsa, Tulsa, OK 74104, USA
| | - Ellie Smith
- Department of Chemistry and Biochemistry, University of Tulsa, Tulsa, OK 74104, USA
| | - Ramon Duran
- Department of Chemistry and Biochemistry, University of Tulsa, Tulsa, OK 74104, USA
| | - Allana Williams
- Department of Chemistry and Biochemistry, University of Tulsa, Tulsa, OK 74104, USA
| | - Angelina Davis
- School of Science and Mathematics, Tulsa Community College, Tulsa, OK 74115, USA
| | - Danita Mathew
- Department of Chemistry and Biochemistry, University of Tulsa, Tulsa, OK 74104, USA
| | - Naava Naslavsky
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jyoti Iyer
- Department of Chemistry and Biochemistry, University of Tulsa, Tulsa, OK 74104, USA
| | - Steve Caplan
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
10
|
Zhou C, Wu Z, Du W, Que H, Wang Y, Ouyang Q, Jian F, Yuan W, Zhao Y, Tian R, Li Y, Chen Y, Gao S, Wong CCL, Rong Y. Recycling of autophagosomal components from autolysosomes by the recycler complex. Nat Cell Biol 2022; 24:497-512. [PMID: 35332264 DOI: 10.1038/s41556-022-00861-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 02/04/2022] [Indexed: 11/09/2022]
Abstract
Autolysosomes contain components from autophagosomes and lysosomes. The contents inside the autolysosomal lumen are degraded during autophagy, while the fate of autophagosomal components on the autolysosomal membrane remains unknown. Here we report that the autophagosomal membrane components are not degraded, but recycled from autolysosomes through a process coined in this study as autophagosomal components recycling (ACR). We further identified a multiprotein complex composed of SNX4, SNX5 and SNX17 essential for ACR, which we termed 'recycler'. In this, SNX4 and SNX5 form a heterodimer that recognizes autophagosomal membrane proteins and is required for generating membrane curvature on autolysosomes, both via their BAR domains, to mediate the cargo sorting process. SNX17 interacts with both the dynein-dynactin complex and the SNX4-SNX5 dimer to facilitate the retrieval of autophagosomal membrane components. Our discovery of ACR and identification of the recycler reveal an important retrieval and recycling pathway on autolysosomes.
Collapse
Affiliation(s)
- Chuchu Zhou
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhe Wu
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wanqing Du
- The State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Huilin Que
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yufen Wang
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinqin Ouyang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Fenglei Jian
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weigang Yuan
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Zhao
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Tian
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Li
- The State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yang Chen
- Center for Precision Medicine Multi-Omics Research, Peking University Health Science Center, Peking University, Beijing, China.,School of Basic Medical Sciences, Peking University Health Science Center, Peking University, Beijing, China
| | - Shuaixin Gao
- Center for Precision Medicine Multi-Omics Research, Peking University Health Science Center, Peking University, Beijing, China.,School of Basic Medical Sciences, Peking University Health Science Center, Peking University, Beijing, China
| | - Catherine C L Wong
- Center for Precision Medicine Multi-Omics Research, Peking University Health Science Center, Peking University, Beijing, China.,School of Basic Medical Sciences, Peking University Health Science Center, Peking University, Beijing, China
| | - Yueguang Rong
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
11
|
Capitani N, Baldari CT. F-Actin Dynamics in the Regulation of Endosomal Recycling and Immune Synapse Assembly. Front Cell Dev Biol 2021; 9:670882. [PMID: 34249926 PMCID: PMC8265274 DOI: 10.3389/fcell.2021.670882] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/24/2021] [Indexed: 12/24/2022] Open
Abstract
Membrane proteins endocytosed at the cell surface as vesicular cargoes are sorted at early endosomes for delivery to lysosomes for degradation or alternatively recycled to different cellular destinations. Cargo recycling is orchestrated by multimolecular complexes that include the retromer, retriever, and the WASH complex, which promote the polymerization of new actin filaments at early endosomes. These endosomal actin pools play a key role at different steps of the recycling process, from cargo segregation to specific endosomal subdomains to the generation and mobility of tubulo-vesicular transport carriers. Local F-actin pools also participate in the complex redistribution of endomembranes and organelles that leads to the acquisition of cell polarity. Here, we will present an overview of the contribution of endosomal F-actin to T-cell polarization during assembly of the immune synapse, a specialized membrane domain that T cells form at the contact with cognate antigen-presenting cells.
Collapse
Affiliation(s)
- Nagaja Capitani
- Department of Life Sciences, University of Siena, Siena, Italy
| | | |
Collapse
|
12
|
Vieira N, Rito T, Correia-Neves M, Sousa N. Sorting Out Sorting Nexins Functions in the Nervous System in Health and Disease. Mol Neurobiol 2021; 58:4070-4106. [PMID: 33931804 PMCID: PMC8280035 DOI: 10.1007/s12035-021-02388-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/05/2021] [Indexed: 12/18/2022]
Abstract
Endocytosis is a fundamental process that controls protein/lipid composition of the plasma membrane, thereby shaping cellular metabolism, sensing, adhesion, signaling, and nutrient uptake. Endocytosis is essential for the cell to adapt to its surrounding environment, and a tight regulation of the endocytic mechanisms is required to maintain cell function and survival. This is particularly significant in the central nervous system (CNS), where composition of neuronal cell surface is crucial for synaptic functioning. In fact, distinct pathologies of the CNS are tightly linked to abnormal endolysosomal function, and several genome wide association analysis (GWAS) and biochemical studies have identified intracellular trafficking regulators as genetic risk factors for such pathologies. The sorting nexins (SNXs) are a family of proteins involved in protein trafficking regulation and signaling. SNXs dysregulation occurs in patients with Alzheimer’s disease (AD), Down’s syndrome (DS), schizophrenia, ataxia and epilepsy, among others, establishing clear roles for this protein family in pathology. Interestingly, restoration of SNXs levels has been shown to trigger synaptic plasticity recovery in a DS mouse model. This review encompasses an historical and evolutionary overview of SNXs protein family, focusing on its organization, phyla conservation, and evolution throughout the development of the nervous system during speciation. We will also survey SNXs molecular interactions and highlight how defects on SNXs underlie distinct pathologies of the CNS. Ultimately, we discuss possible strategies of intervention, surveying how our knowledge about the fundamental processes regulated by SNXs can be applied to the identification of novel therapeutic avenues for SNXs-related disorders.
Collapse
Affiliation(s)
- Neide Vieira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal. .,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Teresa Rito
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Margarida Correia-Neves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
13
|
Sun M, Han X, Chang F, Xu H, Colgan L, Liu Y. Regulatory role of sorting nexin 5 in protein stability and vesicular targeting of vesicular acetylcholine transporter to synaptic vesicle-like vesicles in PC12 cells. J Biomed Res 2020; 35:339-350. [PMID: 34230437 PMCID: PMC8502691 DOI: 10.7555/jbr.34.20200095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Accurate targeting of vesicular acetylcholine transporter (VAChT) to synaptic vesicles (SVs) is indispensable for efficient cholinergic transmission. Previous studies have suggested that the dileucine motif within the C-terminus of the transporter is sufficient for its targeting to SVs. However, the cytosolic machinery underlying specific regulation of VAChT trafficking and targeting to SVs is still unclear. Here we used the C-terminus of VAChT as a bait in a yeast two-hybrid screen to identify sorting nexin 5 (SNX5) as its novel interacting protein. SNX5 was detected in the SVs enriched LP2 subcellular fraction of rat brain homogenate and showed strong colocalization with VAChT in both brain sections and PC12 cells. Binding assays suggested that the C-terminal domain of VAChT can interact with both BAR and PX domain of SNX5. Depletion of SNX5 enhanced the degradation of VAChT and the process was mediated through the lysosomal pathway. More importantly, we found that, in PC12 cells, the depletion of SNX5 expression significantly decreased the synaptic vesicle-like vesicles (SVLVs) localization of VAChT. Therefore, the results suggest that SNX5 is a novel regulator for both stability and SV targeting of VAChT.
