1
|
Ward TR, Qu PP, Leung LC, Zhou B, Muench KL, Khechaduri A, Plastini MJ, Charlton CA, Pattni R, Ho S, Ho M, Huang Y, Zhou P, Hallmayer JF, Mourrain P, Palmer TD, Zhang X, Urban AE. Cell-type specific global reprogramming of the transcriptome and epigenome in induced neurons with the 16p11.2 neuropsychiatric CNVs. Eur J Hum Genet 2025:10.1038/s41431-025-01856-3. [PMID: 40374944 DOI: 10.1038/s41431-025-01856-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 01/03/2025] [Accepted: 04/15/2025] [Indexed: 05/18/2025] Open
Abstract
Copy number variants (CNVs), either deletions or duplications, at the 16p11.2 locus in the human genome are known to increase the risk for autism spectrum disorders (ASD), schizophrenia, and several other developmental conditions. Here, we investigate the global effects on gene expression and DNA methylation using an induced pluripotent stem cell (iPSC) to induced neuron (iN) cell model system derived from 16p11.2 CNV patients and controls. This approach revealed genome-wide and cell-type specific alterations to both gene expression and DNA methylation patterns and also yielded specific leads on genes potentially contributing to some of the phenotypes in 16p11.2 patients. There is global reprogramming of both the transcriptome and the DNA methylome. We observe sets of differentially expressed genes and differentially methylated regions, respectively, that are localized genome wide and that are shared, and with changes in the same direction, between the deletion and duplication genotypes. The gene PCSK9 is identified as a possible contributing factor to symptoms seen in carriers of the 16p11.2 CNVs. The protocadherin (PCDH) gene family is found to have altered DNA methylation patterns in the CNV patient samples. The iPSC lines used for this study are available through a repository as a resource for research into the molecular etiology of the clinical phenotypes of 16p11.2 CNVs and into that of neuropsychiatric and neurodevelopmental disorders in general.
Collapse
Affiliation(s)
- Thomas R Ward
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ping-Ping Qu
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Louis C Leung
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Center for Sleep Sciences and Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Bo Zhou
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Kristin L Muench
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Arineh Khechaduri
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Melanie J Plastini
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Carol A Charlton
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Reenal Pattni
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Steve Ho
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Marcus Ho
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Yiling Huang
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Patrick Zhou
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Joachim F Hallmayer
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Philippe Mourrain
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Center for Sleep Sciences and Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Theo D Palmer
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Xianglong Zhang
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Alexander E Urban
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
2
|
Schmidt HM, Jarrett KE, de Aguiar Vallim TQ, Tarling EJ. Pathways and Molecular Mechanisms Governing LDL Receptor Regulation. Circ Res 2025; 136:902-919. [PMID: 40208925 PMCID: PMC11989972 DOI: 10.1161/circresaha.124.323578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/12/2025]
Abstract
Clearance of circulating plasma LDL (low-density lipoprotein) cholesterol by the liver requires hepatic LDLR (low-density lipoprotein receptor). Complete absence of functional LDLR manifests in severe hypercholesterolemia and premature atherosclerotic cardiovascular disease. Since the discovery of the LDLR 50 years ago by Brown and Goldstein, all approved lipid-lowering medications have been aimed at increasing the abundance and availability of LDLR on the surface of hepatocytes to promote the removal of LDL particles from the circulation. As such a critical regulator of circulating and cellular cholesterol, it is not surprising that LDLR activity is tightly regulated. Despite over half a century's worth of study, there are still many facets of LDLR biology that remain unexplored. This review will focus on pathways that regulate the LDLR and emerging concepts of LDLR biology.
Collapse
Affiliation(s)
- Heidi M. Schmidt
- Department of Medicine, Division of Cardiology, University of California Los Angeles, CA, USA
| | - Kelsey E. Jarrett
- Department of Medicine, Division of Cardiology, University of California Los Angeles, CA, USA
| | - Thomas Q. de Aguiar Vallim
- Department of Medicine, Division of Cardiology, University of California Los Angeles, CA, USA
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, University of California Los Angeles, CA, USA
- Molecular Biology Institute, David Geffen School of Medicine at UCLA, University of California Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California Los Angeles, CA, USA
| | - Elizabeth J. Tarling
- Department of Medicine, Division of Cardiology, University of California Los Angeles, CA, USA
- Molecular Biology Institute, David Geffen School of Medicine at UCLA, University of California Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California Los Angeles, CA, USA
- Lead contact
| |
Collapse
|
3
|
Sun J, Liu HR, Zhu YX, Zhang W, Shi JS, Wu Q, Xu RX. Dendrobium nobile Lindl. alkaloids improve lipid metabolism by increasing LDL uptake through regulation of the LXRα/IDOL/LDLR pathway and inhibition of PCSK9 expression in HepG2 cells. Exp Ther Med 2025; 29:46. [PMID: 39885913 PMCID: PMC11775753 DOI: 10.3892/etm.2025.12796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 10/11/2024] [Indexed: 02/01/2025] Open
Abstract
Dendrobium nobile Lindl. alkaloids (DNLA) are active ingredients that can be extracted from the traditional Chinese herb Dendrobium Nobile Lindl. DNLA exhibits hypoglycemic and antihyperlipidemia effects. However, to the best of our knowledge, the specific molecular mechanism by which DNLA can regulate lipid metabolism remains unclear. The aim of the present study was to investigate the effect of DNLA on lipopolysaccharide (LPS)-induced lipid metabolism in HepG2 cells and its potential mechanism. HepG2 cells were treated with LPS with or without different concentrations of DNLA (0, 0.035, 0.35 and 3.5 µg/ml) for 48 h. Cell viability was then detected using the Cell Counting Kit-8 assay. The 1,1'-dioctadecyl-3,3,3',3'-tetramethyl-indocarbocyanideperchlorate-low-density lipoprotein (LDL) uptake assay was used to examine LDL uptake. In addition, possible mechanisms were explored using western blot analysis. The effect of the combination of DNLA with rosuvastatin calcium on the expression levels of the LDL receptor (LDLR) and proprotein convertase subtilisin/Kexin type 9 (PCSK9) was examined. The results indicated that LPS stimulation reduced the uptake of LDL by HepG2 cells, decreased the intracellular LDLR content, and increased the expression levels of inducible degrader of the LDLR (IDOL) and liver X receptor (LXR)α. DNLA intervention reversed all of the aforementioned LPS-induced effects in HepG2 cells. Additional mechanistic experiments revealed that DNLA exerted its effects mainly by regulating the LXRα/IDOL/LDLR pathway. It was shown that DNLA also reduced the expression levels of PCSK9, sterol regulatory element binding protein 2 and hepatocyte nuclear factor 1α. In addition, DNLA decreased the expression levels of PCSK9 in rosuvastatin calcium-induced HepG2 cells. Notably, DNLA was able to decrease 3-hydroxy-3-methylglutaryl-coenzyme A reductase and increase cytochrome p450 7A1 expression at the protein level, which are rate-limiting enzymes in cholesterol synthesis and metabolism. Collectively, these data suggested that DNLA could enhance LDL uptake of HepG2 cells by increasing LDLR expression through the LXRα/IDOL/LDLR pathway to alleviate the effects induced by LPS, suggesting the potential benefit of DNLA in improving lipid metabolism disorders.
Collapse
Affiliation(s)
- Jian Sun
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563006, P.R. China
- Cardiometabolic Center, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, P.R. China
| | - Hao-Rui Liu
- Cardiometabolic Center, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, P.R. China
| | - Ya-Xin Zhu
- Cardiometabolic Center, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, P.R. China
| | - Wei Zhang
- Cardiometabolic Center, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, P.R. China
| | - Jing-Shan Shi
- Cardiometabolic Center, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, P.R. China
| | - Qin Wu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563006, P.R. China
| | - Rui-Xia Xu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563006, P.R. China
| |
Collapse
|
4
|
Kim M, Zheng Z. Walking the VLDL tightrope in cardiometabolic diseases. Trends Endocrinol Metab 2025; 36:278-291. [PMID: 39191606 PMCID: PMC11861388 DOI: 10.1016/j.tem.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024]
Abstract
Very-low-density lipoprotein (VLDL), a triglyceride-rich lipoprotein secreted by hepatocytes, is pivotal for supplying peripheral tissues with fatty acids for energy production. As if walking on a tightrope, perturbations in the balance of VLDL metabolism contribute to cardiometabolic dysfunction, promoting pathologies such as cardiovascular disease (CVD) or metabolic dysfunction-associated steatotic liver disease (MASLD). Despite the advent of lipid-lowering therapies, including statins and proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, risks for cardiovascular events persist. With limitations to currently available CVD therapeutics and no US Food and Drug Administration (FDA)-approved treatment for MASLD, this review summarizes the current understanding of VLDL metabolism that sheds light on novel therapeutic avenues to pursue for cardiometabolic disorders.
Collapse
Affiliation(s)
- Mindy Kim
- Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, 53226, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, 53226, USA.
| | - Ze Zheng
- Department of Physiology, Medical College of Wisconsin, Milwaukee, 53226, USA; Department of Medicine, Medical College of Wisconsin, Milwaukee, 53226, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, 53226, USA; Thrombosis & Hemostasis Program, Versiti Blood Research Institute, Milwaukee, 53226, USA.
| |
Collapse
|
5
|
Ferri N, Marodin G. Emerging oral therapeutic strategies for inhibiting PCSK9. ATHEROSCLEROSIS PLUS 2025; 59:25-31. [PMID: 39802651 PMCID: PMC11722601 DOI: 10.1016/j.athplu.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 01/16/2025]
Abstract
Pharmacological inhibition of Proprotein Convertase Subtilisin/Kexin 9 (PCSK9) have been firmly established to be an effective approach to reduce low-density lipoprotein (LDL) cholesterol levels and cardiovascular events. Subcutaneous administration of monoclonal antibodies (evolocumab and alirocumab) every 2 or 4 weeks determined a 60 % reduction of LDL cholesterol levels, while the GalNac-siRNA anti PCSK9 (inclisiran) provided an effective lipid lowering activity (-50 %) after an initial subcutaneous dose, repeated after 3 months and followed by a maintenance dose every 6 months. Although these two approaches have the potentiality to bring the majority of patients at high and very-high cardiovascular risk to the appropriate LDL cholesterol targets, their cost and subcutaneous administration represent a strong limitation for their large-scale use. These problems could be overcome by the development of small chemical molecules anti PCSK9 as oral therapy for controlling hypercholesterolemia. In the present review, we summarized the pharmacological properties of oral anti PCSK9 molecules that are currently under clinical development (DC371739, CVI-LM001, and AZD0780), including the mimetic peptides enlicitide decanoate (MK-0616) and NNC0385-0434.
Collapse
Affiliation(s)
- Nicola Ferri
- Department of Medicine, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Giorgia Marodin
- Department of Pharmaceutical and Pharmacological Sciences, Padova, Italy
| |
Collapse
|
6
|
Yang J, Xu M, Wang Z, He M, Zhang G, Jin L, Zhao R, Pan Y, Tong J, Nie L. Unraveling Estrogen and PCSK9's Roles in Lipid Metabolism Disorders among Ovariectomized Mice. Reprod Sci 2025; 32:316-325. [PMID: 38871967 DOI: 10.1007/s43032-024-01614-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024]
Abstract
We explore the interaction between estrogen and PCSK9 and their collective impact on lipid metabolism, especially concerning the regulation of low-density lipoprotein receptor levels. Utilizing both animal and cellular models, including ovariectomized mice and HepG2 cell lines, we demonstrate that estrogen deficiency leads to a disruption in lipid metabolism, characterized by elevated levels of total cholesterol and LDL-C. The study commences with mice undergoing ovariectomy, followed by a diet regimen comprising either high-fat diet or normal feed for a four-week duration. Key assessments include analyzing lipid metabolism, measuring PCSK9 levels in the bloodstream, and evaluating hepatic low-density lipoprotein receptor expression. We will also conduct correlation analyses to understand the relationship between PCSK9 and various lipid profiles. Further, a subset of ovariectomized mice on high-fat diet will undergo treatment with either estrogen or PCSK9 inhibitor for two weeks, with a subsequent re-evaluation of the earlier mentioned parameters. Our findings reveal that estrogen inhibits PCSK9-mediated degradation of low-density lipoprotein receptor, a process crucial for maintaining lipid homeostasis. Through a series of experiments, including immunohistochemistry and western blot analysis, we establish that PCSK9 is involved in lipid metabolism disorders caused by estrogen deficiency and that estrogen regulates PCSK9 and low-density lipoprotein receptor at post-transcriptional level. The study provides a mechanism for the involvement of PCSK9 in elucidating the disorders of lipid metabolism caused by estrogen deficiency due to perimenopause and ovarian decline.
Collapse
Affiliation(s)
- Jie Yang
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Miaomiao Xu
- Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu, China
| | - Zun Wang
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Man He
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Gao Zhang
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Lei Jin
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Rongqian Zhao
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Yiran Pan
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Jiyu Tong
- Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu, China.
- West China, Second University Hospital, Sichuan University, Chengdu, China.
| | - Li Nie
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
7
|
Ajoolabady A, Pratico D, Mazidi M, Davies IG, Lip GYH, Seidah N, Libby P, Kroemer G, Ren J. PCSK9 in metabolism and diseases. Metabolism 2025; 163:156064. [PMID: 39547595 DOI: 10.1016/j.metabol.2024.156064] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/02/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
PCSK9 is a serine protease that regulates plasma levels of low-density lipoprotein (LDL) and cholesterol by mediating the endolysosomal degradation of LDL receptor (LDLR) in the liver. When PCSK9 functions unchecked, it leads to increased degradation of LDLR, resulting in elevated circulatory levels of LDL and cholesterol. This dysregulation contributes to lipid and cholesterol metabolism abnormalities, foam cell formation, and the development of various diseases, including cardiovascular disease (CVD), viral infections, cancer, and sepsis. Emerging clinical and experimental evidence highlights an imperative role for PCSK9 in metabolic anomalies such as hypercholesterolemia and hyperlipidemia, as well as inflammation, and disturbances in mitochondrial homeostasis. Moreover, metabolic hormones - including insulin, glucagon, adipokines, natriuretic peptides, and sex steroids - regulate the expression and circulatory levels of PCSK9, thus influencing cardiovascular and metabolic functions. In this comprehensive review, we aim to elucidate the regulatory role of PCSK9 in lipid and cholesterol metabolism, pathophysiology of diseases such as CVD, infections, cancer, and sepsis, as well as its pharmaceutical and non-pharmaceutical targeting for therapeutic management of these conditions.
