1
|
Zhang X, Zhang N, Dong Z, Sun H, Diao Z, Li Y, Du D, Ma Y. The role of Chinese herbal medicine in diminished ovarian reserve management. J Ovarian Res 2025; 18:90. [PMID: 40307895 PMCID: PMC12042416 DOI: 10.1186/s13048-025-01669-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Accepted: 04/11/2025] [Indexed: 05/02/2025] Open
Abstract
Diminished Ovarian Reserve (DOR) is characterized by a reduction in the number of available follicles in the ovaries, leading to hormonal imbalances, decreased ovarian reserve, and reduced fertility. Clinically, it presents with elevated follicle-stimulating hormone (FSH) levels, decreased anti-Müllerian hormone (AMH) levels, and a lower antral follicle count (AFC). In recent years, Traditional Chinese Medicine (TCM) has gained recognition for its multi-target, holistic regulation in treating DOR, offering broad therapeutic effects with minimal side effects. This review aims to summarize the mechanisms and clinical efficacy of Chinese herbal medicine (CHM) formulas and active compounds in the treatment of DOR, providing theoretical support for their clinical application and future research. A systematic literature search was conducted from June 2019 to June 2024, and 12 clinical studies along with 38 basic research papers were selected. The findings suggest that CHM formulas primarily act by counteracting oxidative stress, regulating immune defense, modulating sex hormone secretion via the hypothalamic-pituitary-ovarian axis, and inhibiting excessive apoptosis of ovarian granulosa cells. This review highlights the therapeutic potential of TCM for improving ovarian function, regulating endocrine balance, and alleviating DOR symptoms, offering valuable insights for clinical practice and research.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Na Zhang
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhibin Dong
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hao Sun
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhihao Diao
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yujie Li
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Dongqing Du
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Yuxia Ma
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
2
|
Gu T, Liu J, Zeng T, Chen L, Tian Y, Xu W, Lu L. New insights into ovarian regression-related mitochondrial dysfunction in the late-laying period. Poult Sci 2025; 104:104938. [PMID: 40014974 PMCID: PMC11910091 DOI: 10.1016/j.psj.2025.104938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/31/2024] [Accepted: 02/21/2025] [Indexed: 03/01/2025] Open
Abstract
Duck egg production sharply decreases during the late-laying period, which likely stems from an ovarian mechanism. However, the molecular mechanisms underlying ovarian regression during the late-laying period remain unclear. In this study, egg-laying (LLP) and ceased-laying (CLP) ducks at 72 weeks of age were selected to explore the potential mechanism of ovarian regression. Proteomic analysis demonstrated the importance of mitochondrial function in ovarian regression. Notably, metabolomic analysis showed that CLP ducks disturbed TCA cycle, as exhibited by the lower fumarate content. The ovarian expression of protein markers for mitochondrial biogenesis (PGC-1α and TFAM) and function (SIRT1 and SIRT3) were suppressed in CLP ducks. CLP ducks had significantly increased MDA levels and reduced SOD, CAT, GSH-Px, and T-AOC activities, inducing excessive oxidative stress. Interestingly, ACSL4, a key regulator of ferroptosis, was associated with the mitochondrial envelope and membrane function during ovarian regression. CLP ducks showed significantly reduced GSH levels and increased Fe2+ content, as well as decreased the expression of ferroptosis-related proteins (GPX4 and SLC7A11) and antioxidant-related proteins (COX2, CAT, SOD1, and SOD2). Collectively, our findings suggest that ovarian regression-mediated mitochondrial dysfunction contributes to oxidative stress-induced ferroptosis in ducks that have ceased laying.
Collapse
Affiliation(s)
- Tiantian Gu
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jinyu Liu
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tao Zeng
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Li Chen
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yong Tian
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wenwu Xu
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lizhi Lu
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
3
|
Yuan X, Zhang X, Lin Y, Xie H, Wang Z, Hu X, Hu S, Li L, Liu H, He H, Han C, Gan X, Liao L, Xia L, Hu J, Wang J. Proteome of granulosa cells lipid droplets reveals mechanisms regulating lipid metabolism at hierarchical and pre-hierarchical follicle in goose. Front Vet Sci 2025; 12:1544718. [PMID: 40230795 PMCID: PMC11995638 DOI: 10.3389/fvets.2025.1544718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/12/2025] [Indexed: 04/16/2025] Open
Abstract
Avian hierarchical follicles are formed by selection and dominance of pre-hierarchical follicles, and lipid metabolism plays a pivotal role in this process. The amount of lipid in goose follicular granulosa cells increases with the increase of culture time, and the neutral lipid in the cells is stored in the form of lipid droplets (LDs). LD-associated proteins (LDAPs) collaborate with LDs to regulate intracellular lipid homeostasis, which subsequently influences avian follicle development. The mechanism by which LDAPs regulate lipid metabolism in goose granulosa cells at different developmental stages is unclear. Therefore, using BODIPY staining, we found that at five time points during in vitro culture, the LD content in hierarchical granulosa cells was significantly higher than that in pre-hierarchical granulosa cells in this study (p < 0.001). Next, we identified LDAPs in both hierarchical and pre-hierarchical granulosa cells, and screened out 1,180, 922, 907, 663, and 1,313 differentially expressed proteins (DEPs) at the respective time points. Subsequently, by performing Clusters of Orthologous Groups (COGs) classification on the DEPs, we identified a large number of proteins related to lipid transport and metabolism. Following this, the potential functions of these DEPs were investigated through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis. Finally, the important pathway of fatty acid degradation and the key protein ACSL3 were screened out using Short Time-series Expression Miner (STEM) and Protein-Protein Interaction (PPI) analysis methods. It is hypothesized that ACSL3 may potentially modulate lipid metabolism through the fatty acid degradation pathway, thereby contributing to the difference in lipid content between hierarchical and pre-hierarchical granulosa cells. These findings will provide a theoretical foundation for further studies on the role of LDs and LDAPs in avian follicle development.
Collapse
Affiliation(s)
- Xin Yuan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xi Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yueyue Lin
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hengli Xie
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Zhujun Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xinyue Hu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Shenqiang Hu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Liang Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hehe Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hua He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Chunchun Han
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xiang Gan
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi, China
| | - Ling Liao
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Lu Xia
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jiwei Hu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jiwen Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
4
|
Litscher ES, Wassarman PM. The mammalian egg's zona pellucida, fertilization, and fertility. Curr Top Dev Biol 2025; 162:207-258. [PMID: 40180510 DOI: 10.1016/bs.ctdb.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
The zona pellucida (ZP) is a relatively thick extracellular matrix (ECM) that surrounds all mammalian eggs and plays vital roles during oogenesis, fertilization, and preimplantation development. The ZP is a semi-permeable, viscous ECM that consists of three or four glycosylated proteins, called ZP1-4, that differ from proteoglycans and proteins of somatic cell ECM. Mammalian ZP proteins are encoded by single-copy genes on different chromosomes and synthesized and secreted by growing oocytes arrested in meiosis. Secreted ZP proteins assemble in the extracellular space into long fibrils that are crosslinked polymers of ZP proteins and exhibit a structural repeat. Several regions of nascent ZP proteins, the signal-sequence, ZP domain, internal and external hydrophobic patches, transmembrane domain, and consensus furin cleavage-site regulate secretion and assembly of the proteins. The ZP domain is required for assembly of ZP fibrils, as well as for assembly of other kinds of ZP domain-containing proteins. ZP proteins adopt immunoglobulin (Ig)-like folds that resemble C- and V-type Ig-like domains, but represent new immunoglobulin-superfamily subtype structures. Interference with synthesis, processing, or secretion of ZP proteins by either gene-targeting in mice or mutations in human ZP genes can result in failure to assemble a ZP and female infertility. ZP2 and ZP3 must be present to assemble a ZP during oocyte growth and both serve as receptors for binding of free-swimming sperm to ovulated eggs. Acrosome-reacted sperm bind to ZP2 polypeptide by inner-acrosomal membrane and acrosome-intact sperm bind to ZP3 oligosaccharides by plasma membrane overlying the sperm head. Binding of acrosome-intact sperm to ZP3 induces them to undergo cellular exocytosis, the acrosome reaction. Only acrosome-reacted sperm can penetrate the ZP, bind to, and then fuse with the egg's plasma membrane to produce a zygote. Following sperm-egg fusion (fertilization) the ZP undergoes structural and functional changes (zona reaction) induced by cortical granule components (cortical reaction) deposited into the ZP. The latter include zinc and ovastacin, a metalloendoprotease that cleaves ZP2 near its amino-terminus and hardens the egg's ZP. The changes prevent penetration of bound sperm through and binding of supernumerary sperm to the ZP of fertilized eggs as part of a secondary or slow block to polyspermy. Therefore, ZP proteins act as structural proteins and sperm receptors, and help to prevent fertilization by more than one sperm. Here we review some of this information and provide details about several key features of ZP proteins, ZP matrix, and mammalian fertilization.
