1
|
Zheng Y, Sheng S, Ma Y, Chen Y, Liu R, Zhang W, Zhang L, Liu Z, He Y, Zeng H, Zhang Z. FADD amplification is associated with CD8 + T-cell exclusion and malignant progression in HNSCC. Oral Dis 2024; 30:5007-5021. [PMID: 38696357 DOI: 10.1111/odi.14976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/31/2024] [Accepted: 04/18/2024] [Indexed: 05/04/2024]
Abstract
OBJECTIVE This study aimed to clarify the relationship between FADD amplification and overexpression and the tumor immune microenvironment. METHODS Immunohistochemical staining and bioanalysis were used to analyze the association between FADD expression in tumor cells and cells in tumor microenvironment. RNA-seq analysis was used to detect the differences in gene expression upon FADD overexpression. Flow cytometry and multicolor immunofluorescence staining (mIHC) were used to detect the differences in CD8+ T-cell infiltration in FADD-overexpressed cells or tumor tissues. RESULTS Overexpression of FADD significantly promoted tumor growth. Cells with high FADD expression presented high expression of CD276 and FGFBP1 and low expression of proinflammatory factors (such as IFIT1-3 and CXCL8), which reduced the percentage of CD8+ T cells and created a "cold tumor" immune microenvironment, thus promoting tumor progression. In vivo and in vitro experiment confirmed that tumor tissues with excessive FADD expression exhibited CD8+ T-cell exclusion in the microenvironment. CONCLUSION Our preliminary investigation has discovered the association between FADD expression and the immunosuppressive microenvironment in HNSCC. Due to the high frequent amplification of the chromosomal region 11q13.3, where FADD is located, targeting FADD holds promise for improving the immune-inactive state of tumors, subsequently inhibiting HNSCC tumor progression.
Collapse
Affiliation(s)
- Yang Zheng
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Surui Sheng
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yanni Ma
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinan Chen
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruixin Liu
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wuchang Zhang
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Zhang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhonglong Liu
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yue He
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Hanlin Zeng
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiyuan Zhang
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
2
|
Lescano López I, Torres JR, Cecchini NM, Alvarez ME. Arabidopsis DNA glycosylase MBD4L improves recovery of aged seeds. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2021-2032. [PMID: 38963754 DOI: 10.1111/tpj.16907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/06/2024]
Abstract
DNA glycosylases initiate the base excision repair (BER) pathway by catalyzing the removal of damaged or mismatched bases from DNA. The Arabidopsis DNA glycosylase methyl-CpG-binding domain protein 4 like (MBD4L) is a nuclear enzyme triggering BER in response to the genotoxic agents 5-fluorouracil and 5-bromouracil. To date, the involvement of MBD4L in plant physiological processes has not been analyzed. To address this, we studied the enzyme functions in seeds. We found that imbibition induced the MBD4L gene expression by generating two alternative transcripts, MBD4L.3 and MBD4L.4. Gene activation was stronger in aged than in non-aged seeds. Seeds from mbd4l-1 mutants displayed germination failures when maintained under control or ageing conditions, while 35S:MBD4L.3/mbd4l-1 and 35S:MBD4L.4/mbd4l-1 seeds reversed these phenotypes. Seed nuclear DNA repair, assessed by comet assays, was exacerbated in an MBD4L-dependent manner at 24 h post-imbibition. Under this condition, the BER genes ARP, APE1L, and LIG1 showed higher expression in 35S:MBD4L.3/mbd4l-1 and 35S:MBD4L.4/mbd4l-1 than in mbd4l-1 seeds, suggesting that these components could coordinate with MBD4L to repair damaged DNA bases in seeds. Interestingly, the ATM, ATR, BRCA1, RAD51, and WEE1 genes associated with the DNA damage response (DDR) pathway were activated in mbd4l-1, but not in 35S:MBD4L.3/mbd4l-1 or 35S:MBD4L.4/mbd4l-1 seeds. These results indicate that MBD4L is a key enzyme of a BER cascade that operates during seed imbibition, whose deficiency would cause genomic damage detected by DDR, generating a delay or reduction in germination.
Collapse
Affiliation(s)
- Ignacio Lescano López
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| | - José Roberto Torres
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| | - Nicolás Miguel Cecchini
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| | - María Elena Alvarez
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| |
Collapse
|
3
|
Saikia S, Postwala H, Athilingam VP, Anandan A, Padma VV, Kalita PP, Chorawala M, Prajapati B. Single Nucleotide Polymorphisms (SNPs) in the Shadows: Uncovering their Function in Non-Coding Region of Esophageal Cancer. Curr Pharm Biotechnol 2024; 25:1915-1938. [PMID: 38310451 DOI: 10.2174/0113892010265004231116092802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 02/05/2024]
Abstract
Esophageal cancer is a complex disease influenced by genetic and environmental factors. Single nucleotide polymorphisms (SNPs) in non-coding regions of the genome have emerged as crucial contributors to esophageal cancer susceptibility. This review provides a comprehensive overview of the role of SNPs in non-coding regions and their association with esophageal cancer. The accumulation of SNPs in the genome has been implicated in esophageal cancer risk. Various studies have identified specific locations in the genome where SNPs are more likely to occur, suggesting a location-specific response. Chromatin conformational studies have shed light on the localization of SNPs and their impact on gene transcription, posttranscriptional modifications, gene expression regulation, and histone modification. Furthermore, miRNA-related SNPs have been found to play a significant role in esophageal squamous cell carcinoma (ESCC). These SNPs can affect miRNA binding sites, thereby altering target gene regulation and contributing to ESCC development. Additionally, the risk of ESCC has been linked to base excision repair, suggesting that SNPs in this pathway may influence disease susceptibility. Somatic DNA segment alterations and modified expression quantitative trait loci (eQTL) have also been associated with ESCC. These alterations can lead to disrupted gene expression and cellular processes, ultimately contributing to cancer development and progression. Moreover, SNPs have been found to be associated with the long non-coding RNA HOTAIR, which plays a crucial role in ESCC pathogenesis. This review concludes with a discussion of the current and future perspectives in the field of SNPs in non-coding regions and their relevance to esophageal cancer. Understanding the functional implications of these SNPs may lead to the identification of novel therapeutic targets and the development of personalized approaches for esophageal cancer prevention and treatment.
Collapse
Affiliation(s)
- Surovi Saikia
- Department of Natural Product Chemistry, Translational Research Laboratory, Bharathiar University, Coimbatore - 641 046, Tamil Nadu, India
| | - Humzah Postwala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, India
| | - Vishnu Prabhu Athilingam
- Department of Natural Product Chemistry, Translational Research Laboratory, Bharathiar University, Coimbatore - 641 046, Tamil Nadu, India
| | - Aparna Anandan
- Department of Natural Product Chemistry, Translational Research Laboratory, Bharathiar University, Coimbatore - 641 046, Tamil Nadu, India
| | - V Vijaya Padma
- Department of Natural Product Chemistry, Translational Research Laboratory, Bharathiar University, Coimbatore - 641 046, Tamil Nadu, India
| | - Partha P Kalita
- Program of Biotechnology, Assam Down Town University, Panikhaiti, Guwahati 781026, Assam, India
| | - Mehul Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, India
| | - Bhupendra Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Shree. S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, Gujarat, India
| |
Collapse
|
4
|
Wang C, Jiang X, Zhao Q, Xie Z, Cai H. The diagnostic or prognostic values of FADD in cancers based on pan‑cancer analysis. Biomed Rep 2023; 19:77. [PMID: 37829257 PMCID: PMC10565789 DOI: 10.3892/br.2023.1659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/10/2023] [Indexed: 10/14/2023] Open
Abstract
Previous studies have determined that aberrant expression of the fas-associated death domain (FADD) contributes to the development of cancer. However, no pan-cancer analysis has been reported to explore the relationship between FADD and various cancers. Multiple databases were screened to identify cancer datasets for the present study and to validate the expression of FADD in various tumors. The association of FADD alteration with cancer prognosis, clinical features and tumor immunity was also evaluated. Reverse transcription-quantitative PCR (RT-qPCR) was utilized to confirm the expression of FADD in breast, colon, liver and gastric cancer cells. Analysis of Gene Expression Omnibus database and The Cancer Genome Atlas database indicated that FADD was highly expressed in breast invasive carcinoma (BRCA), cervical squamous cell carcinoma and endocervical adenocarcinoma, cholangiocarcinoma, colon adenocarcinoma (COAD), esophageal carcinoma (ESCA), kidney renal clear cell carcinoma, kidney renal papillary cell carcinoma, liver hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD) and prostate adenocarcinoma, whereas RT-qPCR results revealed that FADD was highly expressed in breast cancer and colon cancer. Further analyses demonstrated that FADD expression was significantly altered in ESCA, head and neck squamous cell carcinoma (HNSC), lung squamous cell carcinoma and BRCA. FADD expression was observed to be a risk factor of the overall survival in patients with HNSC, LIHC and LUAD as demonstrated by Kaplan-Meier and Cox regression analyses. The results of the present study demonstrated that FADD is highly expressed in numerous malignancies and can be utilized as a biomarker for the diagnosis of BRCA, COAD, LIHC and stomach adenocarcinoma. Moreover, FADD expression is a predictive risk factor for the development of HNSC, LIHC and LUAD and can potentially be used as a prognostic marker for these cancers.
Collapse
Affiliation(s)
- Chenyu Wang
- Clinical Medical College of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Xianglai Jiang
- Clinical Medical College of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
- Department of General Surgery, General Surgery Clinical Center, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Qiqi Zhao
- Clinical Medical College of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
- Department of General Surgery, General Surgery Clinical Center, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Zhiyuan Xie
- Clinical Medical College of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Hui Cai
- Department of General Surgery, General Surgery Clinical Center, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
5
|
Wang Q, Luo S, Xiong D, Xu X, Zhao X, Duan L. Quantitative investigation of the effects of DNA modifications and protein mutations on MeCP2-MBD-DNA interactions. Int J Biol Macromol 2023; 247:125690. [PMID: 37423448 DOI: 10.1016/j.ijbiomac.2023.125690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/27/2023] [Accepted: 07/02/2023] [Indexed: 07/11/2023]
Abstract
DNA methylation as an important epigenetic marker, has gained attention for the significance of three oxidative modifications (hydroxymethyl-C (hmC), formyl-C (fC), and carboxyl-C (caC)). Mutations occurring in the methyl-CpG-binding domain (MBD) of MeCP2 result in Rett. However, uncertainties persist regarding DNA modification and MBD mutation-induced interaction changes. Here, molecular dynamics simulations were used to investigate the underlying mechanisms behind changes due to different modifications of DNA and MBD mutations. Alanine scanning combined with the interaction entropy method was employed to accurately evaluate the binding free energy. The results show that MBD has the strongest binding ability for mCDNA, followed by caC, hmC, and fCDNA, with the weakest binding ability observed for CDNA. Further analysis revealed that mC modification induces DNA bending, causing residues R91 and R162 closer to the DNA. This proximity enhances van der Waals and electrostatic interactions. Conversely, the caC/hmC and fC modifications lead to two loop regions (near K112 and K130) closer to DNA, respectively. Furthermore, DNA modifications promote the formation of stable hydrogen bond networks, however mutations in the MBD significantly reduce the binding free energy. This study provides detailed insight into the effects of DNA modifications and MBD mutations on binding ability. It emphasizes the necessity for research and development of targeted Rett compounds that induce conformational compatibility between MBD and DNA, enhancing the stability and strength of their interactions.
