1
|
Saporito DC, King RD, Vickers SD, Wyda EA, Balaji S, King JA, Leonardi R. Deletion of Nudt19 Increases Albuminuria in Mice Fed a High Fat Diet. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.22.644727. [PMID: 40196498 PMCID: PMC11974676 DOI: 10.1101/2025.03.22.644727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Nudix hydrolase 19 (NUDT19) is a peroxisomal enzyme that hydrolyzes CoA species at the phosphodiester bond and has been linked to peroxisomal dysfunction in the context of diabetic kidney disease. Despite its predominant expression in mouse kidneys, the physiological role of NUDT19 remains poorly understood. To investigate its function under metabolic stress, we fed Nudt19 -/- mice a high fat diet (HFD) for 15 weeks. Nudt19 deletion exacerbated HFD-induced albuminuria, suggesting a previously unrecognized role in kidney function. This phenotype was associated with altered lipid metabolism in the kidneys, including reduced levels of non-esterified fatty acids and specific mono-acyl lipids, as well as differential expression of proteins involved in lipid metabolism. These included ECH1, THIKB, and ECHD2, enzymes involved in peroxisomal and mitochondrial β-oxidation; C19orf12, a lipid droplet-associated protein; and the lipolysis-stimulated lipoprotein receptor (LSR). These findings highlight NUDT19 as a key regulator of renal lipid homeostasis and suggest that its loss contributes to kidney dysfunction under conditions of dietary lipid overload.
Collapse
Affiliation(s)
- Dominique C. Saporito
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia 26506, USA
| | - Rachel D. King
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia 26506, USA
| | - Schuyler D. Vickers
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia 26506, USA
- Current address:
| | - Emily A. Wyda
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia 26506, USA
| | - Sruthi Balaji
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia 26506, USA
| | - Judy A. King
- Foundational and Clinical Sciences Department, Thomas F. Frist, Jr. College of Medicine, Belmont University, 1900 Belmont Boulevard, Nashville, Tennessee 37212, USA
| | - Roberta Leonardi
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia 26506, USA
| |
Collapse
|
2
|
Afonso LG, Silva-Aguiar RP, Teixeira DE, Alves SAS, Schmaier AH, Pinheiro AAS, Peruchetti DB, Caruso-Neves C. The angiotensin II/type 1 angiotensin II receptor pathway is implicated in the dysfunction of albumin endocytosis in renal proximal tubule epithelial cells induced by high glucose levels. Biochim Biophys Acta Gen Subj 2024; 1868:130684. [PMID: 39084330 DOI: 10.1016/j.bbagen.2024.130684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/09/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
It is well-established that dysfunction of megalin-mediated albumin endocytosis by proximal tubule epithelial cells (PTECs) and the activation of the Renin-Angiotensin System (RAS) play significant roles in the development of Diabetic Kidney Disease (DKD). However, the precise correlation between these factors still requires further investigation. In this study, we aimed to elucidate the potential role of angiotensin II (Ang II), a known effector of RAS, as the mediator of albumin endocytosis dysfunction induced by high glucose (HG) in PTECs. To achieve this, we utilized LLC-PK1 and HK-2 cells, which are well-established in vitro models of PTECs. Using albumin-FITC or DQ-albumin as tracers, we observed that incubation of LLC-PK1 and HK-2 cells with HG (25 mM for 48 h) significantly reduced canonical receptor-mediated albumin endocytosis, primarily due to the decrease in megalin expression. HG increased the concentration of Ang II in the LLC-PK1 cell supernatant, a phenomenon associated with an increase in angiotensin-converting enzyme (ACE) expression and a decrease in prolyl carboxypeptidase (PRCP) expression. ACE type 2 (ACE2) expression remained unchanged. To investigate the potential impact of Ang II on HG effects, the cells were co-incubated with angiotensin receptor inhibitors. Only co-incubation with 10-7 M losartan (an antagonist for type 1 angiotensin receptor, AT1R) attenuated the inhibitory effect of HG on albumin endocytosis, as well as megalin expression. Our findings contribute to understanding the genesis of tubular albuminuria observed in the early stages of DKD, which involves the activation of the Ang II/AT1R axis by HG.
Collapse
Affiliation(s)
- Liz G Afonso
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo P Silva-Aguiar
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Douglas E Teixeira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sarah A S Alves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alvin H Schmaier
- Department of Medicine, Division of Hematology and Cell Therapy, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleaveland, USA
| | - Ana Acacia S Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health - NanoSAUDE/FAPERJ, Rio de Janeiro, Brazil
| | - Diogo B Peruchetti
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Instituto Nacional de Ciência e Tecnologia em Nanofarmacêutica, INCT-NANOBiofar, CNPq/MCTI, Belo Horizonte, Brazil
| | - Celso Caruso-Neves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health - NanoSAUDE/FAPERJ, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, INCT-Regenera, CNPq/MCTI, Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Rodrigues MC, Oliveira LBF, Vieira MAR, Caruso-Neves C, Peruchetti DB. Receptor-mediated endocytosis in kidney cells during physiological and pathological conditions. CURRENT TOPICS IN MEMBRANES 2024; 93:1-25. [PMID: 39181576 DOI: 10.1016/bs.ctm.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Mammalian cell membranes are very dynamic where they respond to several environmental stimuli by rearranging the membrane composition by basic biological processes, including endocytosis. In this context, receptor-mediated endocytosis, either clathrin-dependent or caveolae-dependent, is involved in different physiological and pathological conditions. In the last years, an important amount of evidence has been reported that kidney function involves the modulation of different types of endocytosis, including renal protein handling. In addition, the dysfunction of the endocytic machinery is involved with the development of proteinuria as well as glomerular and tubular injuries observed in kidney diseases associated with hypertension, diabetes, and others. In this present review, we will discuss the mechanisms underlying the receptor-mediated endocytosis in different glomerular cells and proximal tubule epithelial cells as well as their modulation by different factors during physiological and pathological conditions. These findings could help to expand the current understanding regarding renal protein handling as well as identify possible new therapeutic targets to halt the progression of kidney disease.
Collapse
Affiliation(s)
- Mariana C Rodrigues
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Laura B F Oliveira
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maria Aparecida R Vieira
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Celso Caruso-Neves
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAUDE/FAPERJ, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, INCT-Regenera, Conselho Nacional de Desenvolvimento Científico e Tecnológico/MCTI, Rio de Janeiro, RJ, Brazil
| | - Diogo B Peruchetti
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Instituto Nacional de Ciência e Tecnologia em Nanobiofarmacêutica, INCT-NANOBiofar, Conselho Nacional de Desenvolvimento Científico e Tecnológico/MCTI, Belo Horizonte, MG, Brazil.
| |
Collapse
|
4
|
Morel L, Scindia Y. Functional consequence of Iron dyshomeostasis and ferroptosis in systemic lupus erythematosus and lupus nephritis. Clin Immunol 2024; 262:110181. [PMID: 38458303 PMCID: PMC11672638 DOI: 10.1016/j.clim.2024.110181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Systemic lupus erythematosus (SLE) and its renal manifestation Lupus nephritis (LN) are characterized by a dysregulated immune system, autoantibodies, and injury to the renal parenchyma. Iron accumulation and ferroptosis in the immune effectors and renal tubules are recently identified pathological features in SLE and LN. Ferroptosis is an iron dependent non-apoptotic form of regulated cell death and ferroptosis inhibitors have improved disease outcomes in murine models of SLE, identifying it as a novel druggable target. In this review, we discuss novel mechanisms by which iron accumulation and ferroptosis perpetuate immune cell mediated pathology in SLE/LN. We highlight intra-renal dysregulation of iron metabolism and ferroptosis as an underlying pathogenic mechanism of renal tubular injury. The basic concepts of iron biology and ferroptosis are also discussed to expose the links between iron, cell metabolism and ferroptosis, that identify intracellular pro-ferroptotic enzymes and their protein conjugates as potential targets to improve SLE/LN outcomes.
Collapse
Affiliation(s)
- Laurence Morel
- Department of Microbiology, Immunology, and Molecular Genetics, UT Health San Antonio, San Antonio, TX, USA
| | - Yogesh Scindia
- Department of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
5
|
Quiroga DT, Narvaéz Pardo JA, Zubiría MG, Barrales B, Muñoz MC, Giovambattista A, Dominici FP. Acute In Vivo Administration of Compound 21 Stimulates Akt and ERK1/2 Phosphorylation in Mouse Heart and Adipose Tissue. Int J Mol Sci 2023; 24:16839. [PMID: 38069161 PMCID: PMC10706736 DOI: 10.3390/ijms242316839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
The angiotensin II type 2 (AT2) receptor has a role in promoting insulin sensitivity. However, the mechanisms underlying the AT2 receptor-induced facilitation of insulin are still not completely understood. Therefore, we investigated whether acute in vivo administration of AT2 receptor agonist compound 21 (C21) could activate insulin signaling molecules in insulin-target tissues. We report that, in male C57BL/6 mice, an acute (5 min, 0.25 mg/kg; i.v.) injection of C21 induces the phosphorylation of Akt and ERK1/2 at activating residues (Ser473 and Thr202/Tyr204, respectively) in both epididymal white adipose tissue (WAT) and heart tissue. In WAT, the extent of phosphorylation (p) of Akt and ERK1/2 induced by C21 was approximately 65% of the level detected after a bolus injection of a dose of insulin known to induce maximal activation of the insulin receptor (IR). In the heart, C21 stimulated p-Akt to a lesser extent than in WAT and stimulated p-ERK1/2 to similar levels to those attained by insulin administration. C21 did not modify p-IR levels in either tissue. We conclude that in vivo injection of the AT2 receptor agonist C21 activates Akt and ERK1/2 through a mechanism that does not involve the IR, indicating the participation of these enzymes in AT2R-mediated signaling.
Collapse
Affiliation(s)
- Diego T. Quiroga
- Facultad de Farmacia y Bioquímica, Departamento de Química Biológica and IQUIFIB (UBA-CONICET), Universidad de Buenos Aires, Buenos Aires C1113AAD, Argentina
| | - Jorge A. Narvaéz Pardo
- Facultad de Farmacia y Bioquímica, Departamento de Química Biológica and IQUIFIB (UBA-CONICET), Universidad de Buenos Aires, Buenos Aires C1113AAD, Argentina
| | - María G. Zubiría
- Laboratorio de Neuroendocrinología, Instituto Multidisciplinario de Biología Celular (IMBICE), CICPBA-CONICET-UNLP), La Plata B1906APO, Argentina
| | - Benjamín Barrales
- Facultad de Farmacia y Bioquímica, Departamento de Química Biológica and IQUIFIB (UBA-CONICET), Universidad de Buenos Aires, Buenos Aires C1113AAD, Argentina
| | - Marina C. Muñoz
- Facultad de Farmacia y Bioquímica, Departamento de Química Biológica and IQUIFIB (UBA-CONICET), Universidad de Buenos Aires, Buenos Aires C1113AAD, Argentina
| | - Andrés Giovambattista
- Laboratorio de Neuroendocrinología, Instituto Multidisciplinario de Biología Celular (IMBICE), CICPBA-CONICET-UNLP), La Plata B1906APO, Argentina
| | - Fernando P. Dominici
- Facultad de Farmacia y Bioquímica, Departamento de Química Biológica and IQUIFIB (UBA-CONICET), Universidad de Buenos Aires, Buenos Aires C1113AAD, Argentina
| |
Collapse
|
6
|
Famta P, Shah S, Jain N, Srinivasarao DA, Murthy A, Ahmed T, Vambhurkar G, Shahrukh S, Singh SB, Srivastava S. Albumin-hitchhiking: Fostering the pharmacokinetics and anticancer therapeutics. J Control Release 2023; 353:166-185. [PMID: 36423870 DOI: 10.1016/j.jconrel.2022.11.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
Nanotherapeutics demonstrate poor accumulation in the tumor microenvironment due to poor extravasation and penetration into the tumor. Therapeutics such as oligonucleotides, peptides and other biologicals suffer from low systemic half-life and rapid degradation. Albumin-hitchhiking has emerged as an effective strategy to enhance tumor-specific accumulation of various therapeutics. Hitchhiking on serum albumin (SA) have shown to improve biological half-life of various therapeutics including nanocarriers (NCs), biologics, oligonucleotides, vaccines, etc. In addition, passive and active accumulation of SA-riding therapeutics in the tumor, site-specific drug release, and SA-mediated endosomal escape have improved the potential of various anticancer modalities such as chemo-, immune-, vaccine, and gene therapies. In this review, we have discussed the advantages of employing SA-hitchhiking in anticancer therapies. In addition, vaccine strategies employing inherent lymph-nodes accumulating property of albumin have been discussed. We have presented a clinical overview of SA-hitchhiked formulations along with possible bottlenecks for improved clinical outcomes. We have also discussed the role of physiologically based pharmacokinetics (PBPK) modelling for efficient characterization of anti-cancer nanotherapeutics.