Collapse
Affiliation(s)
- Eveline S Litscher
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Paul M Wassarman
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
5
|
Harvey AJ, Willson BE, Surrey ES, Gardner DK. Ovarian stimulation protocols: impact on oocyte and endometrial quality and function. Fertil Steril 2025; 123:10-21. [PMID: 39197516 DOI: 10.1016/j.fertnstert.2024.08.340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024]
Abstract
Ovarian stimulation (OS) truly is an art. There exists a myriad of protocols used to achieve the same goal: stimulating the ovaries to produce more than one mature oocyte to improve the chance of a live birth. However, considerable debate remains as to whether OS impacts oocyte and endometrial quality to affect in vitro fertilization outcomes. Although "more is better" has long been considered the best approach for oocyte retrieval, this review challenges that notion by examining the influence of stimulation on oocyte quality. Likewise, improved outcomes after frozen blastocyst transfer suggest that OS perturbs endometrial preparation and/or receptivity, although correlating changes with implantation success remains a challenge. Therefore, the focus of this review is to summarize our current understanding of perturbations in human oocyte quality and endometrial function induced by exogenous hormone administration. We highlight the need for further research to identify more appropriate markers of oocyte developmental competence as well as those that define the roles of the endometrium in the success of assisted reproductive technology.
Collapse
Affiliation(s)
- Alexandra J Harvey
- Melbourne IVF, East Melbourne, Victoria, Australia; School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | - Bryn E Willson
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars Sinai, Los Angeles, California
| | - Eric S Surrey
- Colorado Center for Reproductive Medicine, Lone Tree, Colorado
| | - David K Gardner
- Melbourne IVF, East Melbourne, Victoria, Australia; School of BioSciences, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
6
|
Fushii M, Kyogoku H, Lee J, Miyano T. Change in the ability of bovine granulosa cells to elongate transzonal projections and their transcriptome changes during follicle development. J Reprod Dev 2024; 70:362-371. [PMID: 39401905 DOI: 10.1262/jrd.2024-016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Abstract
Granulosa cells (GCs) in secondary follicles differentiate into cumulus cells (CCs) and mural granulosa cells (MGCs) in the antral follicle. Only CCs maintain direct connections with oocytes through transzonal projections (TZPs) and support oocyte growth. Here, we examined whether granulosa cells (GCs) from secondary follicles and MGCs from early and late antral follicles were able to reconstruct complexes with TZP-free denuded oocytes (DOs) and regenerate TZPs. Furthermore, to confirm that the regenerated TZPs were functional, the development of the reconstructed complexes and oocyte growth in the complexes were evaluated. After coculture, GCs and MGCs from early antral follicles reconstructed the complexes with DOs and regenerated TZPs. Furthermore, the oocytes in the integrally reconstructed complexes grew fully and acquired meiotic competence, suggesting that the regenerated TZPs were functional. In contrast, MGCs from the late antral follicles lost their ability to elongate TZPs. As the ability to regenerate TZPs differed among cells, we analyzed the transcriptomes of GCs, CCs, and MGCs collected from follicles of different sizes. The characteristics of TZP generation coincided with the transcriptome changes in two directions: from GCs to CCs and MGCs. In conclusion, until the early antral follicle stage, bovine GCs, CCs, and MGCs have common characteristics to elongate TZPs and form antrum-like structures that support oocyte growth in vitro. Furthermore, as the follicle develops, MGCs lose the ability to elongate TZPs.
Collapse
Affiliation(s)
- Mihoko Fushii
- Laboratory of Developmental Biotechnology, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Hirohisa Kyogoku
- Laboratory of Developmental Biotechnology, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Jibak Lee
- Laboratory of Developmental Biotechnology, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Takashi Miyano
- Laboratory of Developmental Biotechnology, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
7
|
Yang X, Zhang Y, Zhang H. Cellular and molecular regulations of oocyte selection and activation in mammals. Curr Top Dev Biol 2024; 162:283-315. [PMID: 40180512 DOI: 10.1016/bs.ctdb.2024.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Oocytes, a uniquely pivotal cell population, play a central role in species continuity. In mammals, oogenesis involves distinct processes characterized by sequential rounds of selection, arrest, and activation to produce a limited number of mature eggs, fitting their high-survival yet high-cost fertility. During the embryonic phase, oocytes undergo intensive selection via cytoplasmic and organelle enrichment, accompanied by the onset and arrest of meiosis, thereby establishing primordial follicles (PFs) as a finite reproductive reserve. Subsequently, the majority of primary oocytes enter a dormant state and are gradually recruited through a process termed follicle activation, essential for maintaining orderly fertility. Following activation, oocytes undergo rapid growth, experiencing cycles of arrest and activation regulated by endocrine and paracrine signals, ultimately forming fertilizable eggs. Over the past two decades, advancements in genetically modified animal models, high-resolution imaging, and omics technologies have significantly enhanced our understanding of the cellular and molecular mechanisms that govern mammalian oogenesis. These advances offer profound insights into the regulatory mechanisms of mammalian reproduction and associated female infertility disorders. In this chapter, we provide an overview of current knowledge in mammalian oogenesis, with a particular emphasis on oocyte selection and activation in vivo.
Collapse
Affiliation(s)
- Xuebing Yang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Yan Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Hua Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, P.R. China.
| |
Collapse
|
8
|
Nadri P, Nadri T, Gholami D, Zahmatkesh A, Hosseini Ghaffari M, Savvulidi Vargova K, Georgijevic Savvulidi F, LaMarre J. Role of miRNAs in assisted reproductive technology. Gene 2024; 927:148703. [PMID: 38885817 DOI: 10.1016/j.gene.2024.148703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Cellular proteins and the mRNAs that encode them are key factors in oocyte and sperm development, and the mechanisms that regulate their translation and degradation play an important role during early embryogenesis. There is abundant evidence that expression of microRNAs (miRNAs) is crucial for embryo development and are highly involved in regulating translation during oocyte and early embryo development. MiRNAs are a group of short (18-24 nucleotides) non-coding RNA molecules that regulate post-transcriptional gene silencing. The miRNAs are secreted outside the cell by embryos during preimplantation embryo development. Understanding regulatory mechanisms involving miRNAs during gametogenesis and embryogenesis will provide insights into molecular pathways active during gamete formation and early embryo development. This review summarizes recent findings regarding multiple roles of miRNAs in molecular signaling, plus their transport during gametogenesis and embryo preimplantation.
