1
|
Miah SMS, Lelias S, Gutierrez AH, McAllister M, Boyle CM, Moise L, De Groot AS. A SARS-CoV-2 NSP7 homolog of a Treg epitope suppresses CD4+ and CD8+ T cell memory responses. Front Immunol 2023; 14:1290688. [PMID: 38124752 PMCID: PMC10731459 DOI: 10.3389/fimmu.2023.1290688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/03/2023] [Indexed: 12/23/2023] Open
Abstract
Pathogens escape host defenses by T-cell epitope mutation or deletion (immune escape) and by simulating the appearance of human T cell epitopes (immune camouflage). We identified a highly conserved, human-like T cell epitope in non-structural protein 7 (NSP7) of SARS-CoV-2, RNA-dependent RNA polymerase (RdRp) hetero-tetramer complex. Remarkably, this T cell epitope has significant homology to a T regulatory cell epitope (Tregitope) previously identified in the Fc region of human immunoglobulin G (IgG) (Tregitope 289). We hypothesized that the SARS-CoV-2 NSP7 epitope (NSP7-289) may induce suppressive responses by engaging and activating pre-existing regulatory T cells. We therefore compared NSP7-289 and IgG Tregitopes (289 and 289z, a shorter version of 289 that isolates the shared NSP7 epitope) in vitro. Tregitope peptides 289, 289z and NSP7-289 bound to multiple HLA-DRB1 alleles in vitro and suppressed CD4+ and CD8+ T cell memory responses. Identification and in vitro validation of SARS-CoV-2 NSP7-289 provides further evidence of immune camouflage and suggests that pathogens can use human-like epitopes to evade immune response and potentially enhance host tolerance. Further exploration of the role of cross-conserved Tregs in human immune responses to pathogens such as SARS-CoV-2 is warranted.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anne S. De Groot
- EpiVax, Inc., Providence, RI, United States
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
| |
Collapse
|
2
|
Sun H, Lee HS, Kim SHJ, Fernandes de Lima M, Gingras AR, Du Q, McLaughlin W, Ablack J, Lopez-Ramirez MA, Lagarrigue F, Fan Z, Chang JT, VanDyke D, Spangler JB, Ginsberg MH. IL-2 can signal via chemokine receptors to promote regulatory T cells' suppressive function. Cell Rep 2023; 42:112996. [PMID: 37598341 PMCID: PMC10564087 DOI: 10.1016/j.celrep.2023.112996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 04/18/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023] Open
Abstract
Canonical interleukin-2 (IL-2) signaling via the high-affinity CD25-containing IL-2 receptor-Janus kinase (JAK)1,3-signal transducer and activator of transcription 5 (STAT5) pathway is essential for development and maintenance of CD4+CD25HiFoxp3+ regulatory T cells (Tregs) that support immune homeostasis. Here, we report that IL-2 signaling via an alternative CD25-chemokine receptor pathway promotes the suppressive function of Tregs. Using an antibody against CD25 that biases IL-2 signaling toward this alternative pathway, we establish that this pathway increases the suppressive activity of Tregs and ameliorates murine experimental autoimmune encephalomyelitis (EAE). Furthermore, heparan sulfate, an IL-2-binding element of cell surfaces and extracellular matrix, or an engineered IL-2 immunocytokine can also direct IL-2 signaling toward this alternative pathway. Overall, these data reveal a non-canonical mechanism for IL-2 signaling that promotes suppressive functions of Tregs, further elucidates how IL-2 supports immune homeostasis, and suggests approaches to promote or suppress Treg functions.
Collapse
Affiliation(s)
- Hao Sun
- University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Ho-Sup Lee
- University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Sarah Hyun-Ji Kim
- University of California San Diego School of Medicine, La Jolla, CA, USA
| | | | | | - Qinyi Du
- University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Wilma McLaughlin
- University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Jailail Ablack
- University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Miguel A Lopez-Ramirez
- University of California San Diego School of Medicine, La Jolla, CA, USA; Department of Pharmacology, University of California, San Diego, La Jolla, La Jolla, CA, USA
| | | | - Zhichao Fan
- University of Connecticut School of Medicine, Farmington, CT, USA
| | - John T Chang
- University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Derek VanDyke
- Department of Chemical & Biomolecular Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jamie B Spangler
- Department of Chemical & Biomolecular Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Mark H Ginsberg
- University of California San Diego School of Medicine, La Jolla, CA, USA.
| |
Collapse
|
3
|
Ansari MA, Nadeem A, Attia SM, Bakheet SA, Shahid M, Rehman MU, Alanazi MM, Alhamed AS, Ibrahim KE, Albekairi NA, Ahmad SF. CCR1 antagonist J-113863 corrects the imbalance of pro- and anti-inflammatory cytokines in a SJL/J mouse model of relapsing-remitting multiple sclerosis. Immunobiology 2022; 227:152245. [PMID: 35868215 DOI: 10.1016/j.imbio.2022.152245] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 06/20/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022]
Abstract
Multiple sclerosis (MS), an immune-mediated and neurodegenerative disorder of the central nervous system (CNS), is characterized by infiltrating myelin-reactive T lymphocytes and demyelinating lesions. Experimental autoimmune encephalomyelitis (EAE) is a well-established animal model used to study MS. To explore the impact of chemokine receptor CCR1 blockade in EAE and the underlying mechanisms, we used CCR1 antagonist J-113863 in PLP139-151-induced EAE in SJL/J mice. Following EAE induction, mice were treated with J-113863 (10 mg/kg) daily from day 14 until day 25. We investigated the effect of J-113863 on expression levels of GM-CSF, IL-6, IL-10, IL-27 in CD4+ spleen cells, using flow cytometry. We also analyzed the effect of J-113863 on GM-CSF, IL-6, IL-10, IL-27 mRNA and protein expression levels using RT-PCR and Western blot analysis in brain tissues. J-113863 treatment decreased the populations of CD4+GM-CSF+ and CD4+IL-6+ cells and increased CD4+IL-27+ and CD4+IL-10+ cells in the spleen. J-113863 had a suppressive effect on the mRNA and protein expression levels of GM-CSF, and IL-6 in the brain tissue. On the other hand, J-113863 treatment increased the mRNA and protein expression of IL-10 and IL-27 in the brain tissue. Our results highlighted J-113863's potential role in suppressing pro-inflammatory expression and up-regulating anti-inflammatory mediators, which could represent a beneficial alternative approach to MS treatment.
Collapse
Affiliation(s)
- Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mudassar Shahid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed M Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah S Alhamed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid E Ibrahim
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Norah A Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
4
|
Han S, Liu ZQ, Chung DC, Paul MS, Garcia-Batres CR, Sayad A, Elford AR, Gold MJ, Grimshaw N, Ohashi PS. Overproduction of IFNγ by Cbl-b-Deficient CD8+ T Cells Provides Resistance against Regulatory T Cells and Induces Potent Antitumor Immunity. Cancer Immunol Res 2022; 10:437-452. [PMID: 35181779 PMCID: PMC9662906 DOI: 10.1158/2326-6066.cir-20-0973] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 11/22/2021] [Accepted: 02/15/2022] [Indexed: 01/07/2023]
Abstract
Regulatory T cells (Treg) are an integral component of the adaptive immune system that negatively affect antitumor immunity. Here, we investigated the role of the E3 ubiquitin ligase casitas B-lineage lymphoma-b (Cbl-b) in establishing CD8+ T-cell resistance to Treg-mediated suppression to enhance antitumor immunity. Transcriptomic analyses suggested that Cbl-b regulates pathways associated with cytokine signaling and cellular proliferation. We showed that the hypersecretion of IFNγ by Cbl-b-deficient CD8+ T cells selectively attenuated CD8+ T-cell suppression by Tregs. Although IFNγ production by Cbl-b-deficient T cells contributed to phenotypic alterations in Tregs, the cytokine did not attenuate the suppressive function of Tregs. Instead, IFNγ had a profound effect on CD8+ T cells by directly upregulating interferon-stimulated genes and modulating T-cell activation. In murine models of adoptive T-cell therapy, Cbl-b-deficient T cells elicited superior antitumor immune response. Furthermore, Cbl-b-deficient CD8+ T cells were less susceptible to suppression by Tregs in the tumor through the effects of IFNγ. Collectively, this study demonstrates that the hypersecretion of IFNγ serves as a key mechanism by which Cbl-b-deficient CD8+ T cells are rendered resistant to Tregs. See related Spotlight by Wolf and Baier, p. 370.
Collapse
Affiliation(s)
- SeongJun Han
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Faculty of Medicine, Toronto, Ontario, Canada
| | - Zhe Qi Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Faculty of Medicine, Toronto, Ontario, Canada
| | - Douglas C. Chung
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Faculty of Medicine, Toronto, Ontario, Canada
| | - Michael St. Paul
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Faculty of Medicine, Toronto, Ontario, Canada
| | | | - Azin Sayad
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Alisha R. Elford
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Matthew J. Gold
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Natasha Grimshaw
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Pamela S. Ohashi
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Faculty of Medicine, Toronto, Ontario, Canada.,Corresponding Author: Pamela S. Ohashi, Princess Margaret Cancer Centre, 610 University Avenue, 9-406, Toronto ON M5G 2M9, Canada. Phone: 416-946-4501 ×3689; E-mail:
| |
Collapse
|
5
|
Sainson RCA, Thotakura AK, Kosmac M, Borhis G, Parveen N, Kimber R, Carvalho J, Henderson SJ, Pryke KL, Okell T, O'Leary S, Ball S, Van Krinks C, Gamand L, Taggart E, Pring EJ, Ali H, Craig H, Wong VWY, Liang Q, Rowlands RJ, Lecointre M, Campbell J, Kirby I, Melvin D, Germaschewski V, Oelmann E, Quaratino S, McCourt M. An Antibody Targeting ICOS Increases Intratumoral Cytotoxic to Regulatory T-cell Ratio and Induces Tumor Regression. Cancer Immunol Res 2020; 8:1568-1582. [PMID: 32999002 DOI: 10.1158/2326-6066.cir-20-0034] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/01/2020] [Accepted: 09/18/2020] [Indexed: 11/16/2022]
Abstract
The immunosuppressive tumor microenvironment constitutes a significant hurdle to immune checkpoint inhibitor responses. Both soluble factors and specialized immune cells, such as regulatory T cells (Treg), are key components of active intratumoral immunosuppression. Inducible costimulatory receptor (ICOS) can be highly expressed in the tumor microenvironment, especially on immunosuppressive Treg, suggesting that it represents a relevant target for preferential depletion of these cells. Here, we performed immune profiling of samples from tumor-bearing mice and patients with cancer to demonstrate differential expression of ICOS in immune T-cell subsets in different tissues. ICOS expression was higher on intratumoral Treg than on effector CD8 T cells. In addition, by immunizing an Icos knockout transgenic mouse line expressing antibodies with human variable domains, we selected a fully human IgG1 antibody called KY1044 that bound ICOS from different species. We showed that KY1044 induced sustained depletion of ICOShigh T cells but was also associated with increased secretion of proinflammatory cytokines from ICOSlow effector T cells (Teff). In syngeneic mouse tumor models, KY1044 depleted ICOShigh Treg and increased the intratumoral TEff:Treg ratio, resulting in increased secretion of IFNγ and TNFα by TEff cells. KY1044 demonstrated monotherapy antitumor efficacy and improved anti-PD-L1 efficacy. In summary, we demonstrated that using KY1044, one can exploit the differential expression of ICOS on T-cell subtypes to improve the intratumoral immune contexture and restore an antitumor immune response.
