1
|
Gaur M, Liang X, Brooks MJ, Jiang K, Kumari A, English MA, Cifani P, Panepinto MC, Nellissery J, Fariss RN, Campello L, Marchal C, Swaroop A. Aerobic glycolysis and lactate regulate histone H3K18Lactylation occupancy to fine-tune gene expression in developing and mature retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.17.649437. [PMID: 40568109 PMCID: PMC12190749 DOI: 10.1101/2025.04.17.649437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2025]
Abstract
High aerobic glycolysis in retinal photoreceptors, as in cancer cells, is implicated in mitigating energy and metabolic demands. Lactate, a product of glycolysis, plays a key role in epigenetic regulation through histone lactylation in cancer. Here, we demonstrate that increased ATP production during retinal development is achieved primarily through augmented glycolysis. Histone lactylation, especially H3K18La, parallels enhanced glycolysis and lactate in developing retina and in retinal explants. Multi-omics analyses, combined with confocal imaging, reveal the localization of H3K18La near H3K27Ac in euchromatin at promoters of active retinal genes. H3K18La and gene expression are also concordant with glucose metabolism in retinal explants. Evaluation of accessible chromatin at H3K18La marked promoters uncovers an enrichment of GC-rich motifs for transcription factors of SP, KMT and KLF families, among others, indicating specificity of H3K18La-mediated gene regulation. Our results highlight glycolysis/lactate/H3K18La as a regulatory axis in fine-tuning gene expression in developing and mature retina.
Collapse
|
2
|
Dvoriantchikova G, Moulin C, Fleishaker M, Almeida V, Pelaez D, Lam BL, Ivanov D. Genetic ablation of the TET family in retinal progenitor cells impairs photoreceptor development and leads to blindness. Proc Natl Acad Sci U S A 2025; 122:e2420091122. [PMID: 40053367 PMCID: PMC11912455 DOI: 10.1073/pnas.2420091122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/31/2025] [Indexed: 03/19/2025] Open
Abstract
The retina is responsible for converting light into electrical signals that, when transmitted to the brain, create the sensation of vision. The mammalian retina is epigenetically unique since the differentiation of retinal progenitor cells (RPCs) into retinal cells is accompanied by a decrease in DNA methylation in the promoters of many genes important for retinal development and function. However, the pathway responsible for DNA demethylation and its role in retinal development and function were unknown. We hypothesized that the Ten-Eleven Translocation (TET) family of dioxygenases plays a key role in this pathway. To this end, we knocked out the TET family in RPCs and characterized the TET-deficient and control retinas using various approaches including electron microscopy, electroretinogram tests, TUNEL, RNA-seq, WGBS, and 5hmC-Seal. We found that while the TET-dependent DNA demethylation pathway contributes to the development of many retinal cell types, it is the most significant contributor to rod and cone photoreceptor development and function. We found that genetic ablation of TET enzymes in RPCs prevents demethylation and the activity of genes essential for rod specification and for rod and cone maturation. Reduced activity of genes responsible for rod specification results in the TET-deficient retina being depleted of these neurons. Meanwhile, reduced activity of genes responsible for rod and cone maturation leads to the underdevelopment or complete absence of outer segments and synaptic termini in the TET-deficient photoreceptors, which results in loss of their function and leads to blindness. These function-deprived, underdeveloped photoreceptors die over time, leading to retinal dystrophy.
Collapse
Affiliation(s)
- Galina Dvoriantchikova
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL33136
| | - Chloe Moulin
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL33136
| | - Michelle Fleishaker
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL33136
| | - Vania Almeida
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL33136
| | - Daniel Pelaez
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL33136
| | - Byron L. Lam
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL33136
| | - Dmitry Ivanov
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL33136
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL33136
| |
Collapse
|
3
|
Chen D, Keremane S, Wang S, Lei EP. CTCF regulates global chromatin accessibility and transcription during rod photoreceptor development. Proc Natl Acad Sci U S A 2025; 122:e2416384122. [PMID: 39993185 PMCID: PMC11892594 DOI: 10.1073/pnas.2416384122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/07/2025] [Indexed: 02/26/2025] Open
Abstract
Chromatin architecture facilitates accurate transcription at a number of loci, but it remains unclear how much chromatin architecture is involved in global transcriptional regulation. Previous work has shown that rapid depletion of the architectural protein CTCF in cell culture alters global chromatin organization but results in surprisingly limited gene expression changes. This discrepancy has also been observed when other architectural proteins are depleted, and one possible explanation is that full transcriptional changes are masked by cellular heterogeneity. We tested this idea by performing multiomics analyses with sorted juvenile postmitotic mouse rods, which undergo synchronized development, and we identified CTCF-dependent regulation of global chromatin accessibility and gene expression. CTCF depletion leads to dysregulation of ~20% of the entire transcriptome (>3,000 genes) and ~41% of genome accessibility (>27,000 sites) before any prominent cellular or physiological phenotypes arise. Importantly, these changes are highly enriched for CTCF occupancy at euchromatin, suggesting direct CTCF binding and transcriptional regulation at these active loci. CTCF mainly promotes chromatin accessibility and frequently inhibits expression of these direct binding targets, which are enriched for binding motifs of transcription repressors. These findings provide different and sometimes opposite conclusions from previous studies, emphasizing the need to consider cellular heterogeneity and cell-type specificity when performing multiomics analyses. CTCF knockout rods undergo complete degeneration by adulthood, indicating an essential role for their viability. We conclude that the architectural protein CTCF binds chromatin and regulates global chromatin accessibility and transcription during rod development.
Collapse
Affiliation(s)
- Dahong Chen
- Nuclear Organization and Gene Expression Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892
| | - Saumya Keremane
- Nuclear Organization and Gene Expression Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892
| | - Silu Wang
- Department of Biological Sciences, College of Arts and Sciences, University at Buffalo, Buffalo, NY14260
| | - Elissa P. Lei
- Nuclear Organization and Gene Expression Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892
| |
Collapse
|
4
|
Wang J, Nnoromele PO, Liu YV, Johnston RJ, Singh MS. Cellular component transfer between photoreceptor cells of the retina. Prog Retin Eye Res 2025; 104:101317. [PMID: 39551387 PMCID: PMC12117620 DOI: 10.1016/j.preteyeres.2024.101317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
Photoreceptor transplantation is a potential therapeutic strategy for degenerative retinal diseases. Studies on mechanisms contributing to retinal regeneration and vision repair identified cellular components transfer (CCT) as playing a role, in addition to somatic augmentation (referred to as "cell replacement" in this paper). In CCT, donor photoreceptors shuttle proteins, RNA, and mitochondria to host photoreceptors through intercellular connections. The discovery of CCT in the transplantation context triggered a re-interpretation of prior transplantation studies that generally did not include specific CCT assays and thereby broadly emphasized the cell replacement model, reflecting the prevailing understanding of retinal transplantation biology at that time. In addition to clarifying our understanding of photoreceptor biology, CCT has raised the possibility of developing treatments to replenish molecular deficiencies in diseased photoreceptor cells. As the CCT field evolves, investigators have used diverse terminology, and implemented different CCT assays following transplantation in animal models. The non-standardized terminology of CCT and absent minimal assay standards for detection can hinder communication between investigators and comparison between studies. In this review, we discuss the current understanding of CCT, provide an overview of transplantation and regeneration studies in small and large animals, and propose terminology and a minimal assay standard for CCT. Further research on CCT may eventually provide new avenues to treat a range of hereditary and acquired retinopathies while illuminating mechanisms of cell-cell interaction in the retina.
Collapse
Affiliation(s)
- Joyce Wang
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Patrick O Nnoromele
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ying V Liu
- Wilmer Eye Institute, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Robert J Johnston
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biology, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Mandeep S Singh
- Wilmer Eye Institute, Johns Hopkins Hospital, Baltimore, MD, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
D'Souza SP, Upton BA, Eldred KC, Glass I, Nayak G, Grover K, Ahmed A, Nguyen MT, Hu YC, Gamlin P, Lang RA. Developmental control of rod number via a light-dependent retrograde pathway from intrinsically photosensitive retinal ganglion cells. Dev Cell 2024; 59:2897-2911.e6. [PMID: 39142280 PMCID: PMC11537824 DOI: 10.1016/j.devcel.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/07/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024]
Abstract
Photoreception is essential for the development of the visual system, shaping vision's first synapse to cortical development. Here, we find that the lighting environment controls developmental rod apoptosis via Opn4-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs). Using genetics, sensory environment manipulations, and computational approaches, we establish a pathway where light-dependent glutamate released from ipRGCs is detected via a transiently expressed glutamate receptor (Grik3) on rod precursors within the inner retina. Communication between these cells is mediated by hybrid neurites on ipRGCs that sense light before eye opening. These structures span the ipRGC-rod precursor distance over development and contain the machinery for photoreception (Opn4) and neurotransmitter release (Vglut2 & Syp). Assessment of the human gestational retina identifies conserved hallmarks of an ipRGC-to-rod axis, including displaced rod precursors, transient GRIK3 expression, and ipRGCs with deep-projecting neurites. This analysis defines an adaptive retrograde pathway linking the sensory environment to rod precursors via ipRGCs prior to eye opening.
Collapse
Affiliation(s)
- Shane P D'Souza
- Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Science of Light Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | - Brian A Upton
- Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Science of Light Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kiara C Eldred
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Ian Glass
- Birth Defects Research Laboratory, Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Department of Pediatrics, University of Washington, Seattle, WA 98195, USA; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98195, USA
| | - Gowri Nayak
- Transgenic Animal and Genome Editing Core, Department of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kassidy Grover
- Division of Hematology and Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Abdulla Ahmed
- Medical Doctor (M.D.) Training Program, George Washington University School of Medicine, Washington, DC 20052, USA
| | - Minh-Thanh Nguyen
- Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Science of Light Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yueh-Chiang Hu
- Transgenic Animal and Genome Editing Core, Department of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Paul Gamlin
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Richard A Lang
- Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Science of Light Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Ophthalmology, University of Cincinnati, Cincinnati, OH 45229, USA.
| |
Collapse
|
6
|
Kim SY, Park CH, Moon BH, Seabold GK. Murine Retina Outer Plexiform Layer Development and Transcriptome Analysis of Pre-Synapses in Photoreceptors. Life (Basel) 2024; 14:1103. [PMID: 39337887 PMCID: PMC11433150 DOI: 10.3390/life14091103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Photoreceptors in the mammalian retina convert light signals into electrical and molecular signals through phototransduction and transfer the visual inputs to second-order neurons via specialized ribbon synapses. Two kinds of photoreceptors, rods and cones, possess distinct morphology and function. Currently, we have limited knowledge about rod versus (vs.) cone synapse development and the associated genes. The transcription factor neural retina leucine zipper (NRL) determines the rod vs. cone photoreceptor cell fate and is critical for rod differentiation. Nrl knockout mice fail to form rods, generating all cone or S-cone-like (SCL) photoreceptors in the retina, whereas ectopic expression of Nrl using a cone-rod homeobox (Crx) promoter (CrxpNrl) forms all rods. Here, we examined rod and cone pre-synapse development, including axonal elongation, terminal shaping, and synaptic lamination in the outer plexiform layer (OPL) in the presence or absence of Nrl. We show that NRL loss and knockdown result in delayed OPL maturation and plasticity with aberrant dendrites of bipolar neurons. The integrated analyses of the transcriptome in developing rods and SCLs with NRL CUT&RUN and synaptic gene ontology analyses identified G protein subunit beta (Gnb) 1 and p21 (RAC1) activated kinase 5 (Pak5 or Pak7) transcripts were upregulated in developing rods and down-regulated in developing SCLs. Notably, Gnb1 and Gnb5 are rod dominant, and Gnb3 is enriched in cones. NRL binds to the genes of Gnb1, Gnb3, and Gnb5. NRL also regulates pre-synapse ribbon genes, and their expression is altered in rods and SCLs. Our study of histological and gene analyses provides new insights into the morphogenesis of photoreceptor pre-synapse development and regulation of associated genes in the developing retina.
Collapse
Affiliation(s)
- Soo-Young Kim
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christine Haewon Park
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bo-Hyun Moon
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Gail K Seabold
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Chen D, Keremane S, Wang S, Lei EP. CTCF regulates global chromatin accessibility and transcription during rod photoreceptor development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.27.596084. [PMID: 38853900 PMCID: PMC11160664 DOI: 10.1101/2024.05.27.596084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Chromatin architecture facilitates accurate transcription at a number of loci, but it remains unclear how much chromatin architecture is involved in global transcriptional regulation. Previous work has shown that rapid depletion of the architectural protein CTCF in cell culture strongly alters chromatin organization but results in surprisingly limited gene expression changes. This discrepancy has also been observed when other architectural proteins are depleted, and one possible explanation is that full transcriptional changes are masked by cellular heterogeneity. We tested this idea by performing multi-omics analyses with sorted post-mitotic mouse rods, which undergo synchronized development, and identified CTCF-dependent regulation of global chromatin accessibility and gene expression. Depletion of CTCF leads to dysregulation of ∼20% of the entire transcriptome (>3,000 genes) and ∼41% of genome accessibility (>26,000 sites), and these regions are strongly enriched in euchromatin. Importantly, these changes are highly enriched for CTCF occupancy, suggesting direct CTCF binding and transcriptional regulation at these active loci. CTCF mainly promotes chromatin accessibility of these direct binding targets, and a large fraction of these sites correspond to promoters. At these sites, CTCF binding frequently promotes accessibility and inhibits expression, and motifs of transcription repressors are found to be significantly enriched. Our findings provide different and often opposite conclusions from previous studies, emphasizing the need to consider cell heterogeneity and cell type specificity when performing multi-omics analyses. We conclude that the architectural protein CTCF binds chromatin and regulates global chromatin accessibility and transcription during rod development.