Collapse
Affiliation(s)
- Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Naitik Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dadi A Srinivasarao
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Aditya Murthy
- Department of Biopharmaceutics and Bioequivalence, Dr. Reddy's Laboratories Ltd., Global Clinical Management Group, IPDO, Hyderabad, India
| | - Tausif Ahmed
- Department of Biopharmaceutics and Bioequivalence, Dr. Reddy's Laboratories Ltd., Global Clinical Management Group, IPDO, Hyderabad, India
| | - Ganesh Vambhurkar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Syed Shahrukh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
7
|
Steckelings UM, Widdop RE, Sturrock ED, Lubbe L, Hussain T, Kaschina E, Unger T, Hallberg A, Carey RM, Sumners C. The Angiotensin AT 2 Receptor: From a Binding Site to a Novel Therapeutic Target. Pharmacol Rev 2022; 74:1051-1135. [PMID: 36180112 PMCID: PMC9553111 DOI: 10.1124/pharmrev.120.000281] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/19/2022] [Accepted: 06/27/2022] [Indexed: 11/22/2022] Open
Abstract
Discovered more than 30 years ago, the angiotensin AT2 receptor (AT2R) has evolved from a binding site with unknown function to a firmly established major effector within the protective arm of the renin-angiotensin system (RAS) and a target for new drugs in development. The AT2R represents an endogenous protective mechanism that can be manipulated in the majority of preclinical models to alleviate lung, renal, cardiovascular, metabolic, cutaneous, and neural diseases as well as cancer. This article is a comprehensive review summarizing our current knowledge of the AT2R, from its discovery to its position within the RAS and its overall functions. This is followed by an in-depth look at the characteristics of the AT2R, including its structure, intracellular signaling, homo- and heterodimerization, and expression. AT2R-selective ligands, from endogenous peptides to synthetic peptides and nonpeptide molecules that are used as research tools, are discussed. Finally, we summarize the known physiological roles of the AT2R and its abundant protective effects in multiple experimental disease models and expound on AT2R ligands that are undergoing development for clinical use. The present review highlights the controversial aspects and gaps in our knowledge of this receptor and illuminates future perspectives for AT2R research. SIGNIFICANCE STATEMENT: The angiotensin AT2 receptor (AT2R) is now regarded as a fully functional and important component of the renin-angiotensin system, with the potential of exerting protective actions in a variety of diseases. This review provides an in-depth view of the AT2R, which has progressed from being an enigma to becoming a therapeutic target.
Collapse
Affiliation(s)
- U Muscha Steckelings
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Robert E Widdop
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Edward D Sturrock
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Lizelle Lubbe
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Tahir Hussain
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Elena Kaschina
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Thomas Unger
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Anders Hallberg
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Robert M Carey
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Colin Sumners
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| |
Collapse
|
8
|
AT2R activation increases in vitro angiogenesis in pregnant human uterine artery endothelial cells. PLoS One 2022; 17:e0267826. [PMID: 35486619 PMCID: PMC9053770 DOI: 10.1371/journal.pone.0267826] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/15/2022] [Indexed: 12/04/2022] Open
Abstract
Angiogenesis is vital during pregnancy for remodeling and enhancing vasodilation of maternal uterine arteries, and increasing uterine blood flow. Abnormal angiogenesis is associated with decreased uteroplacental blood flow and development of pregnancy disorders such as gestational hypertension, preeclampsia, fetal growth restriction, preterm delivery, stillbirth, and miscarriage. The mechanisms that contribute to normal angiogenesis remain obscure. Our previous studies demonstrated that expression of the angiotensin type 2 receptor (AT2R) is increased while the angiotensin type 1 receptor (AT1R) is unchanged in the endothelium of uterine arteries, and that AT2R-mediated pregnancy adaptation facilitates enhanced vasodilation and uterine arterial blood flow. However, the role of AT2R in regulating angiogenesis during pregnancy has never been studied. This study examines whether or not AT2R activation induces angiogenesis and, if so, what mechanisms are involved. To this end, we used primary human uterine artery endothelial cells (hUAECs) isolated from pregnant and nonpregnant women undergoing hysterectomy. The present study shows that Compound 21, a selective AT2R agonist, induced proliferation of pregnant-hUAECs, but not nonpregnant-hUAECs, in a concentration-dependent manner, and that this C21-induced mitogenic effect was blocked by PD123319, a selective AT2R antagonist. The mitogenic effects induced by C21 were inhibited by blocking JNK—but not ERK, PI3K, and p38—signaling pathways. In addition, C21 concentration dependently increased cell migration and capillary-like tube formation in pregnant-hUAECs. The membrane-based antibody array showed that C21 increased expression of multiple angiogenic proteins, including EGF, bFGF, leptin, PLGF, IGF-1, and angiopoietins. Our qPCR analysis demonstrates that C21-induced increase in expression of these angiogenic proteins correlates with a proportional increase in mRNA expression, indicating that AT2R activates angiogenic proteins at the transcriptional level. In summary, the present study shows that AT2R activation induces angiogenesis of hUAECs in a pregnancy-specific manner through JNK-mediated pathways with associated transcriptional upregulation of multiple proangiogenic proteins.
Collapse
|
9
|
Alves SAS, Florentino LS, Teixeira DE, Silva-Aguiar RP, Peruchetti DB, Oliveira AC, Scharfstein J, Marzolo MP, Pinheiro AAS, Caruso-Neves C. Surface megalin expression is a target to the inhibitory effect of bradykinin on the renal albumin endocytosis. Peptides 2021; 146:170646. [PMID: 34500007 DOI: 10.1016/j.peptides.2021.170646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/31/2022]
Abstract
Megalin-mediated albumin endocytosis plays a critical role in albumin reabsorption in proximal tubule (PT) epithelial cells (PTECs). Some studies have pointed out the modulatory effect of bradykinin (BK) on urinary protein excretion, but its role in PT protein endocytosis has not yet been determined. Here, we studied the possible correlation between BK and albumin endocytosis in PT. Using LLC-PK1 cells, a model of PTECs, we showed that BK specifically inhibited megalin-mediated albumin endocytosis. This inhibitory effect of BK was mediated by B2 receptor (B2R) because it was abolished by HOE140, an antagonist of B2R, but it was not affected by Lys-des-Arg9-BK, an antagonist of B1. BK induced the stall of megalin in EEA1+ endosomes, but not in LAMP1+ lysosomes, leading to a decrease in surface megalin expression. In addition, we showed that BK, through B2R, activated calphostin C-sensitive protein kinase C, which mediated its effect on the surface megalin expression and albumin endocytosis. These results reveal an important modulatory mechanism of PT albumin endocytosis by BK, which opens new possibilities to understanding the effect of BK on urinary albumin excretion.
Collapse
Affiliation(s)
- Sarah A S Alves
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucas S Florentino
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Douglas E Teixeira
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo P Silva-Aguiar
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diogo B Peruchetti
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Carolina Oliveira
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Julio Scharfstein
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - María-Paz Marzolo
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ana Acacia S Pinheiro
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/FAPERJ, Rio de Janeiro, Brazil
| | - Celso Caruso-Neves
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/FAPERJ, Rio de Janeiro, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil.
| |
Collapse
|
10
|
Huang LM, Mao JH. Glomerular podocyte dysfunction in inherited renal tubular disease. World J Pediatr 2021; 17:227-233. [PMID: 33625696 PMCID: PMC8253710 DOI: 10.1007/s12519-021-00417-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/20/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Hereditary renal tubular disease can cause hypercalciuria, acid-base imbalance, hypokalemia, hypomagnesemia, rickets, kidney stones, etc. If these diseases are not diagnosed or treated in time, they can cause kidney damage and electrolyte disturbances, which can be detrimental to the maturation and development of the child. Glomerular involvement in renal tubular disease patients has only been considered recently. METHODS We screened 71 papers (including experimental research, clinical research, etc.) about Dent's disease, Gitelman syndrome, and cystinosis from PubMed, and made reference. RESULTS Glomerular disease was initially underestimated among the clinical signs of renal tubular disease or was treated merely as a consequence of the tubular damage. Renal tubular diseases affect glomerular podocytes through certain mechanisms resulting in functional damage, morphological changes, and glomerular lesions. CONCLUSIONS This article focuses on the progress of changes in glomerular podocyte function in Dent disease, Gitelman syndrome, and cystinosis for the purposes of facilitating clinically accurate diagnosis and scientific treatment and improving prognosis.
Collapse
Affiliation(s)
- Li-Min Huang
- Department of Nephrology, National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, #57 Zhugan Lane, Hangzhou 310006, China
| | - Jian-Hua Mao
- Department of Nephrology, National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, #57 Zhugan Lane, Hangzhou 310006, China.
| |
Collapse
|
11
|
A high salt diet induces tubular damage associated with a pro-inflammatory and pro-fibrotic response in a hypertension-independent manner. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165907. [DOI: 10.1016/j.bbadis.2020.165907] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022]
|
12
|
Immunotoxin SS1P is rapidly removed by proximal tubule cells of kidney, whose damage contributes to albumin loss in urine. Proc Natl Acad Sci U S A 2020; 117:6086-6091. [PMID: 32123080 DOI: 10.1073/pnas.1919038117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recombinant immunotoxins (RITs) are chimeric proteins composed of an Fv and a protein toxin being developed for cancer treatment. The Fv brings the toxin to the cancer cell, but most of the RITs do not reach the tumor and are removed by other organs. To identify cells responsible for RIT removal, and the pathway by which RITs reach these cells, we studied SS1P, a 63-kDa RIT that targets mesothelin-expressing tumors and has a short serum half-life. The major organs that remove RIT were identified by live mouse imaging of RIT labeled with FNIR-Z-759. Cells responsible for SS1P removal were identified by immunohistochemistry and intravital two-photon microscopy of kidneys of rats. The primary organ of SS1P removal is kidney followed by liver. In the kidney, SS1P passes through the glomerulus, is taken up by proximal tubular cells, and transferred to lysosomes. In the liver, macrophages are involved in removal. The short half-life of SS1P is due to its very rapid filtration by the kidney followed by degradation in proximal tubular cells of the kidney. In mice treated with SS1P, proximal tubular cells are damaged and albumin in the urine is increased. SS1P uptake by kidney is reduced by coadministration of l-lysine. Our data suggests that l-lysine administration to humans might prevent SS1P-mediated kidney damage, reduce albumin loss in urine, and alleviate capillary leak syndrome.
Collapse
|
13
|
Peruchetti DB, Silva-Filho JL, Silva-Aguiar RP, Teixeira DE, Takiya CM, Souza MC, Henriques MDG, Pinheiro AAS, Caruso-Neves C. IL-4 Receptor α Chain Protects the Kidney Against Tubule-Interstitial Injury Induced by Albumin Overload. Front Physiol 2020; 11:172. [PMID: 32174845 PMCID: PMC7056741 DOI: 10.3389/fphys.2020.00172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/13/2020] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence has highlighted the role of tubule-interstitial injury (TII) as a vital step in the pathogenesis of acute kidney injury (AKI). Incomplete repair of TII during AKI could lead to the development of chronic kidney disease. Changes in albumin endocytosis in proximal tubule epithelial cells (PTECs) is linked to the development of TII. In this context, interleukin (IL)-4 has been shown to be an important factor in modulating recovery of TII. We have studied the possible role of IL-4 in TII induced by albumin overload. A subclinical AKI model characterized by albumin overload in the proximal tubule was used, without changing glomerular function. Four groups were generated: (1) CONT, wild-type mice treated with saline; (2) BSA, wild-type mice treated with 10 g/kg/day bovine serum albumin (BSA); (3) KO, IL4Rα–/– mice treated with saline; and (4) KO + BSA, IL4Rα–/– mice treated with BSA. As reported previously, mice in the BSA group developed TII without changes in glomerular function. The following parameters were increased in the KO + BSA group compared with the BSA group: (1) tubular injury score; (2) urinary γ-glutamyltransferase; (3) CD4+ T cells, dendritic cells, macrophages, and neutrophils are associated with increases in renal IL-6, IL-17, and transforming growth factor β. A decrease in M2-subtype macrophages associated with a decrease in collagen deposition was observed. Using LLC-PK1 cells, a model of PTECs, we observed that (1) these cells express IL-4 receptor α chain associated with activation of the JAK3/STAT6 pathway; (2) IL-4 alone did not change albumin endocytosis but did reverse the inhibitory effect of higher albumin concentration. This effect was abolished by JAK3 inhibitor. A further increase in urinary protein and creatinine levels was observed in the KO + BSA group compared with the BSA group, but not compared with the CONT group. These observations indicate that IL-4 has a protective role in the development of TII induced by albumin overload that is correlated with modulation of the pro-inflammatory response. We propose that megalin-mediated albumin endocytosis in PTECs could work as a sensor, transducer, and target during the genesis of TII.