Collapse
Affiliation(s)
- Qihang Wang
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Song Luo
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Danyang Xiong
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Xiaole Xu
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Xiaoyu Zhao
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Lili Duan
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
6
|
Ferreira-Gonzalez S, Man TY, Esser H, Aird R, Kilpatrick AM, Rodrigo-Torres D, Younger N, Campana L, Gadd VL, Dwyer B, Aleksieva N, Boulter L, Macmillan MT, Wang Y, Mylonas KJ, Ferenbach DA, Kendall TJ, Lu WY, Acosta JC, Kurian D, O'Neill S, Oniscu GC, Banales JM, Krimpenfort PJ, Forbes SJ. Senolytic treatment preserves biliary regenerative capacity lost through cellular senescence during cold storage. Sci Transl Med 2022; 14:eabj4375. [PMID: 36475903 DOI: 10.1126/scitranslmed.abj4375] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Liver transplantation is the only curative option for patients with end-stage liver disease. Despite improvements in surgical techniques, nonanastomotic strictures (characterized by the progressive loss of biliary tract architecture) continue to occur after liver transplantation, negatively affecting liver function and frequently leading to graft loss and retransplantation. To study the biological effects of organ preservation before liver transplantation, we generated murine models that recapitulate liver procurement and static cold storage. In these models, we explored the response of cholangiocytes and hepatocytes to cold storage, focusing on responses that affect liver regeneration, including DNA damage, apoptosis, and cellular senescence. We show that biliary senescence was induced during organ retrieval and exacerbated during static cold storage, resulting in impaired biliary regeneration. We identified decoy receptor 2 (DCR2)-dependent responses in cholangiocytes and hepatocytes, which differentially affected the outcome of those populations during cold storage. Moreover, CRISPR-mediated DCR2 knockdown in vitro increased cholangiocyte proliferation and decreased cellular senescence but had the opposite effect in hepatocytes. Using the p21KO model to inhibit senescence onset, we showed that biliary tract architecture was better preserved during cold storage. Similar results were achieved by administering senolytic ABT737 to mice before procurement. Last, we perfused senolytics into discarded human donor livers and showed that biliary architecture and regenerative capacities were better preserved. Our results indicate that cholangiocytes are susceptible to senescence and identify the use of senolytics and the combination of senotherapies and machine-perfusion preservation to prevent this phenotype and reduce the incidence of biliary injury after transplantation.
Collapse
Affiliation(s)
- Sofia Ferreira-Gonzalez
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Tak Yung Man
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Hannah Esser
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
- Department of Visceral, Transplant and Thoracic Surgery, Centre of Operative Medicine, Innsbruck Medical University, Anichstrasse 35, Innsbruck 6020, Austria
| | - Rhona Aird
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Alastair M Kilpatrick
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Daniel Rodrigo-Torres
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Nicholas Younger
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Lara Campana
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Victoria L Gadd
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Benjamin Dwyer
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Niya Aleksieva
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Luke Boulter
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Mark T Macmillan
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Yinmiao Wang
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Katie J Mylonas
- Centre for Inflammation Research (CIR), University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - David A Ferenbach
- Centre for Inflammation Research (CIR), University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Timothy J Kendall
- Centre for Inflammation Research (CIR), University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Wei-Yu Lu
- Centre for Inflammation Research (CIR), University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Juan Carlos Acosta
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh EH4 2XR, UK
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria-SODERCAN, C/ Albert Einstein 22, Santander, 39011, Spain
| | - Dominic Kurian
- Proteomic and Metabolomics Unit, Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Stephen O'Neill
- Department of Transplant Surgery, Belfast City Hospital, 51 Lisburn Road, Belfast BT9 7AB, UK
- Centre for Public Health, Queen's University Belfast, Institute of Clinical Science, Block A, Royal Victoria Hospital, Belfast BT12 6BA, UK
| | - Gabriel C Oniscu
- Edinburgh Transplant Centre, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh EH16 4SA, UK
- Department of Clinical Surgery, University of Edinburgh, 51 Little France Crescent, Edinburgh EH16 4SA, UK
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), CIBERehd, Ikerbasque, San Sebastian 20014, Spain
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31009 Pamplona, Spain
| | | | - Stuart J Forbes
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| |
Collapse
|
7
|
A Dual Role for FADD in Human Precursor T-Cell Neoplasms. Int J Mol Sci 2022; 23:ijms232315157. [PMID: 36499482 PMCID: PMC9738522 DOI: 10.3390/ijms232315157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
A reduction in FADD levels has been reported in precursor T-cell neoplasms and other tumor types. Such reduction would impact on the ability of tumor cells to undergo apoptosis and has been associated with poor clinical outcomes. However, FADD is also known to participate in non-apoptotic functions, but these mechanisms are not well-understood. Linking FADD expression to the severity of precursor T-cell neoplasms could indicate its use as a prognostic marker and may open new avenues for targeted therapeutic strategies. Using transcriptomic and clinical data from patients with precursor T-cell neoplasms, complemented by in vitro analysis of cellular functions and by high-throughput interactomics, our results allow us to propose a dual role for FADD in precursor T-cell neoplasms, whereby resisting cell death and chemotherapy would be a canonical consequence of FADD deficiency in these tumors, whereas deregulation of the cellular metabolism would be a relevant non-canonical function in patients expressing FADD. These results reveal that evaluation of FADD expression in precursor T-cell neoplasms may aid in the understanding of the biological processes that are affected in the tumor cells. The altered biological processes can be of different natures depending on the availability of FADD influencing its ability to exert its canonical or non-canonical functions. Accordingly, specific therapeutic interventions would be needed in each case.
Collapse
|
8
|
Rodriguez DA, Quarato G, Liedmann S, Tummers B, Zhang T, Guy C, Crawford JC, Palacios G, Pelletier S, Kalkavan H, Shaw JJP, Fitzgerald P, Chen MJ, Balachandran S, Green DR. Caspase-8 and FADD prevent spontaneous ZBP1 expression and necroptosis. Proc Natl Acad Sci U S A 2022; 119:e2207240119. [PMID: 36191211 PMCID: PMC9565532 DOI: 10.1073/pnas.2207240119] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/23/2022] [Indexed: 11/18/2022] Open
Abstract
The absence of Caspase-8 or its adapter, Fas-associated death domain (FADD), results in activation of receptor interacting protein kinase-3 (RIPK3)- and mixed-lineage kinase-like (MLKL)-dependent necroptosis in vivo. Here, we show that spontaneous activation of RIPK3, phosphorylation of MLKL, and necroptosis in Caspase-8- or FADD-deficient cells was dependent on the nucleic acid sensor, Z-DNA binding protein-1 (ZBP1). We genetically engineered a mouse model by a single insertion of FLAG tag onto the N terminus of endogenous MLKL (MlklFLAG/FLAG), creating an inactive form of MLKL that permits monitoring of phosphorylated MLKL without activating necroptotic cell death. Casp8-/-MlklFLAG/FLAG mice were viable and displayed phosphorylated MLKL in a variety of tissues, together with dramatically increased expression of ZBP1 compared to Casp8+/+ mice. Studies in vitro revealed an increased expression of ZBP1 in cells lacking FADD or Caspase-8, which was suppressed by reconstitution of Caspase-8 or FADD. Ablation of ZBP1 in Casp8-/-MlklFLAG/FLAG mice suppressed spontaneous MLKL phosphorylation in vivo. ZBP1 expression and downstream activation of RIPK3 and MLKL in cells lacking Caspase-8 or FADD relied on a positive feedback mechanism requiring the nucleic acid sensors cyclic GMP-AMP synthase (cGAS), stimulator of interferon genes (STING), and TBK1 signaling pathways. Our study identifies a molecular mechanism whereby Caspase-8 and FADD suppress spontaneous necroptotic cell death.
Collapse
Affiliation(s)
- Diego A. Rodriguez
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105
| | - Giovanni Quarato
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105
| | - Swantje Liedmann
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105
| | - Bart Tummers
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105
| | - Ting Zhang
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, 19111
| | - Cliff Guy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105
| | | | - Gustavo Palacios
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105
| | - Stephane Pelletier
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105
| | - Halime Kalkavan
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105
| | - Jeremy J. P. Shaw
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105
| | - Patrick Fitzgerald
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105
| | - Mark J. Chen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105
| | - Siddharth Balachandran
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, 19111
| | - Douglas R. Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105
| |
Collapse
|
9
|
Treas J, Roy P, Singh KP. Chronic coexposure to arsenic and estrogen potentiates genotoxic estrogen metabolic pathway and hypermethylation of DNA glycosylase MBD4 in human prostate epithelial cells. Prostate 2022; 82:1273-1283. [PMID: 35747940 DOI: 10.1002/pros.24401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/14/2022] [Accepted: 06/01/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Previously we reported that arsenic and estrogen cause synergistic effects in the neoplastic transformation of human prostate epithelial cells. In addition to receptor-mediated pathways, DNA-reactive estrogen metabolites have also been shown to play a critical role in mutagenicity and carcinogenicity. Both estrogen and arsenic are known prostate carcinogens, however, the effect of coexposure to these two chemicals on genes involved in estrogen metabolism is not known. Therefore, the objective of this study was to evaluate the role of arsenic and estrogen coexposure on the expression of estrogen receptors and estrogen metabolism-associated genes. Earlier, we also reported the synergistic effect of arsenic and estrogen on decreased expression of MBD4 genes that play an important role in DNA repair through its DNA glycosylase activity. To further understand the mechanism, the promoter methylation of this gene was also analyzed. METHODS Total RNA and protein were isolated from RWPE-1 human prostate epithelial cells that were coexposed to arsenic and estrogen for a chronic duration (6 months). The expression of estrogen receptors, estrogen metabolism associated phase I genes (CYP 1A1, 1A2, 3A4, and 1B1) and phase II gene catechol-O-methyltransferase (COMT), as well as antioxidant MnSOD, were analyzed either at the RNA level by quantitative reverse transcriptase-polymerase chain reaction or at the protein level by western blot. Promoter methylation of MBD4 was analyzed by pyrosequencing. RESULTS Expression of MnSOD and phase I genes that convert E2 into genotoxic metabolites 2-OH-E2 and 4-OH-E2 were significantly increased, whereas the expression of phase II gene COMT that detoxifies estrogen metabolites was significantly decreased in arsenic and estrogen coexposed cells. MBD4 promoter was hypermethylated in arsenic and estrogen coexposed cells. Coexposure to arsenic and estrogen has synergistic effects on the expression of these genes as well as in MBD4 promoter hypermethylation. CONCLUSIONS These novel findings suggest that coexposure to arsenic and estrogen acts synergistically in the activation of not only the estrogen receptors but also the genes associated with genotoxic estrogen metabolism and epigenetic inactivation of DNA glycosylase MBD4. Together, these genetic and epigenetic aberrations provide the molecular basis for the potentiation of carcinogenicity of arsenic and estrogen coexposure in prostate epithelial cells.
Collapse
Affiliation(s)
- Justin Treas
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Priti Roy
- Department of Internal Medicine, University of California San Francisco, San Francisco, California, USA
| | - Kamaleshwar P Singh
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
10
|
Torgasheva NA, Diatlova EA, Grin IR, Endutkin AV, Mechetin GV, Vokhtantsev IP, Yudkina AV, Zharkov DO. Noncatalytic Domains in DNA Glycosylases. Int J Mol Sci 2022; 23:ijms23137286. [PMID: 35806289 PMCID: PMC9266487 DOI: 10.3390/ijms23137286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
Many proteins consist of two or more structural domains: separate parts that have a defined structure and function. For example, in enzymes, the catalytic activity is often localized in a core fragment, while other domains or disordered parts of the same protein participate in a number of regulatory processes. This situation is often observed in many DNA glycosylases, the proteins that remove damaged nucleobases thus initiating base excision DNA repair. This review covers the present knowledge about the functions and evolution of such noncatalytic parts in DNA glycosylases, mostly concerned with the human enzymes but also considering some unique members of this group coming from plants and prokaryotes.