Collapse
|
8
|
Kalargyrou AA, Matsuyama A, Lanning EP, Khazim M, Guilfoyle S, Smith AJ, Ali RR, Pearson RA. A protocol for isolation and culturing of mouse primary postmitotic photoreceptors and isolation of extracellular vesicles. STAR Protoc 2024; 5:102875. [PMID: 38386547 PMCID: PMC10901138 DOI: 10.1016/j.xpro.2024.102875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/02/2023] [Accepted: 01/19/2024] [Indexed: 02/24/2024] Open
Abstract
Here, we present a protocol for isolating and culturing mouse photoreceptors in a minimal, chemically defined medium free from serum. We describe steps for retina dissection, enzymatic dissociation, photoreceptor enrichment, cell culture, extracellular vesicles (EVs) enrichment, and EV ultrastructural analysis. This protocol, which has been verified for cultured cells derived from multiple murine strains, allows for the study of several aspects of photoreceptor biology, including EV isolation and nanotube formation. For complete details on the use and execution of this protocol, please refer to Kalargyrou et al. (2021).1.
Collapse
Affiliation(s)
- Aikaterini A Kalargyrou
- Centre for Gene Therapy and Regenerative Medicine, King's College London, Guy's Hospital, 8th Floor Tower Wing, London SE1 9RT, UK.
| | - Ayako Matsuyama
- Centre for Gene Therapy and Regenerative Medicine, King's College London, Guy's Hospital, 8th Floor Tower Wing, London SE1 9RT, UK
| | - Emily P Lanning
- Centre for Gene Therapy and Regenerative Medicine, King's College London, Guy's Hospital, 8th Floor Tower Wing, London SE1 9RT, UK
| | - Mahmoud Khazim
- Centre for Gene Therapy and Regenerative Medicine, King's College London, Guy's Hospital, 8th Floor Tower Wing, London SE1 9RT, UK
| | - Siobhan Guilfoyle
- Centre for Gene Therapy and Regenerative Medicine, King's College London, Guy's Hospital, 8th Floor Tower Wing, London SE1 9RT, UK
| | - Alexander J Smith
- Centre for Gene Therapy and Regenerative Medicine, King's College London, Guy's Hospital, 8th Floor Tower Wing, London SE1 9RT, UK
| | - Robin R Ali
- Centre for Gene Therapy and Regenerative Medicine, King's College London, Guy's Hospital, 8th Floor Tower Wing, London SE1 9RT, UK
| | - Rachael A Pearson
- Centre for Gene Therapy and Regenerative Medicine, King's College London, Guy's Hospital, 8th Floor Tower Wing, London SE1 9RT, UK.
| |
Collapse
|
9
|
Kellish PC, Marsic D, Crosson SM, Choudhury S, Scalabrino ML, Strang CE, Hill J, McCullough KT, Peterson JJ, Fajardo D, Gupte S, Makal V, Kondratov O, Kondratova L, Iyer S, Witherspoon CD, Gamlin PD, Zolotukhin S, Boye SL, Boye SE. Intravitreal injection of a rationally designed AAV capsid library in non-human primate identifies variants with enhanced retinal transduction and neutralizing antibody evasion. Mol Ther 2023; 31:3441-3456. [PMID: 37814449 PMCID: PMC10727955 DOI: 10.1016/j.ymthe.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 10/11/2023] Open
Abstract
Adeno-associated virus (AAV) continues to be the gold standard vector for therapeutic gene delivery and has proven especially useful for treating ocular disease. Intravitreal injection (IVtI) is a promising delivery route because it increases accessibility of gene therapies to larger patient populations. However, data from clinical and non-human primate (NHP) studies utilizing currently available capsids indicate that anatomical barriers to AAV and pre-existing neutralizing antibodies can restrict gene expression to levels that are "sub-therapeutic" in a substantial proportion of patients. Here, we performed a combination of directed evolution in NHPs of an AAV2-based capsid library with simultaneous mutations across six surface-exposed variable regions and rational design to identify novel capsid variants with improved retinal transduction following IVtI. Following two rounds of screening in NHP, enriched variants were characterized in intravitreally injected mice and NHPs and shown to have increased transduction relative to AAV2. Lead capsid variant, P2-V1, demonstrated an increased ability to evade neutralizing antibodies in human vitreous samples relative to AAV2 and AAV2.7m8. Taken together, this study further contributed to our understanding of the selective pressures associated with retinal transduction via the vitreous and identified promising novel AAV capsid variants for clinical consideration.
Collapse
Affiliation(s)
- Patrick C Kellish
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Damien Marsic
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Sean M Crosson
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Shreyasi Choudhury
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Miranda L Scalabrino
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Christianne E Strang
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham AL 35294, USA
| | - Julie Hill
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham AL 35294, USA
| | - K Tyler McCullough
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - James J Peterson
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Diego Fajardo
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Siddhant Gupte
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Victoria Makal
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Oleksandr Kondratov
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Liudmyla Kondratova
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Siva Iyer
- Department of Ophthalmology, University of Florida, Gainesville, FL 32610, USA
| | - C Douglas Witherspoon
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham AL 35294, USA
| | - Paul D Gamlin
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham AL 35294, USA
| | - Sergei Zolotukhin
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Sanford L Boye
- Powell Gene Therapy Center, Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
| | - Shannon E Boye
- Division of Cellular and Molecular Therapy, Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
10
|
Beaver D, Limnios IJ. A treatment within sight: challenges in the development of stem cell-derived photoreceptor therapies for retinal degenerative diseases. FRONTIERS IN TRANSPLANTATION 2023; 2:1130086. [PMID: 38993872 PMCID: PMC11235385 DOI: 10.3389/frtra.2023.1130086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 09/07/2023] [Indexed: 07/13/2024]
Abstract
Stem cell therapies can potentially treat various retinal degenerative diseases, including age-related macular degeneration (AMD) and inherited retinal diseases like retinitis pigmentosa. For these diseases, transplanted cells may include stem cell-derived retinal pigmented epithelial (RPE) cells, photoreceptors, or a combination of both. Although stem cell-derived RPE cells have progressed to human clinical trials, therapies using photoreceptors and other retinal cell types are lagging. In this review, we discuss the potential use of human pluripotent stem cell (hPSC)-derived photoreceptors for the treatment of retinal degeneration and highlight the progress and challenges for their efficient production and clinical application in regenerative medicine.
Collapse
Affiliation(s)
- Davinia Beaver
- Clem Jones Centre for Regenerative Medicine, Bond University, Gold Coast, QL, Australia
| | - Ioannis Jason Limnios
- Clem Jones Centre for Regenerative Medicine, Bond University, Gold Coast, QL, Australia
| |
Collapse
|
11
|
Barravecchia I, De Cesari C, Guadagni V, Signore G, Bertolini E, Giannelli SG, Scebba F, Martini D, Pè ME, Broccoli V, Andreazzoli M, Angeloni D, Demontis GC. Increasing cell culture density during a developmental window prevents fated rod precursors derailment toward hybrid rod-glia cells. Sci Rep 2023; 13:6025. [PMID: 37055439 PMCID: PMC10101963 DOI: 10.1038/s41598-023-32571-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/29/2023] [Indexed: 04/15/2023] Open
Abstract
In proliferating multipotent retinal progenitors, transcription factors dynamics set the fate of postmitotic daughter cells, but postmitotic cell fate plasticity driven by extrinsic factors remains controversial. Transcriptome analysis reveals the concurrent expression by postmitotic rod precursors of genes critical for the Müller glia cell fate, which are rarely generated from terminally-dividing progenitors as a pair with rod precursors. By combining gene expression and functional characterisation in single cultured rod precursors, we identified a time-restricted window where increasing cell culture density switches off the expression of genes critical for Müller glial cells. Intriguingly, rod precursors in low cell culture density maintain the expression of genes of rod and glial cell fate and develop a mixed rod/Muller glial cells electrophysiological fingerprint, revealing rods derailment toward a hybrid rod-glial phenotype. The notion of cell culture density as an extrinsic factor critical for preventing rod-fated cells diversion toward a hybrid cell state may explain the occurrence of hybrid rod/MG cells in the adult retina and provide a strategy to improve engraftment yield in regenerative approaches to retinal degenerative disease by stabilising the fate of grafted rod precursors.
Collapse
Affiliation(s)
- Ivana Barravecchia
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126, Pisa, Italy
- Scuola Superiore Sant'Anna, Pisa, Italy
| | - Chiara De Cesari
- Scuola Superiore Sant'Anna, Pisa, Italy
- Department of Biology, University of Pisa, Pisa, Italy
| | | | - Giovanni Signore
- Department of Biology, University of Pisa, Pisa, Italy
- Fondazione Pisana per la Scienza, San Giuliano Terme, Italy
| | - Edoardo Bertolini
- Scuola Superiore Sant'Anna, Pisa, Italy
- Donald Danforth Plant Science Center, St. Louis, USA
| | | | | | | | | | - Vania Broccoli
- San Raffaele Hospital, Milan, Italy
- Institute of Neuroscience, National Research Council of Italy, Milan, Italy
| | | | | | - Gian Carlo Demontis
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126, Pisa, Italy.
| |
Collapse
|
12
|
Georges A, Lavergne A, Mandai M, Lepiemme F, Karim L, Demeulenaere L, Aguilar D, Schyns M, Nguyen L, Rakic JM, Takahashi M, Georges M, Takeda H. Comparing the transcriptome of developing native and iPSC-derived mouse retinae by single cell RNA sequencing. Sci Rep 2023; 13:1223. [PMID: 36681719 PMCID: PMC9867755 DOI: 10.1038/s41598-023-28429-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
We report the generation and analysis of single-cell RNA-Seq data (> 38,000 cells) from mouse native retinae and induced pluripotent stem cell (iPSC)-derived retinal organoids at four matched stages of development spanning the emergence of the major retinal cell types. We combine information from temporal sampling, visualization of 3D UMAP manifolds, pseudo-time and RNA velocity analyses, to show that iPSC-derived 3D retinal organoids broadly recapitulate the native developmental trajectories. However, we observe relaxation of spatial and temporal transcriptome control, premature emergence and dominance of photoreceptor precursor cells, and susceptibility of dynamically regulated pathways and transcription factors to culture conditions in retinal organoids. We demonstrate that genes causing human retinopathies are enriched in cell-type specifying genes and identify a subset of disease-causing genes with expression profiles that are highly conserved between human retinae and murine retinal organoids. This study provides a resource to the community that will be useful to assess and further improve protocols for ex vivo recapitulation and study of retinal development.
Collapse
Affiliation(s)
- Anouk Georges
- GIGA Stem Cells, GIGA Institute, University of Liège, Liège, Belgium
- Department of Ophthalmology, Faculty of Medicine and CHU University Hospital, University of Liège, Liège, Belgium
| | - Arnaud Lavergne
- GIGA Bioinformatics Platform, GIGA Institute, University of Liège, Liège, Belgium
| | - Michiko Mandai
- Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Kobe, Japan
| | - Fanny Lepiemme
- GIGA Stem Cells, GIGA Institute, University of Liège, Liège, Belgium
| | - Latifa Karim
- GIGA Genomics Platform, GIGA Institute, University of Liège, Liège, Belgium
| | - Loic Demeulenaere
- Unit of Animal Genomics, GIGA Institute, University of Liège, Liège, Belgium
| | - Diego Aguilar
- Unit of Animal Genomics, GIGA Institute, University of Liège, Liège, Belgium
| | - Michael Schyns
- Digital Business, HEC Management School, University of Liège, Liège, Belgium
| | - Laurent Nguyen
- GIGA Stem Cells, GIGA Institute, University of Liège, Liège, Belgium
| | - Jean-Marie Rakic
- Department of Ophthalmology, Faculty of Medicine and CHU University Hospital, University of Liège, Liège, Belgium
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, Center for Biosystems Dynamics Research, RIKEN, Kobe, Japan
| | - Michel Georges
- Unit of Animal Genomics, GIGA Institute, University of Liège, Liège, Belgium.
| | - Haruko Takeda
- Unit of Animal Genomics, GIGA Institute, University of Liège, Liège, Belgium
| |
Collapse
|
13
|
Kalargyrou AA, Guilfoyle SE, Smith AJ, Ali RR, Pearson RA. Extracellular vesicles in the retina - putative roles in physiology and disease. Front Mol Neurosci 2023; 15:1042469. [PMID: 36710933 PMCID: PMC9877344 DOI: 10.3389/fnmol.2022.1042469] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/22/2022] [Indexed: 01/15/2023] Open
Abstract
The retina encompasses a network of neurons, glia and epithelial and vascular endothelia cells, all coordinating visual function. Traditionally, molecular information exchange in this tissue was thought to be orchestrated by synapses and gap junctions. Recent findings have revealed that many cell types are able to package and share molecular information via extracellular vesicles (EVs) and the technological advancements in visualisation and tracking of these delicate nanostructures has shown that the role of EVs in cell communication is pleiotropic. EVs are released under physiological conditions by many cells but they are also released during various disease stages, potentially reflecting the health status of the cells in their cargo. Little is known about the physiological role of EV release in the retina. However, administration of exogenous EVs in vivo after injury suggest a neurotrophic role, whilst photoreceptor transplantation in early stages of retina degeneration, EVs may facilitate interactions between photoreceptors and Müller glia cells. In this review, we consider some of the proposed roles for EVs in retinal physiology and discuss current evidence regarding their potential impact on ocular therapies via gene or cell replacement strategies and direct intraocular administration in the diseased eye.
