1
|
George C, Kortheerakul C, Khunthong N, Sharma C, Luo D, Chan KG, Daroch M, Hyde KD, Lee PKH, Goh KM, Waditee-Sirisattha R, Pointing SB. Spatial scale modulates stochastic and deterministic influence on biogeography of photosynthetic biofilms in Southeast Asian hot springs. ENVIRONMENTAL MICROBIOME 2025; 20:50. [PMID: 40361225 PMCID: PMC12070648 DOI: 10.1186/s40793-025-00711-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 04/18/2025] [Indexed: 05/15/2025]
Abstract
Hot springs, with their well-characterized major abiotic variables and island-like habitats, are ideal systems for studying microbial biogeography. Photosynthetic biofilms are a major biological feature of hot springs but despite this large-scale studies are scarce, leaving critical questions about the drivers of spatial turnover unanswered. Here, we analysed 395 photosynthetic biofilms from neutral-alkaline hot springs (39-66 °C, pH 6.4-9.0) across a 2100 km latitudinal gradient in Southeast Asia. The Cyanobacteria-dominated communities were categorized into six biogeographic regions, each characterized by a distinct core microbiome and biotic interactions. We observed a significant decline in the explanatory power of major abiotic variables with increasing spatial scale, from 62.6% locally, 55% regionally, to 26.8% for the inter-regional meta-community. Statistical null models revealed that deterministic environmental filtering predominated at local and regional scales, whereas stochastic ecological drift was more influential at the inter-regional scale. These findings enhance our understanding of the differential contribution of ecological drivers and highlight the importance of spatial scale in shaping biogeographic distributions for microorganisms.
Collapse
Affiliation(s)
- Christaline George
- Department of Biological Sciences, National University of Singapore, Singapore, 117557, Singapore
| | - Chananwat Kortheerakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nitthiya Khunthong
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chitrabhanu Sharma
- Centre of Excellence in Fungal Research & School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Danli Luo
- School of Energy and Environment & State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Kok-Gan Chan
- Institute of Biological Sciences, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Kevin D Hyde
- Centre of Excellence in Fungal Research & School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Patrick K H Lee
- School of Energy and Environment & State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Kian Mau Goh
- Department of Biosciences, Universiti Teknologi Malaysia, 81310, Bahru, Johor, Malaysia.
| | | | - Stephen B Pointing
- Department of Biological Sciences, National University of Singapore, Singapore, 117557, Singapore.
| |
Collapse
|
2
|
Shelton AN, Yu FB, Grossman AR, Bhaya D. Abundant and active community members respond to diel cycles in hot spring phototrophic mats. THE ISME JOURNAL 2025; 19:wraf001. [PMID: 39777507 PMCID: PMC11788075 DOI: 10.1093/ismejo/wraf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/16/2024] [Accepted: 01/07/2025] [Indexed: 01/11/2025]
Abstract
Photosynthetic microbial mats in hot springs can provide insights into the diel behaviors of communities in extreme environments. In this habitat, photosynthesis dominates during the day, leading to super-oxic conditions, with a rapid transition to fermentation and anoxia at night. Multiple samples were collected from two springs over several years to generate metagenomic and metatranscriptomic datasets. Metagenome-assembled genomes comprised 71 taxa (in 19 different phyla), of which 12 core taxa were present at high abundance in both springs. The eight most active taxa identified by metatranscriptomics were an oxygenic cyanobacterium (Synechococcus sp.), five anoxygenic phototrophs from three different phyla, and two understudied heterotrophs from phylum Armatimonadota. In all eight taxa, a significant fraction of genes exhibited a diel expression pattern, although peak timing varied considerably. The two abundant heterotrophs exhibit starkly different peak timing of expression, which we propose is shaped by their metabolic and genomic potential to use carbon sources that become differentially available during the diel cycle. Network analysis revealed pathway expression patterns that had not previously been linked to diel cycles, including ribosome biogenesis and chaperones. This provides a framework for analyzing metabolically coupled communities and the dominant role of the diel cycle.
Collapse
Affiliation(s)
- Amanda N Shelton
- Division of Biosphere Sciences and Engineering, Carnegie Science, Stanford, CA 94305, United States
| | - Feiqiao B Yu
- Division of Biosphere Sciences and Engineering, Carnegie Science, Stanford, CA 94305, United States
- MultiOmics Tech Center, Arc Institute, Palo Alto, CA 94304, United States
| | - Arthur R Grossman
- Division of Biosphere Sciences and Engineering, Carnegie Science, Stanford, CA 94305, United States
| | - Devaki Bhaya
- Division of Biosphere Sciences and Engineering, Carnegie Science, Stanford, CA 94305, United States
| |
Collapse
|
3
|
Tang S, Cheng X, Liu Y, Liu L, Liu D, Yan Q, Zhu J, Zhou J, Jiang Y, Hammerschmidt K, Cai Z. A unicellular cyanobacterium relies on sodium energetics to fix N 2. Nat Commun 2024; 15:9716. [PMID: 39521796 PMCID: PMC11550448 DOI: 10.1038/s41467-024-53978-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Diazotrophic cyanobacteria can fix nitrogen gas (N2) but are usually scarce in nitrogen-limited coastal waters, which poses an apparent ecological paradox. One hypothesis is that high salinities (> 10 g/L NaCl) may inhibit cyanobacterial N2 fixation. However, here we show that N2 fixation in a unicellular coastal cyanobacterium exclusively depends on sodium ions and is inhibited at low NaCl concentrations (< 4 g/L). In the absence of Na+, cells of Cyanothece sp. ATCC 51142 (recently reclassified as Crocosphaera subtropica) upregulate the expression of nifHDK genes and synthesise a higher amount of nitrogenase, but do not fix N2 and do not grow. We find that the loss of N2-fixing ability in the absence of Na+ is due to insufficient ATP supply. Additional experiments suggest that N2 fixation in this organism is driven by sodium energetics and mixed-acid fermentation, rather than proton energetics and aerobic respiration, even though cells were cultured aerobically. Further work is needed to clarify the underlying mechanisms and whether our findings are relevant to other coastal cyanobacteria.
Collapse
Affiliation(s)
- Si Tang
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong Province, PR China
| | - Xueyu Cheng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong Province, PR China
| | - Yaqing Liu
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong Province, PR China
| | - Lu Liu
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong Province, PR China
| | - Dai Liu
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong Province, PR China
| | - Qi Yan
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong Province, PR China
| | - Jianming Zhu
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong Province, PR China
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong Province, PR China
| | - Yuyang Jiang
- National Innovation Center for Molecular Drug, Shenzhen, Guangdong Province, PR China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, PR China
| | | | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong Province, PR China.
- National Innovation Center for Molecular Drug, Shenzhen, Guangdong Province, PR China.
- Technology Innovation Center for Marine Ecology and Human Factor Assessment of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong Province, PR China.
| |
Collapse
|
4
|
Shelton AN, Yu FB, Bunbury F, Yan J, Rivas C, Grossman A, Bhaya D. Draft genome of Chloroflexus sp. MS-CIW-1, of the Chloroflexus sp. MS-G group from Mushroom Spring, Yellowstone National Park. Microbiol Resour Announc 2024; 13:e0071023. [PMID: 38299837 DOI: 10.1128/mra.00710-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/15/2024] [Indexed: 02/02/2024] Open
Abstract
Chloroflexus sp. MS-CIW-1 was isolated from a phototrophic mat in Mushroom Spring, an alkaline hot spring in Yellowstone National Park, WY, USA. We report the draft genome of 4.8 Mb consisting of 6 contigs with 3755 protein-coding genes and a GC content of 54.45%.
Collapse
Affiliation(s)
- Amanda N Shelton
- Department of Plant Biology, Division of Biosphere Sciences and Engineering, Carnegie Institution for Science, Stanford, California, USA
| | - Feiqiao B Yu
- Department of Plant Biology, Division of Biosphere Sciences and Engineering, Carnegie Institution for Science, Stanford, California, USA
- Chan Zuckerberg Biohub, Stanford, California, USA
| | - Freddy Bunbury
- Department of Plant Biology, Division of Biosphere Sciences and Engineering, Carnegie Institution for Science, Stanford, California, USA
| | - Jia Yan
- Chan Zuckerberg Biohub, Stanford, California, USA
| | - Carlos Rivas
- Department of Plant Biology, Division of Biosphere Sciences and Engineering, Carnegie Institution for Science, Stanford, California, USA
| | - Arthur Grossman
- Department of Plant Biology, Division of Biosphere Sciences and Engineering, Carnegie Institution for Science, Stanford, California, USA
| | - Devaki Bhaya
- Department of Plant Biology, Division of Biosphere Sciences and Engineering, Carnegie Institution for Science, Stanford, California, USA
| |
Collapse
|
5
|
Tang Y, Qin D, Tian Z, Chen W, Ma Y, Wang J, Yang J, Yan D, Dixon R, Wang YP. Diurnal switches in diazotrophic lifestyle increase nitrogen contribution to cereals. Nat Commun 2023; 14:7516. [PMID: 37980355 PMCID: PMC10657418 DOI: 10.1038/s41467-023-43370-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/07/2023] [Indexed: 11/20/2023] Open
Abstract
Uncoupling of biological nitrogen fixation from ammonia assimilation is a prerequisite step for engineering ammonia excretion and improvement of plant-associative nitrogen fixation. In this study, we have identified an amino acid substitution in glutamine synthetase, which provides temperature sensitive biosynthesis of glutamine, the intracellular metabolic signal of the nitrogen status. As a consequence, negative feedback regulation of genes and enzymes subject to nitrogen regulation, including nitrogenase is thermally controlled, enabling ammonia excretion in engineered Escherichia coli and the plant-associated diazotroph Klebsiella oxytoca at 23 °C, but not at 30 °C. We demonstrate that this temperature profile can be exploited to provide diurnal oscillation of ammonia excretion when variant bacteria are used to inoculate cereal crops. We provide evidence that diurnal temperature variation improves nitrogen donation to the plant because the inoculant bacteria have the ability to recover and proliferate at higher temperatures during the daytime.
Collapse
Affiliation(s)
- Yuqian Tang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences & School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| | - Debin Qin
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences & School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| | - Zhexian Tian
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences & School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| | - Wenxi Chen
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences & School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| | - Yuanxi Ma
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences & School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| | - Jilong Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences & School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| | - Jianguo Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences & School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| | - Dalai Yan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Ray Dixon
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK.
| | - Yi-Ping Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences & School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
6
|
Wang XW, Tan X, Dang CC, Lu Y, Xie GJ, Liu BF. Thermophilic microorganisms involved in the nitrogen cycle in thermal environments: Advances and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165259. [PMID: 37400035 DOI: 10.1016/j.scitotenv.2023.165259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Thermophilic microorganisms mediated significant element cycles and material conversion in the early Earth as well as mediating current thermal environments. Over the past few years, versatile microbial communities that drive the nitrogen cycle have been identified in thermal environments. Understanding the microbial-mediated nitrogen cycling processes in these thermal environments has important implications for the cultivation and application of thermal environment microorganisms as well as for exploring the global nitrogen cycle. This work provides a comprehensive review of different thermophilic nitrogen-cycling microorganisms and processes, which are described in detail according to several categories, including nitrogen fixation, nitrification, denitrification, anaerobic ammonium oxidation, and dissimilatory nitrate reduction to ammonium. In particular, we assess the environmental significance and potential applications of thermophilic nitrogen-cycling microorganisms, and highlight knowledge gaps and future research opportunities.
Collapse
Affiliation(s)
- Xiao-Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xin Tan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Cheng-Cheng Dang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yang Lu
- The Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Guo-Jun Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
7
|
George C, Lim CXQ, Tong Y, Pointing SB. Community structure of thermophilic photosynthetic microbial mats and flocs at Sembawang Hot Spring, Singapore. Front Microbiol 2023; 14:1189468. [PMID: 37396374 PMCID: PMC10313338 DOI: 10.3389/fmicb.2023.1189468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
The Sembawang Hot Spring in Singapore lies at the foot of a major regional geological feature called the Bentong-Raub Suture Zone. Amid an extensively managed surface geothermal park, an undisturbed hot spring emerges with source water at 61°C, pH 6.8, and 1 mg/L dissolved sulfide. A small main pool at the source supported orange-green benthic flocs, whereas the outflow channel with gradually less extreme environmental stress supported extensive vivid green microbial mats. Microscopy revealed that cyanobacterial morphotypes were distinct in flocs and mats at several intervals along the environmental gradient, and we describe a spiraling pattern in the oscillatorian cyanobacteria that may reflect response to poly-extreme stress. Estimation of diversity using 16S rRNA gene sequencing revealed assemblages that were dominated by phototrophic bacteria. The most abundant taxa in flocs at 61°C/1 mg/L sulfide were Roseiflexus sp. and Thermosynechococcus elongatus, whilst the mats at 45.7-55.3°C/0-0.5 mg/L sulfide were dominated by Oscillatoriales cyanobacterium MTP1 and Chloroflexus sp. Occurrence of diverse chemoautotrophs and heterotrophs reflected known thermal ranges for taxa, and of note was the high abundance of thermophilic cellulolytic bacteria that likely reflected the large allochthonous leaf input. A clear shift in ASV-defined putative ecotypes occurred along the environmental stress gradient of the hot spring and overall diversity was inversely correlated to environmental stress. Significant correlations for abiotic variables with observed biotic diversity were identified for temperature, sulfide, and carbonate. A network analysis revealed three putative modules of biotic interactions that also reflected the taxonomic composition at intervals along the environmental gradient. Overall, the data indicated that three distinct microbial communities were supported within a small spatial scale along the poly-extreme environmental gradient. The findings add to the growing inventory of hot spring microbiomes and address an important biogeographic knowledge gap for the region.