Collapse
Affiliation(s)
| | | | - Miha Kosmac
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | | | - Nahida Parveen
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - Rachael Kimber
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - Joana Carvalho
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | | | - Kerstin L Pryke
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - Tracey Okell
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - Siobhan O'Leary
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - Stuart Ball
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | | | - Lauriane Gamand
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - Emma Taggart
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - Eleanor J Pring
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - Hanif Ali
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - Hannah Craig
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - Vivian W Y Wong
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - Qi Liang
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | | | | | - Jamie Campbell
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - Ian Kirby
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - David Melvin
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | | | | | - Sonia Quaratino
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - Matthew McCourt
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| |
Collapse
|
6
|
Zheng J, Wang W, Hong T, Yang S, Shen J, Liu C. Suppression of microRNA-155 exerts an anti-inflammatory effect on CD4+ T cell-mediated inflammatory response in the pathogenesis of atherosclerosis. Acta Biochim Biophys Sin (Shanghai) 2020; 52:654-664. [PMID: 32372074 DOI: 10.1093/abbs/gmaa040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 03/26/2020] [Accepted: 04/01/2020] [Indexed: 12/27/2022] Open
Abstract
In the current study, we aimed to investigate the effects of miR-155 on CD4+ T cell-mediated immune response in the pathogenesis of atherosclerosis. CD34+ hematopoietic stem cells, CD4+ T lymphocytes, endothelial cells (ECs), and vascular smooth muscle cells (VSMCs) were harvested from the same donor. Knockdown of miR-155 in the CD4+ T cells was achieved by lentiviral transfection, whereas control RNA-transfected or untransfected lymphocytes were used as controls. The transfected CD4+ T cells were activated by incubating with oxidized low-density lipoprotein-treated dendritic cells. The proliferative capacities, phenotype distribution, and cytokine secretion profiles of the activated CD4+ T cells from different groups were evaluated. The activated lymphocytes were used to treat ECs co-cultivated with VSMCs. The ability of the CD4+ T cells to induce the apoptosis of the ECs and to promote the proliferation of the VSMCs was investigated. Inhibition of miR-155 was found to significantly reduce the proliferation rate of the transfected CD4+ T cells. CD4+ T lymphocytes transfected with the miR-155 inhibitor showed increased populations of T helper type 2 and regulatory T cells, as well as more production of anti-inflammatory cytokines. MiR-155 knockdown was also shown to significantly hamper the ability to CD4+ T cells to induce EC apoptosis and to promote the growth of VSMCs. Our data suggested that inhibition of miR-155 in CD4+ T cells could slow down the formation of atherosclerotic plaques. These results lay the groundwork for future research on the therapeutic potential of miR-155 against atherosclerosis-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Jiayu Zheng
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wenshuo Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Tao Hong
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shouguo Yang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jinqiang Shen
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chen Liu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
7
|
Jun JE, Kulhanek KR, Chen H, Chakraborty A, Roose JP. Alternative ZAP70-p38 signals prime a classical p38 pathway through LAT and SOS to support regulatory T cell differentiation. Sci Signal 2019; 12:12/591/eaao0736. [PMID: 31337738 DOI: 10.1126/scisignal.aao0736] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
T cell receptor (TCR) stimulation activates diverse kinase pathways, which include the mitogen-activated protein kinases (MAPKs) ERK and p38, the phosphoinositide 3-kinases (PI3Ks), and the kinase mTOR. Although TCR stimulation activates the p38 pathway through a "classical" MAPK cascade that is mediated by the adaptor protein LAT, it also stimulates an "alternative" pathway in which p38 is activated by the kinase ZAP70. Here, we used dual-parameter, phosphoflow cytometry and in silico computation to investigate how both classical and alternative p38 pathways contribute to T cell activation. We found that basal ZAP70 activation in resting T cell lines reduced the threshold ("primed") TCR-stimulated activation of the classical p38 pathway. Classical p38 signals were reduced after T cell-specific deletion of the guanine nucleotide exchange factors Sos1 and Sos2, which are essential LAT signalosome components. As a consequence of Sos1/2 deficiency, production of the cytokine IL-2 was impaired, differentiation into regulatory T cells was reduced, and the autoimmune disease EAE was exacerbated in mice. These data suggest that the classical and alternative p38 activation pathways exist to generate immune balance.
Collapse
Affiliation(s)
- Jesse E Jun
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kayla R Kulhanek
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Hang Chen
- Departments of Chemical Engineering, Chemistry, and Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Arup Chakraborty
- Departments of Chemical Engineering, Chemistry, and Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Jeroen P Roose
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
8
|
Han S, Toker A, Liu ZQ, Ohashi PS. Turning the Tide Against Regulatory T Cells. Front Oncol 2019; 9:279. [PMID: 31058083 PMCID: PMC6477083 DOI: 10.3389/fonc.2019.00279] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/26/2019] [Indexed: 12/11/2022] Open
Abstract
Regulatory T (Treg) cells play crucial roles in health and disease through their immunosuppressive properties against various immune cells. In this review we will focus on the inhibitory role of Treg cells in anti-tumor immunity. We outline how Treg cells restrict T cell function based on our understanding of T cell biology, and how we can shift the equilibrium against regulatory T cells. To date, numerous strategies have been proposed to limit the suppressive effects of Treg cells, including Treg cell neutralization, destabilizing Treg cells and rendering T cells resistant to Treg cells. Here, we focus on key mechanisms which render T cells resistant to the suppressive effects of Treg cells. Lastly, we also examine current limitations and caveats of overcoming the inhibitory activity of Treg cells, and briefly discuss the potential to target Treg cell resistance in the context of anti-tumor immunity.
Collapse
Affiliation(s)
- SeongJun Han
- Princess Margaret Cancer Centre, Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, ON, Canada
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Aras Toker
- Princess Margaret Cancer Centre, Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, ON, Canada
| | - Zhe Qi Liu
- Princess Margaret Cancer Centre, Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, ON, Canada
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Pamela S. Ohashi
- Princess Margaret Cancer Centre, Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, ON, Canada
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Dhaeze T, Lachance C, Tremblay L, Grasmuck C, Bourbonnière L, Larouche S, Saint-Laurent O, Lécuyer MA, Rébillard RM, Zandee S, Prat A. Sex-dependent factors encoded in the immune compartment dictate relapsing or progressive phenotype in demyelinating disease. JCI Insight 2019; 4:124885. [PMID: 30895941 DOI: 10.1172/jci.insight.124885] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/05/2019] [Indexed: 01/23/2023] Open
Abstract
TCR1640 mice, which have a T cell receptor (TCR) directed against MOG92-106, spontaneously develop experimental autoimmune encephalomyelitis. Female mice mostly develop a relapsing-remitting (RR) course and have a higher incidence of disease, while males most frequently suffer from progressive disease, reflecting the unresolved clinical sex discrepancies seen in multiple sclerosis. Herein, we performed adoptive transfers of male and female TCR1640 immune cells into WT animals to investigate if disease course is dependent on the sex of the donor immune cells or on the sex of the recipient animal. We found that transfer of female TCR1640 immune cells led to a RR disease while transfer of male TCR1640 immune cells led to a progressive course, independent of the sex of the recipient. In addition, regulatory and pathogenic T cell infiltration after transfer was also immune cell sex intrinsic. We performed genetic profiling of the donor immune cells and found significant differences between the transcriptomic profiles of male and female TCR1640 immune cells, interestingly, within genes related to immune regulation of T lymphocytes. These results suggest that differences in gene expression profiles related to regulation of T cell immunity seen in male and female neuroinflammatory disease drive relapsing versus progressive disease course.
Collapse
Affiliation(s)
- Tessa Dhaeze
- Neuroimmunology Unit, Department of Neuroscience, Faculty of Medicine, Université de Montréal, and Centre de recherche du CHUM (CRCHUM), Montréal, Québec, Canada
| | - Catherine Lachance
- Neuroimmunology Unit, Department of Neuroscience, Faculty of Medicine, Université de Montréal, and Centre de recherche du CHUM (CRCHUM), Montréal, Québec, Canada
| | - Laurence Tremblay
- Neuroimmunology Unit, Department of Neuroscience, Faculty of Medicine, Université de Montréal, and Centre de recherche du CHUM (CRCHUM), Montréal, Québec, Canada
| | - Camille Grasmuck
- Neuroimmunology Unit, Department of Neuroscience, Faculty of Medicine, Université de Montréal, and Centre de recherche du CHUM (CRCHUM), Montréal, Québec, Canada
| | - Lyne Bourbonnière
- Neuroimmunology Unit, Department of Neuroscience, Faculty of Medicine, Université de Montréal, and Centre de recherche du CHUM (CRCHUM), Montréal, Québec, Canada
| | - Sandra Larouche
- Neuroimmunology Unit, Department of Neuroscience, Faculty of Medicine, Université de Montréal, and Centre de recherche du CHUM (CRCHUM), Montréal, Québec, Canada
| | - Olivia Saint-Laurent
- Neuroimmunology Unit, Department of Neuroscience, Faculty of Medicine, Université de Montréal, and Centre de recherche du CHUM (CRCHUM), Montréal, Québec, Canada
| | - Marc-André Lécuyer
- Neuroimmunology Unit, Department of Neuroscience, Faculty of Medicine, Université de Montréal, and Centre de recherche du CHUM (CRCHUM), Montréal, Québec, Canada
| | - Rose-Marie Rébillard
- Neuroimmunology Unit, Department of Neuroscience, Faculty of Medicine, Université de Montréal, and Centre de recherche du CHUM (CRCHUM), Montréal, Québec, Canada
| | - Stephanie Zandee
- Neuroimmunology Unit, Department of Neuroscience, Faculty of Medicine, Université de Montréal, and Centre de recherche du CHUM (CRCHUM), Montréal, Québec, Canada
| | - Alexandre Prat
- Neuroimmunology Unit, Department of Neuroscience, Faculty of Medicine, Université de Montréal, and Centre de recherche du CHUM (CRCHUM), Montréal, Québec, Canada.,Multiple Sclerosis Clinic, Division of Neurology, Centre hospitalier de l'Université de Montréal (CHUM), Montréal, Quebec, Canada
| |
Collapse
|
10
|
Ouyang S, Zeng Q, Tang N, Guo H, Tang R, Yin W, Wang A, Tang H, Zhou J, Xie H, Langdon WY, Yang H, Zhang J. Akt-1 and Akt-2 Differentially Regulate the Development of Experimental Autoimmune Encephalomyelitis by Controlling Proliferation of Thymus-Derived Regulatory T Cells. THE JOURNAL OF IMMUNOLOGY 2019; 202:1441-1452. [PMID: 30692211 DOI: 10.4049/jimmunol.1701204] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 12/28/2018] [Indexed: 11/19/2022]
Abstract
Akt isoforms play key roles in multiple cellular processes; however, the roles of Akt-1 and Akt-2 isoforms in the development of T cell-mediated autoimmunity are poorly defined. In this study, we showed that Akt1-/- mice develop ameliorated experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis, whereas Akt2-/- mice develop exacerbated EAE, compared with wild-type mice. At the cellular level, Akt-1 appears to inhibit proliferation of thymus-derived regulatory T cells (tTregs), which facilitates Ag-specific Th1/Th17 responses. In a sharp contrast to Akt-1, Akt-2 potentiates tTreg proliferation in vitro and in vivo and suppresses Ag-specific Th1/Th17 responses. Furthermore, treating mice with established EAE with a specific Akt-1 inhibitor suppressed disease progression. Our data demonstrate that Akt-1 and Akt-2 differentially regulate the susceptibility of mice to EAE by controlling tTreg proliferation. Our data also indicate that targeting Akt-1 is a potential therapeutic approach for multiple sclerosis in humans.
Collapse
Affiliation(s)
- Song Ouyang
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210.,Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Medical Center of Neurology, First Hospital of Changsha City, South China University, Changsha, Hunan 410005, People's Republic of China
| | - Qiuming Zeng
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210.,Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China.,Department of Pathology, University of Iowa, Iowa City, IA 52242
| | - Na Tang
- Department of Pathology, University of Iowa, Iowa City, IA 52242
| | - Hui Guo
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210.,Department of Pathology, University of Iowa, Iowa City, IA 52242
| | - Rong Tang
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210.,Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Weifan Yin
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Aimin Wang
- Medical Center of Neurology, First Hospital of Changsha City, South China University, Changsha, Hunan 410005, People's Republic of China
| | - Hongyu Tang
- Medical Center of Neurology, First Hospital of Changsha City, South China University, Changsha, Hunan 410005, People's Republic of China
| | - Jiru Zhou
- Department of Cardiothoracic Surgery, First Hospital of Changsha City, South China University, Changsha, Hunan 410005, People's Republic of China; and
| | - Hong Xie
- Medical Center of Neurology, First Hospital of Changsha City, South China University, Changsha, Hunan 410005, People's Republic of China
| | - Wallace Y Langdon
- School of Biomedical Science, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China;
| | - Jian Zhang
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210; .,Department of Pathology, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
11
|
Nalawade SA, Ji N, Raphael I, Pratt A, Kraig E, Forsthuber TG. Aire is not essential for regulating neuroinflammatory disease in mice transgenic for human autoimmune-diseases associated MHC class II genes HLA-DR2b and HLA-DR4. Cell Immunol 2018; 331:38-48. [PMID: 29789121 PMCID: PMC6092225 DOI: 10.1016/j.cellimm.2018.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 05/06/2018] [Indexed: 12/30/2022]
Abstract
The human autoimmune disease-associated HLA alleles HLA-DR2b (DRB1*1501) and HLA-DR4 (DRB1*0401) are strongly linked to increased susceptibility for multiple sclerosis (MS) and rheumatoid arthritis (RA), respectively. The underlying mechanisms are not fully understood, but these MHC alleles may shape the repertoire of pathogenic T cells via central tolerance. The transcription factor autoimmune regulator (AIRE) promotes central T cell tolerance via ectopic expression of tissue-specific antigens (TSAs). Aire deficiency in humans causes autoimmune polyendocrinopathy syndrome type 1 (APS1), and Aire knockout mice (Aire-/-) develop spontaneous autoimmune pathology characterized by multi-organ lymphocytic infiltrates. Here, we asked whether impaired TSAs gene expression in the absence of Aire promoted spontaneous MS- or RA-like autoimmune pathology in the context of human HLA alleles in HLA-DR2b or HLA-DR4 transgenic (tg) mice. The results show that reduced TSAs gene expression in the thymus of Aire-deficient HLA-DR2b or HLA-DR4 tg mice corresponded to mild spontaneous inflammatory infiltrates in salivary glands, liver, and pancreas. Moreover, Aire-deficiency modestly enhanced experimental autoimmune encephalomyelitis (EAE) in HLA-DR tg mice, but the animals did not show signs of spontaneous neuroinflammation or arthritis. No significant changes were observed in CD4+ T cell numbers, T cell receptor (TCR) distribution, regulatory T cells (Treg), or antigen-induced cytokine production. Abrogating Treg function by treatment with anti-CTLA-4 or anti-CD25 mAb in Aire-deficient HLA-DR tg mice did not trigger EAE or other autoimmune pathology. Our results suggest a redundant role for Aire in maintaining immune tolerance in the context of autoimmune disease-associated human HLA alleles.