Collapse
Affiliation(s)
- Diogo B Peruchetti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - João Luiz Silva-Filho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo P Silva-Aguiar
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Douglas E Teixeira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Christina M Takiya
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana C Souza
- Instituto de Tecnologia em Fármacos, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Ana Acacia S Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Rio de Janeiro Innovation Network in Nanosystems for Health - NanoSAUìDE/FAPERJ, Rio de Janeiro, Brazil
| | - Celso Caruso-Neves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Rio de Janeiro Innovation Network in Nanosystems for Health - NanoSAUìDE/FAPERJ, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, INCT-Regenera, Conselho Nacional de Desenvolvimento Científico e Tecnológico/MCTIC, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Ogbadu J, Singh G, Aggarwal D. Factors affecting the transition of acute kidney injury to chronic kidney disease: Potential mechanisms and future perspectives. Eur J Pharmacol 2019; 865:172711. [DOI: 10.1016/j.ejphar.2019.172711] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/22/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022]
|
15
|
Teixeira DE, Peruchetti DB, Silva LS, Silva-Aguiar RP, Oquendo MB, Silva-Filho JL, Takiya CM, Leal-Cardoso JH, Pinheiro AAS, Caruso-Neves C. Lithium ameliorates tubule-interstitial injury through activation of the mTORC2/protein kinase B pathway. PLoS One 2019; 14:e0215871. [PMID: 31002704 PMCID: PMC6474631 DOI: 10.1371/journal.pone.0215871] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/09/2019] [Indexed: 12/11/2022] Open
Abstract
Tubule-interstitial injury (TII) is a critical step in the progression of renal disease. It has been proposed that changes in proximal tubule (PT) albumin endocytosis plays an important role in the development of TII. Some reports have shown protective effects of lithium on kidney injury animal models that was correlated to proteinuria. We tested the hypothesis that lithium treatment ameliorates the development of TII due to changes in albumin endocytosis. Two experimental models were used: (1) TII induced by albumin overload in an animal model; (2) LLC-PK1 cells, a PT cell line. Lithium treatment ameliorates TII induced by albumin overload measured by (1) proteinuria; (2) collagen deposition; (3) area of tubule-interstitial space, and (4) macrophage infiltration. Lithium treatment increased mTORC2 activity leading to the phosphorylation of protein kinase B (PKB) at Ser473 and its activation. This mechanism enhanced albumin endocytosis in PT cells, which decreased the proteinuria observed in TII induced by albumin overload. This effect did not involve changes in the expression of megalin, a PT albumin receptor. In addition, activation of this pathway decreased apoptosis in LLC-PK1 cells, a PT cell line, induced by higher albumin concentration, similar to that found in pathophysiologic conditions. Our results indicate that the protective role of lithium treatment on TII induced by albumin overload involves an increase in PT albumin endocytosis due to activation of the mTORC2/PKB pathway. These results open new possibilities in understanding the effects of lithium on the progression of renal disease.
Collapse
Affiliation(s)
- Douglas E. Teixeira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Diogo B. Peruchetti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Leandro S. Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Rodrigo P. Silva-Aguiar
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Morgana B. Oquendo
- Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, CE, Brazil
| | - João Luiz Silva-Filho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Christina M. Takiya
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Ana Acacia S. Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Celso Caruso-Neves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, INCT-Regenera, Conselho Nacional de Desenvolvimento Científico e Tecnológico/MCT, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
16
|
Jia Z, Wang X, Wei X, Zhao G, Foster KW, Qiu F, Gao Y, Yuan F, Yu F, Thiele GM, Bronich TK, O’Dell JR, Wang D. Micelle-Forming Dexamethasone Prodrug Attenuates Nephritis in Lupus-Prone Mice without Apparent Glucocorticoid Side Effects. ACS NANO 2018; 12:7663-7681. [PMID: 29965725 PMCID: PMC6117746 DOI: 10.1021/acsnano.8b01249] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/02/2018] [Indexed: 05/27/2023]
Abstract
Nephritis is one of the major complications of systemic lupus erythematosus. While glucocorticoids (GCs) are frequently used as the first-line treatment for lupus nephritis (LN), long-term GC usage is often complicated by severe adverse effects. To address this challenge, we have developed a polyethylene glycol-based macromolecular prodrug (ZSJ-0228) of dexamethasone, which self-assembles into micelles in aqueous media. When compared to the dose equivalent daily dexamethasone 21-phosphate disodium (Dex) treatment, monthly intravenous administration of ZSJ-0228 for two months significantly improved the survival of lupus-prone NZB/W F1 mice and was much more effective in normalizing proteinuria, with clear histological evidence of nephritis resolution. Different from the dose equivalent daily Dex treatment, monthly ZSJ-0228 administration has no impact on the serum anti-double-stranded DNA (anti-dsDNA) antibody level but can significantly reduce renal immune complex deposition. No significant systemic toxicities of GCs ( e. g., total IgG reduction, adrenal gland atrophy, and osteopenia) were found to be associated with ZSJ-0228 treatment. In vivo imaging and flow cytometry studies revealed that the fluorescent-labeled ZSJ-0228 primarily distributed to the inflamed kidney after systemic administration, with renal myeloid cells and proximal tubular epithelial cells mainly responsible for its kidney retention. Collectively, these data suggest that the ZSJ-0228's potent local anti-inflammatory/immunosuppressive effects and improved safety may be attributed to its nephrotropicity and cellular sequestration at the inflamed kidney tissues. Pending further optimization, it may be developed into an effective and safe therapy for improved clinical management of LN.
Collapse
Affiliation(s)
- Zhenshan Jia
- Department
of Pharmaceutical Sciences, College of Pharmacy, Department of Pathology
and Microbiology, College of Medicine, Department of Biostatistics, College
of Public Health, and Division of Rheumatology, Department of Internal
Medicine, College of Medicine, University
of Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Xiaobei Wang
- Department
of Pharmaceutical Sciences, College of Pharmacy, Department of Pathology
and Microbiology, College of Medicine, Department of Biostatistics, College
of Public Health, and Division of Rheumatology, Department of Internal
Medicine, College of Medicine, University
of Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Xin Wei
- Department
of Pharmaceutical Sciences, College of Pharmacy, Department of Pathology
and Microbiology, College of Medicine, Department of Biostatistics, College
of Public Health, and Division of Rheumatology, Department of Internal
Medicine, College of Medicine, University
of Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Gang Zhao
- Department
of Pharmaceutical Sciences, College of Pharmacy, Department of Pathology
and Microbiology, College of Medicine, Department of Biostatistics, College
of Public Health, and Division of Rheumatology, Department of Internal
Medicine, College of Medicine, University
of Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Kirk W. Foster
- Department
of Pharmaceutical Sciences, College of Pharmacy, Department of Pathology
and Microbiology, College of Medicine, Department of Biostatistics, College
of Public Health, and Division of Rheumatology, Department of Internal
Medicine, College of Medicine, University
of Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Fang Qiu
- Department
of Pharmaceutical Sciences, College of Pharmacy, Department of Pathology
and Microbiology, College of Medicine, Department of Biostatistics, College
of Public Health, and Division of Rheumatology, Department of Internal
Medicine, College of Medicine, University
of Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Yangyang Gao
- Department
of Pharmaceutical Sciences, College of Pharmacy, Department of Pathology
and Microbiology, College of Medicine, Department of Biostatistics, College
of Public Health, and Division of Rheumatology, Department of Internal
Medicine, College of Medicine, University
of Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Fang Yuan
- Department
of Pharmaceutical Sciences, College of Pharmacy, Department of Pathology
and Microbiology, College of Medicine, Department of Biostatistics, College
of Public Health, and Division of Rheumatology, Department of Internal
Medicine, College of Medicine, University
of Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Fang Yu
- Department
of Pharmaceutical Sciences, College of Pharmacy, Department of Pathology
and Microbiology, College of Medicine, Department of Biostatistics, College
of Public Health, and Division of Rheumatology, Department of Internal
Medicine, College of Medicine, University
of Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Geoffrey M. Thiele
- Department
of Pharmaceutical Sciences, College of Pharmacy, Department of Pathology
and Microbiology, College of Medicine, Department of Biostatistics, College
of Public Health, and Division of Rheumatology, Department of Internal
Medicine, College of Medicine, University
of Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Tatiana K. Bronich
- Department
of Pharmaceutical Sciences, College of Pharmacy, Department of Pathology
and Microbiology, College of Medicine, Department of Biostatistics, College
of Public Health, and Division of Rheumatology, Department of Internal
Medicine, College of Medicine, University
of Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - James R. O’Dell
- Department
of Pharmaceutical Sciences, College of Pharmacy, Department of Pathology
and Microbiology, College of Medicine, Department of Biostatistics, College
of Public Health, and Division of Rheumatology, Department of Internal
Medicine, College of Medicine, University
of Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Dong Wang
- Department
of Pharmaceutical Sciences, College of Pharmacy, Department of Pathology
and Microbiology, College of Medicine, Department of Biostatistics, College
of Public Health, and Division of Rheumatology, Department of Internal
Medicine, College of Medicine, University
of Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| |
Collapse
|
17
|
Peruchetti DDB, Silva-Aguiar RP, Siqueira GM, Dias WB, Caruso-Neves C. High glucose reduces megalin-mediated albumin endocytosis in renal proximal tubule cells through protein kinase B O-GlcNAcylation. J Biol Chem 2018; 293:11388-11400. [PMID: 29871929 DOI: 10.1074/jbc.ra117.001337] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 05/02/2018] [Indexed: 01/09/2023] Open
Abstract
The role of albumin reabsorption in proximal tubule (PT) cells has emerged as an important factor in the genesis of albuminuria observed in the early stages of diabetes. Evidence has shown that a decrease in megalin expression could be the key mechanism in this process. In the present work, we investigated the molecular mechanism underlying the modulation of albumin endocytosis in LLC-PK1 cells, a model of PT cells. High glucose concentrations (HG) inhibited megalin expression and albumin endocytosis after 48 h of incubation. This inhibitory effect involves the entrance of glucose into PT cells through SGLT located at the luminal membrane. Once inside PT cells, glucose is diverted to the hexosamine biosynthetic pathway (HBP) increasing O-GlcNAcylation of several intracellular proteins, including PKB. This process promotes the inhibition of PKB activity measured by its phosphorylation at Thr-308 and Ser-473 and phosphorylation of specific substrates, glycogen synthase kinase 3β (GSK3β) and tuberous sclerosis complex 2. The decrease in PKB activity led to a decrease in megalin expression and, consequently, reducing albumin endocytosis in LLC-PK1 cells. HG did not change mammalian target of rapamycin (mTOR) C2 activity, responsible for phosphorylated PKB at Ser-473. In addition, HG activated the mTORC1/S6K pathway, but this effect was not correlated to the decrease in megalin expression or albumin endocytosis. Taken together, our data help to clarify the current understanding underlying the genesis of tubular albuminuria induced by hyperglycemia in the early stage of diabetes pathogenesis.
