1
|
An JU, Lee S, Guk JH, Woo J, Song H, Cho S. Circular intermediate-mediated horizontal transfer of the chromosome-encoded cfr(C) gene in multi-drug resistant Campylobacter coli from swine sources. Front Microbiol 2023; 14:1274245. [PMID: 38188581 PMCID: PMC10770853 DOI: 10.3389/fmicb.2023.1274245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Campylobacter is a major zoonotic pathogen that causes gastrointestinal and, rarely, immune diseases in humans. The antimicrobial-resistance gene cfr(C) carried by Campylobacter and is a cfr-like gene that targets bacterial 23S rRNA through A2503 methylation. cfr(C) confers cross-resistance to five antimicrobial classes (PhLOPSA), including lincosamide, streptogramin A, and pleuromutilin, which are classified as critically important antimicrobials to human by the World Health Organization. To elucidate the genetic variation and horizontal transfer mechanism of cfr(C), we analyzed the genetic background and horizontal transfer unit of Campylobacter-derived cfr(C) through comparative genomic analysis. We identified nine cfr(C)-positive C. coli strains of 157 strains isolated from swine sources. Three novel cfr(C) gene single nucleotide polymorphism (SNP) sites (19delA, 674C > A, and 890 T > C) were identified from nine cfr(C)-positive strains. Among six identified cfr(C) SNP variant types (SNP-I to -VI), five types of randomly inserted cfr(C)-cassettes on chromosome and one type of plasmid-like element were identified, their gene cassette composition differing depending on the cfr(C) variants. Three of six cfr(C) cassette types contained aminoglycoside-streptothricin resistance cluster "aphA3-sat4-aadE." The cfr(C) gene cassette with pcp gene (GC-1, GC-4, and GC-5) formed a pcp-mediated circular intermediate "pcp-hp-cfr(C)-aphA3," which has not been previously reported. Other two cfr(C) cassette-types with ISChh1 formed circular intermediate "ISChh1-aphA3-cfr(C)-lnu (G)-pnp-ant1-hp-ATPase" and "ISChh1-aphA3-cfr(C)-hp." In conjugation assay, the pcp-mediated circular intermediate was naturally transferred to the plasmid of recipient C. coli wild-type strain from swine source, and comparative genomic analysis revealed that cfr(C) encoded in pcp-mediated circular intermediate was inserted into the plasmid of recipient by homologous recombination with pcp and aphA3. This study revealed that novel multidrug resistance gene cfr(C) carried by C. coli from swine sources can be highly genetically diverse and transferable. Moreover, we suggest that the transferability of chromosomal cfr(C) may contribute to the global spread of multidrug resistance against clinically important antimicrobials.
Collapse
Affiliation(s)
| | | | | | | | | | - Seongbeom Cho
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Rudenko O, Baseggio L, McGuigan F, Barnes AC. Transforming the untransformable with knockout minicircles: High-efficiency transformation and vector-free allelic exchange knockout in the fish pathogen Photobacterium damselae. Microbiologyopen 2023; 12:e1374. [PMID: 37642481 PMCID: PMC10441182 DOI: 10.1002/mbo3.1374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/31/2023] Open
Abstract
Gene inactivation studies are critical in pathogenic bacteria, where insights into species biology can guide the development of vaccines and treatments. Allelic exchange via homologous recombination is a generic method of targeted gene editing in bacteria. However, generally applicable protocols are lacking, and suboptimal approaches are often used for nonstandard but epidemiologically important species. Photobacterium damselae subsp. piscicida (Pdp) is a primary pathogen of fish in aquaculture and has been considered hard to transform since the mid-1990s. Consequently, conjugative transfer of RK2/RP4 suicide vectors from Escherichia coli S17-1/SM10 donor strains, a system prone to off-target mutagenesis, was used to deliver the allelic exchange DNA in previous studies. Here we have achieved efficient electrotransformation in Pdp using a salt-free highly concentrated sucrose solution, which performs as a hypertonic wash buffer, cryoprotectant, and electroporation buffer. High-efficiency transformation has enabled vector-free mutagenesis for which we have employed circular minimalistic constructs (knockout minicircles) containing only allelic exchange essentials that were generated by Gibson assembly. Preparation of competent cells using sucrose and electroporation/integration of minicircles had virtually no detectable off-target promutagenic effect. In contrast, a downstream sacB selection apparently induced several large deletions via mobilization of transposable elements. Electroporation of minicircles into sucrose-treated cells is a versatile broadly applicable approach that may facilitate allelic exchange in a wide range of microbial species. The method permitted inactivation of a primary virulence factor unique to Pdp, apoptogenic toxin AIP56, demonstrating the efficacy of minicircles for difficult KO targets located on the high copy number of small plasmids.
Collapse
Affiliation(s)
- Oleksandra Rudenko
- School of Biological Sciences and Centre for Marine ScienceThe University of QueenslandBrisbaneQueenslandAustralia
| | - Laura Baseggio
- School of Biological Sciences and Centre for Marine ScienceThe University of QueenslandBrisbaneQueenslandAustralia
| | - Fynn McGuigan
- School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneQueenslandAustralia
| | - Andrew C. Barnes
- School of Biological Sciences and Centre for Marine ScienceThe University of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
3
|
Xu C, Rao J, Xie Y, Lu J, Li Z, Dong C, Wang L, Jiang J, Chen C, Chen S. The DNA Phosphorothioation Restriction-Modification System Influences the Antimicrobial Resistance of Pathogenic Bacteria. Microbiol Spectr 2023; 11:e0350922. [PMID: 36598279 PMCID: PMC9927239 DOI: 10.1128/spectrum.03509-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/30/2022] [Indexed: 01/05/2023] Open
Abstract
Bacterial defense barriers, such as DNA methylation-associated restriction-modification (R-M) and the CRISPR-Cas system, play an important role in bacterial antimicrobial resistance (AMR). Recently, a novel R-M system based on DNA phosphorothioate (PT) modification has been shown to be widespread in the kingdom of Bacteria as well as Archaea. However, the potential role of the PT R-M system in bacterial AMR remains unclear. In this study, we explored the role of PT R-Ms in AMR with a series of common clinical pathogenic bacteria. By analyzing the distribution of AMR genes related to mobile genetic elements (MGEs), it was shown that the presence of PT R-M effectively reduced the distribution of horizontal gene transfer (HGT)-derived AMR genes in the genome, even in the bacteria that did not tend to acquire AMR genes by HGT. In addition, unique gene variation analysis based on pangenome analysis and MGE prediction revealed that the presence of PT R-M could suppress HGT frequency. Thus, this is the first report showing that the PT R-M system has the potential to repress HGT-derived AMR gene acquisition by reducing the HGT frequency. IMPORTANCE In this study, we demonstrated the effect of DNA PT modification-based R-M systems on horizontal gene transfer of AMR genes in pathogenic bacteria. We show that there is no apparent association between the genetic background of the strains harboring PT R-Ms and the number of AMR genes or the kinds of gene families. The strains equipped with PT R-M harbor fewer plasmid-derived, prophage-derived, or integrating mobile genetic element (iMGE)-related AMR genes and have a lower HGT frequency, but the degree of inhibition varies among different bacteria. In addition, compared with Salmonella enterica and Escherichia coli, Klebsiella pneumoniae prefers to acquire MGE-derived AMR genes, and there is no coevolution between PT R-M clusters and bacterial core genes.
Collapse
Affiliation(s)
- Congrui Xu
- Brain Center, Department of Neurosurgery, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Jing Rao
- Brain Center, Department of Neurosurgery, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Yuqing Xie
- Brain Center, Department of Neurosurgery, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Jiajun Lu
- Information Engineering Institute, Wuchang Institute of Technology, Wuhan, China
| | - Zhiqiang Li
- Brain Center, Department of Neurosurgery, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Changjiang Dong
- Brain Center, Department of Neurosurgery, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Lianrong Wang
- Brain Center, Department of Neurosurgery, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Jinghong Jiang
- Department of Obstetrics & Gynecology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Chao Chen
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Health Science Center, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Shi Chen
- Brain Center, Department of Neurosurgery, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Health Science Center, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
4
|
Santoriello FJ, Kirchberger PC, Boucher Y, Pukatzki S. Pandemic Vibrio cholerae acquired competitive traits from an environmental Vibrio species. Life Sci Alliance 2023; 6:e202201437. [PMID: 36446527 PMCID: PMC9711863 DOI: 10.26508/lsa.202201437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/30/2022] Open
Abstract
Vibrio cholerae is a human pathogen that thrives in estuarine environments. Within the environment and human host, V. cholerae uses the type VI secretion system (T6SS) to inject toxic effectors into neighboring microbes and to establish its replicative niche. V. cholerae strains encode a wide variety of horizontally shared effectors, but pandemic isolates encode an identical set of distinct effectors. Effector set retention in pandemic strains despite mobility between disparate strains suggests that horizontal acquisition of these effectors was crucial for evolving pandemic V. cholerae We attempted to locate the donor of the pandemic effectors to V. cholerae To this end, we identified potential gene transfer events of the pandemic-associated T6SS clusters between a fish pathogen, Vibrio anguillarum, and V. cholerae We supported the likelihood of interaction between these species by demonstrating that homologous effector-immunity pairs from V. cholerae and V. anguillarum can cross-neutralize one another. Thus, V. anguillarum constitutes an environmental reservoir of pandemic-associated V. cholerae T6SS effectors that may have initially facilitated competition between pre-pandemic V. cholerae and V. anguillarum for an environmental niche.
Collapse
Affiliation(s)
- Francis J Santoriello
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Biology, The City College of New York, New York, NY, USA
| | - Paul C Kirchberger
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Yann Boucher
- Saw Swee Hock School of Public Health and National University Hospital System, National University of Singapore, Singapore, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore
- Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore and National University Hospital System, Singapore, Singapore
| | - Stefan Pukatzki
- Department of Biology, The City College of New York, New York, NY, USA
| |
Collapse
|
5
|
Chen P, Yu X, Zhang J, Wang Y. New and traditional methods for antibiotic resistance genes removal: Constructed wetland technology and photocatalysis technology. Front Microbiol 2023; 13:1110793. [PMID: 36687588 PMCID: PMC9845729 DOI: 10.3389/fmicb.2022.1110793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/08/2022] [Indexed: 01/05/2023] Open
Abstract
Antibiotic resistance genes (ARGs) are a new environmental contaminant that poses a major hazard to humans and the environment. This research discusses the methods and drawbacks of two ARG removal approaches, constructed wetlands (CWs) and photocatalysis. CWs primarily rely on the synergistic effects of substrate adsorption, plant uptake, and microbial processes to remove ARGs. The removal of ARGs can be influenced by wetland plants, substrate type, wetland type, and hydraulic conditions. The absolute abundance of ARGs in effluent decreased, but their relative abundance increased. Photocatalysis deactivates ARGs predominantly through reactive oxygen species, with removal effectiveness determined by catalyst type, radiation type, and radiation intensity. The drawback is that it exposes intracellular resistance genes, perhaps increasing the risk of ARG spread. To address the current shortcomings, this paper proposes the feasibility of combining a constructed wetland with photocatalysis technology, which provides a novel strategy for ARG removal.