Collapse
Affiliation(s)
- Natalia A. Torgasheva
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (N.A.T.); (E.A.D.); (I.R.G.); (A.V.E.); (G.V.M.); (I.P.V.); (A.V.Y.)
| | - Evgeniia A. Diatlova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (N.A.T.); (E.A.D.); (I.R.G.); (A.V.E.); (G.V.M.); (I.P.V.); (A.V.Y.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Street, 630090 Novosibirsk, Russia
| | - Inga R. Grin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (N.A.T.); (E.A.D.); (I.R.G.); (A.V.E.); (G.V.M.); (I.P.V.); (A.V.Y.)
| | - Anton V. Endutkin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (N.A.T.); (E.A.D.); (I.R.G.); (A.V.E.); (G.V.M.); (I.P.V.); (A.V.Y.)
| | - Grigory V. Mechetin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (N.A.T.); (E.A.D.); (I.R.G.); (A.V.E.); (G.V.M.); (I.P.V.); (A.V.Y.)
| | - Ivan P. Vokhtantsev
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (N.A.T.); (E.A.D.); (I.R.G.); (A.V.E.); (G.V.M.); (I.P.V.); (A.V.Y.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Street, 630090 Novosibirsk, Russia
| | - Anna V. Yudkina
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (N.A.T.); (E.A.D.); (I.R.G.); (A.V.E.); (G.V.M.); (I.P.V.); (A.V.Y.)
| | - Dmitry O. Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (N.A.T.); (E.A.D.); (I.R.G.); (A.V.E.); (G.V.M.); (I.P.V.); (A.V.Y.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Street, 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
11
|
Raina A, Sahu PK, Laskar RA, Rajora N, Sao R, Khan S, Ganai RA. Mechanisms of Genome Maintenance in Plants: Playing It Safe With Breaks and Bumps. Front Genet 2021; 12:675686. [PMID: 34239541 PMCID: PMC8258418 DOI: 10.3389/fgene.2021.675686] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/04/2021] [Indexed: 01/14/2023] Open
Abstract
Maintenance of genomic integrity is critical for the perpetuation of all forms of life including humans. Living organisms are constantly exposed to stress from internal metabolic processes and external environmental sources causing damage to the DNA, thereby promoting genomic instability. To counter the deleterious effects of genomic instability, organisms have evolved general and specific DNA damage repair (DDR) pathways that act either independently or mutually to repair the DNA damage. The mechanisms by which various DNA repair pathways are activated have been fairly investigated in model organisms including bacteria, fungi, and mammals; however, very little is known regarding how plants sense and repair DNA damage. Plants being sessile are innately exposed to a wide range of DNA-damaging agents both from biotic and abiotic sources such as ultraviolet rays or metabolic by-products. To escape their harmful effects, plants also harbor highly conserved DDR pathways that share several components with the DDR machinery of other organisms. Maintenance of genomic integrity is key for plant survival due to lack of reserve germline as the derivation of the new plant occurs from the meristem. Untowardly, the accumulation of mutations in the meristem will result in a wide range of genetic abnormalities in new plants affecting plant growth development and crop yield. In this review, we will discuss various DNA repair pathways in plants and describe how the deficiency of each repair pathway affects plant growth and development.
Collapse
Affiliation(s)
- Aamir Raina
- Mutation Breeding Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India
- Botany Section, Women’s College, Aligarh Muslim University, Aligarh, India
| | - Parmeshwar K. Sahu
- Department of Genetics and Plant Breeding, Indira Gandhi Agriculture University, Raipur, India
| | | | - Nitika Rajora
- National Agri-Food Biotechnology Institute, Mohali, India
| | - Richa Sao
- Department of Genetics and Plant Breeding, Indira Gandhi Agriculture University, Raipur, India
| | - Samiullah Khan
- Mutation Breeding Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Rais A. Ganai
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, India
| |
Collapse
|
12
|
Regulators and signalling in insect antimicrobial innate immunity: Functional molecules and cellular pathways. Cell Signal 2021; 83:110003. [PMID: 33836260 DOI: 10.1016/j.cellsig.2021.110003] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 12/29/2022]
Abstract
Insects possess an immune system that protects them from attacks by various pathogenic microorganisms that would otherwise threaten their survival. Immune mechanisms may deal directly with the pathogens by eliminating them from the host organism or disarm them by suppressing the synthesis of toxins and virulence factors that promote the invasion and destructive action of the intruder within the host. Insects have been established as outstanding models for studying immune system regulation because innate immunity can be explored as an integrated system at the level of the whole organism. Innate immunity in insects consists of basal immunity that controls the constitutive synthesis of effector molecules such as antimicrobial peptides, and inducible immunity that is activated after detection of a microbe or its product(s). Activation and coordination of innate immune defenses in insects involve evolutionary conserved immune factors. Previous research in insects has led to the identification and characterization of distinct immune signalling pathways that modulate the response to microbial infections. This work has not only advanced the field of insect immunology, but it has also rekindled interest in the innate immune system of mammals. Here we review the current knowledge on key molecular components of insect immunity and discuss the opportunities they present for confronting infectious diseases in humans.
Collapse
|
13
|
Javed Z, Khan K, Iqbal MZ, Ahmad T, Raza Q, Sadia H, Raza S, Salehi B, Sharifi-Rad J, Cho WC. Long non-coding RNA regulation of TRAIL in breast cancer: A tangle of non-coding threads. Oncol Lett 2020; 20:37. [PMID: 32802161 PMCID: PMC7412712 DOI: 10.3892/ol.2020.11896] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is a complex disease posing a serious threat to the female population worldwide. A complex molecular landscape and tumor heterogeneity render breast cancer cells resistant to drugs and able to promote metastasis and invasiveness. Despite the recent advancements in diagnostics and drug discovery, finding an effective cure for breast cancer is still a major challenge. Positive and negative regulation of apoptosis has been a subject of extensive study over the years. Numerous studies have shed light on the mechanisms that impede the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling cascade. Long non-coding RNAs (lncRNAs) have been implicated in the orchestration, development, proliferation, differentiation and metastasis of breast cancer. However, the roles of lncRNAs in fine-tuning apoptosis regulating machinery in breast cancer remain to be elucidated. The present review illuminates the roles of these molecules in the regulation of breast cancer and the interplay between lncRNA and TRAIL in breast cancer. The present review also attempts to reveal their role in the regulation of apoptosis in breast cancer appears a promising approach for the development of new diagnostic and therapeutic regimens.
Collapse
Affiliation(s)
- Zeeshan Javed
- Office for Research Innovation and Commercialization, Lahore Garrison University, Lahore, Punjab 54792, Pakistan
| | - Khushbukhat Khan
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Punjab 44000, Pakistan
| | - Muhammad Zaheer Iqbal
- Center for Excellence in Molecular Biology, University of the Punjab, Lahore, Punjab 53700, Pakistan
| | - Touqeer Ahmad
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Punjab 54000, Pakistan
| | - Qamar Raza
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Punjab 54000, Pakistan
| | - Haleema Sadia
- Department of Biotechnology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Balochistan 87100, Pakistan
| | - Shahid Raza
- Office for Research Innovation and Commercialization, Lahore Garrison University, Lahore, Punjab 54792, Pakistan
| | - Bahare Salehi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam 44340847, Iran
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, P.R. China
| |
Collapse
|
14
|
Koliadenko V, Wilanowski T. Additional functions of selected proteins involved in DNA repair. Free Radic Biol Med 2020; 146:1-15. [PMID: 31639437 DOI: 10.1016/j.freeradbiomed.2019.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 12/30/2022]
Abstract
Protein moonlighting is a phenomenon in which a single polypeptide chain can perform a number of different unrelated functions. Here we present our analysis of moonlighting in the case of selected DNA repair proteins which include G:T mismatch-specific thymine DNA glycosylase (TDG), methyl-CpG-binding domain protein 4 (MBD4), apurinic/apyrimidinic endonuclease 1 (APE1), AlkB homologs, poly (ADP-ribose) polymerase 1 (PARP-1) and single-strand selective monofunctional uracil DNA glycosylase 1 (SMUG1). Most of their additional functions are not accidental and clear patterns are emerging. Participation in RNA metabolism is not surprising as bases occurring in RNA are the same or very similar to those in DNA. Other common additional function involves regulation of transcription. This is not unexpected as these proteins bind to specific DNA regions for DNA repair, hence they can also be recruited to regulate transcription. Participation in demethylation and replication of DNA appears logical as well. Some of the multifunctional DNA repair proteins play major roles in many diseases, including cancer. However, their moonlighting might prove a major difficulty in the development of new therapies because it will not be trivial to target a single protein function without affecting its other functions that are not related to the disease.
Collapse
Affiliation(s)
- Vlada Koliadenko
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096, Warsaw, Poland
| | - Tomasz Wilanowski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096, Warsaw, Poland.
| |
Collapse
|
15
|
FADD in Cancer: Mechanisms of Altered Expression and Function, and Clinical Implications. Cancers (Basel) 2019; 11:cancers11101462. [PMID: 31569512 PMCID: PMC6826683 DOI: 10.3390/cancers11101462] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 12/15/2022] Open
Abstract
FADD was initially described as an adaptor molecule for death receptor-mediated apoptosis, but subsequently it has been implicated in nonapoptotic cellular processes such as proliferation and cell cycle control. During the last decade, FADD has been shown to play a pivotal role in most of the signalosome complexes, such as the necroptosome and the inflammasome. Interestingly, various mechanisms involved in regulating FADD functions have been identified, essentially posttranslational modifications and secretion. All these aspects have been thoroughly addressed in previous reviews. However, FADD implication in cancer is complex, due to pleiotropic effects. It has been reported either as anti- or protumorigenic, depending on the cell type. Regulation of FADD expression in cancer is a complex issue since both overexpression and downregulation have been reported, but the mechanisms underlying such alterations have not been fully unveiled. Posttranslational modifications also constitute a relevant mechanism controlling FADD levels and functions in tumor cells. In this review, we aim to provide detailed, updated information on alterations leading to changes in FADD expression and function in cancer. The participation of FADD in various biological processes is recapitulated, with a mention of interesting novel functions recently proposed for FADD, such as regulation of gene expression and control of metabolic pathways. Finally, we gather all the available evidence regarding the clinical implications of FADD alterations in cancer, especially as it has been proposed as a potential biomarker with prognostic value.
Collapse
|
16
|
Marín-Rubio JL, Pérez-Gómez E, Fernández-Piqueras J, Villa-Morales M. S194-P-FADD as a marker of aggressiveness and poor prognosis in human T-cell lymphoblastic lymphoma. Carcinogenesis 2019; 40:1260-1268. [DOI: 10.1093/carcin/bgz041] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/12/2019] [Accepted: 02/22/2019] [Indexed: 11/13/2022] Open
Abstract
AbstractT-cell lymphoblastic lymphoma is a haematological disease with an urgent need for reliable prognostic biomarkers that allow therapeutic stratification and dose adjustment. The scarcity of human samples is responsible for the delayed progress in the study and the clinical management of this disease, especially compared with T-cell acute lymphoblastic leukaemia, its leukemic counterpart. In the present work, we have determined by immunohistochemistry that S194-P-FADD protein is significantly reduced in a cohort of 22 samples from human T-cell lymphoblastic lymphoma. Notably, the extent of such reduction varies significantly among samples and has revealed determinant for the outcome of the tumour. We demonstrate that Fas-associated protein with death domain (FADD) phosphorylation status affects protein stability, subcellular localization and non-apoptotic functions, specifically cell proliferation. Phosphorylated FADD would be more stable and preferentially localized to the cell nucleus; there, it would favour cell proliferation. We show that patients with higher levels of S194-P-FADD exhibit more proliferative tumours and that they present worse clinical characteristics and a significant enrichment to an oncogenic signature. This supports that FADD phosphorylation may serve as a predictor for T-cell lymphoblastic lymphoma aggressiveness and clinical status. In summary, we propose FADD phosphorylation as a new biomarker with prognostic value in T-cell lymphoblastic lymphoma.