Collapse
Affiliation(s)
- Parisa Nadri
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Touba Nadri
- Department of Animal Science, College of Agriculture, Urmia University, Urmia, Iran; Department of Animal Science, College of Agriculture, Tehran University, Karaj, Iran.
| | - Dariush Gholami
- Department of Microbial Biotechniligy, Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Azadeh Zahmatkesh
- Department of Anaerobic Vaccine Research and Production, Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | | | - Karin Savvulidi Vargova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Filipp Georgijevic Savvulidi
- Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University, Prague, Kamýcká, Czech Republic
| | - Jonathan LaMarre
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Canada
| |
Collapse
|
9
|
Bomba-Warczak EK, Velez KM, Zhou LT, Guillermier C, Edassery S, Steinhauser ML, Savas JN, Duncan FE. Exceptional longevity of mammalian ovarian and oocyte macromolecules throughout the reproductive lifespan. eLife 2024; 13:RP93172. [PMID: 39480006 PMCID: PMC11527430 DOI: 10.7554/elife.93172] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
Abstract
The mechanisms contributing to age-related deterioration of the female reproductive system are complex, however aberrant protein homeostasis is a major contributor. We elucidated exceptionally stable proteins, structures, and macromolecules that persist in mammalian ovaries and gametes across the reproductive lifespan. Ovaries exhibit localized structural and cell-type-specific enrichment of stable macromolecules in both the follicular and extrafollicular environments. Moreover, ovaries and oocytes both harbor a panel of exceptionally long-lived proteins, including cytoskeletal, mitochondrial, and oocyte-derived proteins. The exceptional persistence of these long-lived molecules suggest a critical role in lifelong maintenance and age-dependent deterioration of reproductive tissues.
Collapse
Affiliation(s)
- Ewa K Bomba-Warczak
- Department of Neurology, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Karen M Velez
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - Luhan T Zhou
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - Christelle Guillermier
- Department of Medicine, Aging Institute, University of Pittsburgh School of MedicinePittsburghUnited States
- Department of Medicine, Division of Genetics, Brigham and Women’s HospitalBostonUnited States
| | - Seby Edassery
- Department of Neurology, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Matthew L Steinhauser
- Department of Medicine, Aging Institute, University of Pittsburgh School of MedicinePittsburghUnited States
- Department of Medicine, Division of Genetics, Brigham and Women’s HospitalBostonUnited States
| | - Jeffrey N Savas
- Department of Neurology, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| |
Collapse
|
10
|
López-Gatius F. Advances in Dairy Cattle Reproduction-A Foreword. Animals (Basel) 2024; 14:2650. [PMID: 39335240 PMCID: PMC11428406 DOI: 10.3390/ani14182650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Dairy cattle have played an important role in economic development since the beginning of agriculture [...].
Collapse
Affiliation(s)
- Fernando López-Gatius
- Agrotecnio Centre, 25198 Lleida, Spain
- Subunit, Transfer in Bovine Reproduction SLu, 22300 Barbastro, Spain
| |
Collapse
|
11
|
Soygur B, Gaylord EA, Foecke MH, Cincotta SA, Horan TS, Wood A, Cohen PE, Laird DJ. Sustained fertility from first-wave follicle oocytes that pause their growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609995. [PMID: 39253445 PMCID: PMC11383281 DOI: 10.1101/2024.08.27.609995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Ovulation results from the cyclical recruitment of non-renewing, quiescent oocytes for growth. Therefore, the primordial follicles that are established during development from an oocyte encapsulated by granulosa cells are thought to comprise the lifelong ovarian reserve 1-4. However, using oocyte lineage tracing in mice, we observed that a subset of oocytes recruited for growth in the first juvenile wave remain paused for many months before continuing growth, ovulation, fertilization and development into healthy offspring. This small subset of genetically-labeled fetal oocytes, labeled with Sycp3-CreERT2, is distinguished by earlier entry and slower dynamics of meiotic prophase I. While labeled oocytes were initially found in both primordial follicles and growing follicles of the first wave, they disappeared from primordial follicles by puberty. Unexpectedly, these first-wave labeled growing oocytes persisted throughout reproductive lifespan and contributed to offspring at a steady rate beyond 12 months of age, suggesting that follicles can pause mid-growth for extended periods then successfully resume. These results challenge the conclusion from lineage tracing of granulosa cells that first-wave follicles make a limited contribution to fertility5 and furthermore suggest that growth-paused oocytes comprise a second and previously unrecognized ovarian reserve.
Collapse
Affiliation(s)
- Bikem Soygur
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research and Department of Obstetrics, Gynecology and Reproductive Science, UCSF, San Francisco, CA 94143 USA
| | - Eliza A. Gaylord
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research and Department of Obstetrics, Gynecology and Reproductive Science, UCSF, San Francisco, CA 94143 USA
| | - Mariko H. Foecke
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research and Department of Obstetrics, Gynecology and Reproductive Science, UCSF, San Francisco, CA 94143 USA
| | - Steven A. Cincotta
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research and Department of Obstetrics, Gynecology and Reproductive Science, UCSF, San Francisco, CA 94143 USA
| | - Tegan S. Horan
- Department of Biomedical Sciences, Cornell Reproductive Sciences Center, Cornell University, Ithaca, NY 14853
| | - Anna Wood
- Department of Biomedical Sciences, Cornell Reproductive Sciences Center, Cornell University, Ithaca, NY 14853
| | - Paula E. Cohen
- Department of Biomedical Sciences, Cornell Reproductive Sciences Center, Cornell University, Ithaca, NY 14853
| | - Diana J. Laird
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research and Department of Obstetrics, Gynecology and Reproductive Science, UCSF, San Francisco, CA 94143 USA
| |
Collapse
|
12
|
Benedetti C, Pavani KC, Gansemans Y, Azari-Dolatabad N, Pascottini OB, Peelman L, Six R, Fan Y, Guan X, Deserranno K, Fernández-Montoro A, Hamacher J, Van Nieuwerburgh F, Fair T, Hendrix A, Smits K, Van Soom A. From follicle to blastocyst: microRNA-34c from follicular fluid-derived extracellular vesicles modulates blastocyst quality. J Anim Sci Biotechnol 2024; 15:104. [PMID: 39097731 PMCID: PMC11298084 DOI: 10.1186/s40104-024-01059-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/04/2024] [Indexed: 08/05/2024] Open
Abstract
BACKGROUND Within the follicular fluid, extracellular vesicles (EVs) guide oocyte growth through their cargo microRNAs (miRNAs). Here, we investigated the role of EVs and their cargo miRNAs by linking the miRNAs found in EVs, derived from the fluid of an individual follicle, to the ability of its oocyte to become a blastocyst (competent) or not (non-competent). METHODS Bovine antral follicles were dissected, categorized as small (2-4 mm) or large (5-8 mm) and the corresponding oocytes were subjected to individual maturation, fertilization and embryo culture to the blastocyst stage. Follicular fluid was pooled in 4 groups (4 replicates) based on follicle size and competence of the corresponding oocyte to produce a blastocyst. Follicular fluid-derived EVs were isolated, characterized, and subjected to miRNA-sequencing (Illumina Miseq) to assess differential expression (DE) in the 4 groups. Functional validation of the effect of miR-34c on embryo development was performed by supplementation of mimics and inhibitors during in vitro maturation (IVM). RESULTS We identified 16 DE miRNAs linked to oocyte competence when follicular size was not considered. Within the large and small follicles, 46 DE miRNAs were driving blastocyst formation in each group. Comparison of EVs from competent small and large follicles revealed 90 DE miRNAs. Cell regulation, cell differentiation, cell cycle, and metabolic process regulation were the most enriched pathways targeted by the DE miRNAs from competent oocytes. We identified bta-miR-34c as the most abundant in follicular fluid containing competent oocytes. Supplementation of miR-34c mimic and inhibitor during IVM did not affect embryo development. However, blastocyst quality, as evidenced by higher cell numbers, was significantly improved following oocyte IVM in the presence of miR-34c mimics, while miR-34c inhibitors resulted in the opposite effect. CONCLUSION This study demonstrates the regulatory effect of miRNAs from follicular fluid-derived EVs on oocyte competence acquisition, providing a further basis for understanding the significance of miRNAs in oocyte maturation and embryonic development. Up-regulation of miR-34c in EVs from follicular fluid containing competent oocytes and the positive impact of miR-34c mimics added during IVM on the resulting blastocysts indicate its pivotal role in oocyte competence.