Collapse
Affiliation(s)
- Diogo de Barros Peruchetti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-9042
| | | | - Gabriela Marques Siqueira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-9042
| | - Wagner Barbosa Dias
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-9042
| | - Celso Caruso-Neves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-9042; Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, INCT-Regenera, Rio de Janeiro, 21941-902, Brazil.
| |
Collapse
|
18
|
Cardioprotective effect of thyroid hormone is mediated by AT2 receptor and involves nitric oxide production via Akt activation in mice. Heart Vessels 2017; 33:671-681. [DOI: 10.1007/s00380-017-1101-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 12/01/2017] [Indexed: 12/11/2022]
|
19
|
Shpakov AO, Zharova OA, Derkach KV. Antibodies to extracellular regions of G protein-coupled receptors and receptor tyrosine kinases as one of the causes of autoimmune diseases. J EVOL BIOCHEM PHYS+ 2017. [DOI: 10.1134/s1234567817020021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Abstract
Cells lining the proximal tubule (PT) of the kidney are highly specialized for apical endocytosis of filtered proteins and small bioactive molecules from the glomerular ultrafiltrate to maintain essentially protein-free urine. Compromise of this pathway results in low molecular weight (LMW) proteinuria that can progress to end-stage kidney disease. This review describes our current understanding of the endocytic pathway and the multiligand receptors that mediate LMW protein uptake in PT cells, how these are regulated in response to physiologic cues, and the molecular basis of inherited diseases characterized by LMW proteinuria.
Collapse
Affiliation(s)
- Megan L Eshbach
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261; ,
| | - Ora A Weisz
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261; ,
| |
Collapse
|
21
|
Uroguanylin modulates (Na++K+)ATPase in a proximal tubule cell line: Interactions among the cGMP/protein kinase G, cAMP/protein kinase A, and mTOR pathways. Biochim Biophys Acta Gen Subj 2016; 1860:1431-8. [PMID: 27102282 DOI: 10.1016/j.bbagen.2016.04.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/31/2016] [Accepted: 04/15/2016] [Indexed: 11/21/2022]
Abstract
BACKGROUND The natriuretic effect of uroguanylin (UGN) involves reduction of proximal tubule (PT) sodium reabsorption. However, the target sodium transporters as well as the molecular mechanisms involved in these processes remain poorly understood. METHODS To address the effects of UGN on PT (Na(+)+K(+))ATPase and the signal transduction pathways involved in this effect, we used LLC-PK1 cells. The effects of UGN were determined through ouabain-sensitive ATP hydrolysis and immunoblotting assays during different experimental conditions. RESULTS We observed that UGN triggers cGMP/PKG and cAMP/PKA pathways in a sequential way. The activation of PKA leads to the inhibition of mTORC2 activity, PKB phosphorylation at S473, PKB activity and, consequently, a decrease in the mTORC1/S6K pathway. The final effects are decreased expression of the α1 subunit of (Na(+)+K(+))ATPase and inhibition of enzyme activity. CONCLUSIONS These results suggest that the molecular mechanism of action of UGN on sodium reabsorption in PT cells is more complex than previously thought. We propose that PKG-dependent activation of PKA leads to the inhibition of the mTORC2/PKB/mTORC1/S6K pathway, an important signaling pathway involved in the maintenance of the PT sodium pump expression and activity. GENERAL SIGNIFICANCE The current results expand our understanding of the signal transduction pathways involved in the overall effect of UGN on renal sodium excretion.
Collapse
|
22
|
Montoro-Molina S, Quesada A, Zafra-Ruiz PV, O'Valle F, Vargas F, de Gracia MDC, Osuna A, Wangensteen R. Immunological detection of glutamyl aminopeptidase in urine samples from cisplatin-treated rats. Proteomics Clin Appl 2015; 9:630-5. [PMID: 25470983 DOI: 10.1002/prca.201400096] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/28/2014] [Accepted: 11/26/2014] [Indexed: 11/09/2022]
Abstract
PURPOSE The aim of this work is to demonstrate if urinary excretion of glutamyl aminopeptidase (GluAp) can be quantified by immunological methods. EXPERIMENTAL DESIGN Urine samples from control and cisplatin-treated rats (n = 10 each group) were obtained at 1, 8, and 15 days after cisplatin injection. GluAp was analyzed by kinetic fluorimetry, ELISA, and immunoblotting. Sensitivity and specificity was studied for fluorimetric activity and ELISA 24 h after cisplatin injection. We also analyzed the predictive value over renal dysfunction at the end of the experiment. RESULTS GluAp was easily detected by immunoblotting and ELISA, and its urinary excretion was increased in cisplatin-treated rats (p < 0.01). Results obtained with ELISA were strongly correlated (r = 0.8186; p < 0.0001) with fluorimetric activity. Kinetic fluorimetry was the method with the highest AUC (AUC = 1) and the highest predictive value over serum creatinine (r = 0.7630; p = 0.0001) and body weight increase (r = -0.8721; p < 0.0001). CONCLUSIONS AND CLINICAL RELEVANCE GluAp can be detected in urine samples with immunological methods, making possible the development of an antibody-based kit for its determination. Its excretion correlates with the extent of renal dysfunction in cisplatin-treated rats, confirming its value as an early marker of renal damage that can be a diagnostic aid in renal diseases.
Collapse
Affiliation(s)
| | - Andrés Quesada
- Unidad de Nefrología, FIBAO, Hospital Virgen de las Nieves, Granada, Spain
| | - Piedad V Zafra-Ruiz
- Área de Fisiología, Departamento de Ciencias de la Salud, Universidad de Jaén, Jaén, Spain
| | - Francisco O'Valle
- Departamento de Anatomía Patológica, IBIMER, Universidad de Granada, Granada, Spain
| | - Félix Vargas
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | | | - Antonio Osuna
- Unidad de Nefrología, FIBAO, Hospital Virgen de las Nieves, Granada, Spain
| | - Rosemary Wangensteen
- Área de Fisiología, Departamento de Ciencias de la Salud, Universidad de Jaén, Jaén, Spain
| |
Collapse
|
23
|
Saha A, Bhattacharya S, Bhattacharya A. Regulation of serum-responsive transmembrane kinase EhTMKB1-9 by an unsaturated lipid, oleic acid in protistan parasite Entamoeba histolytica. Mol Biochem Parasitol 2014; 198:48-57. [PMID: 25497959 DOI: 10.1016/j.molbiopara.2014.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/24/2014] [Accepted: 12/01/2014] [Indexed: 10/24/2022]
Abstract
Transmembrane kinases of Entamoeba histolytica are known to play a wide range of roles from virulence, phagocytosis, and proliferation to stress response. Transmembrane kinase EhTMKB1-9 is thought to be involved in early proliferative response and it was originally identified as a serum inducible gene. Ability to stimulate EhTMKB1 expression of serum starved cells resides in unsaturated fatty acids associated with albumin fraction of serum and the mechanism of stimulation follows activation of EhTMKB1-9 promoter. Gel shift assay showed the presence of proteins that bind to the specific site of EhTMKB1-9 upstream region and the concentration of these protein(s) go down on serum starvation, but level of binding protein(s) go up on serum or fatty acid replenishment. This increase in concentration of binding molecule(s) is due to new synthesis rather than activation of existing molecule(s) as a protein synthesis inhibitor blocked enhanced level of gel shifted material on replenishment. The stimulating activity resides in the fatty acyl chain, but not in the head group. Moreover, the fatty acid initiates signaling through class I PI3 kinases that result in activation of EhTMKB1-9 expression. These results suggest a novel mechanism of gene regulation in E. histolytica, and unsaturated fatty acids as potential new signaling molecules.
Collapse
Affiliation(s)
- Arpita Saha
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sudha Bhattacharya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Alok Bhattacharya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
24
|
Landgraf SS, Silva LS, Peruchetti DB, Sirtoli GM, Moraes-Santos F, Portella VG, Silva-Filho JL, Pinheiro CS, Abreu TP, Takiya CM, Benjamin CF, Pinheiro AAS, Canetti C, Caruso-Neves C. 5-Lypoxygenase products are involved in renal tubulointerstitial injury induced by albumin overload in proximal tubules in mice. PLoS One 2014; 9:e107549. [PMID: 25302946 PMCID: PMC4193734 DOI: 10.1371/journal.pone.0107549] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 08/11/2014] [Indexed: 12/11/2022] Open
Abstract
The role of albumin overload in proximal tubules (PT) in the development of tubulointerstitial injury and, consequently, in the progression of renal disease has become more relevant in recent years. Despite the importance of leukotrienes (LTs) in renal disease, little is known about their role in tubulointerstitial injury. The aim of the present work was to investigate the possible role of LTs on tubulointerstitial injury induced by albumin overload. An animal model of tubulointerstitial injury challenged by bovine serum albumin was developed in SV129 mice (wild-type) and 5-lipoxygenase-deficient mice (5-LO–/–). The changes in glomerular morphology and nestin expression observed in wild-type mice subjected to kidney insult were also observed in 5-LO–/– mice. The levels of urinary protein observed in the 5-LO–/– mice subjected or not to kidney insult were lower than those observed in respective wild-type mice. Furthermore, the increase in lactate dehydrogenase activity, a marker of tubule damage, observed in wild-type mice subjected to kidney insult did not occur in 5-LO–/– mice. LTB4 and LTD4, 5-LO products, decreased the uptake of albumin in LLC-PK1 cells, a well-characterized porcine PT cell line. This effect correlated with activation of protein kinase C and inhibition of protein kinase B. The level of proinflammatory cytokines, tumor necrosis factor-α and interleukin (IL)-6, increased in mice subjected to kidney insult but this effect was not modified in 5-LO–/– mice. However, 5-LO–/– mice subjected to kidney insult presented lower macrophage infiltration and higher levels of IL-10 than wild-type mice. Our results reveal that LTs have an important role in tubulointerstitial disease induced by albumin overload.
Collapse
Affiliation(s)
- Sharon Schilling Landgraf
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCS, Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leandro Souza Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCS, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diogo Barros Peruchetti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCS, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriela Modenesi Sirtoli
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCS, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe Moraes-Santos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCS, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Viviane Gomes Portella
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCS, Rio de Janeiro, Rio de Janeiro, Brazil
| | - João Luiz Silva-Filho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCS, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carla Silva Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCS, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thiago Pereira Abreu
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCS, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Christina Maeda Takiya
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, CCS, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudia Farias Benjamin
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, CCS, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Acacia Sá Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCS, Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Fisiologia e Biofísica, Instituto Nacional de Pesquisa Translacional em Saúde e Ambiente na Região Amazônica, CCS, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudio Canetti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCS, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Celso Caruso-Neves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCS, Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia e Bioimagem, CCS, Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
25
|
Umschweif G, Liraz-Zaltsman S, Shabashov D, Alexandrovich A, Trembovler V, Horowitz M, Shohami E. Angiotensin receptor type 2 activation induces neuroprotection and neurogenesis after traumatic brain injury. Neurotherapeutics 2014; 11:665-78. [PMID: 24957202 PMCID: PMC4121449 DOI: 10.1007/s13311-014-0286-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Angiotensin II receptor type 2 (AT(2)) agonists have been shown to limit brain ischemic insult and to improve its outcome. The activation of AT(2) was also linked to induced neuronal proliferation and differentiation in vitro. In this study, we examined the therapeutic potential of AT(2) activation following traumatic brain injury (TBI) in mice, a brain pathology that displays ischemia-like secondary damages. The AT(2) agonist CGP42112A was continuously infused immediately after closed head injury (CHI) for 3 days. We have followed the functional recovery of the injured mice for 35 days post-CHI, and evaluated cognitive function, lesion volume, molecular signaling, and neurogenesis at different time points after the impact. We found dose-dependent improvement in functional recovery and cognitive performance after CGP42112A treatment that was accompanied by reduced lesion volume and induced neurogenesis in the neurogenic niches of the brain and also in the injury region. At the cellular/molecular level, CGP42112A induced early activation of neuroprotective kinases protein kinase B (Akt) and extracellular-regulated kinases ½ (ERK½), and the neurotrophins nerve growth factor and brain-derived neurotrophic factor; all were blocked by treatment with the AT(2) antagonist PD123319. Our results suggest that AT(2) activation after TBI promotes neuroprotection and neurogenesis, and may be a novel approach for the development of new drugs to treat victims of TBI.