Collapse
Affiliation(s)
- Meihen Sun
- Jiangsu Key Laboratory of Xenotransplantation, and Department of Medical Genetics, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xu Han
- Jiangsu Key Laboratory of Xenotransplantation, and Department of Medical Genetics, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Fei Chang
- Neuroscience Program, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Hongfei Xu
- Department of Neurology, University of California San Francisco School of Medicine, San Francisco, CA 94143, USA
| | - Lesley Colgan
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA. E-mail: lesley.col
| | - Yongjian Liu
- Jiangsu Key Laboratory of Xenotransplantation, and Department of Medical Genetics, Nanjing Medical University, Nanjing, Jiangsu 211166, China. E-mail:
| |
Collapse
|
14
|
Choi SA, Kim YH, Park YH, Yang HJ, Jeong PS, Cha JJ, Yoon SB, Kim JS, Song BS, Lee JH, Sim BW, Huh JW, Song IS, Lee SR, Kim MK, Kim JM, Bae YS, Imakawa K, Kim SU, Chang KT. Novel crosstalk between Vps26a and Nox4 signaling during neurogenesis. Cell Death Differ 2018; 26:1582-1599. [PMID: 30464227 PMCID: PMC6748115 DOI: 10.1038/s41418-018-0226-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 09/21/2018] [Accepted: 09/28/2018] [Indexed: 12/25/2022] Open
Abstract
Despite numerous studies on the molecular switches governing the conversion of stemness to differentiation in embryonic stem cells (ESCs), little is known about the involvement of the retromer complex. Under neural differentiation conditions, Vps26a deficiency (Vps26a-/-) or knockdown suppressed the loss of stemness and subsequent neurogenesis from ESCs or embryonic carcinoma cells, respectively, as evidenced by the long-lasting expression of stemness markers and the slow appearance of neuronal differentiation markers. Interestingly, relatively low reactive oxygen species (ROS) levels were generated during differentiation of Vps26a-/- ESCs, and treatment with an antioxidant or inhibitor of NADPH oxidase (Nox), a family of ROS-generating enzymes, led to restoration of stemness in wild-type cells to the level of Vps26a-/- cells during neurogenesis. Importantly, a novel interaction between Vps26a and Nox4 linked to the activation of ERK1/2 depended highly on ROS levels during neurogenesis, which were strongly suppressed in differentiating Vps26a-/- ESCs. Moreover, inhibition of phosphorylated ERK1/2 (pERK1/2) resulted in decreased ROS and Nox4 levels, indicating the mutual dependency between pERK1/2 and Nox4-derived ROS during neurogenesis. These results suggest that Vps26a regulates stemness by actively cooperating with the Nox4/ROS/ERK1/2 cascade during neurogenesis. Our findings have important implications for understanding the regulation of stemness via crosstalk between the retromer molecule and redox signaling, and may contribute to the development of ESC-based therapeutic strategies for the mass production of target cells.
Collapse
Affiliation(s)
- Seon-A Choi
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, 28116, Republic of Korea.,National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, 28116, Republic of Korea.,Laboratory of Animal Reproduction and Physiology, Department of Animal Science and Biotechnology, College of Agriculture and Life Science, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Young-Hyun Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, 28116, Republic of Korea.,Department of Functional Genomics, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Young-Ho Park
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, 28116, Republic of Korea.,National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, 28116, Republic of Korea.,Department of Functional Genomics, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Hae-Jun Yang
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, 28116, Republic of Korea.,National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, 28116, Republic of Korea
| | - Pil-Soo Jeong
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, 28116, Republic of Korea.,National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, 28116, Republic of Korea
| | - Jae-Jin Cha
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, 28116, Republic of Korea.,National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, 28116, Republic of Korea
| | - Seung-Bin Yoon
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, 28116, Republic of Korea.,National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, 28116, Republic of Korea
| | - Ji-Su Kim
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, 28116, Republic of Korea.,National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, 28116, Republic of Korea.,Department of Functional Genomics, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Bong-Seok Song
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, 28116, Republic of Korea.,National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, 28116, Republic of Korea.,Department of Functional Genomics, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Jong-Hee Lee
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, 28116, Republic of Korea.,National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, 28116, Republic of Korea
| | - Bo-Woong Sim
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, 28116, Republic of Korea.,National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, 28116, Republic of Korea
| | - Jae-Won Huh
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, 28116, Republic of Korea.,National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, 28116, Republic of Korea.,Department of Functional Genomics, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - In-Sung Song
- Department of Biomedical Sciences, College of Medicine, Ulsan University, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Sang-Rae Lee
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, 28116, Republic of Korea.,National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, 28116, Republic of Korea.,Department of Functional Genomics, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Min-Kyu Kim
- Laboratory of Animal Reproduction and Physiology, Department of Animal Science and Biotechnology, College of Agriculture and Life Science, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jin-Man Kim
- College of Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Yun Soo Bae
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Kazuhiko Imakawa
- Animal Resource Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ibaraki, 319-0206, Japan.,Institute of Agricultural Sciences, Tokai University, Kumamoto, 862-8652, Japan
| | - Sun-Uk Kim
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, 28116, Republic of Korea. .,National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, 28116, Republic of Korea. .,Department of Functional Genomics, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Kyu-Tae Chang
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, 28116, Republic of Korea. .,Department of Functional Genomics, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
15
|
Interaction of Human Cytomegalovirus Tegument Proteins ppUL35 and ppUL35A with Sorting Nexin 5 Regulates Glycoprotein B (gpUL55) Localization. J Virol 2018; 92:JVI.00013-18. [PMID: 29444945 DOI: 10.1128/jvi.00013-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 02/07/2018] [Indexed: 12/13/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a widespread human pathogen that causes asymptomatic infection in healthy individuals but poses a serious threat to immunocompromised patients. During the late phase of HCMV infection, the viral capsid is transported to the cytoplasmic viral assembly center (cVAC), where it is enclosed by the tegument protein layer and the viral envelope. The cVAC consists of circularly arranged vesicles from the trans-Golgi and endosomal networks. The HCMV gene UL35 encodes ppUL35 and its shorter form, ppUL35A. We have previously shown that the UL35 gene is involved in HCMV assembly, but it is unknown how UL35 proteins regulate viral assembly. Here we show that sorting nexin 5 (SNX5), a component of the retromer and part of the retrograde transport pathway, interacts with UL35 proteins. Expression of wild-type proteins but not mutants defective in SNX5 binding resulted in the cellular redistribution of the cation-independent mannose-6-phosphate receptor (CI-M6PR), indicating that UL35 proteins bind and negatively regulate SNX5 to modulate cellular transport pathways. Furthermore, binding of UL35 proteins to SNX5 was required for efficient viral replication and for transport of the most abundant HCMV glycoprotein B (gB; gpUL55) to the cVAC. These results indicate that ppUL35 and ppUL35A control the localization of the essential gB through the regulation of a retrograde transport pathway. Thus, this work is the first to define a molecular interaction between a tegument protein and a vesicular transport factor to regulate glycoprotein localization.IMPORTANCE Human cytomegalovirus is ubiquitously present in the healthy population, but reactivation or reinfection can cause serious, life-threatening infections in immunocompromised patients. For completion of its lytic cycle, human cytomegalovirus induces formation of an assembly center where mature virus particles are formed from multiple viral proteins. Viral glycoproteins use separate vesicular pathways for transport to the assembly center, which are incompletely understood. Our research identified a viral structural protein which affects the localization of one of the major glycoproteins. We could link this change in glycoprotein localization to an interaction of the structural protein with a cellular protein involved in regulation of vesicle transport. This increases our understanding of how the virus intersects into cellular regulatory pathways to enhance its own replication.
Collapse
|
16
|
Dong X, Qiu X, Meng S, Xu H, Wu X, Yang M. Proteomic profile and toxicity pathway analysis in zebrafish embryos exposed to bisphenol A and di-n-butyl phthalate at environmentally relevant levels. CHEMOSPHERE 2018; 193:313-320. [PMID: 29145093 DOI: 10.1016/j.chemosphere.2017.11.042] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 06/07/2023]
Abstract
Bisphenol A (BPA) and di-n-butyl phthalate (DBP) are well-known endocrine-disrupting chemicals (EDCs) that have human health risks. Chronic exposure to BPA and DBP increases the occurrence of human disease. Despite the potential for exposure in embryonic development, the mechanism of action of BPA and DBP on vertebrate development and disease still remains unclear. In the present study, we identified proteins and protein networks that are perturbed by BPA and DBP during zebrafish (Danio rerio) development. Zebrafish embryos were exposed to environmentally relevant levels of BPA (10 μg/L) and DBP (50 μg/L) for 96 h. By iTRAQ labeling quantitative proteomics, a set of 26 and 41 differentially expressed proteins were identified in BPA- and DBP-treated zebrafish embryos, respectively. Integrated toxicity analysis predicted that these proteins function in common regulatory networks that are significantly associated with developmental and metabolic disorders. Exposure to low concentrations of BPA and DBP has potential health risks in zebrafish embryos. Our results also show that BPA and DBP significantly up-regulate the expression levels of multiple network proteins, providing valuable information about the molecular actions of BPA and DBP on the developmental systems.