Collapse
|
6
|
Basiry D, Entezari Heravi N, Uluseker C, Kaster KM, Kommedal R, Pala-Ozkok I. The effect of disinfectants and antiseptics on co- and cross-selection of resistance to antibiotics in aquatic environments and wastewater treatment plants. Front Microbiol 2022; 13:1050558. [PMID: 36583052 PMCID: PMC9793094 DOI: 10.3389/fmicb.2022.1050558] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
The outbreak of the SARS-CoV-2 pandemic led to increased use of disinfectants and antiseptics (DAs), resulting in higher concentrations of these compounds in wastewaters, wastewater treatment plant (WWTP) effluents and receiving water bodies. Their constant presence in water bodies may lead to development and acquisition of resistance against the DAs. In addition, they may also promote antibiotic resistance (AR) due to cross- and co-selection of AR among bacteria that are exposed to the DAs, which is a highly important issue with regards to human and environmental health. This review addresses this issue and provides an overview of DAs structure together with their modes of action against microorganisms. Relevant examples of the most effective treatment techniques to increase the DAs removal efficiency from wastewater are discussed. Moreover, insight on the resistance mechanisms to DAs and the mechanism of DAs enhancement of cross- and co-selection of ARs are presented. Furthermore, this review discusses the impact of DAs on resistance against antibiotics, the occurrence of DAs in aquatic systems, and DA removal mechanisms in WWTPs, which in principle serve as the final barrier before releasing these compounds into the receiving environment. By recognition of important research gaps, research needs to determine the impact of the majority of DAs in WWTPs and the consequences of their presence and spread of antibiotic resistance were identified.
Collapse
Affiliation(s)
- Daniel Basiry
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Nooshin Entezari Heravi
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Cansu Uluseker
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Krista Michelle Kaster
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Roald Kommedal
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Ilke Pala-Ozkok
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| |
Collapse
|
7
|
Biofilms preserve the transmissibility of a multi-drug resistance plasmid. NPJ Biofilms Microbiomes 2022; 8:95. [PMID: 36481746 PMCID: PMC9732292 DOI: 10.1038/s41522-022-00357-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
Self-transmissible multidrug resistance (MDR) plasmids are a major health concern because they can spread antibiotic resistance to pathogens. Even though most pathogens form biofilms, little is known about how MDR plasmids persist and evolve in biofilms. We hypothesize that (i) biofilms act as refugia of MDR plasmids by retaining them in the absence of antibiotics longer than well-mixed planktonic populations and that (ii) the evolutionary trajectories that account for the improvement of plasmid persistence over time differ between biofilms and planktonic populations. In this study, we evolved Acinetobacter baumannii with an MDR plasmid in biofilm and planktonic populations with and without antibiotic selection. In the absence of selection, biofilm populations were better able to maintain the MDR plasmid than planktonic populations. In planktonic populations, plasmid persistence improved rapidly but was accompanied by a loss of genes required for the horizontal transfer of plasmids. In contrast, in biofilms, most plasmids retained their transfer genes, but on average, plasmid, persistence improved less over time. Our results showed that biofilms can act as refugia of MDR plasmids and favor the horizontal mode of plasmid transfer, which has important implications for the spread of MDR.
Collapse
|
8
|
Ye M, Zhang Z, Sun M, Shi Y. Dynamics, gene transfer, and ecological function of intracellular and extracellular DNA in environmental microbiome. IMETA 2022; 1:e34. [PMID: 38868707 PMCID: PMC10989830 DOI: 10.1002/imt2.34] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/16/2022] [Accepted: 05/25/2022] [Indexed: 06/14/2024]
Abstract
Extracellular DNA (eDNA) and intracellular DNA (iDNA) extensively exist in both terrestrial and aquatic environment systems and have been found to play a significant role in the nutrient cycling and genetic information transmission between the environment and microorganisms. As inert DNA sequences, eDNA is able to present stability in the environment from the ribosome enzyme lysis, therein acting as the historical genetic information archive of the microbiome. As a consequence, both eDNA and iDNA can shed light on the functional gene variety and the corresponding microbial activity. In addition, eDNA is a ubiquitous composition of the cell membrane, which exerts a great impact on the resistance of outer stress from environmental pollutants, such as heavy metals, antibiotics, pesticides, and so on. This study focuses on the environmental dynamics and the ecological functions of the eDNA and iDNA from the perspectives of environmental behavior, genetic information transmission, resistance to the environmental contaminants, and so on. By reviewing the status quo and the future vista of the e/iDNAs research, this article sheds light on exploring the ecological functioning of the e/iDNAs in the environmental microbiome.
Collapse
Affiliation(s)
- Mao Ye
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
| | - Zhongyun Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Mingming Sun
- Soil Ecology Lab, College of Resources and Environmental SciencesNanjing Agricultural UniversityNanjingChina
| | - Yu Shi
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityKaifengChina
| |
Collapse
|
9
|
Repeat sequences limit the effectiveness of lateral gene transfer and favored the evolution of meiotic sex in early eukaryotes. Proc Natl Acad Sci U S A 2022; 119:e2205041119. [PMID: 35994648 PMCID: PMC9436333 DOI: 10.1073/pnas.2205041119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The transition from prokaryotic lateral gene transfer to eukaryotic meiotic sex is poorly understood. Phylogenetic evidence suggests that it was tightly linked to eukaryogenesis, which involved an unprecedented rise in both genome size and the density of genetic repeats. Expansion of genome size raised the severity of Muller's ratchet, while limiting the effectiveness of lateral gene transfer (LGT) at purging deleterious mutations. In principle, an increase in recombination length combined with higher rates of LGT could solve this problem. Here, we show using a computational model that this solution fails in the presence of genetic repeats prevalent in early eukaryotes. The model demonstrates that dispersed repeat sequences allow ectopic recombination, which leads to the loss of genetic information and curtails the capacity of LGT to prevent mutation accumulation. Increasing recombination length in the presence of repeat sequences exacerbates the problem. Mutational decay can only be resisted with homology along extended sequences of DNA. We conclude that the transition to homologous pairing along linear chromosomes was a key innovation in meiotic sex, which was instrumental in the expansion of eukaryotic genomes and morphological complexity.
Collapse
|
10
|
Hogan AM, Cardona ST. Gradients in gene essentiality reshape antibacterial research. FEMS Microbiol Rev 2022; 46:fuac005. [PMID: 35104846 PMCID: PMC9075587 DOI: 10.1093/femsre/fuac005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 01/14/2022] [Accepted: 01/24/2022] [Indexed: 02/03/2023] Open
Abstract
Essential genes encode the processes that are necessary for life. Until recently, commonly applied binary classifications left no space between essential and non-essential genes. In this review, we frame bacterial gene essentiality in the context of genetic networks. We explore how the quantitative properties of gene essentiality are influenced by the nature of the encoded process, environmental conditions and genetic background, including a strain's distinct evolutionary history. The covered topics have important consequences for antibacterials, which inhibit essential processes. We argue that the quantitative properties of essentiality can thus be used to prioritize antibacterial cellular targets and desired spectrum of activity in specific infection settings. We summarize our points with a case study on the core essential genome of the cystic fibrosis pathobiome and highlight avenues for targeted antibacterial development.
Collapse
Affiliation(s)
- Andrew M Hogan
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Winnipeg, Manitoba R3T 2N2, Canada
| | - Silvia T Cardona
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Winnipeg, Manitoba R3T 2N2, Canada
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Room 543 - 745 Bannatyne Avenue, Winnipeg, Manitoba, R3E 0J9, Canada
| |
Collapse
|
11
|
Martyn JE, Gomez-Valero L, Buchrieser C. The evolution and role of eukaryotic-like domains in environmental intracellular bacteria: the battle with a eukaryotic cell. FEMS Microbiol Rev 2022; 46:6529235. [DOI: 10.1093/femsre/fuac012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Intracellular pathogens that are able to thrive in different environments, such as Legionella spp. which preferentially live in protozoa in aquatic environments or environmental Chlamydiae which replicate either within protozoa or a range of animals, possess a plethora of cellular biology tools to influence their eukaryotic host. The host manipulation tools that evolved in the interaction with protozoa, confer these bacteria the capacity to also infect phylogenetically distinct eukaryotic cells, such as macrophages and thus they can also be human pathogens. To manipulate the host cell, bacteria use protein secretion systems and molecular effectors. Although these molecular effectors are encoded in bacteria, they are expressed and function in a eukaryotic context often mimicking or inhibiting eukaryotic proteins. Indeed, many of these effectors have eukaryotic-like domains. In this review we propose that the main pathways environmental intracellular bacteria need to subvert in order to establish the host eukaryotic cell as a replication niche are chromatin remodelling, ubiquitination signalling, and modulation of protein-protein interactions via tandem repeat domains. We then provide mechanistic insight into how these proteins might have evolved as molecular weapons. Finally, we highlight that in environmental intracellular bacteria the number of eukaryotic-like domains and proteins is considerably higher than in intracellular bacteria specialised to an isolated niche, such as obligate intracellular human pathogens. As mimics of eukaryotic proteins are critical components of host pathogen interactions, this distribution of eukaryotic-like domains suggests that the environment has selected them.
Collapse
Affiliation(s)
- Jessica E Martyn
- Institut Pasteur, Biologie des Bactéries Intracellulaires and CNRS UMR 3525, Paris, France
| | - Laura Gomez-Valero
- Institut Pasteur, Biologie des Bactéries Intracellulaires and CNRS UMR 3525, Paris, France
| | - Carmen Buchrieser
- Institut Pasteur, Biologie des Bactéries Intracellulaires and CNRS UMR 3525, Paris, France
| |
Collapse
|
12
|
Winter M, Buckling A, Harms K, Johnsen PJ, Vos M. Antimicrobial resistance acquisition via natural transformation: context is everything. Curr Opin Microbiol 2021; 64:133-138. [PMID: 34710742 DOI: 10.1016/j.mib.2021.09.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/01/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
Natural transformation is a process where bacterial cells actively take up free DNA from the environment and recombine it into their genome or reconvert it into extra-chromosomal genetic elements. Although this mechanism is known to mediate the uptake of antibiotic resistance determinants in a range of human pathogens, its importance in the spread of antimicrobial resistance is not always appreciated. This review highlights the context in which transformation takes place: in diverse microbiomes, in interaction with other forms of horizontal gene transfer and in increasingly polluted environments. This examination of the abiotic and biotic drivers of transformation reveals that it could be more important in the dissemination of resistance genes than is often recognised.