Collapse
Affiliation(s)
- Christaline George
- Yale-NUS College, National University of Singapore, Singapore, Singapore
| | - Chloe Xue Qi Lim
- Yale-NUS College, National University of Singapore, Singapore, Singapore
| | - Yan Tong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Stephen Brian Pointing
- Yale-NUS College, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
8
|
Santoro M, Hassenrück C, Labrenz M, Hagemann M. Acclimation of Nodularia spumigena CCY9414 to inorganic phosphate limitation - Identification of the P-limitation stimulon via RNA-seq. Front Microbiol 2023; 13:1082763. [PMID: 36687591 PMCID: PMC9846622 DOI: 10.3389/fmicb.2022.1082763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Nodularia spumigena is a toxic, filamentous cyanobacterium capable of fixing atmospheric N2, which is often dominating cyanobacterial bloom events in the Baltic Sea and other brackish water systems worldwide. Increasing phosphate limitation has been considered as one environmental factor promoting cyanobacterial mass developments. In the present study, we analyzed the response of N. spumigena strain CCY9414 toward strong phosphate limitation. Growth of the strain was diminished under P-deplete conditions; however, filaments contained more polyphosphate under P-deplete compared to P-replete conditions. Using RNA-seq, gene expression was compared in N. spumigena CCY9414 after 7 and 14 days in P-deplete and P-replete conditions, respectively. After 7 days, 112 genes were significantly up-regulated in P-deplete filaments, among them was a high proportion of genes encoding proteins related to P-homeostasis such as transport systems for different P species. Many of these genes became also up-regulated after 14 days compared to 7 days in filaments grown under P-replete conditions, which was consistent with the almost complete consumption of dissolved P in these cultures after 14 days. In addition to genes directly related to P starvation, genes encoding proteins for bioactive compound synthesis, gas vesicles formation, or sugar catabolism were stimulated under P-deplete conditions. Collectively, our data describe an experimentally validated P-stimulon in N. spumigena CCY9414 and provide the indication that severe P limitation could indeed support bloom formation by this filamentous strain.
Collapse
Affiliation(s)
- Mariano Santoro
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research, Warnemünde (IOW), Rostock, Germany,Department of Plant Physiology, Institute for Biosciences, University of Rostock, Rostock, Germany
| | - Christiane Hassenrück
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research, Warnemünde (IOW), Rostock, Germany
| | - Matthias Labrenz
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research, Warnemünde (IOW), Rostock, Germany
| | - Martin Hagemann
- Department of Plant Physiology, Institute for Biosciences, University of Rostock, Rostock, Germany,*Correspondence: Martin Hagemann,
| |
Collapse
|
9
|
Vergara-Barros P, Alcorta J, Casanova-Katny A, Nürnberg DJ, Díez B. Compensatory Transcriptional Response of Fischerella thermalis to Thermal Damage of the Photosynthetic Electron Transfer Chain. Molecules 2022; 27:8515. [PMID: 36500606 PMCID: PMC9740203 DOI: 10.3390/molecules27238515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/11/2022] Open
Abstract
Key organisms in the environment, such as oxygenic photosynthetic primary producers (photosynthetic eukaryotes and cyanobacteria), are responsible for fixing most of the carbon globally. However, they are affected by environmental conditions, such as temperature, which in turn affect their distribution. Globally, the cyanobacterium Fischerella thermalis is one of the main primary producers in terrestrial hot springs with thermal gradients up to 60 °C, but the mechanisms by which F. thermalis maintains its photosynthetic activity at these high temperatures are not known. In this study, we used molecular approaches and bioinformatics, in addition to photophysiological analyses, to determine the genetic activity associated with the energy metabolism of F. thermalis both in situ and in high-temperature (40 °C to 65 °C) cultures. Our results show that photosynthesis of F. thermalis decays with temperature, while increased transcriptional activity of genes encoding photosystem II reaction center proteins, such as PsbA (D1), could help overcome thermal damage at up to 60 °C. We observed that F. thermalis tends to lose copies of the standard G4 D1 isoform while maintaining the recently described D1INT isoform, suggesting a preference for photoresistant isoforms in response to the thermal gradient. The transcriptional activity and metabolic characteristics of F. thermalis, as measured by metatranscriptomics, further suggest that carbon metabolism occurs in parallel with photosynthesis, thereby assisting in energy acquisition under high temperatures at which other photosynthetic organisms cannot survive. This study reveals that, to cope with the harsh conditions of hot springs, F. thermalis has several compensatory adaptations, and provides emerging evidence for mixotrophic metabolism as being potentially relevant to the thermotolerance of this species. Ultimately, this work increases our knowledge about thermal adaptation strategies of cyanobacteria.
Collapse
Affiliation(s)
- Pablo Vergara-Barros
- Department of Molecular Genetics and Microbiology, Biological Sciences Faculty, Pontifical Catholic University of Chile, Santiago 8331150, Chile
- Millennium Institute Center for Genome Regulation (CGR), Santiago 8370186, Chile
| | - Jaime Alcorta
- Department of Molecular Genetics and Microbiology, Biological Sciences Faculty, Pontifical Catholic University of Chile, Santiago 8331150, Chile
| | - Angélica Casanova-Katny
- Laboratory of Plant Ecophysiology, Faculty of Natural Resources, Campus Luis Rivas del Canto, Catholic University of Temuco, Temuco 4780000, Chile
| | - Dennis J. Nürnberg
- Institute of Experimental Physics, Freie Universität Berlin, 14195 Berlin, Germany
- Dahlem Centre of Plant Sciences, Freie Universität Berlin, 14195 Berlin, Germany
| | - Beatriz Díez
- Department of Molecular Genetics and Microbiology, Biological Sciences Faculty, Pontifical Catholic University of Chile, Santiago 8331150, Chile
- Millennium Institute Center for Genome Regulation (CGR), Santiago 8370186, Chile
- Center for Climate and Resilience Research (CR)2, Santiago 8370449, Chile
| |
Collapse
|
10
|
Photosynthetic modulation during the diurnal cycle in a unicellular diazotrophic cyanobacterium grown under nitrogen-replete and nitrogen-fixing conditions. Sci Rep 2022; 12:18939. [PMID: 36344535 PMCID: PMC9640542 DOI: 10.1038/s41598-022-21829-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022] Open
Abstract
Cyanobacteria are the only oxygenic photosynthetic organisms that can fix nitrogen. In diazotrophic cyanobacteria, the regulation of photosynthesis during the diurnal cycle is hypothesized to be linked with nitrogen fixation and involve the D1 protein isoform PsbA4. The amount of bioavailable nitrogen has a major impact on productivity in aqueous environments. In contrast to low- or nitrogen-fixing (-N) conditions, little data on photosynthetic regulation under nitrogen-replete (+ N) conditions are available. We compared the regulation of photosynthesis under -N and + N conditions during the diurnal cycle in wild type and a psbA4 deletion strain of the unicellular diazotrophic cyanobacterium Cyanothece sp. ATCC 51142. We observed common changes to light harvesting and photosynthetic electron transport during the dark in + N and -N conditions and found that these modifications occur in both diazotrophic and non-diazotrophic cyanobacteria. Nitrogen availability increased PSII titer when cells transitioned from dark to light and promoted growth. Under -N conditions, deletion of PsbA4 modified charge recombination in dark and regulation of PSII titer during dark to light transition. We conclude that darkness impacts the acceptor-side modifications to PSII and photosynthetic electron transport in cyanobacteria independently of the nitrogen-fixing status and the presence of PsbA4.
Collapse
|
11
|
Distribution and Genomic Variation of Thermophilic Cyanobacteria in Diverse Microbial Mats at the Upper Temperature Limits of Photosynthesis. mSystems 2022; 7:e0031722. [PMID: 35980085 PMCID: PMC9600594 DOI: 10.1128/msystems.00317-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Thermophilic cyanobacteria have been extensively studied in Yellowstone National Park (YNP) hot springs, particularly during decades of work on the thick laminated mats of Octopus and Mushroom springs. However, focused studies of cyanobacteria outside these two hot springs have been lacking, especially regarding how physical and chemical parameters along with community morphology influence the genomic makeup of these organisms. Here, we used a metagenomic approach to examine cyanobacteria existing at the upper temperature limit of photosynthesis. We examined 15 alkaline hot spring samples across six geographic areas of YNP, all with various physical and chemical parameters and community morphology. We recovered 22 metagenome-assembled genomes (MAGs) belonging to thermophilic cyanobacteria, notably an uncultured Synechococcus-like taxon recovered from a setting at the upper temperature limit of photosynthesis, 73°C, in addition to thermophilic Gloeomargarita. Furthermore, we found that three distinct groups of Synechococcus-like MAGs recovered from different temperature ranges vary in their genomic makeup. MAGs from the uncultured very-high-temperature (up to 73°C) Synechococcus-like taxon lack key nitrogen metabolism genes and have genes implicated in cellular stress responses that diverge from other Synechococcus-like MAGs. Across all parameters measured, temperature was the primary determinant of taxonomic makeup of recovered cyanobacterial MAGs. However, total Fe, community morphology, and biogeography played an additional role in the distribution and abundance of upper-temperature-limit-adapted Synechococcus-like MAGs. These findings expand our understanding of cyanobacterial diversity in YNP and provide a basis for interrogation of understudied thermophilic cyanobacteria. IMPORTANCE Oxygenic photosynthesis arose early in microbial evolution-approximately 2.5 to 3.5 billion years ago-and entirely reshaped the biological makeup of Earth. However, despite the span of time in which photosynthesis has been refined, it is strictly limited to temperatures below 73°C, a barrier that many other biological processes have been able to overcome. Furthermore, photosynthesis at temperatures above 56°C is limited to circumneutral and alkaline pH. Hot springs in Yellowstone National Park (YNP), which have a large diversity in temperatures, pH, and geochemistry, provide a natural laboratory to study thermophilic microbial mats and the cyanobacteria within. While cyanobacteria in YNP microbial mats have been studied for decades, a vast majority of the work has focused on two springs within the same geyser basin, both containing similar community morphologies. Thus, the drivers of cyanobacterial adaptations to the upper limits of photosynthesis across a variety of environmental parameters have been understudied. Our findings provide new insights into the influence of these parameters on both taxonomic diversity and genomic content of cyanobacteria across a range of hot spring samples.
Collapse
|
12
|
Song ZQ, Wang L, Liang F, Zhou Q, Pei D, Jiang H, Li WJ. nifH gene expression and diversity in geothermal springs of Tengchong, China. Front Microbiol 2022; 13:980924. [PMID: 36160261 PMCID: PMC9493357 DOI: 10.3389/fmicb.2022.980924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/08/2022] [Indexed: 11/20/2022] Open
Abstract
Terrestrial hot springs have been suggested to harbor diverse diazotrophic lineages by using DNA-based nifH gene phylogenetic analysis. However, only a small amount of diazotrophs were ever confirmed to perform nitrogen fixation. In order to explore the compositions of active diazotrophic populations in hot springs, the in situ expression and diversity of nifH and 16S rRNA genes were investigated in the sediments of hot springs (pH 4.3-9.1; temperature 34-84°C) in Tengchong, China, by using high-throughput sequencing. The results showed that active diazotrophs were diverse in the studied Tengchong hot springs. The main active diazotrophs in high-temperature hot springs were affiliated with Aquificae, while those in low-temperature hot springs belonged to Cyanobacteria and Nitrospirae. Such dominance of Aquificae and Nitrospirae of diazotrophs has not been reported in other ecosystems. This suggests that hot springs may harbor unique active diazotrophs in comparison with other type of ecosystems. Furthermore, there were significant differences in the phylogenetic lineages of diazotrophs between hot springs of Tengchong and other regions, indicating that diazotrophs have geographical distribution patterns. Statistical analysis suggests that the expression and distribution of nifH gene were influenced by temperature and concentrations of ammonia and sulfur seem in Tengchong hot springs. These findings avail us to understand element cycling mediated by diazotrophs in hot spring ecosystems.
Collapse
Affiliation(s)
- Zhao-Qi Song
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Li Wang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Feng Liang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Qingfeng Zhou
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Dongli Pei
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
13
|
A Review of Cyanophage–Host Relationships: Highlighting Cyanophages as a Potential Cyanobacteria Control Strategy. Toxins (Basel) 2022; 14:toxins14060385. [PMID: 35737046 PMCID: PMC9229316 DOI: 10.3390/toxins14060385] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
Harmful algal blooms (HABs) are naturally occurring phenomena, and cyanobacteria are the most commonly occurring HABs in freshwater systems. Cyanobacteria HABs (cyanoHABs) negatively affect ecosystems and drinking water resources through the production of potent toxins. Furthermore, the frequency, duration, and distribution of cyanoHABs are increasing, and conditions that favor cyanobacteria growth are predicted to increase in the coming years. Current methods for mitigating cyanoHABs are generally short-lived and resource-intensive, and have negative impacts on non-target species. Cyanophages (viruses that specifically target cyanobacteria) have the potential to provide a highly specific control strategy with minimal impacts on non-target species and propagation in the environment. A detailed review (primarily up to 2020) of cyanophage lifecycle, diversity, and factors influencing infectivity is provided in this paper, along with a discussion of cyanophage and host cyanobacteria relationships for seven prominent cyanoHAB-forming genera in North America, including: Synechococcus, Microcystis, Dolichospermum, Aphanizomenon, Cylindrospermopsis, Planktothrix, and Lyngbya. Lastly, factors affecting the potential application of cyanophages as a cyanoHAB control strategy are discussed, including efficacy considerations, optimization, and scalability for large-scale applications.
Collapse
|
14
|
Bunbury F, Rivas C, Calatrava V, Shelton AN, Grossman A, Bhaya D. Differential Phototactic Behavior of Closely Related Cyanobacterial Isolates from Yellowstone Hot Spring Biofilms. Appl Environ Microbiol 2022; 88:e0019622. [PMID: 35499327 PMCID: PMC9128501 DOI: 10.1128/aem.00196-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/15/2022] [Indexed: 11/20/2022] Open
Abstract
Phototrophic biofilms in most environments experience major changes in light levels throughout a diel cycle. Phototaxis can be a useful strategy for optimizing light exposure under these conditions, but little is known about its role in cyanobacteria from thermal springs. We examined two closely related Synechococcus isolates (Synechococcus OS-A dominates at 60 to 65°C and OS-B' at 50 to 55°C) from outflows of Octopus Spring in Yellowstone National Park. Both isolates exhibited phototaxis and photokinesis in white light, but with differences in speed and motility bias. OS-B' exhibited phototaxis toward UVA, blue, green, and red wavelengths, while OS-A primarily exhibited phototaxis toward red and green. OS-A also exhibited negative phototaxis under certain conditions. The repertoires of photoreceptors and signal transduction elements in both isolates were quite different from those characterized in other unicellular cyanobacteria. These differences in the photoresponses between OS-A and OS-B' in conjunction with in situ observations indicate that phototactic strategies may be quite versatile and finely tuned to the light and local environment. IMPORTANCE Optimizing light absorption is of paramount importance to photosynthetic organisms. Some photosynthetic microbes have evolved a sophisticated process called phototaxis to move toward or away from a light source. In many hot springs in Yellowstone National Park, cyanobacteria thrive in thick, laminated biofilms or microbial mats, where small movements can result in large changes in light exposure. We quantified the light-dependent motility behaviors in isolates representing two of the most abundant and closely related cyanobacterial species from these springs. We found that they exhibited unexpected differences in their speed, directionality, and responses to different intensities or qualities of light. An examination of their genomes revealed several variations from well-studied phototaxis-related genes. Studying these recently isolated cyanobacteria reveals that diverse phototactic strategies can exist even among close relatives in the same environment. It also provides insights into the importance of phototaxis for growth and survival in microbial biofilm communities.