Collapse
Affiliation(s)
- Gali Umschweif
- />Department of Pharmacology, The Hebrew University, Jerusalem, Israel
- />Laboratory of Environmental Physiology, The Hebrew University, Jerusalem, Israel
| | | | - Dalia Shabashov
- />Department of Pharmacology, The Hebrew University, Jerusalem, Israel
| | | | | | - Michal Horowitz
- />Laboratory of Environmental Physiology, The Hebrew University, Jerusalem, Israel
| | - Esther Shohami
- />Department of Pharmacology, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
26
|
Peruchetti DB, Cheng J, Caruso-Neves C, Guggino WB. Mis-regulation of mammalian target of rapamycin (mTOR) complexes induced by albuminuria in proximal tubules. J Biol Chem 2014; 289:16790-801. [PMID: 24790108 DOI: 10.1074/jbc.m114.549717] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
High albumin concentrations in the proximal tubule of the kidney causes tubulointerstitial injury, but how this process occurs is not completely known. To address the signal transduction pathways mis-regulated in renal injury, we studied the modulation of mammalian target of rapamycin (mTOR) complexes by physiologic and pathophysiologic albumin concentrations in proximal tubule cells. Physiologic albumin concentrations activated the PI3K/mTORC2/PKB/mTORC1/S6 kinase (S6K) pathway, but pathophysiologically high albumin concentrations overactivated mTORC1 and inhibited mTORC2 activity. This control process involved the activation of ERK1/2, which promoted the inhibition of TSC2 and activation of S6K. Furthermore, S6K was crucial to promoting the over activation of mTORC1 and inhibition of mTORC2. Megalin expression at the luminal membrane is reduced by high concentrations of albumin. In addition, knockdown of megalin mimicked all the effects of pathophysiologic albumin concentrations, which disrupt normal signal transduction pathways and lead to an overactivation of mTORC1 and inhibition of mTORC2. These data provide new perspectives for understanding the molecular mechanisms behind the effects of albumin on the progression of renal disease.
Collapse
Affiliation(s)
- Diogo B Peruchetti
- From the Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil and Department of Physiology, School of Medicine, The Johns Hopkins University, Baltimore, Maryland 21205
| | - Jie Cheng
- Department of Physiology, School of Medicine, The Johns Hopkins University, Baltimore, Maryland 21205
| | - Celso Caruso-Neves
- From the Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil and
| | - William B Guggino
- Department of Physiology, School of Medicine, The Johns Hopkins University, Baltimore, Maryland 21205
| |
Collapse
|
27
|
Santoyo-Sánchez MP, Pedraza-Chaverri J, Molina-Jijón E, Arreola-Mendoza L, Rodríguez-Muñoz R, Barbier OC. Impaired endocytosis in proximal tubule from subchronic exposure to cadmium involves angiotensin II type 1 and cubilin receptors. BMC Nephrol 2013; 14:211. [PMID: 24093454 PMCID: PMC3851428 DOI: 10.1186/1471-2369-14-211] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 10/01/2013] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Chronic exposure to low cadmium (Cd) levels produces urinary excretion of low molecular weight proteins, which is considered the critical effect of Cd exposure. However, the mechanisms involved in Cd-induced proteinuria are not entirely clear. Therefore, the present study was designed to evaluate the possible role of megalin and cubilin (important endocytic receptors in proximal tubule cells) and angiotensin II type 1 (AT1) receptor on Cd-induced microalbuminuria. METHODS Four groups of female Wistar rats were studied. Control (CT) group, vehicle-treated rats; LOS group, rats treated with losartan (an AT1 antagonist) from weeks 5 to 8 (10 mg/kg/day by gavage); Cd group, rats subchronically exposed to Cd (3 mg/kg/day by gavage) during 8 weeks, and Cd + LOS group, rats treated with Cd for 8 weeks and LOS from weeks 5-8. Kidney Cd content, glomerular function (evaluated by creatinine clearance and plasma creatinine), kidney injury and tubular function (evaluated by Kim-1 expression, urinary excretion of N-acetyl-β-D-glucosaminidase (NAG) and glucose, and microalbuminuria), oxidative stress (measured by lipid peroxidation and NAD(P)H oxidase activity), mRNA levels of megalin, expressions of megalin and cubilin (by confocal microscopy) and AT1 receptor (by Western blot), were measured in the different experimental groups. Data were analyzed by one-way ANOVA or Kruskal-Wallis test using GraphPad Prism 5 software (Version 5.00). P < 0.05 was considered statistically significant. RESULTS Administration of Cd (Cd and Cd + LOS groups) increased renal Cd content. LOS-treatment decreased Cd-induced microalbuminuria without changes in: plasma creatinine, creatinine clearance, urinary NAG and glucose, oxidative stress, mRNA levels of megalin and cubilin, neither protein expression of megalin nor AT1 receptor, in the different experimental groups studied. However, Cd exposure did induce the expression of the tubular injury marker Kim-1 and decreased cubilin protein levels in proximal tubule cells whereas LOS-treatment restored cubilin levels and suppressed Kim-1 expression. CONCLUSION LOS treatment decreased microalbuminuria induced by Cd apparently through a cubilin receptor-dependent mechanism but independent of megalin.
Collapse
Affiliation(s)
- Mitzi Paola Santoyo-Sánchez
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, México.
| | | | | | | | | | | |
Collapse
|
28
|
Carrillo-Sepúlveda MA, Ceravolo GS, Furstenau CR, Monteiro PDS, Bruno-Fortes Z, Carvalho MH, Laurindo FR, Tostes RC, Webb RC, Barreto-Chaves MLM. Emerging role of angiotensin type 2 receptor (AT2R)/Akt/NO pathway in vascular smooth muscle cell in the hyperthyroidism. PLoS One 2013; 8:e61982. [PMID: 23637941 PMCID: PMC3634851 DOI: 10.1371/journal.pone.0061982] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 03/15/2013] [Indexed: 12/14/2022] Open
Abstract
Hyperthyroidism is characterized by increased vascular relaxation and decreased vascular contraction and is associated with augmented levels of triiodothyronine (T3) that contribute to the diminished systemic vascular resistance found in this condition. T3 leads to augmented NO production via PI3K/Akt signaling pathway, which in turn causes vascular smooth muscle cell (VSMC) relaxation; however, the underlying mechanisms involved remain largely unknown. Evidence from human and animal studies demonstrates that the renin-angiotensin system (RAS) plays a crucial role in vascular function and also mediates some of cardiovascular effects found during hyperthyroidism. Thus, in this study, we hypothesized that type 2 angiotensin II receptor (AT2R), a key component of RAS vasodilatory actions, mediates T3 induced-decreased vascular contraction. Marked induction of AT2R expression was observed in aortas from T3-induced hyperthyroid rats (Hyper). These vessels showed decreased protein levels of the contractile apparatus: α-actin, calponin and phosphorylated myosin light chain (p-MLC). Vascular reactivity studies showed that denuded aortic rings from Hyper rats exhibited decreased maximal contractile response to angiotensin II (AngII), which was attenuated in aortic rings pre-incubated with an AT2R blocker. Further study showed that cultured VSMC stimulated with T3 (0.1 µmol/L) for 24 hours had increased AT2R gene and protein expression. Augmented NO levels and decreased p-MLC levels were found in VSMC stimulated with T3, both of which were reversed by a PI3K/Akt inhibitor and AT2R blocker. These findings indicate for the first time that the AT2R/Akt/NO pathway contributes to decreased contractile responses in rat aorta, promoted by T3, and this mechanism is independent from the endothelium.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Aorta/drug effects
- Aorta/metabolism
- Disease Models, Animal
- Gene Expression Regulation/drug effects
- Hyperthyroidism/genetics
- Hyperthyroidism/metabolism
- Male
- Models, Biological
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Nitric Oxide/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Rats
- Receptor, Angiotensin, Type 2/genetics
- Receptor, Angiotensin, Type 2/metabolism
- Signal Transduction/drug effects
- Triiodothyronine/pharmacology
- Vasoconstriction/drug effects
Collapse
Affiliation(s)
- Maria Alícia Carrillo-Sepúlveda
- Laboratory of Cell Biology and Functional Anatomy, Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Graziela S. Ceravolo
- Laboratory of Hypertension, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Cristina R. Furstenau
- Laboratory of Cell Biology and Functional Anatomy, Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Priscilla de Souza Monteiro
- Laboratory of Cell Biology and Functional Anatomy, Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Zuleica Bruno-Fortes
- Laboratory of Hypertension, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Maria Helena Carvalho
- Laboratory of Hypertension, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Francisco R. Laurindo
- Vascular Biology Laboratory of Heart Institute, University of Sao Paulo, Sao Paulo, Brazil
| | - Rita C. Tostes
- Laboratory of Hypertension, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
- Department of Physiology, Georgia Health Science University, Augusta, Georgia, United States of America
| | - R. Clinton Webb
- Department of Physiology, Georgia Health Science University, Augusta, Georgia, United States of America
| | - Maria Luiza M. Barreto-Chaves
- Laboratory of Cell Biology and Functional Anatomy, Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
29
|
Rangel-Filho A, Lazar J, Moreno C, Geurts A, Jacob HJ. Rab38 modulates proteinuria in model of hypertension-associated renal disease. J Am Soc Nephrol 2013; 24:283-92. [PMID: 23291471 DOI: 10.1681/asn.2012090927] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We previously reported that the fawn-hooded hypertensive (FHH) rat is a natural Rab38 knockout, supported by a congenic animal (FHH.BN-Rab38) having less proteinuria than FHH animals. Because these congenic animals contain Brown Norway (BN) alleles for five other named genes; however, a causal role for Rab38 in the FHH phenotype remains uncertain. Here, we used transgenic and knockout models to validate Rab38 and to exclude other genes within the 1.5 Mb congenic region from involvement in causing the FHH phenotype. Transgenic rats homozygous for the wild-type Rab38 BN allele on the FHH background exhibited phenotypic rescue, having 43% lower proteinuria and 75% lower albuminuria than nontransgenic FHH littermates. Conversely, knockout of the Rab38 gene on the FHH.BN-Rab38 congenic line recapitulated a proteinuric phenotype indistinguishable from the FHH strain. In addition, in cultured proximal tubule LLC-PK1 cells, knockdown of Rab38 mRNA significantly decreased endocytosis of colloidal gold-coupled albumin, supporting the hypothesis that Rab38 modulates proteinuria through effects on tubular re-uptake and not by altering glomerular permeability. Taken together, these findings validate Rab38 as a gene having a causal role in determining the phenotype of the FHH rat, which models hypertension-associated renal disease. Furthermore, our data suggest that Rab38 affects urinary protein excretion via effects in the proximal tubule.
Collapse
Affiliation(s)
- Artur Rangel-Filho
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | |
Collapse
|
30
|
Jiang L, Teng GMK, Chan EYM, Au SWN, Wise H, Lee SST, Cheung WT. Impact of cell type and epitope tagging on heterologous expression of G protein-coupled receptor: a systematic study on angiotensin type II receptor. PLoS One 2012; 7:e47016. [PMID: 23056563 PMCID: PMC3466278 DOI: 10.1371/journal.pone.0047016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 09/11/2012] [Indexed: 12/19/2022] Open
Abstract
Despite heterologous expression of epitope-tagged GPCR is widely adopted for functional characterization, there is lacking of systematic analysis of the impact of expression host and epitope tag on GPCR expression. Angiotensin type II (AT2) receptor displays agonist-dependent and -independent activities, coupling to a spectrum of signaling molecules. However, consensus has not been reached on the subcellular distributions, signaling cascades and receptor-mediated actions. To examine the contributions of host cell and epitope tag on receptor expression and activity, epitope-tagged AT2 receptor variants were transiently or stably expressed in HEK293, CHO-K1 and PC12 cells. The epitope-tagged AT2 receptor variants were detected both on the cell membrane and in the perinuclear region. In transiently transfected HEK293 cells, Myc-AT2 existed predominantly as monomer. Additionally, a ladder of ubiquitinated AT2 receptor proteins was detected. By contrast, stably expressed epitope-tagged AT2 receptor variants existed as both monomer and high molecular weight complexes, and the latter was enriched in cell surface. Glycosylation promoted cell surface expression of Myc-AT2 but had no effect on AT2-GFP in HEK293 cells. In cells that stably expressed Myc-AT2, serum starvation induced apoptosis in CHO-K1 cells but not in HEK293 or PC12 cells. Instead, HEK293 and PC12 cells stably expressing Myc-AT2 exhibited partial cell cycle arrest with cells accumulating at G1 and S phases, respectively. Taken together, these results suggest that expression levels, subcellular distributions and ligand-independent constitutive activities of AT2 receptor were cell type-dependent while posttranslational processing of nascent AT2 receptor protein was modulated by epitope tag and mode of expression.