Collapse
Affiliation(s)
- Amir Ajoolabady
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Domenico Pratico
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Mohsen Mazidi
- Medical Research Council Population Health Research Unit, University of Oxford, Oxford, UK; King's College London, Department of Twin Research & Genetic Epidemiology, South Wing St Thomas', London, UK; Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Ian G Davies
- School of Sport and Exercise Sciences, Faculty of Science, Liverpool John Moores University, Copperas Hill, Liverpool L3 5AJ, UK
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Nabil Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM, affiliated to the University of Montreal), Montreal, QC H2W 1R7, Canada.
| | - Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France; Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China.
| |
Collapse
|
8
|
Mei W, Faraj Tabrizi S, Godina C, Lovisa AF, Isaksson K, Jernström H, Tavazoie SF. A commonly inherited human PCSK9 germline variant drives breast cancer metastasis via LRP1 receptor. Cell 2025; 188:371-389.e28. [PMID: 39657676 PMCID: PMC11770377 DOI: 10.1016/j.cell.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/12/2024] [Accepted: 11/10/2024] [Indexed: 12/12/2024]
Abstract
Identifying patients at risk for metastatic relapse is a critical medical need. We identified a common missense germline variant in proprotein convertase subtilisin/kexin type 9 (PCSK9) (rs562556, V474I) that is associated with reduced survival in multiple breast cancer patient cohorts. Genetic modeling of this gain-of-function single-nucleotide variant in mice revealed that it causally promotes breast cancer metastasis. Conversely, host PCSK9 deletion reduced metastatic colonization in multiple breast cancer models. Host PCSK9 promoted metastatic initiation events in lung and enhanced metastatic proliferative competence by targeting tumoral low-density lipoprotein receptor related protein 1 (LRP1) receptors, which repressed metastasis-promoting genes XAF1 and USP18. Antibody-mediated therapeutic inhibition of PCSK9 suppressed breast cancer metastasis in multiple models. In a large Swedish early-stage breast cancer cohort, rs562556 homozygotes had a 22% risk of distant metastatic relapse at 15 years, whereas non-homozygotes had a 2% risk. Our findings reveal that a commonly inherited genetic alteration governs breast cancer metastasis and predicts survival-uncovering a hereditary basis underlying breast cancer metastasis.
Collapse
Affiliation(s)
- Wenbin Mei
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | | | - Christopher Godina
- Division of Oncology, Department of Clinical Sciences in Lund, Lund University Cancer Center/Kamprad, Lund, Sweden
| | - Anthea F Lovisa
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Karolin Isaksson
- Division of Surgery, Department of Clinical Sciences in Lund, Lund University and Department of Surgery Kristianstad Hospital, Lund, Sweden
| | - Helena Jernström
- Division of Oncology, Department of Clinical Sciences in Lund, Lund University Cancer Center/Kamprad, Lund, Sweden
| | - Sohail F Tavazoie
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
9
|
Garwood CL, Cabral KP, Brown R, Dixon DL. Current and emerging PCSK9-directed therapies to reduce LDL-C and ASCVD risk: A state-of-the-art review. Pharmacotherapy 2025; 45:54-65. [PMID: 39679827 PMCID: PMC11755694 DOI: 10.1002/phar.4635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 12/17/2024]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) remains the leading cause of death worldwide. Lowering low-density lipoprotein cholesterol (LDL-C) levels is a primary strategy to reduce ASCVD risk. Although statin therapy remains the initial therapy of choice to reduce LDL-C and ASCVD risk, statin intolerance and suboptimal LDL-C lowering response prompts the need for additional non-statin therapies. Ezetimibe and bempedoic acid are reasonable options but they modestly reduce LDL-C levels (15% to 25%). Therapies directed at the proprotein convertase subtilisin/kexin type 9 (PCSK9) enzyme, however, reduce LDL-C levels by 50%-60% when added to background statin therapy. PCSK9 is an enzyme synthesized by the liver that facilitates the degradation of LDL receptors and prevents their recycling to the hepatocyte surface to remove LDL-C from circulation. Approaches to inhibit this effect have centered on monoclonal antibodies (mAbs) (alirocumab, evolocumab) targeting PCSK9 functionality and small interfering RNA (siRNA) therapies (inclisiran) targeting the hepatic synthesis of PCSK9. Randomized controlled trials have demonstrated beneficial cardiovascular outcomes of PCSK9 mAbs, but such evidence is not yet available for inclisiran. Current clinical practice guidelines generally recommend PCSK9-directed therapies for higher-risk patients with established ASCVD and those with familial hypercholesterolemia. This approach is, in part, due to their cost and uncertain economic value, but also because these therapies require subcutaneous administration, which is not preferred by some patients. Oral therapies targeting PCSK9 are, however, in development. This scoping review covers the development of current and emerging PCSK9-directed therapies, their efficacy, safety, and role in clinical practice.
Collapse
Affiliation(s)
- Candice L. Garwood
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health SciencesWayne State UniversityDetroitMichiganUSA
- Department of PharmacyHarper University Hospital, Detroit Medical CenterDetroitMichiganUSA
| | - Katherine P. Cabral
- Department of Pharmacy PracticeAlbany College of Pharmacy & Health SciencesAlbanyNew YorkUSA
- Capital Cardiology AssociatesAlbanyNew YorkUSA
| | - Roy Brown
- Health Sciences LibraryVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Dave L. Dixon
- Department of Pharmacotherapy & Outcomes ScienceVirginia Commonwealth University School of PharmacyRichmondVirginiaUSA
| |
Collapse
|
10
|
Mijiti T, Chen X, Ma X, Ma Y, Ma X, Chen B. Inhibition of hepatic PCSK9 as a novel therapeutic target ameliorates metabolic steatohepatitis in mice. Int Immunopharmacol 2024; 143:113621. [PMID: 39549549 DOI: 10.1016/j.intimp.2024.113621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/07/2024] [Accepted: 11/09/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUND & AIMS Metabolic steatohepatitis (MASH) is closely related to metabolic disorders, and the main characteristics of MASH are hepatocyte steatosis with hepatocyte injury and inflammation. In severe cases, MASH can develop into liver cirrhosis. At present, there is no effective treatment for MASH. Proprotein convertase subtilisin/kexin 9 (PCSK9) is a popular target for the development of cholesterol-lowering drugs and therapeutic interventions for cardiovascular disease. The present study aimed to explore the role of PCSK9 in methionine- and choline-deficient (MCD) diet-induced MASH progression and its targeted intervention. METHODS PCSK9 expression was determined in a MASH mouse model, and the role of PCSK9 in the regulation of lipid metabolism, inflammation, and fibrosis was investigated using PCSK9 knockout (PCSK9-/-) mice fed a MCD diet. An adeno-associated virus was used to alter PCSK9 expression in MASH mice. RESULTS Following the MCD diet, C57BL/6J wild-type (WT) mice developed marked steatohepatitis and elevated hepatic PCSK9 expression, and circulating PCSK9 expression. PCSK9-/- mice showed significantly alleviated MCD-induced hepatic steatosis, with lower serum ALT levels, lower serum AST levels, smaller hepatic vacuoles, and less hepatic lipid deposition. PCSK9-/- mice on the MCD diet showed a significantly reduced levels of inflammation and fibrogenesis. Moreover, adeno-associated virus (AAV)-mediated PCSK9 silencing in mouse livers significantly relieved liver steatosis, inflammation, and fibrosis. CONCLUSIONS The present study demonstrated an important role of PCSK9 in MASH, suggesting that inhibition of PCSK9 may represent a novel and effective therapeutic strategy for MASH treatment.
Collapse
Affiliation(s)
- Tuoluonayi Mijiti
- Xinjiang Key Laboratory of Cardiovascular Disease Research, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China; Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang 830011, China
| | - Xiaocui Chen
- Xinjiang Key Laboratory of Cardiovascular Disease Research, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China; Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xiang Ma
- Xinjiang Key Laboratory of Cardiovascular Disease Research, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yitong Ma
- Xinjiang Key Laboratory of Cardiovascular Disease Research, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xiumin Ma
- Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang 830011, China.
| | - Bangdang Chen
- Xinjiang Key Laboratory of Cardiovascular Disease Research, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China; Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China.
| |
Collapse
|
11
|
Kim Y, Landstrom AP, Shah SH, Wu JC, Seidman CE. Gene Therapy in Cardiovascular Disease: Recent Advances and Future Directions in Science: A Science Advisory From the American Heart Association. Circulation 2024; 150:e471-e480. [PMID: 39523949 DOI: 10.1161/cir.0000000000001296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Cardiovascular disease remains the foremost cause of morbidity and mortality globally, affecting millions of individuals. Recent discoveries illuminate the substantial role of genetics in cardiovascular disease pathogenesis, encompassing both monogenic and polygenic mechanisms and identifying tangible targets for gene therapies. Innovative strategies have emerged to rectify pathogenic variants that cause monogenic disorders such as hypertrophic, dilated, and arrhythmogenic cardiomyopathies and hypercholesterolemia. These include delivery of exogenous genes to supplement insufficient protein levels caused by pathogenic variants or genome editing to correct, delete, or modify mutant sequences to restore protein function. However, effective delivery of gene therapy to specified cells presents formidable challenges. Viral vectors, notably adeno-associated viruses and nonviral vectors such as lipid and engineered nanoparticles, offer distinct advantages and limitations. Additional risks and obstacles remain, including treatment durability, tissue-specific targeting, vector-associated adverse events, and off-target effects. Addressing these challenges is an ongoing imperative; several clinical gene therapy trials are underway, and many more first-in-human studies are anticipated. This science advisory reviews core concepts of gene therapy, key obstacles, patient risks, and ongoing research endeavors to enable clinicians to understand the complex landscape of this emerging therapy and its remarkable therapeutic potential to benefit cardiovascular disease.
Collapse
|
12
|
Jeong H, Shaia JK, Talcott KE, Singh RP. Investigating the Relationship Between Lipid-Lowering Agents and the Complications of Diabetic Retinopathy. Ophthalmic Surg Lasers Imaging Retina 2024; 55:706-713. [PMID: 39231114 DOI: 10.3928/23258160-20240729-03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
BACKGROUND AND OBJECTIVE As the therapeutic efficacy of lipid-lowering agents (LLA) against diabetic retinopathy (DR) remains controversial, this study aimed to evaluate whether various LLA therapies are associated with a reduced risk of DR progression. PATIENTS AND METHODS This retrospective study of the medical records of adults with type 2 diabetes mellitus and DR compared the risk of adverse progression of DR between patients who received statins, fibrates, proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, and no LLA (control). RESULTS Patients in the statin cohort had a reduced rate of progression to proliferative DR compared to controls (HR = 0.30, CI = 0.11 to 0.83). The PCSK9 inhibitor cohort had a reduced risk of progressing to other secondary complications of DR compared to the control (RR = 0.52, CI = 0.43 to 0.64), statin (RR = 0.69, CI = 0.61 to 0.79), and fibrate (RR = 0.67, CI = 0.59 to 0.77) cohorts. CONCLUSIONS These findings suggest use of statins and PCSK9 inhibitors are associated with a reduced risk of adverse progression of DR. [Ophthalmic Surg Lasers Imaging Retina 2024;55:706-713.].
Collapse
|
13
|
Giordano S, Ielapi J, Salerno N, Cersosimo A, Lucchino A, Laschera A, Canino G, Di Costanzo A, De Rosa S, Torella D, Sorrentino S. Rationale for Early Administration of PCSK9 Inhibitors in Acute Coronary Syndrome. Rev Cardiovasc Med 2024; 25:374. [PMID: 39484117 PMCID: PMC11522761 DOI: 10.31083/j.rcm2510374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 11/03/2024] Open
Abstract
Acute coronary syndromes (ACSs) represent a significant global health challenge arising from atherosclerotic cardiovascular disease (ASCVD), with elevated low-density lipoprotein cholesterol (LDL-C) levels being a primary contributor. Despite standard statin therapy, individuals with ACS remain at high risk for recurrent cardiovascular events, particularly in the initial post-ACS period. Monoclonal antibodies targeting proprotein convertase subtilisin/kexin type 9 (PCSK9), such as evolocumab and alirocumab, offer a potential strategy to reduce LDL-C levels further and mitigate this residual risk. This review delves into the molecular mechanisms, effects on cholesterol metabolism, inflammatory modulation, and clinical outcomes associated with early administration of PCSK9 inhibitors following ACS.