Collapse
Affiliation(s)
- Camilla Benedetti
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Krishna Chaitanya Pavani
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
- Department for Reproductive Medicine, Ghent University Hospital, 9000, Ghent, Belgium
| | - Yannick Gansemans
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, B-9000, Ghent, Belgium
| | | | - Osvaldo Bogado Pascottini
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Luc Peelman
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, B-9000, Ghent, Belgium
| | - Rani Six
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, B-9000, Ghent, Belgium
| | - Yuan Fan
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, B-9000, Ghent, Belgium
| | - Xuefeng Guan
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, B-9000, Ghent, Belgium
| | - Koen Deserranno
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, B-9000, Ghent, Belgium
| | - Andrea Fernández-Montoro
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Joachim Hamacher
- Institute of Crop Science and Resource Conservation, Plant Pathology, Rheinische Friedrich-Wilhelms-University of Bonn, 53115, Bonn, Germany
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, B-9000, Ghent, Belgium
| | - Trudee Fair
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, B-9000, Ghent, Belgium
| | - Katrien Smits
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium.
| | - Ann Van Soom
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium.
| |
Collapse
|
13
|
Bomba-Warczak EK, Velez KM, Zhou LT, Guillermier C, Edassery S, Steinhauser ML, Savas JN, Elizabeth Duncan F. Exceptional longevity of mammalian ovarian and oocyte macromolecules throughout the reproductive lifespan. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.18.562852. [PMID: 37905022 PMCID: PMC10614913 DOI: 10.1101/2023.10.18.562852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The mechanisms contributing to age-related deterioration of the female reproductive system are complex, but aberrant protein homeostasis is a major contributor. We elucidated the exceptionally stable proteins, structures, and macromolecules that persist in mammalian ovaries and gametes across the reproductive lifespan. Ovaries exhibit localized structural and cell-type specific enrichment of stable macromolecules in both the follicular and extrafollicular environments. Moreover, both ovaries and oocytes harbor a panel of exceptionally long-lived proteins, including cytoskeletal components, mitochondrial, and oocyte-derived proteins. The exceptional persistence of these long-lived molecules might play a critical role in both lifelong maintenance and age-dependent deterioration of reproductive tissues.
Collapse
|
14
|
Pietroforte S, Plough M, Amargant F. Age-associated increased stiffness of the ovarian microenvironment impairs follicle development and oocyte quality and rapidly alters follicle gene expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.09.598134. [PMID: 38915651 PMCID: PMC11195110 DOI: 10.1101/2024.06.09.598134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
In humans, aging triggers cellular and tissue deterioration, and the female reproductive system is the first to show signs of decline. Reproductive aging is associated with decreased ovarian reserve, decreased quality of the remaining oocytes, and decreased production of the ovarian hormones estrogen and progesterone. With aging, both mouse and human ovaries become pro-fibrotic and stiff. However, whether stiffness directly impairs ovarian function, folliculogenesis, and oocyte quality is unknown. To answer this question, we cultured mouse follicles in alginate gels that mimicked the stiffness of reproductively young and old ovaries. Follicles cultured in stiff hydrogels exhibited decreased survival and growth, decreased granulosa cell viability and estradiol synthesis, and decreased oocyte quality. We also observed a reduction in the number of granulosa cell-oocyte transzonal projections. RNA sequencing revealed early changes in the follicle transcriptome in response to stiffness. Follicles cultured in a stiff environment had lower expression of genes related to follicle development and greater expression of genes related to inflammation and extracellular matrix remodeling than follicles cultured in a soft environment. Altogether, our findings suggest that ovarian stiffness directly modulates folliculogenesis and contributes to the progressive decline in oocyte quantity and quality observed in women of advanced maternal age.
Collapse
Affiliation(s)
- Sara Pietroforte
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Makenzie Plough
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Farners Amargant
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
15
|
Fiorentino G, Merico V, Zanoni M, Comincini S, Sproviero D, Garofalo M, Gagliardi S, Cereda C, Lin CJ, Innocenti F, Taggi M, Vaiarelli A, Ubaldi FM, Rienzi L, Cimadomo D, Garagna S, Zuccotti M. Extracellular vesicles secreted by cumulus cells contain microRNAs that are potential regulatory factors of mouse oocyte developmental competence. Mol Hum Reprod 2024; 30:gaae019. [PMID: 38745364 PMCID: PMC12054941 DOI: 10.1093/molehr/gaae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 04/23/2024] [Indexed: 05/16/2024] Open
Abstract
The role of cumulus cells (CCs) in the acquisition of oocyte developmental competence is not yet fully understood. In a previous study, we matured cumulus-denuded fully-grown mouse oocytes to metaphase II (MII) on a feeder layer of CCs (FL-CCs) isolated from developmentally competent (FL-SN-CCs) or incompetent (FL-NSN-CCs) SN (surrounded nucleolus) or NSN (not surrounding nucleolus) oocytes, respectively. We observed that oocytes cultured on the former could develop into blastocysts, while those matured on the latter arrested at the 2-cell stage. To investigate the CC factors contributing to oocyte developmental competence, here we focused on the CCs' release into the medium of extracellular vesicles (EVs) and on their miRNA content. We found that, during the 15-h transition to MII, both FL-SN-CCs and FL-NSN-CCs release EVs that can be detected, by confocal microscopy, inside the zona pellucida (ZP) or the ooplasm. The majority of EVs are <200 nm in size, which is compatible with their ability to cross the ZP. Next-generation sequencing of the miRNome of FL-SN-CC versus FL-NSN-CC EVs highlighted 74 differentially expressed miRNAs, with 43 up- and 31 down-regulated. Although most of these miRNAs do not have known roles in the ovary, in silico functional analysis showed that seven of these miRNAs regulate 71 target genes with specific roles in meiosis resumption (N = 24), follicle growth (N = 23), fertilization (N = 1), and the acquisition of oocyte developmental competence (N = 23). Overall, our results indicate CC EVs as emerging candidates of the CC-to-oocyte communication axis and uncover a group of miRNAs as potential regulatory factors.