Collapse
Affiliation(s)
- Macaulay Winter
- European Centre for Environment and Human Health, University of Exeter Medical School, Environment and Sustainability Institute, Penryn Campus, TR10 9FE, United Kingdom
| | - Angus Buckling
- Department of Biosciences, University of Exeter, Penryn Campus, TR10 9FE, United Kingdom
| | - Klaus Harms
- Microbial Pharmacology and Population Biology Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Pål Jarle Johnsen
- Microbial Pharmacology and Population Biology Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Michiel Vos
- European Centre for Environment and Human Health, University of Exeter Medical School, Environment and Sustainability Institute, Penryn Campus, TR10 9FE, United Kingdom.
| |
Collapse
|
13
|
Guernier-Cambert V, Trachsel J, Maki J, Qi J, Sylte MJ, Hanafy Z, Kathariou S, Looft T. Natural Horizontal Gene Transfer of Antimicrobial Resistance Genes in Campylobacter spp. From Turkeys and Swine. Front Microbiol 2021; 12:732969. [PMID: 34646252 PMCID: PMC8504540 DOI: 10.3389/fmicb.2021.732969] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/13/2021] [Indexed: 12/01/2022] Open
Abstract
Antibiotic-resistant Campylobacter constitutes a serious threat to public health. The clonal expansion of resistant strains and/or the horizontal spread of resistance genes to other strains and species can hinder the clinical effectiveness of antibiotics to treat severe campylobacteriosis. Still, gaps exist in our understanding of the risks of acquisition and spread of antibiotic resistance in Campylobacter. While the in vitro transfer of antimicrobial resistance genes between Campylobacter species via natural transformation has been extensively demonstrated, experimental studies have favored the use of naked DNA to obtain transformants. In this study, we used experimental designs closer to real-world conditions to evaluate the possible transfer of antimicrobial resistance genes between Campylobacter strains of the same or different species (Campylobacter coli or Campylobacter jejuni) and originating from different animal hosts (swine or turkeys). This was evaluated in vitro through co-culture experiments and in vivo with dual-strain inoculation of turkeys, followed by whole genome sequencing of parental and newly emerged strains. In vitro, we observed four independent horizontal gene transfer events leading to the acquisition of resistance to beta-lactams (blaOXA), aminoglycosides [aph(2′′)-If and rpsL] and tetracycline [tet(O)]. Observed events involved the displacement of resistance-associated genes by a mutated version, or the acquisition of genomic islands harboring a resistance determinant by homologous recombination; we did not detect the transfer of resistance-carrying plasmids even though they were present in some strains. In vivo, we recovered a newly emerged strain with dual-resistance pattern and identified the replacement of an existing non-functional tet(O) by a functional tet(O) in the recipient strain. Whole genome comparisons allowed characterization of the events involved in the horizontal spread of resistance genes between Campylobacter following in vitro co-culture and in vivo dual inoculation. Our study also highlights the potential for antimicrobial resistance transfer across Campylobacter species originating from turkeys and swine, which may have implications for farms hosting both species in close proximity.
Collapse
Affiliation(s)
- Vanina Guernier-Cambert
- Food Safety and Enteric Pathogens Research Unit, United States Department of Agriculture, Agricultural Research Services, National Animal Disease Center, Ames, Ames, IA, United States.,Agricultural Research Service Research Participation Program, Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Julian Trachsel
- Food Safety and Enteric Pathogens Research Unit, United States Department of Agriculture, Agricultural Research Services, National Animal Disease Center, Ames, Ames, IA, United States
| | - Joel Maki
- Food Safety and Enteric Pathogens Research Unit, United States Department of Agriculture, Agricultural Research Services, National Animal Disease Center, Ames, Ames, IA, United States.,Agricultural Research Service Research Participation Program, Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States.,Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
| | - Jing Qi
- Shandong Academy of Agricultural Sciences, Institute of Animal Science and Veterinary Medicine, Jinan, China
| | - Matthew J Sylte
- Food Safety and Enteric Pathogens Research Unit, United States Department of Agriculture, Agricultural Research Services, National Animal Disease Center, Ames, Ames, IA, United States
| | - Zahra Hanafy
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | - Sophia Kathariou
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | - Torey Looft
- Food Safety and Enteric Pathogens Research Unit, United States Department of Agriculture, Agricultural Research Services, National Animal Disease Center, Ames, Ames, IA, United States
| |
Collapse
|
14
|
Suhaimi H, Dailin DJ, Malek RA, Hanapi SZ, Ambehabati KK, Keat HC, Prakasham S, Elsayed EA, Misson M, El Enshasy H. Fungal Pectinases: Production and Applications in Food Industries. Fungal Biol 2021. [DOI: 10.1007/978-3-030-64406-2_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
Genome-wide analysis of DNA uptake across the outer membrane of naturally competent Haemophilus influenzae. iScience 2020; 24:102007. [PMID: 33490915 PMCID: PMC7811141 DOI: 10.1016/j.isci.2020.102007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 11/30/2020] [Accepted: 12/23/2020] [Indexed: 01/15/2023] Open
Abstract
The genomes of naturally competent Pasteurellaceae and Neisseriaceae have many short uptake sequences (USS), which allow them to distinguish self-DNA from foreign DNA. To fully characterize this preference we developed genome-wide maps of DNA uptake using both a sequence-based computational model and genomic DNA that had been sequenced after uptake by and recovery from competent Haemophilus influenzae cells. When DNA fragments were shorter than the average USS spacing of ∼1,000 bp, sharp peaks of uptake were centered at USS and separated by valleys with 1000-fold lower uptake. Long DNA fragments (1.5–17 kb) gave much less variation, with 90% of positions having uptake within 2-fold of the mean. All detectable uptake biases arose from sequences that fit the USS uptake motif. Simulated competition predicted that, in its respiratory tract environment, H. influenzae will efficiently take up its own DNA even when human DNA is present in 100-fold excess. For short DNA fragments, an uptake sequence (USS) improves DNA uptake 1000-fold Most longer H. influenzae fragments have USS, giving even uptake across the genome Preferred USS are stiff, so strand melting may facilitate kinking for uptake H. influenzae will take up its own DNA 100-fold better than human DNA
Collapse
|
16
|
Serrano E, Ramos C, Alonso JC, Ayora S. Recombination proteins differently control the acquisition of homeologous DNA during Bacillus subtilis natural chromosomal transformation. Environ Microbiol 2020; 23:512-524. [PMID: 33264457 DOI: 10.1111/1462-2920.15342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/30/2020] [Indexed: 12/23/2022]
Abstract
Natural chromosomal transformation (CT) plays a major role in prokaryote evolution, yet factors that govern the integration of DNA from related species remain poorly understood. We show that in naturally competent Bacillus subtilis cells the acquisition of homeologous sequences is governed by sequence divergence (SD). Integration initiates in a minimal efficient processing segment via homology-directed CT, and its frequency decreases log-linearly with increased SD up to 15%. Beyond this and up to 23% SD the interspecies boundaries prevail, the CT frequency marginally decreases, and short (<10-nucleotides) segments are integrated via homology-facilitated micro-homologous integration. Both mechanisms are RecA dependent. We identify the other recombination proteins required for the acquisition of homeologous DNA. The absence of AddAB, RecF, RecO, RuvAB or RecU, crucial for repair-by-recombination, did not affect CT. However, dprA, radA, recJ, recX or recD2 inactivation strongly decreased intraspecies and interspecies CT. Interspecies CT was not detected beyond ~8% SD in ΔdprA, ~10% in ΔrecJ, ΔradA, ΔrecX and ~14% in ΔrecD2 cells. We propose that DprA, RecX, RadA/Sms, RecJ and RecD2 accessory proteins are important for the generation of genetic diversity. Together with RecA, they facilitate gene acquisition from bacteria of related species.
Collapse
Affiliation(s)
- Ester Serrano
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, 28049, Spain
| | - Cristina Ramos
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, 28049, Spain
| | - Juan C Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, 28049, Spain
| | - Silvia Ayora
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, 28049, Spain
| |
Collapse
|
17
|
Kloos J, Johnsen PJ, Harms K. Tn 1 transposition in the course of natural transformation enables horizontal antibiotic resistance spread in Acinetobacter baylyi. MICROBIOLOGY-SGM 2020; 167. [PMID: 33270000 PMCID: PMC8116780 DOI: 10.1099/mic.0.001003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Transposons are genetic elements that change their intracellular genomic position by transposition and are spread horizontally between bacteria when located on plasmids. It was recently discovered that transposition from fully heterologous DNA also occurs in the course of natural transformation. Here, we characterize the molecular details and constraints of this process using the replicative transposon Tn1 and the naturally competent bacterium Acinetobacter baylyi. We find that chromosomal insertion of Tn1 by transposition occurs at low but detectable frequencies and preferably around the A. baylyi terminus of replication. We show that Tn1 transposition is facilitated by transient expression of the transposase and resolvase encoded by the donor DNA. RecA protein is essential for the formation of a circular, double-stranded cytoplasmic intermediate from incoming donor DNA, and RecO is beneficial but not essential in this process. Absence of the recipient RecBCD nuclease stabilizes the double-stranded intermediate. Based on these results, we suggest a mechanistic model for transposition during natural transformation.