Collapse
Affiliation(s)
- Freddy Bunbury
- Carnegie Institution for Science, Department of Plant Biology, Stanford, California, USA
| | - Carlos Rivas
- Carnegie Institution for Science, Department of Plant Biology, Stanford, California, USA
| | - Victoria Calatrava
- Carnegie Institution for Science, Department of Plant Biology, Stanford, California, USA
| | - Amanda N. Shelton
- Carnegie Institution for Science, Department of Plant Biology, Stanford, California, USA
| | - Arthur Grossman
- Carnegie Institution for Science, Department of Plant Biology, Stanford, California, USA
| | - Devaki Bhaya
- Carnegie Institution for Science, Department of Plant Biology, Stanford, California, USA
| |
Collapse
|
15
|
Gopalakrishnappa C, Gowda K, Prabhakara KH, Kuehn S. An ensemble approach to the structure-function problem in microbial communities. iScience 2022; 25:103761. [PMID: 35141504 PMCID: PMC8810406 DOI: 10.1016/j.isci.2022.103761] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The metabolic activity of microbial communities plays a primary role in the flow of essential nutrients throughout the biosphere. Molecular genetics has revealed the metabolic pathways that model organisms utilize to generate energy and biomass, but we understand little about how the metabolism of diverse, natural communities emerges from the collective action of its constituents. We propose that quantifying and mapping metabolic fluxes to sequencing measurements of genomic, taxonomic, or transcriptional variation across an ensemble of diverse communities, either in the laboratory or in the wild, can reveal low-dimensional descriptions of community structure that can explain or predict their emergent metabolic activity. We survey the types of communities for which this approach might be best suited, review the analytical techniques available for quantifying metabolite fluxes in communities, and discuss what types of data analysis approaches might be lucrative for learning the structure-function mapping in communities from these data.
Collapse
Affiliation(s)
| | - Karna Gowda
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
- Center for the Physics of Evolving Systems, University of Chicago, Chicago, IL 60637, USA
| | - Kaumudi H. Prabhakara
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
- Center for the Physics of Evolving Systems, University of Chicago, Chicago, IL 60637, USA
| | - Seppe Kuehn
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
- Center for the Physics of Evolving Systems, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
16
|
Koch RA, Yoon GM, Aryal UK, Lail K, Amirebrahimi M, LaButti K, Lipzen A, Riley R, Barry K, Henrissat B, Grigoriev IV, Herr JR, Aime MC. Symbiotic nitrogen fixation in the reproductive structures of a basidiomycete fungus. Curr Biol 2021; 31:3905-3914.e6. [PMID: 34245690 DOI: 10.1016/j.cub.2021.06.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/09/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022]
Abstract
Nitrogen (N) fixation is a driving force for the formation of symbiotic associations between N2-fixing bacteria and eukaryotes.1 Limited examples of these associations are known in fungi, and none with sexual structures of non-lichenized species.2-6 The basidiomycete Guyanagaster necrorhizus is a sequestrate fungus endemic to the Guiana Shield.7 Like the root rot-causing species in its sister genera Armillaria and Desarmillaria, G. necrorhizus sporocarps fruit from roots of decaying trees (Figures 1A-1C),8 and genome sequencing is consistent with observations that G. necrorhizus is a white-rotting decomposer. This species also represents the first documentation of an arthropod-dispersed sequestrate fungus. Numerous species of distantly related wood-feeding termites, which scavenge for N-rich food, feed on the mature spore-bearing tissue, or gleba, of G. necrorhizus. During feeding, mature spores adhere to termites for subsequent dispersal.9 Using chemical assays, isotope analysis, and high-throughput sequencing, we show that the sporocarps harbor actively N2-fixing Enterobacteriaceae species and that the N content within fungal tissue increases with maturation. Untargeted proteomic profiling suggests that ATP generation in the gleba is accomplished via fermentation. The use of fermentation-an anaerobic process-indicates that the sporocarp environment is anoxic, likely an adaptation to protect the oxygen-sensitive nitrogenase enzyme. Sporocarps also have a thick outer covering, possibly to limit oxygen diffusion. The enriched N content within mature sporocarps may offer a dietary inducement for termites in exchange for spore dispersal. These results show that the flexible metabolic capacity of fungi may facilitate N2-fixing associations, as well as higher-level organismal associations.
Collapse
Affiliation(s)
- Rachel A Koch
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA; Department of Plant Pathology, University of Nebraska, Lincoln, NE 68520, USA.
| | - Gyeong Mee Yoon
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Uma K Aryal
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA; Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Kathleen Lail
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Mojgan Amirebrahimi
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kurt LaButti
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Robert Riley
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kerrie Barry
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille 13288, France; Institut National de la Recherche Agronomique, USC1408 Architecture et Fonction des Macromolécules Biologiques, Marseille 13288, France; Department of Biological Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Joshua R Herr
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68520, USA; Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68520, USA
| | - M Catherine Aime
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
17
|
Li M, Cheng L, Tang J, Daroch M. Molecular Components of Nitrogen Fixation Gene Cluster and Associated Enzymatic Activities of Non-Heterocystous Thermophilic Cyanobacterium Thermoleptolyngbya sp. Life (Basel) 2021; 11:640. [PMID: 34209262 PMCID: PMC8307165 DOI: 10.3390/life11070640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/18/2021] [Accepted: 06/24/2021] [Indexed: 11/17/2022] Open
Abstract
Thermoleptolyngbya is a genus of non-heterocystous cyanobacteria that are typical inhabitants of hot spring microbial mats. These filamentous cyanobacteria are capable of nitrogen fixation. In this study, we examined the genome sequences of five publicly available Thermoleptolyngbya strains to explore their nitrogen fixation gene cluster. Analysis of the nitrogen-fixation clusters in these extremophilic strains revealed that the cluster is located in a single locus in Thermoleptolyngbyace. The average nucleotide and amino acid identities of the nitrogen-fixation cluster combined with phylogenetic reconstructions support that nitrogen fixation genes in Thermoleptolyngbyaceae are closely related to one another but also heterogeneous within the genus. The strains from Asia, and China more specifically, generate a separate clade within the genus. Among these strains Thermoleptolyngbya sp. PKUAC-SCTB121 has been selected for experimental validation of clade's nitrogen fixation capacity. The acetylene reduction experiments of that strain shown that the strain can reduce acetylene to ethylene, indicating a fully functional nitrogenase. The activity of nitrogenase has been tested using different gas compositions across 72 h and exhibited a two-phase trend, high nitrogenase activity at the beginning of the assay that slowed down in the second phase of the analysis.
Collapse
Affiliation(s)
- Meijin Li
- School of Environment and Energy, Peking University Shenzhen Graduate School, 2199 Lishui Rd., Shenzhen 518055, China;
| | - Lei Cheng
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing 100048, China;
| | - Jie Tang
- School of Food and Bioengineering, Chengdu University, Chengdu 610106, China;
| | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, 2199 Lishui Rd., Shenzhen 518055, China;
| |
Collapse
|
18
|
Genome-scale metabolic model of the diatom Thalassiosira pseudonana highlights the importance of nitrogen and sulfur metabolism in redox balance. PLoS One 2021; 16:e0241960. [PMID: 33760840 PMCID: PMC7990286 DOI: 10.1371/journal.pone.0241960] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/03/2021] [Indexed: 12/22/2022] Open
Abstract
Diatoms are unicellular photosynthetic algae known to secrete organic matter that fuels secondary production in the ocean, though our knowledge of how their physiology impacts the composition of dissolved organic matter remains limited. Like all photosynthetic organisms, their use of light for energy and reducing power creates the challenge of avoiding cellular damage. To better understand the interplay between redox balance and organic matter secretion, we reconstructed a genome-scale metabolic model of Thalassiosira pseudonana strain CCMP 1335, a model for diatom molecular biology and physiology, with a 60-year history of studies. The model simulates the metabolic activities of 1,432 genes via a network of 2,792 metabolites produced through 6,079 reactions distributed across six subcellular compartments. Growth was simulated under different steady-state light conditions (5–200 μmol photons m-2 s-1) and in a batch culture progressing from exponential growth to nitrate-limitation and nitrogen-starvation. We used the model to examine the dissipation of reductants generated through light-dependent processes and found that when available, nitrate assimilation is an important means of dissipating reductants in the plastid; under nitrate-limiting conditions, sulfate assimilation plays a similar role. The use of either nitrate or sulfate uptake to balance redox reactions leads to the secretion of distinct organic nitrogen and sulfur compounds. Such compounds can be accessed by bacteria in the surface ocean. The model of the diatom Thalassiosira pseudonana provides a mechanistic explanation for the production of ecologically and climatologically relevant compounds that may serve as the basis for intricate, cross-kingdom microbial networks. Diatom metabolism has an important influence on global biogeochemistry; metabolic models of marine microorganisms link genes to ecosystems and may be key to integrating molecular data with models of ocean biogeochemistry.
Collapse
|
19
|
Kawai S, Martinez JN, Lichtenberg M, Trampe E, Kühl M, Tank M, Haruta S, Nishihara A, Hanada S, Thiel V. In-Situ Metatranscriptomic Analyses Reveal the Metabolic Flexibility of the Thermophilic Anoxygenic Photosynthetic Bacterium Chloroflexus aggregans in a Hot Spring Cyanobacteria-Dominated Microbial Mat. Microorganisms 2021; 9:microorganisms9030652. [PMID: 33801086 PMCID: PMC8004040 DOI: 10.3390/microorganisms9030652] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Chloroflexus aggregans is a metabolically versatile, thermophilic, anoxygenic phototrophic member of the phylum Chloroflexota (formerly Chloroflexi), which can grow photoheterotrophically, photoautotrophically, chemoheterotrophically, and chemoautotrophically. In hot spring-associated microbial mats, C. aggregans co-exists with oxygenic cyanobacteria under dynamic micro-environmental conditions. To elucidate the predominant growth modes of C. aggregans, relative transcription levels of energy metabolism- and CO2 fixation-related genes were studied in Nakabusa Hot Springs microbial mats over a diel cycle and correlated with microscale in situ measurements of O2 and light. Metatranscriptomic analyses indicated two periods with different modes of energy metabolism of C. aggregans: (1) phototrophy around midday and (2) chemotrophy in the early morning hours. During midday, C. aggregans mainly employed photoheterotrophy when the microbial mats were hyperoxic (400–800 µmol L−1 O2). In the early morning hours, relative transcription peaks of genes encoding uptake hydrogenase, key enzymes for carbon fixation, respiratory complexes as well as enzymes for TCA cycle and acetate uptake suggest an aerobic chemomixotrophic lifestyle. This is the first in situ study of the versatile energy metabolism of C. aggregans based on gene transcription patterns. The results provide novel insights into the metabolic flexibility of these filamentous anoxygenic phototrophs that thrive under dynamic environmental conditions.
Collapse
Affiliation(s)
- Shigeru Kawai
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan; (J.N.M.); (M.T.); (S.H.); (A.N.); (S.H.)
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan
- Correspondence: (S.K.); (V.T.)
| | - Joval N. Martinez
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan; (J.N.M.); (M.T.); (S.H.); (A.N.); (S.H.)
- Department of Natural Sciences, College of Arts and Sciences, University of St. La Salle, Bacolod City, Negros Occidental 6100, Philippines
| | - Mads Lichtenberg
- Department of Biology, Marine Biological Section, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark; (M.L.); (E.T.); (M.K.)
| | - Erik Trampe
- Department of Biology, Marine Biological Section, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark; (M.L.); (E.T.); (M.K.)
| | - Michael Kühl
- Department of Biology, Marine Biological Section, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark; (M.L.); (E.T.); (M.K.)
| | - Marcus Tank
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan; (J.N.M.); (M.T.); (S.H.); (A.N.); (S.H.)
- DSMZ—German Culture Collection of Microorganisms and Cell Culture, GmbH Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Shin Haruta
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan; (J.N.M.); (M.T.); (S.H.); (A.N.); (S.H.)
| | - Arisa Nishihara
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan; (J.N.M.); (M.T.); (S.H.); (A.N.); (S.H.)
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 305-8566, Japan
| | - Satoshi Hanada
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan; (J.N.M.); (M.T.); (S.H.); (A.N.); (S.H.)
| | - Vera Thiel
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan; (J.N.M.); (M.T.); (S.H.); (A.N.); (S.H.)