Collapse
Affiliation(s)
- Giulia Fiorentino
- Laboratory of Biology and Biotechnology of Reproduction, Department of Biology and Biotechnology ‘Lazzaro Spallanzani’, University of Pavia, Pavia, Italy
| | - Valeria Merico
- Laboratory of Biology and Biotechnology of Reproduction, Department of Biology and Biotechnology ‘Lazzaro Spallanzani’, University of Pavia, Pavia, Italy
| | - Mario Zanoni
- Laboratory of Biology and Biotechnology of Reproduction, Department of Biology and Biotechnology ‘Lazzaro Spallanzani’, University of Pavia, Pavia, Italy
| | - Sergio Comincini
- Functional Genomics Laboratory, Department of Biology and Biotechnology ‘Lazzaro Spallanzani’, University of Pavia, Pavia, Italy
| | - Daisy Sproviero
- IFOM, IFOM—The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Maria Garofalo
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Stella Gagliardi
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Cristina Cereda
- Department of Pediatrics, Center of Functional Genomics and Rare Diseases, Buzzi Children’s Hospital, Milan, Italy
| | - Chih-Jen Lin
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Federica Innocenti
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - Marilena Taggi
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - Alberto Vaiarelli
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | | | - Laura Rienzi
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Urbino, Italy
| | - Danilo Cimadomo
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - Silvia Garagna
- Laboratory of Biology and Biotechnology of Reproduction, Department of Biology and Biotechnology ‘Lazzaro Spallanzani’, University of Pavia, Pavia, Italy
| | - Maurizio Zuccotti
- Laboratory of Biology and Biotechnology of Reproduction, Department of Biology and Biotechnology ‘Lazzaro Spallanzani’, University of Pavia, Pavia, Italy
| |
Collapse
|
16
|
Del Bianco D, Gentile R, Sallicandro L, Biagini A, Quellari PT, Gliozheni E, Sabbatini P, Ragonese F, Malvasi A, D’Amato A, Baldini GM, Trojano G, Tinelli A, Fioretti B. Electro-Metabolic Coupling of Cumulus-Oocyte Complex. Int J Mol Sci 2024; 25:5349. [PMID: 38791387 PMCID: PMC11120766 DOI: 10.3390/ijms25105349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Oocyte-cumulus cell interaction is essential for oocyte maturation and competence. The bidirectional crosstalk network mediated by gap junctions is fundamental for the metabolic cooperation between these cells. As cumulus cells exhibit a more glycolytic phenotype, they can provide metabolic substrates that the oocyte can use to produce ATP via oxidative phosphorylation. The impairment of mitochondrial activity plays a crucial role in ovarian aging and, thus, in fertility, determining the success or failure of assisted reproductive techniques. This review aims to deepen the knowledge about the electro-metabolic coupling of the cumulus-oocyte complex and to hypothesize a putative role of potassium channel modulators in order to improve fertility, promote intracellular Ca2+ influx, and increase the mitochondrial biogenesis and resulting ATP levels in cumulus cells.
Collapse
Affiliation(s)
- Diletta Del Bianco
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
| | - Rosaria Gentile
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Laboratorio Interdipartimentale di Fisiopatologia della Riproduzione, Università degli Studi di Perugia, Edificio C, Piano 3 P.zza Lucio Severi, 1, Sant’Andrea delle Fratte, 06132 Perugia, Italy
| | - Luana Sallicandro
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Department of Medicine and Surgery, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy
| | - Andrea Biagini
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Department of Medicine and Surgery, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy
| | - Paola Tiziana Quellari
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Department of Medicine and Surgery, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy
- ASST Grande Ospedale Metropolitano Niguarda, 20162 Milano, Italy
| | - Elko Gliozheni
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Department of Medicine and Surgery, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tirana, AL1005 Tirana, Albania
| | - Paola Sabbatini
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
| | - Francesco Ragonese
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Laboratorio Interdipartimentale di Fisiopatologia della Riproduzione, Università degli Studi di Perugia, Edificio C, Piano 3 P.zza Lucio Severi, 1, Sant’Andrea delle Fratte, 06132 Perugia, Italy
| | - Antonio Malvasi
- Department of Biomedical Sciences and Human Oncology, University of Bari, 70121 Bari, Italy;
| | - Antonio D’Amato
- 1st Unit of Obstetrics and Gynecology, University of Bari, 70121 Bari, Italy;
| | | | - Giuseppe Trojano
- Department of Maternal and Child Health, “Madonna delle Grazie” Hospital ASM, 75100 Matera, Italy;
| | - Andrea Tinelli
- Department of Obstetrics and Gynecology and CERICSAL (CEntro di RIcerca Clinico SALentino), Veris delli Ponti Hospital, Via Giuseppina delli Ponti, 73020 Scorrano, Lecce, Italy
| | - Bernard Fioretti
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Laboratorio Interdipartimentale di Fisiopatologia della Riproduzione, Università degli Studi di Perugia, Edificio C, Piano 3 P.zza Lucio Severi, 1, Sant’Andrea delle Fratte, 06132 Perugia, Italy
| |
Collapse
|
17
|
Li J, Fan H, Liu W, Zhang J, Xiao Y, Peng Y, Yang W, Liu W, He Y, Qin L, Ma X, Li J. Mesenchymal stem cells promote ovarian reconstruction in mice. Stem Cell Res Ther 2024; 15:115. [PMID: 38650029 PMCID: PMC11036642 DOI: 10.1186/s13287-024-03718-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 04/07/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Studies have shown that chemotherapy and radiotherapy can cause premature ovarian failure and loss of fertility in female cancer patients. Ovarian cortex cryopreservation is a good choice to preserve female fertility before cancer treatment. Following the remission of the disease, the thawed ovarian tissue can be transplanted back and restore fertility of the patient. However, there is a risk to reintroduce cancer cells in the body and leads to the recurrence of cancer. Given the low success rate of current in vitro culture techniques for obtaining mature oocytes from primordial follicles, an artificial ovary with primordial follicles may be a good way to solve this problem. METHODS In the study, we established an artificial ovary model based on the participation of mesenchymal stem cells (MSCs) to evaluate the effect of MSCs on follicular development and oocyte maturation. P2.5 mouse ovaries were digested into single cell suspensions and mixed with bone marrow derived mesenchymal stem cells (BM-MSCs) at a 1:1 ratio. The reconstituted ovarian model was then generated by using phytohemagglutinin. The phenotype and mechanism studies were explored by follicle counting, immunohistochemistry, immunofluorescence, in vitro maturation (IVM), in vitro fertilization (IVF), real-time quantitative polymerase chain reaction (RT-PCR), and Terminal-deoxynucleotidyl transferase mediated nick end labeling(TUNEL) assay. RESULTS Our study found that the addition of BM-MSCs to the reconstituted ovary can enhance the survival of oocytes and promote the growth and development of follicles. After transplanting the reconstituted ovaries under kidney capsules of the recipient mice, we observed normal folliculogenesis and oocyte maturation. Interestingly, we found that BM-MSCs did not contribute to the formation of follicles in ovarian aggregation, nor did they undergo proliferation during follicle growth. Instead, the cells were found to be located around growing follicles in the reconstituted ovary. When theca cells were labeled with CYP17a1, we found some overlapped staining with green fluorescent protein(GFP)-labeled BM-MSCs. The results suggest that BM-MSCs may participate in directing the differentiation of theca layer in the reconstituted ovary. CONCLUSIONS The presence of BM-MSCs in the artificial ovary was found to promote the survival of ovarian cells, as well as facilitate follicle formation and development. Since the cells didn't proliferate in the reconstituted ovary, this discovery suggests a potential new and safe method for the application of MSCs in clinical fertility preservation by enhancing the success rate of cryo-thawed ovarian tissues after transplantation.