Collapse
Affiliation(s)
- Xing Dong
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xuchun Qiu
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China; Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581, Japan
| | - Shunlong Meng
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Eco-environment Assessment and Resource Conservation in Middle and Lower Reaches of the Yangtze River, CAFS, Wuxi, 214081, China
| | - Hai Xu
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Xiangyang Wu
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Ming Yang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
17
|
Cui Y, Yang Z, Teasdale RD. The functional roles of retromer in Parkinson's disease. FEBS Lett 2017; 592:1096-1112. [DOI: 10.1002/1873-3468.12931] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 11/26/2017] [Accepted: 11/29/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Yi Cui
- School of Biomedical Sciences Faculty of Medicine The University of Queensland Brisbane Australia
| | - Zhe Yang
- School of Biomedical Sciences Faculty of Medicine The University of Queensland Brisbane Australia
| | - Rohan D. Teasdale
- School of Biomedical Sciences Faculty of Medicine The University of Queensland Brisbane Australia
| |
Collapse
|
18
|
Kvainickas A, Jimenez-Orgaz A, Nägele H, Hu Z, Dengjel J, Steinberg F. Cargo-selective SNX-BAR proteins mediate retromer trimer independent retrograde transport. J Cell Biol 2017; 216:3677-3693. [PMID: 28935632 PMCID: PMC5674888 DOI: 10.1083/jcb.201702137] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 07/10/2017] [Accepted: 08/01/2017] [Indexed: 12/11/2022] Open
Abstract
Kvainickas et al. show that the retromer cargo CI-MPR does not recycle from endosomes to the trans-Golgi network through interactions with the core retromer trimer. Instead, CI-MPR depends on cargo-selective SNX-BAR proteins, which function independently of the core retromer trimer. The retromer complex, which recycles the cation-independent mannose 6-phosphate receptor (CI-MPR) from endosomes to the trans-Golgi network (TGN), is thought to consist of a cargo-selective VPS26–VPS29–VPS35 trimer and a membrane-deforming subunit of sorting nexin (SNX)–Bin, Amphyphysin, and Rvs (BAR; SNX-BAR) proteins. In this study, we demonstrate that heterodimers of the SNX-BAR proteins, SNX1, SNX2, SNX5, and SNX6, are the cargo-selective elements that mediate the retrograde transport of CI-MPR from endosomes to the TGN independently of the core retromer trimer. Using quantitative proteomics, we also identify the IGF1R, among more potential cargo, as another SNX5 and SNX6 binding receptor that recycles through SNX-BAR heterodimers, but not via the retromer trimer, in a ligand- and activation-dependent manner. Overall, our data redefine the mechanics of retromer-based sorting and call into question whether retromer indeed functions as a complex of SNX-BAR proteins and the VPS26–VPS29–VPS35 trimer.
Collapse
Affiliation(s)
- Arunas Kvainickas
- Center for Biological Systems Analysis, Albert Ludwigs Universitaet Freiburg, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs Universitaet Freiburg, Freiburg, Germany
| | - Ana Jimenez-Orgaz
- Center for Biological Systems Analysis, Albert Ludwigs Universitaet Freiburg, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs Universitaet Freiburg, Freiburg, Germany
| | - Heike Nägele
- Center for Biological Systems Analysis, Albert Ludwigs Universitaet Freiburg, Freiburg, Germany
| | - Zehan Hu
- Department of Biology, Fribourg University, Fribourg, Switzerland
| | - Jörn Dengjel
- Department of Biology, Fribourg University, Fribourg, Switzerland
| | - Florian Steinberg
- Center for Biological Systems Analysis, Albert Ludwigs Universitaet Freiburg, Freiburg, Germany
| |
Collapse
|
19
|
Caspase-mediated proteolysis of the sorting nexin 2 disrupts retromer assembly and potentiates Met/hepatocyte growth factor receptor signaling. Cell Death Discov 2017; 3:16100. [PMID: 28179995 PMCID: PMC5253419 DOI: 10.1038/cddiscovery.2016.100] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 11/23/2016] [Indexed: 12/14/2022] Open
Abstract
The unfolding of apoptosis involves the cleavage of hundreds of proteins by the caspase family of cysteinyl peptidases. Among those substrates are proteins involved in intracellular vesicle trafficking with a net outcome of shutting down the crucial processes governing protein transport to organelles and to the plasma membrane. However, because of the intertwining of receptor trafficking and signaling, cleavage of specific proteins may lead to unintended consequences. Here we show that in apoptosis, sorting nexin 1 and 2 (SNX1 and SNX2), two proteins involved in endosomal sorting, are cleaved by initiator caspases and also by executioner caspase-6 in the case of SNX2. Moreover, SNX1 is cleaved at multiple sites, including following glutamate residues. Cleavage of SNX2 results in a loss of association with the endosome-to-trans-Golgi network transport protein Vps35 and in a delocalization from endosomes of its associated partner Vps26. We also demonstrate that SNX2 depletion causes an increase in hepatocyte growth factor receptor tyrosine phosphorylation and Erk1/2 signaling in cells. Finally, we show that SNX2 mRNA and protein levels are decreased in colorectal carcinoma and that lower SNX2 gene expression correlates with an increase in cancer patient mortality. Our study reveals the importance to characterize the cleavage fragments produced by caspases of specific death substrates given their potential implication in the mechanism of regulation of physiological (signaling/trafficking) pathways or in the dysfunction leading to pathogenesis.
Collapse
|
20
|
Zheng W, Zheng H, Zhao X, Zhang Y, Xie Q, Lin X, Chen A, Yu W, Lu G, Shim WB, Zhou J, Wang Z. Retrograde trafficking from the endosome to the trans-Golgi network mediated by the retromer is required for fungal development and pathogenicity in Fusarium graminearum. THE NEW PHYTOLOGIST 2016; 210:1327-1343. [PMID: 26875543 DOI: 10.1111/nph.13867] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 12/16/2015] [Indexed: 06/05/2023]
Abstract
In eukaryotes, the retromer is an endosome-localized complex involved in protein retrograde transport. However, the role of such intracellular trafficking events in pathogenic fungal development and pathogenicity remains unclear. The role of the retromer complex in Fusarium graminearum was investigated using cell biological and genetic methods. We observed the retromer core component FgVps35 (Vacuolar Protein Sorting 35) in the cytoplasm as fast-moving puncta. FgVps35-GFP co-localized with both early and late endosomes, and associated with the trans-Golgi network (TGN), suggesting that FgVps35 functions at the donor endosome membrane to mediate TGN trafficking. Disruption of microtubules with nocodazole significantly restricted the transportation of FgVps35-GFP and resulted in severe germination and growth defects. Mutation of FgVPS35 not only mimicked growth defects induced by pharmacological treatment, but also affected conidiation, ascospore formation and pathogenicity. Using yeast two-hybrid assays, we determined the interactions among FgVps35, FgVps26, FgVps29, FgVps17 and FgVps5 which are analogous to the yeast retromer complex components. Deletion of any one of these genes resulted in similar phenotypic defects to those of the ΔFgvps35 mutant and disrupted the stability of the complex. Overall, our results provide the first clear evidence of linkage between the retrograde transport mediated by the retromer complex and virulence in F. graminearum.
Collapse
Affiliation(s)
- Wenhui Zheng
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huawei Zheng
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xu Zhao
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ying Zhang
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qiurong Xie
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaolian Lin
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ahai Chen
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenying Yu
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guodong Lu
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Won-Bo Shim
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843-2132, USA
| | - Jie Zhou
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zonghua Wang
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
21
|
Vergés M. Retromer in Polarized Protein Transport. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 323:129-79. [PMID: 26944621 DOI: 10.1016/bs.ircmb.2015.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Retromer is an evolutionary conserved protein complex required for endosome-to-Golgi retrieval of receptors for lysosomal hydrolases. It is constituted by a heterotrimer encoded by the vacuolar protein sorting (VPS) gene products Vps26, Vps35, and Vps29, which selects cargo, and a dimer of phosphoinositide-binding sorting nexins, which deforms the membrane. Recent progress in the mechanism of retromer assembly and functioning has strengthened the link between sorting at the endosome and cytoskeleton dynamics. Retromer is implicated in endosomal sorting of many cargos and plays an essential role in plant and animal development. Although it is best known for endosome sorting to the trans-Golgi network, it also intervenes in recycling to the plasma membrane. In polarized cells, such as epithelial cells and neurons, retromer may also be utilized for transcytosis and long-range transport. Considerable evidence implicates retromer in establishment and maintenance of cell polarity. That includes sorting of the apical polarity module Crumbs; regulation of retromer function by the basolateral polarity module Scribble; and retromer-dependent recycling of various cargoes to a certain surface domain, thus controlling polarized location and cell homeostasis. Importantly, altered retromer function has been linked to neurodegeneration, such as in Alzheimer's or Parkinson's disease. This review will underline how alterations in retromer localization and function may affect polarized protein transport and polarity establishment, thereby causing developmental defects and disease.
Collapse
Affiliation(s)
- Marcel Vergés
- Cardiovascular Genetics Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain; Medical Sciences Department, University of Girona, Girona, Spain.
| |
Collapse
|
22
|
Abstract
Retrograde transport from the endosome to the Golgi is mediated by a 5 protein complex known as the retromer. These five proteins (Vps5, Vps17, Vps26, Vps29, and Vps35 in yeast and SNX1/2, SNX5/6, Vps26, Vps29, and Vps35 in mammalian cells) act as a coat for vesicles budding off of the endosome, as well as perform cargo sorting at the endosome. The retromer is well conserved between yeast and mammalian systems, though variations exist within the mammalian retromer. Functionally, the retromer has been linked to prominent neurodegenerative diseases such as Alzheimer's and Parkinson's in human models as well as diabetes mellitus. However, the retromer also plays a role in the virulence of several microbial pathogens. Despite the current understanding of the retromer complex, there are still many questions to be answered in regards to its overall role in cell homeostasis.
Collapse
Affiliation(s)
- Christopher Trousdale
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65807, United States
| | - Kyoungtae Kim
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65807, United States.
| |
Collapse
|
23
|
Hierro A, Gershlick DC, Rojas AL, Bonifacino JS. Formation of Tubulovesicular Carriers from Endosomes and Their Fusion to the trans-Golgi Network. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 318:159-202. [PMID: 26315886 DOI: 10.1016/bs.ircmb.2015.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Endosomes undergo extensive spatiotemporal rearrangements as proteins and lipids flux through them in a series of fusion and fission events. These controlled changes enable the concentration of cargo for eventual degradation while ensuring the proper recycling of other components. A growing body of studies has now defined multiple recycling pathways from endosomes to the trans-Golgi network (TGN) which differ in their molecular machineries. The recycling process requires specific sets of lipids, coats, adaptors, and accessory proteins that coordinate cargo selection with membrane deformation and its association with the cytoskeleton. Specific tethering factors and SNARE (SNAP (Soluble NSF Attachment Protein) Receptor) complexes are then required for the docking and fusion with the acceptor membrane. Herein, we summarize some of the current knowledge of the machineries that govern the retrograde transport from endosomes to the TGN.