- DSMZ—German Culture Collection of Microorganisms and Cell Culture, GmbH Inhoffenstraße 7B, 38124 Braunschweig, Germany
- Correspondence: (S.K.); (V.T.)
| |
Collapse
|
20
|
Chen Y, Nishihara A, Haruta S. Nitrogen-fixing Ability and Nitrogen Fixation-related Genes of Thermophilic Fermentative Bacteria in the Genus Caldicellulosiruptor. Microbes Environ 2021; 36. [PMID: 34108360 PMCID: PMC8209448 DOI: 10.1264/jsme2.me21018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Fermentative nitrogen-fixing bacteria have not yet been examined in detail in thermal environments. In the present study, we isolated the thermophilic fermentative bacterium, strain YA01 from a hot spring. This strain grew at temperatures up to 78°C. A phylogenetic analysis based on its 16S rRNA gene sequence indicated that strain YA01 belonged to the genus Caldicellulosiruptor, which are fermentative bacteria in the phylum Firmicutes, with 97.7–98.0% sequence identity to its closest relatives. Strain YA01 clearly exhibited N2-dependent growth at 70°C. We also confirmed N2-dependent growth in the relatives of strain YA01, Caldicellulosiruptor hydrothermalis 108 and Caldicellulosiruptor kronotskyensis 2002. The nitrogenase activities of these three strains were examined using the acetylene reduction assay. Similar activities were detected for all tested strains, and were slightly suppressed by the addition of ammonium. A genome analysis revealed that strain YA01, as well as other Caldicellulosiruptor, possessed a gene set for nitrogen fixation, but lacked the nifN gene, which encodes a nitrogenase iron-molybdenum cofactor biosynthesis protein that is commonly detected in nitrogen-fixing bacteria. The amino acid sequences of nitrogenase encoded by nifH, nifD, and nifK shared 92–98% similarity in Caldicellulosiruptor. A phylogenetic tree of concatenated NifHDK sequences showed that NifHDK of Caldicellulosiruptor was in the deepest clade. To the best of our knowledge, this is the first study to demonstrate the nitrogen-fixing ability of fermentative bacteria at 70°C. Caldicellulosiruptor may have retained an ancient nitrogen-fixing enzyme system.
Collapse
Affiliation(s)
- Yuxin Chen
- Department of Biological Sciences, Tokyo Metropolitan University
| | - Arisa Nishihara
- Department of Biological Sciences, Tokyo Metropolitan University.,Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Shin Haruta
- Department of Biological Sciences, Tokyo Metropolitan University
| |
Collapse
|
21
|
Alcorta J, Alarcón-Schumacher T, Salgado O, Díez B. Taxonomic Novelty and Distinctive Genomic Features of Hot Spring Cyanobacteria. Front Genet 2020; 11:568223. [PMID: 33250920 PMCID: PMC7674949 DOI: 10.3389/fgene.2020.568223] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 10/15/2020] [Indexed: 01/06/2023] Open
Abstract
Several cyanobacterial species are dominant primary producers in hot spring microbial mats. To date, hot spring cyanobacterial taxonomy, as well as the evolution of their genomic adaptations to high temperatures, are poorly understood, with genomic information currently available for only a few dominant genera, including Fischerella and Synechococcus. To address this knowledge gap, the present study expands the genomic landscape of hot spring cyanobacteria and traces the phylum-wide genomic consequences of evolution in high temperature environments. From 21 globally distributed hot spring metagenomes, with temperatures between 32 and 75°C, 57 medium- and high-quality cyanobacterial metagenome-assembled genomes were recovered, representing taxonomic novelty for 1 order, 3 families, 15 genera and 36 species. Comparative genomics of 93 hot spring genomes (including the 57 metagenome-assembled genomes) and 66 non-thermal genomes, showed that the former have smaller genomes and a higher GC content, as well as shorter proteins that are more hydrophilic and basic, when compared to the non-thermal genomes. Additionally, the core accessory orthogroups from the hot spring genomes of some genera had a greater abundance of functional categories, such as inorganic ion metabolism, translation and post-translational modifications. Moreover, hot spring genomes showed increased abundances of inorganic ion transport and amino acid metabolism, as well as less replication and transcription functions in the protein coding sequences. Furthermore, they showed a higher dependence on the CRISPR-Cas defense system against exogenous nucleic acids, and a reduction in secondary metabolism biosynthetic gene clusters. This suggests differences in the cyanobacterial response to environment-specific microbial communities. This phylum-wide study provides new insights into cyanobacterial genomic adaptations to a specific niche where they are dominant, which could be essential to trace bacterial evolution pathways in a warmer world, such as the current global warming scenario.
Collapse
Affiliation(s)
- Jaime Alcorta
- Department of Molecular Genetics and Microbiology, Biological Sciences Faculty, Pontifical Catholic University of Chile, Santiago, Chile
| | - Tomás Alarcón-Schumacher
- Department of Molecular Genetics and Microbiology, Biological Sciences Faculty, Pontifical Catholic University of Chile, Santiago, Chile
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Oscar Salgado
- Department of Molecular Genetics and Microbiology, Biological Sciences Faculty, Pontifical Catholic University of Chile, Santiago, Chile
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Laboratorio de Bioinformática, Facultad de Educación, Universidad Adventista de Chile, Chillán, Chile
| | - Beatriz Díez
- Department of Molecular Genetics and Microbiology, Biological Sciences Faculty, Pontifical Catholic University of Chile, Santiago, Chile
- Center for Climate and Resilience Research (CR)2, University of Chile, Santiago, Chile
| |
Collapse
|
22
|
Wörmer L, Gajendra N, Schubotz F, Matys ED, Evans TW, Summons RE, Hinrichs KU. A micrometer-scale snapshot on phototroph spatial distributions: mass spectrometry imaging of microbial mats in Octopus Spring, Yellowstone National Park. GEOBIOLOGY 2020; 18:742-759. [PMID: 32936514 DOI: 10.1111/gbi.12411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 07/10/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Microbial mats from alkaline hot springs in the Yellowstone National Park are ideal natural laboratories to study photosynthetic life under extreme conditions, as well as the nuanced interactions of oxygenic and anoxygenic phototrophs. They represent distinctive examples of chlorophototroph (i.e., chlorophyll or bacteriochlorophyll-based phototroph) diversity, and several novel phototrophs have been first described in these systems, all confined in space, coexisting and competing for niches defined by parameters such as light, oxygen, or temperature. In a novel approach, we employed mass spectrometry imaging of chloropigments, quinones, and intact polar lipids (IPLs) to describe the spatial distribution of different groups of chlorophototrophs along the ~ 1 cm thick microbial mat at 75 µm resolution and in the top ~ 1.5 mm green part of the mat at 25 µm resolution. We observed a fine-tuned sequence of oxygenic and anoxygenic chlorophototrophs with distinctive biomarker signatures populating the microbial mat. The transition of oxic to anoxic conditions is characterized by an accumulation of biomarkers indicative of anoxygenic phototrophy. It is also identified as a clear boundary for different species and ecotypes, which adjust their biomarker inventory, particularly the interplay of quinones and chloropigments, to prevailing conditions. Colocalization of the different biomarker groups led to the identification of characteristic IPL signatures and indicates that glycosidic diether glycerolipids are diagnostic for anoxygenic phototrophs in this mat system. The zoom-in into the upper green part further reveals how oxygenic and anoxygenic phototrophs share this microenvironment and informs on subtle, microscale adjustments in lipid composition of Synechococcus spp.
Collapse
Affiliation(s)
- Lars Wörmer
- MARUM - Center for Marine Environmental Sciences and Faculty of Geosciences, University of Bremen, Bremen, Germany
| | - Niroshan Gajendra
- MARUM - Center for Marine Environmental Sciences and Faculty of Geosciences, University of Bremen, Bremen, Germany
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Florence Schubotz
- MARUM - Center for Marine Environmental Sciences and Faculty of Geosciences, University of Bremen, Bremen, Germany
| | - Emily D Matys
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Thomas W Evans
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Roger E Summons
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kai-Uwe Hinrichs
- MARUM - Center for Marine Environmental Sciences and Faculty of Geosciences, University of Bremen, Bremen, Germany
| |
Collapse
|
23
|
Sanz-Luque E, Bhaya D, Grossman AR. Polyphosphate: A Multifunctional Metabolite in Cyanobacteria and Algae. FRONTIERS IN PLANT SCIENCE 2020; 11:938. [PMID: 32670331 PMCID: PMC7332688 DOI: 10.3389/fpls.2020.00938] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/09/2020] [Indexed: 05/19/2023]
Abstract
Polyphosphate (polyP), a polymer of orthophosphate (PO4 3-) of varying lengths, has been identified in all kingdoms of life. It can serve as a source of chemical bond energy (phosphoanhydride bond) that may have been used by biological systems prior to the evolution of ATP. Intracellular polyP is mainly stored as granules in specific vacuoles called acidocalcisomes, and its synthesis and accumulation appear to impact a myriad of cellular functions. It serves as a reservoir for inorganic PO4 3- and an energy source for fueling cellular metabolism, participates in maintaining adenylate and metal cation homeostasis, functions as a scaffold for sequestering cations, exhibits chaperone function, covalently binds to proteins to modify their activity, and enables normal acclimation of cells to stress conditions. PolyP also appears to have a role in symbiotic and parasitic associations, and in higher eukaryotes, low polyP levels seem to impact cancerous proliferation, apoptosis, procoagulant and proinflammatory responses and cause defects in TOR signaling. In this review, we discuss the metabolism, storage, and function of polyP in photosynthetic microbes, which mostly includes research on green algae and cyanobacteria. We focus on factors that impact polyP synthesis, specific enzymes required for its synthesis and degradation, sequestration of polyP in acidocalcisomes, its role in cellular energetics, acclimation processes, and metal homeostasis, and then transition to its potential applications for bioremediation and medical purposes.
Collapse
Affiliation(s)
- Emanuel Sanz-Luque
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA, United States
- Department of Biochemistry and Molecular Biology, University of Cordoba, Cordoba, Spain
| | - Devaki Bhaya
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA, United States
| | - Arthur R. Grossman
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA, United States
| |
Collapse
|
24
|
Qian L, Wu L, Yang L, Zhang Z. Inoculation concentration modulating the secretion and accumulation pattern of exopolysaccharides in desert cyanobacterium Microcoleus vaginatus. Biotechnol Appl Biochem 2020; 68:330-337. [PMID: 32337747 DOI: 10.1002/bab.1930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 04/21/2020] [Indexed: 12/11/2022]
Abstract
Cyanobacterial exopolysaccharides (EPS) accumulated during microalgal cultivation have significant application potential in antioxidation, pharmaceutical products, and so on. Inoculation concentration strongly affects the cultivation cost, biomass, and EPS accumulation. In this study, a high-EPS-excreted desert cyanobacterium Microcoleus vaginatus was isolated, and the effects of inoculation concentration on biomass, photosynthetic activity, and EPS accumulation were explored. The results showed that the original fluorescence (Fo ) provided a good indication to cyanobacterial biomass, when Chl-a concentration was lower than 10 mg L-1 . Inoculation concentration significantly affected cyanobacterial biomass and EPS concentration (P < 0.001), whereas did not affect photosynthetic activity (Fv /Fm ; P > 0.05). The two fractions of EPS, capsular exopolysaccharides (CPS) and released exopolysaccharides (RPS) were strongly affect by inoculation concentration. Other than forming thick sheath (CPS) surrounded the filaments, M. vaginatus excreted higher proportions of RPS to culture medium, and the ratio of RPS to CPS ranged from 1.08 to 1.58 depending on the inoculation concentration. Additionally, although the biomass and EPS accumulation increased with inoculation concentration, the increasing inoculation concentration did not bring to the proportionate increase of the final biomass and EPS yield. Altogether, comprehensively considering the EPS yield and productivity, inoculation concentration of 0.04 mg Chl-a L-1 is recommended for M. vaginatus to produce EPS, with an EPS yield of 94.32 mg L-1 and EPS productivity of 184.86 mg (mg Chl-a)-1 L-1 d-1 at the end of experiment.
Collapse
Affiliation(s)
- Long Qian
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, People's Republic of China
| | - Li Wu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, People's Republic of China
| | - Lie Yang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, People's Republic of China
| | - Zulin Zhang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, People's Republic of China.,The James Hutton Institute, Craigiebuckler, Aberdeen, UK
| |
Collapse
|
25
|
Steinke L, Slysz GW, Lipton MS, Klatt C, Moran JJ, Romine MF, Wood JM, Anderson G, Bryant DA, Ward DM. Short-Term Stable Isotope Probing of Proteins Reveals Taxa Incorporating Inorganic Carbon in a Hot Spring Microbial Mat. Appl Environ Microbiol 2020; 86:e01829-19. [PMID: 31953342 PMCID: PMC7082580 DOI: 10.1128/aem.01829-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/12/2020] [Indexed: 11/20/2022] Open
Abstract
The upper green layer of the chlorophototrophic microbial mats associated with the alkaline siliceous hot springs of Yellowstone National Park consists of oxygenic cyanobacteria (Synechococcus spp.), anoxygenic Roseiflexus spp., and several other anoxygenic chlorophototrophs. Synechococcus spp. are believed to be the main fixers of inorganic carbon (Ci), but some evidence suggests that Roseiflexus spp. also contribute to inorganic carbon fixation during low-light, anoxic morning periods. Contributions of other phototrophic taxa have not been investigated. In order to follow the pathway of Ci incorporation into different taxa, mat samples were incubated with [13C]bicarbonate for 3 h during the early-morning, low-light anoxic period. Extracted proteins were treated with trypsin and analyzed by mass spectrometry, leading to peptide identifications and peptide isotopic profile signatures containing evidence of 13C label incorporation. A total of 25,483 peptides, corresponding to 7,221 proteins, were identified from spectral features and associated with mat taxa by comparison to metagenomic assembly sequences. A total of 1,417 peptides, derived from 720 proteins, were detectably labeled with 13C. Most 13C-labeled peptides were derived from proteins of Synechococcus spp. and Roseiflexus spp. Chaperones and proteins of carbohydrate metabolism were most abundantly labeled. Proteins involved in photosynthesis, Ci fixation, and N2 fixation were also labeled in Synechococcus spp. Importantly, most proteins of the 3-hydroxypropionate bi-cycle for Ci fixation in Roseiflexus spp. were labeled, establishing that members of this taxocene contribute to Ci fixation. Other taxa showed much lower [13C]bicarbonate incorporation.IMPORTANCE Yellowstone hot spring mats have been studied as natural models for understanding microbial community ecology and as modern analogs of stromatolites, the earliest community fossils on Earth. Stable-isotope probing of proteins (Pro-SIP) permitted short-term interrogation of the taxa that are involved in the important process of light-driven Ci fixation in this highly active community and will be useful in linking other metabolic processes to mat taxa. Here, evidence is presented that Roseiflexus spp., which use the 3-hydroxypropionate bi-cycle, are active in Ci fixation. Because this pathway imparts a lower degree of selection of isotopically heavy Ci than does the Calvin-Benson-Bassham cycle, the results suggest a mechanism to explain why the natural abundance of 13C in mat biomass is greater than expected if only the latter pathway were involved. Understanding how mat community members influence the 13C/12C ratios of mat biomass will help geochemists interpret the 13C/12C ratios of organic carbon in the fossil record.