Collapse
Affiliation(s)
- José L Marín-Rubio
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CBMSO), Madrid, Spain
- IIS-Fundación Jiménez Díaz, Madrid, Spain
| | - Eduardo Pérez-Gómez
- Departamento de Bioquímica y Biología Molecular, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - José Fernández-Piqueras
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CBMSO), Madrid, Spain
- IIS-Fundación Jiménez Díaz, Madrid, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - María Villa-Morales
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CBMSO), Madrid, Spain
- IIS-Fundación Jiménez Díaz, Madrid, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| |
Collapse
|
17
|
Curcumin restores hepatic epigenetic changes in propylthiouracil(PTU) Induced hypothyroid male rats: A study on DNMTs, MBDs, GADD45a, C/EBP-β and PCNA. Food Chem Toxicol 2019; 123:169-180. [DOI: 10.1016/j.fct.2018.10.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 10/10/2018] [Accepted: 10/22/2018] [Indexed: 02/06/2023]
|
18
|
Mouasni S, Tourneur L. FADD at the Crossroads between Cancer and Inflammation. Trends Immunol 2018; 39:1036-1053. [PMID: 30401514 DOI: 10.1016/j.it.2018.10.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/02/2018] [Accepted: 10/09/2018] [Indexed: 12/19/2022]
Abstract
Initially described as an adaptor molecule for death receptor (DR)-mediated apoptosis, Fas-associated death domain (FADD) was later implicated in nonapoptotic cellular processes. During the last decade, FADD has been shown to participate and regulate most of the signalosome complexes, including necrosome, FADDosome, innateosome, and inflammasome. Given the role of these signaling complexes, FADD has emerged as a new actor in innate immunity, inflammation, and cancer development. Concomitant to these new roles, a surprising number of mechanisms deemed to regulate FADD functions have been identified, including post-translational modifications of FADD protein and FADD secretion. This review focuses on recent knowledge of the biological roles of FADD, a pleiotropic molecule having multiple partners, and its impact in cancer, innate immunity, and inflammation.
Collapse
Affiliation(s)
- Sara Mouasni
- Department of Infection, Immunity and Inflammation, Cochin Institute, 75014 Paris, France; INSERM, U1016, Paris, France; CNRS, UMR8104, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Léa Tourneur
- Department of Infection, Immunity and Inflammation, Cochin Institute, 75014 Paris, France; INSERM, U1016, Paris, France; CNRS, UMR8104, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
19
|
Suzuki S, Iwaizumi M, Yamada H, Sugiyama T, Hamaya Y, Furuta T, Kanaoka S, Sugimura H, Miyajima H, Osawa S, Carethers JM, Sugimoto K. MBD4 frameshift mutation caused by DNA mismatch repair deficiency enhances cytotoxicity by trifluridine, an active antitumor agent of TAS-102, in colorectal cancer cells. Oncotarget 2018; 9:11477-11488. [PMID: 29545913 PMCID: PMC5837757 DOI: 10.18632/oncotarget.22484] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 10/02/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUNDS Trifluridine is an active antitumor component of TAS-102 that resembles 5-fluorouracil. Although patients with advanced colorectal cancer (CRC) exhibiting a mismatch repair (MMR) deficiency reportedly do not benefit from 5-fluorouracil-based chemotherapy and we previously reported that truncated methyl-CpG binding domain protein 4 (MBD4) enhances 5-fluorouracil cytotoxicity in MMR-deficient CRC cells, little is known regarding the effect of MMR deficiency on trifluridine cytotoxicity in CRC. AIM We investigated whether trifluridine induces cytotoxicity in a DNA MMR-dependent manner and evaluated how truncated MBD4 alters trifluridine cytotoxicity. METHODS We utilized the human CRC cell lines HCT116 (hMLH1-deficient cells) and HCT116+ch3 (hMLH1-restored cells) and compared their sensitivities to trifluridine. And we established 5-fluorouracil-refractory hMLH1-deficient cells and analyzed trifluridine cytotoxicity. Finally, we established truncated MBD4 overexpressed CRC cell lines, and compared trifluridine sensitivity.Results: The sensitivities of HCT116 and HCT116+ch3 to trifluridine were comparable. 5-Fluorouracil-refractory hMLH1-deficient cells treated with trifluridine showed an equal or greater sensitivity than non-5-fluorouracil-refractory cells. Moreover, MBD4tru cells were more sensitive than the control cells to trifluridine.Conclusions: Trifluridine induces cytotoxicity independently of the DNA MMR status as well as under 5-fluorouracil-refractory conditions, and the MBD4 frameshift mutation enhances trifluridine cytotoxicity.
Collapse
Affiliation(s)
- Satoshi Suzuki
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Moriya Iwaizumi
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hidetaka Yamada
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomohiro Sugiyama
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yasushi Hamaya
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takahisa Furuta
- Center for Clinical Research, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Shigeru Kanaoka
- Department of Gastroenterology, Hamamatsu Medical Center, Hamamatsu, Japan
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hiroaki Miyajima
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Satoshi Osawa
- Department of Endoscopic and Photodynamic Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - John M. Carethers
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Ken Sugimoto
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
20
|
Deregulated FADD expression and phosphorylation in T-cell lymphoblastic lymphoma. Oncotarget 2018; 7:61485-61499. [PMID: 27556297 PMCID: PMC5308666 DOI: 10.18632/oncotarget.11370] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/11/2016] [Indexed: 12/14/2022] Open
Abstract
In the present work, we show that T-cell lymphoblastic lymphoma cells exhibit a reduction of FADD availability in the cytoplasm, which may contribute to impaired apoptosis. In addition, we observe a reduction of FADD phosphorylation that inversely correlates with the proliferation capacity and tumor aggressiveness. The resultant balance between FADD-dependent apoptotic and non-apoptotic abilities may define the outcome of the tumor. Thus, we propose that FADD expression and phosphorylation can be reliable biomarkers with prognostic value for T-LBL stratification.
Collapse
|
21
|
Yu AM, Calvo JA, Muthupalani S, Samson LD. The Mbd4 DNA glycosylase protects mice from inflammation-driven colon cancer and tissue injury. Oncotarget 2017; 7:28624-36. [PMID: 27086921 PMCID: PMC5053750 DOI: 10.18632/oncotarget.8721] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 03/28/2016] [Indexed: 12/12/2022] Open
Abstract
Much of the global cancer burden is associated with longstanding inflammation accompanied by release of DNA-damaging reactive oxygen and nitrogen species. Here, we report that the Mbd4 DNA glycosylase is protective in the azoxymethane/dextran sodium sulfate (AOM/DSS) mouse model of inflammation-driven colon cancer. Mbd4 excises T and U from T:G and U:G mismatches caused by deamination of 5-methylcytosine and cytosine. Since the rate of deamination is higher in inflamed tissues, we investigated the role of Mbd4 in inflammation-driven tumorigenesis. In the AOM/DSS assay, Mbd4-/- mice displayed more severe clinical symptoms, decreased survival, and a greater tumor burden than wild-type (WT) controls. The increased tumor burden in Mbd4-/- mice did not arise from impairment of AOM-induced apoptosis in the intestinal crypt. Histopathological analysis indicated that the colonic epithelium of Mbd4-/- mice is more vulnerable than WT to DSS-induced tissue damage. We investigated the role of the Mbd4-/- immune system in AOM/DSS-mediated carcinogenesis by repeating the assay on WT and Mbd4-/- mice transplanted with WT bone marrow. Mbd4-/- mice with WT bone marrow behaved similarly to Mbd4-/- mice. Together, our results indicate that the colonic epithelium of Mbd4-/- mice is more vulnerable to DSS-induced injury, which exacerbates inflammation-driven tissue injury and cancer.
Collapse
Affiliation(s)
- Amy Marie Yu
- Biological Engineering Department, Massachusetts Institute of Technology, Cambridge, 02139, Massachusetts, USA
| | - Jennifer A Calvo
- Biological Engineering Department, Massachusetts Institute of Technology, Cambridge, 02139, Massachusetts, USA.,Biology Department, Massachusetts Institute of Technology, Cambridge, 02139, Massachusetts, USA
| | - Suresh Muthupalani
- Department of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, 02139, Massachusetts, USA
| | - Leona D Samson
- Biological Engineering Department, Massachusetts Institute of Technology, Cambridge, 02139, Massachusetts, USA.,Biology Department, Massachusetts Institute of Technology, Cambridge, 02139, Massachusetts, USA.,Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, 02139, Massachusetts, USA.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, 02139, Massachusetts, USA
| |
Collapse
|
22
|
Acetylation- and Methylation-Related Epigenetic Proteins in the Context of Their Targets. Genes (Basel) 2017; 8:genes8080196. [PMID: 28783137 PMCID: PMC5575660 DOI: 10.3390/genes8080196] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/19/2017] [Accepted: 07/31/2017] [Indexed: 12/19/2022] Open
Abstract
The nucleosome surface is covered with multiple modifications that are perpetuated by eight different classes of enzymes. These enzymes modify specific target sites both on DNA and histone proteins, and these modifications have been well identified and termed “epigenetics”. These modifications play critical roles, either by affecting non-histone protein recruitment to chromatin or by disturbing chromatin contacts. Their presence dictates the condensed packaging of DNA and can coordinate the orderly recruitment of various enzyme complexes for DNA manipulation. This genetic modification machinery involves various writers, readers, and erasers that have unique structures, functions, and modes of action. Regarding human disease, studies have mainly focused on the genetic mechanisms; however, alteration in the balance of epigenetic networks can result in major pathologies including mental retardation, chromosome instability syndromes, and various types of cancers. Owing to its critical influence, great potential lies in developing epigenetic therapies. In this regard, this review has highlighted mechanistic and structural interactions of the main epigenetic families with their targets, which will help to identify more efficient and safe drugs against several diseases.
Collapse
|
23
|
Wang X, Dong C, Yin J, Tang W, Shen Z. Tagging polymorphisms of methyl-CpG binding domain 4 and gastric cardiac adenocarcinoma risk in a Chinese population. Dis Esophagus 2017; 30:1-6. [PMID: 27868291 DOI: 10.1111/dote.12500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Potential effects of genetic factors on carcinogenesis of gastric cardiac adenocarcinoma (GCA) may exist. The present experiment specifically evaluated the genetic influence of single nucleotide in methyl-CpG binding domain 4 (MBD4) on GCA tumorigenesis. A case-control experiment based on hospital recruited 330 GCA patients and 608 non-cancer patients was carried out. We employed ligation detection reaction method to detect the genotypes. The results revealed that MBD4 rs3138373, rs2005618, and rs3138355 mutations had no significant association with the risk of GCA. However, a lower risk of GCA presented in male patients who carried the MBD4 rs3138355 G>A polymorphic loci by the stratified analyses. In general, The MBD4 gene polymorphism could not influence GCA hereditary predisposition. Nevertheless, whether the finding learned from our experiment could apply to other ethnic groups will remain vague until future multicenter studies further test and verify our conclusions.