Collapse
Affiliation(s)
- Aitor Hierro
- Structural Biology Unit, CIC bioGUNE, Derio, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - David C Gershlick
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | - Juan S Bonifacino
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
24
|
Zhang J, Naslavsky N, Caplan S. EHDs meet the retromer: Complex regulation of retrograde transport. CELLULAR LOGISTICS 2014. [PMID: 23181199 PMCID: PMC3498075 DOI: 10.4161/cl.20582] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Retrograde trafficking mediates the transport of endocytic membranes from endosomes to the trans-Golgi network (TGN). Dysregulation of these pathways can result in multiple ailments, including late-onset Alzheimer disease. One of the key retrograde transport regulators, the retromer complex, is tightly controlled by many factors, including the C-terminal Eps15 homology domain (EHD) proteins. This mini-review focuses on recent findings and discusses the regulation of the retromer complex by EHD proteins and the novel EHD1 interaction partner, Rabankyrin-5 (Rank-5).
Collapse
Affiliation(s)
- Jing Zhang
- Department of Biochemistry and Molecular Biology and Eppley Cancer Center; University of Nebraska Medical Center; Omaha, NE USA
| | | | | |
Collapse
|
25
|
Mellado M, Cuartero Y, Brugada R, Verges M. Subcellular localisation of retromer in post-endocytic pathways of polarised Madin-Darby canine kidney cells. Biol Cell 2014; 106:377-93. [PMID: 25081925 DOI: 10.1111/boc.201400011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 07/28/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND INFORMATION Retromer is required for endosome-to-Golgi retrieval of the cation-independent mannose 6-phosphate receptor (CI-MPR), allowing delivery of hydrolases into lysosomes. It is constituted by a conserved heterotrimer formed by vacuolar protein sorting (Vps) gene products Vps26, Vps35 and Vps29, which is in charge of cargo selection, and a dimer of phosphoinositide-binding sorting nexins (SNXs), which has a structural role. Retromer has been implicated in sorting of additional cargo. Thus, retromer also promotes polymeric immunoglobulin A (pIgA) transcytosis by the pIgA receptor (pIgR) in polarised cells, and considerable evidence implicates retromer in controlling epithelial cell polarity. However, the precise localisation of retromer along the endocytic pathway of polarised cells has not been studied in detail. RESULTS Our biochemical analysis using rat liver endosome fractions suggests a distinct distribution pattern. Although subunits of the cargo-selective complex were enriched in early endosomes (EEs), levels of SNX2 were greater in sorting endosomes. We then immunolocalised the retromer subunits in polarised Madin-Darby canine kidney (MDCK) cells by confocal microscopy. An estimated 25% of total Vps26 and SNX2 localised to EEs, with negligible portions in recycling endosomes as well as in late endosomes and lysosomes. Although Vps26 was in structures of more heterogeneous size and shape than SNX2, these markedly overlapped. In consequence, the two retromer subcomplexes mostly colocalised. When we analysed retromer overlap with its cargo, we found that structures retromer and pIgA(+) are independent of those structures retromer and CI-MPR(+) . Remarkably, retromer localised preferentially at the transcytotic pathway. Pharmacological inhibition of phosphoinositide 3-kinase affected the co-distribution of retromer with pIgA and the CI-MPR, delaying pIgA progress to the apical surface. CONCLUSIONS In polarised MDCK cells, we found retromer associated with certain specialised EE-derived pathways. Our data imply that retromer is largely engaged in pIgA transcytosis in pIgR-expressing MDCK cells, as opposed to endosome-to-Golgi retrieval.
Collapse
Affiliation(s)
- Maravillas Mellado
- Laboratory of Epithelial Cell Biology, Príncipe Felipe Research Center (CIPF), Valencia, 46012, Spain
| | | | | | | |
Collapse
|
26
|
Wallingford MC, Giachelli CM. Loss of PiT-1 results in abnormal endocytosis in the yolk sac visceral endoderm. Mech Dev 2014; 133:189-202. [PMID: 25138534 DOI: 10.1016/j.mod.2014.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 08/06/2014] [Accepted: 08/07/2014] [Indexed: 10/24/2022]
Abstract
PiT-1 protein is a transmembrane sodium-dependent phosphate (Pi) transporter. PiT-1 knock out (KO) embryos die from largely unknown causes by embryonic day (E) 12.5. We tested the hypothesis that PiT-1 is required for endocytosis in the embryonic yolk sac (YS) visceral endoderm (VE). Here we present data supporting that PiT-1 KO results in a YS remodeling defect and decreased endocytosis in the YS VE. The remodeling defect is not due to an upstream cardiomyocyte requirement for PiT-1, as SM22αCre-specific KO of PiT-1 in the developing heart and the YS mesodermal layer (ME) does not recapitulate the PiT-1 global KO phenotype. Furthermore, we find that high levels of PiT-1 protein localize to the YS VE apical membrane. Together these data support that PiT-1 is likely required in YS VE. During normal development maternal immunoglobulin (IgG) is endocytosed into YS VE and accumulates in the apical side of the VE in a specialized lysosome termed the apical vacuole (AV). We have identified a reduction in PiT-1 KO VE cell height and a striking loss of IgG accumulation in the PiT-1 KO VE. The endocytosis genes Tfeb, Lamtor2 and Snx2 are increased at the RNA level. Lysotracker Red staining reveals a loss of distinct AVs, and yolk sacs incubated ex vivo with phRODO Green Dextran for Endocytosis demonstrate a functional loss of endocytosis. As yolk sac endocytosis is controlled in part by microautophagy, but expression of LC3 had not been examined, we investigated LC3 expression during yolk sac development and found stage-specific LC3 RNA expression that is predominantly from the YS VE layer at E9.5. Normalized LC3-II protein levels are decreased in the PiT-1 KO YS, supporting a requirement for PiT-1 in autophagy in the YS. Therefore, we propose the novel idea that PiT-1 is central to the regulation of endocytosis and autophagy in the YS VE.
Collapse
Affiliation(s)
- Mary C Wallingford
- Department of Bioengineering, University of Washington, Seattle, WA 91895, USA.
| | - Cecilia M Giachelli
- Department of Bioengineering, University of Washington, Seattle, WA 91895, USA.
| |
Collapse
|
27
|
Krai P, Dalal S, Klemba M. Evidence for a Golgi-to-endosome protein sorting pathway in Plasmodium falciparum. PLoS One 2014; 9:e89771. [PMID: 24587025 PMCID: PMC3934947 DOI: 10.1371/journal.pone.0089771] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 01/24/2014] [Indexed: 12/20/2022] Open
Abstract
During the asexual intraerythrocytic stage, the malaria parasite Plasmodium falciparum must traffic newly-synthesized proteins to a broad array of destinations within and beyond the parasite's plasma membrane. In this study, we have localized two well-conserved protein components of eukaryotic endosomes, the retromer complex and the small GTPase Rab7, to define a previously-undescribed endosomal compartment in P. falciparum. Retromer and Rab7 co-localized to a small number of punctate structures within parasites. These structures, which we refer to as endosomes, lie in close proximity to the Golgi apparatus and, like the Golgi apparatus, are inherited by daughter merozoites. However, the endosome is clearly distinct from the Golgi apparatus as neither retromer nor Rab7 redistributed to the endoplasmic reticulum upon brefeldin A treatment. Nascent rhoptries (specialized secretory organelles required for invasion) developed adjacent to endosomes, an observation that suggests a role for the endosome in rhoptry biogenesis. A P. falciparum homolog of the sortilin family of protein sorting receptors (PfSortilin) was localized to the Golgi apparatus. Together, these results elaborate a putative Golgi-to-endosome protein sorting pathway in asexual blood stage parasites and suggest that one role of retromer is to mediate the retrograde transport of PfSortilin from the endosome to the Golgi apparatus.