Collapse
MESH Headings
- Animals
- Antigens/immunology
- Antigens/metabolism
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/metabolism
- Autoimmune Diseases/genetics
- Autoimmune Diseases/immunology
- Autoimmune Diseases/metabolism
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- HLA-DR2 Antigen/genetics
- HLA-DR2 Antigen/immunology
- HLA-DR2 Antigen/metabolism
- HLA-DR4 Antigen/genetics
- HLA-DR4 Antigen/immunology
- HLA-DR4 Antigen/metabolism
- Humans
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Multiple Sclerosis/genetics
- Multiple Sclerosis/immunology
- Multiple Sclerosis/metabolism
- Organ Specificity/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Transcription Factors/genetics
- Transcription Factors/immunology
- Transcription Factors/metabolism
- AIRE Protein
Collapse
Affiliation(s)
- Saisha A Nalawade
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Niannian Ji
- Department of Urology, School of Medicine, University of Texas Health, San Antonio, TX 78229, United States
| | - Itay Raphael
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Andrew Pratt
- U.S. Naval Medical Research Unit, San Antonio, TX 78234, United States
| | - Ellen Kraig
- Department of Cell Systems and Anatomy, University of Texas Health, San Antonio, TX 78229, United States
| | - Thomas G Forsthuber
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, United States.
| |
Collapse
|
12
|
Duperret EK, Wise MC, Trautz A, Villarreal DO, Ferraro B, Walters J, Yan J, Khan A, Masteller E, Humeau L, Weiner DB. Synergy of Immune Checkpoint Blockade with a Novel Synthetic Consensus DNA Vaccine Targeting TERT. Mol Ther 2018; 26:435-445. [PMID: 29249395 PMCID: PMC5835021 DOI: 10.1016/j.ymthe.2017.11.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/14/2017] [Accepted: 11/14/2017] [Indexed: 01/07/2023] Open
Abstract
Immune checkpoint blockade antibodies are setting a new standard of care for cancer patients. It is therefore important to assess any new immune-based therapies in the context of immune checkpoint blockade. Here, we evaluate the impact of combining a synthetic consensus TERT DNA vaccine that has improved capacity to break tolerance with immune checkpoint inhibitors. We observed that blockade of CTLA-4 or, to a lesser extent, PD-1 synergized with TERT vaccine, generating more robust anti-tumor activity compared to checkpoint alone or vaccine alone. Despite this anti-tumor synergy, none of these immune checkpoint therapies showed improvement in TERT antigen-specific immune responses in tumor-bearing mice. αCTLA-4 therapy enhanced the frequency of T-bet+/CD44+ effector CD8+ T cells within the tumor and decreased the frequency of regulatory T cells within the tumor, but not in peripheral blood. CTLA-4 blockade synergized more than Treg depletion with TERT DNA vaccine, suggesting that the effect of CTLA-4 blockade is more likely due to the expansion of effector T cells in the tumor rather than a reduction in the frequency of Tregs. These results suggest that immune checkpoint inhibitors function to alter the immune regulatory environment to synergize with DNA vaccines, rather than boosting antigen-specific responses at the site of vaccination.
Collapse
Affiliation(s)
| | - Megan C Wise
- Inovio Pharmaceuticals, Inc., Plymouth Meeting, PA 19462, USA; University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aspen Trautz
- Vaccine Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | | | | | - Jewell Walters
- Inovio Pharmaceuticals, Inc., Plymouth Meeting, PA 19462, USA
| | - Jian Yan
- Inovio Pharmaceuticals, Inc., Plymouth Meeting, PA 19462, USA
| | - Amir Khan
- Inovio Pharmaceuticals, Inc., Plymouth Meeting, PA 19462, USA
| | - Emma Masteller
- Inovio Pharmaceuticals, Inc., Plymouth Meeting, PA 19462, USA
| | - Laurent Humeau
- Inovio Pharmaceuticals, Inc., Plymouth Meeting, PA 19462, USA
| | - David B Weiner
- Vaccine Center, The Wistar Institute, Philadelphia, PA 19104, USA.
| |
Collapse
|
13
|
Göschl L, Preglej T, Hamminger P, Bonelli M, Andersen L, Boucheron N, Gülich AF, Müller L, Saferding V, Mufazalov IA, Hirahara K, Seiser C, Matthias P, Penz T, Schuster M, Bock C, Waisman A, Steiner G, Ellmeier W. A T cell-specific deletion of HDAC1 protects against experimental autoimmune encephalomyelitis. J Autoimmun 2017; 86:51-61. [PMID: 28964722 DOI: 10.1016/j.jaut.2017.09.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 10/18/2022]
Abstract
Multiple sclerosis (MS) is a human neurodegenerative disease characterized by the invasion of autoreactive T cells from the periphery into the CNS. Application of pan-histone deacetylase inhibitors (HDACi) ameliorates experimental autoimmune encephalomyelitis (EAE), an animal model for MS, suggesting that HDACi might be a potential therapeutic strategy for MS. However, the function of individual HDAC members in the pathogenesis of EAE is not known. In this study we report that mice with a T cell-specific deletion of HDAC1 (using the Cd4-Cre deleter strain; HDAC1-cKO) were completely resistant to EAE despite the ability of HDAC1cKO CD4+ T cells to differentiate into Th17 cells. RNA sequencing revealed STAT1 as a prominent upstream regulator of differentially expressed genes in activated HDAC1-cKO CD4+ T cells and this was accompanied by a strong increase in phosphorylated STAT1 (pSTAT1). This suggests that HDAC1 controls STAT1 activity in activated CD4+ T cells. Increased pSTAT1 levels correlated with a reduced expression of the chemokine receptors Ccr4 and Ccr6, which are important for the migration of T cells into the CNS. Finally, EAE susceptibility was restored in WT:HDAC1-cKO mixed BM chimeric mice, indicating a cell-autonomous defect. Our data demonstrate a novel pathophysiological role for HDAC1 in EAE and provide evidence that selective inhibition of HDAC1 might be a promising strategy for the treatment of MS.
Collapse
Affiliation(s)
- Lisa Göschl
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | - Teresa Preglej
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Patricia Hamminger
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Michael Bonelli
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | - Liisa Andersen
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Nicole Boucheron
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Alexandra F Gülich
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Lena Müller
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Victoria Saferding
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | - Ilgiz A Mufazalov
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Kiyoshi Hirahara
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; AMED-PRIME, AMED, Chiba 260-8670, Japan
| | - Christian Seiser
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Patrick Matthias
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; Faculty of Sciences, University of Basel, 4031 Basel, Switzerland
| | - Thomas Penz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Michael Schuster
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria; Max Planck Institute for Informatics, 66123, Saarbrücken, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Günter Steiner
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
14
|
Yin N, Zhao W, Luo Q, Yuan W, Luan X, Zhang H. Restoring Ovarian Function With Human Placenta-Derived Mesenchymal Stem Cells in Autoimmune-Induced Premature Ovarian Failure Mice Mediated by Treg Cells and Associated Cytokines. Reprod Sci 2017; 25:1073-1082. [DOI: 10.1177/1933719117732156] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Na Yin
- Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong, China
| | - Wei Zhao
- Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong, China
| | - Qianqian Luo
- Department of Morphology Laboratory, Binzhou Medical University, Yantai, Shandong, China
| | - Wendan Yuan
- Basic Medicine College, Binzhou Medical University, Yantai, Shandong, China
| | - Xiying Luan
- Department of Immunology, Binzhou Medical University, Yantai, Shandong, China
| | - Hongqin Zhang
- Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong, China
- Research Institution of Reproductive Medicine, Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
15
|
Zareie P, Connor B, La Flamme AC. Amelioration of experimental autoimmune encephalomyelitis by clozapine is not associated with defective CD4 T cell responses. J Neuroinflammation 2017; 14:68. [PMID: 28356108 PMCID: PMC5372297 DOI: 10.1186/s12974-017-0842-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/16/2017] [Indexed: 02/10/2023] Open
Abstract
Atypical antipsychotic agents, such as clozapine, are used for treating psychosis and depression and have recently been found to modulate neuroinflammation. We have shown previously that treatment of mice with the atypical antipsychotic agents, clozapine or risperidone, attenuates disease severity in experimental autoimmune encephalomyelitis (EAE); however, the mechanism by which they are protective is unknown. In this study, we investigated the effects of clozapine on CD4+ T cell responses and found that clozapine did not significantly affect the expansion of myelin-specific T cells, their differentiation into pathogenic subsets, or their encephalitogenic capacity to induce EAE. Interestingly, although clozapine enhanced differentiation of regulatory T (Treg) cells, in vivo neutralization of Tregs indicated that Tregs were not responsible for the protective effects of clozapine during the induction and effector phase of EAE. Taken together, our studies indicate that clozapine does not mediate its protective effects by directly altering CD4 T cells.
Collapse
Affiliation(s)
- Pirooz Zareie
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, 6140, New Zealand
| | - Bronwen Connor
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Anne Camille La Flamme
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, 6140, New Zealand. .,The Malaghan Institute of Medical Research, Wellington, New Zealand.
| |
Collapse
|
16
|
Regulatory B Cells Induce Formation of IL-10-Expressing T Cells in Mice with Autoimmune Neuroinflammation. J Neurosci 2016; 36:12598-12610. [PMID: 27821578 DOI: 10.1523/jneurosci.1994-16.2016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/11/2016] [Accepted: 10/18/2016] [Indexed: 12/22/2022] Open
Abstract
Although B cells are traditionally known for their role in propagating proinflammatory immune responses, their immunosuppressive effects have only recently begun to be appreciated. How these regulatory B cells (Bregs) suppress the immune response remains to be worked out in detail. In this article, we show that Bregs can induce the formation of conventional FoxP3+ regulatory T cells (Tregs), as well as a more recently described CD49b+CD223+ regulatory T-cell subset, known as type 1 regulatory T cells (Tr1s). When Bregs are transferred into mice with experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis, they home to the spleen and mesenteric lymph nodes, leading to an expansion of Tregs and Tr1 in vivo Tregs and Tr1s are also found in greater proportions in the CNS of mice with EAE treated with Bregs and are correlated with the remission of symptoms. The discovery that Bregs induce the formation of regulatory T-cell subsets in vivo may herald their use as immunosuppressive agents in adoptive cellular therapies for autoimmune pathologies. SIGNIFICANCE STATEMENT Although B cells are traditionally known for their role in propagating proinflammatory immune responses, their immunosuppressive effects have only recently begun to be appreciated. How regulatory B cells (Bregs) suppress the immune response remains to be fully understood. In this article, we show that Bregs can induce the formation of conventional regulatory T cells (Tregs) as well as type 1 regulatory T cells (Tr1s). When Bregs are transferred into mice with experimental autoimmune encephalomyelitis (EAE), they home to secondary lymphoid organs, leading to an expansion of Tregs and Tr1s in vivo Tregs and Tr1s are also found in greater proportions in the CNS of mice with EAE treated with Bregs and are correlated with the remission of symptoms.
Collapse
|
17
|
Richards AL, Kapp LM, Wang X, Howie HL, Hudson KE. Regulatory T Cells Are Dispensable for Tolerance to RBC Antigens. Front Immunol 2016; 7:348. [PMID: 27698653 PMCID: PMC5027202 DOI: 10.3389/fimmu.2016.00348] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/30/2016] [Indexed: 02/03/2023] Open
Abstract
Autoimmune hemolytic anemia (AIHA) occurs when pathogenic autoantibodies against red blood cell (RBC) antigens are generated. While the basic disease pathology of AIHA is well studied, the underlying mechanism(s) behind the failure in tolerance to RBC autoantigens are poorly understood. Thus, to investigate the tolerance mechanisms required for the establishment and maintenance of tolerance to RBC antigens, we developed a novel murine model. With this model, we evaluated the role of regulatory T cells (Tregs) in tolerance to RBC-specific antigens. Herein, we show that neither sustained depletion of Tregs nor immunization with RBC-specific proteins in conjunction with Treg depletion led to RBC-specific autoantibody generation. Thus, these studies demonstrate that Tregs are not required to prevent autoantibodies to RBCs and suggest that other tolerance mechanisms are likely involved.