Collapse
Affiliation(s)
- Xu Wang
- Department of Cardiovascular Surgery of the First Affiliated Hospital, Institute for Cardiovascular Science of Soochow University, Soochow
| | - Changqing Dong
- Department of Cardiovascular Surgery of the First Affiliated Hospital, Institute for Cardiovascular Science of Soochow University, Soochow
| | - Jun Yin
- Department of Cardiothoracic Surgery of Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Weifeng Tang
- Department of Cardiothoracic Surgery of Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhenya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital, Institute for Cardiovascular Science of Soochow University, Soochow
| |
Collapse
|
24
|
MBD4 Facilitates Immunoglobulin Class Switch Recombination. Mol Cell Biol 2017; 37:MCB.00316-16. [PMID: 27777312 DOI: 10.1128/mcb.00316-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/30/2016] [Indexed: 01/02/2023] Open
Abstract
Immunoglobulin heavy chain class switch recombination (CSR) requires targeted formation of DNA double-strand breaks (DSBs) in repetitive switch region elements followed by ligation between distal breaks. The introduction of DSBs is initiated by activation-induced cytidine deaminase (AID) and requires base excision repair (BER) and mismatch repair (MMR). The BER enzyme methyl-CpG binding domain protein 4 (MBD4) has been linked to the MMR pathway through its interaction with MutL homologue 1 (MLH1). We find that when Mbd4 exons 6 to 8 are deleted in a switching B cell line, DSB formation is severely reduced and CSR frequency is impaired. Impaired CSR can be rescued by ectopic expression of Mbd4 Mbd4 deficiency yields a deficit in DNA end processing similar to that found in MutS homologue 2 (Msh2)- and Mlh1-deficient B cells. We demonstrate that microhomology-rich S-S junctions are enriched in cells in which Mbd4 is deleted. Our studies suggest that Mbd4 is a component of MMR-directed DNA end processing.
Collapse
|
25
|
García-Fuster MJ, García-Sevilla JA. Effects of anti-depressant treatments on FADD and p-FADD protein in rat brain cortex: enhanced anti-apoptotic p-FADD/FADD ratio after chronic desipramine and fluoxetine administration. Psychopharmacology (Berl) 2016; 233:2955-71. [PMID: 27259485 DOI: 10.1007/s00213-016-4342-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/20/2016] [Indexed: 12/27/2022]
Abstract
RATIONALE Fas-associated death domain (FADD) is an adaptor of death receptors that can also induce anti-apoptotic actions through its phosphorylated form (p-FADD). Activation of monoamine receptors, indirect targets of classic anti-depressant drugs (ADs), reduced FADD and increased p-FADD and p-FADD/FADD ratio in brain. OBJECTIVES To ascertain whether ADs, which indirectly regulate monoamine receptors, modulate FADD protein forms to promote anti-apoptotic actions. METHODS The effects of selected norepinephrine transporter (NET), serotonin transporter (SERT), monoamine oxidase (MAO) inhibitors, atypical ADs, and electroconvulsive shock (ECS) or behavioral procedures (forced swim test, FST) on FADD forms and pro-survival FADD-like interleukin-1β-converting enzyme-inhibitory protein (FLIP-L) and phosphoprotein enriched in astrocytes of 15 kDa (p-PEA-15) contents were assessed in rat brain cortex by western blot analysis. RESULTS Acute NET (e.g., nisoxetine) but not SERT (e.g., fluoxetine) inhibitors decreased cortical FADD (up to 37 %) and increased p-FADD/FADD ratio (up to 1.9-fold). Nisoxetine effects were prevented by α2-antagonist RX-821002, suggesting the involvement of presynaptic α2-autoreceptors. Immobility time in the FST correlated with increases of pro-apoptotic FADD and decreases of anti-apoptotic p-FADD. The MAO-A/B inhibitor phenelzine decreased FADD (up to 33 %) and increased p-FADD (up to 65 %) and p-FADD/FADD (up to 2.4-fold). Other MAO inhibitors (clorgyline, Ro 41-1049, rasagiline), atypical ADs (ketamine and mirtazapine), or ECS did not modulate cortical FADD. Chronic (14 days) desipramine and fluoxetine, but not phenelzine, increased p-FADD (up to 59 %), p-FADD/FADD ratio (up to 1.8-fold), and pro-survival p-PEA-15 (up to 46 %) in rat brain cortex. CONCLUSIONS Multifunctional FADD protein, through an increased p-FADD/FADD ratio, could participate in the mechanisms of anti-apoptotic actions induced by ADs.
Collapse
Affiliation(s)
- M Julia García-Fuster
- Neurobiology of Drug Abuse Group, IUNICS/IdISPa, University of the Balearic Islands, Cra. Valldemossa km 7.5, E-07122, Palma de Mallorca, Spain. .,Redes Temáticas de Investigación Cooperativa en Salud-Red de Trastornos Adictivos (RETICS-RTA), ISCIII, Madrid, Spain.
| | - Jesús A García-Sevilla
- Laboratory of Neuropharmacology, IUNICS/IdISPa, University of the Balearic Islands, Palma de Mallorca, Spain.,Redes Temáticas de Investigación Cooperativa en Salud-Red de Trastornos Adictivos (RETICS-RTA), ISCIII, Madrid, Spain
| |
Collapse
|
26
|
Meng H, Harrison DJ, Meehan RR. MBD4 interacts with and recruits USP7 to heterochromatic foci. J Cell Biochem 2015; 116:476-85. [PMID: 25358258 PMCID: PMC4964934 DOI: 10.1002/jcb.25001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/23/2014] [Indexed: 12/19/2022]
Abstract
MBD4 is the only methyl‐CpG binding protein that possesses a C‐terminal glycosylase domain. It has been associated with a number of nuclear pathways including DNA repair, DNA damage response, the initiation of apoptosis, transcriptional repression, and DNA demethylation. However, the precise contribution of MBD4 to these processes in development and relevant diseases remains elusive. We identified UHRF1 and USP7 as two new interaction partners for MBD4. Both UHRF1, a E3 ubiquitin ligase, and USP7, a de‐ubiquinating enzyme, regulate the stability of the DNA maintenance methyltransferase, Dnmt1. The ability of MBD4 to directly interact with and recruit USP7 to chromocenters implicates it as an additional factor that can potentially regulate Dnmt1 activity during cell proliferation. J. Cell. Biochem. 116: 476–485, 2015. © 2014 The Authors. Journal of Cellular Biochemistry published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Huan Meng
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK; Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | | | | |
Collapse
|
27
|
Modulatory role of the anti-apoptotic protein kinase CK2 in the sub-cellular localization of Fas associated death domain protein (FADD). BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2885-96. [PMID: 26253696 DOI: 10.1016/j.bbamcr.2015.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 07/28/2015] [Accepted: 08/01/2015] [Indexed: 12/30/2022]
Abstract
The Fas associated death domain protein (FADD) is the key adaptor molecule of the apoptotic signal triggered by death receptors of the TNF-R1 superfamily. Besides its crucial role in the apoptotic machinery, FADD has proved to be important in many biological processes like tumorigenesis, embryonic development or cell cycle progression. In a process to decipher the regulatory mechanisms underlying FADD regulation, we identified the anti-apoptotic kinase, CK2, as a new partner and regulator of FADD sub-cellular localization. The blockade of CK2 activity induced FADD re-localization within the cell. Moreover, cytoplasmic FADD was increased when CK2β was knocked down. In vitro kinase and pull down assays confirmed that FADD could be phosphorylated by the CK2 holoenzyme. We found that phosphorylation is weak with CK2α alone and optimal in the presence of stoichiometric amounts of CK2α catalytic and CK2β regulatory subunit, showing that FADD phosphorylation is undertaken by the CK2 holoenzyme in a CK2β-driven fashion. We found that CK2 can phosphorylate FADD on the serine 200 and that this phosphorylation is important for nuclear localization of FADD. Altogether, our results show for the first time that multifaceted kinase, CK2, phosphorylates FADD and is involved in its sub-cellular localization. This work uncovered an important role of CK2 in stable FADD nuclear localization.
Collapse
|
28
|
Wazir U, Orakzai MMAW, Khanzada ZS, Jiang WG, Sharma AK, Kasem A, Mokbel K. The role of death-associated protein 3 in apoptosis, anoikis and human cancer. Cancer Cell Int 2015; 15:39. [PMID: 25883535 PMCID: PMC4399419 DOI: 10.1186/s12935-015-0187-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 03/18/2015] [Indexed: 01/12/2023] Open
Abstract
Death-associated protein 3 (DAP3) is a molecule with a significant role in the control of both apoptosis and anoikis. Apoptosis is the predominant type of programmed cell death (PCD) which may occur in response to irreparable damage to DNA, or in response to induction by inflammatory cells. Anoikis is subset of apoptosis which occurs in epithelial cells in response to detachment from the surrounding matrix. Both apoptosis and anoikis are of interest in the context of carcinogenesis. In this review, we shall discuss apoptosis and anoikis, and the recent literature regarding the role of DAP3 in both these pathways.
Collapse
Affiliation(s)
- Umar Wazir
- />The London Breast Institute, Princess Grace Hospital, London, UK
- />Department of Breast Surgery, St. George’s Hospital and Medical School, University of London, London, UK
| | | | - Zubair S Khanzada
- />Metastasis and Angiogenesis Research Group, University Department of Surgery, Cardiff University School of Medicine, Cardiff University, Cardiff, Wales UK
| | - Wen G Jiang
- />Metastasis and Angiogenesis Research Group, University Department of Surgery, Cardiff University School of Medicine, Cardiff University, Cardiff, Wales UK
| | - Anup K Sharma
- />Department of Breast Surgery, St. George’s Hospital and Medical School, University of London, London, UK
| | - Abdul Kasem
- />The London Breast Institute, Princess Grace Hospital, London, UK
| | - Kefah Mokbel
- />The London Breast Institute, Princess Grace Hospital, London, UK
- />Department of Breast Surgery, St. George’s Hospital and Medical School, University of London, London, UK
| |
Collapse
|
29
|
García-Fuster MJ, García-Sevilla JA. Monoamine receptor agonists, acting preferentially at presynaptic autoreceptors and heteroreceptors, downregulate the cell fate adaptor FADD in rat brain cortex. Neuropharmacology 2014; 89:204-14. [PMID: 25286119 DOI: 10.1016/j.neuropharm.2014.09.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 08/26/2014] [Accepted: 09/15/2014] [Indexed: 11/13/2022]
Abstract
FADD is a crucial adaptor of death receptors that can engage apoptosis or survival actions (e.g. neuroplasticity) through its phosphorylated form (p-FADD). Although FADD was shown to participate in receptor mechanisms related to drugs of abuse, little is known on its role in the signaling of classic neurotransmitters (dopamine, noradrenaline, and serotonin) in brain. This study assessed the modulation of FADD (and p-FADD/FADD ratio, as an index of neuroplasticity) and FLIP-L (a neuroprotective FADD interacting partner), as well as the role of MEK-ERK signaling, after activation of monoamine auto/heteroreceptors by selective agonists in rat cortex. Acute depletion of monoamines with reserpine, but not with AMPT or PCPA, reduced FADD (28%) and increased p-FADD/FADD ratio (1.34-fold). Activation of presynaptic α2A-adrenoceptors (UK-14304 and clonidine), 5-HT1A receptors (8-OH-DPAT), and D2 dopamine receptor (bromocriptine) dose-dependently decreased FADD (up to 54%) and increased p-FADD (up to 29%) and p-FADD/FADD ratios (up to 2.93-fold), through specific receptor mechanisms. Activation of rat 5-HT1B autoreceptor in axon terminals by CP-94253 did not modulate FADD forms. Activation of postsynaptic D1 dopamine receptor by SKF-81297 also reduced FADD (25%) and increased p-FADD (32%). Disruption of MEK-ERK activation with SL327 did not modify clonidine (α2A-adrenoceptor)-induced FADD inhibition, indicating that agonist effect was not dependent on ERK signaling. The various monoamine receptor agonists and antagonists did not alter FLIP-L content, or the activation of executioner caspase-3 and PARP-1 cleavage, indicating that the agonists attenuated apoptotic signals and promoted neuroplasticity through FADD regulation. These novel results indicate that inhibition of pro-apoptotic FADD adaptor could function as a common signaling step in the initial activation of monoamine receptors in the brain.