Collapse
Affiliation(s)
- Laurey Steinke
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Gordon W Slysz
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Mary S Lipton
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Christian Klatt
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, USA
| | - James J Moran
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Margie F Romine
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Jason M Wood
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, USA
| | - Gordon Anderson
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, State College, Pennsylvania, USA
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - David M Ward
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
26
|
Mus F, Colman DR, Peters JW, Boyd ES. Geobiological feedbacks, oxygen, and the evolution of nitrogenase. Free Radic Biol Med 2019; 140:250-259. [PMID: 30735835 DOI: 10.1016/j.freeradbiomed.2019.01.050] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/31/2019] [Indexed: 12/21/2022]
Abstract
Biological nitrogen fixation via the activity of nitrogenase is one of the most important biological innovations, allowing for an increase in global productivity that eventually permitted the emergence of higher forms of life. The complex metalloenzyme termed nitrogenase contains complex iron-sulfur cofactors. Three versions of nitrogenase exist that differ mainly by the presence or absence of a heterometal at the active site metal cluster (either Mo or V). Mo-dependent nitrogenase is the most common while V-dependent or heterometal independent (Fe-only) versions are often termed alternative nitrogenases since they have apparent lower activities for N2 reduction and are expressed in the absence of Mo. Phylogenetic data indicates that biological nitrogen fixation emerged in an anaerobic, thermophilic ancestor of hydrogenotrophic methanogens and later diversified via lateral gene transfer into anaerobic bacteria, and eventually aerobic bacteria including Cyanobacteria. Isotopic evidence suggests that nitrogenase activity existed at 3.2 Ga, prior to the advent of oxygenic photosynthesis and rise of oxygen in the atmosphere, implying the presence of favorable environmental conditions for oxygen-sensitive nitrogenase to evolve. Following the proliferation of oxygenic phototrophs, diazotrophic organisms had to develop strategies to protect nitrogenase from oxygen inactivation and generate the right balance of low potential reducing equivalents and cellular energy for growth and nitrogen fixation activity. Here we review the fundamental advances in our understanding of biological nitrogen fixation in the context of the emergence, evolution, and taxonomic distribution of nitrogenase, with an emphasis placed on key events associated with its emergence and diversification from anoxic to oxic environments.
Collapse
Affiliation(s)
- Florence Mus
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | - Daniel R Colman
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - John W Peters
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA.
| | - Eric S Boyd
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
27
|
Revealing the potential of cyanobacteria in cosmetics and cosmeceuticals — A new bioactive approach. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101541] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
28
|
Xu M, Lawrence JG, Durand D. Selection, periodicity and potential function for Highly Iterative Palindrome-1 (HIP1) in cyanobacterial genomes. Nucleic Acids Res 2019; 46:2265-2278. [PMID: 29432573 PMCID: PMC5861425 DOI: 10.1093/nar/gky075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 01/25/2018] [Indexed: 02/05/2023] Open
Abstract
Highly Iterated Palindrome 1 (HIP1, GCGATCGC) is hyper-abundant in most cyanobacterial genomes. In some cyanobacteria, average HIP1 abundance exceeds one motif per gene. Such high abundance suggests a significant role in cyanobacterial biology. However, 20 years of study have not revealed whether HIP1 has a function, much less what that function might be. We show that HIP1 is 15- to 300-fold over-represented in genomes analyzed. More importantly, HIP1 sites are conserved both within and between open reading frames, suggesting that their overabundance is maintained by selection rather than by continual replenishment by neutral processes, such as biased DNA repair. This evidence for selection suggests a functional role for HIP1. No evidence was found to support a functional role as a peptide or RNA motif or a role in the regulation of gene expression. Rather, we demonstrate that the distribution of HIP1 along cyanobacterial chromosomes is significantly periodic, with periods ranging from 10 to 90 kb, consistent in scale with periodicities reported for co-regulated, co-expressed and evolutionarily correlated genes. The periodicity we observe is also comparable in scale to chromosomal interaction domains previously described in other bacteria. In this context, our findings imply HIP1 functions associated with chromosome and nucleoid structure.
Collapse
Affiliation(s)
- Minli Xu
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Jeffrey G Lawrence
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Dannie Durand
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA.,Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
29
|
Thomas SC, Tamadonfar KO, Seymour CO, Lai D, Dodsworth JA, Murugapiran SK, Eloe-Fadrosh EA, Dijkstra P, Hedlund BP. Position-Specific Metabolic Probing and Metagenomics of Microbial Communities Reveal Conserved Central Carbon Metabolic Network Activities at High Temperatures. Front Microbiol 2019; 10:1427. [PMID: 31333598 PMCID: PMC6624737 DOI: 10.3389/fmicb.2019.01427] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 06/05/2019] [Indexed: 12/02/2022] Open
Abstract
Temperature is a primary driver of microbial community composition and taxonomic diversity; however, it is unclear to what extent temperature affects characteristics of central carbon metabolic pathways (CCMPs) at the community level. In this study, 16S rRNA gene amplicon and metagenome sequencing were combined with 13C-labeled metabolite probing of the CCMPs to assess community carbon metabolism along a temperature gradient (60–95°C) in Great Boiling Spring, NV. 16S rRNA gene amplicon diversity was inversely proportional to temperature, and Archaea were dominant at higher temperatures. KO richness and diversity were also inversely proportional to temperature, yet CCMP genes were similarly represented across the temperature gradient and many individual metagenome-assembled genomes had complete pathways. In contrast, genes encoding cellulosomes and many genes involved in plant matter degradation and photosynthesis were absent at higher temperatures. In situ13C-CO2 production from labeled isotopomer pairs of glucose, pyruvate, and acetate suggested lower relative oxidative pentose phosphate pathway activity and/or fermentation at 60°C, and a stable or decreased maintenance energy demand at higher temperatures. Catabolism of 13C-labeled citrate, succinate, L-alanine, L-serine, and L-cysteine was observed at 85°C, demonstrating broad heterotrophic activity and confirming functioning of the TCA cycle. Together, these results suggest that temperature-driven losses in biodiversity and gene content in geothermal systems may not alter CCMP function or maintenance energy demands at a community level.
Collapse
Affiliation(s)
- Scott C Thomas
- School of Life Sciences, University of Nevada, Las Vegas, NV, United States
| | - Kevin O Tamadonfar
- School of Life Sciences, University of Nevada, Las Vegas, NV, United States
| | - Cale O Seymour
- School of Life Sciences, University of Nevada, Las Vegas, NV, United States
| | - Dengxun Lai
- School of Life Sciences, University of Nevada, Las Vegas, NV, United States
| | - Jeremy A Dodsworth
- Department of Biology, California State University, San Bernardino, CA, United States
| | | | - Emiley A Eloe-Fadrosh
- Department of Energy Joint Genome Institute, Joint Genome Institute, Walnut Creek, CA, United States
| | - Paul Dijkstra
- Department of Biological Sciences, Center of Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, United States
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, NV, United States.,Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, NV, United States
| |
Collapse
|
30
|
Oren N, Raanan H, Kedem I, Turjeman A, Bronstein M, Kaplan A, Murik O. Desert cyanobacteria prepare in advance for dehydration and rewetting: The role of light and temperature sensing. Mol Ecol 2019; 28:2305-2320. [DOI: 10.1111/mec.15074] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/05/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Nadav Oren
- Department of Plant and Environmental Sciences The Hebrew University of Jerusalem Jerusalem Israel
| | - Hagai Raanan
- Department of Plant and Environmental Sciences The Hebrew University of Jerusalem Jerusalem Israel
- Environmental Biophysics and Molecular Ecology Program, Institute of Earth, Ocean and Atmospheric Sciences Rutgers University New Brunswick New Jersey
| | - Isaac Kedem
- Department of Plant and Environmental Sciences The Hebrew University of Jerusalem Jerusalem Israel
| | - Adi Turjeman
- The Center for Genomic Technologies The Hebrew University of Jerusalem Jerusalem Israel
| | - Michal Bronstein
- The Center for Genomic Technologies The Hebrew University of Jerusalem Jerusalem Israel
| | - Aaron Kaplan
- Department of Plant and Environmental Sciences The Hebrew University of Jerusalem Jerusalem Israel
| | - Omer Murik
- Department of Plant and Environmental Sciences The Hebrew University of Jerusalem Jerusalem Israel
| |
Collapse
|
31
|
Patel A, Matsakas L, Rova U, Christakopoulos P. A perspective on biotechnological applications of thermophilic microalgae and cyanobacteria. BIORESOURCE TECHNOLOGY 2019; 278:424-434. [PMID: 30685131 DOI: 10.1016/j.biortech.2019.01.063] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/12/2019] [Accepted: 01/15/2019] [Indexed: 05/18/2023]
Abstract
The importance of expanding our knowledge on microorganisms derived from extreme environments stems from the development of novel and sustainable technologies for our health, food, and environment. Microalgae and cyanobacteria represent a group of diverse microorganisms that inhabit a wide range of environments, are capable of oxygenic photosynthesis, and form a thick microbial mat even at extreme environments. Studies of thermophilic microorganisms have shown a considerable biotechnological potential due to their optimum growth and metabolisms at high temperatures (≥50 °C), which is supported by their thermostable enzymes. Microalgal and cyanobacterial communities present in high-temperature ecosystems account for a large part of the total ecosystem biomass and productivity, and can be exploited to generate several value-added products of agricultural, pharmaceutical, nutraceutical, and industrial relevance. This review provides an overview on the current status of biotechnological applications of thermophilic microalgae and cyanobacteria, with an outlook on the challenges and future prospects.
Collapse
Affiliation(s)
- Alok Patel
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden.
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| |
Collapse
|
32
|
Nonaka A, Yamamoto H, Kamiya N, Kotani H, Yamakawa H, Tsujimoto R, Fujita Y. Accessory Proteins of the Nitrogenase Assembly, NifW, NifX/NafY, and NifZ, Are Essential for Diazotrophic Growth in the Nonheterocystous Cyanobacterium Leptolyngbya boryana. Front Microbiol 2019; 10:495. [PMID: 30930880 PMCID: PMC6428710 DOI: 10.3389/fmicb.2019.00495] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/26/2019] [Indexed: 12/13/2022] Open
Abstract
Since nitrogenase is extremely vulnerable to oxygen, aerobic or micro-aerobic nitrogen-fixing organisms need to create anaerobic microenvironments in the cells for diazotrophic growth, which would be one of the major barriers to express active nitrogenase in plants in efforts to create nitrogen-fixing plants. Numerous cyanobacteria are able to fix nitrogen with nitrogenase by coping with the endogenous oxygen production by photosynthesis. Understanding of the molecular mechanisms enabling to the coexistence of nitrogen fixation and photosynthesis in nonheterocystous cyanobacteria could offer valuable insights for the transfer of nitrogen fixation capacity into plants. We previously identified the cnfR gene encoding the master regulator for the nitrogen fixation (nif) gene cluster in the genome of a nonheterocystous cyanobacterium Leptolyngbya boryana, in addition to initial characterization of the nif gene cluster. Here we isolated nine mutants, in which the nif and nif-related genes were individually knocked out in L. boryana to investigate the individual functions of (1) accessory proteins (NifW, NifX/NafY, and NifZ) in the biosynthesis of nitrogenase metallocenters, (2) serine acetyltransferase (NifP) in cysteine supply for iron-sulfur clusters, (3) pyruvate formate lyase in anaerobic metabolism, and (4) NifT and HesAB proteins. ΔnifW, ΔnifXnafY, and ΔnifZ exhibited the most severe phenotype characterized by low nitrogenase activity (<10%) and loss of diazotrophic growth ability. The phenotypes of ΔnifX, ΔnafY, and ΔnifXnafY suggested that the functions of the homologous proteins NifX and NafY partially overlap. ΔnifP exhibited significantly slower diazotrophic growth than the wild type, with lower nitrogenase activity (22%). The other four mutants (ΔpflB, ΔnifT, ΔhesA, and ΔhesB) grew diazotrophically similar to the wild type. Western blot analysis revealed a high correlation between nitrogenase activity and NifD contents, suggesting that NifD is more susceptible to proteolytic degradation than NifK in L. boryana. The phenotype of the mutants lacking the accessory proteins was more severe than that observed in heterotrophic bacteria such as Azotobacter vinelandii, which suggests that the functions of NifW, NifX/NafY, and NifZ are critical for diazotrophic growth of oxygenic photosynthetic cells. L. boryana provides a promising model for studying the molecular mechanisms that produce active nitrogenase, to facilitate the creation of nitrogen-fixing plants.