Collapse
Affiliation(s)
| | - Linda M Kapp
- Bloodworks Northwest Research Institute , Seattle, WA , USA
| | - Xiaohong Wang
- Bloodworks Northwest Research Institute , Seattle, WA , USA
| | | | | |
Collapse
|
18
|
Shi H, Li J, Fu D. Process of hepatic metastasis from pancreatic cancer: biology with clinical significance. J Cancer Res Clin Oncol 2016; 142:1137-1161. [PMID: 26250876 DOI: 10.1007/s00432-015-2024-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 07/23/2015] [Indexed: 12/14/2022]
Abstract
PURPOSE Pancreatic cancer shows a remarkable preference for the liver to establish secondary tumors. Selective metastasis to the liver is attributed to the development of potential microenvironment for the survival of pancreatic cancer cells. This review aims to provide a full understanding of the hepatic metastatic process from circulating pancreatic cancer cells to their settlement in the liver, serving as a basic theory for efficient prediction and treatment of metastatic diseases. METHODS A systematic search of relevant original articles and reviews was performed on PubMed, EMBASE and Cochrane Library for the purpose of this review. RESULTS Three interrelated phases are delineated as the contributions of the interaction between pancreatic cancer cells and the liver to hepatic metastasis process. Chemotaxis of disseminated pancreatic cancer cells and simultaneous defensive formation of platelets or neutrophils facilitate specific metastasis toward the liver. Remodeling of extracellular matrix and stromal cells in hepatic lobules and angiogenesis induced by proangiogenic factors support the survival and growth of clinical micrometastasis colonizing the liver. The bimodal role of the immune system or prevalence of cancer cells over the immune system makes metastatic progression successfully proceed from micrometastasis to macrometastasis. CONCLUSIONS Pancreatic cancer is an appropriate research object of cancer metastasis representing more than a straight cascade. If any of the successive or simultaneous phases, especially tumor-induced immunosuppression, is totally disrupted, hepatic metastasis will be temporarily under control or even cancelled forever. To shrink cancers on multiple fronts and prolong survival for patients, novel oral or intravenous anti-cancer agents covering one or different phases of metastatic pancreatic cancer are expected to be integrated into innovative strategies on the premise of safety and efficacious biostability.
Collapse
Affiliation(s)
- Haojun Shi
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China
| | - Ji Li
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China
| | - Deliang Fu
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China.
| |
Collapse
|
19
|
Askenasy N. Mechanisms of autoimmunity in the non-obese diabetic mouse: effector/regulatory cell equilibrium during peak inflammation. Immunology 2016; 147:377-88. [PMID: 26749404 DOI: 10.1111/imm.12581] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/21/2015] [Accepted: 12/21/2015] [Indexed: 12/25/2022] Open
Abstract
Immune imbalance in autoimmune disorders such as type 1 diabetes may originate from aberrant activities of effector cells or dysfunction of suppressor cells. All possible defective mechanisms have been proposed for diabetes-prone species: (i) quantitative dominance of diabetogenic cells and decreased numbers of regulatory T cells, (ii) excessive aggression of effectors and defective function of suppressors, (iii) perturbed interaction between effector and suppressor cells, and (iv) variations in sensitivity to negative regulation. The experimental evidence available to date presents conflicting information on these mechanisms, with identification of perturbed equilibrium on the one hand and negation of critical role of each mechanism in propagation of diabetic autoimmunity on the other hand. In our analysis, there is no evidence that inherent abnormalities in numbers and function of effector and suppressor T cells are responsible for the immune imbalance responsible for propagation of type 1 diabetes as a chronic inflammatory process. Possibly, the experimental tools for investigation of these features of immune activity are still underdeveloped and lack sufficient resolution, in the presence of the extensive biological viability and functional versatility of effector and suppressor elements.
Collapse
Affiliation(s)
- Nadir Askenasy
- The Leah and Edward M. Frankel Laboratory of Experimental Bone Marrow Transplantation, Petach Tikva, Israel
| |
Collapse
|
20
|
Xia F, Cao H, Du J, Liu X, Liu Y, Xiang M. Reg3g overexpression promotes β cell regeneration and induces immune tolerance in nonobese-diabetic mouse model. J Leukoc Biol 2015; 99:1131-40. [PMID: 26667474 DOI: 10.1189/jlb.3a0815-371rrr] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/11/2015] [Indexed: 12/21/2022] Open
Abstract
The regenerating islet-derived gene was first isolated in regenerated pancreas tissues, greatly contributing to β cell regeneration. It is an anti-inflammatory in response to cellular stress. This encouraged us to investigate the exact role of a novel member of Reg family, regenerating islet-derived gene γ, in type 1 diabetes of nonobese-diabetic mice. For this, Reg3g gene was overexpressed in pancreatic islets, and conferred beneficial effects on β cell regeneration through activating the Janus kinase 2/signal transducer and activator of transcription 3/nuclear factor κB signaling pathway. Lentiviral vector-encoding regenerating islet-derived gene γ treatment also decreased lymphocyte infiltrates of the intra-islet and peri-islet by inducing both differentiation of regulatory T cell and immature dendritic cells of tolerogenic properties, which attenuated autoimmunity. This treatment further contributed to rebalanced levels of type 1/2 helper T cell cytokines and elevated α1-antitrypsin levels in the serum. These results were not observed in phosphate-buffered saline-treated mice or in lentivirus-control mice. We have shown, for the first time, to our knowledge, that regenerating islet-derived gene γ promotes β cell regeneration and preserves β cells from autoimmunity damage by increasing regulatory T cell differentiation and inducing tolerated dendritic cells. This regenerating islet-derived gene γ infusion could probably be developed into an optimal gene therapy for the prevention and reversal of type 1 diabetes.
Collapse
Affiliation(s)
- Fei Xia
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Hui Cao
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Jiao Du
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Xiulan Liu
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Yang Liu
- Synergy Innovation Center of Biological Peptide Antidiabetics of Hubei Province, School of Life Science, Wuchang University of Technology, Wuhan, China
| | - Ming Xiang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| |
Collapse
|
21
|
Zhong Y, Tang H, Wang X, Zeng Q, Liu Y, Zhao XI, Yu K, Shi H, Zhu R, Mao X. Intranasal immunization with heat shock protein 60 induces CD4(+) CD25(+) GARP(+) and type 1 regulatory T cells and inhibits early atherosclerosis. Clin Exp Immunol 2015; 183:452-68. [PMID: 26452441 DOI: 10.1111/cei.12726] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2015] [Indexed: 01/13/2023] Open
Abstract
Atherosclerosis is an autoimmune inflammatory disease involving both innate and adaptive immune mechanisms. Immune tolerance induction may have therapeutic potential for the suppression of atherosclerosis. Current interest is directed towards mucosal tolerance induction, especially nasal tolerance. Previous studies have shown that heat shock protein 60 (HSP60) is recognized as an important autoantigen in atherosclerosis, and nasal or oral HSP60 can induce tolerance and ameliorate atherosclerosis by inducing several subsets of regulatory T cells (Tregs ) such as latency-associated peptide (LAP)(+) and forkhead box transcription factor 3 (FoxP3)(+) Tregs. However, little is known regarding the detailed mechanisms of nasal tolerance. Here, we again investigated the impact of nasal HSP60 on atherosclerosis and the mechanisms underlying the anti-atherosclerosis responses. We found that nasal HSP60 caused a significant 33·6% reduction in plaque size at the aortic root in the early stages of atherosclerosis (P < 0·001). Notably, a significant increase in activated CD4(+) CD25(+) glycoprotein A repetitions predominant (GARP)(+) Tregs, type 1 Tregs (Tr1 cells), and CD4(+) CD25(+) FoxP3(+) Tregs, as well as a marked decrease in the numbers of type 1 and 17 T helper cells was detected in the spleens and cervical lymph nodes of HSP60-treated mice. Moreover, nasal HSP60 increases the production of transforming growth factor (TGF)-β and interleukin (IL)-10 and decreases the secretion of IFN-γ and IL-17. Interestingly, the atheroprotective role of nasal HSP60 treatment was abrogated partly by the neutralization of IL-10. Our findings show that nasal administration of HSP60 can attenuate atherosclerotic formation by inducing GARP(+) Tregs, Tr1 cells and FoxP3(+) Tregs, and that these Tregs maintain immune homeostasis by secreting IL-10 and TGF-β.
Collapse
Affiliation(s)
- Y Zhong
- Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - H Tang
- Department of Pediatric Infectious and Immunological Diseases, Wuhan Children's Hospital, Wuhan, China
| | - X Wang
- Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Q Zeng
- Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Y Liu
- Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - X I Zhao
- Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - K Yu
- Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - H Shi
- Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - R Zhu
- Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - X Mao
- Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| |
Collapse
|
22
|
Kim YH, Shin SM, Choi BK, Oh HS, Kim CH, Lee SJ, Kim KH, Lee DG, Park SH, Kwon BS. Authentic GITR Signaling Fails To Induce Tumor Regression unless Foxp3+ Regulatory T Cells Are Depleted. THE JOURNAL OF IMMUNOLOGY 2015; 195:4721-9. [DOI: 10.4049/jimmunol.1403076] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 09/08/2015] [Indexed: 12/22/2022]
|
23
|
Mastorodemos V, Ioannou M, Verginis P. Cell-based modulation of autoimmune responses in multiple sclerosis and experimental autoimmmune encephalomyelitis: therapeutic implications. Neuroimmunomodulation 2015; 22:181-95. [PMID: 24852748 DOI: 10.1159/000362370] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 03/20/2014] [Indexed: 11/19/2022] Open
Abstract
Multiple sclerosis (MS) is a prototypic autoimmune inflammatory disorder of the central nervous system (CNS). MS pathogenesis is a complex phenomenon that is influenced by genetic and environmental factors that lead to the dysregulation of immune homeostasis and tolerance. It has been shown that pathogenic T lymphocyte subsets, such as T helper 1 (Th1) and Th17 cells, play a crucial role in the autoimmune cascade influencing disease initiation, progression and subsequent tissue damage during MS. On the other hand, several mechanisms have been described in both patients and animal models of MS with the potential to modulate myelin-specific autoimmune responses and to facilitate amelioration of disease pathology. To this end, regulatory T cells (Tregs) are considered to be a powerful cell subset not only in the maintenance of homeostasis but also in the re-establishment of tolerance. Along these lines, other cell subsets such as dendritic cells (DCs), myeloid-derived suppressor cells (MDSCs), γδ T cells and natural killer (NK) cells have been shown to regulate the autoimmune response in the CNS under certain circumstances. This review will attempt to summarize the relevant knowledge of the regulatory mechanisms exerted by immune cells in MS that could hold the promise for the design of novel therapeutic strategies.
Collapse
|
24
|
El-Samahy MH, Adly AAM, Ismail EA, Salah NY. Regulatory T cells with CD62L or TNFR2 expression in young type 1 diabetic patients: relation to inflammation, glycemic control and micro-vascular complications. J Diabetes Complications 2015; 29:120-6. [PMID: 25113439 DOI: 10.1016/j.jdiacomp.2014.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 06/19/2014] [Accepted: 07/09/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Alteration of regulatory T cells (Tregs) may contribute to ineffective suppression of proinflammatory cytokines in type 1 diabetes. AIM We determined the percentage of Tregs expressing CD62L or tumor necrosis factor receptor type 2 (TNFR2) in 70 young type 1 diabetic patients compared with 30 controls and assessed their relation to inflammation, glycemic control and micro-vascular complications. METHODS High-sensitivity C-reactive protein (hs-CRP), hemoglobin A1c (HbA1c), tumor necrosis factor alpha (TNF-α) and interleukin-10 (IL-10) were assessed with flow cytometric analysis of Tregs, Tregs expressing CD62L or TNFR2. RESULTS The percentage of CD4(+)CD25(high) T cells and CD4(+)CD25(high)CD62L(high) cells were significantly decreased while CD4(+)CD25(high)TNFR2(+) T cells were elevated in patients with micro-vascular complications than those without and controls (p<0.001). ROC curve revealed that the cutoff values of Tregs, Tregs expressing CD62L and Tregs expressing TNFR2 (7.46%, 24.2% and 91.9%, respectively) could detect micro-vascular complications. Significant negative correlations were observed between Tregs expressing CD62L and disease duration, FBG, HbA1c, urinary albumin excretion and hs-CRP, whereas, positive correlations were found between Tregs expressing TNFR2 and these variables (p<0.05). TNF-α was significantly increased while IL-10 was decreased among patients with micro-vascular complications than those without (p<0.05). CONCLUSIONS Alteration in the frequency of Tregs and Tregs expressing CD62L or TNFR2 in type 1 diabetes is associated with increased inflammation, poor glycemic control and risk of micro-vascular complications.