Collapse
Affiliation(s)
- Julia Kloos
- Microbial Pharmacology and Population Biology Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Pål J Johnsen
- Microbial Pharmacology and Population Biology Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Klaus Harms
- Microbial Pharmacology and Population Biology Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
18
|
Slomka S, Françoise I, Hornung G, Asraf O, Biniashvili T, Pilpel Y, Dahan O. Experimental Evolution of Bacillus subtilis Reveals the Evolutionary Dynamics of Horizontal Gene Transfer and Suggests Adaptive and Neutral Effects. Genetics 2020; 216:543-558. [PMID: 32847815 PMCID: PMC7536860 DOI: 10.1534/genetics.120.303401] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/16/2020] [Indexed: 12/18/2022] Open
Abstract
Tracing evolutionary processes that lead to fixation of genomic variation in wild bacterial populations is a prime challenge in molecular evolution. In particular, the relative contribution of horizontal gene transfer (HGT) vs.de novo mutations during adaptation to a new environment is poorly understood. To gain a better understanding of the dynamics of HGT and its effect on adaptation, we subjected several populations of competent Bacillus subtilis to a serial dilution evolution on a high-salt-containing medium, either with or without foreign DNA from diverse pre-adapted or naturally salt tolerant species. Following 504 generations of evolution, all populations improved growth yield on the medium. Sequencing of evolved populations revealed extensive acquisition of foreign DNA from close Bacillus donors but not from more remote donors. HGT occurred in bursts, whereby a single bacterial cell appears to have acquired dozens of fragments at once. In the largest burst, close to 2% of the genome has been replaced by HGT. Acquired segments tend to be clustered in integration hotspots. Other than HGT, genomes also acquired spontaneous mutations. Many of these mutations occurred within, and seem to alter, the sequence of flagellar proteins. Finally, we show that, while some HGT fragments could be neutral, others are adaptive and accelerate evolution.
Collapse
Affiliation(s)
- Shai Slomka
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Itamar Françoise
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Gil Hornung
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Omer Asraf
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tammy Biniashvili
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yitzhak Pilpel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Orna Dahan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
19
|
Woegerbauer M, Bellanger X, Merlin C. Cell-Free DNA: An Underestimated Source of Antibiotic Resistance Gene Dissemination at the Interface Between Human Activities and Downstream Environments in the Context of Wastewater Reuse. Front Microbiol 2020; 11:671. [PMID: 32390973 PMCID: PMC7192050 DOI: 10.3389/fmicb.2020.00671] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/24/2020] [Indexed: 12/31/2022] Open
Abstract
The dissemination of antimicrobial resistance (AMR) is one of the biggest challenges faced by mankind in the public health domains. It is currently favored by a lack of confinement between waste disposal and food production in the environmental compartment. To date, much effort has been devoted into the elucidation and control of cell-associated propagation of AMR. However, substantial knowledge gaps remain on the contribution of cell-free DNA to promote horizontal transfers of resistance genes in wastewater and downstream environments. Cell free DNA, which covers free extracellular DNA (exDNA) as well as DNA encapsulated in vesicles or bacteriophages, can persist after disinfection and promote gene transfer in the absence of physical and temporal contact between a donor and recipient bacteria. The increasing water scarcity associated to climatic change requires developing innovative wastewater reuse practices and, concomitantly, a robust evaluation of AMR occurrence by implementing treatment technologies able to exert a stringent control on AMR propagation in downstream environments exposed to treated or non-treated wastewater. This necessarily implies understanding the fate of ARGs on various forms of cell-free DNA, especially during treatment processes that are permissive to their formation. We propose that comprehensive approaches, investigating both the occurrence of ARGs and their compartmentalization in different forms of cellular or cell-free associated DNA should be established for each treatment technology. This should then allow selecting and tuning technologies for their capacity to limit the propagation of ARGs in any of their forms.
Collapse
Affiliation(s)
- Markus Woegerbauer
- Department for Integrative Risk Assessment, Division for Risk Assessment, Data and Statistics, AGES – Austrian Agency for Health and Food Safety, Vienna, Austria
| | | | | |
Collapse
|
20
|
Burghard-Schrod M, Altenburger S, Graumann PL. The Bacillus subtilis dCMP deaminase ComEB acts as a dynamic polar localization factor for ComGA within the competence machinery. Mol Microbiol 2020; 113:906-922. [PMID: 31954084 DOI: 10.1111/mmi.14457] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 01/15/2023]
Abstract
Bacillus subtilis can import DNA from the environment by an uptake machinery that localizes to a single cell pole. We investigated the roles of ComEB and of the ATPase ComGA during the state of competence. We show that ComEB plays an important role during competence, possibly because it is necessary for the recruitment of GomGA to the cell pole. ComEB localizes to the cell poles even upon expression during exponential phase, indicating that it can serve as polar marker. ComEB is also a deoxycytidylate monophosphate (dCMP) deaminase, for the function of which a conserved cysteine residue is important. However, cysteine-mutant ComEB is still capable of natural transformation, while a comEB deletion strain is highly impaired in competence, indicating that ComEB confers two independent functions. Single-molecule tracking (SMT) reveals that both proteins exchange at the cell poles between bound and unbound in a time scale of a few milliseconds, but turnover of ComGA increases during DNA uptake, whereas the mobility of ComEB is not affected. Our data reveal a highly dynamic role of ComGA during DNA uptake and an unusual role for ComEB as a mediator of polar localization, localizing by diffusion-capture on an extremely rapid time scale and functioning as a moonlighting enzyme.
Collapse
Affiliation(s)
- Marie Burghard-Schrod
- SYNMIKRO, LOEWE Center for Synthetic Microbiology, Marburg, Germany.,Department of Chemistry, Philipps Universität Marburg, Marburg, Germany
| | - Stephan Altenburger
- SYNMIKRO, LOEWE Center for Synthetic Microbiology, Marburg, Germany.,Department of Chemistry, Philipps Universität Marburg, Marburg, Germany
| | - Peter L Graumann
- SYNMIKRO, LOEWE Center for Synthetic Microbiology, Marburg, Germany.,Department of Chemistry, Philipps Universität Marburg, Marburg, Germany
| |
Collapse
|
21
|
Li S, Wang D, Du D, Qian K, Yan W. Characterization of co-metabolic biodegradation of methyl tert-butyl ether by a Acinetobacter sp. strain. RSC Adv 2019; 9:38962-38972. [PMID: 35540635 PMCID: PMC9076015 DOI: 10.1039/c9ra09507a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 11/20/2019] [Indexed: 11/21/2022] Open
Abstract
Co-metabolic bioremediation is a promising approach for the elimination of methyl tert-butyl ether (MTBE), which is a common pollutant found worldwide in ground water. In this paper, a bacterial strain able to co-metabolically degrade MTBE was isolated and named as Acinetobacter sp. SL3 based on 16S rRNA gene sequencing analysis. Strain SL3 could grow on n-alkanes (C5-C8) accompanied with the co-metabolic degradation of MTBE. The number of carbons present in the n-alkane substrate significantly influenced the degradation rate of MTBE and accumulation of tert-butyl alcohol (TBA), with n-octane resulting in a higher MTBE degradation rate (V max = 36.7 nmol min-1 mgprotein -1, K s = 6.4 mmol L-1) and lower TBA accumulation rate. A degradation experiment in a fed-batch reactor revealed that the efficiency of MTBE degradation by Acinetobacter sp. strain SL3 did not show an obvious decrease after nine rounds of MTBE replenishment ranging from 0.1-0.5 mmol L-1. The results of this paper reveal the preferable properties of Acinetobacter sp. SL3 for the bioremediation of MTBE via co-metabolism and leads towards the development of new MTBE elimination technologies.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Environmental Science & Engineering, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Dan Wang
- Department of Environmental Science & Engineering, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Dan Du
- Department of Environmental Science & Engineering, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Keke Qian
- Department of Environmental Science & Engineering, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Wei Yan
- Department of Environmental Science & Engineering, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| |
Collapse
|
22
|
Dordet-Frisoni E, Faucher M, Sagné E, Baranowski E, Tardy F, Nouvel LX, Citti C. Mycoplasma Chromosomal Transfer: A Distributive, Conjugative Process Creating an Infinite Variety of Mosaic Genomes. Front Microbiol 2019; 10:2441. [PMID: 31708906 PMCID: PMC6819513 DOI: 10.3389/fmicb.2019.02441] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/10/2019] [Indexed: 11/13/2022] Open
Abstract
The capacity of Mycoplasmas to engage in horizontal gene transfers has recently been highlighted. Despite their small genome, some of these wall-less bacteria are able to exchange multiple, large portions of their chromosome via a conjugative mechanism that does not conform to canonical Hfr/oriT models. To understand the exact features underlying mycoplasma chromosomal transfer (MCT), extensive genomic analyses were performed at the nucleotide level, using individual mating progenies derived from our model organism, Mycoplasma agalactiae. Genome reconstruction showed that MCT resulted in the distributive transfer of multiple chromosomal DNA fragments and generated progenies composed of a variety of mosaic genomes, each being unique. Analyses of macro- and micro-events resulting from MCT revealed that the vast majority of the acquired fragments were unrelated and co-transferred independently from the selection marker, these resulted in up to 17% of the genome being exchanged. Housekeeping and accessory genes were equally affected by MCT, with up to 35 CDSs being gained or lost. This efficient HGT process also created a number of chimeric genes and genetic micro-variations that may impact gene regulation and/or expression. Our study unraveled the tremendous plasticity of M. agalactiae genome and point toward MCT as a major player in diversification and adaptation to changing environments, offering a significant advantage to this minimal pathogen.
Collapse
Affiliation(s)
| | - Marion Faucher
- IHAP, INRA, ENVT, Université de Toulouse, Toulouse, France
| | - Eveline Sagné
- IHAP, INRA, ENVT, Université de Toulouse, Toulouse, France
| | | | - Florence Tardy
- UMR Mycoplasmoses des Ruminants, VetAgro Sup, Laboratoire de Lyon, ANSES, Université de Lyon, Marcy-l'Étoile, France
| | | | | |
Collapse
|
23
|
Patterson EL, Saski CA, Sloan DB, Tranel PJ, Westra P, Gaines TA. The Draft Genome of Kochia scoparia and the Mechanism of Glyphosate Resistance via Transposon-Mediated EPSPS Tandem Gene Duplication. Genome Biol Evol 2019; 11:2927-2940. [PMID: 31518388 PMCID: PMC6808082 DOI: 10.1093/gbe/evz198] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2019] [Indexed: 12/14/2022] Open
Abstract
Increased copy number of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene confers resistance to glyphosate, the world's most-used herbicide. There are typically three to eight EPSPS copies arranged in tandem in glyphosate-resistant populations of the weed kochia (Kochia scoparia). Here, we report a draft genome assembly from a glyphosate-susceptible kochia individual. Additionally, we assembled the EPSPS locus from a glyphosate-resistant kochia plant by sequencing select bacterial artificial chromosomes from a kochia bacterial artificial chromosome library. Comparing the resistant and susceptible EPSPS locus allowed us to reconstruct the history of duplication in the structurally complex EPSPS locus and uncover the genes that are coduplicated with EPSPS, several of which have a corresponding change in transcription. The comparison between the susceptible and resistant assemblies revealed two dominant repeat types. Additionally, we discovered a mobile genetic element with a FHY3/FAR1-like gene predicted in its sequence that is associated with the duplicated EPSPS gene copies in the resistant line. We present a hypothetical model based on unequal crossing over that implicates this mobile element as responsible for the origin of the EPSPS gene duplication event and the evolution of herbicide resistance in this system. These findings add to our understanding of stress resistance evolution and provide an example of rapid resistance evolution to high levels of environmental stress.