Collapse
Affiliation(s)
- Salvatore Giordano
- Department of Medical and Surgical Sciences, Division of Cardiology, “Magna Graecia" University, 88100 Catanzaro, Italy
| | - Jessica Ielapi
- Department of Experimental and Clinical Medicine, “Magna Graecia" University, 88100 Catanzaro, Italy
| | - Nadia Salerno
- Department of Experimental and Clinical Medicine, “Magna Graecia" University, 88100 Catanzaro, Italy
| | - Angelica Cersosimo
- Department of Experimental and Clinical Medicine, “Magna Graecia" University, 88100 Catanzaro, Italy
| | - Alessandro Lucchino
- Department of Medical and Surgical Sciences, Division of Cardiology, “Magna Graecia" University, 88100 Catanzaro, Italy
| | - Alessandro Laschera
- Department of Medical and Surgical Sciences, Division of Cardiology, “Magna Graecia" University, 88100 Catanzaro, Italy
| | - Giovanni Canino
- Department of Medical and Surgical Sciences, Division of Cardiology, “Magna Graecia" University, 88100 Catanzaro, Italy
| | - Assunta Di Costanzo
- Department of Medical and Surgical Sciences, Division of Cardiology, “Magna Graecia" University, 88100 Catanzaro, Italy
| | - Salvatore De Rosa
- Department of Medical and Surgical Sciences, Division of Cardiology, “Magna Graecia" University, 88100 Catanzaro, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, “Magna Graecia" University, 88100 Catanzaro, Italy
| | - Sabato Sorrentino
- Department of Medical and Surgical Sciences, Division of Cardiology, “Magna Graecia" University, 88100 Catanzaro, Italy
| |
Collapse
|
14
|
Liou JW, Chen PY, Gao WY, Yen JH. Natural phytochemicals as small-molecule proprotein convertase subtilisin/kexin type 9 inhibitors. Tzu Chi Med J 2024; 36:360-369. [PMID: 39421488 PMCID: PMC11483095 DOI: 10.4103/tcmj.tcmj_46_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/01/2024] [Accepted: 06/03/2024] [Indexed: 10/19/2024] Open
Abstract
A decrease in the levels of low-density lipoprotein receptors (LDLRs) leads to the accumulation of LDL cholesterol (LDL-C) in the bloodstream, resulting in hypercholesterolemia and atherosclerotic cardiovascular diseases. Increasing the expression level or inducing the activity of LDLR in hepatocytes can effectively control hypercholesterolemia. Proprotein convertase subtilisin/kexin type 9 (PCSK9) protein, primarily produced in the liver, promotes the degradation of LDLR. Inhibiting the expression and/or function of PCSK9 can increase the levels of LDLR on the surface of hepatocytes and promote LDL-C clearance from the plasma. Thus, targeting PCSK9 represents a new strategy for developing preventive and therapeutic interventions for hypercholesterolemia. Currently, monoclonal antibodies are used as PCSK9 inhibitors in clinical practice. However, the need for oral and affordable anti-PCSK9 medications limits the perspective of choosing PCSK9 inhibitors for clinical usage. Emerging research reports have demonstrated that natural phytochemicals have efficacy in maintaining cholesterol stability and regulating lipid metabolism. Developing novel natural phytochemical PCSK9 inhibitors can serve as a starting point for developing small-molecule drugs to reduce plasma LDL-C levels in patients. In this review, we summarize the current literature on the critical role of PCSK9 in controlling LDLR degradation and hypercholesterolemia, and we discuss the results of studies attempting to develop PCSK9 inhibitors, with an emphasis on the inhibitory effects of natural phytochemicals on PCSK9. Furthermore, we provide insight into the mechanisms of action by which the reported phytochemicals exert their potential PCSK9 inhibitory effects against hypercholesterolemia.
Collapse
Affiliation(s)
- Je-Wen Liou
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Pei-Yi Chen
- Laboratory of Medical Genetics, Genetic Counseling Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Wan-Yun Gao
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Jui-Hung Yen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
15
|
Li H, Zhao S, Wu J, Han J, Xu Y, Shi S, Zhang Y. Estimating the effect of inclisiran on hypercholesterolemia and primary prevention of cardiovascular disease: the NHANES 1999-2018 study. Lipids Health Dis 2024; 23:313. [PMID: 39334296 PMCID: PMC11430533 DOI: 10.1186/s12944-024-02294-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Hypercholesterolemia has been identified as an independent predictor of cardiovascular disease (CVD). Inclisiran, an innovative small interfering RNA agent, is anticipated to result in a notable reduction of approximately 50% in low-density lipoprotein cholesterol (LDL-C) levels. Given its transformative impact, this study scrutinized the eligibility of the US population for inclisiran treatment and evaluated its potential effects on hypercholesterolemia and the primary prevention of CVD. METHODS This study applied the eligibility criteria from the ORION 10 and 11 trials to the 1999-2018 National Health and Nutrition Examination Survey (NHANES) dataset to estimate the size of the eligible population for atherosclerotic cardiovascular disease (ASCVD) and ASCVD-risk equivalents. Utilizing the reduction in LDL-C levels from ORION 10, this study predicted the impact of inclisiran on LDL-C levels among ASCVD patients. Similarly, leveraging the changes in lipid levels from ORION 11, this study predicted inclisiran's effect on the 10-year change in CVD risk and preventable CVD events in the ASCVD-risk equivalents population, employing the Framingham CVD Risk Score. RESULTS The study identified 579 ASCVD patients (5 million) and 382 ASCVD-risk equivalents (2.66 million) who met the eligibility criteria from ORION 10 and 11. Among the ASCVD population, 3.5 million (70.2%) would achieve a ≥ 50% reduction in LDL-C levels after treatment. Furthermore, 4.6 million (91.3%) would achieve LDL-C levels < 70 mg/dL, and 3.8 million (75%) would achieve LDL-C levels < 55 mg/dL after treatment. For the ASCVD-risk equivalents population, the estimated 10-year CVD risk would decrease from 25.3 to 17.7%, an absolute reduction of 7.6% and a relative reduction of 30% following inclisiran treatment, potentially preventing 202,353 CVD events over a decade, including 138,084 coronary heart disease cases, 37,351 strokes, and 23,894 congestive heart failure cases. CONCLUSIONS Inclisiran has the potential to substantially reduce the prevalence of hypercholesterolemia and prevent nearly 200,000 CVD events in eligible US adults.
Collapse
Affiliation(s)
- Haonan Li
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Middle Yanchang Road, Shanghai, 200072, China
| | - Song Zhao
- Department of Cardiology, Guizhou Provincial People's Hospital, 83 Zhongshan East Road, Guiyang, Guizhou, 550002, China
| | - Jiawen Wu
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Middle Yanchang Road, Shanghai, 200072, China
| | - Jun Han
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Middle Yanchang Road, Shanghai, 200072, China
| | - Yawei Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Middle Yanchang Road, Shanghai, 200072, China
| | - Shengfeng Shi
- Department of Cardiology, Nantong Haimen People's Hospital, 1201 Beijing West Road, Nantong, Jiangsu, 226199, China.
| | - Yi Zhang
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Middle Yanchang Road, Shanghai, 200072, China.
| |
Collapse
|
16
|
Chaix A, Lin T, Ramms B, Cutler RG, Le T, Lopez C, Miu P, Pinto AFM, Saghatelian A, Playford MP, Mehta NN, Mattson MP, Gordts P, Witztum JL, Panda S. Time-Restricted Feeding Reduces Atherosclerosis in LDLR KO Mice but Not in ApoE Knockout Mice. Arterioscler Thromb Vasc Biol 2024; 44:2069-2087. [PMID: 39087348 PMCID: PMC11409897 DOI: 10.1161/atvbaha.124.320998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Dyslipidemia increases cardiovascular disease risk, the leading cause of death worldwide. Under time-restricted feeding (TRF), wherein food intake is restricted to a consistent window of <12 hours, weight gain, glucose intolerance, inflammation, dyslipidemia, and hypercholesterolemia are all reduced in mice fed an obesogenic diet. LDLR (low-density lipoprotein receptor) mutations are a major cause of familial hypercholesterolemia and early-onset cardiovascular disease. METHODS We subjected benchmark preclinical models, mice lacking LDLR-knockout or ApoE knockout to ad libitum feeding of an isocaloric atherogenic diet either ad libitum or 9 hours TRF for up to 13 weeks and assessed disease development, mechanism, and global changes in hepatic gene expression and plasma lipids. In a regression model, a subset of LDLR-knockout mice were ad libitum fed and then subject to TRF. RESULTS TRF could significantly attenuate weight gain, hypercholesterolemia, and atherosclerosis in mice lacking the LDLR-knockout mice under experimental conditions of both prevention and regression. In LDLR-knockout mice, increased hepatic expression of genes mediating β-oxidation during fasting is associated with reduced VLDL (very-low-density lipoprotein) secretion and lipid accumulation. Additionally, increased sterol catabolism coupled with fecal loss of cholesterol and bile acids contributes to the atheroprotective effect of TRF. Finally, TRF alone or combined with a cholesterol-free diet can reduce atherosclerosis in LDLR-knockout mice. However, mice lacking ApoE, which is an important protein for hepatic lipoprotein reuptake do not respond to TRF. CONCLUSIONS In a preclinical animal model, TRF is effective in both the prevention and regression of atherosclerosis in LDLR knockout mice. The results suggest TRF alone or in combination with a low-cholesterol diet can be a lifestyle intervention for reducing cardiovascular disease risk in humans.
Collapse
Affiliation(s)
- Amandine Chaix
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Terry Lin
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Bastian Ramms
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, USA. 92093
| | - Roy G. Cutler
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, NIH, Baltimore, MD, USA. 21224
| | - Tiffani Le
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Catherine Lopez
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Phuong Miu
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, USA. 92093
| | - Antonio F. M. Pinto
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Alan Saghatelian
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Martin P. Playford
- Section of Inflammation and Cardiometabolic Diseases, Cardiovascular and Pulmonary Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Nehal N. Mehta
- Section of Inflammation and Cardiometabolic Diseases, Cardiovascular and Pulmonary Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Mark P. Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, NIH, Baltimore, MD, USA. 21224
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States. 21205
| | - Philip Gordts
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, USA. 92093
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, USA
| | - Joseph L. Witztum
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, USA. 92093
| | - Satchidananda Panda
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Lead contact
| |
Collapse
|
17
|
Fry H, Mazidi M, Kartsonaki C, Clarke R, Walters RG, Chen Z, Millwood IY. The Role of Furin and Its Therapeutic Potential in Cardiovascular Disease Risk. Int J Mol Sci 2024; 25:9237. [PMID: 39273186 PMCID: PMC11394739 DOI: 10.3390/ijms25179237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/15/2024] Open
Abstract
Furin is an important proteolytic enzyme, converting several proteins from inactive precursors to their active forms. Recently, proteo-genomic analyses in European and East Asian populations suggested a causal association of furin with ischaemic heart disease, and there is growing interest in its role in cardiovascular disease (CVD) aetiology. In this narrative review, we present a critical appraisal of evidence from population studies to assess furin's role in CVD risk and potential as a drug target for CVD. Whilst most observational studies report positive associations between furin expression and CVD risk, some studies report opposing effects, which may reflect the complex biological roles of furin and its substrates. Genetic variation in FURIN is also associated with CVD and its risk factors. We found no evidence of current clinical development of furin as a drug target for CVD, although several phase 1 and 2 clinical trials of furin inhibitors as a type of cancer immunotherapy have been completed. The growing field of proteo-genomics in large-scale population studies may inform the future development of furin and other potential drug targets to improve the treatment and prevention of CVD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Iona Y. Millwood
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK; (H.F.); (M.M.); (C.K.); (R.C.); (R.G.W.); (Z.C.)
| |
Collapse
|
18
|
Lu F, Li E, Yang X. Proprotein convertase subtilisin/kexin type 9 deficiency in extrahepatic tissues: emerging considerations. Front Pharmacol 2024; 15:1413123. [PMID: 39139638 PMCID: PMC11319175 DOI: 10.3389/fphar.2024.1413123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/08/2024] [Indexed: 08/15/2024] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is primarily secreted by hepatocytes. PCSK9 is critical in liver low-density lipoprotein receptors (LDLRs) metabolism. In addition to its hepatocellular presence, PCSK9 has also been detected in cardiac, cerebral, islet, renal, adipose, and other tissues. Once perceived primarily as a "harmful factor," PCSK9 has been a focal point for the targeted inhibition of both systemic circulation and localized tissues to treat diseases. However, PCSK9 also contributes to the maintenance of normal physiological functions in numerous extrahepatic tissues, encompassing both LDLR-dependent and -independent pathways. Consequently, PCSK9 deficiency may harm extrahepatic tissues in close association with several pathophysiological processes, such as lipid accumulation, mitochondrial impairment, insulin resistance, and abnormal neural differentiation. This review encapsulates the beneficial effects of PCSK9 on the physiological processes and potential disorders arising from PCSK9 deficiency in extrahepatic tissues. This review also provides a comprehensive analysis of the disparities between experimental and clinical research findings regarding the potential harm associated with PCSK9 deficiency. The aim is to improve the current understanding of the diverse effects of PCSK9 inhibition.
Collapse
Affiliation(s)
- Fengyuan Lu
- The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - En Li
- The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Xiaoyu Yang
- The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, China
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
19
|
Rutter LA, MacKay MJ, Cope H, Szewczyk NJ, Kim J, Overbey E, Tierney BT, Muratani M, Lamm B, Bezdan D, Paul AM, Schmidt MA, Church GM, Giacomello S, Mason CE. Protective alleles and precision healthcare in crewed spaceflight. Nat Commun 2024; 15:6158. [PMID: 39039045 PMCID: PMC11263583 DOI: 10.1038/s41467-024-49423-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/05/2024] [Indexed: 07/24/2024] Open
Abstract
Common and rare alleles are now being annotated across millions of human genomes, and omics technologies are increasingly being used to develop health and treatment recommendations. However, these alleles have not yet been systematically characterized relative to aerospace medicine. Here, we review published alleles naturally found in human cohorts that have a likely protective effect, which is linked to decreased cancer risk and improved bone, muscular, and cardiovascular health. Although some technical and ethical challenges remain, research into these protective mechanisms could translate into improved nutrition, exercise, and health recommendations for crew members during deep space missions.
Collapse
Affiliation(s)
- Lindsay A Rutter
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, 305-8575, Japan
- Department of Genome Biology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Matthew J MacKay
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Henry Cope
- School of Medicine, University of Nottingham, Nottingham, DE22 3DT, UK
| | - Nathaniel J Szewczyk
- School of Medicine, University of Nottingham, Nottingham, DE22 3DT, UK
- Ohio Musculoskeletal and Neurological Institute (OMNI), Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - JangKeun Kim
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Eliah Overbey
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Braden T Tierney
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Masafumi Muratani
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, 305-8575, Japan
- Department of Genome Biology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Ben Lamm
- Colossal Biosciences, 1401 Lavaca St, Unit #155 Austin, Austin, TX, 78701, USA
| | - Daniela Bezdan
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- NGS Competence Center Tübingen (NCCT), University of Tübingen, Tübingen, Germany
- Yuri GmbH, Meckenbeuren, Germany
| | - Amber M Paul
- Embry-Riddle Aeronautical University, Department of Human Factors and Behavioral Neurobiology, Daytona Beach, FL, 32114, USA
| | - Michael A Schmidt
- Sovaris Aerospace, Boulder, CO, 80302, USA.
- Advanced Pattern Analysis & Human Performance Group, Boulder, CO, 80302, USA.
| | - George M Church
- GC Therapeutics Inc, Cambridge, MA, 02139, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02115, USA.
| | | | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA.