Collapse
Affiliation(s)
- Aikaterini A. Kalargyrou
- King’s College London, Guy’s Hospital, Centre for Gene Therapy and Regenerative Medicine, London, United Kingdom
| | - Siobhan E. Guilfoyle
- King’s College London, Guy’s Hospital, Centre for Gene Therapy and Regenerative Medicine, London, United Kingdom
| | - Alexander J. Smith
- King’s College London, Guy’s Hospital, Centre for Gene Therapy and Regenerative Medicine, London, United Kingdom
| | - Robin R. Ali
- King’s College London, Guy’s Hospital, Centre for Gene Therapy and Regenerative Medicine, London, United Kingdom
- Kellogg Eye Center, University of Michigan, Ann Arbor, MI, United States
| | - Rachael A. Pearson
- King’s College London, Guy’s Hospital, Centre for Gene Therapy and Regenerative Medicine, London, United Kingdom
| |
Collapse
|
14
|
Aramaki M, Wu X, Liu H, Liu Y, Cho YW, Song M, Fu Y, Ng L, Forrest D. Transcriptional control of cone photoreceptor diversity by a thyroid hormone receptor. Proc Natl Acad Sci U S A 2022; 119:e2209884119. [PMID: 36454759 PMCID: PMC9894165 DOI: 10.1073/pnas.2209884119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/26/2022] [Indexed: 12/05/2022] Open
Abstract
Cone photoreceptor diversity allows detection of wavelength information in light, the first step in color (chromatic) vision. In most mammals, cones express opsin photopigments for sensitivity to medium/long (M, "green") or short (S, "blue") wavelengths and are differentially arrayed over the retina. Cones appear early in retinal neurogenesis but little is understood of the subsequent control of diversity of these postmitotic neurons, because cone populations are sparse and, apart from opsins, poorly defined. It is also a challenge to distinguish potentially subtle differences between cell subtypes within a lineage. Therefore, we derived a Cre driver to isolate individual M and S opsin-enriched cones, which are distributed in counter-gradients over the mouse retina. Fine resolution transcriptome analyses identified expression gradients for groups of genes. The postnatal emergence of gradients indicated divergent differentiation of cone precursors during maturation. Using genetic tagging, we demonstrated a role for thyroid hormone receptor β2 (TRβ2) in control of gradient genes, many of which are enriched for TRβ2 binding sites and TRβ2-regulated open chromatin. Deletion of TRβ2 resulted in poorly distinguished cones regardless of retinal location. We suggest that TRβ2 controls a bipotential transcriptional state to promote cone diversity and the chromatic potential of the species.
Collapse
Affiliation(s)
- Michihiko Aramaki
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD20892
| | - Xuefeng Wu
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD20892
| | - Hong Liu
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD20892
| | - Ye Liu
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD20892
| | - Young-Wook Cho
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD20892
| | - Mina Song
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD20892
| | - Yulong Fu
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD20892
| | - Lily Ng
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD20892
| | - Douglas Forrest
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD20892
| |
Collapse
|
15
|
García-Cruz C, Aragón J, Lourdel S, Annan A, Roger JE, Montanez C, Vaillend C. Tissue- and cell-specific whole-transcriptome meta-analysis from brain and retina reveals differential expression of dystrophin complexes and new dystrophin spliced isoforms. Hum Mol Genet 2022; 32:659-676. [PMID: 36130212 PMCID: PMC9896479 DOI: 10.1093/hmg/ddac236] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 02/07/2023] Open
Abstract
The large DMD gene encodes a group of dystrophin proteins in brain and retina, produced from multiple promoters and alternative splicing events. Dystrophins are core components of different scaffolding complexes in distinct cell types. Their absence may thus alter several cellular pathways, which might explain the heterogeneous genotype-phenotype relationships underlying central comorbidities in Duchenne muscular dystrophy (DMD). However, the cell-specific expression of dystrophins and associated proteins (DAPs) is still largely unknown. The present study provides a first RNA-Seq-based reference showing tissue- and cell-specific differential expression of dystrophins, splice variants and DAPs in mouse brain and retina. We report that a cell type may express several dystrophin complexes, perhaps due to expression in separate cell subdomains and/or subpopulations, some of which with differential expression at different maturation stages. We also identified new splicing events in addition to the common exon-skipping events. These include a new exon within intron 51 (E51b) in frame with the flanking exons in retina, as well as inclusions of intronic sequences with stop codons leading to the presence of transcripts with elongated exons 40 and/or 41 (E40e, E41e) in both retina and brain. PCR validations revealed that the new exons may affect several dystrophins. Moreover, immunoblot experiments using a combination of specific antibodies and dystrophin-deficient mice unveiled that the transcripts with stop codons are translated into truncated proteins lacking their C-terminus, which we called N-Dp427 and N-Dp260. This study thus uncovers a range of new findings underlying the complex neurobiology of DMD.
Collapse
Affiliation(s)
| | | | - Sophie Lourdel
- Institut des Neurosciences Paris Saclay, Université Paris-Saclay, CNRS, 91400 Saclay, France
| | - Ahrmad Annan
- Institut des Neurosciences Paris Saclay, Université Paris-Saclay, CNRS, 91400 Saclay, France
| | - Jérôme E Roger
- To whom correspondence should be addressed. E-mail: (C.V.); (C.M.); (J.E.R.)
| | - Cecilia Montanez
- To whom correspondence should be addressed. E-mail: (C.V.); (C.M.); (J.E.R.)
| | - Cyrille Vaillend
- To whom correspondence should be addressed. E-mail: (C.V.); (C.M.); (J.E.R.)
| |
Collapse
|
16
|
Chew SH, Martinez C, Chirco KR, Kandoi S, Lamba DA. Timed Notch Inhibition Drives Photoreceptor Fate Specification in Human Retinal Organoids. Invest Ophthalmol Vis Sci 2022; 63:12. [PMID: 36129723 PMCID: PMC9513742 DOI: 10.1167/iovs.63.10.12] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose Transplanting photoreceptors from human pluripotent stem cell-derived retinal organoids have the potential to reverse vision loss in affected individuals. However, transplantable photoreceptors are only a subset of all cells in the organoids. Hence, the goal of our current study was to accelerate and synchronize photoreceptor differentiation in retinal organoids by inhibiting the Notch signaling pathway at different developmental time-points using a small molecule, PF-03084014 (PF). Methods Human induced pluripotent stem cell- and human embryonic stem cells-derived retinal organoids were treated with 10 µM PF for 3 days starting at day 45 (D45), D60, D90, and D120 of differentiation. Organoids were collected at post-treatment days 14, 28, and 42 and analyzed for progenitor and photoreceptor markers and Notch pathway inhibition by immunohistochemistry (IHC), quantitative PCR, and bulk RNA sequencing (n = 3-5 organoids from three independent experiments). Results Retinal organoids collected after treatment showed a decrease in progenitor markers (KI67, VSX2, PAX6, and LHX2) and an increase in differentiated pan-photoreceptor markers (OTX2, CRX, and RCVRN) at all organoid stages except D120. PF-treated organoids at D45 and D60 exhibited an increase in cone photoreceptor markers (RXRG and ARR3). PF treatment at D90 revealed an increase in cone and rod photoreceptors markers (ARR3, NRL, and NR2E3). Bulk RNA sequencing analysis mirrored the immunohistochemistry data and quantitative PCR confirmed Notch effector inhibition. Conclusions Timing the Notch pathway inhibition in human retinal organoids to align with progenitor competency stages can yield an enriched population of early cone or rod photoreceptors.
Collapse
Affiliation(s)
- Shereen H. Chew
- Department of Ophthalmology, University of California San Francisco, California, United States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, California, United States
| | - Cassandra Martinez
- Department of Ophthalmology, University of California San Francisco, California, United States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, California, United States
| | - Kathleen R. Chirco
- Department of Ophthalmology, University of California San Francisco, California, United States
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States
| | - Sangeetha Kandoi
- Department of Ophthalmology, University of California San Francisco, California, United States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, California, United States
| | - Deepak A. Lamba
- Department of Ophthalmology, University of California San Francisco, California, United States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, California, United States
| |
Collapse
|
17
|
Bachu VS, Kandoi S, Park KU, Kaufman ML, Schwanke M, Lamba DA, Brzezinski JA. An enhancer located in a Pde6c intron drives transient expression in the cone photoreceptors of developing mouse and human retinas. Dev Biol 2022; 488:131-150. [PMID: 35644251 PMCID: PMC10676565 DOI: 10.1016/j.ydbio.2022.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/29/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023]
Abstract
How cone photoreceptors are formed during retinal development is only partially known. This is in part because we do not fully understand the gene regulatory network responsible for cone genesis. We reasoned that cis-regulatory elements (enhancers) active in nascent cones would be regulated by the same upstream network that controls cone formation. To dissect this network, we searched for enhancers active in developing cones. By electroporating enhancer-driven fluorescent reporter plasmids, we observed that a sequence within an intron of the cone-specific Pde6c gene acted as an enhancer in developing mouse cones. Similar fluorescent reporter plasmids were used to generate stable transgenic human induced pluripotent stem cells that were then grown into three-dimensional human retinal organoids. These organoids contained fluorescently labeled cones, demonstrating that the Pde6c enhancer was also active in human cones. We observed that enhancer activity was transient and labeled a minor population of developing rod photoreceptors in both mouse and human systems. This cone-enriched pattern argues that the Pde6c enhancer is activated in cells poised between rod and cone fates. Additionally, it suggests that the Pde6c enhancer is activated by the same regulatory network that selects or stabilizes cone fate choice. To further understand this regulatory network, we identified essential enhancer sequence regions through a series of mutagenesis experiments. This suggested that the Pde6c enhancer was regulated by transcription factor binding at five or more locations. Binding site predictions implicated transcription factor families known to control photoreceptor formation and families not previously associated with cone development. These results provide a framework for deciphering the gene regulatory network that controls cone genesis in both human and mouse systems. Our new transgenic human stem cell lines provide a tool for determining which cone developmental mechanisms are shared and distinct between mice and humans.
Collapse
Affiliation(s)
- Vismaya S Bachu
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sangeetha Kandoi
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Ko Uoon Park
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Michael L Kaufman
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Michael Schwanke
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Deepak A Lamba
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Joseph A Brzezinski
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
18
|
Liang X, Brooks MJ, Swaroop A. Developmental genome-wide occupancy analysis of bZIP transcription factor NRL uncovers the role of c-Jun in early differentiation of rod photoreceptors in the mammalian retina. Hum Mol Genet 2022; 31:3914-3933. [PMID: 35776116 DOI: 10.1093/hmg/ddac143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 11/12/2022] Open
Abstract
The basic motif-leucine zipper (bZIP) transcription factor NRL determines rod photoreceptor cell fate during retinal development, and its loss leads to cone-only retina in mice. NRL works synergistically with homeodomain protein CRX and other regulatory factors to control the transcription of most genes associated with rod morphogenesis and functional maturation, which span over a period of several weeks in the mammalian retina. We predicted that NRL gradually establishes rod cell identity and function by temporal and dynamic regulation of stage-specific transcriptional targets. Therefore, we mapped the genomic occupancy of NRL at four stages of mouse photoreceptor differentiation by CUT&RUN analysis. Dynamics of NRL-binding revealed concordance with the corresponding changes in transcriptome of the developing rods. Notably, we identified c-Jun proto-oncogene as one of the targets of NRL, which could bind to specific cis-elements in the c-Jun promoter and modulate its activity in HEK293 cells. Coimmunoprecipitation studies showed association of NRL with c-Jun, also a bZIP protein, in transfected cells as well as in developing mouse retina. Additionally, shRNA-mediated knockdown of c-Jun in the mouse retina in vivo resulted in altered expression of almost 1000 genes, with reduced expression of phototransduction genes and many direct targets of NRL in rod photoreceptors. We propose that c-Jun-NRL heterodimers prime the NRL-directed transcriptional program in neonatal rod photoreceptors before high NRL expression suppresses c-Jun at later stages. Our study highlights a broader cooperation among cell-type restricted and widely expressed bZIP proteins, such as c-Jun, in specific spatiotemporal contexts during cellular differentiation.
Collapse
Affiliation(s)
- Xulong Liang
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, MSC0610, Bethesda, MD 20892, USA
| | - Matthew J Brooks
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, MSC0610, Bethesda, MD 20892, USA
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, MSC0610, Bethesda, MD 20892, USA
| |
Collapse
|
19
|
Hussey KA, Hadyniak SE, Johnston RJ. Patterning and Development of Photoreceptors in the Human Retina. Front Cell Dev Biol 2022; 10:878350. [PMID: 35493094 PMCID: PMC9049932 DOI: 10.3389/fcell.2022.878350] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/25/2022] [Indexed: 01/04/2023] Open
Abstract
Humans rely on visual cues to navigate the world around them. Vision begins with the detection of light by photoreceptor cells in the retina, a light-sensitive tissue located at the back of the eye. Photoreceptor types are defined by morphology, gene expression, light sensitivity, and function. Rod photoreceptors function in low-light vision and motion detection, and cone photoreceptors are responsible for high-acuity daytime and trichromatic color vision. In this review, we discuss the generation, development, and patterning of photoreceptors in the human retina. We describe our current understanding of how photoreceptors are patterned in concentric regions. We conclude with insights into mechanisms of photoreceptor differentiation drawn from studies of model organisms and human retinal organoids.
Collapse
|
20
|
Liu F, Qin Y, Huang Y, Gao P, Li J, Yu S, Jia D, Chen X, Lv Y, Tu J, Sun K, Han Y, Reilly J, Shu X, Lu Q, Tang Z, Xu C, Luo D, Liu M. Rod genesis driven by mafba in an nrl knockout zebrafish model with altered photoreceptor composition and progressive retinal degeneration. PLoS Genet 2022; 18:e1009841. [PMID: 35245286 PMCID: PMC8926279 DOI: 10.1371/journal.pgen.1009841] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/16/2022] [Accepted: 02/17/2022] [Indexed: 12/25/2022] Open
Abstract
Neural retina leucine zipper (NRL) is an essential gene for the fate determination and differentiation of the precursor cells into rod photoreceptors in mammals. Mutations in NRL are associated with the autosomal recessive enhanced S-cone syndrome and autosomal dominant retinitis pigmentosa. However, the exact role of Nrl in regulating the development and maintenance of photoreceptors in the zebrafish (Danio rerio), a popular animal model used for retinal degeneration and regeneration studies, has not been fully determined. In this study, we generated an nrl knockout zebrafish model via the CRISPR-Cas9 technology and observed a surprising phenotype characterized by a reduced number, but not the total loss, of rods and over-growth of green cones. We discovered two waves of rod genesis, nrl-dependent and -independent at the embryonic and post-embryonic stages, respectively, in zebrafish by monitoring the rod development. Through bulk and single-cell RNA sequencing, we characterized the gene expression profiles of the whole retina and each retinal cell type from the wild type and nrl knockout zebrafish. The over-growth of green cones and mis-expression of green-cone-specific genes in rods in nrl mutants suggested that there are rod/green-cone bipotent precursors, whose fate choice between rod versus green-cone is controlled by nrl. Besides, we identified the mafba gene as a novel regulator of the nrl-independent rod development, based on the cell-type-specific expression patterns and the retinal phenotype of nrl/mafba double-knockout zebrafish. Gene collinearity analysis revealed the evolutionary origin of mafba and suggested that the function of mafba in rod development is specific to modern fishes. Furthermore, the altered photoreceptor composition and abnormal gene expression in nrl mutants caused progressive retinal degeneration and subsequent regeneration. Accordingly, this study revealed a novel function of the mafba gene in rod development and established a working model for the developmental and regulatory mechanisms regarding the rod and green-cone photoreceptors in zebrafish. Vision is mediated by two types of light-sensing cells named rod and cone photoreceptors in animal eyes. Abnormal generation, dysfunction or death of photoreceptor cells all cause irreversible vision problems. NRL is an essential gene for the generation and function of rod cells in mice and humans. Surprisingly, we found that in the zebrafish, a popular animal model for human diseases and therapeutic testing, there are two types of rod cells, and eliminating the function of nrl gene affects the rod cell formation at the embryonic stage but not at the juvenile and adult stages. The rod cell formation at the post-embryonic is driven by the mafba gene, which has not been reported to play a role in rod cells. In addition to the reduced number of rod cells, deletion of nrl also results in the emergence of rod/green-cone hybrid cells and an increased number of green cones. The ensuing cellular and molecular alterations collectively lead to retinal degeneration. These findings expand our understanding of photoreceptor development and maintenance and highlight the underlying conserved and species-specific regulatory mechanisms.