Collapse
Affiliation(s)
- Eric L Patterson
- Department of Bioagricultural Sciences and Pest Management, Colorado State University
- Department of Genetics and Biochemistry, Clemson University
| | | | | | | | - Philip Westra
- Department of Bioagricultural Sciences and Pest Management, Colorado State University
| | - Todd A Gaines
- Department of Bioagricultural Sciences and Pest Management, Colorado State University
| |
Collapse
|
24
|
Carrasco B, Serrano E, Martín-González A, Moreno-Herrero F, Alonso JC. Bacillus subtilis MutS Modulates RecA-Mediated DNA Strand Exchange Between Divergent DNA Sequences. Front Microbiol 2019; 10:237. [PMID: 30814990 PMCID: PMC6382021 DOI: 10.3389/fmicb.2019.00237] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/28/2019] [Indexed: 12/16/2022] Open
Abstract
The efficiency of horizontal gene transfer, which contributes to acquisition and spread of antibiotic resistance and pathogenicity traits, depends on nucleotide sequence and different mismatch-repair (MMR) proteins participate in this process. To study how MutL and MutS MMR proteins regulate recombination across species boundaries, we have studied natural chromosomal transformation with DNA up to ∼23% sequence divergence. We show that Bacillus subtilis natural chromosomal transformation decreased logarithmically with increased sequence divergence up to 15% in wild type (wt) cells or in cells lacking MutS2 or mismatch repair proteins (MutL, MutS or both). Beyond 15% sequence divergence, the chromosomal transformation efficiency is ∼100-fold higher in ΔmutS and ΔmutSL than in ΔmutS2 or wt cells. In the first phase of the biphasic curve (up to 15% sequence divergence), RecA-catalyzed DNA strand exchange contributes to the delineation of species, and in the second phase, homology-facilitated illegitimate recombination might aid in the restoration of inactivated genes. To understand how MutS modulates the integration process, we monitored DNA strand exchange reactions using a circular single-stranded DNA and a linear double-stranded DNA substrate with an internal 77-bp region with ∼16% or ∼54% sequence divergence in an otherwise homologous substrate. The former substrate delayed, whereas the latter halted RecA-mediated strand exchange. Interestingly, MutS addition overcame the heterologous barrier. We propose that MutS assists DNA strand exchange by facilitating RecA disassembly, and indirectly re-engagement with the homologous 5′-end of the linear duplex. Our data supports the idea that MutS modulates bidirectional RecA-mediated integration of divergent sequences and this is important for speciation.
Collapse
Affiliation(s)
- Begoña Carrasco
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Ester Serrano
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Alejandro Martín-González
- Department of Macromolecular Structures, Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Fernando Moreno-Herrero
- Department of Macromolecular Structures, Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Juan C Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
25
|
Ren S, Boo C, Guo N, Wang S, Elimelech M, Wang Y. Photocatalytic Reactive Ultrafiltration Membrane for Removal of Antibiotic Resistant Bacteria and Antibiotic Resistance Genes from Wastewater Effluent. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8666-8673. [PMID: 29984583 DOI: 10.1021/acs.est.8b01888] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Biological wastewater treatment is not effective in removal of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). In this study, we fabricated a photocatalytic reactive membrane by functionalizing polyvinylidene fluoride (PVDF) ultrafiltration (UF) membrane with titanium oxide (TiO2) nanoparticles for the removal of ARB and ARGs from a secondary wastewater effluent. The TiO2-modified PVDF membrane provided complete retention of ARB and effective photocatalytic degradation of ARGs and integrons. Specifically, the total removal efficiency of ARGs (i.e., plasmid-mediated floR, sul1, and sul2) with TiO2-modified PVDF membrane reached ∼98% after exposure to UV irradiation. Photocatalytic degradation of ARGs located in the genome was found to be more efficient than those located in plasmid. Excellent removal of integrons (i.e., intI1, intI2, and intI3) after UV treatment indicated that the horizontal transfer potential of ARGs was effectively controlled by the TiO2 photocatalytic reaction. We also evaluated the antifouling properties of the TiO2-UF membrane to demonstrate its potential application in wastewater treatment.
Collapse
Affiliation(s)
- Shaojie Ren
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering , Shandong University , Qingdao 266237 , China
| | - Chanhee Boo
- Department of Chemical and Environmental Engineering , Yale University , New Haven , Connecticut 06520-8286 , United States
| | - Ning Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering , Shandong University , Qingdao 266237 , China
| | - Shuguang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering , Shandong University , Qingdao 266237 , China
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering , Yale University , New Haven , Connecticut 06520-8286 , United States
| | - Yunkun Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering , Shandong University , Qingdao 266237 , China
- Department of Chemical and Environmental Engineering , Yale University , New Haven , Connecticut 06520-8286 , United States
| |
Collapse
|
26
|
Cooper RM, Tsimring L, Hasty J. Inter-species population dynamics enhance microbial horizontal gene transfer and spread of antibiotic resistance. eLife 2017; 6:e25950. [PMID: 29091031 PMCID: PMC5701796 DOI: 10.7554/elife.25950] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 10/10/2017] [Indexed: 01/13/2023] Open
Abstract
Horizontal gene transfer (HGT) plays a major role in the spread of antibiotic resistance. Of particular concern are Acinetobacter baumannii bacteria, which recently emerged as global pathogens, with nosocomial mortality rates reaching 19-54% (Centers for Disease Control and Prevention, 2013; Joly Guillou, 2005; Talbot et al., 2006). Acinetobacter gains antibiotic resistance remarkably rapidly (Antunes et al., 2014; Joly Guillou, 2005), with multi drug-resistance (MDR) rates exceeding 60% (Antunes et al., 2014; Centers for Disease Control and Prevention, 2013). Despite growing concern (Centers for Disease Control and Prevention, 2013; Talbot et al., 2006), the mechanisms underlying this extensive HGT remain poorly understood (Adams et al., 2008; Fournier et al., 2006; Imperi et al., 2011; Ramirez et al., 2010; Wilharm et al., 2013). Here, we show bacterial predation by Acinetobacter baylyi increases cross-species HGT by orders of magnitude, and we observe predator cells functionally acquiring adaptive resistance genes from adjacent prey. We then develop a population-dynamic model quantifying killing and HGT on solid surfaces. We show DNA released via cell lysis is readily available for HGT and may be partially protected from the environment, describe the effects of cell density, and evaluate potential environmental inhibitors. These findings establish a framework for understanding, quantifying, and combating HGT within the microbiome and the emergence of MDR super-bugs.
Collapse
Affiliation(s)
- Robert M Cooper
- BioCircuits InstituteUniversity of California, San DiegoSan DiegoUnited States
| | - Lev Tsimring
- BioCircuits InstituteUniversity of California, San DiegoSan DiegoUnited States
- San Diego Center for Systems BiologyUniversity of California, San DiegoSan DiegoUnited States
| | - Jeff Hasty
- BioCircuits InstituteUniversity of California, San DiegoSan DiegoUnited States
- San Diego Center for Systems BiologyUniversity of California, San DiegoSan DiegoUnited States
- Molecular Biology Section, Division of Biological ScienceUniversity of California, San DiegoSan DiegoUnited States
- Department of BioengineeringUniversity of California, San DiegoSan DiegoUnited States
| |
Collapse
|
27
|
Waack U, Johnson TL, Chedid K, Xi C, Simmons LA, Mobley HLT, Sandkvist M. Targeting the Type II Secretion System: Development, Optimization, and Validation of a High-Throughput Screen for the Identification of Small Molecule Inhibitors. Front Cell Infect Microbiol 2017; 7:380. [PMID: 28894700 PMCID: PMC5581314 DOI: 10.3389/fcimb.2017.00380] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/09/2017] [Indexed: 12/26/2022] Open
Abstract
Nosocomial pathogens that develop multidrug resistance present an increasing problem for healthcare facilities. Due to its rapid rise in antibiotic resistance, Acinetobacter baumannii is one of the most concerning gram-negative species. A. baumannii typically infects immune compromised individuals resulting in a variety of outcomes, including pneumonia and bacteremia. Using a murine model for bacteremia, we have previously shown that the type II secretion system (T2SS) contributes to in vivo fitness of A. baumannii. Here, we provide support for a role of the T2SS in protecting A. baumannii from human complement as deletion of the T2SS gene gspD resulted in a 100-fold reduction in surviving cells when incubated with human serum. This effect was abrogated in the absence of Factor B, a component of the alternative pathway of complement activation, indicating that the T2SS protects A. baumannii against the alternative complement pathway. Because inactivation of the T2SS results in loss of secretion of multiple enzymes, reduced in vivo fitness, and increased sensitivity to human complement, the T2SS may be a suitable target for therapeutic intervention. Accordingly, we developed and optimized a whole-cell high-throughput screening (HTS) assay based on secreted lipase activity to identify small molecule inhibitors of the T2SS. We tested the reproducibility of our assay using a 6,400-compound library. With small variation within controls and a dynamic range between positive and negative controls, the assay had a z-factor of 0.65, establishing its suitability for HTS. Our screen identified the lipase inhibitors Orlistat and Ebelactone B demonstrating the specificity of the assay. To eliminate inhibitors of lipase activity and lipase expression, two counter assays were developed and optimized. By implementing these assays, all seven tricyclic antidepressants present in the library were found to be inhibitors of the lipase, highlighting the potential of identifying alternative targets for approved pharmaceuticals. Although no T2SS inhibitor was identified among the compounds that reduced lipase activity by ≥30%, our small proof-of-concept pilot study indicates that the HTS regimen is simple, reproducible, and specific and that it can be used to screen larger libraries for the identification of T2SS inhibitors that may be developed into novel A. baumannii therapeutics.