Collapse
Affiliation(s)
- Mona H El-Samahy
- Pediatrics Department, Faculty of Medicine, Ain Shams University
| | - Amira A M Adly
- Pediatrics Department, Faculty of Medicine, Ain Shams University
| | - Eman A Ismail
- Clinical Pathology Department, Faculty of Medicine, Ain Shams University.
| | | |
Collapse
|
25
|
Anderson KM, Olson KE, Estes KA, Flanagan K, Gendelman HE, Mosley RL. Dual destructive and protective roles of adaptive immunity in neurodegenerative disorders. Transl Neurodegener 2014; 3:25. [PMID: 25671101 PMCID: PMC4323229 DOI: 10.1186/2047-9158-3-25] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 10/28/2014] [Indexed: 12/14/2022] Open
Abstract
Inappropriate T cell responses in the central nervous system (CNS) affect the pathogenesis of a broad range of neuroinflammatory and neurodegenerative disorders that include, but are not limited to, multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer’s disease and Parkinson’s disease. On the one hand immune responses can exacerbate neurotoxic responses; while on the other hand, they can lead to neuroprotective outcomes. The temporal and spatial mechanisms by which these immune responses occur and are regulated in the setting of active disease have gained significant recent attention. Spatially, immune responses that affect neurodegeneration may occur within or outside the CNS. Migration of antigen-specific CD4+ T cells from the periphery to the CNS and consequent immune cell interactions with resident glial cells affect neuroinflammation and neuronal survival. The destructive or protective mechanisms of these interactions are linked to the relative numerical and functional dominance of effector or regulatory T cells. Temporally, immune responses at disease onset or during progression may exhibit a differential balance of immune responses in the periphery and within the CNS. Immune responses with predominate T cell subtypes may differentially manifest migratory, regulatory and effector functions when triggered by endogenous misfolded and aggregated proteins and cell-specific stimuli. The final result is altered glial and neuronal behaviors that influence the disease course. Thus, discovery of neurodestructive and neuroprotective immune mechanisms will permit potential new therapeutic pathways that affect neuronal survival and slow disease progression.
Collapse
Affiliation(s)
- Kristi M Anderson
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, The University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Katherine E Olson
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, The University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Katherine A Estes
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, The University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Ken Flanagan
- Prothena Biosciences, South San Francisco, 650 Gateway Boulevard, CA 94080 USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, The University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - R Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, The University of Nebraska Medical Center, Omaha, NE 68198 USA
| |
Collapse
|
26
|
Meyer zu Hörste G, Cordes S, Mausberg AK, Zozulya AL, Wessig C, Sparwasser T, Mathys C, Wiendl H, Hartung HP, Kieseier BC. FoxP3+ regulatory T cells determine disease severity in rodent models of inflammatory neuropathies. PLoS One 2014; 9:e108756. [PMID: 25286182 PMCID: PMC4186754 DOI: 10.1371/journal.pone.0108756] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 08/25/2014] [Indexed: 01/17/2023] Open
Abstract
Inflammatory neuropathies represent disabling human autoimmune disorders with considerable disease variability. Animal models provide insights into defined aspects of their disease pathogenesis. Forkhead box P3 (FoxP3)+ regulatory T lymphocytes (Treg) are anti-inflammatory cells that maintain immune tolerance and counteract tissue damage in a variety of immune-mediated disorders. Dysfunction or a reduced frequency of Tregs have been associated with different human autoimmune disorders. We here analyzed the functional relevance of Tregs in determining disease manifestation and severity in murine models of autoimmune neuropathies. We took advantage of the DEREG mouse system allowing depletion of Treg with high specificity as well as anti-CD25 directed antibodies to deplete Tregs in mice in actively induced experimental autoimmune neuritis (EAN). Furthermore antibody-depletion was performed in an adoptive transfer model of chronic neuritis. Early Treg depletion increased clinical EAN severity both in active and adoptive transfer chronic neuritis. This was accompanied by increased proliferation of myelin specific T cells and histological signs of peripheral nerve inflammation. Late stage Treg depletion after initial disease manifestation however did not exacerbate inflammatory neuropathy symptoms further. We conclude that Tregs determine disease severity in experimental autoimmune neuropathies during the initial priming phase, but have no major disease modifying function after disease manifestation. Potential future therapeutic approaches targeting Tregs should thus be performed early in inflammatory neuropathies.
Collapse
Affiliation(s)
- Gerd Meyer zu Hörste
- Department of Neurology, Heinrich-Heine-University, Medical Faculty, Düsseldorf, Germany
- * E-mail:
| | - Steffen Cordes
- Department of Neurology, Heinrich-Heine-University, Medical Faculty, Düsseldorf, Germany
| | - Anne K. Mausberg
- Department of Neurology, Heinrich-Heine-University, Medical Faculty, Düsseldorf, Germany
| | - Alla L. Zozulya
- Department of Neurology, Julius-Maximilians-University, Würzburg, Germany
| | - Carsten Wessig
- Department of Neurology, Julius-Maximilians-University, Würzburg, Germany
| | - Tim Sparwasser
- Institute for Infection Immunology, TWINCORE, Center for Experimental and Clinical Infection Research, Hannover, Germany
| | - Christian Mathys
- Department of Diagnostic and Interventional Radiology, Heinrich-Heine-University, Medical Faculty, Düsseldorf, Germany
| | - Heinz Wiendl
- Department of Neurology, University of Münster, Münster, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Heinrich-Heine-University, Medical Faculty, Düsseldorf, Germany
| | - Bernd C. Kieseier
- Department of Neurology, Heinrich-Heine-University, Medical Faculty, Düsseldorf, Germany
| |
Collapse
|
27
|
Zhao Y. The different effects of cyclosporin A and rapamycin on regulatory CD4+CD25+T cells: potential relationship with transplant tolerance induction. Expert Rev Clin Immunol 2014; 3:245-9. [DOI: 10.1586/1744666x.3.3.245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
28
|
Tucker RM, Feldman AG, Fenner EK, Mack CL. Regulatory T cells inhibit Th1 cell-mediated bile duct injury in murine biliary atresia. J Hepatol 2013; 59:790-6. [PMID: 23685050 PMCID: PMC3855478 DOI: 10.1016/j.jhep.2013.05.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 04/30/2013] [Accepted: 05/03/2013] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Biliary atresia (BA) is a pediatric inflammatory disease of the biliary system which leads to cirrhosis and the need for liver transplantation. One theory regarding etiology is that bile duct injury is due to virus-induced autoreactive T cell-mediated inflammation. Regulatory T cell (Treg) abnormalities in BA could result in unchecked bystander inflammation and autoimmunity targeting bile ducts. The aim of this study was to determine if Tregs are dysfunctional in the rotavirus-induced mouse model of BA (murine BA). METHODS Murine BA resulted from infection of BALB/c neonates with Rhesus rotavirus (RRV). RESULTS Liver Tregs from BA mice were decreased in number, activation marker expression, and suppressive function. Adoptive transfer studies revealed that RRV-infected mice that received Tregs had significantly increased survival (84%) compared to controls (12.5%). In addition, ablation of Tregs in older mice, followed by RRV infection, resulted in increased bile duct injury. CONCLUSIONS These studies demonstrate that dysregulation of Tregs is present in murine BA and that diminished Treg function may be implicated in the pathogenesis of human BA.
Collapse
Affiliation(s)
| | | | | | - Cara L. Mack
- University of Colorado, Denver,Children’s Hospital Colorado, Denver, CO 80262
| |
Collapse
|
29
|
CD4+CD25+ Regulatory T Cells Attenuate Lipopolysaccharide-Induced Systemic Inflammatory Responses and Promotes Survival in Murine Escherichia coli Infection. Shock 2013; 40:65-73. [DOI: 10.1097/shk.0b013e318296e65b] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
30
|
Kirsch AH, Smaczny N, Riegelbauer V, Sedej S, Hofmeister A, Stojakovic T, Goessler W, Brodmann M, Pilger E, Rosenkranz AR, Eller K, Eller P. Regulatory T cells improve nephrocalcinosis but not dystrophic cardiac calcinosis in DBA/2 mice. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:382-90. [PMID: 23746654 DOI: 10.1016/j.ajpath.2013.04.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 04/17/2013] [Accepted: 04/24/2013] [Indexed: 12/24/2022]
Abstract
Nephrocalcinosis is characterized by aberrant deposition of calcium in the kidneys and is seen in phosphate nephropathy, primary hyperparathyroidism, and distal renal tubular acidosis. To further evaluate the specific pathophysiologic role of T cells in ectopic calcification, we used DBA/2 mice that are prone to develop nephrocalcinosis and dystrophic cardiac calcinosis. Female DBA/2 mice were depleted of T cells (n = 10) or regulatory T cells (Tregs) (n = 15) using either an anti-CD3ɛ or an anti-CD25 monoclonal antibody and compared with isotype-treated controls (n = 9; n = 15), respectively. After this immunomodulation, the DBA/2 mice were given a high-phosphate diet for 9 days and the degree of calcification was assessed by microcomputed tomography. Successful depletion was confirmed by flow cytometry of splenocytes. In DBA/2 mice, the high-phosphate diet induced a phenotype of nephrocalcinosis and dystrophic cardiac calcinosis. T-cell depletion significantly increased renal calcification in microcomputed tomography (P = 0.022). Concordantly, Treg depletion significantly deteriorated acute phosphate nephropathy (P = 0.039) and was associated with a significantly increased mortality rate (P = 0.004). Immunomodulation had no impact on the amount of cardiac calcification. Semiquantitative histopathologic evaluations with Alizarin Red staining independently confirmed the respective radiologic measurements. In summary, our data suggest a pivotal role of T cells, particularly Tregs, in the progression of nephrocalcinosis and emphasize the fact that inflammation deteriorates the outcome in acute phosphate nephropathy.
Collapse
Affiliation(s)
- Alexander H Kirsch
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Role of Th17 cells in the pathogenesis of CNS inflammatory demyelination. J Neurol Sci 2013; 333:76-87. [PMID: 23578791 DOI: 10.1016/j.jns.2013.03.002] [Citation(s) in RCA: 215] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 02/19/2013] [Accepted: 03/04/2013] [Indexed: 12/30/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS). The etiology of MS is not well understood, but it is believed that myelin-specific CD4(+) T cells play a central role in initiating and orchestrating CNS inflammation. In this scenario, CD4(+) T cells, activated in the periphery, infiltrate the CNS, where, by secreting cytokines and chemokines, they start an inflammatory cascade. Given the central role of CD4(+) T cells in CNS autoimmunity, they have been studied extensively, principally by using experimental autoimmune encephalomyelitis (EAE), an animal model of MS. In the late 1980s, CD4(+) T cells, based on their cytokine production, were divided into two helper lineages, Th1 and Th2 cells. It was postulated that Th1 cells, which produce IFN-γ, mediate inflammation of the CNS in MS/EAE, while Th2 cells, which produce IL-4, have a beneficial effect in disease, because of their antagonistic effect on Th1 cells. The Th1/Th2 paradigm remained the prevailing view of MS/EAE pathogenesis until 2005, when a new lineage, Th17, was discovered. In a relatively short period of time it became apparent that Th17 cells, named after their hallmark cytokine, IL-17A, play a crucial role in many inflammatory diseases, including EAE, and likely in MS as well. The Th17 paradigm developed rapidly, initiating the debate of whether Th1 cells contribute to EAE/MS pathogenesis at all, or if they might even have a protective role due to their antagonistic effects on Th17 cells. Numerous findings support the view that Th17 cells play an essential role in autoimmune CNS inflammation, perhaps mainly in the initial phases of disease. Th1 cells likely contribute to pathogenesis, with their role possibly more pronounced later in disease. Hence, the current view on the role of Th cells in MS/EAE pathogenesis can be called the Th17/Th1 paradigm. It is certain that Th17 cells will continue to be the focus of intense investigation aimed at elucidating the pathogenesis of CNS autoimmunity.
Collapse
|
32
|
Subramanian M, Thorp E, Hansson GK, Tabas I. Treg-mediated suppression of atherosclerosis requires MYD88 signaling in DCs. J Clin Invest 2012; 123:179-88. [PMID: 23257360 DOI: 10.1172/jci64617] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 10/25/2012] [Indexed: 11/17/2022] Open
Abstract
TLR activation on CD11c+ DCs triggers DC maturation, which is critical for T cell activation. Given the expansion of CD11c+ DCs during the progression of atherosclerosis and the key role of T cell activation in atherogenesis, we sought to understand the role of TLR signaling in CD11c+ DCs in atherosclerosis. To this end, we used a mouse model in which a key TLR adaptor involved in DC maturation, MYD88, is deleted in CD11c+ DCs. We transplanted bone marrow containing Myd88-deficient CD11c+ DCs into Western diet-fed LDL receptor knockout mice and found that the transplanted mice had decreased activation of effector T cells in the periphery as well as decreased infiltration of both effector T cells and Tregs in atherosclerotic lesions. Surprisingly, the net effect was an increase in atherosclerotic lesion size due to an increase in the content of myeloid-derived inflammatory cells. The mechanism involves increased lesional monocyte recruitment associated with loss of Treg-mediated suppression of MCP-1. Thus, the dominant effect of MYD88 signaling in CD11c+ DCs in the setting of atherosclerosis is to promote the development of atheroprotective Tregs. In the absence of MYD88 signaling in CD11c+ DCs, the loss of this protective Treg response trumps the loss of proatherogenic T effector cell activation.