Collapse
Affiliation(s)
- Fei Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P.R. China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, P.R. China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yayun Qin
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P.R. China
- Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yuwen Huang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Pan Gao
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Jingzhen Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Shanshan Yu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Danna Jia
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Xiang Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yuexia Lv
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Jiayi Tu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Kui Sun
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yunqiao Han
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - James Reilly
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Xinhua Shu
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Qunwei Lu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Zhaohui Tang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Chengqi Xu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P.R. China
- * E-mail: (CX); (DL); (ML)
| | - Daji Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, P.R. China
- University of Chinese Academy of Sciences, Beijing, China
- * E-mail: (CX); (DL); (ML)
| | - Mugen Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P.R. China
- * E-mail: (CX); (DL); (ML)
| |
Collapse
|
21
|
Jiang K, Mondal AK, Adlakha YK, Gumerson J, Aponte A, Gieser L, Kim JW, Boleda A, Brooks MJ, Nellissery J, Fox DA, Balaban R, Covian R, Swaroop A. Multiomics analyses reveal early metabolic imbalance and mitochondrial stress in neonatal photoreceptors leading to cell death in Pde6brd1/rd1 mouse model of retinal degeneration. Hum Mol Genet 2022; 31:2137-2154. [PMID: 35075486 PMCID: PMC9618164 DOI: 10.1093/hmg/ddac013] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/17/2021] [Accepted: 01/10/2022] [Indexed: 01/26/2023] Open
Abstract
Retinal diseases exhibit extensive genetic heterogeneity and complex etiology with varying onset and severity. Mutations in over 200 genes can lead to photoreceptor dysfunction and/or cell death in retinal neurodegeneration. To deduce molecular pathways that initiate and/or drive cell death, we adopted a temporal multiomics approach and examined molecular and cellular events in newborn and developing photoreceptors before the onset of degeneration in a widely-used Pde6brd1/rd1 (rd1) mouse, a model of autosomal recessive retinitis pigmentosa caused by PDE6B mutations. Transcriptome profiling of neonatal and developing rods from the rd1 retina revealed early downregulation of genes associated with anabolic pathways and energy metabolism. Quantitative proteomics of rd1 retina showed early changes in calcium signaling and oxidative phosphorylation, with specific partial bypass of complex I electron transfer, which precede the onset of cell death. Concurrently, we detected alterations in central carbon metabolism, including dysregulation of components associated with glycolysis, pentose phosphate and purine biosynthesis. Ex vivo assays of oxygen consumption and transmission electron microscopy validated early and progressive mitochondrial stress and abnormalities in mitochondrial structure and function of rd1 rods. These data uncover mitochondrial overactivation and related metabolic alterations as determinants of early pathology and implicate aberrant calcium signaling as an initiator of higher mitochondrial stress. Our studies thus provide a mechanistic framework with mitochondrial damage and metabolic disruptions as early drivers of photoreceptor cell death in retinal degeneration.
Collapse
Affiliation(s)
| | | | - Yogita K Adlakha
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892, USA,Translational Health Science and Technology Institute, National Capital Region Biotech Cluster, Faridabad, India
| | - Jessica Gumerson
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892, USA
| | - Angel Aponte
- Proteomics Core Facility, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Linn Gieser
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892, USA
| | - Jung-Woong Kim
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892, USA,Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Alexis Boleda
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892, USA,Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20740, USA
| | - Matthew J Brooks
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892, USA
| | - Jacob Nellissery
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892, USA
| | - Donald A Fox
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892, USA
| | - Robert Balaban
- Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Raul Covian
- Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anand Swaroop
- To whom correspondence should be addressed. Tel: +301-435-5754; Fax: 301-480-9917;
| |
Collapse
|
22
|
Herbig M, Tessmer K, Nötzel M, Nawaz AA, Santos-Ferreira T, Borsch O, Gasparini SJ, Guck J, Ader M. Label-free imaging flow cytometry for analysis and sorting of enzymatically dissociated tissues. Sci Rep 2022; 12:963. [PMID: 35046492 PMCID: PMC8770577 DOI: 10.1038/s41598-022-05007-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/05/2022] [Indexed: 01/07/2023] Open
Abstract
Biomedical research relies on identification and isolation of specific cell types using molecular biomarkers and sorting methods such as fluorescence or magnetic activated cell sorting. Labelling processes potentially alter the cells’ properties and should be avoided, especially when purifying cells for clinical applications. A promising alternative is the label-free identification of cells based on physical properties. Sorting real-time deformability cytometry (soRT-DC) is a microfluidic technique for label-free analysis and sorting of single cells. In soRT-FDC, bright-field images of cells are analyzed by a deep neural net (DNN) to obtain a sorting decision, but sorting was so far only demonstrated for blood cells which show clear morphological differences and are naturally in suspension. Most cells, however, grow in tissues, requiring dissociation before cell sorting which is associated with challenges including changes in morphology, or presence of aggregates. Here, we introduce methods to improve robustness of analysis and sorting of single cells from nervous tissue and provide DNNs which can distinguish visually similar cells. We employ the DNN for image-based sorting to enrich photoreceptor cells from dissociated retina for transplantation into the mouse eye.
Collapse
Affiliation(s)
- Maik Herbig
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Karen Tessmer
- Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Martin Nötzel
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Ahsan Ahmad Nawaz
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum Für Physik Und Medizin, Erlangen, Germany
| | - Tiago Santos-Ferreira
- Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany.,Roche Innovation Center Basel, F. Hoffman-La Roche Ltd., Basel, Switzerland
| | - Oliver Borsch
- Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Sylvia J Gasparini
- Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Jochen Guck
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum Für Physik Und Medizin, Erlangen, Germany
| | - Marius Ader
- Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
23
|
Marchal C, Singh N, Corso-Díaz X, Swaroop A. HiCRes: a computational method to estimate and predict the genomic resolution of Hi-C libraries. Nucleic Acids Res 2021; 50:e35. [PMID: 34928367 DOI: 10.1093/nar/gkab1235] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/19/2021] [Accepted: 12/04/2021] [Indexed: 11/13/2022] Open
Abstract
Three-dimensional (3D) conformation of the chromatin is crucial to stringently regulate gene expression patterns and DNA replication in a cell-type specific manner. Hi-C is a key technique for measuring 3D chromatin interactions genome wide. Estimating and predicting the resolution of a library is an essential step in any Hi-C experimental design. Here, we present the mathematical concepts to estimate the resolution of a dataset and predict whether deeper sequencing would enhance the resolution. We have developed HiCRes, a docker pipeline, by applying these concepts to several Hi-C libraries.
Collapse
Affiliation(s)
- Claire Marchal
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, MD 20892, USA.,In silichrom Ltd, First Floor, Angel Court, 81 St Clements St, Oxford OX4 1AW, UK
| | - Nivedita Singh
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, MD 20892, USA
| | - Ximena Corso-Díaz
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, MD 20892, USA
| | - Anand Swaroop
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, MD 20892, USA
| |
Collapse
|
24
|
Aghaizu ND, Warre-Cornish KM, Robinson MR, Ali RR, Pearson RA. Tracking neuronal motility in live murine retinal explants. STAR Protoc 2021; 2:101008. [PMID: 34917982 PMCID: PMC8666713 DOI: 10.1016/j.xpro.2021.101008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The developing retina undergoes dynamic organizational changes involving significant intra-retinal motility of the encompassing cells. Here, we present a protocol for tracking retinal cell motility in live explanted mouse retinae. Although originally applied to rod and cone photoreceptors, this strategy is applicable to any fluorescently labeled cell in mouse retinae and other similar experimental retinal models. Careful tissue handling is critical for the successful acquisition of high-quality live imaging data. Further instructions for semi-automated in silico data handling are provided. For complete details on the use and execution of this protocol, please refer to Aghaizu et al. (2021).
Collapse
Affiliation(s)
- Nozie D. Aghaizu
- University College London, Institute of Ophthalmology, London EC1V 9EL, UK
| | | | - Martha R. Robinson
- University College London, Institute of Ophthalmology, London EC1V 9EL, UK
| | - Robin R. Ali
- University College London, Institute of Ophthalmology, London EC1V 9EL, UK
| | - Rachael A. Pearson
- University College London, Institute of Ophthalmology, London EC1V 9EL, UK
| |
Collapse
|
25
|
Ortin‐Martinez A, Yan NE, Tsai ELS, Comanita L, Gurdita A, Tachibana N, Liu ZC, Lu S, Dolati P, Pokrajac NT, El‐Sehemy A, Nickerson PEB, Schuurmans C, Bremner R, Wallace VA. Photoreceptor nanotubes mediate the in vivo exchange of intracellular material. EMBO J 2021; 40:e107264. [PMID: 34494680 PMCID: PMC8591540 DOI: 10.15252/embj.2020107264] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 12/17/2022] Open
Abstract
Emerging evidence suggests that intracellular molecules and organelles transfer between cells during embryonic development, tissue homeostasis and disease. We and others recently showed that transplanted and host photoreceptors engage in bidirectional transfer of intracellular material in the recipient retina, a process termed material transfer (MT). We used cell transplantation, advanced tissue imaging approaches, genetic and pharmacologic interventions and primary cell culture to characterize and elucidate the mechanism of MT. We show that MT correlates with donor cell persistence and the accumulation of donor-derived proteins, mitochondria and transcripts in acceptor cells in vivo. MT requires cell contact in vitro and is associated with the formation of stable microtubule-containing protrusions, termed photoreceptor nanotubes (Ph NTs), that connect donor and host cells in vivo and in vitro. Ph NTs mediate GFP transfer between connected cells in vitro. Furthermore, interfering with Ph NT outgrowth by targeting Rho GTPase-dependent actin remodelling inhibits MT in vivo. Collectively, our observations provide evidence for horizontal exchange of intracellular material via nanotube-like connections between neurons in vivo.
Collapse
Affiliation(s)
- Arturo Ortin‐Martinez
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health NetworkTorontoONCanada
| | - Nicole E Yan
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health NetworkTorontoONCanada
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
| | - En Leh Samuel Tsai
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health NetworkTorontoONCanada
| | - Lacrimioara Comanita
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health NetworkTorontoONCanada
| | - Akshay Gurdita
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health NetworkTorontoONCanada
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
| | - Nobuhiko Tachibana
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health NetworkTorontoONCanada
| | - Zhongda C Liu
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health NetworkTorontoONCanada
| | - Suying Lu
- Lunenfeld Tanenbaum Research InstituteMount Sinai HospitalSinai Health SystemsTorontoONCanada
| | - Parnian Dolati
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health NetworkTorontoONCanada
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
| | - Neno T Pokrajac
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health NetworkTorontoONCanada
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
| | - Ahmed El‐Sehemy
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health NetworkTorontoONCanada
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
| | - Philip E B Nickerson
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health NetworkTorontoONCanada
| | - Carol Schuurmans
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
- Department of BiochemistryUniversity of TorontoTorontoONCanada
- Sunnybrook Research InstituteTorontoONCanada
- Department of Ophthalmology and Vision SciencesUniversity of TorontoTorontoONCanada
| | - Rod Bremner
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
- Lunenfeld Tanenbaum Research InstituteMount Sinai HospitalSinai Health SystemsTorontoONCanada
- Department of Ophthalmology and Vision SciencesUniversity of TorontoTorontoONCanada
| | - Valerie A Wallace
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health NetworkTorontoONCanada
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
- Department of Ophthalmology and Vision SciencesUniversity of TorontoTorontoONCanada
| |
Collapse
|
26
|
Kalargyrou AA, Basche M, Hare A, West EL, Smith AJ, Ali RR, Pearson RA. Nanotube-like processes facilitate material transfer between photoreceptors. EMBO Rep 2021; 22:e53732. [PMID: 34494703 PMCID: PMC8567251 DOI: 10.15252/embr.202153732] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
Neuronal communication is typically mediated via synapses and gap junctions. New forms of intercellular communication, including nanotubes (NTs) and extracellular vesicles (EVs), have been described for non-neuronal cells, but their role in neuronal communication is not known. Recently, transfer of cytoplasmic material between donor and host neurons ("material transfer") was shown to occur after photoreceptor transplantation. The cellular mechanism(s) underlying this surprising finding are unknown. Here, using transplantation, primary neuronal cultures and the generation of chimeric retinae, we show for the first time that mammalian photoreceptor neurons can form open-end NT-like processes. These processes permit the transfer of cytoplasmic and membrane-bound molecules in culture and after transplantation and can mediate gain-of-function in the acceptor cells. Rarely, organelles were also observed to transfer. Strikingly, use of chimeric retinae revealed that material transfer can occur between photoreceptors in the intact adult retina. Conversely, while photoreceptors are capable of releasing EVs, at least in culture, these are taken up by glia and not by retinal neurons. Our findings provide the first evidence of functional NT-like processes forming between sensory neurons in culture and in vivo.