Collapse
Affiliation(s)
- Lili Jiang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Gladys M. K. Teng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Elaine Y. M. Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Shannon W. N. Au
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Helen Wise
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Susanna S. T. Lee
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- * E-mail: (WTC); (SL)
| | - Wing-Tai Cheung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- * E-mail: (WTC); (SL)
| |
Collapse
|
31
|
Buchäckert Y, Rummel S, Vohwinkel CU, Gabrielli NM, Grzesik BA, Mayer K, Herold S, Morty RE, Seeger W, Vadász I. Megalin mediates transepithelial albumin clearance from the alveolar space of intact rabbit lungs. J Physiol 2012; 590:5167-81. [PMID: 22826129 DOI: 10.1113/jphysiol.2012.233403] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The alveolo-capillary barrier is effectively impermeable to large solutes such as proteins. A hallmark of acute lung injury/acute respiratory distress syndrome is the accumulation of protein-rich oedema fluid in the distal airspaces. Excess protein must be cleared from the alveolar space for recovery; however, the mechanisms of protein clearance remain incompletely understood. In intact rabbit lungs 29.8 ± 2.2% of the radio-labelled alveolar albumin was transported to the vascular compartment at 37°C within 120 min, as assessed by real-time measurement of 125I-albumin clearance from the alveolar space. At 4°C or 22°C significantly lower albumin clearance (3.7 ± 0.4 or 16.2 ± 1.1%, respectively) was observed. Deposition of a 1000-fold molar excess of unlabelled albumin into the alveolar space or inhibition of cytoskeletal rearrangement or clathrin-dependent endocytosis largely inhibited the transport of 125I-albumin to the vasculature, while administration of unlabelled albumin to the vascular space had no effect on albumin clearance. Furthermore, albumin uptake capacity was measured as about 0.37 mg ml−1 in cultured rat lung epithelial monolayers, further highlighting the (patho)physiological relevance of active alveolar epithelial protein transport. Moreover, gene silencing and pharmacological inhibition of the multi-ligand receptor megalin resulted in significantly decreased albumin binding and uptake in monolayers of primary alveolar type II and type I-like and cultured lung epithelial cells. Our data indicate that clearance of albumin from the distal air spaces is facilitated by an active, high-capacity, megalin-mediated transport process across the alveolar epithelium. Further understanding of this mechanism is of clinical importance, since an inability to clear excess protein from the alveolar space is associated with poor outcome in patients with acute lung injury/acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Yasmin Buchäckert
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, Klinikstrasse 33, 35392 Giessen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Quesada A, Vargas F, Montoro-Molina S, O'Valle F, Rodríguez-Martínez MD, Osuna A, Prieto I, Ramírez M, Wangensteen R. Urinary aminopeptidase activities as early and predictive biomarkers of renal dysfunction in cisplatin-treated rats. PLoS One 2012; 7:e40402. [PMID: 22792302 PMCID: PMC3390365 DOI: 10.1371/journal.pone.0040402] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 06/09/2012] [Indexed: 11/22/2022] Open
Abstract
This study analyzes the fluorimetric determination of alanyl- (Ala), glutamyl- (Glu), leucyl-cystinyl- (Cys) and aspartyl-aminopeptidase (AspAp) urinary enzymatic activities as early and predictive biomarkers of renal dysfunction in cisplatin-treated rats. Male Wistar rats (n = 8 each group) received a single subcutaneous injection of either saline or cisplatin 3.5 or 7 mg/kg, and urine samples were taken at 0, 1, 2, 3 and 14 days after treatment. In urine samples we determined Ala, Glu, Cys and AspAp activities, proteinuria, N-acetyl-β-D-glucosaminidase (NAG), albumin, and neutrophil gelatinase-associated lipocalin (NGAL). Plasma creatinine, creatinine clearance and renal morphological variables were measured at the end of the experiment. CysAp, NAG and albumin were increased 48 hours after treatment in the cisplatin 3.5 mg/kg treated group. At 24 hours, all urinary aminopeptidase activities and albuminuria were significantly increased in the cisplatin 7 mg/kg treated group. Aminopeptidase urinary activities correlated (p<0.011; r2>0.259) with plasma creatinine, creatinine clearance and/or kidney weight/body weight ratio at the end of the experiment and they could be considered as predictive biomarkers of renal injury severity. ROC-AUC analysis was made to study their sensitivity and specificity to distinguish between treated and untreated rats at day 1. All aminopeptidase activities showed an AUC>0.633. We conclude that Ala, Cys, Glu and AspAp enzymatic activities are early and predictive urinary biomarkers of the renal dysfunction induced by cisplatin. These determinations can be very useful in the prognostic and diagnostic of renal dysfunction in preclinical research and clinical practice.
Collapse
Affiliation(s)
- Andrés Quesada
- Área de Fisiología, Departamento de Ciencias de la Salud, Universidad de Jaén, Jaén, Spain
| | - Félix Vargas
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | | | - Francisco O'Valle
- Departamento de Anatomía Patológica, Facultad de Medicina, Universidad de Granada, IBIMER Granada, Spain
| | | | - Antonio Osuna
- Servicio de Nefrología, Hospital Virgen de las Nieves, Granada, Spain
| | - Isabel Prieto
- Área de Fisiología, Departamento de Ciencias de la Salud, Universidad de Jaén, Jaén, Spain
| | - Manuel Ramírez
- Área de Fisiología, Departamento de Ciencias de la Salud, Universidad de Jaén, Jaén, Spain
| | - Rosemary Wangensteen
- Área de Fisiología, Departamento de Ciencias de la Salud, Universidad de Jaén, Jaén, Spain
- * E-mail:
| |
Collapse
|
33
|
Hryciw DH, Kruger WA, Briffa JF, Slattery C, Bolithon A, Lee A, Poronnik P. Sgk-1 is a Positive Regulator of Constitutive Albumin Uptake in Renal Proximal Tubule Cells. Cell Physiol Biochem 2012; 30:1215-26. [DOI: 10.1159/000343313] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2012] [Indexed: 12/12/2022] Open
|
34
|
Peruchetti DB, Pinheiro AAS, Landgraf SS, Wengert M, Takiya CM, Guggino WB, Caruso-Neves C. (Na+ + K+)-ATPase is a target for phosphoinositide 3-kinase/protein kinase B and protein kinase C pathways triggered by albumin. J Biol Chem 2011; 286:45041-7. [PMID: 22057272 PMCID: PMC3247955 DOI: 10.1074/jbc.m111.260737] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 10/25/2011] [Indexed: 12/14/2022] Open
Abstract
In recent decades, evidence has confirmed the crucial role of albumin in the progression of renal disease. However, the possible role of signaling pathways triggered by physiologic concentrations of albumin in the modulation of proximal tubule (PT) sodium reabsorption has not been considered. In the present work, we have shown that a physiologic concentration of albumin increases the expression of the α1 subunit of (Na(+) + K(+))-ATPase in LLC-PK1 cells leading to an increase in enzyme activity. This process involves the sequential activation of PI3K/protein kinase B and protein kinase C pathways promoting inhibition of protein kinase A. This integrative network is inhibited when albumin concentration is increased, similar to renal disease, leading to a decrease in the α1 subunit of (Na(+) + K(+))-ATPase expression. Together, the results indicate that variation in albumin concentration in PT cells has an important effect on PT sodium reabsorption and, consequently, on renal sodium excretion.
Collapse
Affiliation(s)
- Diogo B. Peruchetti
- From the Instituto de Biofísica Carlos Chagas Filho/Universidade Federal Rio de Janeiro, Centro de Ciências da Saúde, Bloco G, 21949-900 Rio de Janeiro, Brazil and
| | - Ana Acacia S. Pinheiro
- From the Instituto de Biofísica Carlos Chagas Filho/Universidade Federal Rio de Janeiro, Centro de Ciências da Saúde, Bloco G, 21949-900 Rio de Janeiro, Brazil and
| | - Sharon S. Landgraf
- From the Instituto de Biofísica Carlos Chagas Filho/Universidade Federal Rio de Janeiro, Centro de Ciências da Saúde, Bloco G, 21949-900 Rio de Janeiro, Brazil and
| | - Mira Wengert
- From the Instituto de Biofísica Carlos Chagas Filho/Universidade Federal Rio de Janeiro, Centro de Ciências da Saúde, Bloco G, 21949-900 Rio de Janeiro, Brazil and
| | - Christina M. Takiya
- From the Instituto de Biofísica Carlos Chagas Filho/Universidade Federal Rio de Janeiro, Centro de Ciências da Saúde, Bloco G, 21949-900 Rio de Janeiro, Brazil and
| | - William B. Guggino
- the Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Celso Caruso-Neves
- From the Instituto de Biofísica Carlos Chagas Filho/Universidade Federal Rio de Janeiro, Centro de Ciências da Saúde, Bloco G, 21949-900 Rio de Janeiro, Brazil and
| |
Collapse
|
35
|
Presnell SC, Bruce AT, Wallace SM, Choudhury S, Genheimer CW, Cox B, Guthrie K, Werdin ES, Tatsumi-Ficht P, Ilagan RM, Kelley RW, Rivera EA, Ludlow JW, Wagner BJ, Jayo MJ, Bertram TA. Isolation, Characterization, and Expansion Methods for Defined Primary Renal Cell Populations from Rodent, Canine, and Human Normal and Diseased Kidneys. Tissue Eng Part C Methods 2011; 17:261-73. [DOI: 10.1089/ten.tec.2010.0399] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Sharon C. Presnell
- Tengion Laboratories, Department of Science and Technology, Winston-Salem, North Carolina
| | - Andrew T. Bruce
- Tengion Laboratories, Department of Science and Technology, Winston-Salem, North Carolina
| | - Shay M. Wallace
- Tengion Laboratories, Department of Science and Technology, Winston-Salem, North Carolina
| | - Sumana Choudhury
- Tengion Laboratories, Department of Science and Technology, Winston-Salem, North Carolina
| | | | - Bryan Cox
- Tengion Laboratories, Department of Science and Technology, Winston-Salem, North Carolina
| | - Kelly Guthrie
- Tengion Laboratories, Department of Science and Technology, Winston-Salem, North Carolina
| | - Eric S. Werdin
- Tengion Laboratories, Department of Science and Technology, Winston-Salem, North Carolina
| | - Patricia Tatsumi-Ficht
- Tengion Laboratories, Department of Science and Technology, Winston-Salem, North Carolina
| | - Roger M. Ilagan
- Tengion Laboratories, Department of Science and Technology, Winston-Salem, North Carolina
| | - Russell W. Kelley
- Tengion Laboratories, Department of Science and Technology, Winston-Salem, North Carolina
| | - Elias A. Rivera
- Tengion Laboratories, Department of Science and Technology, Winston-Salem, North Carolina
| | - John W. Ludlow
- Tengion Laboratories, Department of Science and Technology, Winston-Salem, North Carolina
| | - Belinda J. Wagner
- Tengion Laboratories, Department of Science and Technology, Winston-Salem, North Carolina
| | - Manuel J. Jayo
- Tengion Laboratories, Department of Science and Technology, Winston-Salem, North Carolina
| | - Timothy A. Bertram
- Tengion Laboratories, Department of Science and Technology, Winston-Salem, North Carolina
| |
Collapse
|
36
|
Kelley R, Werdin ES, Bruce AT, Choudhury S, Wallace SM, Ilagan RM, Cox BR, Tatsumi-Ficht P, Rivera EA, Spencer T, Rapoport HS, Wagner BJ, Guthrie K, Jayo MJ, Bertram TA, Presnell SC. Tubular cell-enriched subpopulation of primary renal cells improves survival and augments kidney function in rodent model of chronic kidney disease. Am J Physiol Renal Physiol 2010; 299:F1026-39. [PMID: 20826573 DOI: 10.1152/ajprenal.00221.2010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Established chronic kidney disease (CKD) may be identified by severely impaired renal filtration that ultimately leads to the need for dialysis or kidney transplant. Dialysis addresses only some of the sequelae of CKD, and a significant gap persists between patients needing transplant and available organs, providing impetus for development of new CKD treatment modalities. Some postulate that CKD develops from a progressive imbalance between tissue damage and the kidney's intrinsic repair and regeneration processes. In this study we evaluated the effect of kidney cells, delivered orthotopically by intraparenchymal injection to rodents 4-7 wk after CKD was established by two-step 5/6 renal mass reduction (NX), on the regeneration of kidney function and architecture as assessed by physiological, tissue, and molecular markers. A proof of concept for the model, cell delivery, and systemic effect was demonstrated with a heterogeneous population of renal cells (UNFX) that contained cells from all major compartments of the kidney. Tubular cells are known contributors to kidney regeneration in situ following acute injury. Initially tested as a control, a tubular cell-enriched subpopulation of UNFX (B2) surprisingly outperformed UNFX. Two independent studies (3 and 6 mo in duration) with B2 confirmed that B2 significantly extended survival and improved renal filtration (serum creatinine and blood urea nitrogen). The specificity of B2 effects was verified by direct comparison to cell-free vehicle controls and an equivalent dose of non-B2 cells. Quantitative histological evaluation of kidneys at 6 mo after treatment confirmed that B2 treatment reduced severity of kidney tissue pathology. Treatment-associated reduction of transforming growth factor (TGF)-β1, plasminogen activator inhibitor (PAI)-1, and fibronectin (FN) provided evidence that B2 cells attenuated canonical pathways of profibrotic extracellular matrix production.