Collapse
Affiliation(s)
- Priscilla Krai
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Seema Dalal
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Michael Klemba
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|
28
|
Chua RYR, Wong SH. SNX3 recruits to phagosomes and negatively regulates phagocytosis in dendritic cells. Immunology 2013; 139:30-47. [PMID: 23237080 DOI: 10.1111/imm.12051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 12/10/2012] [Accepted: 12/10/2012] [Indexed: 12/11/2022] Open
Abstract
Phagocytes such as dendritic cells (DC) and macrophages employ phagocytosis to take up pathogenic bacteria into phagosomes, digest the bacteria and present the bacteria-derived peptide antigens to the adaptive immunity. Hence, efficient antigen presentation depends greatly on a well-regulated phagocytosis process. Lipids, particularly phosphoinositides, are critical components of the phagosomes. Phosphatidylinositol-3,4,5-triphosphate [PI(3,4,5)P3 ] is formed at the phagocytic cup, and as the phagosome seals off from the plasma membrane, rapid disappearance of PI(3,4,5)P3 is accompanied by high levels of phosphatidylinositol-3-phosphate (PI3P) formation. The sorting nexin (SNX) family consists of a diverse group of Phox-homology (PX) domain-containing cytoplasmic and membrane-associated proteins that are potential effectors of phosphoinositides. We hypothesized that SNX3, a small sorting nexin that contains a single PI3P lipid-binding PX domain as its only protein domain, localizes to phagosomes and regulates phagocytosis in DC. Our results show that SNX3 recruits to nascent phagosomes and silencing of SNX3 enhances phagocytic uptake of bacteria by DC. Furthermore, SNX3 competes with PI3P lipid-binding protein, early endosome antigen-1 (EEA1) recruiting to membranes. Our results indicate that SNX3 negatively regulates phagocytosis in DC possibly by modulating recruitment of essential PI3P lipid-binding proteins of the phagocytic pathways, such as EEA1, to phagosomal membranes.
Collapse
Affiliation(s)
- Rong Yuan Ray Chua
- Laboratory of Membrane Trafficking and Immunoregulation, Department of Microbiology, Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | |
Collapse
|
29
|
Fullam A, Schröder M. DExD/H-box RNA helicases as mediators of anti-viral innate immunity and essential host factors for viral replication. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:854-65. [PMID: 23567047 PMCID: PMC7157912 DOI: 10.1016/j.bbagrm.2013.03.012] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 03/27/2013] [Accepted: 03/29/2013] [Indexed: 12/17/2022]
Abstract
Traditional functions of DExD/H-box helicases are concerned with RNA metabolism; they have been shown to play a part in nearly every cellular process that involves RNA. On the other hand, it is accepted that DexD/H-box helicases also engage in activities that do not require helicase activity. A number of DExD/H-box helicases have been shown to be involved in anti-viral immunity. The RIG-like helicases, RIG-I, mda5 and lgp2, act as important cytosolic pattern recognition receptors for viral RNA. Detection of viral nucleic acids by the RIG-like helicases or other anti-viral pattern recognition receptors leads to the induction of type I interferons and pro-inflammatory cytokines. More recently, additional DExD/H-box helicases have also been implicated to act as cytosolic sensors of viral nucleic acids, including DDX3, DDX41, DHX9, DDX60, DDX1 and DHX36. However, there is evidence that at least some of these helicases might have more downstream functions in pattern recognition receptor signalling pathways, as signalling adaptors or transcriptional regulators. In an interesting twist, a lot of DExD/H-box helicases have also been identified as essential host factors for the replication of different viruses, suggesting that viruses 'hijack' their RNA helicase activities for their benefit. Interestingly, DDX3, DDX1 and DHX9 are among the helicases that are required for the replication of a diverse range of viruses. This might suggest that these helicases are highly contested targets in the ongoing 'arms race' between viruses and the host immune system. This article is part of a Special Issue entitled: The Biology of RNA helicases - Modulation for life.
Collapse
Affiliation(s)
- Anthony Fullam
- National University of Ireland, Maynooth, Kildare, Ireland.
| | | |
Collapse
|
30
|
Deng H, Gao K, Jankovic J. The VPS35 gene and Parkinson's disease. Mov Disord 2013; 28:569-75. [PMID: 23536430 DOI: 10.1002/mds.25430] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 01/21/2013] [Accepted: 02/07/2013] [Indexed: 02/01/2023] Open
Abstract
Parkinson's disease (PD), the second most common age-related neurodegenerative disease, is characterized by loss of dopaminergic and nondopaminergic neurons, leading to a variety of motor and nonmotor symptoms. In addition to environmental factors, genetic predisposition and specific gene mutations have been shown to play an important role in the pathogenesis of this disorder. Recently, the identification of the vacuolar protein sorting 35 homolog gene (VPS35), linked to autosomal dominant late-onset PD, has provided new clues to the pathogenesis of PD. Here we discuss the VPS35 gene, its protein function, and various pathways involved in Wnt/β-catenin signaling and in the role of DMT1 mediating the uptake of iron and iron translocation from endosomes to the cytoplasm. Further understanding of these mechanisms will undoubtedly provide new insights into the pathogenic mechanisms of PD and may lead to prevention and better treatment of the disorder.
Collapse
Affiliation(s)
- Hao Deng
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China.
| | | | | |
Collapse
|
31
|
PtdIns(4)P regulates retromer–motor interaction to facilitate dynein–cargo dissociation at the trans-Golgi network. Nat Cell Biol 2013; 15:417-29. [DOI: 10.1038/ncb2710] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 02/14/2013] [Indexed: 02/08/2023]
|
32
|
Im SK, Jeong H, Jeong HW, Kim KT, Hwang D, Ikegami M, Kong YY. Disruption of sorting nexin 5 causes respiratory failure associated with undifferentiated alveolar epithelial type I cells in mice. PLoS One 2013; 8:e58511. [PMID: 23526992 PMCID: PMC3602295 DOI: 10.1371/journal.pone.0058511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 02/05/2013] [Indexed: 01/16/2023] Open
Abstract
Sorting nexin 5 (Snx5) has been posited to regulate the degradation of epidermal growth factor receptor and the retrograde trafficking of cation-independent mannose 6-phosphate receptor/insulin-like growth factor II receptor. Snx5 has also been suggested to interact with Mind bomb-1, an E3 ubiquitin ligase that regulates the activation of Notch signaling. However, the in vivo functions of Snx5 are largely unknown. Here, we report that disruption of the Snx5 gene in mice (Snx5-/- mice) resulted in partial perinatal lethality; 40% of Snx5-/- mice died shortly after birth due to cyanosis, reduced air space in the lungs, and respiratory failure. Histological analysis revealed that Snx5-/- mice exhibited thickened alveolar walls associated with undifferentiated alveolar epithelial type I cells. In contrast, alveolar epithelial type II cells were intact, exhibiting normal surfactant synthesis and secretion. Although the expression levels of surfactant proteins and saturated phosphatidylcholine in the lungs of Snx5-/- mice were comparable to those of Snx5+/+ mice, the expression levels of T1α, Aqp5, and Rage, markers for distal alveolar epithelial type I cells, were significantly decreased in Snx5-/- mice. These results demonstrate that Snx5 is necessary for the differentiation of alveolar epithelial type I cells, which may underlie the adaptation to air breathing at birth.
Collapse
Affiliation(s)
- Sun-Kyoung Im
- School of Biological Science, College of Natural Sciences, Seoul National University, Seoul, South Korea
- Department of Life Science, Division of Molecular and Life Science, POSTECH, Pohang, South Korea
| | - HyoBin Jeong
- School of Interdisciplinary Biosciences and Bioengineering, POSTECH, Pohang, South Korea
| | - Hyun-Woo Jeong
- School of Biological Science, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Kyong-Tai Kim
- Department of Life Science, Division of Molecular and Life Science, POSTECH, Pohang, South Korea
| | - Daehee Hwang
- School of Interdisciplinary Biosciences and Bioengineering, POSTECH, Pohang, South Korea
| | - Machiko Ikegami
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Young-Yun Kong
- School of Biological Science, College of Natural Sciences, Seoul National University, Seoul, South Korea
- * E-mail:
| |
Collapse
|
33
|
Ogi S, Fujita H, Kashihara M, Yamamoto C, Sonoda K, Okamoto I, Nakagawa K, Ohdo S, Tanaka Y, Kuwano M, Ono M. Sorting nexin 2-mediated membrane trafficking of c-Met contributes to sensitivity of molecular-targeted drugs. Cancer Sci 2013; 104:573-83. [PMID: 23360489 DOI: 10.1111/cas.12117] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 01/21/2013] [Accepted: 01/22/2013] [Indexed: 12/20/2022] Open
Abstract
The sorting nexin (SNX) family is a diverse group of cytoplasmic and membrane-associated proteins that are involved in membrane-trafficking steps within the endocytotic network. SNX1 and SNX2 are components of the mammalian retromer complex and they also play critical roles in the membrane trafficking of growth factor receptors including epidermal growth factor receptor (EGFR) and c-Met. The human lung cancer cell lines, which harbor activating mutations in the kinase domain of EGFR gene, are sensitive to EGFR-targeted drugs gefitinib or erlotinib. However, a lung cancer cell line harboring gene amplification of c-Met is sensitive to the c-Met-targeted drug SU11274 but not to EGFR-targeted drugs. C-Met overexpression is identified as one of the bypass mechanisms for acquired resistance to EGFR-targeted drugs. Here we show that the siRNA-mediated knockdown of SNX2 decreases the cell-surface localization of c-Met, but not that of EGFR, resulting in lysosomal degradation of the c-Met protein. SNX2 specifically interacts with c-Met and treatment with lysosomal inhibitors almost completely annihilates downregulation of c-Met protein by SNX2 knockdown. Therefore, silencing of SNX2 markedly alters sensitivity to anticancer drugs targeted to c-Met (SU11274) and EGFR (gefitinib and erlotinib) through promotion of compensatory activation of the EGFR pathway in lung cancer cells. These findings suggest that development of drugs targeting SNX2 could be useful in overcoming drug resistance to EGFR-targeted drugs in lung cancer cells harboring c-Met gene amplification.