Collapse
Affiliation(s)
- Jiazhao Li
- State Key Laboratory of Reproductive Medicine and Offspring health, Nanjing Medical University, 210029, Nanjing, China
- Scientific Research Department, Wannan Medical College, 241002, Wuhu, China
| | - Haonan Fan
- State Key Laboratory of Reproductive Medicine and Offspring health, Nanjing Medical University, 210029, Nanjing, China
| | - Wei Liu
- State Key Laboratory of Reproductive Medicine and Offspring health, Nanjing Medical University, 210029, Nanjing, China
| | - Jing Zhang
- State Key Laboratory of Reproductive Medicine and Offspring health, Nanjing Medical University, 210029, Nanjing, China
| | - Yue Xiao
- State Key Laboratory of Reproductive Medicine and Offspring health, Nanjing Medical University, 210029, Nanjing, China
- Center of Reproductive Medicine, The First Affiliated Hospital of Zhejiang University School of Medicine, 310003, Hangzhou, China
| | - Yue Peng
- State Key Laboratory of Reproductive Medicine and Offspring health, Nanjing Medical University, 210029, Nanjing, China
- Pathology Department, Nanjing Kingmed Medical Laboratory Co.,Ltd., 210032, Nanjing, China
| | - Weijie Yang
- State Key Laboratory of Reproductive Medicine and Offspring health, Nanjing Medical University, 210029, Nanjing, China
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Zhejiang University School of Medicine, 310016, Hangzhou, China
| | - Wenwen Liu
- State Key Laboratory of Reproductive Medicine and Offspring health, Nanjing Medical University, 210029, Nanjing, China
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), 21003, Nanjing, China
| | - Yuanlin He
- State Key Laboratory of Reproductive Medicine and Offspring health, Nanjing Medical University, 210029, Nanjing, China
| | - Lianju Qin
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center of Clinical Reproductive Medicine, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China.
| | - Xiang Ma
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center of Clinical Reproductive Medicine, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China.
- Prenatal Diagnosis Department, First Affiliated Hospital, Nanjing Medical University, 210029, Nanjing, China.
| | - Jing Li
- State Key Laboratory of Reproductive Medicine and Offspring health, Nanjing Medical University, 210029, Nanjing, China.
| |
Collapse
|
18
|
Abd-Elkareem M, Khormi MA, Mohamed RH, Ali F, Hassan MS. Histological, immunohistochemical and serological investigations of the ovary during follicular phase of estrous cycle in Saidi sheep. BMC Vet Res 2024; 20:98. [PMID: 38461282 PMCID: PMC10924360 DOI: 10.1186/s12917-024-03933-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/11/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND Saidi sheep are the most abundant ruminant livestock species in Upper Egypt, especially in the Assiut governorate. Sheep are one of the most abundant animals raised for food in Egypt. They can convert low-quality roughages into meat and milk in addition to producing fiber and hides therefore; great opportunity exists to enhance their reproduction. Saidi breed is poorly known in terms of reproduction. So this work was done to give more information on some hormonal, oxidative, and blood metabolites parameters in addition to histological, histochemical and immunohistochemical investigations of the ovary during follicular phase of estrous cycle. The present study was conducted on 25 healthy Saidi ewes for serum analysis and 10 healthy ewes for histological assessment aged 2 to 5 years and weighted (38.5 ± 2.03 kg). RESULTS The follicular phase of estrous cycle in Saidi sheep was characterized by the presence of ovarian follicles in different stages of development and atresia in addition to regressed corpus luteum. Interestingly, apoptosis and tissue oxidative markers play a crucial role in follicular and corpus luteum regression. The most prominent features of the follicular phase were the presence of mature antral (Graafian) and preovulatory follicles as well as increased level of some blood metabolites and oxidative markers. Here we give a new schematic sequence of ovarian follicles in Saidi sheep and describing the features of different types. We also clarified that these histological pictures of the ovary was influenced by hormonal, oxidative and blood metabolites factors that characterizes the follicular phase of estrous cycle in Saidi sheep. CONCLUSION This work helps to understanding the reproduction in Saidi sheep which assist in improving the reproductive outcome of this breed of sheep. These findings are increasingly important for implementation of a genetic improvement program and utilizing the advanced reproductive techniques as estrous synchronization, artificial insemination and embryo transfer.
Collapse
Affiliation(s)
- Mahmoud Abd-Elkareem
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt.
| | - M A Khormi
- Department of Biology, College of Science, Jazan University, P.O. Box. 114, Jazan, 45142, Kingdom of Saudi Arabia
| | - Ragab Hassan Mohamed
- Theriogenology Department, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Fatma Ali
- Physiology Department, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Mervat S Hassan
- Theriogenology Department, Faculty of Veterinary Medicine, New-Valley University, New Valley, 725211, Egypt
| |
Collapse
|
19
|
Edure T, Matsuno Y, Matsushita K, Maruyama N, Fujii W, Naito K, Sugiura K. Dynamics of extracellular vesicle uptake by mural granulosa cells in mice. Mol Reprod Dev 2024; 91:e23737. [PMID: 38450862 DOI: 10.1002/mrd.23737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/13/2024] [Accepted: 02/20/2024] [Indexed: 03/08/2024]
Abstract
Extracellular vesicles (EVs) play an important role in the development and function of mammalian ovarian follicles. However, the mechanisms by which they are taken up by the follicular granulosa cells remain unclear. In addition, while oocytes play a pivotal role in follicular development, the possible interactions between oocyte-derived paracrine factors (ODPFs) and EV signals are unknown. Therefore, this study aimed to elucidate the mechanism of EV uptake and the effects of ODPFs on EV uptake by follicular somatic mural granulosa cells in mice. Fluorescence-labeled transferrin (TRF) and cholera toxin B (CTB), substrates for clathrin- and caveolae-mediated endocytosis, respectively, were taken up by mural granulosa cells in vitro. Their uptake was inhibited by Pitstop 2 and genistein, inhibitors of clathrin and caveolae pathways, respectively. Mural granulosa cells took up EVs, and this uptake was suppressed by Pitstop 2 and genistein. Moreover, ODPFs promoted the uptake of EVs and CTB, but not TRF, by mural granulosa cells. These results suggest that mural granulosa cells take up EVs through both clathrin- and caveolae-mediated endocytosis and that oocytes may promote caveolae-mediated endocytosis to facilitate the uptake of EVs.