Collapse
Affiliation(s)
- Aoi Nonaka
- School of Agricultural Sciences, Nagoya University, Nagoya, Japan
| | - Haruki Yamamoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Narumi Kamiya
- School of Agricultural Sciences, Nagoya University, Nagoya, Japan
| | - Hiroya Kotani
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Hisanori Yamakawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Ryoma Tsujimoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yuichi Fujita
- School of Agricultural Sciences, Nagoya University, Nagoya, Japan.,Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
33
|
He X, Chadwick G, Kempes C, Shi Y, McGlynn S, Orphan V, Meile C. Microbial interactions in the anaerobic oxidation of methane: model simulations constrained by process rates and activity patterns. Environ Microbiol 2019; 21:631-647. [DOI: 10.1111/1462-2920.14507] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 12/04/2018] [Accepted: 12/04/2018] [Indexed: 12/01/2022]
Affiliation(s)
- Xiaojia He
- Department of Marine Sciences University of Georgia Athens GA USA
| | - Grayson Chadwick
- Division of Geological and Planetary Sciences California Institute of Technology Pasadena CA USA
| | | | - Yimeng Shi
- Department of Marine Sciences University of Georgia Athens GA USA
| | - Shawn McGlynn
- Division of Geological and Planetary Sciences California Institute of Technology Pasadena CA USA
- Earth‐Life Science Institute Tokyo Institute of Technology Ookayama, Meguro‐ku Tokyo Japan
| | - Victoria Orphan
- Division of Geological and Planetary Sciences California Institute of Technology Pasadena CA USA
| | - Christof Meile
- Department of Marine Sciences University of Georgia Athens GA USA
| |
Collapse
|
34
|
Thiel V, Garcia Costas AM, Fortney NW, Martinez JN, Tank M, Roden EE, Boyd ES, Ward DM, Hanada S, Bryant DA. " Candidatus Thermonerobacter thiotrophicus," A Non-phototrophic Member of the Bacteroidetes/Chlorobi With Dissimilatory Sulfur Metabolism in Hot Spring Mat Communities. Front Microbiol 2019; 9:3159. [PMID: 30687241 PMCID: PMC6338057 DOI: 10.3389/fmicb.2018.03159] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/05/2018] [Indexed: 12/31/2022] Open
Abstract
In this study we present evidence for a novel, thermophilic bacterium with dissimilatory sulfur metabolism, tentatively named “Candidatus Thermonerobacter thiotrophicus,” which is affiliated with the Bacteroides/Ignavibacteria/Chlorobi and which we predict to be a sulfate reducer. Dissimilatory sulfate reduction (DSR) is an important and ancient metabolic process for energy conservation with global importance for geochemical sulfur and carbon cycling. Characterized sulfate-reducing microorganisms (SRM) are found in a limited number of bacterial and archaeal phyla. However, based on highly diverse environmental dsrAB sequences, a variety of uncultivated and unidentified SRM must exist. The recent development of high-throughput sequencing methods allows the phylogenetic identification of some of these uncultured SRM. In this study, we identified a novel putative SRM inhabiting hot spring microbial mats that is a member of the OPB56 clade (“Ca. Kapabacteria”) within the Bacteroidetes/Chlorobi superphylum. Partial genomes for this new organism were retrieved from metagenomes from three different hot springs in Yellowstone National Park, United States, and Japan. Supporting the prediction of a sulfate-reducing metabolism for this organism during period of anoxia, diel metatranscriptomic analyses indicate highest relative transcript levels in situ for all DSR-related genes at night. The presence of terminal oxidases, which are transcribed during the day, further suggests that these organisms might also perform aerobic respiration. The relative phylogenetic proximity to the sulfur-oxidizing, chlorophototrophic Chlorobi further raises new questions about the evolution of dissimilatory sulfur metabolism.
Collapse
Affiliation(s)
- Vera Thiel
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan.,Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
| | - Amaya M Garcia Costas
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States.,Department of Biology, Colorado State University-Pueblo, Pueblo, CO, United States
| | - Nathaniel W Fortney
- Department of Geoscience, University of Wisconsin-Madison, Madison, WI, United States
| | - Joval N Martinez
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan.,Department of Natural Sciences, University of St. La Salle, Bacolod, Philippines
| | - Marcus Tank
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan.,Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
| | - Eric E Roden
- Department of Geoscience, University of Wisconsin-Madison, Madison, WI, United States
| | - Eric S Boyd
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - David M Ward
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, United States
| | - Satoshi Hanada
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States.,Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
| |
Collapse
|
35
|
Nishihara A, Matsuura K, Tank M, McGlynn SE, Thiel V, Haruta S. Nitrogenase Activity in Thermophilic Chemolithoautotrophic Bacteria in the Phylum Aquificae Isolated under Nitrogen-Fixing Conditions from Nakabusa Hot Springs. Microbes Environ 2018; 33:394-401. [PMID: 30473565 PMCID: PMC6307999 DOI: 10.1264/jsme2.me18041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The phylum Aquificae comprises chemolithoautotrophic thermophilic to hyperthermophilic bacteria, in which the nitrogenase reductase gene (nifH) has been reported. However, nitrogen-fixing activity has not yet been demonstrated in members of this deeply branching bacterial phylum. We isolated two thermophilic diazotrophic strains from chemosynthetic microbial communities in slightly alkaline hot springs (≥70°C) in Nakabusa, Nagano Prefecture, Japan. A phylogenetic analysis based on 16S rRNA genes identified these strains as members of the genus Hydrogenobacter within Aquificae. Their NifH sequences showed 96.5 and 97.4% amino acid sequence identities to that from Hydrogenobacter thermophilus TK-6. Nitrogenase activity, measured by acetylene reduction, was confirmed in both strains at 70°C. These novel strains grew under semi-aerobic conditions by using CO2 as the sole carbon source and N2 as the sole nitrogen source in media containing hydrogen and/or thiosulfate. To the best of our knowledge, this is the first demonstration of active nitrogen fixation in thermophilic bacteria at 70°C and in the phylum Aquificae.
Collapse
Affiliation(s)
- Arisa Nishihara
- Department of Biological Sciences, Tokyo Metropolitan University
| | - Katsumi Matsuura
- Department of Biological Sciences, Tokyo Metropolitan University
| | - Marcus Tank
- Department of Biological Sciences, Tokyo Metropolitan University
| | - Shawn E McGlynn
- Department of Biological Sciences, Tokyo Metropolitan University.,Earth-Life Science Institute, Tokyo Institute of Technology.,Biofunctional Catalyst Research Team, RIKEN Center for Sustainable Resource Science.,Blue Marble Space Institute of Science
| | - Vera Thiel
- Department of Biological Sciences, Tokyo Metropolitan University
| | - Shin Haruta
- Department of Biological Sciences, Tokyo Metropolitan University
| |
Collapse
|
36
|
Nishihara A, Thiel V, Matsuura K, McGlynn SE, Haruta S. Phylogenetic Diversity of Nitrogenase Reductase Genes and Possible Nitrogen-Fixing Bacteria in Thermophilic Chemosynthetic Microbial Communities in Nakabusa Hot Springs. Microbes Environ 2018; 33:357-365. [PMID: 30404970 PMCID: PMC6307998 DOI: 10.1264/jsme2.me18030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chemosynthetic microbial communities develop and form dense cell aggregates in slightly alkaline sulfidic hot springs in the temperature range of 70–86°C at Nakabusa, Japan. Nitrogenase activity has recently been detected in the microbial communities collected. To identify possible members capable of nitrogen fixation, we examined the diversities of 16S rRNA and nitrogenase reductase (NifH) gene sequences in four types of chemosynthetic communities with visually different colors and thicknesses. The results of a 16S rRNA gene analysis indicated that all four microbial communities had similar bacterial constituents; the phylum Aquificae was the dominant member, followed in abundance by Thermodesulfobacteria, Firmicutes, and Thermotogae. Most of the NifH sequences were related to sequences reported in hydrothermal vents and terrestrial hot springs. The results of a phylogenetic analysis of NifH sequences revealed diversity in this gene among the communities collected, distributed within 7 phylogenetic groups. NifH sequences affiliated with Aquificae (Hydrogenobacter/Thermocrinis) and Firmicutes (Caldicellulosiruptor) were abundant. At least two different energy metabolic pathways appeared to be related to nitrogen fixation in the communities analyzed; aerobic sulfur/hydrogen-oxidizing bacteria in Aquificae and fermentative bacteria in Firmicutes. The metabolic characteristics of these two dominant phyla differed from those previously inferred from nitrogenase activity assays on chemosynthetic communities, which were associated with hydrogen-dependent autotrophic sulfate reduction. These assays may correspond to the observed NifH sequences that are distantly related to the known species of Thermodesulfovibrio sp. (Nitrospirae) detected in the present study. The activities of nitrogen-fixing organisms in communities may depend on redox states as well as the availability of electron donors, acceptors, and carbon sources.
Collapse
Affiliation(s)
- Arisa Nishihara
- Department of Biological Sciences, Tokyo Metropolitan University
| | - Vera Thiel
- Department of Biological Sciences, Tokyo Metropolitan University
| | - Katsumi Matsuura
- Department of Biological Sciences, Tokyo Metropolitan University
| | - Shawn E McGlynn
- Department of Biological Sciences, Tokyo Metropolitan University.,Earth-Life Science Institute, Tokyo Institute of Technology.,Biofunctional Catalyst Research Team, RIKEN Center for Sustainable Resource Science.,Blue Marble Space Institute of Science
| | - Shin Haruta
- Department of Biological Sciences, Tokyo Metropolitan University
| |
Collapse
|
37
|
Thermodynamic favorability and pathway yield as evolutionary tradeoffs in biosynthetic pathway choice. Proc Natl Acad Sci U S A 2018; 115:11339-11344. [PMID: 30309961 DOI: 10.1073/pnas.1805367115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The structure of the metabolic network contains myriad organism-specific variations across the tree of life, but the selection basis for pathway choices in different organisms is not well understood. Here, we examined the metabolic capabilities with respect to cofactor use and pathway thermodynamics of all sequenced organisms in the Kyoto Encyclopedia of Genes and Genomes Database. We found that (i) many biomass precursors have alternate synthesis routes that vary substantially in thermodynamic favorability and energy cost, creating tradeoffs that may be subject to selection pressure; (ii) alternative pathways in amino acid synthesis are characteristically distinguished by the use of biosynthetically unnecessary acyl-CoA cleavage; (iii) distinct choices preferring thermodynamic-favorable or cofactor-use-efficient pathways exist widely among organisms; (iv) cofactor-use-efficient pathways tend to have a greater yield advantage under anaerobic conditions specifically; and (v) lysine biosynthesis in particular exhibits temperature-dependent thermodynamics and corresponding differential pathway choice by thermophiles. These findings present a view on the evolution of metabolic network structure that highlights a key role of pathway thermodynamics and cofactor use in determining organism pathway choices.
Collapse
|
38
|
Alcamán-Arias ME, Pedrós-Alió C, Tamames J, Fernández C, Pérez-Pantoja D, Vásquez M, Díez B. Diurnal Changes in Active Carbon and Nitrogen Pathways Along the Temperature Gradient in Porcelana Hot Spring Microbial Mat. Front Microbiol 2018; 9:2353. [PMID: 30333812 PMCID: PMC6176055 DOI: 10.3389/fmicb.2018.02353] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 09/13/2018] [Indexed: 01/14/2023] Open
Abstract
Composition, carbon and nitrogen uptake, and gene transcription of microbial mat communities in Porcelana neutral hot spring (Northern Chilean Patagonia) were analyzed using metagenomics, metatranscriptomics and isotopically labeled carbon (H13CO3) and nitrogen (15NH4Cl and K15NO3) assimilation rates. The microbial mat community included 31 phyla, of which only Cyanobacteria and Chloroflexi were dominant. At 58°C both phyla co-occurred, with similar contributions in relative abundances in metagenomes and total transcriptional activity. At 66°C, filamentous anoxygenic phototrophic Chloroflexi were >90% responsible for the total transcriptional activity recovered, while Cyanobacteria contributed most metagenomics and metatranscriptomics reads at 48°C. According to such reads, phototrophy was carried out both through oxygenic photosynthesis by Cyanobacteria (mostly Mastigocladus) and anoxygenic phototrophy due mainly to Chloroflexi. Inorganic carbon assimilation through the Calvin-Benson cycle was almost exclusively due to Mastigocladus, which was the main primary producer at lower temperatures. Two other CO2 fixation pathways were active at certain times and temperatures as indicated by transcripts: 3-hydroxypropionate (3-HP) bi-cycle due to Chloroflexi and 3-hydroxypropionate-4-hydroxybutyrate (HH) cycle carried out by Thaumarchaeota. The active transcription of the genes involved in these C-fixation pathways correlated with high in situ determined carbon fixation rates. In situ measurements of ammonia assimilation and nitrogen fixation (exclusively attributed to Cyanobacteria and mostly to Mastigocladus sp.) showed these were the most important nitrogen acquisition pathways at 58 and 48°C. At 66°C ammonia oxidation genes were actively transcribed (mostly due to Thaumarchaeota). Reads indicated that denitrification was present as a nitrogen sink at all temperatures and that dissimilatory nitrate reduction to ammonia (DNRA) contributed very little. The combination of metagenomic and metatranscriptomic analysis with in situ assimilation rates, allowed the reconstruction of day and night carbon and nitrogen assimilation pathways together with the contribution of keystone microorganisms in this natural hot spring microbial mat.
Collapse
Affiliation(s)
- María E. Alcamán-Arias
- Department of Oceanography, Universidad de Concepción, Concepción, Chile
- Department of Molecular Genetics and Microbiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center for Climate and Resilience Research, Universidad de Chile, Santiago, Chile
| | - Carlos Pedrós-Alió
- Programa de Biología de Sistemas, Centro Nacional de Biotecnología – Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Javier Tamames
- Programa de Biología de Sistemas, Centro Nacional de Biotecnología – Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Camila Fernández
- Department of Oceanography, Universidad de Concepción, Concepción, Chile
- Laboratoire d’Océanographie Microbienne, Observatoire Océanologique, Sorbonne Universités, Université Pierre-et-Marie-Curie, Centre National de la Recherche Scientifique, Banyuls-sur-Mer, France
- Fondap IDEAL, Universidad Austral de Chile, Valdivia, Chile
| | - Danilo Pérez-Pantoja
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Santiago, Chile
| | - Mónica Vásquez
- Department of Molecular Genetics and Microbiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Beatriz Díez
- Department of Molecular Genetics and Microbiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center for Climate and Resilience Research, Universidad de Chile, Santiago, Chile
| |
Collapse
|
39
|
Guajardo-Leiva S, Pedrós-Alió C, Salgado O, Pinto F, Díez B. Active Crossfire Between Cyanobacteria and Cyanophages in Phototrophic Mat Communities Within Hot Springs. Front Microbiol 2018; 9:2039. [PMID: 30233525 PMCID: PMC6129581 DOI: 10.3389/fmicb.2018.02039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/13/2018] [Indexed: 01/16/2023] Open
Abstract
Cyanophages are viruses with a wide distribution in aquatic ecosystems, that specifically infect Cyanobacteria. These viruses can be readily isolated from marine and fresh waters environments; however, their presence in cosmopolitan thermophilic phototrophic mats remains largely unknown. This study investigates the morphological diversity (TEM), taxonomic composition (metagenomics), and active infectivity (metatranscriptomics) of viral communities over a thermal gradient in hot spring phototrophic mats from Northern Patagonia (Chile). The mats were dominated (up to 53%) by cosmopolitan thermophilic filamentous true-branching cyanobacteria from the genus Mastigocladus, the associated viral community was predominantly composed of Caudovirales (70%), with most of the active infections driven by cyanophages (up to 90% of Caudovirales transcripts). Metagenomic assembly lead to the first full genome description of a T7-like Thermophilic Cyanophage recovered from a hot spring (Porcelana Hot Spring, Chile), with a temperature of 58°C (TC-CHP58). This could potentially represent a world-wide thermophilic lineage of podoviruses that infect cyanobacteria. In the hot spring, TC-CHP58 was active over a temperature gradient from 48 to 66°C, showing a high population variability represented by 1979 single nucleotide variants (SNVs). TC-CHP58 was associated to the Mastigocladus spp. by CRISPR spacers. Marked differences in metagenomic CRISPR loci number and spacers diversity, as well as SNVs, in the TC-CHP58 proto-spacers at different temperatures, reinforce the theory of co-evolution between natural virus populations and cyanobacterial hosts. Considering the importance of cyanobacteria in hot spring biogeochemical cycles, the description of this new cyanopodovirus lineage may have global implications for the functioning of these extreme ecosystems.