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA.
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, 10065, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02115, USA.
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
20
|
Wang Y, Tinsley B, Spolitu S, Zadroga JA, Agarwal H, Sarecha AK, Ozcan L. Geranylgeranyl isoprenoids and hepatic Rap1a regulate basal and statin-induced expression of PCSK9. J Lipid Res 2024; 65:100515. [PMID: 38309417 PMCID: PMC10910342 DOI: 10.1016/j.jlr.2024.100515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/05/2024] Open
Abstract
LDL-C lowering is the main goal of atherosclerotic cardiovascular disease prevention, and proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition is now a validated therapeutic strategy that lowers serum LDL-C and reduces coronary events. Ironically, the most widely used medicine to lower cholesterol, statins, has been shown to increase circulating PCSK9 levels, which limits their efficacy. Here, we show that geranylgeranyl isoprenoids and hepatic Rap1a regulate both basal and statin-induced expression of PCSK9 and contribute to LDL-C homeostasis. Rap1a prenylation and activity is inhibited upon statin treatment, and statin-mediated PCSK9 induction is dependent on geranylgeranyl synthesis and hepatic Rap1a. Accordingly, treatment of mice with a small-molecule activator of Rap1a lowered PCSK9 protein and plasma cholesterol and inhibited statin-mediated PCSK9 induction in hepatocytes. The mechanism involves inhibition of the downstream RhoA-ROCK pathway and regulation of PCSK9 at the post-transcriptional level. These data further identify Rap1a as a novel regulator of PCSK9 protein and show that blocking Rap1a prenylation through lowering geranylgeranyl levels contributes to statin-mediated induction of PCSK9.
Collapse
Affiliation(s)
- Yating Wang
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA; Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Brea Tinsley
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Stefano Spolitu
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - John A Zadroga
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Heena Agarwal
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Amesh K Sarecha
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Lale Ozcan
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
21
|
Yin X, Harmancey R, Frierson B, Wu JG, Moody MR, McPherson DD, Huang SL. Efficient Gene Editing for Heart Disease via ELIP-Based CRISPR Delivery System. Pharmaceutics 2024; 16:343. [PMID: 38543237 PMCID: PMC10974117 DOI: 10.3390/pharmaceutics16030343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/09/2024] [Accepted: 02/26/2024] [Indexed: 04/01/2024] Open
Abstract
Liposomes as carriers for CRISPR/Cas9 complexes represent an attractive approach for cardiovascular gene therapy. A critical barrier to this approach remains the efficient delivery of CRISPR-based genetic materials into cardiomyocytes. Echogenic liposomes (ELIP) containing a fluorescein isothiocyanate-labeled decoy oligodeoxynucleotide against nuclear factor kappa B (ELIP-NF-κB-FITC) were used both in vitro on mouse neonatal ventricular myocytes and in vivo on rat hearts to assess gene delivery efficacy with or without ultrasound. In vitro analysis was then repeated with ELIP containing Cas9-sg-IL1RL1 (interleukin 1 receptor-like 1) RNA to determine the efficiency of gene knockdown. ELIP-NF-κB-FITC without ultrasound showed limited gene delivery in vitro and in vivo, but ultrasound combined with ELIP notably improved penetration into heart cells and tissues. When ELIP was used to deliver Cas9-sg-IL1RL1 RNA, gene editing was successful and enhanced by ultrasound. This innovative approach shows promise for heart disease gene therapy using CRISPR technology.
Collapse
Affiliation(s)
- Xing Yin
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (R.H.); (B.F.); (M.R.M.); (D.D.M.)
| | - Romain Harmancey
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (R.H.); (B.F.); (M.R.M.); (D.D.M.)
| | - Brion Frierson
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (R.H.); (B.F.); (M.R.M.); (D.D.M.)
| | - Jean G. Wu
- Department of Diagnostic Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA;
| | - Melanie R. Moody
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (R.H.); (B.F.); (M.R.M.); (D.D.M.)
| | - David D. McPherson
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (R.H.); (B.F.); (M.R.M.); (D.D.M.)
| | - Shao-Ling Huang
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (R.H.); (B.F.); (M.R.M.); (D.D.M.)
| |
Collapse
|
22
|
Zhu XB, Xu YY, Li LC, Sun JB, Wang YZ, Chen J, Wang C, Zhang S, Jin LY. Function of proprotein convertase subtilisin/kexin type 9 and its role in central nervous system diseases: An update on clinical evidence. Drug Dev Res 2024; 85:e22131. [PMID: 37943623 DOI: 10.1002/ddr.22131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/23/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) has attracted lots of attention in preventing the clearance of plasma low-density lipoprotein cholesterol (LDL-C). PCSK9 inhibitors are developed to primarily reduce the cardiovascular risk by lowering LDL-C level. Recently, a number of pleiotropic extrahepatic functions of PCSK9 beyond the regulation of cholesterol metabolism, particularly its effects on central nervous system (CNS) diseases have been increasingly identified. Emerging clinical evidence have revealed that PCSK9 may play a significant role in neurocognition, depression, Alzheimer's disease, and stroke. The focus of this review is to elucidate the functions of PCSK9 and highlight the effects of PCSK9 in CNS diseases, with the aim of identifying the potential risks that may arise from low PCSK9 level (variant or inhibitor) in the clinical practice.
Collapse
Affiliation(s)
- Xiao-Bin Zhu
- Department of Pharmacy, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yao-Yao Xu
- Department of Pharmacy, Pingyang Hospital Affiliated to Wenzhou Medical University (The People's Hospital of Pingyang), Wenzhou, China
| | - Liu-Cheng Li
- Department of Pharmacy, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia-Bin Sun
- Department of Pharmacy, Deqing People's Hospital, Huzhou, China
| | - Yu-Zhen Wang
- Department of Pharmacy, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Chen
- Department of Pharmacy, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Wang
- Department of Pharmacy, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Su Zhang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Liang-Yan Jin
- Department of Pharmacy, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
23
|
Haldar SM. Keeping translational research grounded in human biology. J Clin Invest 2024; 134:e178332. [PMID: 38226617 PMCID: PMC10763720 DOI: 10.1172/jci178332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024] Open
Affiliation(s)
- Saptarsi M. Haldar
- Amgen Research, South San Francisco, California, USA
- UCSF, San Francisco, California, USA
- Gladstone Institutes, San Francisco, California, USA
| |
Collapse
|
24
|
Bao X, Liang Y, Chang H, Cai T, Feng B, Gordon K, Zhu Y, Shi H, He Y, Xie L. Targeting proprotein convertase subtilisin/kexin type 9 (PCSK9): from bench to bedside. Signal Transduct Target Ther 2024; 9:13. [PMID: 38185721 PMCID: PMC10772138 DOI: 10.1038/s41392-023-01690-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/27/2023] [Accepted: 10/27/2023] [Indexed: 01/09/2024] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) has evolved as a pivotal enzyme in lipid metabolism and a revolutionary therapeutic target for hypercholesterolemia and its related cardiovascular diseases (CVD). This comprehensive review delineates the intricate roles and wide-ranging implications of PCSK9, extending beyond CVD to emphasize its significance in diverse physiological and pathological states, including liver diseases, infectious diseases, autoimmune disorders, and notably, cancer. Our exploration offers insights into the interaction between PCSK9 and low-density lipoprotein receptors (LDLRs), elucidating its substantial impact on cholesterol homeostasis and cardiovascular health. It also details the evolution of PCSK9-targeted therapies, translating foundational bench discoveries into bedside applications for optimized patient care. The advent and clinical approval of innovative PCSK9 inhibitory therapies (PCSK9-iTs), including three monoclonal antibodies (Evolocumab, Alirocumab, and Tafolecimab) and one small interfering RNA (siRNA, Inclisiran), have marked a significant breakthrough in cardiovascular medicine. These therapies have demonstrated unparalleled efficacy in mitigating hypercholesterolemia, reducing cardiovascular risks, and have showcased profound value in clinical applications, offering novel therapeutic avenues and a promising future in personalized medicine for cardiovascular disorders. Furthermore, emerging research, inclusive of our findings, unveils PCSK9's potential role as a pivotal indicator for cancer prognosis and its prospective application as a transformative target for cancer treatment. This review also highlights PCSK9's aberrant expression in various cancer forms, its association with cancer prognosis, and its crucial roles in carcinogenesis and cancer immunity. In conclusion, this synthesized review integrates existing knowledge and novel insights on PCSK9, providing a holistic perspective on its transformative impact in reshaping therapeutic paradigms across various disorders. It emphasizes the clinical value and effect of PCSK9-iT, underscoring its potential in advancing the landscape of biomedical research and its capabilities in heralding new eras in personalized medicine.
Collapse
Affiliation(s)
- Xuhui Bao
- Institute of Therapeutic Cancer Vaccines, Fudan University Pudong Medical Center, Shanghai, China.
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China.
- Department of Oncology, Fudan University Pudong Medical Center, Shanghai, China.
- Center for Clinical Research, Fudan University Pudong Medical Center, Shanghai, China.
- Clinical Research Center for Cell-based Immunotherapy, Fudan University, Shanghai, China.
- Department of Pathology, Duke University Medical Center, Durham, NC, USA.
| | - Yongjun Liang
- Center for Medical Research and Innovation, Fudan University Pudong Medical Center, Shanghai, China
| | - Hanman Chang
- Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL, USA
| | - Tianji Cai
- Department of Sociology, University of Macau, Taipa, Macau, China
| | - Baijie Feng
- Department of Oncology, Fudan University Pudong Medical Center, Shanghai, China
| | - Konstantin Gordon
- Medical Institute, Peoples' Friendship University of Russia, Moscow, Russia
- A. Tsyb Medical Radiological Research Center, Obninsk, Russia
| | - Yuekun Zhu
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Zhangjiang Hi-tech Park, Shanghai, China
| | - Yundong He
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Liyi Xie
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
25
|
Yu X, Song K. Novel ASO therapeutic target designed against hyperlipidemia via PCSK9 knockdown. Biomed Pharmacother 2024; 170:115960. [PMID: 38039754 DOI: 10.1016/j.biopha.2023.115960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023] Open
Abstract
With the gradual improvement of individuals' living standards, there has been a concurrent escalation in the consumption of fats and sugars in the daily dietary habits. Consequently, an increasing number of individuals are afflicted by hyperlipidemia, a condition that, could elevate blood viscosity, thereby engendering serious complications in a long run. Traditional lipid-lowering medications, such as statins, manifest substantial side effects, thereby imposing a significant metabolic burden on the liver and kidneys. Conversely, antisense oligonucleotides (ASOs) exhibit attributes such as rapid absorption, prolonged efficacy, and minimal side effects. In light of these considerations, a novel ASO was meticulously designed, sebsequently, its efficacy and toxicity assessments were conducted both in vitro and in vivo. The results unequivocally demonstrate the effectiveness and safety of this ASO.
Collapse
Affiliation(s)
- Xinjian Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan,Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, School of Life Sciences,Yunnan University, Kunming, 650021, China
| | - Kai Song
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan,Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, School of Life Sciences,Yunnan University, Kunming, 650021, China; SicaGene BioScience Co.,Ltd. Room 205/206, Building 16,Beilun Industrial Park, 9 North Yongteng Road, Haidian District Beijing, Beijing 1000094, China
| |
Collapse
|
26
|
Shariati L, Esmaeili Y, Rahimmanesh I, Babolmorad S, Ziaei G, Hasan A, Boshtam M, Makvandi P. Advances in nanobased platforms for cardiovascular diseases: Early diagnosis, imaging, treatment, and tissue engineering. ENVIRONMENTAL RESEARCH 2023; 238:116933. [PMID: 37652218 DOI: 10.1016/j.envres.2023.116933] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 09/02/2023]
Abstract
Cardiovascular diseases (CVDs) present a significant threat to health, with traditional therapeutics based treatment being hindered by inefficiencies, limited biological effects, and resistance to conventional drug. Addressing these challenges requires advanced approaches for early disease diagnosis and therapy. Nanotechnology and nanomedicine have emerged as promising avenues for personalized CVD diagnosis and treatment through theranostic agents. Nanoparticles serve as nanodevices or nanocarriers, efficiently transporting drugs to injury sites. These nanocarriers offer the potential for precise drug and gene delivery, overcoming issues like bioavailability and solubility. By attaching specific target molecules to nanoparticle surfaces, controlled drug release to targeted areas becomes feasible. In the field of cardiology, nanoplatforms have gained popularity due to their attributes, such as passive or active targeting of cardiac tissues, enhanced sensitivity and specificity, and easy penetration into heart and artery tissues due to their small size. However, concerns persist about the immunogenicity and cytotoxicity of nanomaterials, necessitating careful consideration. Nanoparticles also hold promise for CVD diagnosis and imaging, enabling straightforward diagnostic procedures and real-time tracking during therapy. Nanotechnology has revolutionized cardiovascular imaging, yielding multimodal and multifunctional vehicles that outperform traditional methods. The paper provides an overview of nanomaterial delivery routes, targeting techniques, and recent advances in treating, diagnosing, and engineering tissues for CVDs. It also discusses the future potential of nanomaterials in CVDs, including theranostics, aiming to enhance cardiovascular treatment in clinical practice. Ultimately, refining nanocarriers and delivery methods has the potential to enhance treatment effectiveness, minimize side effects, and improve patients' well-being and outcomes.