Collapse
Affiliation(s)
- Aikaterini A Kalargyrou
- University College London Institute of OphthalmologyLondonUK
- Centre for Cell and Gene TherapyKing’s College LondonGuy’s HospitalLondonUK
| | - Mark Basche
- University College London Institute of OphthalmologyLondonUK
- Centre for Cell and Gene TherapyKing’s College LondonGuy’s HospitalLondonUK
| | - Aura Hare
- University College London Institute of OphthalmologyLondonUK
- Centre for Cell and Gene TherapyKing’s College LondonGuy’s HospitalLondonUK
| | - Emma L West
- University College London Institute of OphthalmologyLondonUK
- Centre for Cell and Gene TherapyKing’s College LondonGuy’s HospitalLondonUK
| | - Alexander J Smith
- University College London Institute of OphthalmologyLondonUK
- Centre for Cell and Gene TherapyKing’s College LondonGuy’s HospitalLondonUK
| | - Robin R Ali
- University College London Institute of OphthalmologyLondonUK
- Centre for Cell and Gene TherapyKing’s College LondonGuy’s HospitalLondonUK
- Kellogg Eye CenterUniversity of MichiganAnn ArborMIUSA
| | - Rachael A Pearson
- University College London Institute of OphthalmologyLondonUK
- Centre for Cell and Gene TherapyKing’s College LondonGuy’s HospitalLondonUK
| |
Collapse
|
27
|
Ramachandra Rao S, Fliesler SJ. Monitoring basal autophagy in the retina utilizing CAG-mRFP-EGFP-MAP1LC3B reporter mouse: technical and biological considerations. Autophagy 2021; 18:1187-1201. [PMID: 34674604 PMCID: PMC9196719 DOI: 10.1080/15548627.2021.1969634] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We describe the utility of a tandem-tagged autophagy reporter mouse model (CAG-RFP-EGFP-MAP1LC3B) in investigating basal macroautophagic/autophagic flux in the neural retina. Western blot, in situ hybridization, immunohistochemistry, and confocal microscopy showed that CAG promoter-driven expression of RFP-EGFP-MAP1LC3B increased “cytosolic” RFP-EGFP-LC3B-I levels, whereas RFP-EGFP-LC3B-II decorates true phagosomes. We verified that the electroretinographic (ERG) responses of tandem-tagged LC3B mice were comparable to those of age-matched controls. Optimized microscope settings detected lipofuscin autofluorescence in retinas of abca4−/- mice. The majority of retinal phagosomes in the reporter mice exhibited only RFP (not EGFP) fluorescence, suggesting rapid maturation of phagosomes. Only ~1.5% of the total phagosome population was EGFP-labeled; RFP-labeled (mature) phagosomes colocalized with lysosomal markers LAMP2 and CTSD. In the outer retina, phagosome sizes were as follows (in µm2, ave ± SEM): RPE, 0.309 ± 0.015; photoreceptor inner segment-myoid, 0.544 ± 0.031; and outer nuclear layer, 0.429 ± 0.011. Detection of RPE phagosomes by fluorescence microscopy is challenging, due to the presence of melanin. Increased lipofuscin autofluorescence, such as observed in the abca4−/- mouse model of Stargardt disease, is a strong confounding factor when attempting to study autophagy in the RPE. In addition to RPE and photoreceptor cells, phagosomes were detected in inner retinal cell types, microglia, astrocytes, and endothelial cells. We conclude that the tandem-tagged LC3B mouse model serves as a useful system for studying autophagy in the retina. This utility, however, is dependent upon several technical and biological factors, including microscope settings, transgene expression, choice of fluorophores, and lipofuscin autofluorescence. Abbreviations: ACTB: actin, beta; AIF1: allograft inflammatory factor 1; ATG: autophagy related; CTSD: cathepsin D; DAPI: (4’,6-diamido-2-phenylindole); DIC: differential interference contrast; EGFP: enhanced green fluorescent protein; ELM: external limiting membrane; ERG: electroretinography; GCL: ganglion cell layer; GLUL: glutamine-ammonia ligase (glutamine synthetase); INL: inner nuclear layer; IS-E/M: inner segment – ellipsoid/myoid; ISH: in situ hybridization; LAMP2: lysosomal-associated membrane protein 2; L.I.: laser Intensity; MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; MTOR: mechanistic target of rapamycin kinase; O.C.T.: optimal cutting temperature; OS: outer segment; ONL: outer nuclear layer; PE: phosphatidylethanolamine; RFP: red fluorescent protein; R.O.I.: region of interest; RPE: retinal pigment epithelium
Collapse
Affiliation(s)
- Sriganesh Ramachandra Rao
- Departments of Ophthalmology and Biochemistry and Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York- University at Buffalo, Buffalo, NY, USA.,Research Service, VA Western Ny Healthcare System, Buffalo, NY, USA
| | - Steven J Fliesler
- Departments of Ophthalmology and Biochemistry and Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York- University at Buffalo, Buffalo, NY, USA.,Research Service, VA Western Ny Healthcare System, Buffalo, NY, USA
| |
Collapse
|
28
|
Andreazzoli M, Barravecchia I, De Cesari C, Angeloni D, Demontis GC. Inducible Pluripotent Stem Cells to Model and Treat Inherited Degenerative Diseases of the Outer Retina: 3D-Organoids Limitations and Bioengineering Solutions. Cells 2021; 10:cells10092489. [PMID: 34572137 PMCID: PMC8471616 DOI: 10.3390/cells10092489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
Inherited retinal degenerations (IRD) affecting either photoreceptors or pigment epithelial cells cause progressive visual loss and severe disability, up to complete blindness. Retinal organoids (ROs) technologies opened up the development of human inducible pluripotent stem cells (hiPSC) for disease modeling and replacement therapies. However, hiPSC-derived ROs applications to IRD presently display limited maturation and functionality, with most photoreceptors lacking well-developed outer segments (OS) and light responsiveness comparable to their adult retinal counterparts. In this review, we address for the first time the microenvironment where OS mature, i.e., the subretinal space (SRS), and discuss SRS role in photoreceptors metabolic reprogramming required for OS generation. We also address bioengineering issues to improve culture systems proficiency to promote OS maturation in hiPSC-derived ROs. This issue is crucial, as satisfying the demanding metabolic needs of photoreceptors may unleash hiPSC-derived ROs full potential for disease modeling, drug development, and replacement therapies.
Collapse
Affiliation(s)
| | - Ivana Barravecchia
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy;
- Institute of Life Sciences, Scuola Superiore Sant’Anna, 56124 Pisa, Italy;
| | | | - Debora Angeloni
- Institute of Life Sciences, Scuola Superiore Sant’Anna, 56124 Pisa, Italy;
| | - Gian Carlo Demontis
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy;
- Correspondence: (M.A.); (G.C.D.)
| |
Collapse
|
29
|
Liu YV, Teng D, Konar GJ, Agakishiev D, Biggs-Garcia A, Harris-Bookman S, McNally MM, Garzon C, Sastry S, Singh MS. Characterization and allogeneic transplantation of a novel transgenic cone-rich donor mouse line. Exp Eye Res 2021; 210:108715. [PMID: 34343570 PMCID: PMC8429259 DOI: 10.1016/j.exer.2021.108715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/26/2021] [Accepted: 07/30/2021] [Indexed: 01/10/2023]
Abstract
OBJECTIVES Cone photoreceptor transplantation is a potential treatment for macular diseases. The optimal conditions for cone transplantation are poorly understood, partly because of the scarcity of cones in donor mice. To facilitate allogeneic cone photoreceptor transplantation studies in mice, we aimed to create and characterize a donor mouse model containing a cone-rich retina with a cone-specific enhanced green fluorescent protein (EGFP) reporter. METHODS We generated OPN1LW-EGFP/NRL-/- mice by crossing NRL-/- and OPN1LW-EGFP mice. We characterized the anatomical phenotype of OPN1LW-EGFP/NRL-/- mice using multimodal confocal scanning laser ophthalmoscopy (cSLO) imaging, immunohistology, and transmission electron microscopy. We evaluated retinal function using electroretinography (ERG), including 465 and 525 nm chromatic stimuli. Retinal sheets and cell suspensions from OPN1LW-EGFP/NRL-/- mice were transplanted subretinally into immunodeficient Rd1 mice. RESULTS OPN1LW-EGFP/NRL-/- retinas were enriched with OPN1LW-EGFP+ and S-opsin+ cone photoreceptors in a dorsal-ventral distribution gradient. Cone photoreceptors co-expressing OPNL1W-EGFP and S-opsin significantly increased in OPN1LW-EGFP/NRL-/- compared to OPN1LW-EGFP mice. Temporal dynamics of rosette formation in the OPN1LW-EGFP/NRL-/- were similar as the NRL-/- with peak formation at P15. Rosettes formed preferentially in the ventral retina. The outer retina in P35 OPN1LW-EGFP/NRL-/- was thinner than NRL-/- controls. The OPN1LW-EGFP/NRL-/- ERG response amplitudes to 465 nm stimulation were similar to, but to 535 nm stimulation were lower than, NRL-/- controls. Three months after transplantation, the suspension grafts showed greater macroscopic degradation than sheet grafts. Retinal sheet grafts from OPN1LW-EGFP/NRL-/- mice showed greater S-opsin + cone survival than suspension grafts from the same strain. CONCLUSIONS OPN1LW-EGFP/NRL-/- retinae were enriched with S-opsin+ photoreceptors. Sustained expression of EGFP facilitated the longitudinal tracking of transplanted donor cells. Transplantation of cone-rich retinal grafts harvested prior to peak rosette formation survived and differentiated into cone photoreceptor subtypes. Photoreceptor sheet transplantation may promote greater macroscopic graft integrity and S-opsin+ cone survival than cell suspension transplantation, although the mechanism underlying this observation is unclear at present. This novel cone-rich reporter mouse strain may be useful to study the influence of graft structure on cone survival.
Collapse
Affiliation(s)
- Ying V Liu
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Derek Teng
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gregory J Konar
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dzhalal Agakishiev
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alexis Biggs-Garcia
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sarah Harris-Bookman
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Minda M McNally
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Catalina Garzon
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Saalini Sastry
- Zanvyl Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Mandeep S Singh
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
30
|
Huang D, Heath Jeffery RC, Aung-Htut MT, McLenachan S, Fletcher S, Wilton SD, Chen FK. Stargardt disease and progress in therapeutic strategies. Ophthalmic Genet 2021; 43:1-26. [PMID: 34455905 DOI: 10.1080/13816810.2021.1966053] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background: Stargardt disease (STGD1) is an autosomal recessive retinal dystrophy due to mutations in ABCA4, characterized by subretinal deposition of lipofuscin-like substances and bilateral centrifugal vision loss. Despite the tremendous progress made in the understanding of STGD1, there are no approved treatments to date. This review examines the challenges in the development of an effective STGD1 therapy.Materials and Methods: A literature review was performed through to June 2021 summarizing the spectrum of retinal phenotypes in STGD1, the molecular biology of ABCA4 protein, the in vivo and in vitro models used to investigate the mechanisms of ABCA4 mutations and current clinical trials.Results: STGD1 phenotypic variability remains an challenge for clinical trial design and patient selection. Pre-clinical development of therapeutic options has been limited by the lack of animal models reflecting the diverse phenotypic spectrum of STDG1. Patient-derived cell lines have facilitated the characterization of splice mutations but the clinical presentation is not always predicted by the effect of specific mutations on retinoid metabolism in cellular models. Current therapies primarily aim to delay vision loss whilst strategies to restore vision are less well developed.Conclusions: STGD1 therapy development can be accelerated by a deeper understanding of genotype-phenotype correlations.
Collapse
Affiliation(s)
- Di Huang
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Western Australia, Australia.,Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), the University of Western Australia, Nedlands, Western Australia, Australia.,Perron Institute for Neurological and Translational Science & the University of Western Australia, Nedlands, Western Australia, Australia
| | - Rachael C Heath Jeffery
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), the University of Western Australia, Nedlands, Western Australia, Australia
| | - May Thandar Aung-Htut
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Western Australia, Australia.,Perron Institute for Neurological and Translational Science & the University of Western Australia, Nedlands, Western Australia, Australia
| | - Samuel McLenachan
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), the University of Western Australia, Nedlands, Western Australia, Australia
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Western Australia, Australia.,Perron Institute for Neurological and Translational Science & the University of Western Australia, Nedlands, Western Australia, Australia
| | - Steve D Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Western Australia, Australia.,Perron Institute for Neurological and Translational Science & the University of Western Australia, Nedlands, Western Australia, Australia
| | - Fred K Chen
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), the University of Western Australia, Nedlands, Western Australia, Australia.,Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.,Department of Ophthalmology, Royal Perth Hospital, Perth, Western Australia, Australia.,Department of Ophthalmology, Perth Children's Hospital, Nedlands, Western Australia, Australia
| |
Collapse
|
31
|
Matsuyama T, Tu HY, Sun J, Hashiguchi T, Akiba R, Sho J, Fujii M, Onishi A, Takahashi M, Mandai M. Genetically engineered stem cell-derived retinal grafts for improved retinal reconstruction after transplantation. iScience 2021; 24:102866. [PMID: 34409267 PMCID: PMC8361135 DOI: 10.1016/j.isci.2021.102866] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/23/2021] [Accepted: 07/14/2021] [Indexed: 11/29/2022] Open
Abstract
ESC/iPSC-retinal sheet transplantation, which supplies photoreceptors as well as other retinal cells, has been shown to be able to restore visual function in mice with end-stage retinal degeneration. Here, by introducing a novel type of genetically engineered mouse ESC/iPSC-retinal sheet with reduced numbers of secondary retinal neurons but intact photoreceptor cell layer structure, we reinforced the evidence that ESC/iPSC-retinal sheet transplantation can establish synaptic connections with the host, restore light responsiveness, and reduce aberrant retinal ganglion cell spiking in mice. Furthermore, we show that genetically engineered grafts can substantially improve the outcome of the treatment by improving neural integration. We speculate that this leads to reduced spontaneous activity in the host which in turn contributes to a better visual recovery.