Collapse
|
33
|
Filipazzi P, Pilla L, Mariani L, Patuzzo R, Castelli C, Camisaschi C, Maurichi A, Cova A, Rigamonti G, Giardino F, Di Florio A, Asioli M, Frati P, Sovena G, Squarcina P, Maio M, Danielli R, Chiarion-Sileni V, Villa A, Lombardo C, Tragni G, Santinami M, Parmiani G, Rivoltini L. Limited induction of tumor cross-reactive T cells without a measurable clinical benefit in early melanoma patients vaccinated with human leukocyte antigen class I-modified peptides. Clin Cancer Res 2012; 18:6485-96. [PMID: 23032742 DOI: 10.1158/1078-0432.ccr-12-1516] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The progressive immune dysfunctions that occur in patients with advanced melanoma make them unlikely to efficiently respond to cancer vaccines. A multicenter randomized phase II trial was conducted to test whether immunization with modified HLA class I tumor peptides in the context of adjuvant therapy results in better immunologic responses and improved clinical outcomes in patients with early melanoma (stages IIB/C-III). EXPERIMENTAL DESIGN Forty-three patients were enrolled to undergo vaccination (n = 22) or observation (n = 21). The vaccine included four HLA-A*0201-restricted modified peptides (Melan-A/MART-1([27L]), gp100([210M]), NY-ESO-1([165V]), and Survivin([97M])) emulsified in Montanide ISA51 and injected subcutaneously in combination with cyclophosphamide (300 mg/m(2)) and low-dose IL-2 (3 × 10(6) IU). The immune responses were monitored using ex vivo IFN-γ-ELISpot, HLA/multimer staining, and in vitro short-term peptide sensitization assays. RESULTS Vaccination induced a rapid and persistent increase in specific effector memory CD8(+) T cells in 75% of the patients. However, this immunization was not associated with any significant increase in disease-free or overall survival as compared with the observation group. An extensive immunologic analysis revealed a significantly reduced cross-recognition of the corresponding native peptides and, most importantly, a limited ability to react to melanoma cells. CONCLUSIONS Adjuvant setting is an appealing approach for testing cancer vaccines because specific CD8(+) T cells can be efficiently induced in most vaccinated patients. However, the marginal antitumor activity of the T cells induced by modified peptides in this study largely accounts for the observed lack of benefit of vaccination. These findings suggest reconsidering this immunization strategy, particularly in early disease.
Collapse
Affiliation(s)
- Paola Filipazzi
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Li J, Qiu SJ, She WM, Wang FP, Gao H, Li L, Tu CT, Wang JY, Shen XZ, Jiang W. Significance of the balance between regulatory T (Treg) and T helper 17 (Th17) cells during hepatitis B virus related liver fibrosis. PLoS One 2012; 7:e39307. [PMID: 22745730 PMCID: PMC3380028 DOI: 10.1371/journal.pone.0039307] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 05/18/2012] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Hepatitis B virus-related liver fibrosis (HBV-LF) always progresses from inflammation to fibrosis. However, the relationship between these two pathological conditions is not fully understood. Here, it is postulated that the balance between regulatory T (Treg) cells and T helper 17 (Th17) cells as an indicator of inflammation may predict fibrosis progression of HBV-LF. METHODOLOGY/PRINCIPAL FINDINGS The frequencies and phenotypes of peripheral Treg and Th17 cells of seventy-seven HBeAg-positive chronic hepatitis B (CHB) patients who underwent liver biopsies and thirty healthy controls were determined by flow cytometry. In the periphery of CHB patients, both Treg and Th17 frequencies were significantly increased and correlated, and a lower Treg/Th17 ratio always indicated more liver injury and fibrosis progression. To investigate exact effects of Treg and Th17 cells during HBV-LF, a series of in vitro experiments were performed using purified CD4(+), CD4(+)CD25(+), or CD4(+)CD25(-) cells from the periphery, primary human hepatic stellate cells (HSCs) isolated from healthy liver specimens, human recombinant interleukin (IL)-17 cytokine, anti-IL-17 antibody and HBcAg. In response to HBcAg, CD4(+)CD25(+) cells significantly inhibited cell proliferation and cytokine production (especially IL-17 and IL-22) by CD4(+)CD25(-) cells in cell-contact and dose-dependent manners. In addition, CD4(+) cells from CHB patients, compared to those from HC subjects, dramatically promoted proliferation and activation of human HSCs. Moreover, in a dramatically dose-dependent manner, CD4(+)CD25(+) cells from CHB patients inhibited, whereas recombinant IL-17 response promoted the proliferation and activation of HSCs. Finally, in vivo evidence about effects of Treg/Th17 balance during liver fibrosis was obtained in concanavalin A-induced mouse fibrosis models via depletion of CD25(+) or IL-17(+) cells, and it's observed that CD25 depletion promoted, whereas IL-17 depletion, alleviated liver injury and fibrosis progression. CONCLUSIONS/SIGNIFICANCE The Treg/Th17 balance might influence fibrosis progression in HBV-LF via increase of liver injury and promotion of HSCs activation.
Collapse
Affiliation(s)
- Jing Li
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shuang-Jian Qiu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei-Min She
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fu-Ping Wang
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hong Gao
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lei Li
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chuan-Tao Tu
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ji-Yao Wang
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xi-Zhong Shen
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Jiang
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
36
|
Microvesicles derived from mesenchymal stem cells: potent organelles for induction of tolerogenic signaling. Immunol Lett 2012; 147:47-54. [PMID: 22705267 DOI: 10.1016/j.imlet.2012.06.001] [Citation(s) in RCA: 249] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 06/01/2012] [Accepted: 06/06/2012] [Indexed: 12/15/2022]
Abstract
Generation and maintenance of immunological tolerance is a pivotal aim in the field of autoimmunity. Regulatory molecules of Programmed Death Ligand-1 (PD-L1), galectin-1 and TGF-β are described as key mediators of peripheral tolerance that actively suppress auto-reactive cells and inhibit their mediated tissue damages. Accordingly, biological intervention in host immune system for induction of peripheral tolerance is pivot to many of the recent studies. Mesenchymal stem cell-derived microvesicles (MVs) are viewed as potential mediators to shed peripheral tolerance toward auto-reactive cells via bearing of tolerogenic molecules. Here, MVs were isolated from mesenchymal stem cell (MSC) cultures' conditioned medium. They were explored for the expression of PD-L1, galectin-1 and membrane bound TGF-β through flow cytometry. The immunoregulatory effects of MVs on splenic mononuclear cells (MNCs) derived from experimental autoimmune encephalomyelitis (EAE) affected mice were investigated using MTT assay, ELISA and flow cytometry. MVs derived from MSCs expressed PD-L1, galecin-1 and membrane-bound TGF-β. MVs exhibited the potential to inhibit auto-reactive lymphocyte proliferation and also the potency to promote them to secret anti-inflammatory cytokines of IL-10 and TGF-β. Interestingly, inducing inflammatory setting on MSCs, revealed the enhancing regulatory effects of MVs via increased expression of some regulatory molecules, specifically PD-L1 and TGF-β. Induction of tolerogenic signaling, promotion of CD4+ CD25+ Foxp3+ regulatory T cells generation and apoptotic activity towards activated T cells are shown to be possible mechanisms involved in MV-mediated regulation. Recent study suggests MSC-derived MVs as potent organelles for induction of peripheral tolerance and modulation of immune responses.
Collapse
|
37
|
Walline CC, Kanakasabai S, Bright JJ. Dynamic interplay of T helpercell subsets in experimental autoimmune encephalomyelitis. World J Immunol 2012; 2:1-13. [DOI: 10.5411/wji.v2.i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
AIM: To investigate the temporal onset and dynamic interplay of CD4+ T helper cell subsets in experimental autoimmune encephalomyelitis (EAE).
METHODS: EAE was induced in C57BL/6 mice by immunization with myelin oligodendrocyte glycoprotein peptide p35-55. The clinical signs were scored and the tissue samples and immune cells isolated for analysis at different phases of EAE. The expression levels of inflammatory cytokines and related transcription factors were detected by quantitative reverse transcription polymerase chain reaction (PCR) and enzyme linked immunosorbant assay (ELISA). The percentages of Th1, Th17, Th2, Treg and memory T cell subsets in EAE were analyzed by immunostaining and flow cytometry. The data were analyzed by statistical techniques.
RESULTS: Quantitative real-time PCR analysis showed that EAE mice express elevated levels of Th1 [interferon gamma (IFNγ), interleukin (IL)-12p40], Th17 [IL-17, related orphan receptor gamma (RORγ), IL-12p40] and Treg [Foxp3, Epstein-Barr virus induced gene 3 (EBI3), IL-10] genes in the central nervous system at the peak of the disease. Whereas, the expression of Th1 (IFNγ, T-bet, IL-12p35, IL-12p40), Th17 (RORγ, IL-12p40), Th2 (IL-4) and Treg (Foxp3, EBI3) response genes was reduced in the spleen during pre-disease but gradually recovered at the later phases of EAE. ELISA and flow cytometry analyses showed an increase in Th17 response in the periphery, while Th1 response remained unchanged at the peak of disease. The mRNA levels of IFNγ, IL-17 and IL-12p40 in the brain were increased by 23 (P < 0.001), 9 (P < 0.05) and 14 (P < 0.01) fold, respectively, on day 21 of EAE. Conversely, the mRNA expression of IL-10 was increased by 2 fold (P < 0.05) in the spleen on day 21. CD4+CD25+Foxp3+Treg response was reduced at pre-disease but recovered to naïve levels by disease onset. The percentage of CD25+Foxp3+ regulatory T cells decreased from 7.7% in the naïve to 3.2% (P < 0.05) on day 7 of EAE, which then increased to 8.4% by day 28. Moreover, the CD4+CD127+CD44high memory T cell response was increased during the onset and recovery phases of EAE. The memory and effector cells showed an inverse relationship in EAE, where the memory T cells increased from 12.3% in naïve to 20% by day 21, and the effector cells decreased from 32% in naïve to 21% (P < 0.01) by day 21. The wild type C57BL/6 mice with EAE showed elevated levels of effector-memory T cells (TEM) with concomitant reduction in central-memory T cells (TCM), but the EAE-resistant IL-7R deficient mice showed elevated TCM with no effect on TEM cells in EAE.
CONCLUSION: Our findings highlight the temporal onset and dynamic interplay of effector, memory and regulatory CD4+ T cell subsets and its significance to clinical outcome in EAE and other autoimmune diseases.
Collapse
|
38
|
Dyson JM, Fedele CG, Davies EM, Becanovic J, Mitchell CA. Phosphoinositide phosphatases: just as important as the kinases. Subcell Biochem 2012; 58:215-279. [PMID: 22403078 DOI: 10.1007/978-94-007-3012-0_7] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Phosphoinositide phosphatases comprise several large enzyme families with over 35 mammalian enzymes identified to date that degrade many phosphoinositide signals. Growth factor or insulin stimulation activates the phosphoinositide 3-kinase that phosphorylates phosphatidylinositol (4,5)-bisphosphate [PtdIns(4,5)P(2)] to form phosphatidylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P(3)], which is rapidly dephosphorylated either by PTEN (phosphatase and tensin homologue deleted on chromosome 10) to PtdIns(4,5)P(2), or by the 5-phosphatases (inositol polyphosphate 5-phosphatases), generating PtdIns(3,4)P(2). 5-phosphatases also hydrolyze PtdIns(4,5)P(2) forming PtdIns(4)P. Ten mammalian 5-phosphatases have been identified, which regulate hematopoietic cell proliferation, synaptic vesicle recycling, insulin signaling, and embryonic development. Two 5-phosphatase genes, OCRL and INPP5E are mutated in Lowe and Joubert syndrome respectively. SHIP [SH2 (Src homology 2)-domain inositol phosphatase] 2, and SKIP (skeletal muscle- and kidney-enriched inositol phosphatase) negatively regulate insulin signaling and glucose homeostasis. SHIP2 polymorphisms are associated with a predisposition to insulin resistance. SHIP1 controls hematopoietic cell proliferation and is mutated in some leukemias. The inositol polyphosphate 4-phosphatases, INPP4A and INPP4B degrade PtdIns(3,4)P(2) to PtdIns(3)P and regulate neuroexcitatory cell death, or act as a tumor suppressor in breast cancer respectively. The Sac phosphatases degrade multiple phosphoinositides, such as PtdIns(3)P, PtdIns(4)P, PtdIns(5)P and PtdIns(3,5)P(2) to form PtdIns. Mutation in the Sac phosphatase gene, FIG4, leads to a degenerative neuropathy. Therefore the phosphatases, like the lipid kinases, play major roles in regulating cellular functions and their mutation or altered expression leads to many human diseases.