Collapse
Affiliation(s)
- Laleh Shariati
- Department of Biomaterials, Nanotechnology, and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yasaman Esmaeili
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ilnaz Rahimmanesh
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shahrzad Babolmorad
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ghazal Ziaei
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha, 2713, Qatar; Biomedical Research Center, Qatar University, Doha, 2713, Qatar
| | - Maryam Boshtam
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, Zhejiang, China; School of Engineering, Institute for Bioengineering, The University of Edinburgh, Edinburgh, EH9 3JL, UK.
| |
Collapse
|
27
|
Luo Q, Tang Z, Wu P, Chen Z, Fang Z, Luo F. A bibliometric analysis of PCSK9 inhibitors from 2007 to 2022. Front Endocrinol (Lausanne) 2023; 14:1218968. [PMID: 38093957 PMCID: PMC10716461 DOI: 10.3389/fendo.2023.1218968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Since the approval of the proprotein convertase subtilisin/kexin type 9 (PCSK9) monoclonal antibodies for marketing in 2015, PCSK9 inhibitors have attracted significant interest in the field of cardiovascular endocrinology. A large number of clinical trials have confirmed the efficacy and safety of PCSK9 inhibitors in reducing cholesterol and the risk of cardiovascular events. No bibliometric analysis of PCSK9 inhibitors has been performed as of yet. This study aims to analyze the research trends and hotspots of PCSK9 inhibitors through bibliometric analysis. METHODS We searched the Web of Science Core Collection (WoSCC) database for PCSK9 inhibitor-related publications from 2007 to 2022. Data visualization analysis was performed using CiteSpace software. Microsoft Excel and Graphpad software were used for the drawing of some tables and figures. RESULTS A total of 1072 pieces of literature were retrieved between 2007 and 2022. The number of publications concerning PCSK9 inhibitors is growing annually. The top five countries with the most articles published were the United States, England, Canada, Italy, and France. Harvard University, Amgen, Brigham & Women's Hospital, Harvard Medical School, and Imperial College London are the five institutions with the highest output. The Journal of Clinical Lipidology is the most popular journal in this field. The most frequently cited journal is the New England Journal of Medicine. As for authors, Sabatine MS and Giugliano RP from Brigham & Women's Hospital have the highest number of published articles. Amgen is the funding agency for most of the research. According to keyword analysis, "low density lipoprotein", "familial hypercholesterolemia", "PCSK9 inhibitor", "PCSK9", and "efficacy" are the five keywords with the highest frequency of co-occurrence. CONCLUSION The past 15 years have witnessed a rapid and fruitful development of PCSK9 inhibitors. The research trend and focus for PCSK9 inhibitors are from the mechanism of reducing low-density lipoprotein cholesterol to related clinical trials. Developed countries such as the United States have contributed prominently in this area. Coronary artery and inflammation are currently at the forefront of research in the field and are in an explosion period.
Collapse
Affiliation(s)
- Qin Luo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Institute of Blood Lipid and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenchu Tang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Panyun Wu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Institute of Blood Lipid and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhangling Chen
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Institute of Blood Lipid and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenfei Fang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Institute of Blood Lipid and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fei Luo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Institute of Blood Lipid and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
28
|
Itkonen A, Hakkola J, Rysä J. Adverse outcome pathway for pregnane X receptor-induced hypercholesterolemia. Arch Toxicol 2023; 97:2861-2877. [PMID: 37642746 PMCID: PMC10504106 DOI: 10.1007/s00204-023-03575-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023]
Abstract
Pharmaceuticals and environmental contaminants contribute to hypercholesterolemia. Several chemicals known to cause hypercholesterolemia, activate pregnane X receptor (PXR). PXR is a nuclear receptor, classically identified as a sensor of chemical environment and regulator of detoxification processes. Later, PXR activation has been shown to disrupt metabolic functions such as lipid metabolism and recent findings have shown PXR activation to promote hypercholesterolemia through multiple mechanisms. Hypercholesterolemia is a major causative risk factor for atherosclerosis and greatly promotes global health burden. Metabolic disruption by PXR activating chemicals leading to hypercholesterolemia represents a novel toxicity pathway of concern and requires further attention. Therefore, we constructed an adverse outcome pathway (AOP) by collecting the available knowledge considering the molecular mechanisms for PXR-mediated hypercholesterolemia. AOPs are tools of modern toxicology for systematizing mechanistic knowledge to assist health risk assessment of chemicals. AOPs are formalized and structured linear concepts describing a link between molecular initiating event (MIE) and adverse outcome (AO). MIE and AO are connected via key events (KE) through key event relationships (KER). We present a plausible route of how PXR activation (MIE) leads to hypercholesterolemia (AO) through direct regulation of cholesterol synthesis and via activation of sterol regulatory element binding protein 2-pathway.
Collapse
Affiliation(s)
- Anna Itkonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Jukka Hakkola
- Research Unit of Biomedicine and Internal Medicine, Biocenter Oulu, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Jaana Rysä
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
29
|
Wang Y, Tinsley B, Spolitu S, Zadroga JA, Agarwal H, Sarecha AK, Ozcan L. Geranylgeranyl Isoprenoids and Hepatic Rap1a Regulate Basal and Statin-Induced Expression of PCSK9. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563509. [PMID: 37961667 PMCID: PMC10634727 DOI: 10.1101/2023.10.23.563509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Low-density lipoprotein cholesterol (LDL-C) lowering is the main goal of atherosclerotic cardiovascular disease prevention, and proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition is now a validated therapeutic strategy that lowers serum LDL-C and reduces coronary events. Ironically, the most widely used medicine to lower cholesterol, statins, has been shown to increase circulating PCSK9 levels, which limits their efficacy. Here, we show that geranylgeranyl isoprenoids and hepatic Rap1a regulate both basal and statin induced expression of PCSK9 and contribute to LDL-C homeostasis. Rap1a prenylation and activity is inhibited upon statin treatment, and statin mediated PCSK9 induction is dependent on geranylgeranyl synthesis and hepatic Rap1a. Accordingly, treatment of mice with a small molecule activator of Rap1a lowered PCSK9 protein and plasma cholesterol and inhibited statin mediated PCSK9 induction in hepatocytes. The mechanism involves inhibition of the downstream RhoA-ROCK pathway and regulation of PCSK9 at the post transcriptional level. These data further identify Rap1a as a novel regulator of PCSK9 protein and show that blocking Rap1a prenylation through lowering geranylgeranyl levels contributes to statin-mediated induction of PCSK9.
Collapse
|
30
|
Iqbal M, Hasanah N, Arianto AD, Aryati WD, Puteri MU, Saputri FC. Brazilin from Caesalpinia sappan L. as a Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Inhibitor: Pharmacophore-Based Virtual Screening, In Silico Molecular Docking, and In Vitro Studies. Adv Pharmacol Pharm Sci 2023; 2023:5932315. [PMID: 37860715 PMCID: PMC10584496 DOI: 10.1155/2023/5932315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/21/2023] Open
Abstract
Background Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a crucial regulator of low-density lipoprotein cholesterol (LDL-c) levels, as it binds to and degrades the LDL receptor (LDLR) in the lysosome of hepatocytes. Elevated levels of PCSK9 have been linked to an increased LDL-c plasma levels, thereby increasing the risk of cardiovascular disease (CVD), making it an attractive target for therapeutic interventions. As a way to inhibit PCSK9 action, we searched for naturally derived small molecules which can block the binding of PCSK9 to the LDLR. Methods In this study, we carried out in silico studies which consist of virtual screening using an optimized pharmacophore model and molecular docking studies using Pyrx 0.98. Effects of the candidate compounds were evaluated using in vitro PCSK9-LDLR binding assays kit. Results Eleven natural compounds that bind to PCSK9 were virtually screened form HerbalDB database, including brazilin. Next, molecular docking studies using Pyrx 0.98 showed that brazilin had the highest binding affinity with PCSK9 at -9.0 (Kcal/mol), which was higher than that of the other ten compounds. Subsequent in vitro PCSK9-LDLR binding assays established that brazilin decreased the binding of PCSK9 to the EGF-A fragment of the LDLR in a dose-dependent manner, with an IC50 value of 2.19 μM. Conclusion We have identified brazilin, which is derived from the Caesalpinia sappan herb, which can act as a small molecule inhibitor of PCSK9. Our findings suggest that screening for small molecules that can block the interaction between PCSK9 and the LDLR in silico and in vitro may be a promising approach for developing novel lipid-lowering therapy.
Collapse
Affiliation(s)
- Muhammad Iqbal
- Postgraduate Program, Faculty of Pharmacy, Universitas Indonesia, UI Depok Campus, Jakarta, West Java 16424, Indonesia
| | - Nur Hasanah
- Postgraduate Program, Faculty of Pharmacy, Universitas Indonesia, UI Depok Campus, Jakarta, West Java 16424, Indonesia
- Pharmacy Department, Widya Dharma Husada School of Health Science, South Tangerang, Banten 15417, Indonesia
| | - Aimee Detria Arianto
- Laboratory of Biomedical Computation and Drug Design, Faculty of Pharmacy, Universitas Indonesia, UI Depok Campus, Jakarta, West Java 16424, Indonesia
| | - Widya Dwi Aryati
- Laboratory of Biomedical Computation and Drug Design, Faculty of Pharmacy, Universitas Indonesia, UI Depok Campus, Jakarta, West Java 16424, Indonesia
| | - Meidi Utami Puteri
- Department of Pharmacology-Toxicology, Faculty of Pharmacy, Universitas Indonesia, UI Depok Campus, Jakarta, West Java 16424, Indonesia
- National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, UI Depok Campus, Jakarta, West Java 16424, Indonesia
| | - Fadlina Chany Saputri
- Department of Pharmacology-Toxicology, Faculty of Pharmacy, Universitas Indonesia, UI Depok Campus, Jakarta, West Java 16424, Indonesia
- National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, UI Depok Campus, Jakarta, West Java 16424, Indonesia
| |
Collapse
|
31
|
Skeby CK, Hummelgaard S, Gustafsen C, Petrillo F, Frederiksen KP, Olsen D, Kristensen T, Ivarsen P, Madsen P, Christensen EI, Nielsen R, Birn H, Glerup S, Weyer K. Proprotein convertase subtilisin/kexin type 9 targets megalin in the kidney proximal tubule and aggravates proteinuria in nephrotic syndrome. Kidney Int 2023; 104:754-768. [PMID: 37406929 DOI: 10.1016/j.kint.2023.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 07/07/2023]
Abstract
Proteinuria is a prominent feature of chronic kidney disease. Interventions that reduce proteinuria slow the progression of chronic kidney disease and the associated risk of cardiovascular disease. Here, we propose a mechanistic coupling between proteinuria and proprotein convertase subtilisin/kexin type 9 (PCSK9), a regulator of cholesterol and a therapeutic target in cardiovascular disease. PCSK9 undergoes glomerular filtration and is captured by megalin, the receptor responsible for driving protein reabsorption in the proximal tubule. Accordingly, megalin-deficient mice and patients carrying megalin pathogenic variants (Donnai Barrow syndrome) were characterized by elevated urinary PCSK9 excretion. Interestingly, PCSK9 knockout mice displayed increased kidney megalin while PCSK9 overexpression resulted in its reduction. Furthermore, PCSK9 promoted trafficking of megalin to lysosomes in cultured proximal tubule cells, suggesting that PCSK9 is a negative regulator of megalin. This effect can be accelerated under disease conditions since either genetic destruction of the glomerular filtration barrier in podocin knockout mice or minimal change disease (a common cause of nephrotic syndrome) in patients resulted in enhanced tubular PCSK9 uptake and urinary PCSK9 excretion. Pharmacological PCSK9 inhibition increased kidney megalin while reducing urinary albumin excretion in nephrotic mice. Thus, glomerular damage increases filtration of PCSK9 and concomitantly megalin degradation, resulting in escalated proteinuria.
Collapse
Affiliation(s)
- Cecilie K Skeby
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Camilla Gustafsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Draupnir Bio, INCUBA Skejby, Aarhus, Denmark
| | | | | | - Ditte Olsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Draupnir Bio, INCUBA Skejby, Aarhus, Denmark
| | - Tilde Kristensen
- Department of Internal Medicine, Renal Unit, Regional Hospital Viborg, Viborg, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Per Ivarsen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Peder Madsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Draupnir Bio, INCUBA Skejby, Aarhus, Denmark
| | | | - Rikke Nielsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Henrik Birn
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Simon Glerup
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Draupnir Bio, INCUBA Skejby, Aarhus, Denmark
| | - Kathrin Weyer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
32
|
Busnelli M, Manzini S, Colombo A, Franchi E, Chiara M, Zaffaroni G, Horner D, Chiesa G. Effect of diet and genotype on the miRNome of mice with altered lipoprotein metabolism. iScience 2023; 26:107615. [PMID: 37664585 PMCID: PMC10474470 DOI: 10.1016/j.isci.2023.107615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/14/2023] [Accepted: 08/09/2023] [Indexed: 09/05/2023] Open
Abstract
The molecular mechanism by which lipid/lipoprotein biosynthesis is regulated in mammals involves a very large number of genes that are subject to multiple levels of regulation. miRNAs are recognized contributors to lipid homeostasis at the post-transcriptional level, although the elucidation of their role is made difficult by the multiplicity of their targets and the ability of more miRNAs to affect the same mRNAs. In this study, an evaluation of how miRNA expression varies in organs playing a key role in lipid/lipoprotein metabolism was conducted in control mice and in two mouse models carrying genetic ablations which differently affect low-density lipoprotein metabolism. Mice were fed a lipid-poor standard diet and a diet enriched in cholesterol and saturated fat. The results obtained showed that there are no miRNAs whose expression constantly vary with dietary or genetic changes. Furthermore, it appears that diet, more than genotype, impacts on organ-specific miRNA expression profiles.
Collapse
Affiliation(s)
- Marco Busnelli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Stefano Manzini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Alice Colombo
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Elsa Franchi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Matteo Chiara
- Department of Biosciences, Università degli Studi di Milano, Milano, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | - Gaia Zaffaroni
- Institute for Globally Distributed Open Research and Education, Gothenburg, Sweden
| | - David Horner
- Department of Biosciences, Università degli Studi di Milano, Milano, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | - Giulia Chiesa
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
33
|
Jaafar AK, Techer R, Chemello K, Lambert G, Bourane S. PCSK9 and the nervous system: a no-brainer? J Lipid Res 2023; 64:100426. [PMID: 37586604 PMCID: PMC10491654 DOI: 10.1016/j.jlr.2023.100426] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023] Open
Abstract
In the past 20 years, PCSK9 has been shown to play a pivotal role in LDL cholesterol metabolism and cardiovascular health by inducing the lysosomal degradation of the LDL receptor. PCSK9 was discovered by the cloning of genes up-regulated after apoptosis induced by serum deprivation in primary cerebellar neurons, but despite its initial identification in the brain, the precise role of PCSK9 in the nervous system remains to be clearly established. The present article is a comprehensive review of studies published or in print before July 2023 that have investigated the expression pattern of PCSK9, its effects on lipid metabolism as well as its putative roles specifically in the central and peripheral nervous systems, with a special focus on cerebrovascular and neurodegenerative diseases.