Collapse
Affiliation(s)
- Ursula Waack
- Department of Microbiology and Immunology, University of Michigan Medical SchoolAnn Arbor, MI, United States
| | - Tanya L Johnson
- Department of Microbiology and Immunology, University of Michigan Medical SchoolAnn Arbor, MI, United States.,Department of Chemistry, Eastern Michigan UniversityYpsilanti, MI, United States
| | - Khalil Chedid
- Department of Microbiology and Immunology, University of Michigan Medical SchoolAnn Arbor, MI, United States
| | - Chuanwu Xi
- Department of Environmental Health Sciences, University of Michigan School of Public HealthAnn Arbor, MI, United States
| | - Lyle A Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of MichiganAnn Arbor, MI, United States
| | - Harry L T Mobley
- Department of Microbiology and Immunology, University of Michigan Medical SchoolAnn Arbor, MI, United States
| | - Maria Sandkvist
- Department of Microbiology and Immunology, University of Michigan Medical SchoolAnn Arbor, MI, United States
| |
Collapse
|
28
|
Interbacterial predation as a strategy for DNA acquisition in naturally competent bacteria. Nat Rev Microbiol 2017; 15:621-629. [PMID: 28690319 DOI: 10.1038/nrmicro.2017.66] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Natural competence enables bacteria to take up exogenous DNA. The evolutionary function of natural competence remains controversial, as imported DNA can act as a source of substrates or can be integrated into the genome. Exogenous homologous DNA can also be used for genome repair. In this Opinion article, we propose that predation of non-related neighbouring bacteria coupled with competence regulation might function as an active strategy for DNA acquisition. Competence-dependent kin-discriminated killing has been observed in the unrelated bacteria Vibrio cholerae and Streptococcus pneumoniae. Importantly, both the regulatory networks and the mode of action of neighbour predation differ between these organisms, with V. cholerae using a type VI secretion system and S. pneumoniae secreting bacteriocins. We argue that the forced release of DNA from killed bacteria and the transfer of non-clonal genetic material have important roles in bacterial evolution.
Collapse
|
29
|
Gennaro A, Gomes A, Herman L, Nogue F, Papadopoulou N, Tebbe C. Explanatory note on DNA sequence similarity searches in the context of the assessment of horizontal gene transfer from plants to microorganisms. ACTA ACUST UNITED AC 2017. [DOI: 10.2903/sp.efsa.2017.en-1273] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
30
|
Sequential displacement of Type VI Secretion System effector genes leads to evolution of diverse immunity gene arrays in Vibrio cholerae. Sci Rep 2017; 7:45133. [PMID: 28327641 PMCID: PMC5361080 DOI: 10.1038/srep45133] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/17/2017] [Indexed: 11/09/2022] Open
Abstract
Type VI secretion systems (T6SS) enable bacteria to engage neighboring cells in contact-dependent competition. In Vibrio cholerae, three chromosomal clusters each encode a pair of effector and immunity genes downstream of those encoding the T6SS structural machinery for effector delivery. Different combinations of effector-immunity proteins lead to competition between strains of V. cholerae, which are thought to be protected only from the toxicity of their own effectors. Screening of all publically available V. cholerae genomes showed that numerous strains possess long arrays of orphan immunity genes encoded in the 3' region of their T6SS clusters. Phylogenetic analysis reveals that these genes are highly similar to those found in the effector-immunity pairs of other strains, indicating acquisition by horizontal gene transfer. Extensive genomic comparisons also suggest that successive addition of effector-immunity gene pairs replaces ancestral effectors, yet retains the cognate immunity genes. The retention of old immunity genes perhaps provides protection against nearby kin bacteria in which the old effector was not replaced. This mechanism, combined with frequent homologous recombination, is likely responsible for the high diversity of T6SS effector-immunity gene profiles observed for V. cholerae and closely related species.
Collapse
|
31
|
Houston R, Moxon S, Nogué F, Papadopoulou N, Ramon M, Waigmann E. Assessment of the potential integration of the DNA plasmid vaccine CLYNAV into the salmon genome. EFSA J 2017; 15:e04689. [PMID: 32625277 PMCID: PMC7009875 DOI: 10.2903/j.efsa.2017.4689] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The European Commission mandated EFSA to review a new data package provided by the company Elanco, for the possible integration/non‐integration of the DNA plasmid vaccine CLYNAV into the genome of Atlantic salmon (Salmo salar) and to indicate whether EFSA agrees with the conclusions drawn by Elanco. The vaccine is injected into fish to confer protection against pancreas disease caused by the salmonid alphavirus. The majority of the experimental data provided by the company was for muscle tissue close to the injection site and for gonadal tissue. EFSA considers that the long persistence of DNA plasmid in muscle tissue close to the injection site and the potential heritability of an integration event in gonad cells support the focus of the assessment on both these tissues. The experimental data did not provide scientifically robust evidence for a true integration event. The company overall concluded that the likelihood of integration is negligible, based on considerations in the context of the company's environmental risk assessment, but did not provide a quantitative value for the rate of integration linked to the term ‘negligible’. It is therefore not possible to evaluate this statement specifically with regard to integration rates. EFSA notes that knowledge about homologous and non‐homologous integration predicts that integration could occur with certain frequency. Therefore, EFSA has constructed worst‐case scenarios leading to upper estimates for possible integration rates of the DNA plasmid vaccine into the Atlantic salmon genome. EFSA concludes that, based on the worst‐case scenarios described here and taking into account additional factors decreasing the likelihood of integration, the actual integration rate is likely to be orders of magnitude lower than the upper estimated integration rate calculated in the context of the worst‐case scenarios. With the available evidence, the actual integration rate cannot be estimated with more precision.
Collapse
|
32
|
Li S, Qian K, Wang S, Liang K, Yan W. Polypyrrole-Grafted Coconut Shell Biological Carbon as a Potential Adsorbent for Methyl Tert-Butyl Ether Removal: Characterization and Adsorption Capability. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14020113. [PMID: 28125030 PMCID: PMC5334667 DOI: 10.3390/ijerph14020113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 12/28/2016] [Accepted: 01/04/2017] [Indexed: 11/16/2022]
Abstract
Methyl tert-butyl ether (MTBE) has been used as a common gasoline additive worldwide since the late twentieth century, and it has become the most frequently detected groundwater pollutant in many countries. This study aimed to synthesize a novel microbial carrier to improve its adsorptive capacity for MTBE and biofilm formation, compared to the traditional granular activated carbon (GAC). A polypyrrole (PPy)-modified GAC composite (PPy/GAC) was synthesized, and characterized by Fourier transform infrared spectroscopy (FT-IR) and Brunauer-Emmett-Teller (BET) surface area analysis. The adsorption behaviors of MTBE were well described by the pseudo-second-order and Langmuir isotherm models. Furthermore, three biofilm reactors were established with PPy/GAC, PPy, and GAC as the carriers, respectively, and the degradation of MTBE under continuous flow was investigated. Compared to the biofilm reactors with PPy or GAC (which both broke after a period of operation), the PPy/GAC biofilm column produced stable effluents under variable treatment conditions with a long-term effluent MTBE concentration <20 μg/L. Pseudomonas aeruginosa and Acinetobacter pittii may be the predominant bacteria responsible for MTBE degradation in these biofilm reactors.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Keke Qian
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Shan Wang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Kaiqiang Liang
- Research Institute of Yanchang Petroleum (GROUP) Co. Ltd., Xi'an 710075, China.
| | - Wei Yan
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
33
|
Tepfer D. DNA Transfer to Plants by Agrobacterium rhizogenes: A Model for Genetic Communication Between Species and Biospheres. REFERENCE SERIES IN PHYTOCHEMISTRY 2017. [DOI: 10.1007/978-3-319-28669-3_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
|
34
|
Naegeli H, Birch AN, Casacuberta J, De Schrijver A, Gralak MA, Guerche P, Jones H, Manachini B, Messéan A, Nielsen EE, Nogué F, Robaglia C, Rostoks N, Sweet J, Tebbe C, Visioli F, Wal J, Divéki Z, Fernández‐Dumont A, Gennaro A, Lanzoni A, Maria Neri F, Paraskevopoulos K. Scientific Opinion on an application by Dow AgroSciences (EFSA‐GMO‐NL‐2013‐116) for placing on the market of genetically modified insect‐resistant soybean DAS‐81419‐2 for food and feed uses, import and processing under Regulation (EC) No 1829/2003. EFSA J 2016. [DOI: 10.2903/j.efsa.2016.4642] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
35
|
Zhang G, Chen T, Chang S, Zhang W, Wu X, Wu M, Wang Y, Long H, Chen X, Wang Y, Liu G. Complete genome sequence of Acinetobacter sp. TTH0-4, a cold-active crude oil degrading strain isolated from Qinghai-Tibet Plateau. J Biotechnol 2016; 226:54-5. [PMID: 26988394 DOI: 10.1016/j.jbiotec.2016.03.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 03/10/2016] [Indexed: 10/22/2022]
Abstract
Acinetobacter sp. strain TTH0-4 was isolated from a permafrost region in Qinghai-Tibet Plateau. With its capability to degrade crude oil at low temperature, 10°C, the strain could be an excellent candidate for the bioremediation of crude oil pollution in cold areas or at cold seasons. We sequenced and annotated the whole genome to serve as a basis for further elucidation of the genetic background of this promising strain, and provide opportunities for investigating the metabolic and regulatory mechanisms and optimizing the biodegradative activity in cold environment.
Collapse
Affiliation(s)
- Gaosen Zhang
- Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute (CAREERI), Chinese Academy of Sciences (CAS), Lanzhou, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, China
| | - Tuo Chen
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, China; State Key Laboratory of Cryospheric Sciences, CAREERI, CAS, Lanzhou, China
| | - Sijing Chang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, China; State Key Laboratory of Cryospheric Sciences, CAREERI, CAS, Lanzhou, China
| | - Wei Zhang
- Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute (CAREERI), Chinese Academy of Sciences (CAS), Lanzhou, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, China
| | - Xiukun Wu
- Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute (CAREERI), Chinese Academy of Sciences (CAS), Lanzhou, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, China
| | - Minghui Wu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, China; State Key Laboratory of Cryospheric Sciences, CAREERI, CAS, Lanzhou, China
| | - Yilin Wang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, China; School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Haozhi Long
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Ximing Chen
- Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute (CAREERI), Chinese Academy of Sciences (CAS), Lanzhou, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, China
| | - Yun Wang
- Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute (CAREERI), Chinese Academy of Sciences (CAS), Lanzhou, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, China
| | - Guangxiu Liu
- Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute (CAREERI), Chinese Academy of Sciences (CAS), Lanzhou, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, China.
| |
Collapse
|
36
|
van Dijk B, Hogeweg P. In Silico Gene-Level Evolution Explains Microbial Population Diversity through Differential Gene Mobility. Genome Biol Evol 2015; 8:176-88. [PMID: 26710854 PMCID: PMC4758251 DOI: 10.1093/gbe/evv255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Microbial communities can show astonishing ecological and phylogenetic diversity. What is the role of pervasive horizontal gene transfer (HGT) in shaping this diversity in the presence of clonally expanding “killer strains”? Does HGT of antibiotic production and resistance genes erase phylogenetic structure? To answer these questions, we study a spatial eco-evolutionary model of prokaryotes, inspired by recent findings on antagonistic interactions in Vibrionaceae populations. We find toxin genes evolve to be highly mobile, whereas resistance genes minimize mobility. This differential gene mobility is a requirement to maintain a diverse and dynamic ecosystem. The resistance gene repertoire acts as a core genome that corresponds to the phylogeny of cells, whereas toxin genes do not follow this phylogeny and have a patchy distribution. We also show that interstrain HGT makes the emergent phylogenetic structure robust to selective sweeps. Finally, in this evolved ecosystem we observe antagonistic interactions between, rather than within, spatially structure subpopulations, as has been previously observed for prokaryotes in soils and oceans. In contrast to ascribing the diversification and evolution of microbial communities to clonal dynamics, we show that multilevel evolution can elegantly explain the observed phylogenetic structure and ecosystem diversity.