Collapse
Affiliation(s)
- M Julia García-Fuster
- Neurobiology of Drug Abuse Group, IUNICS/IdISPa, University of the Balearic Islands, Spain; Redes Temáticas de Investigación Cooperativa en Salud-Red de Trastornos Adictivos (RETICS-RTA), Palma de Mallorca, Spain.
| | - Jesús A García-Sevilla
- Laboratory of Neuropharmacology, IUNICS/IdISPa, University of the Balearic Islands, Spain; Redes Temáticas de Investigación Cooperativa en Salud-Red de Trastornos Adictivos (RETICS-RTA), Palma de Mallorca, Spain
| |
Collapse
|
30
|
Patel S, Murphy D, Haralambieva E, Abdulla ZA, Wong KK, Chen H, Gould E, Roncador G, Hatton C, Anderson AP, Banham AH, Pulford K. Increased Expression of Phosphorylated FADD in Anaplastic Large Cell and Other T-Cell Lymphomas. Biomark Insights 2014; 9:77-84. [PMID: 25232277 PMCID: PMC4159367 DOI: 10.4137/bmi.s16553] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 06/03/2014] [Indexed: 01/02/2023] Open
Abstract
FAS-associated protein with death domain (FADD) is a major adaptor protein involved in extrinsic apoptosis, embryogenesis, and lymphocyte homeostasis. Although abnormalities of the FADD/death receptor apoptotic pathways have been established in tumorigenesis, fewer studies have analyzed the expression and role of phosphorylated FADD (pFADD). Our identification of FADD as a lymphoma-associated autoantigen in T-cell lymphoma patients raises the possibility that pFADD, with its correlation with cell cycle, may possess role(s) in human T-cell lymphoma development. This immunohistochemical study investigated pFADD protein expression in a range of normal tissues and lymphomas, particularly T-cell lymphomas that require improved therapies. Whereas pFADD was expressed only in scattered normal T cells, it was detected at high levels in T-cell lymphomas (eg, 84% anaplastic large cell lymphoma and 65% peripheral T cell lymphomas, not otherwise specified). The increased expression of pFADD supports further study of its clinical relevance and role in lymphomagenesis, highlighting phosphorylation of FADD as a potential therapeutic target.
Collapse
Affiliation(s)
- Suketu Patel
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, UK
| | - Derek Murphy
- Center for Human Proteomics, Royal College of Surgeons in Ireland, Dublin, Ireland. ; School of Biological Sciences, Dublin Institute of Technology, Dublin, Ireland. ; Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | | | - Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Hong Chen
- Center for Human Proteomics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Edith Gould
- Center for Human Proteomics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Giovanna Roncador
- Monoclonal Antibodies Unit, Biotechnology Programme, Spanish National Cancer Research Center, Madrid, Spain
| | - Chris Hatton
- Department of Hematology, John Radcliffe Hospital, Oxford, UK
| | - Amanda P Anderson
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, UK
| | - Alison H Banham
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, UK
| | - Karen Pulford
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, UK
| |
Collapse
|
31
|
Laget S, Miotto B, Chin HG, Estève PO, Roberts RJ, Pradhan S, Defossez PA. MBD4 cooperates with DNMT1 to mediate methyl-DNA repression and protects mammalian cells from oxidative stress. Epigenetics 2014; 9:546-56. [PMID: 24434851 PMCID: PMC4121365 DOI: 10.4161/epi.27695] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Oxidative stress induces genome-wide remodeling of the chromatin structure. In this study, we identify Methyl-CpG Binding Protein 4 (MBD4), a multifunctional enzyme involved in DNA demethylation, base excision repair, and gene expression regulation, as an essential factor in response to oxidative stress. We provide evidence that MBD4 is upregulated at the protein level upon oxidative stress, and that MBD4 is essential for cell survival following oxidative stress. In these cells, MBD4 and DNMT1 are recruited at sites of oxidation-induced DNA damage, where we speculate they participate in DNA repair. MBD4 and DNMT1 also share genomic targets in unstressed cells. Using genome-wide analysis of MBD4 binding sites, we identified new targets potentially co-regulated by MBD4 and DNA methylation. We identified two new binding sites for MBD4 and DNMT1 at methylated CpG islands of CDKN1A/p21 and MSH4, where they synergistically mediate transcriptional repression. Our study provides evidence that the interaction between DNMT1 and MBD4 is involved in controlling gene expression and responding to oxidative stress.
Collapse
Affiliation(s)
- Sophie Laget
- Université Paris Diderot; Sorbonne Paris Cité; Epigenetics and Cell Fate; UMR 7216 CNRS; Paris, France; New England Biolabs; Ipswich, MA USA
| | - Benoit Miotto
- Université Paris Diderot; Sorbonne Paris Cité; Epigenetics and Cell Fate; UMR 7216 CNRS; Paris, France
| | | | | | | | | | - Pierre-Antoine Defossez
- Université Paris Diderot; Sorbonne Paris Cité; Epigenetics and Cell Fate; UMR 7216 CNRS; Paris, France
| |
Collapse
|
32
|
Kleino A, Silverman N. The Drosophila IMD pathway in the activation of the humoral immune response. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 42:25-35. [PMID: 23721820 PMCID: PMC3808521 DOI: 10.1016/j.dci.2013.05.014] [Citation(s) in RCA: 249] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 05/17/2013] [Accepted: 05/17/2013] [Indexed: 05/08/2023]
Abstract
The IMD pathway signaling plays a pivotal role in the Drosophila defense against bacteria. During the last two decades, significant progress has been made in identifying the components and deciphering the molecular mechanisms underlying this pathway, including the means of bacterial sensing and signal transduction. While these findings have contributed to the understanding of the immune signaling in insects, they have also provided new insights in studying the mammalian NF-κB signaling pathways. Here, we summarize the current view of the IMD pathway focusing on how it regulates the humoral immune response of Drosophila.
Collapse
Affiliation(s)
- Anni Kleino
- Division of Infectious Diseases, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | | |
Collapse
|
33
|
Kim H, Lee HJ, Oh Y, Choi SG, Hong SH, Kim HJ, Lee SY, Choi JW, Su Hwang D, Kim KS, Kim HJ, Zhang J, Youn HJ, Noh DY, Jung YK. The DUSP26 phosphatase activator adenylate kinase 2 regulates FADD phosphorylation and cell growth. Nat Commun 2014; 5:3351. [PMID: 24548998 PMCID: PMC3948464 DOI: 10.1038/ncomms4351] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 01/30/2014] [Indexed: 01/16/2023] Open
Abstract
Adenylate kinase 2 (AK2), which balances adenine nucleotide pool, is a multi-functional protein. Here we show that AK2 negatively regulates tumour cell growth. AK2 forms a complex with dual-specificity phosphatase 26 (DUSP26) phosphatase and stimulates DUSP26 activity independently of its AK activity. AK2/DUSP26 phosphatase protein complex dephosphorylates fas-associated protein with death domain (FADD) and regulates cell growth. AK2 deficiency enhances cell proliferation and induces tumour formation in a xenograft assay. This anti-growth function of AK2 is associated with its DUSP26-stimulating activity. Downregulation of AK2 is frequently found in tumour cells and human cancer tissues showing high levels of phospho-FADD(Ser194). Moreover, reconstitution of AK2 in AK2-deficient tumour cells retards both cell proliferation and tumourigenesis. Consistent with this, AK2(+/-) mouse embryo fibroblasts exhibit enhanced cell proliferation with a significant alteration in phospho-FADD(Ser191). These results suggest that AK2 is an associated activator of DUSP26 and suppresses cell proliferation by FADD dephosphorylation, postulating AK2 as a negative regulator of tumour growth.
Collapse
Affiliation(s)
- Hyunjoo Kim
- School of Biological Science/Bio-Max Institute, Seoul National University, Gwanak-gu, Seoul 151-747, Korea
- These authors contributed equally to this work
| | - Ho-June Lee
- Department of Discovery Oncology, Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, USA
- These authors contributed equally to this work
| | - Yumin Oh
- School of Biological Science/Bio-Max Institute, Seoul National University, Gwanak-gu, Seoul 151-747, Korea
| | - Seon-Guk Choi
- School of Biological Science/Bio-Max Institute, Seoul National University, Gwanak-gu, Seoul 151-747, Korea
| | - Se-Hoon Hong
- School of Biological Science/Bio-Max Institute, Seoul National University, Gwanak-gu, Seoul 151-747, Korea
| | - Hyo-Jin Kim
- Department of Discovery Oncology, Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, USA
| | - Song-Yi Lee
- School of Biological Science/Bio-Max Institute, Seoul National University, Gwanak-gu, Seoul 151-747, Korea
| | - Ji-Woo Choi
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul 136-791, Korea
| | - Deog Su Hwang
- School of Biological Science/Bio-Max Institute, Seoul National University, Gwanak-gu, Seoul 151-747, Korea
| | - Key-Sun Kim
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul 136-791, Korea
| | - Hyo-Joon Kim
- Department of Biochemistry, Hanyang University, Ansan, Kyeonggi-do 425-791, Korea
| | - Jianke Zhang
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | - Hyun-Jo Youn
- Department of Surgery, Chonbuk National University Medical School, Jeonju 561-180, Korea
| | - Dong-Young Noh
- Department of Surgery, Seoul National University College of Medicine, Seoul 110-744, Korea
| | - Yong-Keun Jung
- School of Biological Science/Bio-Max Institute, Seoul National University, Gwanak-gu, Seoul 151-747, Korea
| |
Collapse
|
34
|
A short review on the implications of base excision repair pathway for neurons: relevance to neurodegenerative diseases. Mitochondrion 2013; 16:38-49. [PMID: 24220222 DOI: 10.1016/j.mito.2013.10.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/31/2013] [Accepted: 10/31/2013] [Indexed: 12/13/2022]
Abstract
Oxidative DNA damage results from the attack by reactive oxygen and nitrogen species (ROS/RNS) on human genome. This includes base modifications such as oxidized bases, abasic (AP) sites, and single-strand breaks (SSBs), all of which are repaired by the base excision repair (BER) pathway, one among the six known repair pathways. BER-pathway in mammalian cells involves several evolutionarily conserved proteins and is also linked to genome replication and transcription. The BER-pathway enzymes, namely, DNA glycosylases (DGs) and the end-processing proteins such as abasic endonuclease (APE1), form complexes with downstream repair enzymes via protein-protein and DNA-protein interactions. An emerging concept for BER proteins is their involvement in non-canonical functions associated to RNA metabolism, which is opening new interesting perspectives. Various mechanisms that are underlined in maintaining neuronal cell genome integrity are identified, but are inconclusive in providing protection against oxidative damage in neurodegenerative disorders, main emphasis is given towards the role played by the proteins of BER-pathway that is discussed. In addition, mechanisms of action of BER-pathway in nuclear vs. mitochondria as well as the non-canonical functions are discussed in connection to human neurodegenerative diseases.
Collapse
|
35
|
Treas J, Tyagi T, Singh KP. Chronic exposure to arsenic, estrogen, and their combination causes increased growth and transformation in human prostate epithelial cells potentially by hypermethylation-mediated silencing of MLH1. Prostate 2013; 73:1660-72. [PMID: 23804311 DOI: 10.1002/pros.22701] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 05/29/2013] [Indexed: 11/07/2022]
Abstract
BACKGROUND Chronic exposure to arsenic and estrogen is associated with risk of prostate cancer, but their mechanism is not fully understood. Additionally, the carcinogenic effects of their co-exposure are not known. Therefore, the objective of this study was to evaluate the effects of chronic exposure to arsenic, estrogen, and their combination, on cell growth and transformation, and identify the mechanism behind these effects. METHODS RWPE-1 human prostate epithelial cells were chronically exposed to arsenic and estrogen alone and in combination. Cell growth was measured by cell count and cell cycle, whereas cell transformation was evaluated by colony formation assay. Gene expression was measured by quantitative real-time PCR and confirmed at protein level by Western blot analysis. MLH1 promoter methylation was determined by pyrosequencing method. RESULTS Exposure to arsenic, estrogen, and their combinations increases cell growth and transformation in RWPE-1 cells. Increased expression of Cyclin D1 and Bcl2, whereas decreased expression of mismatch repair genes MSH4, MSH6, and MLH1 was also observed. Hypermethylation of MLH1 promoter further suggested the epigenetic inactivation of MLH1 expression in arsenic and estrogen treated cells. Arsenic and estrogen combination caused greater changes than their individual treatments. CONCLUSIONS Findings of this study for the first time suggest that arsenic and estrogen exposures cause increased cell growth and survival potentially through epigenetic inactivation of MLH1 resulting in decreased MLH1-mediated apoptotic response, and consequently increased cellular transformation.