Collapse
Affiliation(s)
- Sergio Guajardo-Leiva
- Department of Molecular Genetics and Microbiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos Pedrós-Alió
- Programa de Biología de Sistemas, Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Oscar Salgado
- Department of Molecular Genetics and Microbiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fabián Pinto
- Department of Molecular Genetics and Microbiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Beatriz Díez
- Department of Molecular Genetics and Microbiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Center for Climate and Resilience Research, Santiago, Chile
| |
Collapse
|
40
|
Kraus EA, Beeler SR, Mors RA, Floyd JG, Stamps BW, Nunn HS, Stevenson BS, Johnson HA, Shapiro RS, Loyd SJ, Spear JR, Corsetti FA. Microscale Biosignatures and Abiotic Mineral Authigenesis in Little Hot Creek, California. Front Microbiol 2018; 9:997. [PMID: 29887837 PMCID: PMC5981138 DOI: 10.3389/fmicb.2018.00997] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/27/2018] [Indexed: 11/13/2022] Open
Abstract
Hot spring environments can create physical and chemical gradients favorable for unique microbial life. They can also include authigenic mineral precipitates that may preserve signs of biological activity on Earth and possibly other planets. The abiogenic or biogenic origins of such precipitates can be difficult to discern, therefore a better understanding of mineral formation processes is critical for the accurate interpretation of biosignatures from hot springs. Little Hot Creek (LHC) is a hot spring complex located in the Long Valley Caldera, California, that contains mineral precipitates composed of a carbonate base (largely submerged) topped by amorphous silica (largely emergent). The precipitates occur in close association with microbial mats and biofilms. Geological, geochemical, and microbiological data are consistent with mineral formation via degassing and evaporation rather than direct microbial involvement. However, the microfabric of the silica portion is stromatolitic in nature (i.e., wavy and finely laminated), suggesting that abiogenic mineralization has the potential to preserve textural biosignatures. Although geochemical and petrographic evidence suggests the calcite base was precipitated via abiogenic processes, endolithic microbial communities modified the structure of the calcite crystals, producing a textural biosignature. Our results reveal that even when mineral precipitation is largely abiogenic, the potential to preserve biosignatures in hot spring settings is high. The features found in the LHC structures may provide insight into the biogenicity of ancient Earth and extraterrestrial rocks.
Collapse
Affiliation(s)
- Emily A Kraus
- Geo- Environmental- Microbiology Laboratory, Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
| | - Scott R Beeler
- Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO, United States
| | - R Agustin Mors
- Laboratorio de Paleobiología y Geomicrobiología Experimental, Centro de Investigaciones en Ciencias de la Tierra (CONICET-UNC), Córdoba, Argentina
| | - James G Floyd
- Department of Microbiology and Plant Biology, The University of Oklahoma, Norman, OK, United States
| | | | - Blake W Stamps
- Geo- Environmental- Microbiology Laboratory, Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
| | - Heather S Nunn
- Department of Microbiology and Plant Biology, The University of Oklahoma, Norman, OK, United States
| | - Bradley S Stevenson
- Department of Microbiology and Plant Biology, The University of Oklahoma, Norman, OK, United States
| | - Hope A Johnson
- Department of Biological Sciences, California State University, Fullerton, Fullerton, CA, United States
| | - Russell S Shapiro
- Geological and Environmental Sciences, California State University, Chico, Chico, CA, United States
| | - Sean J Loyd
- Department of Geological Sciences, California State University, Fullerton, Fullerton, CA, United States
| | - John R Spear
- Geo- Environmental- Microbiology Laboratory, Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
| | - Frank A Corsetti
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
41
|
Düner M, Lambertz J, Mügge C, Hemschemeier A. The soluble guanylate cyclase CYG12 is required for the acclimation to hypoxia and trophic regimes in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:311-337. [PMID: 29161457 DOI: 10.1111/tpj.13779] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 11/03/2017] [Accepted: 11/09/2017] [Indexed: 05/27/2023]
Abstract
Oxygenic phototrophs frequently encounter environmental conditions that result in intracellular energy crises. Growth of the unicellular green alga Chlamydomonas reinhardtii in hypoxia in the light depends on acclimatory responses of which the induction of photosynthetic cyclic electron flow is essential. The microalga cannot grow in the absence of molecular oxygen (O2 ) in the dark, although it possesses an elaborate fermentation metabolism. Not much is known about how the microalga senses and signals the lack of O2 or about its survival strategies during energy crises. Recently, nitric oxide (NO) has emerged to be required for the acclimation of C. reinhardtii to hypoxia. In this study, we show that the soluble guanylate cyclase (sGC) CYG12, a homologue of animal NO sensors, is also involved in this response. CYG12 is an active sGC, and post-transcriptional down-regulation of the CYG12 gene impairs hypoxic growth and gene expression in C. reinhardtii. However, it also results in a disturbed photosynthetic apparatus under standard growth conditions and the inability to grow heterotrophically. Transcriptome profiles indicate that the mis-expression of CYG12 results in a perturbation of responses that, in the wild-type, maintain the cellular energy budget. We suggest that CYG12 is required for the proper operation of the photosynthetic apparatus which, in turn, is essential for survival in hypoxia and darkness.
Collapse
Affiliation(s)
- Melis Düner
- Department of Plant Biochemistry, Workgroup Photobiotechnology, Faculty of Biology and Biotechnology, Ruhr-University of Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Jan Lambertz
- Department of Plant Biochemistry, Workgroup Photobiotechnology, Faculty of Biology and Biotechnology, Ruhr-University of Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Carolin Mügge
- Junior Research Group for Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-University of Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Anja Hemschemeier
- Department of Plant Biochemistry, Workgroup Photobiotechnology, Faculty of Biology and Biotechnology, Ruhr-University of Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| |
Collapse
|
42
|
Yoon KS, Nguyen NT, Tran KT, Tsuji K, Ogo S. Nitrogen Fixation Genes and Nitrogenase Activity of the Non-Heterocystous Cyanobacterium Thermoleptolyngbya sp. O-77. Microbes Environ 2017; 32:324-329. [PMID: 29176306 PMCID: PMC5745016 DOI: 10.1264/jsme2.me17015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cyanobacteria are widely distributed in marine, aquatic, and terrestrial ecosystems, and play an important role in the global nitrogen cycle. In the present study, we examined the genome sequence of the thermophilic non-heterocystous N2-fixing cyanobacterium, Thermoleptolyngbya sp. O-77 (formerly known as Leptolyngbya sp. O-77) and characterized its nitrogenase activity. The genome of this cyanobacterial strain O-77 consists of a single chromosome containing a nitrogen fixation gene cluster. A phylogenetic analysis indicated that the NifH amino acid sequence from strain O-77 was clustered with those from a group of mesophilic species: the highest identity was found in Leptolyngbya sp. KIOST-1 (97.9% sequence identity). The nitrogenase activity of O-77 cells was dependent on illumination, whereas a high intensity of light of 40 μmol m−2 s−1 suppressed the effects of illumination.
Collapse
Affiliation(s)
- Ki-Seok Yoon
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University.,Center for Small Molecule Energy, Kyushu University
| | - Nga T Nguyen
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University
| | - Kien Trung Tran
- Center for Small Molecule Energy, Kyushu University.,Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University
| | - Kohsei Tsuji
- Center for Small Molecule Energy, Kyushu University.,Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University
| | - Seiji Ogo
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University.,Center for Small Molecule Energy, Kyushu University.,Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University
| |
Collapse
|
43
|
Thiel V, Hügler M, Ward DM, Bryant DA. The Dark Side of the Mushroom Spring Microbial Mat: Life in the Shadow of Chlorophototrophs. II. Metabolic Functions of Abundant Community Members Predicted from Metagenomic Analyses. Front Microbiol 2017. [PMID: 28634470 PMCID: PMC5459899 DOI: 10.3389/fmicb.2017.00943] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbial mat communities in the effluent channels of Octopus and Mushroom Springs within the Lower Geyser Basin of Yellowstone National Park have been extensively characterized. Previous studies have focused on the chlorophototrophic organisms of the phyla Cyanobacteria and Chloroflexi. However, the diversity and metabolic functions of the other portion of the community in the microoxic/anoxic region of the mat are poorly understood. We recently described the diverse but extremely uneven microbial assemblage in the undermat of Mushroom Spring based on 16S rRNA amplicon sequences, which was dominated by Roseiflexus members, filamentous anoxygenic chlorophototrophs. In this study, we analyzed the orange-colored undermat portion of the community of Mushroom Spring mats in a genome-centric approach and discuss the metabolic potentials of the major members. Metagenome binning recovered partial genomes of all abundant community members, ranging in completeness from ~28 to 96%, and allowed affiliation of function with taxonomic identity even for representatives of novel and Candidate phyla. Less complete metagenomic bins correlated with high microdiversity. The undermat portion of the community was found to be a mixture of phototrophic and chemotrophic organisms, which use bicarbonate as well as organic carbon sources derived from different cell components and fermentation products. The presence of rhodopsin genes in many taxa strengthens the hypothesis that light energy is of major importance. Evidence for the usage of all four bacterial carbon fixation pathways was found in the metagenome. Nitrogen fixation appears to be limited to Synechococcus spp. in the upper mat layer and Thermodesulfovibrio sp. in the undermat, and nitrate/nitrite metabolism was limited. A closed sulfur cycle is indicated by biological sulfate reduction combined with the presence of genes for sulfide oxidation mainly in phototrophs. Finally, a variety of undermat microorganisms have genes for hydrogen production and consumption, which leads to the observed diel hydrogen concentration patterns.
Collapse
Affiliation(s)
- Vera Thiel
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University ParkPA, United States
| | - Michael Hügler
- Department Microbiology and Molecular Biology, DVGW-Technologiezentrum WasserKarlsruhe, Germany
| | - David M Ward
- Department of Land Resources and Environmental Sciences, Montana State UniversityBozeman, MT, United States
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University ParkPA, United States.,Department of Chemistry and Biochemistry, Montana State UniversityBozeman, MT, United States
| |
Collapse
|
44
|
Esteves-Ferreira AA, Cavalcanti JHF, Vaz MGMV, Alvarenga LV, Nunes-Nesi A, Araújo WL. Cyanobacterial nitrogenases: phylogenetic diversity, regulation and functional predictions. Genet Mol Biol 2017; 40:261-275. [PMID: 28323299 PMCID: PMC5452144 DOI: 10.1590/1678-4685-gmb-2016-0050] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 12/21/2016] [Indexed: 12/21/2022] Open
Abstract
Cyanobacteria is a remarkable group of prokaryotic photosynthetic microorganisms, with several genera capable of fixing atmospheric nitrogen (N2) and presenting a wide range of morphologies. Although the nitrogenase complex is not present in all cyanobacterial taxa, it is spread across several cyanobacterial strains. The nitrogenase complex has also a high theoretical potential for biofuel production, since H2 is a by-product produced during N2 fixation. In this review we discuss the significance of a relatively wide variety of cell morphologies and metabolic strategies that allow spatial and temporal separation of N2 fixation from photosynthesis in cyanobacteria. Phylogenetic reconstructions based on 16S rRNA and nifD gene sequences shed light on the evolutionary history of the two genes. Our results demonstrated that (i) sequences of genes involved in nitrogen fixation (nifD) from several morphologically distinct strains of cyanobacteria are grouped in similarity with their morphology classification and phylogeny, and (ii) nifD genes from heterocytous strains share a common ancestor. By using this data we also discuss the evolutionary importance of processes such as horizontal gene transfer and genetic duplication for nitrogenase evolution and diversification. Finally, we discuss the importance of H2 synthesis in cyanobacteria, as well as strategies and challenges to improve cyanobacterial H2 production.
Collapse
Affiliation(s)
- Alberto A Esteves-Ferreira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil.,Max-Planck-partner group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - João Henrique Frota Cavalcanti
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil.,Max-Planck-partner group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Marcelo Gomes Marçal Vieira Vaz
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil.,Max-Planck-partner group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Luna V Alvarenga
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil.,Max-Planck-partner group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil.,Max-Planck-partner group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil.,Max-Planck-partner group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| |
Collapse
|
45
|
Budinich M, Bourdon J, Larhlimi A, Eveillard D. A multi-objective constraint-based approach for modeling genome-scale microbial ecosystems. PLoS One 2017; 12:e0171744. [PMID: 28187207 PMCID: PMC5302800 DOI: 10.1371/journal.pone.0171744] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 01/25/2017] [Indexed: 12/20/2022] Open
Abstract
Interplay within microbial communities impacts ecosystems on several scales, and elucidation of the consequent effects is a difficult task in ecology. In particular, the integration of genome-scale data within quantitative models of microbial ecosystems remains elusive. This study advocates the use of constraint-based modeling to build predictive models from recent high-resolution -omics datasets. Following recent studies that have demonstrated the accuracy of constraint-based models (CBMs) for simulating single-strain metabolic networks, we sought to study microbial ecosystems as a combination of single-strain metabolic networks that exchange nutrients. This study presents two multi-objective extensions of CBMs for modeling communities: multi-objective flux balance analysis (MO-FBA) and multi-objective flux variability analysis (MO-FVA). Both methods were applied to a hot spring mat model ecosystem. As a result, multiple trade-offs between nutrients and growth rates, as well as thermodynamically favorable relative abundances at community level, were emphasized. We expect this approach to be used for integrating genomic information in microbial ecosystems. Following models will provide insights about behaviors (including diversity) that take place at the ecosystem scale.