Collapse
Affiliation(s)
- Rusty Kelley
- Tengion, Inc., 3929 Westpoint Blvd., Suite G, Winston-Salem, NC 27103, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Sirolimus and everolimus reduce albumin endocytosis in proximal tubule cells via an angiotensin II-dependent pathway. Transpl Immunol 2010; 23:125-32. [DOI: 10.1016/j.trim.2010.05.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Revised: 02/19/2010] [Accepted: 05/04/2010] [Indexed: 11/23/2022]
|
38
|
Blockage of Angiotensin II type 2 receptor prevents thyroxine-mediated cardiac hypertrophy by blocking Akt activation. Basic Res Cardiol 2010; 105:325-35. [DOI: 10.1007/s00395-010-0089-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 01/19/2010] [Accepted: 01/26/2010] [Indexed: 10/19/2022]
|
39
|
Hayden MR, Habibi J, Whaley-Connell A, Sowers D, Johnson M, Tilmon R, Jain D, Ferrario C, Sowers JR. Nebivolol attenuates maladaptive proximal tubule remodeling in transgenic rats. Am J Nephrol 2010; 31:262-72. [PMID: 20110666 DOI: 10.1159/000278757] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 12/14/2009] [Indexed: 12/20/2022]
Abstract
BACKGROUND/AIMS The impact of nebivolol therapy on the renal proximal tubular cell (PTC) structure and function was investigated in a transgenic (TG) rodent model of hypertension and the cardiometabolic syndrome. The TG Ren2 rat develops nephropathy with proteinuria, increased renal angiotensin II levels and oxidative stress, and PTC remodeling. Nebivolol, a beta(1)-antagonist, has recently been shown to reduce albuminuria, in part, through reductions in renal oxidative stress. Accordingly, we hypothesized that nebivolol therapy would attenuate PTC damage and tubulointerstitial fibrosis. METHODS Young Ren2 (R2-N) and SD (SD-N) rats were treated with nebivolol (10 mg/kg/day) or vehicle (R2-C; SD-C) for 3 weeks. PTC structure and function were tested using transmission electron microscopy and functional measurements. RESULTS Nebivolol treatment decreased urinary N-acetyl-beta-D-glucosaminidase, tubulointerstitial ultrastructural remodeling and fibrosis, NADPH oxidase activity, 3-nitrotyrosine levels, and increased megalin and lysosomal-associated membrane protein-2 immunostaining in PTCs. Ultrastructural abnormalities that were improved with therapy included altered canalicular structure, reduced endosomes/lysosomes and PTC vacuoles, basement membrane thickening, and mitochondrial remodeling/fragmentation. CONCLUSION These observations support the notion that nebivolol may improve PTC reabsorption of albumin and other glomerular filtered small molecular weight proteins in association with the attenuation of oxidative stress, tubulointerstitial injury and fibrosis in this rat model of metabolic kidney disease.
Collapse
MESH Headings
- Adrenergic beta-Antagonists/pharmacology
- Animals
- Benzopyrans/pharmacology
- Blood Pressure/drug effects
- Disease Models, Animal
- Ethanolamines/pharmacology
- Fibrosis
- Hypertension, Renal/drug therapy
- Hypertension, Renal/metabolism
- Hypertension, Renal/pathology
- Kidney Tubules, Proximal/drug effects
- Kidney Tubules, Proximal/metabolism
- Kidney Tubules, Proximal/pathology
- Low Density Lipoprotein Receptor-Related Protein-2/metabolism
- Lysosomes/metabolism
- Lysosomes/ultrastructure
- Male
- Microscopy, Electron
- Nebivolol
- Oxidative Stress/drug effects
- Proteinuria/drug therapy
- Proteinuria/pathology
- Rats
- Rats, Sprague-Dawley
- Rats, Transgenic
- Renin/genetics
- Vacuoles/metabolism
- Vacuoles/ultrastructure
Collapse
Affiliation(s)
- Melvin R Hayden
- Department of Internal Medicine, University of Missouri-Columbia School of Medicine, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Carrillo-Sepúlveda MA, Ceravolo GS, Fortes ZB, Carvalho MH, Tostes RC, Laurindo FR, Webb RC, Barreto-Chaves MLM. Thyroid hormone stimulates NO production via activation of the PI3K/Akt pathway in vascular myocytes. Cardiovasc Res 2009; 85:560-70. [PMID: 19734167 DOI: 10.1093/cvr/cvp304] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
AIMS Thyroid hormone (TH) rapidly relaxes vascular smooth muscle cells (VSMCs). However, the mechanisms involved in this effect remain unclear. We hypothesize that TH-induced rapid vascular relaxation is mediated by VSMC-derived nitric oxide (NO) production and is associated with the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signalling pathway. METHODS AND RESULTS NO levels were determined using a NO-specific fluorescent dye (DAF-2) and nitrite (NO2-) levels. Expression of NO synthase (NOS) isoforms and proteins of the PI3K/Akt pathway was determined by both western blotting and immunocytochemistry. Myosin light chain (MLC) phosphorylation levels were also investigated by western blotting. Exposure of cultured VSMCs from rat thoracic aortas to triiodothyronine (T3) resulted in a significant decrease of MLC phosphorylation levels. T3 also induced a rapid increase in Akt phosphorylation and increased NO production in a dose-dependent manner (0.001-1 microM). VSMCs stimulated with T3 for 30 min showed an increase in the expression of all three NOS isoforms and augmented NO production, effects that were prevented by inhibitors of PI3K. Vascular reactivity studies showed that vessels treated with T3 displayed a decreased response to phenylephrine, which was reversed by NOS inhibition. These data suggest that T3 treatment induces greater generation of NO both in aorta and VSMCs and that this phenomenon is endothelium independent. In addition, these findings show for the first time that the PI3K/Akt signalling pathway is involved in T3-induced NO production by VSMCs, which occurs with expressive participation of inducible and neuronal NOS. CONCLUSION Our data strongly indicate that T3 causes NO-dependent rapid relaxation of VSMC and that this effect is mediated by the PI3K/Akt signalling pathway.
Collapse
Affiliation(s)
- Maria Alícia Carrillo-Sepúlveda
- Laboratory of Cell Biology and Functional Anatomy, Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Avenida Professor Lineu Prestes 2415, Sao Paulo 05508-900, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Affiliation(s)
- Stefan Balaz
- Department of Pharmaceutical Sciences, College of Pharmacy, North Dakota State University, Fargo, North Dakota 58105, USA.
| |
Collapse
|
42
|
Hosojima M, Sato H, Yamamoto K, Kaseda R, Soma T, Kobayashi A, Suzuki A, Kabasawa H, Takeyama A, Ikuyama K, Iino N, Nishiyama A, Thekkumkara TJ, Takeda T, Suzuki Y, Gejyo F, Saito A. Regulation of megalin expression in cultured proximal tubule cells by angiotensin II type 1A receptor- and insulin-mediated signaling cross talk. Endocrinology 2009; 150:871-8. [PMID: 18927221 DOI: 10.1210/en.2008-0886] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Impairment of proximal tubular endocytosis of glomerular-filtered proteins including albumin results in the development of proteinuria/albuminuria in patients with chronic kidney disease. However, the mechanisms regulating the proximal tubular function are largely unknown. This study aimed to investigate the role of angiotensin II type 1A receptor (AT(1A)R)- and insulin-mediated signaling pathways in regulating the expression of megalin, a multiligand endocytic receptor in proximal tubule cells (PTCs). Opossum kidney PTC-derived OK cells that stably express rat AT(1A)R but are deficient in endogenous angiotensin II receptors (AT(1A)R-OK cells) were used for this study. Treatment of the cells with angiotensin II suppressed mRNA and protein expression of megalin at 3- and 24-h incubation time points, respectively. Cellular uptake and degradation of albumin and receptor-associated protein, megalin's endocytic ligands were suppressed 24 h after angiotensin II treatment. The AT(1A)R-mediated decrease in megalin expression was partially prevented by ERK inhibitors. Insulin competed with the AT(1A)R-mediated ERK activation and decrease in megalin expression. Inhibitors of phosphatidylinositol 3-kinase (PI3K), a major component of insulin signaling, also suppressed megalin expression, and activation of the insulin receptor substrate (IRS)/PI3K system was prevented by angiotensin II. Collectively the AT(1A)R-mediated ERK signaling is involved in suppressing megalin expression in the OK cell line, and insulin competes with this pathway. Conversely, the insulin-IRS/PI3K signaling, with which angiotensin II competes, tends to stimulate megalin expression. In conclusion, there is AT(1A)R- and insulin-mediated competitive signaling cross talk to regulate megalin expression in cultured PTCs.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Cells, Cultured
- Endocytosis/drug effects
- Endocytosis/genetics
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Extracellular Signal-Regulated MAP Kinases/physiology
- Gene Expression Regulation/drug effects
- Insulin/pharmacology
- Insulin Receptor Substrate Proteins/metabolism
- Insulin Receptor Substrate Proteins/physiology
- Kidney Tubules, Proximal/drug effects
- Kidney Tubules, Proximal/metabolism
- Low Density Lipoprotein Receptor-Related Protein-2/genetics
- Low Density Lipoprotein Receptor-Related Protein-2/metabolism
- Models, Biological
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphatidylinositol 3-Kinases/physiology
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Rats
- Receptor Cross-Talk/drug effects
- Receptor Cross-Talk/physiology
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/physiology
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Michihiro Hosojima
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Thelen K, Georg T, Bertuch S, Zelina P, Pollerberg GE. Ubiquitination and endocytosis of cell adhesion molecule DM-GRASP regulate its cell surface presence and affect its role for axon navigation. J Biol Chem 2008; 283:32792-801. [PMID: 18790729 DOI: 10.1074/jbc.m805896200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
DM-GRASP, cell adhesion molecule of the immunoglobulin superfamily, has been shown to promote growth and navigation of axons. We here demonstrate that clustering of DM-GRASP in the plasma membrane induces its rapid internalization via dynamin- and clathrin-dependent endocytosis, which is controlled by phosphatidylinositol 3-kinase and mitogen-activated protein kinase ERK. The clustering of DM-GRASP activates ERK; the intensity and duration of ERK activation by DM-GRASP do not depend on rapid clathrin-mediated internalization of DM-GRASP. Moreover, the preference of retinal ganglion cell axons for DM-GRASP-coated micro-lanes requires clathrin-mediated endocytosis for the appropriate axonal turning reactions at substrate borders. Because the intracellular domain of DM-GRASP does not contain motifs for direct interactions with the endocytosis machinery, we performed a yeast two-hybrid screen to identify intracellular proteins mediating the uptake of DM-GRASP and isolated ubiquitin. Immunoprecipitation of DM-GRASP coexpressed with ubiquitin revealed that one or two ubiquitin(s) are attached to the intracellular domain of cell surface-resident DM-GRASP. Furthermore, elevated ubiquitination levels result in a decrease of cell surface-resident DM-GRASP as well as in the amount of total DM-GRASP. The endocytosis rate is not affected, but the delivery to multivesicular bodies is increased, indicating that DM-GRASP ubiquitination enhances its sorting into the degradation pathway. Together, our data show that ubiquitination and endocytosis of DM-GRASP in concert regulate its cell surface concentration, which is crucial for its function in axon navigation.