Collapse
Affiliation(s)
- Justin Treas
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, Texas
| | | | | |
Collapse
|
36
|
Oh J, Malter JS. Pin1-FADD interactions regulate Fas-mediated apoptosis in activated eosinophils. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 190:4937-45. [PMID: 23606538 PMCID: PMC3652414 DOI: 10.4049/jimmunol.1202646] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Abnormally long-lived eosinophils (Eos) are the major inflammatory component of allergic responses in the lungs of active asthmatics. Eos recruited to the airways after allergen exposure produce and respond to IL-5 and GM-CSF, enhancing their survival. Prosurvival signaling activates Pin1, a peptidyl-prolyl cis-trans isomerase that binds to Bax and prevents its activation. How long-lived Eos, despite the continued presence of GM-CSF or IL-5, eventually undergo apoptosis to end allergic inflammation remains unclear. In this study, we show that Pin1 location, activity, and protein interactions are jointly influenced by Fas and the prosurvival cytokine IL-5. Fas signaling strongly induced the phosphorylation of FADD at Ser(194) and Pin1 at Ser(16), as well as their nuclear accumulation. Phospho-mimic Ser(194)Glu FADD mutants accelerated Eos apoptosis compared with wild-type or Ser(194)Ala mutants. Downstream of FADD phosphorylation, caspase 8, 9, and 3 cleavage, as well as Eos apoptosis induced by Fas, were reduced by constitutively active Pin1 and enhanced by Pin1 inhibition. Pin1 was activated by IL-5, whereas simultaneous IL-5 and anti-Fas treatment modestly reduced peptidyl isomerase activity but induced Pin1 to associate with FADD after its phosphorylation at Ser(194). Mechanistically, Pin1-mediated isomerization facilitated the subsequent dephosphorylation of Ser(194) FADD and maintenance of cytoplasmic location. In vivo-activated bronchoalveolar Eos obtained after allergen challenge showed elevated survival and Pin1 activity that could be reversed by anti-Fas. Therefore, our data suggest that Pin1 is a critical link between FADD-mediated cell death and IL-5-mediated prosurvival signaling.
Collapse
Affiliation(s)
- Jiyoung Oh
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9072, USA
| | | |
Collapse
|
37
|
LI W, LIN Y. Identification of Human Methyl-CpG Binding Domain Protein (MBD) 4 as a Substrate of Protein Kinase X*. PROG BIOCHEM BIOPHYS 2012. [DOI: 10.3724/sp.j.1206.2011.00430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Abstract
The base excision repair system is vital to the repair of endogenous and exogenous DNA damage. This pathway is initiated by one of several DNA glycosylases that recognizes and excises specific DNA lesions in a coordinated fashion. Methyl-CpG Domain Protein 4 (MBD4) and Thymine DNA Glycosylase (TDG) are the two major G:T glycosylases that remove thymine generated by the deamination of 5-methylcytosine. Both of these glycosylases also remove a variety of other base lesions, including G:U and preferentially act at CpG sites throughout the genome. Many have questioned the purpose of seemingly redundant glycosylases, but new information has emerged to suggest MBD4 and TDG have diverse biological functions. MBD4 has been closely linked to apoptosis, while TDG has been clearly implicated in transcriptional regulation. This article reviews all of these developments, and discusses the consequences of germline and somatic mutations that lead to non-synonymous amino acid substitutions on MBD4 and TDG protein function. In addition, we report the finding of alternatively spliced variants of MBD4 and TDG and the results of functional studies of a tumor-associated variant of MBD4.
Collapse
|
39
|
Xiong XD, Luo XP, Liu X, Jing X, Zeng LQ, Lei M, Hong XS, Chen Y. The MBD4 Glu346Lys polymorphism is associated with the risk of cervical cancer in a Chinese population. Int J Gynecol Cancer 2012; 22:1552-6. [PMID: 23027038 DOI: 10.1097/igc.0b013e31826e22e4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Methyl-CpG binding domain 4 (MBD4) protein functions as a DNA repair enzyme and plays an important role in maintaining genome integrity and carcinogenesis. The polymorphisms in the MBD4 gene may be associated with differences in DNA repair capacity and thereby influence an individual's susceptibility to cervical cancer. To verify this hypothesis, we examined the potential association between the MBD4 Glu346Lys polymorphism (rs140693, G>A) and the risk of cervical cancer in a Chinese population. METHODS We genotyped the MBD4 Glu346Lys polymorphism in 146 cervical cancer cases and 320 healthy female subjects using polymerase chain reaction-based restriction fragment length polymorphism method. Unconditional logistic regression analysis was used to estimate the association between the genotypes and the risk of cervical cancer. RESULTS We observed a significantly decreased risk of cervical cancer associated with the heterozygous Lys/Glu genotype (odds ratio [OR], 0.60; 95% confidence interval [CI], 0.36-0.99; P = 0.046) and the homozygous Glu/Glu genotype (OR, 0.52; 95% CI, 0.30-0.89; P = 0.018), compared with the Lys/Lys homozygotes. Moreover, the reduced cervical cancer risk was more predominant among younger subjects or human papillomavirus-positive individuals carrying Glu/Glu genotypes (OR, 0.33; 95% CI, 0.14-0.78, P = 0.011; and OR, 0.27; 95% CI, 0.09-0.75, P = 0.013, respectively). CONCLUSIONS The MBD4 codon 346 polymorphism may play a role in cervical cancer susceptibility in the Chinese population. Further larger case-control and functional studies are needed to validate these findings.
Collapse
Affiliation(s)
- Xing-Dong Xiong
- Aging Research Institute, Guangdong Medical College, Dongguan, China.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Cimino Y, Costes A, Damotte D, Validire P, Mistou S, Cagnard N, Alifano M, Régnard JF, Chiocchia G, Sautès-Fridman C, Tourneur L. FADD protein release mirrors the development and aggressiveness of human non-small cell lung cancer. Br J Cancer 2012; 106:1989-96. [PMID: 22669160 PMCID: PMC3388563 DOI: 10.1038/bjc.2012.196] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The need to unfold the underlying mechanisms of lung cancer aggressiveness, the deadliest cancer in the world, is of prime importance. Because Fas-associated death domain protein (FADD) is the key adaptor molecule transmitting the apoptotic signal delivered by death receptors, we studied the presence and correlation of intra- and extracellular FADD protein with development and aggressiveness of non-small cell lung cancer (NSCLC). METHODS Fifty NSCLC patients were enrolled in this prospective study. Intracellular FADD was detected in patients' tissue by immunohistochemistry. Tumours and distant non-tumoural lung biopsies were cultured through trans-well membrane in order to analyse extracellular FADD. Correlation between different clinical/histological parameters with level/localisation of FADD protein has been investigated. RESULTS Fas-associated death domain protein could be specifically downregulated in tumoural cells and FADD loss correlated with the presence of extracellular FADD. Indeed, human NSCLC released FADD protein, and tumoural samples released significantly more FADD than non-tumoural (NT) tissue (P=0.000003). The release of FADD by both tumoural and NT tissue increased significantly with the cancer stage, and was correlated with both early and late steps of the metastasis process. CONCLUSION The release of FADD by human NSCLC could be a new marker of poor prognosis as it correlates positively with both tumour progression and aggressiveness.
Collapse
Affiliation(s)
- Y Cimino
- Centre de Recherche des Cordeliers, Equipe 13, Inserm UMRS, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Moréra S, Grin I, Vigouroux A, Couvé S, Henriot V, Saparbaev M, Ishchenko AA. Biochemical and structural characterization of the glycosylase domain of MBD4 bound to thymine and 5-hydroxymethyuracil-containing DNA. Nucleic Acids Res 2012; 40:9917-26. [PMID: 22848106 PMCID: PMC3479182 DOI: 10.1093/nar/gks714] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Active DNA demethylation in mammals occurs via hydroxylation of 5-methylcytosine to 5-hydroxymethylcytosine (5hmC) by the ten-eleven translocation family of proteins (TETs). 5hmC residues in DNA can be further oxidized by TETs to 5-carboxylcytosines and/or deaminated by the Activation Induced Deaminase/Apolipoprotein B mRNA-editing enzyme complex family proteins to 5-hydromethyluracil (5hmU). Excision and replacement of these intermediates is initiated by DNA glycosylases such as thymine-DNA glycosylase (TDG), methyl-binding domain protein 4 (MBD4) and single-strand specific monofunctional uracil-DNA glycosylase 1 in the base excision repair pathway. Here, we report detailed biochemical and structural characterization of human MBD4 which contains mismatch-specific TDG activity. Full-length as well as catalytic domain (residues 426–580) of human MBD4 (MBD4cat) can remove 5hmU when opposite to G with good efficiency. Here, we also report six crystal structures of human MBD4cat: an unliganded form and five binary complexes with duplex DNA containing a T•G, 5hmU•G or AP•G (apurinic/apyrimidinic) mismatch at the target base pair. These structures reveal that MBD4cat uses a base flipping mechanism to specifically recognize thymine and 5hmU. The recognition mechanism of flipped-out 5hmU bases in MBD4cat active site supports the potential role of MBD4, together with TDG, in maintenance of genome stability and active DNA demethylation in mammals.
Collapse
Affiliation(s)
- Solange Moréra
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, Gif-sur-Yvette Cedex, F-91198, France.
| | | | | | | | | | | | | |
Collapse
|
42
|
Ranjan K, Surolia A, Pathak C. Apoptotic potential of Fas-associated death domain on regulation of cell death regulatory protein cFLIP and death receptor mediated apoptosis in HEK 293T cells. J Cell Commun Signal 2012; 6:155-68. [PMID: 22791313 DOI: 10.1007/s12079-012-0166-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 05/09/2012] [Indexed: 12/28/2022] Open
Abstract
Fas-associated death domain (FADD) is a common adaptor molecule which plays an important role in transduction of death receptor mediated apoptosis. The FADD provides DED motif for binding to both procaspase-8 and cFLIP molecules which executes death receptor mediated apoptosis. Dysregulated expression of FADD and cFLIP may contribute to inhibition of apoptosis and promote cell survival in cancer. Moreover elevated intracellular level of cFLIP competitively excludes the binding of procaspase-8 to the death effector domain (DED) of FADD at the DISC to block the activation of death receptor signaling required for apoptosis. Increasing evidence shows that defects in FADD protein expression are associated with progression of malignancies and resistance to apoptosis. Therefore, improved expression and function of FADD may provide new paradigms for regulation of cell proliferation and survival in cancer. In the present study, we have examined the potential of FADD in induction of apoptosis by overexpression of FADD in HEK 293T cells and validated further its consequences on the expression of pro and anti-apoptotic proteins besides initiation of death receptor mediated signaling. We have found deficient expression of FADD and elevated expression of cFLIP(L) in HEK 293T cells. Our results demonstrate that over expression of FADD attenuates the expression of anti-apoptotic protein cFLIP and activates the cascade of extrinsic caspases to execution of apoptosis in HEK 293T cells.