Collapse
Affiliation(s)
- Sayaka Ogi
- Department of Pharmaceutical Oncology, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Zelazny E, Santambrogio M, Pourcher M, Chambrier P, Berne-Dedieu A, Fobis-Loisy I, Miège C, Jaillais Y, Gaude T. Mechanisms governing the endosomal membrane recruitment of the core retromer in Arabidopsis. J Biol Chem 2013; 288:8815-25. [PMID: 23362252 DOI: 10.1074/jbc.m112.440503] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The retromer complex localizes to endosomal membranes and is involved in protein trafficking. In mammals, it is composed of a dimer of sorting nexins and of the core retromer consisting of vacuolar protein sorting (VPS)26, VPS29, and VPS35. Although homologs of these proteins have been identified in plants, how the plant retromer functions remains elusive. To better understand the role of VPS components in the assembly and function of the core retromer, we characterize here Arabidopsis vps26-null mutants. We show that impaired VPS26 function has a dramatic effect on VPS35 levels and causes severe phenotypic defects similar to those observed in vps29-null mutants. This implies that functions of plant VPS26, VPS29, and VPS35 are tightly linked. Then, by combining live-cell imaging with immunochemical and genetic approaches, we report that VPS35 alone is able to bind to endosomal membranes and plays an essential role in VPS26 and VPS29 membrane recruitment. We also show that the Arabidopsis Rab7 homolog RABG3f participates in the recruitment of the core retromer to the endosomal membrane by interacting with VPS35. Altogether our data provide original information on the molecular interactions that mediate assembly of the core retromer in plants.
Collapse
Affiliation(s)
- Enric Zelazny
- CNRS, F-69342 Lyon, France, the Institut National de la Recherche Agronomique, F-69364 Lyon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Sugimoto M, Kondo M, Hirose M, Suzuki M, Mekada K, Abe T, Kiyonari H, Ogura A, Takagi N, Artzt K, Abe K. Molecular identification of t(w5): Vps52 promotes pluripotential cell differentiation through cell-cell interactions. Cell Rep 2012; 2:1363-74. [PMID: 23142660 DOI: 10.1016/j.celrep.2012.10.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/02/2012] [Accepted: 10/05/2012] [Indexed: 11/25/2022] Open
Abstract
After implantation, pluripotent epiblasts are converted to embryonic ectoderm through cell-cell interactions that significantly change the transcriptional and epigenetic networks. An entrée to understanding this vital developmental transition is the t(w5) mutation of the mouse t complex. This mutation produces highly specific defects in the embryonic ectoderm before gastrulation, leading to death of the embryonic ectoderm. Using a positional cloning approach, we have now identified the mutated gene, completing a decades-long search. The gene, vacuolar protein sorting 52 (Vps52), is a mouse homolog of yeast VPS52 that is involved in the retrograde trafficking of endosomes. Our data suggest that Vps52 acts in extraembryonic tissues to support the growth and differentiation of embryonic ectoderm via cell-cell interactions. It is also required in the formation of embryonic structures at a later stage of development, revealing hitherto unknown functions of Vps52 in the development of a multicellular organism.
Collapse
Affiliation(s)
- Michihiko Sugimoto
- Technology and Development Team for Mammalian Cellular Dynamics, RIKEN BioResource Center, Tsukuba, Ibaraki 305-00074, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Zhang P, Wu Y, Belenkaya TY, Lin X. SNX3 controls Wingless/Wnt secretion through regulating retromer-dependent recycling of Wntless. Cell Res 2011; 21:1677-90. [PMID: 22041890 PMCID: PMC3357989 DOI: 10.1038/cr.2011.167] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 09/19/2011] [Accepted: 09/26/2011] [Indexed: 11/25/2022] Open
Abstract
Drosophila Wingless (Wg) acts as a morphogen during development. Wg secretion is controlled by a seven-pass transmembrane cargo Wntless (Wls). We have recently identified retromer as a key regulator involved in Wls trafficking. As sorting nexin (SNX) molecules are essential components of the retromer complex, we hypothesized that specific SNX(s) is required for retromer-mediated Wnt secretion. Here, we generated Drosophila mutants for all of the eight snx members, and identified Drosophila SNX3 (DSNX3) as an essential molecule required for Wg secretion. We show that Wg secretion and its signaling activity are defective in Dsnx3 mutant clones in wing discs. Wg levels in the culture medium of Dsnx3-depleted S2 cells are also markedly reduced. Importantly, Wls levels are strikingly reduced in Dsnx3 mutant cells, and overexpression of Wls can rescue the Wg secretion defect observed in Dsnx3 mutant cells. Moreover, DSNX3 can interact with the retromer component Vps35, and co-localize with Vps35 in early endosomes. These data indicate that DSNX3 regulates Wg secretion via retromer-dependent Wls recycling. In contrast, we found that Wg secretion is not defective in cells mutant for Drosophila snx1 and snx6, two components of the classical retromer complex. Ectopic expression of DSNX1 or DSNX6 fails to rescue the Wg secretion defect in Dsnx3 mutant wing discs and in Dsnx3 dsRNA-treated S2 cells. These data demonstrate the specificity of the DSNX3-retromer complex in Wls recycling. Together, our findings suggest that DSNX3 acts as a cargo-specific component of retromer, which is required for endocytic recycling of Wls and Wg/Wnt secretion.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, and Key Laboratory of Stem Cell and Developmental Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yihui Wu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, and Key Laboratory of Stem Cell and Developmental Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tatyana Y Belenkaya
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Xinhua Lin
- State Key Laboratory of Biomembrane and Membrane Biotechnology, and Key Laboratory of Stem Cell and Developmental Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
37
|
Koumandou VL, Klute MJ, Herman EK, Nunez-Miguel R, Dacks JB, Field MC. Evolutionary reconstruction of the retromer complex and its function in Trypanosoma brucei. J Cell Sci 2011; 124:1496-509. [PMID: 21502137 DOI: 10.1242/jcs.081596] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Intracellular trafficking and protein sorting are mediated by various protein complexes, with the retromer complex being primarily involved in retrograde traffic from the endosome or lysosome to the Golgi complex. Here, comparative genomics, cell biology and phylogenetics were used to probe the early evolution of retromer and its function. Retromer subunits Vps26, Vps29 and Vps35 are near universal, and, by inference, the complex was an ancient feature of eukaryotic cells. Surprisingly, we found DSCR3, a Vps26 paralogue in humans associated with Down's syndrome, in at least four eukaryotic supergroups, implying a more ancient origin than previously suspected. By contrast, retromer cargo proteins showed considerable interlineage variability, with lineage-specific and broadly conserved examples found. Vps10 trafficking probably represents an ancestral role for the complex. Vps5, the BAR-domain-containing membrane-deformation subunit, was found in diverse eukaryotes, including in the divergent eukaryote Trypanosoma brucei, where it is the first example of a BAR-domain protein. To determine functional conservation, an initial characterisation of retromer was performed in T. brucei; the endosomal localisation and its role in endosomal targeting are conserved. Therefore retromer is identified as a further feature of the sophisticated intracellular trafficking machinery of the last eukaryotic common ancestor, with BAR domains representing a possible third independent mechanism of membrane-deformation arising in early eukaryotes.
Collapse
Affiliation(s)
- V Lila Koumandou
- Department of Pathology, University of Cambridge, Cambridge CB2 1QT, UK
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
The endosomal network is an organized array of intracellular, membranous compartments that function as sorting sites for endosomal and biosynthetic cargo. The fate of endocytic cargo is reliant upon interactions with a number of molecularly distinct sorting complexes, which tightly control the relationship between sorting of their respective cargo and the physical process of membrane re-scuplturing required for the formation of transport carries. One such complex, retromer, mediates retrograde transport from endosomes to the trans-Golgi network (TGN). Disregulation of retromer has been implicated in a host of disease states including late-onset Alzheimer's. Rather than give a broad overview of retromer biology, here we aim to outline the recent advances in understanding this complex, focussing on the involvement of both clathrin and the cytoskeleton in retromer function.
Collapse
Affiliation(s)
- Ian J McGough
- Henry Wellcome Integrated Signalling Laboratories, School of Biochemistry, Medical Sciences Building, University Walk, University of Bristol, Bristol BS8 1TD, UK
| | | |
Collapse
|
39
|
Prosser DC, Tran D, Schooley A, Wendland B, Ngsee JK. A novel, retromer-independent role for sorting nexins 1 and 2 in RhoG-dependent membrane remodeling. Traffic 2011; 11:1347-62. [PMID: 20604901 DOI: 10.1111/j.1600-0854.2010.01100.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The sorting nexins SNX1 and SNX2 are members of the retromer complex involved in protein sorting within the endocytic pathway. While retromer-dependent functions of SNX1 and SNX2 have been well documented, potential retromer-independent roles remain unclear. Here, we show that SNX1 and SNX2 interact with the Rac1 and RhoG guanine nucleotide exchange factor Kalirin-7. Simultaneous overexpression of SNX1 or SNX2 and Kalirin-7 in epithelial cells causes partial redistribution of both SNX isoforms to the plasma membrane, and results in RhoG-dependent lamellipodia formation that requires functional Phox homology (PX) and Bin/Amphiphysin/Rvs (BAR) domains of SNX, but is Rac1- and retromer-independent. Conversely, depletion of endogenous SNX1 or SNX2 inhibits Kalirin-7-mediated lamellipodia formation. Finally, we demonstrate that SNX1 and SNX2 interact directly with inactive RhoG, suggesting a novel role for these SNX proteins in recruiting an inactive Rho GTPase to its exchange factor.