Collapse
Affiliation(s)
- Marko Budinich
- Computational Biology group, LINA UMR 6241 CNRS, EMN, Université de Nantes, Nantes, France
| | - Jérémie Bourdon
- Computational Biology group, LINA UMR 6241 CNRS, EMN, Université de Nantes, Nantes, France
| | - Abdelhalim Larhlimi
- Computational Biology group, LINA UMR 6241 CNRS, EMN, Université de Nantes, Nantes, France
| | - Damien Eveillard
- Computational Biology group, LINA UMR 6241 CNRS, EMN, Université de Nantes, Nantes, France
| |
Collapse
|
46
|
van Lis R, Popek M, Couté Y, Kosta A, Drapier D, Nitschke W, Atteia A. Concerted Up-regulation of Aldehyde/Alcohol Dehydrogenase (ADHE) and Starch in Chlamydomonas reinhardtii Increases Survival under Dark Anoxia. J Biol Chem 2016; 292:2395-2410. [PMID: 28007962 DOI: 10.1074/jbc.m116.766048] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/21/2016] [Indexed: 11/06/2022] Open
Abstract
Aldehyde/alcohol dehydrogenases (ADHEs) are bifunctional enzymes that commonly produce ethanol from acetyl-CoA with acetaldehyde as intermediate and play a key role in anaerobic redox balance in many fermenting bacteria. ADHEs are also present in photosynthetic unicellular eukaryotes, where their physiological role and regulation are, however, largely unknown. Herein we provide the first molecular and enzymatic characterization of the ADHE from the photosynthetic microalga Chlamydomonas reinhardtii Purified recombinant ADHE catalyzed the reversible NADH-mediated interconversions of acetyl-CoA, acetaldehyde, and ethanol but seemed to be poised toward the production of ethanol from acetaldehyde. Phylogenetic analysis of the algal fermentative enzyme supports a vertical inheritance from a cyanobacterial-related ancestor. ADHE was located in the chloroplast, where it associated in dimers and higher order oligomers. Electron microscopy analysis of ADHE-enriched stromal fractions revealed fine spiral structures, similar to bacterial ADHE spirosomes. Protein blots showed that ADHE is regulated under oxic conditions. Up-regulation is observed in cells exposed to diverse physiological stresses, including zinc deficiency, nitrogen starvation, and inhibition of carbon concentration/fixation capacity. Analyses of the overall proteome and fermentation profiles revealed that cells with increased ADHE abundance exhibit better survival under dark anoxia. This likely relates to the fact that greater ADHE abundance appeared to coincide with enhanced starch accumulation, which might reflect ADHE-mediated anticipation of anaerobic survival.
Collapse
Affiliation(s)
- Robert van Lis
- From the Aix Marseille Université, CNRS, BIP-UMR 7281, 13402 Marseille, France.,LBE, INRA, 11100 Narbonne, France
| | - Marion Popek
- From the Aix Marseille Université, CNRS, BIP-UMR 7281, 13402 Marseille, France
| | - Yohann Couté
- the Université Grenoble Alpes, BIG-BGE, 38000 Grenoble, France.,the Commissariat à l'Energie Atomique, BIG-BGE, 38000 Grenoble, France.,INSERM, BGE, 38000 Grenoble, France
| | - Artemis Kosta
- the Microscopy Core Facility, FR3479 Institut de Microbiologie de la Méditerranée, 13402 Marseille cedex 20, France, and
| | - Dominique Drapier
- the Institut de Biologie Physico-Chimique, UMR7141 CNRS-UPMC, 75005 Paris, France
| | - Wolfgang Nitschke
- From the Aix Marseille Université, CNRS, BIP-UMR 7281, 13402 Marseille, France
| | - Ariane Atteia
- From the Aix Marseille Université, CNRS, BIP-UMR 7281, 13402 Marseille, France,
| |
Collapse
|
47
|
Davison M, Treangen TJ, Koren S, Pop M, Bhaya D. Diversity in a Polymicrobial Community Revealed by Analysis of Viromes, Endolysins and CRISPR Spacers. PLoS One 2016; 11:e0160574. [PMID: 27611571 PMCID: PMC5017753 DOI: 10.1371/journal.pone.0160574] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/21/2016] [Indexed: 12/13/2022] Open
Abstract
The polymicrobial biofilm communities in Mushroom and Octopus Spring in Yellowstone National Park (YNP) are well characterized, yet little is known about the phage populations. Dominant species, Synechococcus sp. JA-2-3B'a(2–13), Synechococcus sp. JA-3-3Ab, Chloroflexus sp. Y-400-fl, and Roseiflexus sp. RS-1, contain multiple CRISPR-Cas arrays, suggesting complex interactions with phage predators. To analyze phage populations from Octopus Spring biofilms, we sequenced a viral enriched fraction. To assemble and analyze phage metagenomic data, we developed a custom module, VIRITAS, implemented within the MetAMOS framework. This module bins contigs into groups based on tetranucleotide frequencies and CRISPR spacer-protospacer matching and ORF calling. Using this pipeline we were able to assemble phage sequences into contigs and bin them into three clusters that corroborated with their potential host range. The virome contained 52,348 predicted ORFs; some were clearly phage-like; 9319 ORFs had a recognizable Pfam domain while the rest were hypothetical. Of the recognized domains with CRISPR spacer matches, was the phage endolysin used by lytic phage to disrupt cells. Analysis of the endolysins present in the thermophilic cyanophage contigs revealed a subset of characterized endolysins as well as a Glyco_hydro_108 (PF05838) domain not previously associated with sequenced cyanophages. A search for CRISPR spacer matches to all identified phage endolysins demonstrated that a majority of endolysin domains were targets. This strategy provides a general way to link host and phage as endolysins are known to be widely distributed in bacteriophage. Endolysins can also provide information about host cell wall composition and have the additional potential to be used as targets for novel therapeutics.
Collapse
Affiliation(s)
- Michelle Davison
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, 94305, United States of America
- Stanford University, Department of Biology, Stanford, CA, 94305, United States of America
- * E-mail: (MD); (DB)
| | - Todd J. Treangen
- Center for Bioinformatics and Computational Biology, Biomolecular Sciences Building, College Park, MD, 20742, United States of America
| | - Sergey Koren
- Center for Bioinformatics and Computational Biology, Biomolecular Sciences Building, College Park, MD, 20742, United States of America
| | - Mihai Pop
- Center for Bioinformatics and Computational Biology, Biomolecular Sciences Building, College Park, MD, 20742, United States of America
- Department of Computer Science, University of Maryland, College Park, MD, 20742, United States of America
| | - Devaki Bhaya
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, 94305, United States of America
- Stanford University, Department of Biology, Stanford, CA, 94305, United States of America
- * E-mail: (MD); (DB)
| |
Collapse
|
48
|
Murik O, Oren N, Shotland Y, Raanan H, Treves H, Kedem I, Keren N, Hagemann M, Pade N, Kaplan A. What distinguishes cyanobacteria able to revive after desiccation from those that cannot: the genome aspect. Environ Microbiol 2016; 19:535-550. [PMID: 27501380 DOI: 10.1111/1462-2920.13486] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/04/2016] [Indexed: 01/15/2023]
Abstract
Filamentous cyanobacteria are the main founders and primary producers in biological desert soil crusts (BSCs) and are likely equipped to cope with one of the harshest environmental conditions on earth including daily hydration/dehydration cycles, high irradiance and extreme temperatures. Here, we resolved and report on the genome sequence of Leptolyngbya ohadii, an important constituent of the BSC. Comparative genomics identified a set of genes present in desiccation-tolerant but not in dehydration-sensitive cyanobacteria. RT qPCR analyses showed that the transcript abundance of many of them is upregulated during desiccation in L. ohadii. In addition, we identified genes where the orthologs detected in desiccation-tolerant cyanobacteria differs substantially from that found in desiccation-sensitive cells. We present two examples, treS and fbpA (encoding trehalose synthase and fructose 1,6-bisphosphate aldolase respectively) where, in addition to the orthologs present in the desiccation-sensitive strains, the resistant cyanobacteria also possess genes with different predicted structures. We show that in both cases the two orthologs are transcribed during controlled dehydration of L. ohadii and discuss the genetic basis for the acclimation of cyanobacteria to the desiccation conditions in desert BSC.
Collapse
Affiliation(s)
- Omer Murik
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 9190401, Israel
| | - Nadav Oren
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 9190401, Israel
| | - Yoram Shotland
- Department of Chemical Engineering, Shamoon College of Engineering, Beer Sheva, 84100, Israel
| | - Hagai Raanan
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 9190401, Israel
| | - Haim Treves
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 9190401, Israel
| | - Isaac Kedem
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 9190401, Israel
| | - Nir Keren
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 9190401, Israel
| | - Martin Hagemann
- Institut für Biowissenschaften, Abteilung Pflanzenphysiologie, Universität Rostock, A.-Einstein-Str. 3, Rostock, D-18059, Germany
| | - Nadin Pade
- Institut für Biowissenschaften, Abteilung Pflanzenphysiologie, Universität Rostock, A.-Einstein-Str. 3, Rostock, D-18059, Germany
| | - Aaron Kaplan
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 9190401, Israel
| |
Collapse
|
49
|
Walter JM, Tschoeke DA, Meirelles PM, de Oliveira L, Leomil L, Tenório M, Valle R, Salomon PS, Thompson CC, Thompson FL. Taxonomic and Functional Metagenomic Signature of Turfs in the Abrolhos Reef System (Brazil). PLoS One 2016; 11:e0161168. [PMID: 27548380 PMCID: PMC4993507 DOI: 10.1371/journal.pone.0161168] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/01/2016] [Indexed: 12/25/2022] Open
Abstract
Turfs are widespread assemblages (consisting of microbes and algae) that inhabit reef systems. They are the most abundant benthic component in the Abrolhos reef system (Brazil), representing greater than half the coverage of the entire benthic community. Their presence is associated with a reduction in three-dimensional coral reef complexity and decreases the habitats available for reef biodiversity. Despite their importance, the taxonomic and functional diversity of turfs remain unclear. We performed a metagenomics and pigments profile characterization of turfs from the Abrolhos reefs. Turf microbiome primarily encompassed Proteobacteria (mean 40.57% ± s.d. 10.36, N = 1.548,192), Cyanobacteria (mean 35.04% ± s.d. 15.5, N = 1.337,196), and Bacteroidetes (mean 11.12% ± s.d. 4.25, N = 424,185). Oxygenic and anoxygenic phototrophs, chemolithotrophs, and aerobic anoxygenic phototrophic (AANP) bacteria showed a conserved functional trait of the turf microbiomes. Genes associated with oxygenic photosynthesis, AANP, sulfur cycle (S oxidation, and DMSP consumption), and nitrogen metabolism (N2 fixation, ammonia assimilation, dissimilatory nitrate and nitrite ammonification) were found in the turf microbiomes. Principal component analyses of the most abundant taxa and functions showed that turf microbiomes differ from the other major Abrolhos benthic microbiomes (i.e., corals and rhodoliths) and seawater. Taken together, these features suggest that turfs have a homogeneous functional core across the Abrolhos Bank, which holds diverse microbial guilds when comparing with other benthic organisms.
Collapse
Affiliation(s)
- Juline M Walter
- Laboratory of Microbiology, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Center of Technology-CT2, SAGE-COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Diogo A Tschoeke
- Laboratory of Microbiology, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Center of Technology-CT2, SAGE-COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Pedro M Meirelles
- Laboratory of Microbiology, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Louisi de Oliveira
- Laboratory of Microbiology, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Center of Technology-CT2, SAGE-COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Luciana Leomil
- Laboratory of Microbiology, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Center of Technology-CT2, SAGE-COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Márcio Tenório
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Rogério Valle
- COPPE-Production Engineering Program, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Paulo S Salomon
- Center of Technology-CT2, SAGE-COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Cristiane C Thompson
- Laboratory of Microbiology, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Fabiano L Thompson
- Laboratory of Microbiology, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Center of Technology-CT2, SAGE-COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
50
|
In Situ Hydrogen Dynamics in a Hot Spring Microbial Mat during a Diel Cycle. Appl Environ Microbiol 2016; 82:4209-4217. [PMID: 27208140 DOI: 10.1128/aem.00710-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/29/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Microbes can produce molecular hydrogen (H2) via fermentation, dinitrogen fixation, or direct photolysis, yet the H2 dynamics in cyanobacterial communities has only been explored in a few natural systems and mostly in the laboratory. In this study, we investigated the diel in situ H2 dynamics in a hot spring microbial mat, where various ecotypes of unicellular cyanobacteria (Synechococcus sp.) are the only oxygenic phototrophs. In the evening, H2 accumulated rapidly after the onset of darkness, reaching peak values of up to 30 μmol H2 liter(-1) at about 1-mm depth below the mat surface, slowly decreasing to about 11 μmol H2 liter(-1) just before sunrise. Another pulse of H2 production, reaching a peak concentration of 46 μmol H2 liter(-1), was found in the early morning under dim light conditions too low to induce accumulation of O2 in the mat. The light stimulation of H2 accumulation indicated that nitrogenase activity was an important source of H2 during the morning. This is in accordance with earlier findings of a distinct early morning peak in N2 fixation and expression of Synechococcus nitrogenase genes in mat samples from the same location. Fermentation might have contributed to the formation of H2 during the night, where accumulation of other fermentation products lowered the pH in the mat to less than pH 6 compared to a spring source pH of 8.3. IMPORTANCE Hydrogen is a key intermediate in anaerobic metabolism, and with the development of a sulfide-insensitive microsensor for H2, it is now possible to study the microdistribution of H2 in stratified microbial communities such as the photosynthetic microbial mat investigated here. The ability to measure H2 profiles within the mat compared to previous measurements of H2 emission gives much more detailed information about the sources and sinks of H2 in such communities, and it was demonstrated that the high rates of H2 formation in the early morning when the mat was exposed to low light intensities might be explained by nitrogen fixation, where H2 is formed as a by-product.
Collapse
|