Collapse
Affiliation(s)
- Kishu Ranjan
- Cell Biology Department, School of Biological Sciences & Biotechnology, Indian Institute of Advanced Research, Koba, Gandhinagar, 382007, India
| | | | | |
Collapse
|
43
|
Hashimoto T, Juso K, Nakano M, Nagano T, Kambayashi S, Nakashima A, Kikkawa U, Kamada S. Preferential Fas-mediated apoptotic execution at G1 phase: the resistance of mitotic cells to the cell death. Cell Death Dis 2012; 3:e313. [PMID: 22622132 PMCID: PMC3366086 DOI: 10.1038/cddis.2012.52] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Apoptosis is induced by various stresses generated from the extracellular and intracellular environments. The fidelity of the cell cycle is monitored by surveillance mechanisms that arrest its further progression if any crucial process has not been completed or damages are sustained, and then the cells with problems undergo apoptosis. Although the molecular mechanisms involved in the regulation of the cell cycle and that of apoptosis have been elucidated, the links between them are not clear, especially that between cell cycle and death receptor-mediated apoptosis. By using the HeLa.S-Fucci (fluorescent ubiquitination-based cell cycle indicator) cells, we investigated the relationship between the cell cycle progression and apoptotic execution. To monitor apoptotic execution during cell cycle progression, we observed the cells after induction of apoptosis with time-lapse fluorescent microscopy. About 70% of Fas-mediated apoptotic cells were present at G1 phase and about 20% of cells died immediately after cytokinesis, whereas more than 60% of etoposide-induced apoptotic cells were at S/G2 phases in random culture of the cells. These results were confirmed by using synchronized culture of the cells. Furthermore, mitotic cells showed the resistance to Fas-mediated apoptosis. In conclusion, these findings suggest that apoptotic execution is dependent on cell cycle phase and Fas-mediated apoptosis preferentially occurs at G1 phase.
Collapse
Affiliation(s)
- T Hashimoto
- Biosignal Research Center, Kobe University, Kobe, Japan
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Dinis J, Silva V, Gromicho M, Martins C, Laires A, Tavares P, Rendeiro P, Torres F, Rueff J, Rodrigues A. DNA damage response in imatinib resistant chronic myeloid leukemia K562 cells. Leuk Lymphoma 2012; 53:2004-14. [PMID: 22475343 DOI: 10.3109/10428194.2012.681654] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Resistance to imatinib in patients with chronic myeloid leukemia can lead to advanced disease and blast crisis. Conventional chemotherapy with DNA damaging agents is then used, alone or in combination with other tyrosine kinase inhibitors (TKIs). Our aim was to assess whether imatinib resistant K562 cells were also resistant to DNA damaging agents. After treatment with H(2)O(2) and doxorubicin, but not camptothecin, cell survival was higher in imatinib resistant cells compared to parental cells. DNA damage, measured by comet and γ-H2AX assays, was lower in imatinib resistant cells. mRNA expression levels of 50 genes of the DNA damage response pathway showed increased expression of the base excision repair (BER) genes MBD4 and NTHL1. Knockdown of MBD4 and NTHL1 expression in resistant cells using siRNA decreased cell survival after treatment with H(2)O(2) and doxorubicin. Our results indicate that imatinib resistant cells display cross-resistance to oxidative agents, partly through up-regulation of BER genes. Expression of these genes in imatinib resistant patients was not significantly different compared to sensitive patients. However, the strategy followed in this study could help identify chemotherapeutic agents that are more effective as alternative agents in cases of resistance to TKIs.
Collapse
Affiliation(s)
- Joana Dinis
- CIGMH Human Molecular Genetics Research Center, Department of Genetics, Faculty of Medical Sciences, Universidade Nova de Lisboa, Lisboa, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Cheng J, Zhang H, Zhuang C, Liu R. Peptidylarginine deiminase type 4 and methyl-CpG binding domain 4 polymorphisms in Chinese patients with rheumatoid arthritis. J Rheumatol 2012; 39:1159-65. [PMID: 22505706 DOI: 10.3899/jrheum.120007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Peptidylarginine deiminase type 4 (PADI4) and methyl-CpG binding domain 4 (MBD4) are closely related with rheumatoid arthritis (RA). We hypothesized that PADI4 and MBD4 polymorphisms may contribute to RA susceptibility. METHODS We studied PADI4 rs2240340 G/A, PADI4 rs874881 C/G, MBD4 rs140693 G/A, and MBD4 rs2005618 T/C gene polymorphisms in 329 patients with RA and 697 controls in a Chinese population. Genotyping was done using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). RESULTS When the PADI4 rs2240340 GG homozygote genotype was used as the reference group, the AA genotype was associated with a significantly increased risk of RA. In the recessive model, when PADI4 rs2240340 GG/GA genotypes were used as the reference group, the AA homozygote genotype was associated with a significant increased susceptibility to RA. PADI4 rs874881 C/G was in complete linkage disequilibrium with PADI4 rs2240340 G/A. MBD4 rs140693 G/A and MBD4 rs2005618 T/C polymorphisms were not associated with the risk of RA. In stratification analyses, a significantly increased risk for RA associated with the PADI4 rs2240340 AA genotype was evident among older patients and patients who were anticitrullinated protein antibody (ACPA)-positive compared with the PADI4 rs2240340 GG/GA genotype. CONCLUSION These findings suggest that the functional single-nucleotide polymorphism PADI4 rs2240340 G/A variant allele is associated with RA development, especially among older patients and ACPA-positive patients. However, our results were obtained from a moderate-sized sample, and therefore this is a preliminary conclusion. Validation by a larger study from a more diverse ethnic population is needed to confirm these findings.
Collapse
Affiliation(s)
- Jinluo Cheng
- Institute of Diabetes Research, Department of Orthopedics, and Central Laboratory, Affiliated Hospital of Nanjing Medical University, Changzhou Second People’s Hospital, Changzhou, China
| | | | | | | |
Collapse
|
46
|
Vilmont V, Tourneur L, Chiocchia G. Fas-associated death domain protein and adenosine partnership: fad in RA. Rheumatology (Oxford) 2012; 51:964-75. [PMID: 22253026 DOI: 10.1093/rheumatology/ker402] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Inflammation is the principal hallmark of RA. Different pathways are implicated in the production of pro-inflammatory cytokines, the bona fide mediators of this inflammation. Among them are the TNF pathway and the IL-1 receptor/Toll-like receptor (IL-1R/TLR4) pathway. One of the potential negative regulators of IL-1R/TLR4 signalling is the Fas-associated death domain protein (FADD), which is the pivotal adaptor of the apoptotic signal mediated by death receptors of the TNF family. FADD can sequester myeloid differentiation primary response gene 88 (MyD88), the common adaptor of most TLRs, and hence hinder the activation of nuclear factor κB (NF-κB), the downstream transcription factor. We recently described a new regulatory mechanism of FADD expression, via the shedding of microvesicles, mediated by adenosine receptors. Interestingly, adenosine is found in high concentrations in the joints of RA patients and has been largely reported as a regulator of inflammation. This review discusses the possible link that could exist between the adenosine-dependent regulation of FADD in the inflammatory context of RA and the potential role of FADD as a therapeutic target in the treatment of RA. We will see that the modulation of FADD expression may be a double-edged sword by increasing apoptosis and at the same time limiting NF-κB activation.
Collapse
Affiliation(s)
- Valérie Vilmont
- Département d’Immunologie-Hématologie, Institut Cochin, Inserm U1016, France
| | | | | |
Collapse
|
47
|
Galván SC, Martínez-Salazar M, Galván VM, Méndez R, Díaz-Contreras GT, Alvarado-Hermida M, Alcántara-Silva R, García-Carrancá A. Analysis of CpG methylation sites and CGI among human papillomavirus DNA genomes. BMC Genomics 2011; 12:580. [PMID: 22118413 PMCID: PMC3293833 DOI: 10.1186/1471-2164-12-580] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 11/25/2011] [Indexed: 11/20/2022] Open
Abstract
Background The Human Papillomavirus (HPV) genome is divided into early and late coding sequences, including 8 open reading frames (ORFs) and a regulatory region (LCR). Viral gene expression may be regulated through epigenetic mechanisms, including cytosine methylation at CpG dinucleotides. We have analyzed the distribution of CpG sites and CpG islands/clusters (CGI) among 92 different HPV genomes grouped in function of their preferential tropism: cutaneous or mucosal. We calculated the proportion of CpG sites (PCS) for each ORF and calculated the expected CpG values for each viral type. Results CpGs are underrepresented in viral genomes. We found a positive correlation between CpG observed and expected values, with mucosal high-risk (HR) virus types showing the smallest O/E ratios. The ranges of the PCS were similar for most genomic regions except E4, where the majority of CpGs are found within islands/clusters. At least one CGI belongs to each E2/E4 region. We found positive correlations between PCS for each viral ORF when compared with the others, except for the LCR against four ORFs and E6 against three other ORFs. The distribution of CpG islands/clusters among HPV groups is heterogeneous and mucosal HR-HPV types exhibit both lower number and shorter island sizes compared to cutaneous and mucosal Low-risk (LR) HPVs (all of them significantly different). Conclusions There is a difference between viral and cellular CpG underrepresentation. There are significant correlations between complete genome PCS and a lack of correlations between several genomic region pairs, especially those involving LCR and E6. L2 and L1 ORF behavior is opposite to that of oncogenes E6 and E7. The first pair possesses relatively low numbers of CpG sites clustered in CGIs while the oncogenes possess a relatively high number of CpG sites not associated to CGIs. In all HPVs, E2/E4 is the only region with at least one CGI and shows a higher content of CpG sites in every HPV type with an identified E4. The mucosal HR-HPVs show either the shortest CGI size, followed by the mucosal LR-HPVs and lastly by the cutaneous viral subgroup, and a trend to the lowest CGI number, followed by the cutaneous viral subgroup and lastly by the mucosal LR-HPVs.
Collapse
Affiliation(s)
- Silvia C Galván
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Zou X, Ma W, Solov'yov IA, Chipot C, Schulten K. Recognition of methylated DNA through methyl-CpG binding domain proteins. Nucleic Acids Res 2011; 40:2747-58. [PMID: 22110028 PMCID: PMC3315304 DOI: 10.1093/nar/gkr1057] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
DNA methylation is a key regulatory control route in epigenetics, involving gene silencing and chromosome inactivation. It has been recognized that methyl-CpG binding domain (MBD) proteins play an important role in interpreting the genetic information encoded by methylated DNA (mDNA). Although the function of MBD proteins has attracted considerable attention and is well characterized, the mechanism underlying mDNA recognition by MBD proteins is still poorly understood. In this article, we demonstrate that the methyl-CpG dinucleotides are recognized at the MBD–mDNA interface by two MBD arginines through an interplay of hydrogen bonding and cation-π interaction. Through molecular dynamics and quantum-chemistry calculations we investigate the methyl-cytosine recognition process and demonstrate that methylation enhances MBD–mDNA binding by increasing the hydrophobic interfacial area and by strengthening the interaction between mDNA and MBD proteins. Free-energy perturbation calculations also show that methylation yields favorable contribution to the binding free energy for MBD–mDNA complex.
Collapse
Affiliation(s)
- Xueqing Zou
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | | | | | | |
Collapse
|
49
|
Abstract
The methyl-CpG binding proteins (MBPs) interpret the methylation of DNA and its components. The number of MBPs in the human body currently stands at 15, which are split into 3 branches, a reflection of the intricate mechanisms of gene regulation. Each branch utilizes a different mechanism for interacting with methylated DNA or its components. These interactions function to direct gene expression and maintain or alter DNA architecture. It is these functions that are commonly exploited in human disease. For this review, we will focus on each protein and any roles it may have in initiating, promoting, progressing, or inhibiting cancer. This will highlight common threads in the roles of these proteins, which will allow us to speculate on potentially productive directions for future research.
Collapse
Affiliation(s)
- Lee Parry
- School of Biosciences, Cardiff University, Cardiff, UK
| | | |
Collapse
|
50
|
Lin Y, Li W. MBD 4--a potential substrate for protein kinase X. Acta Biochim Biophys Sin (Shanghai) 2011; 43:916-7. [PMID: 21971312 DOI: 10.1093/abbs/gmr086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ying Lin
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, China
| | | |
Collapse
|