Collapse
Affiliation(s)
- Taichi Edure
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuta Matsuno
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kodai Matsushita
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Natsumi Maruyama
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Wataru Fujii
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kunihiko Naito
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Koji Sugiura
- Laboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
20
|
Richani D, Poljak A, Wang B, Mahbub SB, Biazik J, Campbell JM, Habibalahi A, Stocker WA, Marinova MB, Nixon B, Bustamante S, Skerrett-Byrne D, Harrison CA, Goldys E, Gilchrist RB. Oocyte and cumulus cell cooperativity and metabolic plasticity under the direction of oocyte paracrine factors. Am J Physiol Endocrinol Metab 2024; 326:E366-E381. [PMID: 38197792 DOI: 10.1152/ajpendo.00148.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 01/11/2024]
Abstract
Mammalian oocytes develop and mature in a mutually dependent relationship with surrounding cumulus cells. The oocyte actively regulates cumulus cell differentiation and function by secreting soluble paracrine oocyte-secreted factors (OSFs). We characterized the molecular mechanisms by which two model OSFs, cumulin and BMP15, regulate oocyte maturation and cumulus-oocyte cooperativity. Exposure to these OSFs during mouse oocyte maturation in vitro altered the proteomic and multispectral autofluorescence profiles of both the oocyte and cumulus cells. In oocytes, cumulin significantly upregulated proteins involved in nuclear function. In cumulus cells, both OSFs elicited marked upregulation of a variety of metabolic processes (mostly anabolic), including lipid, nucleotide, and carbohydrate metabolism, whereas mitochondrial metabolic processes were downregulated. The mitochondrial changes were validated by functional assays confirming altered mitochondrial morphology, respiration, and content while maintaining ATP homeostasis. Collectively, these data demonstrate that cumulin and BMP15 remodel cumulus cell metabolism, instructing them to upregulate their anabolic metabolic processes, while routine cellular functions are minimized in the oocyte during maturation, in preparation for ensuing embryonic development.NEW & NOTEWORTHY Oocyte-secreted factors (OSFs) promote oocyte and cumulus cell cooperativity by altering the molecular composition of both cell types. OSFs downregulate protein catabolic processes and upregulate processes associated with DNA binding, translation, and ribosome assembly in oocytes. In cumulus cells, OSFs alter mitochondrial number, morphology, and function, and enhance metabolic plasticity by upregulating anabolic pathways. Hence, the oocyte via OSFs, instructs cumulus cells to increase metabolic processes on its behalf, thereby subduing oocyte metabolism.
Collapse
Affiliation(s)
- Dulama Richani
- Fertility & Research Centre, Discipline of Women's Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Anne Poljak
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Baily Wang
- Fertility & Research Centre, Discipline of Women's Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Saabah B Mahbub
- ARC Centre of Excellence Centre for Nanoscale Biophotonics, Graduate School of Biomedical Engineering, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Joanna Biazik
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Jared M Campbell
- ARC Centre of Excellence Centre for Nanoscale Biophotonics, Graduate School of Biomedical Engineering, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Abbas Habibalahi
- ARC Centre of Excellence Centre for Nanoscale Biophotonics, Graduate School of Biomedical Engineering, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - William A Stocker
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Maria B Marinova
- Fertility & Research Centre, Discipline of Women's Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Sonia Bustamante
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - David Skerrett-Byrne
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Craig A Harrison
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Ewa Goldys
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Robert B Gilchrist
- Fertility & Research Centre, Discipline of Women's Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
21
|
Owen CM, Jaffe LA. Luteinizing hormone stimulates ingression of mural granulosa cells within the mouse preovulatory follicle†. Biol Reprod 2024; 110:288-299. [PMID: 37847612 PMCID: PMC10873281 DOI: 10.1093/biolre/ioad142] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/25/2023] [Accepted: 10/13/2023] [Indexed: 10/19/2023] Open
Abstract
Luteinizing hormone (LH) induces ovulation by acting on its receptors in the mural granulosa cells that surround a mammalian oocyte in an ovarian follicle. However, much remains unknown about how activation of the LH receptor modifies the structure of the follicle such that the oocyte is released and the follicle remnants are transformed into the corpus luteum. The present study shows that the preovulatory surge of LH stimulates LH receptor-expressing granulosa cells, initially located almost entirely in the outer layers of the mural granulosa, to rapidly extend inwards, intercalating between other cells. The cellular ingression begins within 30 min of the peak of the LH surge, and the proportion of LH receptor-expressing cell bodies in the inner half of the mural granulosa layer increases until the time of ovulation, which occurs at about 10 h after the LH peak. During this time, many of the initially flask-shaped cells appear to detach from the basal lamina, acquiring a rounder shape with multiple filipodia. Starting at about 4 h after the LH peak, the mural granulosa layer at the apical surface of the follicle where ovulation will occur begins to thin, and the basolateral surface develops invaginations and constrictions. Our findings raise the question of whether LH stimulation of granulosa cell ingression may contribute to these changes in the follicular structure that enable ovulation.
Collapse
Affiliation(s)
- Corie M Owen
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Laurinda A Jaffe
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
22
|
Chen L, Li X, Wu Y, Wang J, Pi J. Differential analysis of ovarian tissue between high and low-yielded laying hens in the late laying stage and the effect of LECT2 gene on follicular granulosa cells proliferation. Mol Biol Rep 2024; 51:240. [PMID: 38300380 DOI: 10.1007/s11033-024-09260-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/15/2024] [Indexed: 02/02/2024]
Abstract
The ovaries of high-yield laying hens exhibited signs of aging beyond 400 days of age, subsequently resulting in a decline in both egg production and egg quality. Oxidative stress, characterized by an increase in the production of reactive oxygen species (ROS), stands as one of the principal processes contributing to ovarian aging. Elevated ROS levels are implicated in the induction of apoptosis in granulosa cells (GCs), provoking mitochondrial impairment, and diminishing the capacity of the antioxidant defense system. This investigation stratified laying hens into two distinct groups, predicated upon their egg production levels: high-yield hens (HH) and low-yield hens (LL). The study focused on evaluating oxidative stress markers and identifying differentially expressed genes between these two groups. The findings revealed that the LL group exhibited follicular atresia, mitochondrial disruptions, and apoptotic occurrences in ovarian GCs. Notably, ROS levels, Malondialdehyde (MDA) concentrations, and 8-hydroxy-2'-deoxyguanosine (8-OHdG) concentrations in ovarian tissue and follicular GCs were substantially higher in the HH group. Furthermore, the RNA-sequencing results unveiled differential expression of the LECT2 gene between the HH and LL groups. Consequently, an overexpression vector for the LECT2 gene was successfully constructed and introduced into GCs. The quantitative polymerase chain reaction (QPCR) analysis exhibited significant downregulation (p < 0.01) of key apoptotic genes such as Caspase-3 and C-myc and significant upregulation (p < 0.01) of BCL2 following the overexpression of the LECT2 gene in GCs. In conclusion, oxidative stress emerges as a pivotal factor influencing the laying traits of both high and low-yield laying hens. The accumulation of reactive oxygen species (ROS) within the ovaries precipitates apoptosis in GCs, subsequently leading to follicular atresia and a reduction in egg production. Furthermore, we employed RNA sequencing technology to examine the ovarian matrix tissue in high and low laying hens during the late phase of egg laying. Our analysis revealed a substantial upregulation of the LECT2 gene in the ovarian matrix tissue of high laying hens. This observation implies that the LECT2 gene exerts a pivotal influence on driving the proliferation and differentiation of follicular GCs, thereby exerting a crucial regulatory role in follicular development.