Collapse
Affiliation(s)
- Bram van Dijk
- Department of Theoretical Biology and Bioinformatics, Utrecht University, The Netherlands
| | - Paulien Hogeweg
- Department of Theoretical Biology and Bioinformatics, Utrecht University, The Netherlands
| |
Collapse
|
37
|
Spring-Pearson SM, Stone JK, Doyle A, Allender CJ, Okinaka RT, Mayo M, Broomall SM, Hill JM, Karavis MA, Hubbard KS, Insalaco JM, McNew LA, Rosenzweig CN, Gibbons HS, Currie BJ, Wagner DM, Keim P, Tuanyok A. Pangenome Analysis of Burkholderia pseudomallei: Genome Evolution Preserves Gene Order despite High Recombination Rates. PLoS One 2015; 10:e0140274. [PMID: 26484663 PMCID: PMC4613141 DOI: 10.1371/journal.pone.0140274] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 09/23/2015] [Indexed: 11/19/2022] Open
Abstract
The pangenomic diversity in Burkholderia pseudomallei is high, with approximately 5.8% of the genome consisting of genomic islands. Genomic islands are known hotspots for recombination driven primarily by site-specific recombination associated with tRNAs. However, recombination rates in other portions of the genome are also high, a feature we expected to disrupt gene order. We analyzed the pangenome of 37 isolates of B. pseudomallei and demonstrate that the pangenome is ‘open’, with approximately 136 new genes identified with each new genome sequenced, and that the global core genome consists of 4568±16 homologs. Genes associated with metabolism were statistically overrepresented in the core genome, and genes associated with mobile elements, disease, and motility were primarily associated with accessory portions of the pangenome. The frequency distribution of genes present in between 1 and 37 of the genomes analyzed matches well with a model of genome evolution in which 96% of the genome has very low recombination rates but 4% of the genome recombines readily. Using homologous genes among pairs of genomes, we found that gene order was highly conserved among strains, despite the high recombination rates previously observed. High rates of gene transfer and recombination are incompatible with retaining gene order unless these processes are either highly localized to specific sites within the genome, or are characterized by symmetrical gene gain and loss. Our results demonstrate that both processes occur: localized recombination introduces many new genes at relatively few sites, and recombination throughout the genome generates the novel multi-locus sequence types previously observed while preserving gene order.
Collapse
Affiliation(s)
- Senanu M. Spring-Pearson
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, United States of America
| | - Joshua K. Stone
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, United States of America
| | - Adina Doyle
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, United States of America
| | - Christopher J. Allender
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, United States of America
| | - Richard T. Okinaka
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, United States of America
| | - Mark Mayo
- Menzies School of Health Research and Infectious Disease Department, Royal Darwin Hospital. Darwin, Northern Territory, Australia
| | - Stacey M. Broomall
- BioSciences Division, Edgewood Chemical Biological Center, Aberdeen Proving Ground, MD, United States of America
| | - Jessica M. Hill
- BioSciences Division, Edgewood Chemical Biological Center, Aberdeen Proving Ground, MD, United States of America
| | - Mark A. Karavis
- BioSciences Division, Edgewood Chemical Biological Center, Aberdeen Proving Ground, MD, United States of America
| | - Kyle S. Hubbard
- BioSciences Division, Edgewood Chemical Biological Center, Aberdeen Proving Ground, MD, United States of America
| | - Joseph M. Insalaco
- BioSciences Division, Edgewood Chemical Biological Center, Aberdeen Proving Ground, MD, United States of America
| | - Lauren A. McNew
- BioSciences Division, Edgewood Chemical Biological Center, Aberdeen Proving Ground, MD, United States of America
| | - C. Nicole Rosenzweig
- BioSciences Division, Edgewood Chemical Biological Center, Aberdeen Proving Ground, MD, United States of America
| | - Henry S. Gibbons
- BioSciences Division, Edgewood Chemical Biological Center, Aberdeen Proving Ground, MD, United States of America
| | - Bart J. Currie
- Menzies School of Health Research and Infectious Disease Department, Royal Darwin Hospital. Darwin, Northern Territory, Australia
| | - David M. Wagner
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, United States of America
| | - Paul Keim
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, United States of America
- * E-mail:
| | - Apichai Tuanyok
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, United States of America
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
38
|
Abstract
What are species? How do they arise? These questions are not easy to answer and have been particularly controversial in microbiology. Yet, for those microbiologists studying environmental questions or dealing with clinical issues, the ability to name and recognize species, widely considered the fundamental units of ecology, can be practically useful. On a more fundamental level, the speciation problem, the focus here, is more mechanistic and conceptual. What is the origin of microbial species, and what evolutionary and ecological mechanisms keep them separate once they begin to diverge? To what extent are these mechanisms universal across diverse types of microbes, and more broadly across the entire the tree of life? Here, we propose that microbial speciation must be viewed in light of gene flow, which defines units of genetic similarity, and of natural selection, which defines units of phenotype and ecological function. We discuss to what extent ecological and genetic units overlap to form cohesive populations in the wild, based on recent evolutionary modeling and population genomics studies. These studies suggest a continuous "speciation spectrum," which microbial populations traverse in different ways depending on their balance of gene flow and natural selection.
Collapse
Affiliation(s)
- B Jesse Shapiro
- Département de Sciences Biologiques, Université de Montréal, Montréal QC H3C 3J7, Canada
| | - Martin F Polz
- Parsons Laboratory for Environmental Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
39
|
Ku C, Nelson-Sathi S, Roettger M, Sousa FL, Lockhart PJ, Bryant D, Hazkani-Covo E, McInerney JO, Landan G, Martin WF. Endosymbiotic origin and differential loss of eukaryotic genes. Nature 2015; 524:427-32. [PMID: 26287458 DOI: 10.1038/nature14963] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/20/2015] [Indexed: 01/11/2023]
Abstract
Chloroplasts arose from cyanobacteria, mitochondria arose from proteobacteria. Both organelles have conserved their prokaryotic biochemistry, but their genomes are reduced, and most organelle proteins are encoded in the nucleus. Endosymbiotic theory posits that bacterial genes in eukaryotic genomes entered the eukaryotic lineage via organelle ancestors. It predicts episodic influx of prokaryotic genes into the eukaryotic lineage, with acquisition corresponding to endosymbiotic events. Eukaryotic genome sequences, however, increasingly implicate lateral gene transfer, both from prokaryotes to eukaryotes and among eukaryotes, as a source of gene content variation in eukaryotic genomes, which predicts continuous, lineage-specific acquisition of prokaryotic genes in divergent eukaryotic groups. Here we discriminate between these two alternatives by clustering and phylogenetic analysis of eukaryotic gene families having prokaryotic homologues. Our results indicate (1) that gene transfer from bacteria to eukaryotes is episodic, as revealed by gene distributions, and coincides with major evolutionary transitions at the origin of chloroplasts and mitochondria; (2) that gene inheritance in eukaryotes is vertical, as revealed by extensive topological comparison, sparse gene distributions stemming from differential loss; and (3) that continuous, lineage-specific lateral gene transfer, although it sometimes occurs, does not contribute to long-term gene content evolution in eukaryotic genomes.
Collapse
Affiliation(s)
- Chuan Ku
- Institute of Molecular Evolution, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Shijulal Nelson-Sathi
- Institute of Molecular Evolution, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Mayo Roettger
- Institute of Molecular Evolution, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Filipa L Sousa
- Institute of Molecular Evolution, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Peter J Lockhart
- Institute of Fundamental Sciences, Massey University, Palmerston North 4474, New Zealand
| | - David Bryant
- Department of Mathematics and Statistics, University of Otago, Dunedin 9054, New Zealand
| | - Einat Hazkani-Covo
- Department of Natural and Life Sciences, The Open University of Israel, Ra'anana 43107, Israel
| | - James O McInerney
- Department of Biology, National University of Ireland, Maynooth, County Kildare, Ireland.,Michael Smith Building, The University of Manchester, Oxford Rd, Manchester M13 9PL, UK
| | - Giddy Landan
- Genomic Microbiology Group, Institute of Microbiology, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - William F Martin
- Institute of Molecular Evolution, Heinrich-Heine University, 40225 Düsseldorf, Germany.,Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| |
Collapse
|
40
|
Woegerbauer M, Kuffner M, Domingues S, Nielsen KM. Involvement of aph(3')-IIa in the formation of mosaic aminoglycoside resistance genes in natural environments. Front Microbiol 2015; 6:442. [PMID: 26042098 PMCID: PMC4437187 DOI: 10.3389/fmicb.2015.00442] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 04/24/2015] [Indexed: 11/13/2022] Open
Abstract
Intragenic recombination leading to mosaic gene formation is known to alter resistance profiles for particular genes and bacterial species. Few studies have examined to what extent aminoglycoside resistance genes undergo intragenic recombination. We screened the GenBank database for mosaic gene formation in homologs of the aph(3')-IIa (nptII) gene. APH(3')-IIa inactivates important aminoglycoside antibiotics. The gene is widely used as a selectable marker in biotechnology and enters the environment via laboratory discharges and the release of transgenic organisms. Such releases may provide opportunities for recombination in competent environmental bacteria. The retrieved GenBank sequences were grouped in three datasets comprising river water samples, duck pathogens and full-length variants from various bacterial genomes and plasmids. Analysis for recombination in these datasets was performed with the Recombination Detection Program (RDP4), and the Genetic Algorithm for Recombination Detection (GARD). From a total of 89 homologous sequences, 83% showed 99-100% sequence identity with aph(3')-IIa originally described as part of transposon Tn5. Fifty one were unique sequence variants eligible for recombination analysis. Only a single recombination event was identified with high confidence and indicated the involvement of aph(3')-IIa in the formation of a mosaic gene located on a plasmid of environmental origin in the multi-resistant isolate Pseudomonas aeruginosa PA96. The available data suggest that aph(3')-IIa is not an archetypical mosaic gene as the divergence between the described sequence variants and the number of detectable recombination events is low. This is in contrast to the numerous mosaic alleles reported for certain penicillin or tetracycline resistance determinants.