Collapse
Affiliation(s)
- Ali K Jaafar
- Laboratoire Inserm UMR 1188 DéTROI, Saint-Pierre, La Réunion, France
| | - Romuald Techer
- Laboratoire Inserm UMR 1188 DéTROI, Saint-Pierre, La Réunion, France
| | - Kévin Chemello
- Laboratoire Inserm UMR 1188 DéTROI, Saint-Pierre, La Réunion, France
| | - Gilles Lambert
- Laboratoire Inserm UMR 1188 DéTROI, Saint-Pierre, La Réunion, France; Faculté de Médecine, Université de La Réunion, Saint-Pierre, La Réunion, France.
| | - Steeve Bourane
- Laboratoire Inserm UMR 1188 DéTROI, Saint-Pierre, La Réunion, France
| |
Collapse
|
34
|
Hummelgaard S, Vilstrup JP, Gustafsen C, Glerup S, Weyer K. Targeting PCSK9 to tackle cardiovascular disease. Pharmacol Ther 2023; 249:108480. [PMID: 37331523 DOI: 10.1016/j.pharmthera.2023.108480] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/07/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023]
Abstract
Lowering blood cholesterol levels efficiently reduces the risk of developing atherosclerotic cardiovascular disease (ASCVD), including coronary artery disease (CAD), which is the main cause of death worldwide. CAD is caused by plaque formation, comprising cholesterol deposits in the coronary arteries. Proprotein convertase subtilisin kexin/type 9 (PCSK9) was discovered in the early 2000s and later identified as a key regulator of cholesterol metabolism. PCSK9 induces lysosomal degradation of the low-density lipoprotein (LDL) receptor in the liver, which is responsible for clearing LDL-cholesterol (LDL-C) from the circulation. Accordingly, gain-of-function PCSK9 mutations are causative of familial hypercholesterolemia, a severe condition with extremely high plasma cholesterol levels and increased ASCVD risk, whereas loss-of-function PCSK9 mutations are associated with very low LDL-C levels and protection against CAD. Since the discovery of PCSK9, extensive investigations in developing PCSK9 targeting therapies have been performed. The combined delineation of clear biology, genetic risk variants, and PCSK9 crystal structures have been major drivers in developing antagonistic molecules. Today, two antibody-based PCSK9 inhibitors have successfully progressed to clinical application and shown to be effective in reducing cholesterol levels and mitigating the risk of ASCVD events, including myocardial infarction, stroke, and death, without any major adverse effects. A third siRNA-based inhibitor has been FDA-approved but awaits cardiovascular outcome data. In this review, we outline the PCSK9 biology, focusing on the structure and nonsynonymous mutations reported in the PCSK9 gene and elaborate on PCSK9-lowering strategies under development. Finally, we discuss future perspectives with PCSK9 inhibition in other severe disorders beyond cardiovascular disease.
Collapse
Affiliation(s)
| | | | | | - Simon Glerup
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Draupnir Bio, INCUBA Skejby, Aarhus, Denmark
| | - Kathrin Weyer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
35
|
Yin X, Harmancey R, McPherson DD, Kim H, Huang SL. Liposome-Based Carriers for CRISPR Genome Editing. Int J Mol Sci 2023; 24:12844. [PMID: 37629024 PMCID: PMC10454197 DOI: 10.3390/ijms241612844] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
The CRISPR-based genome editing technology, known as clustered regularly interspaced short palindromic repeats (CRISPR), has sparked renewed interest in gene therapy. This interest is accompanied by the development of single-guide RNAs (sgRNAs), which enable the introduction of desired genetic modifications at the targeted site when used alongside the CRISPR components. However, the efficient delivery of CRISPR/Cas remains a challenge. Successful gene editing relies on the development of a delivery strategy that can effectively deliver the CRISPR cargo to the target site. To overcome this obstacle, researchers have extensively explored non-viral, viral, and physical methods for targeted delivery of CRISPR/Cas9 and a guide RNA (gRNA) into cells and tissues. Among those methods, liposomes offer a promising approach to enhance the delivery of CRISPR/Cas and gRNA. Liposomes facilitate endosomal escape and leverage various stimuli such as light, pH, ultrasound, and environmental cues to provide both spatial and temporal control of cargo release. Thus, the combination of the CRISPR-based system with liposome delivery technology enables precise and efficient genetic modifications in cells and tissues. This approach has numerous applications in basic research, biotechnology, and therapeutic interventions. For instance, it can be employed to correct genetic mutations associated with inherited diseases and other disorders or to modify immune cells to enhance their disease-fighting capabilities. In summary, liposome-based CRISPR genome editing provides a valuable tool for achieving precise and efficient genetic modifications. This review discusses future directions and opportunities to further advance this rapidly evolving field.
Collapse
Affiliation(s)
- Xing Yin
- Division of Cardiovascular Medicine, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Romain Harmancey
- Division of Cardiovascular Medicine, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - David D McPherson
- Division of Cardiovascular Medicine, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Hyunggun Kim
- Department of Biomechatronic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Shao-Ling Huang
- Division of Cardiovascular Medicine, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
36
|
Ricco N, Kron SJ. Statins in Cancer Prevention and Therapy. Cancers (Basel) 2023; 15:3948. [PMID: 37568764 PMCID: PMC10417177 DOI: 10.3390/cancers15153948] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Statins, a class of HMG-CoA reductase inhibitors best known for their cholesterol-reducing and cardiovascular protective activity, have also demonstrated promise in cancer prevention and treatment. This review focuses on their potential applications in head and neck cancer (HNC), a common malignancy for which established treatment often fails despite incurring debilitating adverse effects. Preclinical and clinical studies have suggested that statins may enhance HNC sensitivity to radiation and other conventional therapies while protecting normal tissue, but the underlying mechanisms remain poorly defined, likely involving both cholesterol-dependent and -independent effects on diverse cancer-related pathways. This review brings together recent discoveries concerning the anticancer activity of statins relevant to HNC, highlighting their anti-inflammatory activity and impacts on DNA-damage response. We also explore molecular targets and mechanisms and discuss the potential to integrate statins into conventional HNC treatment regimens to improve patient outcomes.
Collapse
Affiliation(s)
- Natalia Ricco
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Barcelona, Spain;
| | - Stephen J. Kron
- Department of Molecular Genetics and Cell Biology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
37
|
Marfella R, Prattichizzo F, Sardu C, Paolisso P, D'Onofrio N, Scisciola L, La Grotta R, Frigé C, Ferraraccio F, Panarese I, Fanelli M, Modugno P, Calafiore AM, Melchionna M, Sasso FC, Furbatto F, D'Andrea D, Siniscalchi M, Mauro C, Cesaro A, Calabrò P, Santulli G, Balestrieri ML, Barbato E, Ceriello A, Paolisso G. Evidence of an anti-inflammatory effect of PCSK9 inhibitors within the human atherosclerotic plaque. Atherosclerosis 2023; 378:117180. [PMID: 37422356 DOI: 10.1016/j.atherosclerosis.2023.06.971] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND AND AIMS Preclinical evidence suggests that proprotein convertase subtilisin-kexin type 9 (PCSK9) inhibitors hold anti-inflammatory properties independently of their ability to lower LDL-cholesterol (C). However, whether PCSK9 inhibitors exert anti-inflammatory effects within the atherosclerotic plaque in humans is unknown. We explored the impact of PCSK9 inhibitors, used as monotherapy, compared with other lipid-lowering drugs (oLLD) on the expression of inflammatory markers within the plaque, assessing also the subsequent incidence of cardiovascular events. METHODS In an observational study, we recruited 645 patients on stable therapy for at least six months and undergoing carotid endarterectomy, categorizing patients according to the use of PCSK9 inhibitors only (n = 159) or oLLD (n = 486). We evaluated the expression of NLRP3, caspase-1, IL-1β, TNFα, NF-kB, PCSK9, SIRT3, CD68, MMP-9, and collagen within the plaques in the two groups through immunohistochemistry, ELISA, or immunoblot. A composite outcome including non-fatal myocardial infarction, non-fatal stroke, and all-cause mortality was assessed during a 678 ± 120 days follow-up after the procedure. RESULTS Patients treated with PCSK9 inhibitors had a lower expression of pro-inflammatory proteins and a higher abundance of SIRT3 and collagen within the plaque, a result obtained despite comparable levels of circulating hs-CRP and observed also in LDL-C-matched subgroups with LDL-C levels <100 mg/dL. Patients treated with PCSK9 inhibitors showed a decreased risk of developing the outcome compared with patients on oLLD, also after adjustment for multiple variables including LDL-C (adjusted hazard ratio 0.262; 95% CI 0.131-0.524; p < 0.001). The expression of PCSK9 correlated positively with that of pro-inflammatory proteins, which burden was associated with a higher risk of developing the outcome, independently of the therapeutic regimen. CONCLUSIONS The use of PCSK9 inhibitors is accompanied by a beneficial remodelling of the inflammatory burden within the human atheroma, an effect possibly or partly independent of their LDL-C lowering ability. This phenomenon might provide an additional cardiovascular benefit.
Collapse
Affiliation(s)
- Raffaele Marfella
- Università degli Studi della Campania "Luigi Vanvitelli", Piazza Luigi Miraglia 2, 80138, Naples, Italy; Mediterranea Cardiocentro, 80122, Naples, Italy.
| | | | - Celestino Sardu
- Università degli Studi della Campania "Luigi Vanvitelli", Piazza Luigi Miraglia 2, 80138, Naples, Italy
| | - Pasquale Paolisso
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium; Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Nunzia D'Onofrio
- Department of Precision Medicine, The University of Campania "Luigi Vanvitelli", Italy
| | - Lucia Scisciola
- Università degli Studi della Campania "Luigi Vanvitelli", Piazza Luigi Miraglia 2, 80138, Naples, Italy
| | | | - Chiara Frigé
- IRCCS MultiMedica, Via Fantoli 16/15, 20138, Milan, Italy
| | - Franca Ferraraccio
- Department of Mental Health and Public Medicine, Section of Statistic, The University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Iacopo Panarese
- Department of Mental Health and Public Medicine, Section of Statistic, The University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mara Fanelli
- Laboratory of Molecular Oncology, Gemelli Molise SpA, Campobasso, Italy
| | - Piero Modugno
- Department of Cardiovascular Medicine, Gemelli Molise SpA, Campobasso, Italy
| | | | - Mario Melchionna
- Department of Cardiovascular Medicine, Gemelli Molise SpA, Campobasso, Italy
| | - Ferdinando Carlo Sasso
- Università degli Studi della Campania "Luigi Vanvitelli", Piazza Luigi Miraglia 2, 80138, Naples, Italy
| | - Fulvio Furbatto
- Department of Cardiology, Hospital Cardarelli, Naples, Italy
| | - Davide D'Andrea
- Department of Cardiology, Hospital Cardarelli, Naples, Italy
| | | | - Ciro Mauro
- Department of Cardiology, Hospital Cardarelli, Naples, Italy
| | - Arturo Cesaro
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Paolo Calabrò
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | | | | | - Emanuele Barbato
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium; Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | | | - Giuseppe Paolisso
- Università degli Studi della Campania "Luigi Vanvitelli", Piazza Luigi Miraglia 2, 80138, Naples, Italy; Mediterranea Cardiocentro, 80122, Naples, Italy
| |
Collapse
|
38
|
Yamada S, Ko T, Katagiri M, Morita H, Komuro I. Recent Advances in Translational Research for Heart Failure in Japan. J Card Fail 2023; 29:931-938. [PMID: 37321698 DOI: 10.1016/j.cardfail.2022.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Despite decades of intensive research and therapeutic development, heart failure remains a leading cause of death worldwide. However, recent advances in several basic and translational research fields, such as genomic analysis and single-cell analysis, have increased the possibility of developing novel diagnostic approaches to heart failure. Most cardiovascular diseases that predispose individuals to heart failure are caused by genetic and environmental factors. It follows that genomic analysis can contribute to the diagnosis and prognostic stratification of patients with heart failure. In addition, single-cell analysis has shown great potential for unveiling the pathogenesis and/or pathophysiology and for discovering novel therapeutic targets for heart failure. Here, we summarize the recent advances in translational research on heart failure in Japan, based mainly on our studies.
Collapse
Affiliation(s)
- Shintaro Yamada
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshiyuki Ko
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mikako Katagiri
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Morita
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cardiovascular Medicine, Graduate School of Medicine, International University of Health and Welfare, Tokyo, Japan.
| |
Collapse
|
39
|
Platko K, Lebeau PF, Nederveen JP, Byun JH, MacDonald ME, Bourgeois JM, Tarnopolsky MA, Austin RC. A Metabolic Enhancer Protects against Diet-Induced Obesity and Liver Steatosis and Corrects a Pro-Atherogenic Serum Profile in Mice. Nutrients 2023; 15:nu15102410. [PMID: 37242292 DOI: 10.3390/nu15102410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
OBJECTIVE Metabolic Syndrome (MetS) affects hundreds of millions of individuals and constitutes a major cause of morbidity and mortality worldwide. Obesity is believed to be at the core of metabolic abnormalities associated with MetS, including dyslipidemia, insulin resistance, fatty liver disease and vascular dysfunction. Although previous studies demonstrate a diverse array of naturally occurring antioxidants that attenuate several manifestations of MetS, little is known about the (i) combined effect of these compounds on hepatic health and (ii) molecular mechanisms responsible for their effect. METHODS We explored the impact of a metabolic enhancer (ME), consisting of 7 naturally occurring antioxidants and mitochondrial enhancing agents, on diet-induced obesity, hepatic steatosis and atherogenic serum profile in mice. RESULTS Here we show that a diet-based ME supplementation and exercise have similar beneficial effects on adiposity and hepatic steatosis in mice. Mechanistically, ME reduced hepatic ER stress, fibrosis, apoptosis, and inflammation, thereby improving overall liver health. Furthermore, we demonstrated that ME improved HFD-induced pro-atherogenic serum profile in mice, similar to exercise. The protective effects of ME were reduced in proprotein convertase subtilisin/kexin 9 (PCSK9) knock out mice, suggesting that ME exerts it protective effect partly in a PCSK9-dependent manner. CONCLUSIONS Our findings suggest that components of the ME have a positive, protective effect on obesity, hepatic steatosis and cardiovascular risk and that they show similar effects as exercise training.