Collapse
Affiliation(s)
- Take Matsuyama
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Hyogo, Japan
| | - Hung-Ya Tu
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Jianan Sun
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Tomoyo Hashiguchi
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Ryutaro Akiba
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Junki Sho
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Momo Fujii
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Akishi Onishi
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Hyogo, Japan
| | - Michiko Mandai
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Hyogo, Japan
| |
Collapse
|
32
|
Jiang K, Nellissery J, Swaroop A. Determination of Mitochondrial Respiration and Glycolysis in Ex Vivo Retinal Tissue Samples. J Vis Exp 2021. [PMID: 34424254 PMCID: PMC11375468 DOI: 10.3791/62914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Mitochondrial respiration is a critical energy-generating pathway in all cells, especially retinal photoreceptors that possess a highly active metabolism. In addition, photoreceptors also exhibit high aerobic glycolysis like cancer cells. Precise measurements of these metabolic activities can provide valuable insights into cellular homeostasis under physiological conditions and in disease states. High throughput microplate-based assays have been developed to measure mitochondrial respiration and various metabolic activities in live cells. However, a vast majority of these are developed for cultured cells and have not been optimized for intact tissue samples and for application ex vivo. Described here is a detailed step-by-step protocol, using microplate-based fluorescence technology, to directly measure oxygen consumption rate (OCR) as an indicator of mitochondrial respiration, as well as extracellular acidification rate (ECAR) as an indicator of glycolysis, in intact ex vivo retinal tissue. This method has been used to successfully assess metabolic activities in adult mouse retina and demonstrate its application in investigating cellular mechanisms of aging and disease.
Collapse
Affiliation(s)
- Ke Jiang
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health;
| | - Jacob Nellissery
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health
| | - Anand Swaroop
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health;
| |
Collapse
|
33
|
Aghaizu ND, Warre-Cornish KM, Robinson MR, Waldron PV, Maswood RN, Smith AJ, Ali RR, Pearson RA. Repeated nuclear translocations underlie photoreceptor positioning and lamination of the outer nuclear layer in the mammalian retina. Cell Rep 2021; 36:109461. [PMID: 34348137 PMCID: PMC8356022 DOI: 10.1016/j.celrep.2021.109461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 11/19/2019] [Accepted: 07/09/2021] [Indexed: 12/28/2022] Open
Abstract
In development, almost all stratified neurons must migrate from their birthplace to the appropriate neural layer. Photoreceptors reside in the most apical layer of the retina, near their place of birth. Whether photoreceptors require migratory events for fine-positioning and/or retention within this layer is not well understood. Here, we show that photoreceptor nuclei of the developing mouse retina cyclically exhibit rapid, dynein-1-dependent translocation toward the apical surface, before moving more slowly in the basal direction, likely due to passive displacement by neighboring retinal nuclei. Attenuating dynein 1 function in rod photoreceptors results in their ectopic basal displacement into the outer plexiform layer and inner nuclear layer. Synapse formation is also compromised in these displaced cells. We propose that repeated, apically directed nuclear translocation events are necessary to ensure retention of post-mitotic photoreceptors within the emerging outer nuclear layer during retinogenesis, which is critical for correct neuronal lamination.
Collapse
Affiliation(s)
- Nozie D Aghaizu
- University College London Institute of Ophthalmology, London EC1V 9EL, UK.
| | | | - Martha R Robinson
- University College London Institute of Ophthalmology, London EC1V 9EL, UK
| | - Paul V Waldron
- University College London Institute of Ophthalmology, London EC1V 9EL, UK
| | - Ryea N Maswood
- University College London Institute of Ophthalmology, London EC1V 9EL, UK
| | - Alexander J Smith
- University College London Institute of Ophthalmology, London EC1V 9EL, UK; Centre for Cell and Gene Therapy, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Robin R Ali
- University College London Institute of Ophthalmology, London EC1V 9EL, UK; Centre for Cell and Gene Therapy, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Rachael A Pearson
- University College London Institute of Ophthalmology, London EC1V 9EL, UK; Centre for Cell and Gene Therapy, King's College London, Guy's Hospital, London SE1 9RT, UK.
| |
Collapse
|
34
|
Effects of Altering HSPG Binding and Capsid Hydrophilicity on Retinal Transduction by AAV. J Virol 2021; 95:JVI.02440-20. [PMID: 33658343 PMCID: PMC8139652 DOI: 10.1128/jvi.02440-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adeno-associated viruses (AAVs) have recently emerged as the leading vector for retinal gene therapy. However, AAV vectors which are capable of achieving clinically relevant levels of transgene expression and widespread retinal transduction are still an unmet need. Using rationally designed AAV2-based capsid variants, we investigate the role of capsid hydrophilicity and hydrophobicity as it relates to retinal transduction. We show that hydrophilic, single amino acid (aa) mutations (V387R, W502H, E530K, L583R) in AAV2 negatively impact retinal transduction when heparan sulfate proteoglycan (HSPG) binding remains intact. Conversely, addition of hydrophobic point mutations to an HSPG binding deficient capsid (AAV2ΔHS) lead to increased retinal transduction in both mouse and macaque. Our top performing vector, AAV2(4pMut)ΔHS, achieved robust rod and cone photoreceptor (PR) transduction in macaque, especially in the fovea, and demonstrates the ability to spread laterally beyond the borders of the subretinal injection (SRI) bleb. This study both evaluates biophysical properties of AAV capsids that influence retinal transduction, and assesses the transduction and tropism of a novel capsid variant in a clinically relevant animal model.ImportanceRationally guided engineering of AAV capsids aims to create new generations of vectors with enhanced potential for human gene therapy. By applying rational design principles to AAV2-based capsids, we evaluated the influence of hydrophilic and hydrophobic amino acid (aa) mutations on retinal transduction as it relates to vector administration route. Through this approach we identified a largely deleterious relationship between hydrophilic aa mutations and canonical HSPG binding by AAV2-based capsids. Conversely, the inclusion of hydrophobic aa substitutions on a HSPG binding deficient capsid (AAV2ΔHS), generated a vector capable of robust rod and cone photoreceptor (PR) transduction. This vector AAV2(4pMut)ΔHS also demonstrates a remarkable ability to spread laterally beyond the initial subretinal injection (SRI) bleb, making it an ideal candidate for the treatment of retinal diseases which require a large area of transduction.
Collapse
|
35
|
Cuevas E, Holder DL, Alshehri AH, Tréguier J, Lakowski J, Sowden JC. NRL -/- gene edited human embryonic stem cells generate rod-deficient retinal organoids enriched in S-cone-like photoreceptors. Stem Cells 2021; 39:414-428. [PMID: 33400844 PMCID: PMC8438615 DOI: 10.1002/stem.3325] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/27/2022]
Abstract
Organoid cultures represent a unique tool to investigate the developmental complexity of tissues like the human retina. NRL is a transcription factor required for the specification and homeostasis of mammalian rod photoreceptors. In Nrl-deficient mice, photoreceptor precursor cells do not differentiate into rods, and instead follow a default photoreceptor specification pathway to generate S-cone-like cells. To investigate whether this genetic switch mechanism is conserved in humans, we used CRISPR/Cas9 gene editing to engineer an NRL-deficient embryonic stem cell (ESC) line (NRL-/- ), and differentiated it into retinal organoids. Retinal organoids self-organize and resemble embryonic optic vesicles (OVs) that recapitulate the natural histogenesis of rods and cone photoreceptors. NRL-/- OVs develop comparably to controls, and exhibit a laminated, organized retinal structure with markers of photoreceptor synaptogenesis. Using immunohistochemistry and quantitative polymerase chain reaction (qPCR), we observed that NRL-/- OVs do not express NRL, or other rod photoreceptor markers directly or indirectly regulated by NRL. On the contrary, they show an abnormal number of photoreceptors positive for S-OPSIN, which define a primordial subtype of cone, and overexpress other cone genes indicating a conserved molecular switch in mammals. This study represents the first evidence in a human in vitro ESC-derived organoid system that NRL is required to define rod identity, and that in its absence S-cone-like cells develop as the default photoreceptor cell type. It shows how gene edited retinal organoids provide a useful system to investigate human photoreceptor specification, relevant for efforts to generate cells for transplantation in retinal degenerative diseases.
Collapse
Affiliation(s)
- Elisa Cuevas
- UCL Great Ormond Street Institute of Child HealthUniversity College London and NIHR Great Ormond Street Hospital Biomedical Research CentreLondonUK
| | - Daniel L. Holder
- UCL Great Ormond Street Institute of Child HealthUniversity College London and NIHR Great Ormond Street Hospital Biomedical Research CentreLondonUK
| | - Ashwak H. Alshehri
- UCL Great Ormond Street Institute of Child HealthUniversity College London and NIHR Great Ormond Street Hospital Biomedical Research CentreLondonUK
| | - Julie Tréguier
- UCL Great Ormond Street Institute of Child HealthUniversity College London and NIHR Great Ormond Street Hospital Biomedical Research CentreLondonUK
| | - Jörn Lakowski
- UCL Great Ormond Street Institute of Child HealthUniversity College London and NIHR Great Ormond Street Hospital Biomedical Research CentreLondonUK
- Centre for Human Development, Stem Cells and RegenerationUniversity of SouthamptonSouthamptonUK
| | - Jane C. Sowden
- UCL Great Ormond Street Institute of Child HealthUniversity College London and NIHR Great Ormond Street Hospital Biomedical Research CentreLondonUK
| |
Collapse
|
36
|
Hamano F, Kuribayashi H, Iwagawa T, Tsuhako A, Nagata K, Sagara H, Shimizu T, Shindou H, Watanabe S. Mapping membrane lipids in the developing and adult mouse retina under physiological and pathological conditions using mass spectrometry. J Biol Chem 2021; 296:100303. [PMID: 33465374 PMCID: PMC7949107 DOI: 10.1016/j.jbc.2021.100303] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/05/2021] [Accepted: 01/14/2021] [Indexed: 12/31/2022] Open
Abstract
Membrane phospholipids play pivotal roles in various cellular processes, and their levels are tightly regulated. In the retina, phospholipids had been scrutinized because of their distinct composition and requirement in visual transduction. However, how lipid composition changes during retinal development remains unclear. Here, we used liquid chromatography–mass spectrometry (LC-MS) to assess the dynamic changes in the levels of two main glycerophospholipids, phosphatidylcholine (PC) and phosphatidylethanolamine (PE), in the developing mouse retina under physiological and pathological conditions. The total levels of PC and PE increased during retinal development, and individual lipid species exhibited distinct level changes. The amount of very-long-chain PC and PE increased dramatically in the late stages of retinal development. The mRNA levels of Elovl2 and Elovl4, genes encoding enzymes essential for the synthesis of very-long-chain polyunsaturated fatty acids, increased in developing photoreceptors. Cell sorting based on CD73 expression followed by LC-MS revealed distinct changes in PC and PE levels in CD73-positive rod photoreceptors and CD73-negative retinal cells. Finally, using the NaIO3-induced photoreceptor degeneration model, we identified photoreceptor-specific changes in PC and PE levels from 1 day after NaIO3 administration, before the outer segment of photoreceptors displayed morphological impairment. In conclusion, our findings provide insight into the dynamic changes in PC and PE levels in the developing and adult mouse retina under physiological and pathological conditions. Furthermore, we provide evidence that cell sorting followed by LC-MS is a promising approach for investigating the relevance of lipid homeostasis in the function of different retinal cell types.
Collapse
Affiliation(s)
- Fumie Hamano
- Department of Lipid Signaling, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan; Life Sciences Core Facility, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroshi Kuribayashi
- Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Toshiro Iwagawa
- Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Asano Tsuhako
- Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Katsuyuki Nagata
- Department of Lipid Signaling, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Hiroshi Sagara
- Medical Proteomics Laboratory, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Takao Shimizu
- Department of Lipid Signaling, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Hideo Shindou
- Department of Lipid Signaling, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan; Department of Lipid Science, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Sumiko Watanabe
- Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan.
| |
Collapse
|
37
|
Hargrove-Grimes P, Mondal AK, Gumerson J, Nellissery J, Aponte AM, Gieser L, Qian H, Fariss RN, Bonifacino JS, Li T, Swaroop A. Loss of endocytosis-associated RabGEF1 causes aberrant morphogenesis and altered autophagy in photoreceptors leading to retinal degeneration. PLoS Genet 2020; 16:e1009259. [PMID: 33362196 PMCID: PMC7790415 DOI: 10.1371/journal.pgen.1009259] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 01/07/2021] [Accepted: 11/09/2020] [Indexed: 12/17/2022] Open
Abstract
Rab-GTPases and associated effectors mediate cargo transport through the endomembrane system of eukaryotic cells, regulating key processes such as membrane turnover, signal transduction, protein recycling and degradation. Using developmental transcriptome data, we identified Rabgef1 (encoding the protein RabGEF1 or Rabex-5) as the only gene associated with Rab GTPases that exhibited strong concordance with retinal photoreceptor differentiation. Loss of Rabgef1 in mice (Rabgef1-/-) resulted in defects specifically of photoreceptor morphology and almost complete loss of both rod and cone function as early as eye opening; however, aberrant outer segment formation could only partly account for visual function deficits. RabGEF1 protein in retinal photoreceptors interacts with Rabaptin-5, and RabGEF1 absence leads to reduction of early endosomes consistent with studies in other mammalian cells and tissues. Electron microscopy analyses reveal abnormal accumulation of macromolecular aggregates in autophagosome-like vacuoles and enhanced immunostaining for LC3A/B and p62 in Rabgef1-/- photoreceptors, consistent with compromised autophagy. Transcriptome analysis of the developing Rabgef1-/- retina reveals altered expression of 2469 genes related to multiple pathways including phototransduction, mitochondria, oxidative stress and endocytosis, suggesting an early trajectory of photoreceptor cell death. Our results implicate an essential role of the RabGEF1-modulated endocytic and autophagic pathways in photoreceptor differentiation and homeostasis. We propose that RabGEF1 and associated components are potential candidates for syndromic traits that include a retinopathy phenotype. Endocytosis and autophagy are evolutionarily conserved processes that are essential for maintenance of cellular homeostasis. RabGEF1 is a major regulator of the Rab5-GTPase, which participates in key steps during endocytosis and autophagy. We demonstrate that loss of RabGEF1 in mice causes specific developmental defects during photoreceptor outer segment formation, leading to visual dysfunction as early as eye opening followed by retinal degeneration. Rabgef1-/- retina shows a clear reduction in early endosomes as well as accumulation of autophagic vacuoles in developing photoreceptors. Together with transcriptome analysis, our studies suggest a trajectory of cellular events including altered autophagy that precede photoreceptor cell death in the absence of RabGEF1 and establish a critical role of endocytosis and autophagy in retinal development and proteostasis.