Collapse
Affiliation(s)
- Derek C Prosser
- Department of Cellular and Molecular Medicine, Ottawa Hospital Research Institute, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada
| | | | | | | | | |
Collapse
|
40
|
Silhankova M, Port F, Harterink M, Basler K, Korswagen HC. Wnt signalling requires MTM-6 and MTM-9 myotubularin lipid-phosphatase function in Wnt-producing cells. EMBO J 2010; 29:4094-105. [PMID: 21076391 PMCID: PMC3018790 DOI: 10.1038/emboj.2010.278] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 10/19/2010] [Indexed: 11/09/2022] Open
Abstract
Wnt proteins are lipid-modified glycoproteins that have important roles in development, adult tissue homeostasis and disease. Secretion of Wnt proteins from producing cells is mediated by the Wnt-binding protein MIG-14/Wls, which binds Wnt in the Golgi network and transports it to the cell surface for release. It has recently been shown that recycling of MIG-14/Wls from the plasma membrane to the trans-Golgi network is required for efficient Wnt secretion, but the mechanism of this retrograde transport pathway is still poorly understood. In this study, we report the identification of MTM-6 and MTM-9 as novel regulators of MIG-14/Wls trafficking in Caenorhabditis elegans. MTM-6 and MTM-9 are myotubularin lipid phosphatases that function as a complex to dephosphorylate phosphatidylinositol-3-phosphate, a central regulator of endosomal trafficking. We show that mutation of mtm-6 or mtm-9 leads to defects in several Wnt-dependent processes and demonstrate that MTM-6 is required in Wnt-producing cells as part of the MIG-14/Wls-recycling pathway. This function is evolutionarily conserved, as the MTM-6 orthologue DMtm6 is required for Wls stability and Wg secretion in Drosophila. We conclude that regulation of endosomal trafficking by the MTM-6/MTM-9 myotubularin complex is required for the retromer-dependent recycling of MIG-14/Wls and Wnt secretion.
Collapse
Affiliation(s)
- Marie Silhankova
- Hubrecht Institute, Royal Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Fillip Port
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Martin Harterink
- Hubrecht Institute, Royal Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Konrad Basler
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Hendrik C Korswagen
- Hubrecht Institute, Royal Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
41
|
Gomez TS, Billadeau DD. A FAM21-containing WASH complex regulates retromer-dependent sorting. Dev Cell 2009; 17:699-711. [PMID: 19922874 DOI: 10.1016/j.devcel.2009.09.009] [Citation(s) in RCA: 417] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 06/10/2009] [Accepted: 09/18/2009] [Indexed: 11/25/2022]
Abstract
The Arp2/3 complex regulates endocytosis, sorting, and trafficking, yet the Arp2/3-stimulating factors orchestrating these distinct events remain ill defined. WASH (Wiskott-Aldrich Syndrome Protein and SCAR Homolog) is an Arp2/3 activator with unknown function that was duplicated during primate evolution. We demonstrate that WASH associates with tubulin and localizes to early endosomal subdomains, which are enriched in Arp2/3, F-actin, and retromer components. Although WASH localized with activated receptors, it was not essential for endocytosis. However, WASH did regulate retromer-mediated retrograde CI-MPR trafficking, which required its association with endosomes, Arp2/3-directed F-actin regulation, and tubulin interaction. Moreover, WASH exists in a multiprotein complex containing FAM21, which links WASH to endosomes and is required for WASH-dependent retromer-mediated sorting. Significantly, without WASH, retromer tubulation was exaggerated, supporting a model wherein WASH links retromer-mediated cargo containing tubules to microtubules for Golgi-directed trafficking and generates F-actin-driven force for tubule scission.
Collapse
Affiliation(s)
- Timothy S Gomez
- Department of Immunology, Division of Oncology Research and Schulze Center for Novel Therapeutics, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | | |
Collapse
|
42
|
The retromer component SNX6 interacts with dynactin p150(Glued) and mediates endosome-to-TGN transport. Cell Res 2009; 19:1334-49. [PMID: 19935774 DOI: 10.1038/cr.2009.130] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The retromer is a protein complex that mediates retrograde transport of transmembrane cargoes from endosomes to the trans-Golgi network (TGN). It is comprised of a cargo-selection subcomplex of Vps26, Vps29 and Vps35 and a membrane-binding coat subcomplex of sorting nexins (SNXs). Previous studies identified SNX1/2 as one of the components of the SNX subcomplex, and SNX5/6 as candidates for the second SNX. How the retromer-associated cargoes are recognized and transported by molecular motors are largely unknown. In this study, we found that one of SNX1/2's dimerization partners, SNX6, interacts with the p150(Glued) subunit of the dynein/dynactin motor complex. We present evidence that SNX6 is a component of the retromer, and that recruitment of the motor complex to the membrane-associated retromer requires the SNX6-p150(Glued) interaction. Disruption of the SNX6-p150(Glued) interaction causes failure in formation and detachment of the tubulovesicular sorting structures from endosomes and results in block of CI-MPR retrieval from endosomes to the TGN. These observations indicate that in addition to SNX1/2, SNX6 in association with the dynein/dynactin complex drives the formation and movement of tubular retrograde intermediates.
Collapse
|
43
|
van Weering JRT, Verkade P, Cullen PJ. SNX-BAR proteins in phosphoinositide-mediated, tubular-based endosomal sorting. Semin Cell Dev Biol 2009; 21:371-80. [PMID: 19914387 DOI: 10.1016/j.semcdb.2009.11.009] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Accepted: 11/06/2009] [Indexed: 12/11/2022]
Abstract
The endocytic network is morphologically characterized by a wide variety of membrane bound compartments that are able to undergo dynamic re-modeling through tubular and vesicular structures. The precise molecular mechanisms governing such re-modeling, and the events that co-ordinated this with the major role of endosomes, cargo sorting, remain unclear. That said, recent work on a protein family of sorting nexins (SNX) - especially a subfamily of SNX that contain a BAR domain (SNX-BARs) - has begun to shed some much needed light on these issues and in particular the process of tubular-based endosomal sorting. SNX-BARs are evolutionary conserved in endosomal protein complexes such as retromer, where they co-ordinate membrane deformation with cargo selection. Furthermore a central theme emerges of SNX-BARs linking the forming membrane carrier to cytoskeletal elements for transport through motor proteins such as dynein. By studying these SNX-BARs, we are gaining an increasingly detailed appreciation of the mechanistic basis of endosomal sorting and how this highly dynamic process functions in health and disease.
Collapse
Affiliation(s)
- Jan R T van Weering
- The Henry Wellcome Integrated Signalling Laboratories, Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | | | | |
Collapse
|
44
|
Affiliation(s)
- Naomi Attar
- The Henry Wellcome Integrated Signalling Laboratories, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | | |
Collapse
|
45
|
Popoff V, Mardones GA, Bai SK, Chambon V, Tenza D, Burgos PV, Shi A, Benaroch P, Urbé S, Lamaze C, Grant BD, Raposo G, Johannes L. Analysis of articulation between clathrin and retromer in retrograde sorting on early endosomes. Traffic 2009; 10:1868-80. [PMID: 19874558 DOI: 10.1111/j.1600-0854.2009.00993.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Clathrin and retromer have key functions for retrograde trafficking between early endosomes and the trans-Golgi network (TGN). Previous studies on Shiga toxin suggested that these two coat complexes operate in a sequential manner. Here, we show that the curvature recognition subunit component sorting nexin 1 (SNX1) of retromer interacts with receptor-mediated endocytosis-8 (RME-8) protein, and that RME-8 and SNX1 colocalize on early endosomes together with a model cargo of the retrograde route, the receptor-binding B-subunit of Shiga toxin (STxB). RME-8 has previously been found to bind to the clathrin uncoating adenosine triphosphatase (ATPase) Hsc70, and we now report that depletion of RME-8 or Hsc70 affects retrograde trafficking at the early endosomes-TGN interface of STxB and the cation-independent mannose 6-phosphate receptor, an endogenous retrograde cargo protein. We also provide evidence that retromer interacts with the clathrin-binding protein hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) not only via SNX1, as previously published (Chin Raynor MC, Wei X, Chen HQ, Li L. Hrs interacts with sorting nexin 1 and regulates degradation of epidermal growth factor receptor. J Biol Chem 2001;276:7069-7078), but also via the core complex component Vps35. Hrs codistributes at the ultrastructural level with STxB on early endosomes, and interfering with Hrs function using antibodies or mild overexpression inhibits retrograde transport. Our combined data suggest a model according to which the functions in retrograde sorting on early endosomes of SNX1/retromer and clathrin are articulated by RME-8, and possibly also by Hrs.