Collapse
Affiliation(s)
- Jennifer M Dyson
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Rd, 3800, Clayton, Australia
| | | | | | | | | |
Collapse
|
39
|
Ferraro A, Socci C, Stabilini A, Valle A, Monti P, Piemonti L, Nano R, Olek S, Maffi P, Scavini M, Secchi A, Staudacher C, Bonifacio E, Battaglia M. Expansion of Th17 cells and functional defects in T regulatory cells are key features of the pancreatic lymph nodes in patients with type 1 diabetes. Diabetes 2011; 60:2903-13. [PMID: 21896932 PMCID: PMC3198077 DOI: 10.2337/db11-0090] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Autoimmune diseases, including type 1 diabetes, are thought to have a Th17-cell bias and/or a T-regulatory cell (Treg) defect. Understanding whether this is a hallmark of patients with type 1 diabetes is a crucial question that is still unsolved, largely due to the difficulties of accessing tissues targeted by the disease. RESEARCH DESIGN AND METHODS We phenotypically and functionally characterized Th17 cells and Tregs residing in the pancreatic-draining lymph nodes (PLNs) of 19 patients with type 1 diabetes and 63 nondiabetic donors and those circulating in the peripheral blood of 14 type 1 diabetic patients and 11 healthy subjects. RESULTS We found upregulation of Th17 immunity and functional defects in CD4(+)CD25(bright) Tregs in the PLNs of type 1 diabetic subjects but not in their peripheral blood. In addition, the proinsulin-specific Treg-mediated control was altered in the PLNs of diabetic patients. The dysfunctional Tregs isolated from diabetic subjects did not contain contaminant effector T cells and were all epigenetically imprinted to be suppressive, as defined by analysis of the Treg-specific demethylated region within the forkhead box P3 (FOXP3) locus. CONCLUSIONS These data provide evidence for an unbalanced immune status in the PLNs of type 1 diabetic subjects, and treatments restoring the immune homeostasis in the target organ of these patients represent a potential therapeutic strategy.
Collapse
Affiliation(s)
- Alessandra Ferraro
- Diabetes Research Institute, San Raffaele Scientific Institute, Milan, Italy
- Telethon Institute for Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Carlo Socci
- Department of Surgery, San Raffaele Scientific Institute, Milan, Italy
| | - Angela Stabilini
- Diabetes Research Institute, San Raffaele Scientific Institute, Milan, Italy
- Telethon Institute for Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Valle
- Diabetes Research Institute, San Raffaele Scientific Institute, Milan, Italy
- Telethon Institute for Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Monti
- Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Lorenzo Piemonti
- Diabetes Research Institute, San Raffaele Scientific Institute, Milan, Italy
| | - Rita Nano
- Diabetes Research Institute, San Raffaele Scientific Institute, Milan, Italy
| | | | - Paola Maffi
- Department of Transplantation Medicine, San Raffaele Scientific Institute, Milan, Italy
| | - Marina Scavini
- Diabetes Research Institute, San Raffaele Scientific Institute, Milan, Italy
| | - Antonio Secchi
- Vita-Salute San Raffaele University, Milan, Italy
- Department of Transplantation Medicine, San Raffaele Scientific Institute, Milan, Italy
| | - Carlo Staudacher
- Vita-Salute San Raffaele University, Milan, Italy
- Department of Surgery, San Raffaele Scientific Institute, Milan, Italy
| | - Ezio Bonifacio
- Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Manuela Battaglia
- Diabetes Research Institute, San Raffaele Scientific Institute, Milan, Italy
- Corresponding author: Manuela Battaglia,
| |
Collapse
|
40
|
Chen G, Hardy K, Pagler E, Ma L, Lee S, Gerondakis S, Daley S, Shannon MF. The NF-κB transcription factor c-Rel is required for Th17 effector cell development in experimental autoimmune encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2011; 187:4483-91. [PMID: 21940679 DOI: 10.4049/jimmunol.1101757] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a T cell-mediated autoimmune disease involving effector Th subsets such as Th1 and Th17. In this study, we demonstrate that mice lacking the NF-κB transcription factor family member c-Rel (rel(-/-)), which are known to be resistant to EAE, show impaired Th17 development. Mixed bone marrow chimeras and EAE adoptive transfer experiments show that the deficiency of effector Th17 cells in rel(-/-) mice is T cell intrinsic. Consistent with this finding, c-Rel was activated in response to TCR signaling in the early stages of Th17 development and controlled the expression of Rorc, which encodes the Th17 transcription factor retinoic acid-related orphan receptor γt. CD28, but not IL-2, repression of Th17 development was dependent on c-Rel, implicating a dual role for c-Rel in modulating Th17 development. Adoptive transfer experiments also suggested that c-Rel control of regulatory T cell differentiation and homeostasis influences EAE development and severity by influencing the balance between Th17 and regulatory T cells. Collectively, our findings indicate that in addition to promoting Th1 differentiation, c-Rel regulates the development and severity of EAE via multiple mechanisms that impact on the generation of Th17 cells.
Collapse
Affiliation(s)
- Guobing Chen
- Gene Expression and Epigenomics Laboratory, Department of Genome Biology, The John Curtin School of Medical Research, Australian National University, Canberra 2600, Australia
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Bassil R, Zhu B, Lahoud Y, Riella LV, Yagita H, Elyaman W, Khoury SJ. Notch ligand delta-like 4 blockade alleviates experimental autoimmune encephalomyelitis by promoting regulatory T cell development. THE JOURNAL OF IMMUNOLOGY 2011; 187:2322-8. [PMID: 21813770 DOI: 10.4049/jimmunol.1100725] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Notch signaling pathway plays an important role in T cell differentiation. Delta-like ligand (Dll)4, one of five known Notch ligands, has been implicated in regulating Th2 cell differentiation in animal models of human diseases. However, the role of Dll4 in Th1/Th17-mediated autoimmune diseases remains largely unknown. Using an anti-Dll4 blocking mAb, we show that neutralizing Dll4 during the induction phase of experimental autoimmune encephalomyelitis in C57BL/6 mice significantly increased the pool of CD4(+)Foxp3(+) regulatory T cells (Treg) in the periphery and in the CNS, and decreased the severity of clinical disease and CNS inflammation. Dll4 blockade promoted induction of myelin-specific Th2/Treg immune responses and impaired Th1/Th17 responses compared with IgG-treated mice. In vitro, we show that signaling with recombinant Dll4 inhibits the TGF-β-induced Treg development, and inhibits Janus kinase 3-induced STAT5 phosphorylation, a transcription factor known to play a key role in Foxp3 expression and maintenance. Depletion of natural Treg using anti-CD25 Ab reversed the protective effects of anti-Dll4 Ab. These findings outline a novel role for Dll4-Notch signaling in regulating Treg development in EAE, making it an encouraging target for Treg-mediated immunotherapy in autoimmune diseases, such as multiple sclerosis.
Collapse
Affiliation(s)
- Ribal Bassil
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Alexander CM, Tygrett LT, Boyden AW, Wolniak KL, Legge KL, Waldschmidt TJ. T regulatory cells participate in the control of germinal centre reactions. Immunology 2011; 133:452-68. [PMID: 21635248 DOI: 10.1111/j.1365-2567.2011.03456.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Germinal centre (GC) reactions are central features of T-cell-driven B-cell responses, and the site where antibody-producing cells and memory B cells are generated. Within GCs, a range of complex cellular and molecular events occur which are critical for the generation of high affinity antibodies. These processes require exquisite regulation not only to ensure the production of desired antibodies, but to minimize unwanted autoreactive or low affinity antibodies. To assess whether T regulatory (Treg) cells participate in the control of GC responses, immunized mice were treated with an anti-glucocorticoid-induced tumour necrosis factor receptor-related protein (GITR) monoclonal antibody (mAb) to disrupt Treg-cell activity. In anti-GITR-treated mice, the GC B-cell pool was significantly larger compared with control-treated animals, with switched GC B cells composing an abnormally high proportion of the response. Dysregulated GCs were also observed regardless of strain, T helper type 1 or 2 polarizing antigens, and were also seen after anti-CD25 mAb treatment. Within the spleens of immunized mice, CXCR5(+) and CCR7(-) Treg cells were documented by flow cytometry and Foxp3(+) cells were found within GCs using immunohistology. Final studies demonstrated administration of either anti-transforming growth factor-β or anti-interleukin-10 receptor blocking mAb to likewise result in dysregulated GCs, suggesting that generation of inducible Treg cells is important in controlling the GC response. Taken together, these findings indicate that Treg cells contribute to the overall size and quality of the humoral response by controlling homeostasis within GCs.
Collapse
Affiliation(s)
- Carla-Maria Alexander
- Department of Pathology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
43
|
Forde EA, Dogan RNE, Karpus WJ. CCR4 contributes to the pathogenesis of experimental autoimmune encephalomyelitis by regulating inflammatory macrophage function. J Neuroimmunol 2011; 236:17-26. [PMID: 21575994 DOI: 10.1016/j.jneuroim.2011.04.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 04/13/2011] [Accepted: 04/19/2011] [Indexed: 12/17/2022]
Abstract
Chemokines and their receptors play a critical role in orchestrating the immune response during experimental autoimmune encephalomyelitis (EAE). Expression of CCR4 and its ligand CCL22 has been observed in ongoing disease. Here we describe a role for CCR4 in EAE, illustrating delayed and decreased disease incidence in CCR4(-/-) mice corresponding with diminished CNS infiltrate. Peripheral T cell responses were unaltered in CCR4(-/-) mice; rather, disease reduction was related to reduced CD11b(+)Ly6C(hi) inflammatory macrophage (iMϕ) numbers and function. These results provide evidence that CCR4 regulates EAE development and further supports the involvement of CCR4 in iMϕ effector function.
Collapse
Affiliation(s)
- Eileen A Forde
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | | | | |
Collapse
|
44
|
Feinerman O, Jentsch G, Tkach KE, Coward JW, Hathorn MM, Sneddon MW, Emonet T, Smith KA, Altan-Bonnet G. Single-cell quantification of IL-2 response by effector and regulatory T cells reveals critical plasticity in immune response. Mol Syst Biol 2011; 6:437. [PMID: 21119631 PMCID: PMC3010113 DOI: 10.1038/msb.2010.90] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 10/04/2010] [Indexed: 02/06/2023] Open
Abstract
The sensitivity of T cells to interleukin-2 (IL-2) can vary by three orders of magnitude and is determined by the surface densities of the IL-2 receptor α subunits. Regulatory T cells inflict a double hit on effector T cells by lowering the bulk IL-2 concentration as well as the sensitivity of effector T cells to this crucial cytokine. This double hit deprives weakly activated effector T cells of pSTAT5 survival signals while having only minimal effects on strongly activated effector cells that express increased levels of the IL-2 receptor. Short-term signaling differences lead to a differential functional in terms of proliferation and cell division: regulatory T cell specifically suppress weakly activated effector T cells even at large numbers; small numbers of strongly activated effector T cells overcome the suppression.