Collapse
Affiliation(s)
- Passley Hargrove-Grimes
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Institute of Biomedical Sciences, George Washington University, Washington, District of Columbia, United States of America
| | - Anupam K. Mondal
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jessica Gumerson
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jacob Nellissery
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Angel M. Aponte
- Proteomics Core, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Linn Gieser
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Haohua Qian
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Robert N. Fariss
- Biological Imaging Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Juan S. Bonifacino
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute for Child Health and Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tiansen Li
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Anand Swaroop
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
38
|
Kakavand K, Jobling AI, Greferath U, Vessey KA, de Iongh RU, Fletcher EL. Photoreceptor Degeneration in Pro23His Transgenic Rats (Line 3) Involves Autophagic and Necroptotic Mechanisms. Front Neurosci 2020; 14:581579. [PMID: 33224023 PMCID: PMC7670078 DOI: 10.3389/fnins.2020.581579] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/02/2020] [Indexed: 01/09/2023] Open
Abstract
Photoreceptor death contributes to 50% of irreversible vision loss in the western world. Pro23His (P23H) transgenic albino rat strains are widely used models for the most common rhodopsin gene mutation associated with the autosomal dominant form of retinitis pigmentosa. However, the mechanism(s) by which photoreceptor death occurs are not well understood and were the principal aim of this study. We first used electroretinogram recording and optical coherence tomography to confirm the time course of functional and structural loss. Electroretinogram analyses revealed significantly decreased rod photoreceptor (a-wave), bipolar cell (b-wave) and amacrine cell responses (oscillatory potentials) from P30 onward. The cone-mediated b-wave was also decreased from P30. TUNEL analysis showed extensive cell death at P18, with continued labeling detected until P30. Focused gene expression arrays indicated activation of, apoptosis, autophagy and necroptosis in whole retina from P14-18. However, analysis of mitochondrial permeability changes (ΔΨm) using JC-1 dye, combined with immunofluorescence markers for caspase-dependent (cleaved caspase-3) and caspase-independent (AIF) cell death pathways, indicated mitochondrial-mediated cell death was not a major contributor to photoreceptor death. By contrast, reverse-phase protein array data combined with RIPK3 and phospho-MLKL immunofluorescence indicated widespread necroptosis as the predominant mechanism of photoreceptor death. These findings highlight the complexity of mechanisms involved in photoreceptor death in the Pro23His rat model of degeneration and suggest therapies that target necroptosis should be considered for their potential to reduce photoreceptor death.
Collapse
Affiliation(s)
- Kiana Kakavand
- Visual Neuroscience Laboratory, Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| | - Andrew I Jobling
- Visual Neuroscience Laboratory, Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| | - Ursula Greferath
- Visual Neuroscience Laboratory, Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| | - Kirstan A Vessey
- Visual Neuroscience Laboratory, Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| | - Robb U de Iongh
- Ocular Development Laboratory, Department Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| | - Erica L Fletcher
- Visual Neuroscience Laboratory, Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
39
|
Fadl BR, Brodie SA, Malasky M, Boland JF, Kelly MC, Kelley MW, Boger E, Fariss R, Swaroop A, Campello L. An optimized protocol for retina single-cell RNA sequencing. Mol Vis 2020; 26:705-717. [PMID: 33088174 PMCID: PMC7553720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/08/2020] [Indexed: 10/25/2022] Open
Abstract
Purpose Single-cell RNA sequencing (scRNA-seq) is a powerful technique used to explore gene expression at the single cell level. However, appropriate preparation of samples is essential to obtain the most information out of this transformative technology. Generating high-quality single-cell suspensions from the retina is critical to preserve the native expression profile that will ensure meaningful transcriptome data analysis. Methods We modified the conditions for rapid and optimal dissociation of retina sample preparation. We also included additional filtering steps in data analysis for retinal scRNA-seq. Results We report a gentle method for dissociation of the mouse retina that minimizes cell death and preserves cell morphology. This protocol also results in detection of higher transcriptional complexity. In addition, the modified computational pipeline leads to better-quality single-cell RNA-sequencing data in retina samples. We also demonstrate the advantages and limitations of using fresh versus frozen retinas to prepare cell or nuclei suspensions for scRNA-seq. Conclusions We provide a simple yet robust and reproducible protocol for retinal scRNA-seq analysis, especially for comparative studies.
Collapse
Affiliation(s)
- Benjamin R. Fadl
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Seth A. Brodie
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health & NCI-Frederick, Leidos Biomedical Research Inc., Frederick, MD
| | - Michael Malasky
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health & NCI-Frederick, Leidos Biomedical Research Inc., Frederick, MD
| | - Joseph F. Boland
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health & NCI-Frederick, Leidos Biomedical Research Inc., Frederick, MD
| | - Michael C. Kelly
- Single Cell Analysis Facility, Cancer Research Technology Program, Frederick National Laboratory, Bethesda, MD
| | - Matthew W. Kelley
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD
| | - Erich Boger
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD
| | - Robert Fariss
- Biological Imaging Core, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Anand Swaroop
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Laura Campello
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
40
|
Hydrogel-mediated co-transplantation of retinal pigmented epithelium and photoreceptors restores vision in an animal model of advanced retinal degeneration. Biomaterials 2020; 257:120233. [DOI: 10.1016/j.biomaterials.2020.120233] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 01/01/2023]
|
41
|
Hassall MM, McClements ME, Barnard AR, Patrício MI, Aslam SA, Maclaren RE. Analysis of Early Cone Dysfunction in an In Vivo Model of Rod-Cone Dystrophy. Int J Mol Sci 2020; 21:ijms21176055. [PMID: 32842706 PMCID: PMC7503557 DOI: 10.3390/ijms21176055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 08/20/2020] [Indexed: 01/12/2023] Open
Abstract
Retinitis pigmentosa (RP) is a generic term for a group of genetic diseases characterized by loss of rod and cone photoreceptor cells. Although the genetic causes of RP frequently only affect the rod photoreceptor cells, cone photoreceptors become stressed in the absence of rods and undergo a secondary degeneration. Changes in the gene expression profile of cone photoreceptor cells are likely to occur prior to observable physiological changes. To this end, we sought to achieve greater understanding of the changes in cone photoreceptor cells early in the degeneration process of the Rho−/− mouse model. To account for gene expression changes attributed to loss of cone photoreceptor cells, we normalized PCR in the remaining number of cones to a cone cell reporter (OPN1-GFP). Gene expression profiles of key components involved in the cone phototransduction cascade were correlated with tests of retinal cone function prior to cell loss. A significant downregulation of the photoreceptor transcription factor Crx was observed, which preceded a significant downregulation in cone opsin transcripts that coincided with declining cone function. Our data add to the growing understanding of molecular changes that occur prior to cone dysfunction in a model of rod-cone dystrophy. It is of interest that gene supplementation of CRX by adeno-associated viral vector delivery prior to cone cell loss did not prevent cone photoreceptor degeneration in this mouse model.
Collapse
Affiliation(s)
- Mark M. Hassall
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK; (M.E.M.); (A.R.B.); (M.I.P.); (S.A.A.); (R.E.M.)
- Correspondence: ; Tel.: +61-426-732-991
| | - Michelle E. McClements
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK; (M.E.M.); (A.R.B.); (M.I.P.); (S.A.A.); (R.E.M.)
| | - Alun R. Barnard
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK; (M.E.M.); (A.R.B.); (M.I.P.); (S.A.A.); (R.E.M.)
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Maria I. Patrício
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK; (M.E.M.); (A.R.B.); (M.I.P.); (S.A.A.); (R.E.M.)
| | - Sher A. Aslam
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK; (M.E.M.); (A.R.B.); (M.I.P.); (S.A.A.); (R.E.M.)
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Robert E. Maclaren
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK; (M.E.M.); (A.R.B.); (M.I.P.); (S.A.A.); (R.E.M.)
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| |
Collapse
|
42
|
Sato S, Morimoto T, Tanaka S, Hotta K, Fujikado T, Tsujikawa M, Nishida K. Novel mutation identified in Leber congenital amaurosis - a case report. BMC Ophthalmol 2020; 20:313. [PMID: 32736544 PMCID: PMC7393846 DOI: 10.1186/s12886-020-01577-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/21/2020] [Indexed: 11/20/2022] Open
Abstract
Background Leber congenital amaurosis (LCA) is the earliest onset and the most severe form of all inherited retinal degenerative disorders, characterized by blindness, or severe visual impairment from birth, and typically exhibits clinical and genetic heterogeneity. Recently, 14 causative genes of LCA were reported. We performed whole-exome sequencing (WES) for Japanese siblings, and identified a novel homozygous nonsense mutation in the RPGR-interacting protein 1 (RPGRIP1) gene. We also report their follow-up data over 27 years. Case presentation Patient 1 is a 37-year-old male. In 1992, his eye position indicated orthophoria, however, horizontal nystagmus was evident, and he complained of photophobia. His best corrected decimal visual acuity (BCVA) was 0.2 (S + 6.5/C-3.5/170°) OD and 0.1 (S + 6.0/C-2.5/10°) OS. Fundus examination revealed bisymmetrical inferior focal retinal pigment epithelium (RPE) mottling. Bright-flash electroretinogram (ERG) revealed a subnormal pattern, while 30 Hz flicker ERG was non-recordable in both eyes. At his final visit in 2019, his BCVA was 0.09 (S + 3.5/C-3.5/180°) OD and 0.09 (S + 3.0/C-4.0/10°) OS. Patient 2, a 34-year-old female, is the sibling of patient 1. In 1992, her BCVA was 0.05 (S + 6.0) OD and 0.06 (S + 5.0) OS. She was in a chin-up position during visual acuity testing. Horizontal nystagmus was evident, and she also complained of photophobia. Bright-flash ERG was severely attenuated, and 30 Hz flicker ERG was non-recordable in both eyes. At her final visit in 2019, her BCVA was 0.02 (uncorrectable) OD and 0.03 (uncorrectable) OS. There were no other patients with LCA in their family and their parents were non-consanguineous. WES revealed a homozygous, consecutive, two-nucleotide variation in the RPGRIP1 gene (NM_020366: exon15:c.G2294A and c.C2295A, p.C765X), resulting in a premature stop codon. We interpreted this variation as a novel pathogenic mutation of RPGRIP1 that contributes to LCA6 development. Conclusions Herein, we report a novel nonsense mutation of RPGRIP1 in two patients with LCA6 and present their long-term follow-up data. These clinical data linked to genotypes provide important information for the development of new treatments, such as gene therapy, as well as for genetic counseling.
Collapse
Affiliation(s)
- Shigeru Sato
- Department of Ophthalmology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Laboratory of Regenerative Medicine and Development, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - Takeshi Morimoto
- Department of Ophthalmology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Advanced Visual Neuroscience, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Sayaka Tanaka
- Department of Ophthalmology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kikuko Hotta
- Laboratory of Pathophysiology and Pharmacotherapeutics, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Takashi Fujikado
- Special Research Promotion Group, Osaka University Graduate School of Frontier Biosciences, Osaka, Japan
| | - Motokazu Tsujikawa
- Department of Ophthalmology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Laboratory of Regenerative Medicine and Development, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kohji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Trans-disciplinary Research Initiatives, Osaka University, Osaka, Japan
| |
Collapse
|
43
|
Toms D, Al-Ani A, Sunba S, Tong QYV, Workentine M, Ungrin M. Automated Hypothesis Generation to Identify Signals Relevant in the Development of Mammalian Cell and Tissue Bioprocesses, With Validation in a Retinal Culture System. Front Bioeng Biotechnol 2020; 8:534. [PMID: 32582664 PMCID: PMC7287043 DOI: 10.3389/fbioe.2020.00534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
We have developed an accessible software tool (receptoR) to predict potentially active signaling pathways in one or more cell type(s) of interest from publicly available transcriptome data. As proof-of-concept, we applied it to mouse photoreceptors, yielding the previously untested hypothesis that activin signaling pathways are active in these cells. Expression of the type 2 activin receptor (Acvr2a) was experimentally confirmed by both RT-qPCR and immunochemistry, and activation of this signaling pathway with recombinant activin A significantly enhanced the survival of magnetically sorted photoreceptors in culture. Taken together, we demonstrate that our approach can be easily used to mine publicly available transcriptome data and generate hypotheses around receptor expression that can be used to identify novel signaling pathways in specific cell types of interest. We anticipate that receptoR (available at https://www.ucalgary.ca/ungrinlab/receptoR) will enable more efficient use of limited research resources.
Collapse
Affiliation(s)
- Derek Toms
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Abdullah Al-Ani
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada.,Leaders in Medicine Program, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Saud Sunba
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Qing Yun Victor Tong
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Matthew Workentine
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Mark Ungrin
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
44
|
Mahato B, Kaya KD, Fan Y, Sumien N, Shetty RA, Zhang W, Davis D, Mock T, Batabyal S, Ni A, Mohanty S, Han Z, Farjo R, Forster MJ, Swaroop A, Chavala SH. Pharmacologic fibroblast reprogramming into photoreceptors restores vision. Nature 2020; 581:83-88. [PMID: 32376950 PMCID: PMC7469946 DOI: 10.1038/s41586-020-2201-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/10/2020] [Indexed: 12/14/2022]
Abstract
Photoreceptor loss is the final common endpoint in most retinopathies that lead to irreversible blindness, and there are no effective treatments to restore vision1,2. Chemical reprogramming of fibroblasts offers an opportunity to reverse vision loss; however, the generation of sensory neuronal subtypes such as photoreceptors remains a challenge. Here we report that the administration of a set of five small molecules can chemically induce the transformation of fibroblasts into rod photoreceptor-like cells. The transplantation of these chemically induced photoreceptor-like cells (CiPCs) into the subretinal space of rod degeneration mice (homozygous for rd1, also known as Pde6b) leads to partial restoration of the pupil reflex and visual function. We show that mitonuclear communication is a key determining factor for the reprogramming of fibroblasts into CiPCs. Specifically, treatment with these five compounds leads to the translocation of AXIN2 to the mitochondria, which results in the production of reactive oxygen species, the activation of NF-κB and the upregulation of Ascl1. We anticipate that CiPCs could have therapeutic potential for restoring vision.