Collapse
Affiliation(s)
- Karsten Thelen
- Department of Developmental Neurobiology, University of Heidelberg, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
44
|
Kobori H, Nangaku M, Navar LG, Nishiyama A. The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev 2007; 59:251-87. [PMID: 17878513 DOI: 10.1124/pr.59.3.3] [Citation(s) in RCA: 885] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In recent years, the focus of interest on the role of the renin-angiotensin system (RAS) in the pathophysiology of hypertension and organ injury has changed to a major emphasis on the role of the local RAS in specific tissues. In the kidney, all of the RAS components are present and intrarenal angiotensin II (Ang II) is formed by independent multiple mechanisms. Proximal tubular angiotensinogen, collecting duct renin, and tubular angiotensin II type 1 (AT1) receptors are positively augmented by intrarenal Ang II. In addition to the classic RAS pathways, prorenin receptors and chymase are also involved in local Ang II formation in the kidney. Moreover, circulating Ang II is actively internalized into proximal tubular cells by AT1 receptor-dependent mechanisms. Consequently, Ang II is compartmentalized in the renal interstitial fluid and the proximal tubular compartments with much higher concentrations than those existing in the circulation. Recent evidence has also revealed that inappropriate activation of the intrarenal RAS is an important contributor to the pathogenesis of hypertension and renal injury. Thus, it is necessary to understand the mechanisms responsible for independent regulation of the intrarenal RAS. In this review, we will briefly summarize our current understanding of independent regulation of the intrarenal RAS and discuss how inappropriate activation of this system contributes to the development and maintenance of hypertension and renal injury. We will also discuss the impact of antihypertensive agents in preventing the progressive increases in the intrarenal RAS during the development of hypertension and renal injury.
Collapse
Affiliation(s)
- Hiroyuki Kobori
- Department of Medicine, Director of the Molecular Core in Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center, New Orleans, LA 70112-2699, USA.
| | | | | | | |
Collapse
|
45
|
Shalamanova L, McArdle F, Amara AB, Jackson MJ, Rustom R. Albumin overload induces adaptive responses in human proximal tubular cells through oxidative stress but not via angiotensin II type 1 receptor. Am J Physiol Renal Physiol 2007; 292:F1846-57. [PMID: 17327499 DOI: 10.1152/ajprenal.00265.2006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Proteinuria is pathogenic to proximal tubular cells (PTC) and linked with progression to renal failure. The aim of this study was to determine the effects of human serum albumin (HSA) overload on the changes in gene and protein expression stimulated by oxidative stress in PTC and any interaction with ANG II that is pivotal in disease pathogenesis. Markers of oxidative stress, antioxidant defences, transcription factor activation, and the expression of stress-related genes were measured in human PTC (HK-2 cells) overloaded with either globulin-free fatty acid free (GF/FAF) HSA or globulin-free (GF) HSA. The effects of ANG II were also determined. HSA overload in HK-2 cells caused PTC hyperfunction, increased oxidative stress, and an upregulation of adaptive responses and stress-related genes. Some responses were common to both HSAs but others were unique to either HSA and unaffected by addition of ANG II or candesartan (a specific ANG II type 1 receptor blocker). ANG II also independently induced oxidative stress and upregulated other stress-related genes. HSA overload in HK-2 cells stimulated increased oxidative stress and upregulated changes in stress-related gene expression indicating new pathways of PTC injury that are not mediated via ANG II type 1 receptors.
Collapse
MESH Headings
- Adaptation, Physiological/drug effects
- Angiotensin II/pharmacology
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Antioxidants/metabolism
- Benzimidazoles/pharmacology
- Biphenyl Compounds
- Blotting, Western
- Cell Line
- Cell Nucleus/drug effects
- Cell Nucleus/metabolism
- Cell Shape
- Cell Survival/drug effects
- DNA, Complementary/biosynthesis
- DNA, Complementary/genetics
- Endocytosis/drug effects
- Endocytosis/physiology
- Kidney Tubules, Proximal/cytology
- Kidney Tubules, Proximal/drug effects
- Lipid Metabolism/drug effects
- Lipid Peroxidation/drug effects
- Oxidative Stress/genetics
- Oxidative Stress/physiology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Receptor, Angiotensin, Type 1/drug effects
- Receptor, Angiotensin, Type 1/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Serum Albumin/pharmacology
- Sulfhydryl Compounds/metabolism
- Tetrazoles/pharmacology
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Liliana Shalamanova
- School of Clinical Sciences, Division of Metabolic and Cellular Medicine, University of Liverpool, Liverpool, UK
| | | | | | | | | |
Collapse
|
46
|
Acacia de Sa Pinheiro A, Morrot A, Chakravarty S, Overstreet M, Bream JH, Irusta PM, Zavala F. IL-4 induces a wide-spectrum intracellular signaling cascade in CD8+T cells. J Leukoc Biol 2007; 81:1102-10. [PMID: 17200144 DOI: 10.1189/jlb.0906583] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
IL-4 has distinct effects on the differentiation and functional properties of CD8+ T cells. In vivo studies have shown that it is critical for the development of protective memory responses against tumors and infections by Leishmania and Plasmodium parasites. The intracellular signaling events mediated by IL-4/IL-4 receptor (IL-4R) interactions on CD4+ T cells have been studied extensively; however, the nature of IL-4-induced signaling on CD8+ T cells has not been characterized. Using naïve, activated, as well as differentiated CD8+ T cells, we show that IL-4 has a strong in vivo and in vitro antiapoptotic effect on activated and resting CD8+ T cells. We demonstrate that IL-4 induces the phosphorylation of the IL-4R, which is followed by the activation of at least two distinct intracellular signaling cascades: the Jak1/STAT6 and the insulin receptor substrate/PI-3K/protein kinase B pathways. We also found that IL-4 induces the Jak3-mediated phosphorylation and nuclear migration of STAT1, STAT3, and STAT5 in naïve, activated, as well as differentiated, IFN-gamma-producing CD8+ T cells. The induction of this broad signaling activity in CD8+ T cells coincides with a transcriptional activity of suppressors of cytokine signaling genes, which are decreased significantly in comparison with CD4+ T cells. To our knowledge, this report constitutes the first comprehensive analysis of the signaling events that shape CD8+ T cell responses to IL-4.
Collapse
Affiliation(s)
- Ana Acacia de Sa Pinheiro
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St., Baltimore, MD 21205, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Caruso-Neves C, Pinheiro AAS, Cai H, Souza-Menezes J, Guggino WB. PKB and megalin determine the survival or death of renal proximal tubule cells. Proc Natl Acad Sci U S A 2006; 103:18810-5. [PMID: 17121993 PMCID: PMC1693744 DOI: 10.1073/pnas.0605029103] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Renal proximal tubule cells have a remarkable ability to reabsorb large quantities of albumin through megalin-mediated endocytosis. This is an essential process for overall body homeostasis. Overstressing this endocytic system with a prolonged excess of albumin is injurious to proximal tubule cells. How these cells function and protect themselves from injury is unknown. Here, we show that megalin is the sensor that determines whether cells will be protected or injured by albumin. Megalin, through a novel mechanism, binds PKB in a D-3-phosphorylated phospholipid-insensitive manner, anchoring PKB in the luminal plasma membrane. Whereas low doses of albumin are protective, an overload of albumin decreases megalin expression followed by a reduction of plasma membrane PKB, PKB activity, and Bad phosphorylation induced by PKB. The result is albumin-induced apoptosis. These results reveal a model for PKB distribution in the plasma membrane and elucidate mechanisms involved in both the protective and toxic effects of albumin on proximal tubule cells. In addition, our findings suggest a mechanism for the progression of chronic kidney disease to end-stage renal disease.
Collapse
Affiliation(s)
- Celso Caruso-Neves
- *Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil 21949-900
- Departments of Physiology and
| | - Ana Acacia S. Pinheiro
- Department of Molecular Microbiology and Immunology, Johns Hopkins University School of Public Health, Baltimore, MD 21205
| | - Hui Cai
- Departments of Physiology and
- Medicine, Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, MD 21205; and
| | - Jackson Souza-Menezes
- *Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil 21949-900
- Departments of Physiology and
| | - William B. Guggino
- Departments of Physiology and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
48
|
Rüster C, Wolf G. Renin-angiotensin-aldosterone system and progression of renal disease. J Am Soc Nephrol 2006; 17:2985-91. [PMID: 17035613 DOI: 10.1681/asn.2006040356] [Citation(s) in RCA: 310] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Inhibition of the renin-angiotensin-aldosterone system (RAAS) is one of the most powerful maneuvers to slow progression of renal disease. Angiotensin II (AngII) has emerged in the past decade as a multifunctional cytokine that exhibits many nonhemodynamic properties, such as acting as a growth factor and profibrogenic cytokine, and even having proinflammatory properties. Many of these deleterious functions are mediated by other factors, such as TGF-beta and chemoattractants that are induced in the kidney by AngII. Moreover, understanding of the RAAS has become much more complex in recent years with the identification of novel peptides (e.g., AngIV) that could bind to specific receptors, elucidating deleterious effects, and non-angiotensin-converting enzyme (ACE)-mediated generation of AngII. The ability of renal cells to produce AngII in a concentration that is much higher than what is found in the systemic circulation and the observation that aldosterone may be engaged directly in profibrogenic processes independent of hypertension have added to the complexity of the RAAS. Even renin has now been identified to have a "life on its own" and mediates profibrotic effects via binding to specific receptors. Finally, drugs that are used to block the RAAS, such as ACE inhibitors or certain AngII type 1 receptor antagonists, may have properties on cells independent of AngII (ACE inhibitor-mediated outside-inside signaling and peroxisome proliferator-activated receptor-gamma stimulatory effects of certain sartanes). Although blockade of the RAAS with ACE inhibitors, AngII type 1 receptor antagonists, or the combination of both should be part of every strategy to slow progression of renal disease, a better understanding of the novel aspects of the RAAS should contribute to the development of innovative strategies not only to completely halt progression but also to induce regression of human renal disease.
Collapse
Affiliation(s)
- Christiane Rüster
- Department of Internal Medicine III, Friedrich-Schiller-University, Jena, Germany
| | | |
Collapse
|
49
|
Hayden MR, Chowdhury NA, Cooper SA, Whaley-Connell A, Habibi J, Witte L, Wiedmeyer C, Manrique CM, Lastra G, Ferrario C, Stump C, Sowers JR. Proximal tubule microvilli remodeling and albuminuria in the Ren2 transgenic rat. Am J Physiol Renal Physiol 2006; 292:F861-7. [PMID: 17032939 DOI: 10.1152/ajprenal.00252.2006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
TG(mRen2)27 (Ren2) transgenic rats overexpress the mouse renin gene, with subsequent elevated tissue ANG II, hypertension, and nephropathy. The proximal tubule cell (PTC) is responsible for the reabsorption of 5-8 g of glomerular filtered albumin each day. Excess filtered albumin may contribute to PTC damage and tubulointerstitial disease. This investigation examined the role of ANG II-induced oxidative stress in PTC structural remodeling: whether such changes could be modified with in vivo treatment with ANG type 1 receptor (AT(1)R) blockade (valsartan) or SOD/catalase mimetic (tempol). Male Ren2 (6-7 wk old) and age-matched Sprague-Dawley rats were treated with valsartan (30 mg/kg), tempol (1 mmol/l), or placebo for 3 wk. Systolic blood pressure, albuminuria, N-acetyl-beta-D-glucosaminidase, and kidney tissue malondialdehyde (MDA) were measured, and x60,000 transmission electron microscopy images were used to assess PTC microvilli structure. There were significant differences in systolic blood pressure, albuminuria, lipid peroxidation (MDA and nitrotyrosine staining), and PTC structure in Ren2 vs. Sprague-Dawley rats (each P < 0.05). Increased mean diameter of PTC microvilli in the placebo-treated Ren2 rats (P < 0.05) correlated strongly with albuminuria (r(2) = 0.83) and moderately with MDA (r(2) = 0.49), and there was an increase in the ratio of abnormal forms of microvilli in placebo-treated Ren2 rats compared with Sprague-Dawley control rats (P < 0.05). AT(1)R blockade, but not tempol treatment, abrogated albuminuria and N-acetyl-beta-d-glucosaminidase; both therapies corrected abnormalities in oxidative stress and PTC microvilli remodeling. These data indicate that PTC structural damage in the Ren2 rat is related to the oxidative stress response to ANG II and/or albuminuria.
Collapse
Affiliation(s)
- Melvin R Hayden
- Department of Internal Medicine, University of Missouri, Columbia, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|