Self-/non-self-discrimination in the adaptive immune system relies, to a large extent, on distinctions between self-antigens and foreign antigens as made by individual T cells. As such, single-cell decisions are prone to errors a reliable immune response can be expected to incorporate further proofreading schemes. One such scheme involves long time scale, population-level interactions between effector (Teff) and regulatory (Treg) T cells. Treg cells are often described as immune suppressors; their role as immune regulators can be understood by mapping out the scenarios in which Treg suppression is either significant or insignificant. In this study, we have focused on one mechanism that allows Treg cells to suppress Teff survival, namely, interleukin-2 (IL-2) deprivation. Following antigen activation, Teff cells secrete IL-2 and express the α subunit of the IL-2 receptor (IL-2r). The binding of extracellular IL-2 to the IL-2r is crucial for Teff survival and proliferation and consequently for a full-blown immune response. Treg cells deplete this IL-2 from the environment and deprive the Teff cells of this important survival signal. In this tug-of-war for IL-2, we sought to quantitatively describe those scenarios in which IL-2 uptake by Treg cells suffices to suppress Teff cell activation and those where it does not. The core of this competition for IL-2 lies in the fact that IL-2rα is expressed on both Teff and Treg cells. To understand how IL-2 binds to its receptor, we measured IL-2r subunit levels on single cells, together with STAT5 phosphorylation as evoked by varied IL-2. Contrary to previous descriptions that set the EC50 of IL-2/IL-2r interaction at 10 pM, we found that the sensitivity of T cells to IL-2 varies over three orders of magnitude concentrations (Figure 1E, experiment). Teff cells with higher levels of IL-2rα receptor subunit are more sensitive to IL-2, Treg cells with higher levels of IL-2rα are more efficient in the scavenging of IL-2. IL-2rβ levels, on the other hand, determine response amplitudes. We describe a short time scale, two-step model to quantitatively describe IL-2 binding onto individual cells (Figure 1E, theory). IL-2r expression levels are therefore a crucial parameter for determining the outcome of the competition for IL-2. We measured the regulation of IL-2r subunits on longer time scales in cultures of either Teff or Treg cells. For both cell types, IL-2r levels depend on the exposure to IL-2. For Teff cells, there is a further dependence on the concentration of antigen by which they were activated. We then measured IL-2r expression in cocultures of Treg and Teff cells. We show how IL-2 secreted by activated Teff cells suffices in inducing IL-2rα upregulation in the Treg population. We further show that the presence of Treg cells decreased IL-2r upregulation in cocultured weakly activated Teff cells. Treg cells thus inflict a double hit on Teff cells by reducing not only extracellular IL-2 concentrations but also the Teff cells' ability to sense IL-2. Teff cells activated by high-antigen concentrations exhibit sustained IL-2rα expression that is less prone to this effect. We compared IL-2r levels on Treg cells and Teff activated by varied antigen concentrations and found a critical crossover: at low-antigen concentrations Treg cells have higher IL-2rα than Teff cells, but this is reversed at high-antigen concentrations. We constructed a long time scale computational model to quantify the significance of this crossover. The model describes IL-2/IL-2r binding and the regulation of IL-2 and IL-2r expression in populations of Treg and Teff cells. For a pure Teff population, our model predicted a ‘quorum-sensing' threshold implying that sustained pSTAT5 signaling requires a minimal concentration of cells that increases with decreasing activation strength. The model further predicts that the addition of Treg cells will greatly increase the quorum concentration for weakly activated Teff cells but have no effect on strongly activated Teff cells. We validated the model's predictions in vitro. We show a quorum-sensing threshold for activated Teff cells. We also show that the presence of a Treg population suppressed pSTAT5 signaling in a large number of weakly but has little effect on even a few strongly activated Teff cells (Figure 6C and D). On longer time scales, this translates to the suppression of cell division (Figure 6G and H) and proliferation (Figure 6I) in a manner that discriminates between strongly and weakly activated cells. We then went to demonstrate that IL-2 deprivation by Treg cells takes place in vivo. We used IL-2 injections to upregulate IL-2rα levels in Treg cells. As predicted by our in vitro results, such treatment leads to a suppressive environment in which Teff cells activated by subsequent antigen/LPS immunization proliferate to a lesser extent. We were able to reverse this suppressive effect by continuing IL-2 treatment post-immunization. This highlights IL-2 as a limiting factor for Teff proliferation and renders its scavenging by Treg cells an important mechanism of suppression in vivo. In conclusion, we formulated a quantitative description of IL-2/IL-2r regulation in mixed population of Treg and Teff cells. Population feedback loops that depend on cell numbers, molecular cell surface densities, free molecular densities and timing critically affect the outcome of the competition for IL-2. Such a description allows us to precisely identify the scenarios in which IL-2 deprivation by Treg cells has a major suppressive role in vitro and better understand the role of this mechanism in vivo. Understanding how the immune system decides between tolerance and activation by antigens requires addressing cytokine regulation as a highly dynamic process. We quantified the dynamics of interleukin-2 (IL-2) signaling in a population of T cells during an immune response by combining in silico modeling and single-cell measurements in vitro. We demonstrate that IL-2 receptor expression levels vary widely among T cells creating a large variability in the ability of the individual cells to consume, produce and participate in IL-2 signaling within the population. Our model reveals that at the population level, these heterogeneous cells are engaged in a tug-of-war for IL-2 between regulatory (Treg) and effector (Teff) T cells, whereby access to IL-2 can either increase the survival of Teff cells or the suppressive capacity of Treg cells. This tug-of-war is the mechanism enforcing, at the systems level, a core function of Treg cells, namely the specific suppression of survival signals for weakly activated Teff cells but not for strongly activated cells. Our integrated model yields quantitative, experimentally validated predictions for the manipulation of Treg suppression.
Collapse
Affiliation(s)
- Ofer Feinerman
- ImmunoDynamics Group, Programs in Computational Biology and Immunology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kim PS, Lee PP. T cell state transition produces an emergent change detector. J Theor Biol 2011; 275:59-69. [PMID: 21276803 DOI: 10.1016/j.jtbi.2011.01.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 01/07/2011] [Accepted: 01/19/2011] [Indexed: 12/30/2022]
Abstract
We model the stages of a T cell response from initial activation to T cell expansion and contraction using a system of ordinary differential equations. Results of this modeling suggest that state transitions enable the T cell population to detect change and respond effectively to changes in antigen stimulation levels, rather than simply the presence or absence of antigen. A key component of the system that gives rise to this emergent change detector is initial activation of naïve T cells. The activation step creates a barrier that separates the long-term, slow dynamics of naïve T cells from the short-term, fast dynamics of effector T cells. This separation allows the T cell population to compare current, up-to-date changes in antigen levels to long-term, steady state levels. As a result, the T cell population responds very effectively to sudden shifts in antigen levels, even if the antigen were already present prior to the change. This feature provides a mechanism for T cells to react to rapidly expanding sources of antigen stimulation, such as viruses, while maintaining tolerance to constant or slowly fluctuating sources of stimulation, such as healthy tissue during growth. In addition to modeling T cell activation, we also formulate a model of the proliferation of effector T cells in response to the consumption of positive growth signal, secreted throughout the T cell response. We discuss how the interaction between T cells and growth signal generates an emergent threshold detector that responds preferentially to large changes in antigen stimulation while ignoring small ones. As a final step, we discuss how the de novo generation of adaptive regulatory T cells during the latter phase of the T cell response creates a negative feedback loop that controls the duration and magnitude of the T cell response. Hence, the immune network continually adjusts to a shifting baseline of (self and non-self) antigens, and responds primarily to abrupt changes in these antigens rather than merely their presence or absence.
Collapse
Affiliation(s)
- Peter S Kim
- Department of Mathematics, University of Utah, Salt Lake City, UT 84112-0090, United States.
| | | |
Collapse
|
46
|
Chen XT, Chan ST, Hosseini H, Layton D, Boyd R, Alderuccio F, Toh BH, Chan J. Transplantation of retrovirally transduced bone marrow prevents autoimmune disease in aged mice by peripheral tolerance mechanisms. Autoimmunity 2011; 44:384-93. [DOI: 10.3109/08916934.2010.541173] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
47
|
Weber MS, Benkhoucha M, Lehmann-Horn K, Hertzenberg D, Sellner J, Santiago-Raber ML, Chofflon M, Hemmer B, Zamvil SS, Lalive PH. Repetitive pertussis toxin promotes development of regulatory T cells and prevents central nervous system autoimmune disease. PLoS One 2010; 5:e16009. [PMID: 21209857 PMCID: PMC3012729 DOI: 10.1371/journal.pone.0016009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 12/02/2010] [Indexed: 11/18/2022] Open
Abstract
Bacterial and viral infections have long been implicated in pathogenesis and progression of multiple sclerosis (MS). Incidence and severity of its animal model experimental autoimmune encephalomyelitis (EAE) can be enhanced by concomitant administration of pertussis toxin (PTx), the major virulence factor of Bordetella pertussis. Its adjuvant effect at the time of immunization with myelin antigen is attributed to an unspecific activation and facilitated migration of immune cells across the blood brain barrier into the central nervous system (CNS). In order to evaluate whether recurring exposure to bacterial antigen may have a differential effect on development of CNS autoimmunity, we repetitively administered PTx prior to immunization. Mice weekly injected with PTx were largely protected from subsequent EAE induction which was reflected by a decreased proliferation and pro-inflammatory differentiation of myelin-reactive T cells. Splenocytes isolated from EAE-resistant mice predominantly produced IL-10 upon re-stimulation with PTx, while non-specific immune responses were unchanged. Longitudinal analyses revealed that repetitive exposure of mice to PTx gradually elevated serum levels for TGF-β and IL-10 which was associated with an expansion of peripheral CD4(+)CD25(+)FoxP3(+) regulatory T cells (Treg). Increased frequency of Treg persisted upon immunization and thereafter. Collectively, these data suggest a scenario in which repetitive PTx treatment protects mice from development of CNS autoimmune disease through upregulation of regulatory cytokines and expansion of CD4(+)CD25(+)FoxP3(+) Treg. Besides its therapeutic implication, this finding suggests that encounter of the immune system with microbial products may not only be part of CNS autoimmune disease pathogenesis but also of its regulation.
Collapse
Affiliation(s)
- Martin S. Weber
- Department of Neurology, Technische Universität München, Munich, Germany
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
- * E-mail: (SSZ); (MSW)
| | - Mahdia Benkhoucha
- Department of Neurosciences, Division of Neurology, Geneva University Hospital and University of Geneva, Faculty of Medicine, Geneva, Switzerland
- Department of Pathology and Immunology, Geneva University Hospital and University of Geneva, Faculty of Medicine, Geneva, Switzerland
| | - Klaus Lehmann-Horn
- Department of Neurology, Technische Universität München, Munich, Germany
| | - Deetje Hertzenberg
- Department of Neurology, Technische Universität München, Munich, Germany
| | - Johann Sellner
- Department of Neurology, Technische Universität München, Munich, Germany
| | - Marie-Laure Santiago-Raber
- Department of Neurosciences, Division of Neurology, Geneva University Hospital and University of Geneva, Faculty of Medicine, Geneva, Switzerland
| | - Michel Chofflon
- Department of Neurosciences, Division of Neurology, Geneva University Hospital and University of Geneva, Faculty of Medicine, Geneva, Switzerland
| | - Bernhard Hemmer
- Department of Neurology, Technische Universität München, Munich, Germany
| | - Scott S. Zamvil
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
- * E-mail: (SSZ); (MSW)
| | - Patrice H. Lalive
- Department of Neurosciences, Division of Neurology, Geneva University Hospital and University of Geneva, Faculty of Medicine, Geneva, Switzerland
- Department of Pathology and Immunology, Geneva University Hospital and University of Geneva, Faculty of Medicine, Geneva, Switzerland
- Department of Genetics and Laboratory Medicine, Geneva University Hospital, University of Geneva, Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|
48
|
PPARδ deficient mice develop elevated Th1/Th17 responses and prolonged experimental autoimmune encephalomyelitis. Brain Res 2010; 1376:101-12. [PMID: 21192919 DOI: 10.1016/j.brainres.2010.12.059] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 12/17/2010] [Accepted: 12/19/2010] [Indexed: 02/04/2023]
Abstract
Multiple sclerosis (MS) is a neurological disorder that affects more than a million people worldwide. The etiology of MS is not known and there is no medical treatment that can cure MS. Earlier studies have shown that peroxisome proliferator-activated receptor (PPARs) agonists ameliorate MS-like disease in experimental allergic encephalomyelitis (EAE). In this study we have used PPARδ deficient mice to determine its physiological role in the regulation of CNS EAE and MS. We found that PPARδ(-/-) mice develop EAE with similar day of onset and disease incidence compared to C57BL/6 wild type mice. Interestingly, both male and female PPARδ(-/-) mice showed prolonged EAE with resistance to remission and recovery. PPARδ(-/-) mice with EAE expressed elevated levels of IFNγ and IL-17 along with IL-12p35 and IL-12p40 in the brain and spleen. PPARδ(-/-) mice also developed augmented neural antigen-specific Th1/Th17 responses and impaired Th2/Treg responses compared to wild type mice. These findings indicate that PPARδ(-/-) mice develop prolonged EAE in association with augmented Th1/Th17 responses, suggesting a critical physiological role for PPARδ in the remission and recovery of EAE.
Collapse
|
49
|
Anderton SM. Treg and T-effector cells in autoimmune CNS inflammation: A delicate balance, easily disturbed. Eur J Immunol 2010; 40:3321-4. [DOI: 10.1002/eji.201041100] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
50
|
Fletcher JM, Lalor SJ, Sweeney CM, Tubridy N, Mills KHG. T cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Clin Exp Immunol 2010; 162:1-11. [PMID: 20682002 DOI: 10.1111/j.1365-2249.2010.04143.x] [Citation(s) in RCA: 699] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Multiple sclerosis (MS) is a demyelinating inflammatory disorder of the central nervous system (CNS), which involves autoimmune responses to myelin antigens. Studies in experimental autoimmune encephalomyelitis (EAE), an animal model for MS, have provided convincing evidence that T cells specific for self-antigens mediate pathology in these diseases. Until recently, T helper type 1 (Th1) cells were thought to be the main effector T cells responsible for the autoimmune inflammation. However more recent studies have highlighted an important pathogenic role for CD4(+) T cells that secrete interleukin (IL)-17, termed Th17, but also IL-17-secreting γδ T cells in EAE as well as other autoimmune and chronic inflammatory conditions. This has prompted intensive study of the induction, function and regulation of IL-17-producing T cells in MS and EAE. In this paper, we review the contribution of Th1, Th17, γδ, CD8(+) and regulatory T cells as well as the possible development of new therapeutic approaches for MS based on manipulating these T cell subtypes.
Collapse
Affiliation(s)
- J M Fletcher
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity College, St Vincent's University Hospital, Dublin, Ireland
| | | | | | | | | |
Collapse
|