Collapse
Affiliation(s)
- Biraj Mahato
- Department of Pharmacology and Neuroscience, Laboratory for Retinal Rehabilitation, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Koray Dogan Kaya
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yan Fan
- Department of Pharmacology and Neuroscience, Laboratory for Retinal Rehabilitation, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Nathalie Sumien
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Ritu A Shetty
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Wei Zhang
- Department of Pharmacology and Neuroscience, Laboratory for Retinal Rehabilitation, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Delaney Davis
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Thomas Mock
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | | | - Aiguo Ni
- Department of Pharmacology and Neuroscience, Laboratory for Retinal Rehabilitation, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA
| | | | - Zongchao Han
- Department of Ophthalmology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Michael J Forster
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sai H Chavala
- Department of Pharmacology and Neuroscience, Laboratory for Retinal Rehabilitation, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA.
- CIRC Therapeutics, Inc., Dallas, TX, USA.
| |
Collapse
|
45
|
Corso-Díaz X, Gentry J, Rebernick R, Jaeger C, Brooks MJ, van Asten F, Kooragayala K, Gieser L, Nellissery J, Covian R, Cogliati T, Mondal AK, Jiang K, Swaroop A. Genome-wide Profiling Identifies DNA Methylation Signatures of Aging in Rod Photoreceptors Associated with Alterations in Energy Metabolism. Cell Rep 2020; 31:107525. [PMID: 32320661 PMCID: PMC7228806 DOI: 10.1016/j.celrep.2020.107525] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/11/2020] [Accepted: 03/26/2020] [Indexed: 12/19/2022] Open
Abstract
Aging-associated functional decline is accompanied by alterations in the epigenome. To explore DNA modifications that could influence visual function with age, we perform whole-genome bisulfite sequencing of purified mouse rod photoreceptors at four ages and identify 2,054 differentially methylated regions (DMRs). We detect many DMRs during early stages of aging and in rod regulatory regions, and some of these cluster at chromosomal hotspots, especially on chromosome 10, which includes a longevity interactome. Integration of methylome to age-related transcriptome changes, chromatin signatures, and first-order protein-protein interactions uncover an enrichment of DMRs in altered pathways that are associated with rod function, aging, and energy metabolism. In concordance, we detect reduced basal mitochondrial respiration and increased fatty acid dependency with retinal age in ex vivo assays. Our study reveals age-dependent genomic and chromatin features susceptible to DNA methylation changes in rod photoreceptors and identifies a link between DNA methylation and energy metabolism in aging.
Collapse
Affiliation(s)
- Ximena Corso-Díaz
- Neurobiology, Neurodegeneration & Repair Laboratory, 6 Center Drive, MSC0610, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James Gentry
- Neurobiology, Neurodegeneration & Repair Laboratory, 6 Center Drive, MSC0610, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ryan Rebernick
- Neurobiology, Neurodegeneration & Repair Laboratory, 6 Center Drive, MSC0610, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Catherine Jaeger
- Neurobiology, Neurodegeneration & Repair Laboratory, 6 Center Drive, MSC0610, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew J Brooks
- Neurobiology, Neurodegeneration & Repair Laboratory, 6 Center Drive, MSC0610, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Freekje van Asten
- Neurobiology, Neurodegeneration & Repair Laboratory, 6 Center Drive, MSC0610, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Keshav Kooragayala
- Neurobiology, Neurodegeneration & Repair Laboratory, 6 Center Drive, MSC0610, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Linn Gieser
- Neurobiology, Neurodegeneration & Repair Laboratory, 6 Center Drive, MSC0610, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jacob Nellissery
- Neurobiology, Neurodegeneration & Repair Laboratory, 6 Center Drive, MSC0610, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Raul Covian
- Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tiziana Cogliati
- Neurobiology, Neurodegeneration & Repair Laboratory, 6 Center Drive, MSC0610, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anupam K Mondal
- Neurobiology, Neurodegeneration & Repair Laboratory, 6 Center Drive, MSC0610, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ke Jiang
- Neurobiology, Neurodegeneration & Repair Laboratory, 6 Center Drive, MSC0610, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anand Swaroop
- Neurobiology, Neurodegeneration & Repair Laboratory, 6 Center Drive, MSC0610, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
46
|
Kallman A, Capowski EE, Wang J, Kaushik AM, Jansen AD, Edwards KL, Chen L, Berlinicke CA, Joseph Phillips M, Pierce EA, Qian J, Wang TH, Gamm DM, Zack DJ. Investigating cone photoreceptor development using patient-derived NRL null retinal organoids. Commun Biol 2020; 3:82. [PMID: 32081919 PMCID: PMC7035245 DOI: 10.1038/s42003-020-0808-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/21/2020] [Indexed: 12/22/2022] Open
Abstract
Photoreceptor loss is a leading cause of blindness, but mechanisms underlying photoreceptor degeneration are not well understood. Treatment strategies would benefit from improved understanding of gene-expression patterns directing photoreceptor development, as many genes are implicated in both development and degeneration. Neural retina leucine zipper (NRL) is critical for rod photoreceptor genesis and degeneration, with NRL mutations known to cause enhanced S-cone syndrome and retinitis pigmentosa. While murine Nrl loss has been characterized, studies of human NRL can identify important insights for human retinal development and disease. We utilized iPSC organoid models of retinal development to molecularly define developmental alterations in a human model of NRL loss. Consistent with the function of NRL in rod fate specification, human retinal organoids lacking NRL develop S-opsin dominant photoreceptor populations. We report generation of two distinct S-opsin expressing populations in NRL null retinal organoids and identify MEF2C as a candidate regulator of cone development. Kallman et al. showed the effect of Nrl in human PSC-derived retinal organoids. Using histological and single cell transcriptomics, they identified an intermediate “cod” subpopulation in the predominant S-opsin population. Their findings provide important insights for human retinal development and degeneration.
Collapse
Affiliation(s)
- Alyssa Kallman
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | | | - Jie Wang
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Aniruddha M Kaushik
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, USA
| | - Alex D Jansen
- Waisman Center, University of Wisconsin-Madison, Madison, USA
| | | | - Liben Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, USA
| | - Cynthia A Berlinicke
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, USA
| | - M Joseph Phillips
- Waisman Center, University of Wisconsin-Madison, Madison, USA.,McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, USA
| | - Eric A Pierce
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Boston, USA
| | - Jiang Qian
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Tza-Huei Wang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, USA
| | - David M Gamm
- Waisman Center, University of Wisconsin-Madison, Madison, USA. .,McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, USA. .,Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, USA.
| | - Donald J Zack
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA. .,Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, USA. .,The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, USA. .,Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, USA.
| |
Collapse
|
47
|
Javed A, Mattar P, Lu S, Kruczek K, Kloc M, Gonzalez-Cordero A, Bremner R, Ali RR, Cayouette M. Pou2f1 and Pou2f2 cooperate to control the timing of cone photoreceptor production in the developing mouse retina. Development 2020; 147:dev.188730. [DOI: 10.1242/dev.188730] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 08/19/2020] [Indexed: 12/27/2022]
Abstract
Multipotent retinal progenitor cells (RPCs) generate various cell types in a precise chronological order, but how exactly cone photoreceptor production is restricted to early stages remains unclear. Here, we show that the POU-homeodomain factors Pou2f1/Pou2f2, the homologs of Drosophila temporal identity factors nub/pdm2, regulate the timely production of cones in mice. Forcing sustained expression of Pou2f1 or Pou2f2 in RPCs expands the period of cone production, whereas misexpression in late-stage RPCs triggers ectopic cone production at the expense of late-born fates. Mechanistically, we report that Pou2f1 induces Pou2f2 expression, which binds to a POU motif in the promoter of the rod-inducing factor Nrl to repress its expression. Conversely, conditional inactivation of Pou2f2 in RPCs increases Nrl expression and reduces cone production. Finally, we provide evidence that Pou2f1 is part of a cross-regulatory cascade with the other temporal identity factors Ikzf1 and Casz1. These results uncover Pou2f1/2 as regulators of the temporal window for cone genesis and, given their widespread expression in the nervous system, raise the possibility of a general role in temporal patterning.
Collapse
Affiliation(s)
- Awais Javed
- Cellular Neurobiology Research Unit, Institut de recherches cliniques de Montreal (IRCM), Canada
- Molecular Biology Program, Université de Montréal, Canada
| | - Pierre Mattar
- Cellular Neurobiology Research Unit, Institut de recherches cliniques de Montreal (IRCM), Canada
| | - Suying Lu
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada. Department of Ophthalmology and Vision Science, Department of Lab Medicine and Pathobiology, University of Toronto
| | | | | | | | - Rod Bremner
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada. Department of Ophthalmology and Vision Science, Department of Lab Medicine and Pathobiology, University of Toronto
| | - Robin R. Ali
- UCL Institute of Ophthalmology, London, UK
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Michel Cayouette
- Cellular Neurobiology Research Unit, Institut de recherches cliniques de Montreal (IRCM), Canada
- Molecular Biology Program, Université de Montréal, Canada
- Department of Medicine, Université de Montréal, Canada
- Department of Anatomy and Cell Biology; Division of Experimental Medicine, McGill University, Canada
| |
Collapse
|
48
|
Orlans HO, Barnard AR, MacLaren RE. Dynamic in vivo quantification of rod photoreceptor degeneration using fluorescent reporter mouse models of retinitis pigmentosa. Exp Eye Res 2020; 190:107895. [DOI: 10.1016/j.exer.2019.107895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/25/2019] [Accepted: 12/04/2019] [Indexed: 02/01/2023]
|
49
|
Buenaventura DF, Corseri A, Emerson MM. Identification of Genes With Enriched Expression in Early Developing Mouse Cone Photoreceptors. Invest Ophthalmol Vis Sci 2019; 60:2787-2799. [PMID: 31260032 PMCID: PMC6607928 DOI: 10.1167/iovs.19-26951] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Purpose The early transcriptional events that occur in newly generated cone photoreceptors are not well described. Knowledge of these events is critical to provide benchmarks for in vitro-derived cone photoreceptors and to understand the process of cone and rod photoreceptor diversification. We sought to identify genes with differential gene expression in embryonic mouse cone photoreceptors. Methods The specificity of expression of the LHX4 transcription factor in developing cone photoreceptors was examined using immunofluorescence visualization in both mouse and chicken retinas. A LHX4 transgenic reporter line with high specificity for developing mouse cone photoreceptors was identified and used to purify early-stage cone photoreceptors for profiling by single-cell RNA sequencing. Comparisons were made to previous datasets targeting photoreceptors. Results The LHX4 transcription factor and a transgenic reporter were determined to be highly specific to early developing cone photoreceptors in the mouse. Single-cell transcriptional profiling identified new genes with enriched expression in cone photoreceptors relative to concurrent cell populations. Comparison to previous profiling datasets allowed for further characterization of these genes across developmental time, species, photoreceptor type, and gene regulatory network. Conclusions The LHX4 gene is highly enriched in developing cone photoreceptors as are several new genes identified through transcriptional profiling, some of which are expressed in subclusters of cones. Many of these cone-enriched genes do not show obvious de-repression in profiling of retinas mutant for the rod-specific transcription factor NRL, highlighting differences between endogenous cones and those induced in NRL mutants.
Collapse
Affiliation(s)
- Diego F Buenaventura
- Department of Biology, The City College of New York, City University of New York, New York, New York, United States.,Biology PhD Program, Graduate Center, City University of New York, New York, New York, United States
| | - Adrianne Corseri
- Department of Biology, The City College of New York, City University of New York, New York, New York, United States
| | - Mark M Emerson
- Department of Biology, The City College of New York, City University of New York, New York, New York, United States.,Biology PhD Program, Graduate Center, City University of New York, New York, New York, United States.,Biochemistry PhD Program, Graduate Center, City University of New York, New York, New York, United States
| |
Collapse
|
50
|
Subramanian K, Weigert M, Borsch O, Petzold H, Garcia-Ulloa A, Myers EW, Ader M, Solovei I, Kreysing M. Rod nuclear architecture determines contrast transmission of the retina and behavioral sensitivity in mice. eLife 2019; 8:49542. [PMID: 31825309 PMCID: PMC6974353 DOI: 10.7554/elife.49542] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/11/2019] [Indexed: 01/06/2023] Open
Abstract
Rod photoreceptors of nocturnal mammals display a striking inversion of nuclear architecture, which has been proposed as an evolutionary adaptation to dark environments. However, the nature of visual benefits and the underlying mechanisms remains unclear. It is widely assumed that improvements in nocturnal vision would depend on maximization of photon capture at the expense of image detail. Here, we show that retinal optical quality improves 2-fold during terminal development, and that this enhancement is caused by nuclear inversion. We further demonstrate that improved retinal contrast transmission, rather than photon-budget or resolution, enhances scotopic contrast sensitivity by 18–27%, and improves motion detection capabilities up to 10-fold in dim environments. Our findings therefore add functional significance to a prominent exception of nuclear organization and establish retinal contrast transmission as a decisive determinant of mammalian visual perception.
Collapse
Affiliation(s)
- Kaushikaram Subramanian
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Center for Systems Biology Dresden, Dresden, Germany.,Cluster of Excellence, Physics of Life, Technische Universität Dresden, Dresden, Germany
| | - Martin Weigert
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Center for Systems Biology Dresden, Dresden, Germany.,Cluster of Excellence, Physics of Life, Technische Universität Dresden, Dresden, Germany
| | - Oliver Borsch
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Heike Petzold
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Eugene W Myers
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Center for Systems Biology Dresden, Dresden, Germany.,Cluster of Excellence, Physics of Life, Technische Universität Dresden, Dresden, Germany.,Department of Computer Science, Technische Universität Dresden, Dresden, Germany
| | - Marius Ader
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Irina Solovei
- Biozentrum, Ludwig Maximilians Universität, München, Germany
| | - Moritz Kreysing
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Center for Systems Biology Dresden, Dresden, Germany.,Cluster of Excellence, Physics of Life, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|