Collapse
Affiliation(s)
- Khrystyna Platko
- Department of Medicine, Division of Nephrology, McMaster University, and the Research Institute of St. Joe's Hamilton, Hamilton, ON L8N 4A6, Canada
| | - Paul F Lebeau
- Department of Medicine, Division of Nephrology, McMaster University, and the Research Institute of St. Joe's Hamilton, Hamilton, ON L8N 4A6, Canada
| | - Joshua P Nederveen
- Department of Pediatrics, Faculty of Health Sciences, McMaster University Medical Centre (MUMC), Hamilton, ON L8N 3Z5, Canada
| | - Jae Hyun Byun
- Department of Medicine, Division of Nephrology, McMaster University, and the Research Institute of St. Joe's Hamilton, Hamilton, ON L8N 4A6, Canada
| | - Melissa E MacDonald
- Department of Medicine, Division of Nephrology, McMaster University, and the Research Institute of St. Joe's Hamilton, Hamilton, ON L8N 4A6, Canada
| | - Jacqueline M Bourgeois
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University Medical Centre (MUMC), Hamilton, ON L8N 5Z5, Canada
| | - Mark A Tarnopolsky
- Department of Pediatrics, Faculty of Health Sciences, McMaster University Medical Centre (MUMC), Hamilton, ON L8N 3Z5, Canada
- Exerkine Corporation, MUMC, Hamilton, ON L8N 3Z5, Canada
| | - Richard C Austin
- Department of Medicine, Division of Nephrology, McMaster University, and the Research Institute of St. Joe's Hamilton, Hamilton, ON L8N 4A6, Canada
| |
Collapse
|
40
|
Nakamura S, Inada E, Saitoh I, Sato M. Recent Genome-Editing Approaches toward Post-Implanted Fetuses in Mice. BIOTECH 2023; 12:biotech12020037. [PMID: 37218754 DOI: 10.3390/biotech12020037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023] Open
Abstract
Genome editing, as exemplified by the CRISPR/Cas9 system, has recently been employed to effectively generate genetically modified animals and cells for the purpose of gene function analysis and disease model creation. There are at least four ways to induce genome editing in individuals: the first is to perform genome editing at the early preimplantation stage, such as fertilized eggs (zygotes), for the creation of whole genetically modified animals; the second is at post-implanted stages, as exemplified by the mid-gestational stages (E9 to E15), for targeting specific cell populations through in utero injection of viral vectors carrying genome-editing components or that of nonviral vectors carrying genome-editing components and subsequent in utero electroporation; the third is at the mid-gestational stages, as exemplified by tail-vein injection of genome-editing components into the pregnant females through which the genome-editing components can be transmitted to fetal cells via a placenta-blood barrier; and the last is at the newborn or adult stage, as exemplified by facial or tail-vein injection of genome-editing components. Here, we focus on the second and third approaches and will review the latest techniques for various methods concerning gene editing in developing fetuses.
Collapse
Affiliation(s)
- Shingo Nakamura
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Saitama 359-8513, Japan
| | - Emi Inada
- Department of Pediatric Dentistry, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Issei Saitoh
- Department of Pediatric Dentistry, Asahi University School of Dentistry, Mizuho-shi 501-0296, Japan
| | - Masahiro Sato
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo 157-8535, Japan
| |
Collapse
|
41
|
Liu S, Wu J, Stolarz A, Zhang H, Boerma M, Byrum SD, Rusch NJ, Ding Z. PCSK9 attenuates efferocytosis in endothelial cells and promotes vascular aging. Theranostics 2023; 13:2914-2929. [PMID: 37284459 PMCID: PMC10240829 DOI: 10.7150/thno.83914] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/17/2023] [Indexed: 06/08/2023] Open
Abstract
Aims: Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a serine protease that binds to low-density lipoprotein receptors. Efferocytosis is the process by which phagocytes remove apoptotic cells. Both PCSK9 and efferocytosis play important roles in regulating redox biology and inflammation, the key factors contributing to vascular aging. This study was designed to investigate the impact of PCSK9 on efferocytosis in endothelial cells (ECs) and its implications in vascular aging. Methods and Results: Studies were performed in primary human aortic ECs (HAECs) and primary mouse aortic ECs (MAECs) isolated from male wild-type (WT) and PCSK9-/- mice, and in young and aged mice treated with saline or the PCSK9 inhibitor Pep2-8. Our findings include that recombinant PCSK9 protein induces defective efferocytosis and aging marker senescence-associated-β-galactosidase (SA-β-gal) expression in ECs, while PCSK9-/- restores efferocytosis and inhibits SA-β-gal activity. Further studies in aged mice showed that endothelial deficiency of MerTK, a critical receptor for efferocytosis that allows phagocytes to detect the presence of apoptotic cells, may be an indicator of vascular dysfunction in the aortic arch. Pep2-8 treatment markedly restored efferocytosis in endothelium from the aged mice. A proteomics study in the aortic arch from aged mice revealed that Pep2-8 administration significantly downregulates expression of NOX4, MAPK subunits, NF-κB, and secretion of pro-inflammatory cytokines, all known to promote vascular aging. Immunofluorescent staining showed that Pep2-8 administration upregulates expression of eNOS and downregulates expression of pro-IL-1β, NF-κB and p22phox compared to saline treated group. Conclusions: These findings provide initial evidence for the ability of aortic ECs to accomplish efferocytosis and argue for a role of PCSK9 in attenuating EC efferocytosis, thereby leading to vascular dysfunction and acceleration in vascular aging.
Collapse
Affiliation(s)
- Shijie Liu
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jinzi Wu
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Amanda Stolarz
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Huiliang Zhang
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Marjan Boerma
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Stephanie D. Byrum
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Nancy J Rusch
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Zufeng Ding
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
42
|
Canepari C, Cantore A. Gene transfer and genome editing for familial hypercholesterolemia. FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1140997. [PMID: 39086674 PMCID: PMC11285693 DOI: 10.3389/fmmed.2023.1140997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/10/2023] [Indexed: 08/02/2024]
Abstract
Familial hypercholesterolemia (FH) is an autosomal dominant inherited disease characterized by high circulating low-density lipoprotein (LDL) cholesterol. High circulating LDL cholesterol in FH is due to dysfunctional LDL receptors, and is mainly expressed by hepatocytes. Affected patients rapidly develop atherosclerosis, potentially leading to myocardial infarction and death within the third decade of life if left untreated. Here, we introduce the disease pathogenesis and available treatment options. We highlight different possible targets of therapeutic intervention. We then review different gene therapy strategies currently under development, which may become novel therapeutic options in the future, and discuss their advantages and disadvantages. Finally, we briefly outline the potential applications of some of these strategies for the more common acquired hypercholesterolemia disease.
Collapse
Affiliation(s)
- Cesare Canepari
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Alessio Cantore
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
43
|
Németh K, Tóth B, Sarnyai F, Koncz A, Lenzinger D, Kereszturi É, Visnovitz T, Kestecher BM, Osteikoetxea X, Csala M, Buzás EI, Tamási V. High fat diet and PCSK9 knockout modulates lipid profile of the liver and changes the expression of lipid homeostasis related genes. Nutr Metab (Lond) 2023; 20:19. [PMID: 37004042 PMCID: PMC10064771 DOI: 10.1186/s12986-023-00738-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/17/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND High fat diet (HFD) increases the likelihood of dyslipidemia, which can be a serious risk factor for atherosclerosis, diabetes or hepatosteatosis. Although changes in different blood lipid levels were broadly investigated, such alterations in the liver tissue have not been studied before. The aim of the current study was to investigate the effect of HFD on hepatic triglyceride (TG), diglyceride (DG) and ceramide (CER) levels and on the expression of four key genes involved in lipid homeostasis (Pcsk9, Ldlr, Cd36 and Anxa2) in the liver. In addition, the potential role of PCSK9 in the observed changes was further investigated by using PCSK9 deficient mice. METHODS We used two in vivo models: mice kept on HFD for 20 weeks and PCSK9-/- mice. The amount of the major TGs, DGs and CERs was measured by using HPLC-MS/MS analysis. The expression profiles of four lipid related genes, namely Pcsk9, Ldlr, Cd36 and Anxa2 were assessed. Co-localization studies were performed by confocal microscopy. RESULTS In HFD mice, hepatic PCSK9 expression was decreased and ANXA2 expression was increased both on mRNA and protein levels, and the amount of LDLR and CD36 receptor proteins was increased. While LDLR protein level was also elevated in the livers of PCSK9-/- mice, there was no significant change in the expression of ANXA2 and CD36 in these animals. HFD induced a significant elevation in the hepatic levels of all measured TG and DG but not of CER types, and increased the proportion of monounsaturated vs. saturated TGs and DGs. Similar changes were detected in the hepatic lipid profiles of HFD and PCSK9-/- mice. Co-localization of PCSK9 with LDLR, CD36 and ANXA2 was verified in HepG2 cells. CONCLUSIONS Our results show that obesogenic HFD downregulates PCSK9 expression in the liver and causes alterations in the hepatic lipid accumulation, which resemble those observed in PCSK9 deficiency. These findings suggest that PCSK9-mediated modulation of LDLR and CD36 expression might contribute to the HFD-induced changes in lipid homeostasis.
Collapse
Grants
- RRF-2.3.1-21-2022-00003 National Cardiovascular Laboratory Program
- RRF-2.3.1-21-2022-00003 National Cardiovascular Laboratory Program
- RRF-2.3.1-21-2022-00003 National Cardiovascular Laboratory Program
- RRF-2.3.1-21-2022-00003 National Cardiovascular Laboratory Program
- RRF-2.3.1-21-2022-00003 National Cardiovascular Laboratory Program
- RRF-2.3.1-21-2022-00003 National Cardiovascular Laboratory Program
- RRF-2.3.1-21-2022-00003 National Cardiovascular Laboratory Program
- 2019-2.1.7-ERA-NET-2021-00015 Hungarian National Research, Development and Innovation Office
- FK138115 Hungarian National Research, Development and Innovation Office
- FK138115 Hungarian National Research, Development and Innovation Office
- 2019-2.1.7-ERA-NET-2021-00015 Hungarian National Research, Development and Innovation Office
- 2019-2.1.7-ERA-NET-2021-00015 Hungarian National Research, Development and Innovation Office
- FK138115 Hungarian National Research, Development and Innovation Office
- 2019-2.1.7-ERA-NET-2021-00015 Hungarian National Research, Development and Innovation Office
- 2019-2.1.7-ERA-NET-2021-00015 Hungarian National Research, Development and Innovation Office
- 2019-2.1.7-ERA-NET-2021-00015 Hungarian National Research, Development and Innovation Office
- FK138115 Hungarian National Research, Development and Innovation Office
- 2019-2.1.7-ERA-NET-2021-00015 Hungarian National Research, Development and Innovation Office
- FK138115 Hungarian National Research, Development and Innovation Office
- 739593 Horizon 2020
- 739593 Horizon 2020
- 739593 Horizon 2020
- 739593 Horizon 2020
- 739593 Horizon 2020
- 739593 Horizon 2020
- 739593 Horizon 2020
Collapse
Affiliation(s)
- Krisztina Németh
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad Tér 4, Budapest, 1085, Hungary
- ELKH-SE Translational Extracellular Vesicle Research Group, Nagyvárad Tér 4, Budapest, 1085, Hungary
| | - Blanka Tóth
- Department of Molecular Biology, Semmelweis University, Tűzoltó U. 37-47, Budapest, 1094, Hungary
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem Rkp. 3, Budapest, 1111, Hungary
| | - Farkas Sarnyai
- Department of Molecular Biology, Semmelweis University, Tűzoltó U. 37-47, Budapest, 1094, Hungary
| | - Anna Koncz
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad Tér 4, Budapest, 1085, Hungary
| | - Dorina Lenzinger
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad Tér 4, Budapest, 1085, Hungary
| | - Éva Kereszturi
- Department of Molecular Biology, Semmelweis University, Tűzoltó U. 37-47, Budapest, 1094, Hungary
| | - Tamás Visnovitz
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad Tér 4, Budapest, 1085, Hungary
- Department of Plant Physiology and Molecular Plant Biology, Eötvös Loránd University, Pázmány Péter Sétány 1/A, Budapest, 1117, Hungary
| | - Brachyahu Meir Kestecher
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad Tér 4, Budapest, 1085, Hungary
- HCEMM-SE Extracellular Vesicle Research Group, Nagyvárad Tér 4, Budapest, 1085, Hungary
| | - Xabier Osteikoetxea
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad Tér 4, Budapest, 1085, Hungary
- HCEMM-SE Extracellular Vesicle Research Group, Nagyvárad Tér 4, Budapest, 1085, Hungary
| | - Miklós Csala
- Department of Molecular Biology, Semmelweis University, Tűzoltó U. 37-47, Budapest, 1094, Hungary
| | - Edit I Buzás
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad Tér 4, Budapest, 1085, Hungary
- ELKH-SE Translational Extracellular Vesicle Research Group, Nagyvárad Tér 4, Budapest, 1085, Hungary
- HCEMM-SE Extracellular Vesicle Research Group, Nagyvárad Tér 4, Budapest, 1085, Hungary
| | - Viola Tamási
- Department of Molecular Biology, Semmelweis University, Tűzoltó U. 37-47, Budapest, 1094, Hungary.
| |
Collapse
|
44
|
Newman CB, Tobert JA. Targeting PCSK9 With Antibodies and Gene Silencing to Reduce LDL Cholesterol. J Clin Endocrinol Metab 2023; 108:784-790. [PMID: 36469793 DOI: 10.1210/clinem/dgac708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/08/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
The discovery of PCSK9 and its role in regulating the low-density lipoprotein (LDL) receptor, and the effect of loss-of-function mutations of its gene, identified it as a therapeutic target in 2006. Fully humanized monoclonal antibodies to PCSK9 (alirocumab and evolocumab) proved effective for lowering LDL cholesterol and subsequently for reducing atherosclerotic events in large outcome trials. Suppressing PCSK9 synthesis via gene silencing using inclisiran, a small interfering RNA, is another approach that effectively reduces LDL cholesterol, and a cardiovascular outcome trial is in progress. These treatments are given subcutaneously on a background of maximally tolerated statin treatment and are long-lasting: dosing is once or twice a month, self-administered, for alirocumab and evolocumab, and every 6 months for inclisiran, in the clinic, with an extra dose at 3 months in the initial year of therapy. These 3 agents produce mean LDL reductions of about 55% with no important adverse effects detectable to date. They are indicated in patients with atherosclerotic vascular disease or familial hypercholesterolemia who cannot achieve LDL cholesterol targets with maximally tolerated statin treatment. Such therapy can produce very low plasma LDL cholesterol and PCSK9, but there is no evidence this is harmful. Introduction into clinical practice has been impeded by economic considerations. The barrier to their use has not been scientific or medical, but rather the impact on healthcare resources. Prices have been reduced, but whether they are now cost-effective varies from country to country.