Collapse
Affiliation(s)
- Vincent Popoff
- Institut Curie - Centre de Recherche, Traffic, Signaling and Delivery Laboratory, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Wassmer T, Attar N, Harterink M, van Weering JR, Traer CJ, Oakley J, Goud B, Stephens DJ, Verkade P, Korswagen HC, Cullen PJ. The retromer coat complex coordinates endosomal sorting and dynein-mediated transport, with carrier recognition by the trans-Golgi network. Dev Cell 2009; 17:110-22. [PMID: 19619496 PMCID: PMC2714578 DOI: 10.1016/j.devcel.2009.04.016] [Citation(s) in RCA: 239] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 12/11/2008] [Accepted: 04/30/2009] [Indexed: 12/28/2022]
Abstract
Early endosome-to-trans-Golgi network (TGN) transport is organized by the retromer complex. Consisting of cargo-selective and membrane-bound subcomplexes, retromer coordinates sorting with membrane deformation and carrier formation. Here, we describe four mammalian retromers whose membrane-bound subcomplexes contain specific combinations of the sorting nexins (SNX), SNX1, SNX2, SNX5, and SNX6. We establish that retromer requires a dynamic spatial organization of the endosomal network, which is regulated through association of SNX5/SNX6 with the p150(glued) component of dynactin, an activator of the minus-end directed microtubule motor dynein; an association further defined through genetic studies in C. elegans. Finally, we also establish that the spatial organization of the retromer pathway is mediated through the association of SNX1 with the proposed TGN-localized tether Rab6-interacting protein-1. These interactions describe fundamental steps in retromer-mediated transport and establish that the spatial organization of the retromer network is a critical element required for efficient retromer-mediated sorting.
Collapse
Affiliation(s)
- Thomas Wassmer
- The Henry Wellcome Integrated Signalling Laboratories, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Naomi Attar
- The Henry Wellcome Integrated Signalling Laboratories, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Martin Harterink
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Jan R.T. van Weering
- The Henry Wellcome Integrated Signalling Laboratories, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Colin J. Traer
- The Henry Wellcome Integrated Signalling Laboratories, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Jacqueline Oakley
- The Henry Wellcome Integrated Signalling Laboratories, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Bruno Goud
- Department of Cell Biology, Institut Curie, 26, rue d'Ulm 75248, Paris cedex 05, France
| | - David J. Stephens
- Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Paul Verkade
- Wolfson BioImaging Facility, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
- Department of Biochemistry and Department of Physiology and Pharmacology, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Hendrik C. Korswagen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Peter J. Cullen
- The Henry Wellcome Integrated Signalling Laboratories, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
47
|
Skånland SS, Wälchli S, Brech A, Sandvig K. SNX4 in complex with clathrin and dynein: implications for endosome movement. PLoS One 2009; 4:e5935. [PMID: 19529763 PMCID: PMC2691479 DOI: 10.1371/journal.pone.0005935] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 05/15/2009] [Indexed: 11/23/2022] Open
Abstract
Background Sorting nexins (SNXs) constitute a family of proteins classified by their phosphatidylinositol (PI) binding Phox homology (PX) domain. Some members regulate intracellular trafficking. We have here investigated mechanisms underlying SNX4 mediated endosome to Golgi transport. Methodology/Principal Findings We show that SNX4 forms complexes with clathrin and dynein. The interactions were inhibited by wortmannin, a PI3-kinase inhibitor, suggesting that they form when SNX4 is associated with PI(3)P on endosomes. We further localized the clathrin interacting site on SNX4 to a clathrin box variant. A short peptide containing this motif was sufficient to pull down both clathrin and dynein. Knockdown studies demonstrated that clathrin is not required for the SNX4/dynein interaction. Moreover, clathrin knockdown led to increased Golgi transport of the toxin ricin, as well as redistribution of endosomes. Conclusions/Significance We discuss the possibility of clathrin serving as a regulator of SNX4-dependent transport. Upon clathrin release, dynein may bind SNX4 and mediate retrograde movement.
Collapse
Affiliation(s)
- Sigrid S. Skånland
- Centre for Cancer Biomedicine, Faculty Division Norwegian Radium Hospital, University of Oslo, Oslo, Norway
- Department of Biochemistry, Institute for Cancer Research, Norwegian Radium Hospital, Rikshospitalet University Hospital, Montebello, Oslo, Norway
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
| | - Sébastien Wälchli
- Department of Immunology, Institute for Cancer Research, Norwegian Radium Hospital, Rikshospitalet University Hospital, Montebello, Oslo, Norway
| | - Andreas Brech
- Centre for Cancer Biomedicine, Faculty Division Norwegian Radium Hospital, University of Oslo, Oslo, Norway
- Department of Biochemistry, Institute for Cancer Research, Norwegian Radium Hospital, Rikshospitalet University Hospital, Montebello, Oslo, Norway
| | - Kirsten Sandvig
- Centre for Cancer Biomedicine, Faculty Division Norwegian Radium Hospital, University of Oslo, Oslo, Norway
- Department of Biochemistry, Institute for Cancer Research, Norwegian Radium Hospital, Rikshospitalet University Hospital, Montebello, Oslo, Norway
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
48
|
Tomaszycki ML, Peabody C, Replogle K, Clayton DF, Tempelman RJ, Wade J. Sexual differentiation of the zebra finch song system: potential roles for sex chromosome genes. BMC Neurosci 2009; 10:24. [PMID: 19309515 PMCID: PMC2664819 DOI: 10.1186/1471-2202-10-24] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2008] [Accepted: 03/23/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent evidence suggests that some sex differences in brain and behavior might result from direct genetic effects, and not solely the result of the organizational effects of steroid hormones. The present study examined the potential role for sex-biased gene expression during development of sexually dimorphic singing behavior and associated song nuclei in juvenile zebra finches. RESULTS A microarray screen revealed more than 2400 putative genes (with a false discovery rate less than 0.05) exhibiting sex differences in the telencephalon of developing zebra finches. Increased expression in males was confirmed in 12 of 20 by qPCR using cDNA from the whole telencephalon; all of these appeared to be located on the Z sex chromosome. Six of the genes also showed increased expression in one or more of the song control nuclei of males at post-hatching day 25. Although the function of half of the genes is presently unknown, we have identified three as: 17-beta-hydroxysteroid dehydrogenase type IV, methylcrotonyl-CoA carboxylase, and sorting nexin 2. CONCLUSION The data suggest potential influences of these genes in song learning and/or masculinization of song system morphology, both of which are occurring at this developmental stage.
Collapse
Affiliation(s)
- Michelle L Tomaszycki
- Department of Psychology & Program in Neuroscience, Michigan State University, East Lansing, MI, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
The retromer is a heteropentameric complex that associates with the cytosolic face of endosomes and mediates retrograde transport of transmembrane cargo from endosomes to the trans-Golgi network. The mammalian retromer complex comprises a sorting nexin dimer composed of a still undefined combination of SNX1, SNX2, SNX5 and SNX6, and a cargo-recognition trimer composed of Vps26, Vps29 and Vps35. The SNX subunits contain PX and BAR domains that allow binding to PI(3)P enriched, highly curved membranes of endosomal vesicles and tubules, while Vps26, Vps29 and Vps35 have arrestin, phosphoesterase and alpha-solenoid folds, respectively. Recent studies have implicated retromer in a broad range of physiological, developmental and pathological processes, underscoring the critical nature of retrograde transport mediated by this complex.
Collapse
Affiliation(s)
- Juan S Bonifacino
- Cell Biology and Metabolism Program, National Institute of Child Health and Human Development, Building 18T/Room 101, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
50
|
Alvarez CE. On the origins of arrestin and rhodopsin. BMC Evol Biol 2008; 8:222. [PMID: 18664266 PMCID: PMC2515105 DOI: 10.1186/1471-2148-8-222] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Accepted: 07/29/2008] [Indexed: 01/14/2023] Open
Abstract
Background G protein coupled receptors (GPCRs) are the most numerous proteins in mammalian genomes, and the most common targets of clinical drugs. However, their evolution remains enigmatic. GPCRs are intimately associated with trimeric G proteins, G protein receptor kinases, and arrestins. We conducted phylogenetic studies to reconstruct the history of arrestins. Those findings, in turn, led us to investigate the origin of the photosensory GPCR rhodopsin. Results We found that the arrestin clan is comprised of the Spo0M protein family in archaea and bacteria, and the arrestin and Vps26 families in eukaryotes. The previously known animal arrestins are members of the visual/beta subfamily, which branched from the founding "alpha" arrestins relatively recently. Curiously, we identified both the oldest visual/beta arrestin and opsin genes in Cnidaria (but not in sponges). The arrestin clan has 14 human members: 6 alphas, 4 visual/betas, and 4 Vps26 genes. Others recently showed that the 3D structure of mammalian Vps26 and the biochemical function of the yeast alpha arrestin PalF are similar to those of beta arrestins. We note that only alpha arrestins have PY motifs (known to bind WW domains) in their C-terminal tails, and only visual/betas have helix I in the Arrestin N domain. Conclusion We identified ciliary opsins in Cnidaria and propose this subfamily is ancestral to all previously known animal opsins. That finding is consistent with Darwin's theory that eyes evolved once, and lends some support to Parker's hypothesis that vision triggered the Cambrian explosion of life forms. Our arrestin findings have implications on the evolution of GPCR signaling, and on the biological roles of human alpha arrestins.
Collapse
Affiliation(s)
- Carlos E Alvarez
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.
| |
Collapse
|