Collapse
Affiliation(s)
- Markus Woegerbauer
- Integrative Risk Assessment - Data - Statistics, GMO Risk Assessment, Austrian Agency for Health and Food Safety Vienna, Austria
| | - Melanie Kuffner
- Integrative Risk Assessment - Data - Statistics, GMO Risk Assessment, Austrian Agency for Health and Food Safety Vienna, Austria
| | - Sara Domingues
- Faculty of Pharmacy and Center for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal
| | - Kaare M Nielsen
- Department of Pharmacy, University of Tromsø Tromsø, Norway ; Genøk-Center for Biosafety Tromsø Tromsø, Norway
| |
Collapse
|
41
|
Biswas I. Genetic tools for manipulating Acinetobacter baumannii genome: an overview. J Med Microbiol 2015; 64:657-669. [PMID: 25948809 DOI: 10.1099/jmm.0.000081] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Acinetobacter baumannii is an emerging nosocomial pathogen involved in a variety of infections ranging from minor soft-tissue infections to more severe infections such as ventilator-associated pneumonia and bacteraemia. A. baumannii has become resistant to most of the commonly used antibiotics and multidrug-resistant isolates are becoming a severe problem in the healthcare setting. In the past few years, whole-genome sequences of >200 A. baumannii isolates have been generated. Several methods and molecular tools have been used for genetic manipulation of various Acinetobacter spp. Here, we review recent developments of various genetic tools used for modification of the A. baumannii genome, including various ways to inactivate gene function, chromosomal integration and transposon mutagenesis.
Collapse
Affiliation(s)
- Indranil Biswas
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| |
Collapse
|
42
|
Kurth D, Belfiore C, Gorriti MF, Cortez N, Farias ME, Albarracín VH. Genomic and proteomic evidences unravel the UV-resistome of the poly-extremophile Acinetobacter sp. Ver3. Front Microbiol 2015; 6:328. [PMID: 25954258 PMCID: PMC4406064 DOI: 10.3389/fmicb.2015.00328] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/01/2015] [Indexed: 12/20/2022] Open
Abstract
Ultraviolet radiation can damage biomolecules, with detrimental or even lethal effects for life. Even though lower wavelengths are filtered by the ozone layer, a significant amount of harmful UV-B and UV-A radiation reach Earth's surface, particularly in high altitude environments. high-altitude Andean lakes (HAALs) are a group of disperse shallow lakes and salterns, located at the Dry Central Andes region in South America at altitudes above 3,000 m. As it is considered one of the highest UV-exposed environments, HAAL microbes constitute model systems to study UV-resistance mechanisms in environmental bacteria at various complexity levels. Herein, we present the genome sequence of Acinetobacter sp. Ver3, a gammaproteobacterium isolated from Lake Verde (4,400 m), together with further experimental evidence supporting the phenomenological observations regarding this bacterium ability to cope with increased UV-induced DNA damage. Comparison with the genomes of other Acinetobacter strains highlighted a number of unique genes, such as a novel cryptochrome. Proteomic profiling of UV-exposed cells identified up-regulated proteins such as a specific cytoplasmic catalase, a putative regulator, and proteins associated to amino acid and protein synthesis. Down-regulated proteins were related to several energy-generating pathways such as glycolysis, beta-oxidation of fatty acids, and electronic respiratory chain. To the best of our knowledge, this is the first report on a genome from a polyextremophilic Acinetobacter strain. From the genomic and proteomic data, an "UV-resistome" was defined, encompassing the genes that would support the outstanding UV-resistance of this strain.
Collapse
Affiliation(s)
- Daniel Kurth
- Laboratorio de Investigaciones Microbiologicas Lagunas Andinas, Centro Científico Tecnológico, Planta Piloto de Procesos Industriales Microbiológicos - Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán Argentina
| | - Carolina Belfiore
- Laboratorio de Investigaciones Microbiologicas Lagunas Andinas, Centro Científico Tecnológico, Planta Piloto de Procesos Industriales Microbiológicos - Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán Argentina
| | - Marta F Gorriti
- Laboratorio de Investigaciones Microbiologicas Lagunas Andinas, Centro Científico Tecnológico, Planta Piloto de Procesos Industriales Microbiológicos - Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán Argentina
| | - Néstor Cortez
- Centro Científico Tecnológico, IBR - CONICET, Universidad Nacional de Rosario Rosario, Argentina
| | - María E Farias
- Laboratorio de Investigaciones Microbiologicas Lagunas Andinas, Centro Científico Tecnológico, Planta Piloto de Procesos Industriales Microbiológicos - Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán Argentina
| | - Virginia H Albarracín
- Laboratorio de Investigaciones Microbiologicas Lagunas Andinas, Centro Científico Tecnológico, Planta Piloto de Procesos Industriales Microbiológicos - Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán Argentina ; Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, San Miguel de Tucumán Argentina
| |
Collapse
|
43
|
Baylay AJ, Ivens A, Piddock LJV. A novel gene amplification causes upregulation of the PatAB ABC transporter and fluoroquinolone resistance in Streptococcus pneumoniae. Antimicrob Agents Chemother 2015; 59:3098-108. [PMID: 25779578 PMCID: PMC4432121 DOI: 10.1128/aac.04858-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 03/01/2015] [Indexed: 01/14/2023] Open
Abstract
Overexpression of the ABC transporter genes patA and patB confers efflux-mediated fluoroquinolone resistance in Streptococcus pneumoniae and is also linked to pneumococcal stress responses. Although upregulation of patAB has been observed in many laboratory mutants and clinical isolates, the regulatory mechanisms controlling expression of these genes are unknown. In this study, we aimed to identify the cause of high-level constitutive overexpression of patAB in M184, a multidrug-resistant mutant of S. pneumoniae R6. Using a whole-genome transformation and sequencing approach, we identified a novel duplication of a 9.2-kb region of the M184 genome which included the patAB genes. This duplication did not affect growth and was semistable with a low segregation rate. The expression levels of patAB in M184 were much higher than those that could be fully explained by doubling of the gene dosage alone, and inactivation of the first copy of patA had no effect on multidrug resistance. Using a green fluorescent protein reporter system, increased patAB expression was ascribed to transcriptional read-through from a tRNA gene upstream of the second copy of patAB. This is the first report of a large genomic duplication causing antibiotic resistance in S. pneumoniae and also of a genomic duplication causing antibiotic resistance by a promoter switching mechanism.
Collapse
Affiliation(s)
- Alison J Baylay
- Antimicrobials Research Group, School of Immunity and Infection, Institute of Microbiology and Infection, and College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Alasdair Ivens
- Centre for Immunity, Infection and Evolution, Ashworth Laboratories, University of Edinburgh, Edinburgh, United Kingdom
| | - Laura J V Piddock
- Antimicrobials Research Group, School of Immunity and Infection, Institute of Microbiology and Infection, and College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
44
|
Jung J, Park W. Acinetobacter species as model microorganisms in environmental microbiology: current state and perspectives. Appl Microbiol Biotechnol 2015; 99:2533-48. [PMID: 25693672 DOI: 10.1007/s00253-015-6439-y] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 01/23/2015] [Accepted: 01/26/2015] [Indexed: 01/11/2023]
Abstract
Acinetobacter occupies an important position in nature because of its ubiquitous presence in diverse environments such as soils, fresh water, oceans, sediments, and contaminated sites. Versatile metabolic characteristics allow species of this genus to catabolize a wide range of natural compounds, implying active participation in the nutrient cycle in the ecosystem. On the other hand, multi-drug-resistant Acinetobacter baumannii causing nosocomial infections with high mortality has been raising serious concerns in medicine. Due to the ecological and clinical importance of the genus, Acinetobacter was proposed as a model microorganism for environmental microbiological studies, pathogenicity tests, and industrial production of chemicals. For these reasons, Acinetobacter has attracted significant attention in scientific and biotechnological fields, but only limited research areas such as natural transformation and aromatic compound degradation have been intensively investigated, while important physiological characteristics including quorum sensing, motility, and stress response have been neglected. The aim of this review is to summarize the recent achievements in Acinetobacter research with a special focus on strain DR1 and to compare the similarities and differences between species or other genera. Research areas that require more attention in future research are also suggested.
Collapse
Affiliation(s)
- Jaejoon Jung
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 136-713, Republic of Korea
| | | |
Collapse
|
45
|
|
46
|
Rossi F, Rizzotti L, Felis GE, Torriani S. Horizontal gene transfer among microorganisms in food: Current knowledge and future perspectives. Food Microbiol 2014; 42:232-43. [DOI: 10.1016/j.fm.2014.04.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 04/10/2014] [Indexed: 01/01/2023]
|
47
|
EFSA Panel on Genetically Modified Organisms (GMO). Scientific Opinion on applications (EFSA-GMO-UK-2008-57 and EFSA-GMO-RX-MON15985) for the placing on the market of insect-resistant genetically modified cotton MON 15985 for food and feed uses, import and processing, and for the renewal of authorisation o. EFSA J 2014. [DOI: 10.2903/j.efsa.2014.3770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
48
|
Statement on a conceptual framework for the risk assessment of certain food additives re‐evaluated under Commission Regulation (EU) No 257/2010. EFSA J 2014. [DOI: 10.2903/j.efsa.2014.3697] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
49
|
Scientific Opinion on application (EFSA‐GMO‐BE‐2011‐101) for the placing on the market of herbicide‐tolerant genetically modified oilseed rape MON 88302 for food and feed uses, import and processing under Regulation (EC) No 1829/2003 from Monsanto. EFSA J 2014. [DOI: 10.2903/j.efsa.2014.3701] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
50
|
Field Supervisory Test of DREB-Transgenic Populus: Salt Tolerance, Long-Term Gene Stability and Horizontal Gene Transfer. FORESTS 2014. [DOI: 10.3390/f5051106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|