Collapse
Affiliation(s)
- Connie B Newman
- Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jonathan A Tobert
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| |
Collapse
|
45
|
Sindi AAA. Genetics, Safety, Cost-Effectiveness, and Accessibility of Injectable Lipid-Lowering Agents: A Narrative Review. J Lipids 2023; 2023:2025490. [PMID: 36935878 PMCID: PMC10017216 DOI: 10.1155/2023/2025490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 03/11/2023] Open
Abstract
Cardiovascular disease causes significant personal, financial, and societal burden and is a major cause of mortality and morbidity globally. Dyslipidemia has proven to be a major factor that contributes to its increased incidence; thus, since a long time, low-density lipoprotein cholesterol-lowering therapies have been employed to reduce coronary artery disease-associated mortality. The first-line therapy for hyperlipidemia and dyslipidemia is statins. Evidence showed that statins decrease the level of LDL-C resulting in a lower risk of CVD (20-25% for every decrease of 1 mmol/L). However, due to statin intolerance in some patients and despite using maximal doses, they have not been successful in lowering cardiovascular-associated mortality. Moreover, bococizumab was recently suspended due to its higher immunogenicity with time, resulting in less efficacy with long-term use. Alternatives to statins are PCSK9 inhibitors which are administered subcutaneously every two or four weeks. They are injectables with considerable lipid-lowering properties. This narrative review discusses their genetics, safety, tolerability, and cost-effectiveness. It also quantifies their benefit in certain subgroups by analyzing the findings from recent randomized clinical trials. Current data from phase 2 and 3 trials (ORION, ODYSSEY, and FOURIER) suggest a favorable profile for evolocumab, alirocumab, and inclisiran with minimal tolerable side effects and superior efficacy in statin-intolerant patients. Their cost-effectiveness has not yet been established clearly, but future outcomes seem promising.
Collapse
Affiliation(s)
- Abdulmajeed Abdulghani A. Sindi
- Department of Basic Medical Sciences, Faculty of Applied Medical Sciences, Al-Baha University, Al-Aqiq, Albaha, Saudi Arabia 65779-7738
| |
Collapse
|
46
|
Shen Y, Gu HM, Qin S, Zhang DW. Surf4, cargo trafficking, lipid metabolism, and therapeutic implications. J Mol Cell Biol 2023; 14:6852946. [PMID: 36574593 PMCID: PMC9929512 DOI: 10.1093/jmcb/mjac063] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/30/2022] [Accepted: 09/06/2022] [Indexed: 12/03/2022] Open
Abstract
Surfeit 4 is a polytopic transmembrane protein that primarily resides in the endoplasmic reticulum (ER) membrane. It is ubiquitously expressed and functions as a cargo receptor, mediating cargo transport from the ER to the Golgi apparatus via the canonical coat protein complex II (COPII)-coated vesicles or specific vesicles. It also participates in ER-Golgi protein trafficking through a tubular network. Meanwhile, it facilitates retrograde transportation of cargos from the Golgi apparatus to the ER through COPI-coated vesicles. Surf4 can selectively mediate export of diverse cargos, such as PCSK9 very low-density lipoprotein (VLDL), progranulin, α1-antitrypsin, STING, proinsulin, and erythropoietin. It has been implicated in facilitating VLDL secretion, promoting cell proliferation and migration, and increasing replication of positive-strand RNA viruses. Therefore, Surf4 plays a crucial role in various physiological and pathophysiological processes and emerges as a promising therapeutic target. However, the molecular mechanisms by which Surf4 selectively sorts diverse cargos for ER-Golgi protein trafficking remain elusive. Here, we summarize the most recent advances in Surf4, focusing on its role in lipid metabolism.
Collapse
Affiliation(s)
- Yishi Shen
- Group on the Molecular and Cell Biology of Lipids and Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6R 2G3, Canada
| | - Hong-Mei Gu
- Group on the Molecular and Cell Biology of Lipids and Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6R 2G3, Canada
| | - Shucun Qin
- Institute of Atherosclerosis in Shandong First Medical University (Shandong Academy of Medical Sciences), Taian 271016, China
| | - Da-Wei Zhang
- Group on the Molecular and Cell Biology of Lipids and Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6R 2G3, Canada
| |
Collapse
|
47
|
Xia VQ, Ong CM, Zier LS, MacGregor JS, Wu AHB, Chorba JS. Heparin Does Not Regulate Circulating Human PCSK9 (Proprotein Convertase Subtilisin-Kexin Type 9) in a General Population-Brief Report. Arterioscler Thromb Vasc Biol 2023; 43:352-358. [PMID: 36475702 PMCID: PMC10038152 DOI: 10.1161/atvbaha.122.318556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND PCSK9 (proprotein convertase subtilisin-kexin type 9) chaperones the hepatic LDLR (low-density lipoprotein receptor) for lysosomal degradation, elevating serum LDL (low-density lipoprotein) cholesterol and promoting atherosclerotic heart disease. Though the major effect on the hepatic LDLR comes from secreted PCSK9, the details of PCSK9 reuptake into the hepatocyte remain unclear. In both tissue culture and animal models, HSPGs (heparan sulfate proteoglycans) on hepatocytes act as co-receptors to promote PCSK9 reuptake. We hypothesized that if this PCSK9:HSPG interaction is important in humans, disrupting it with unfractionated heparin (UFH) would acutely displace PCSK9 from the liver and increase plasma PCSK9. METHODS We obtained remnant plasma samples from 160 subjects undergoing cardiac catheterization before and after administration of intravenous UFH. PCSK9 levels were determined using a commercial enzyme-linked immunosorbent assay. RESULTS Median plasma PCSK9 was 113 ng/mL prior to UFH and 119 ng/mL afterward. This difference was not significant (P=0.83 [95% CI, -6.23 to 6.31 ng/mL]). Equivalence testing provided 95% confidence that UFH would not raise plasma PCSK9 by > 4.7%. Among all subgroups, only subjects with the lowest baseline PCSK9 concentrations exhibited a response to UFH (8.8% increase, adj. P=0.044). A modest correlation was observed between baseline plasma PCSK9 and the change in plasma PCSK9 due to UFH (RS=-0.3634; P<0.0001). CONCLUSIONS Administration of UFH does not result in a clinically meaningful effect on circulating PCSK9 among an unselected population of humans. The results cast doubt on the clinical utility of disrupting the PCSK9:HSPG interaction as a general therapeutic strategy for PCSK9 inhibition. However, the observations suggest that in selected populations, disrupting the PCSK9:HSPG interaction could still affect PCSK9 reuptake and offer a therapeutic benefit.
Collapse
Affiliation(s)
- Vivian Q. Xia
- Division of Cardiology, Zuckerberg San Francisco General Hospital
- Department of Medicine, University of California San Francisco
| | - Chui Mei Ong
- Clinical Chemistry Laboratory, Zuckerberg San Francisco General Hospital
- Department of Laboratory Medicine, University of California San Francisco
| | - Lucas S. Zier
- Division of Cardiology, Zuckerberg San Francisco General Hospital
- Department of Medicine, University of California San Francisco
| | - John S. MacGregor
- Division of Cardiology, Zuckerberg San Francisco General Hospital
- Department of Medicine, University of California San Francisco
| | - Alan H. B. Wu
- Clinical Chemistry Laboratory, Zuckerberg San Francisco General Hospital
- Department of Laboratory Medicine, University of California San Francisco
| | - John S. Chorba
- Division of Cardiology, Zuckerberg San Francisco General Hospital
- Department of Medicine, University of California San Francisco
| |
Collapse
|
48
|
Pärn A, Olsen D, Tuvikene J, Kaas M, Borisova E, Bilgin M, Elhauge M, Vilstrup J, Madsen P, Ambrozkiewicz MC, Goz RU, Timmusk T, Tarabykin V, Gustafsen C, Glerup S. PCSK9 deficiency alters brain lipid composition without affecting brain development and function. Front Mol Neurosci 2023; 15:1084633. [PMID: 36733269 PMCID: PMC9887304 DOI: 10.3389/fnmol.2022.1084633] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/16/2022] [Indexed: 01/18/2023] Open
Abstract
PCSK9 induces lysosomal degradation of the low-density lipoprotein (LDL) receptor (LDLR) in the liver, hereby preventing removal of LDL cholesterol from the circulation. Accordingly, PCSK9 inhibitory antibodies and siRNA potently reduce LDL cholesterol to unprecedented low levels and are approved for treatment of hypercholesterolemia. In addition, PCSK9 inactivation alters the levels of several other circulating lipid classes and species. Brain function is critically influenced by cholesterol and lipid composition. However, it remains unclear how the brain is affected long-term by the reduction in circulating lipids as achieved with potent lipid lowering therapeutics such as PCSK9 inhibitors. Furthermore, it is unknown if locally expressed PCSK9 affects neuronal circuits through regulation of receptor levels. We have studied the effect of lifelong low peripheral cholesterol levels on brain lipid composition and behavior in adult PCSK9 KO mice. In addition, we studied the effect of PCSK9 on neurons in culture and in vivo in the developing cerebral cortex. We found that PCSK9 reduced LDLR and neurite complexity in cultured neurons, but neither PCSK9 KO nor overexpression affected cortical development in vivo. Interestingly, PCSK9 deficiency resulted in changes of several lipid classes in the adult cortex and cerebellum. Despite the observed changes, PCSK9 KO mice had unchanged behavior compared to WT controls. In conclusion, our findings demonstrate that altered PCSK9 levels do not compromise brain development or function in mice, and are in line with clinical trials showing that PCSK9 inhibitors have no adverse effects on cognitive function.
Collapse
Affiliation(s)
- Angela Pärn
- Department of Biomedicine, Aarhus University, Aarhus, Denmark,*Correspondence: Angela Pärn, ✉
| | - Ditte Olsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jürgen Tuvikene
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia,Protobios LLC, Tallinn, Estonia
| | - Mathias Kaas
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Ekaterina Borisova
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, Berlin, Germany,Tomsk National Research Medical Center of the Russian Academy of Sciences, Research Institute of Medical Genetics, Tomsk, Russia
| | - Mesut Bilgin
- Danish Cancer Society Research Center, Lipidomics Core Facility, Copenhagen, Denmark
| | - Mie Elhauge
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Joachim Vilstrup
- Department of Biomedicine, Aarhus University, Aarhus, Denmark,Draupnir Bio ApS, INCUBA Skejby, Aarhus, Denmark
| | - Peder Madsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark,Draupnir Bio ApS, INCUBA Skejby, Aarhus, Denmark
| | - Mateusz C. Ambrozkiewicz
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Roman U. Goz
- Department of Neurobiology, University of Pittsburgh Medical School, Pittsburgh, PA, United States
| | - Tõnis Timmusk
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia,Protobios LLC, Tallinn, Estonia
| | - Victor Tarabykin
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, Berlin, Germany,Tomsk National Research Medical Center of the Russian Academy of Sciences, Research Institute of Medical Genetics, Tomsk, Russia
| | - Camilla Gustafsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark,Draupnir Bio ApS, INCUBA Skejby, Aarhus, Denmark,Camilla Gustafsen, ✉
| | - Simon Glerup
- Department of Biomedicine, Aarhus University, Aarhus, Denmark,Draupnir Bio ApS, INCUBA Skejby, Aarhus, Denmark,Simon Glerup, ✉
| |
Collapse
|
49
|
Musunuru K. An Overview of Genome Editing in Cardiovascular and Metabolic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1396:3-16. [DOI: 10.1007/978-981-19-5642-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
50
|
Ouyang M, Li C, Hu D, Peng D, Yu B. Mechanisms of unusual response to lipid-lowering therapy: PCSK9 inhibition. Clin Chim Acta 2023; 538:113-123. [PMID: 36403664 DOI: 10.1016/j.cca.2022.11.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
The efficacy of proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition has broadened lipid-lowering therapy thus providing decreased risk in atherosclerotic cardiovascular disease. Unfortunately, the widespread use of PCSK9 inhibitors (PCSK9i), ie, monoclonal antibodies, has led to the findings of unusual responsiveness, ie, a phenomenon defined as an LDL-C reduction of <30% vs the average LDL-C reduction efficacy of 50-60%. This unusual responsiveness to PCSK9i is attributable to several factors, ie, lack of adherence, impaired absorption, poor distribution or early elimination as well as abnormal effects of PCSK9i in the presence of anti-antibodies or mutations in PCSK9 and LDLR. Unexpectedly increased lipoprotein (Lp)(a) also appear to contribute to the unusual responsiveness scenario. Identification of these responses and mechanisms underlying them are essential for effective management of LDL-C and cardiovascular risk. In this review, we describe plausible reasons underlying this phenomenon supported by findings of clinical trials. We also elaborate on the need for education and regular follow-up to improve adherence. Collectively, the review provides a summary of the past, present, and future of mechanisms and countermeasures revolving around unusual responses to PCSK9i therapy.
Collapse
Affiliation(s)
- Mingqi Ouyang
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, NO.139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Chenyu Li
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, NO.139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Die Hu
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, NO.139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Daoquan Peng
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, NO.139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Bilian Yu
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, NO.139 Middle Renmin Road, Changsha 410011, Hunan, China.
| |
Collapse
|