Collapse
Affiliation(s)
- Lin Chen
- Animal Husbandry and Veterinary Research Institute, Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Hubei Academy of Agricultural Sciences, Wuhan, 430000, China
- College of Animal Science, Yangtze University, Jingzhou, 434000, China
| | - Xianqiang Li
- Animal Husbandry and Veterinary Research Institute, Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Hubei Academy of Agricultural Sciences, Wuhan, 430000, China
- College of Animal Science, Yangtze University, Jingzhou, 434000, China
| | - Yan Wu
- Animal Husbandry and Veterinary Research Institute, Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Hubei Academy of Agricultural Sciences, Wuhan, 430000, China.
| | - Jiaxiang Wang
- College of Animal Science, Yangtze University, Jingzhou, 434000, China
| | - Jinsong Pi
- Animal Husbandry and Veterinary Research Institute, Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Hubei Academy of Agricultural Sciences, Wuhan, 430000, China
| |
Collapse
|
23
|
Song Y, Zhang N, Zhang Y, Wang J, Lv Q, Zhang J. Single-Cell Transcriptome Analysis Reveals Development-Specific Networks at Distinct Synchronized Antral Follicle Sizes in Sheep Oocytes. Int J Mol Sci 2024; 25:910. [PMID: 38255985 PMCID: PMC10815039 DOI: 10.3390/ijms25020910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The development of the ovarian antral follicle is a complex, highly regulated process. Oocytes orchestrate and coordinate the development of mammalian ovarian follicles, and the rate of follicular development is governed by a developmental program intrinsic to the oocyte. Characterizing oocyte signatures during this dynamic process is critical for understanding oocyte maturation and follicular development. Although the transcriptional signature of sheep oocytes matured in vitro and preovulatory oocytes have been previously described, the transcriptional changes of oocytes in antral follicles have not. Here, we used single-cell transcriptomics (SmartSeq2) to characterize sheep oocytes from small, medium, and large antral follicles. We characterized the transcriptomic landscape of sheep oocytes during antral follicle development, identifying unique features in the transcriptional atlas, stage-specific molecular signatures, oocyte-secreted factors, and transcription factor networks. Notably, we identified the specific expression of 222 genes in the LO, 8 and 6 genes that were stage-specific in the MO and SO, respectively. We also elucidated signaling pathways in each antral follicle size that may reflect oocyte quality and in vitro maturation competency. Additionally, we discovered key biological processes that drive the transition from small to large antral follicles, revealing hub genes involved in follicle recruitment and selection. Thus, our work provides a comprehensive characterization of the single-oocyte transcriptome, filling a gap in the mapping of the molecular landscape of sheep oogenesis. We also provide key insights into the transcriptional regulation of the critical sizes of antral follicular development, which is essential for understanding how the oocyte orchestrates follicular development.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiaxin Zhang
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.S.)
| |
Collapse
|
24
|
Liu Z, Fu S, He X, Dai L, Liu X, Narisu, Shi C, Gu M, Wang Y, Manda, Guo L, Bao Y, Baiyinbatu, Chang C, Liu Y, Zhang W. Integrated Multi-Tissue Transcriptome Profiling Characterizes the Genetic Basis and Biomarkers Affecting Reproduction in Sheep ( Ovis aries). Genes (Basel) 2023; 14:1881. [PMID: 37895230 PMCID: PMC10606288 DOI: 10.3390/genes14101881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
The heritability of litter size in sheep is low and controlled by multiple genes, but the research on its related genes is not sufficient. Here, to explore the expression pattern of multi-tissue genes in Chinese native sheep, we selected 10 tissues of the three adult ewes with the highest estimated breeding value in the early study of the prolific Xinggao sheep population. The global gene expression analysis showed that the ovary, uterus, and hypothalamus expressed the most genes. Using the Uniform Manifold Approximation and Projection (UMAP) cluster analysis, these samples were clustered into eight clusters. The functional enrichment analysis showed that the genes expressed in the spleen, uterus, and ovary were significantly enriched in the Ataxia Telangiectasia Mutated Protein (ATM) signaling pathway, and most genes in the liver, spleen, and ovary were enriched in the immune response pathway. Moreover, we focus on the expression genes of the hypothalamic-pituitary-ovarian axis (HPO) and found that 11,016 genes were co-expressed in the three tissues, and different tissues have different functions, but the oxytocin signaling pathway was widely enriched. To further explore the differences in the expression genes (DEGs) of HPO in different sheep breeds, we downloaded the transcriptome data in the public data, and the analysis of DEGs (Xinggao sheep vs. Sunite sheep in Hypothalamus, Xinggao sheep vs. Sunite sheep in Pituitary, and Xinggao sheep vs. Suffolk sheep in Ovary) revealed the neuroactive ligand-receptor interactions. In addition, the gene subsets of the transcription factors (TFs) of DEGs were identified. The results suggest that 51 TF genes and the homeobox TF may play an important role in transcriptional variation across the HPO. Altogether, our study provided the first fundamental resource to investigate the physiological functions and regulation mechanisms in sheep. This important data contributes to improving our understanding of the reproductive biology of sheep and isolating effecting molecular markers that can be used for genetic selection in sheep.
Collapse
Affiliation(s)
- Zaixia Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Z.L.); (L.D.); (N.); (C.S.); (M.G.); (M.); (L.G.); (Y.B.); (B.); (C.C.)
- Inner Mongolia Engineering Research Center of Genomic Big Data for Agriculture, Hohhot 010018, China
| | - Shaoyin Fu
- Institute of Animal Husbandry, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China; (S.F.); (X.H.)
| | - Xiaolong He
- Institute of Animal Husbandry, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China; (S.F.); (X.H.)
| | - Lingli Dai
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Z.L.); (L.D.); (N.); (C.S.); (M.G.); (M.); (L.G.); (Y.B.); (B.); (C.C.)
- Inner Mongolia Engineering Research Center of Genomic Big Data for Agriculture, Hohhot 010018, China
- Veterinary Research Institute, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China
| | - Xuewen Liu
- Animal Husbandry and Bioengineering, College of Agronomy, Xing’an Vocational and Technical College, Ulanhot 137400, China;
| | - Narisu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Z.L.); (L.D.); (N.); (C.S.); (M.G.); (M.); (L.G.); (Y.B.); (B.); (C.C.)
- Inner Mongolia Engineering Research Center of Genomic Big Data for Agriculture, Hohhot 010018, China
| | - Caixia Shi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Z.L.); (L.D.); (N.); (C.S.); (M.G.); (M.); (L.G.); (Y.B.); (B.); (C.C.)
| | - Mingjuan Gu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Z.L.); (L.D.); (N.); (C.S.); (M.G.); (M.); (L.G.); (Y.B.); (B.); (C.C.)
- Inner Mongolia Engineering Research Center of Genomic Big Data for Agriculture, Hohhot 010018, China
| | - Yu Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China;
| | - Manda
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Z.L.); (L.D.); (N.); (C.S.); (M.G.); (M.); (L.G.); (Y.B.); (B.); (C.C.)
| | - Lili Guo
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Z.L.); (L.D.); (N.); (C.S.); (M.G.); (M.); (L.G.); (Y.B.); (B.); (C.C.)
- Inner Mongolia Engineering Research Center of Genomic Big Data for Agriculture, Hohhot 010018, China
- School of Life Science, Inner Mongolia University, Hohhot 010021, China;
| | - Yanchun Bao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Z.L.); (L.D.); (N.); (C.S.); (M.G.); (M.); (L.G.); (Y.B.); (B.); (C.C.)
- Inner Mongolia Engineering Research Center of Genomic Big Data for Agriculture, Hohhot 010018, China
| | - Baiyinbatu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Z.L.); (L.D.); (N.); (C.S.); (M.G.); (M.); (L.G.); (Y.B.); (B.); (C.C.)
- Inner Mongolia Engineering Research Center of Genomic Big Data for Agriculture, Hohhot 010018, China
| | - Chencheng Chang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Z.L.); (L.D.); (N.); (C.S.); (M.G.); (M.); (L.G.); (Y.B.); (B.); (C.C.)
- Inner Mongolia Engineering Research Center of Genomic Big Data for Agriculture, Hohhot 010018, China
| | - Yongbin Liu
- School of Life Science, Inner Mongolia University, Hohhot 010021, China;
| | - Wenguang Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Z.L.); (L.D.); (N.); (C.S.); (M.G.); (M.); (L.G.); (Y.B.); (B.); (C.C.)
- Inner Mongolia Engineering Research Center of Genomic Big Data for Agriculture, Hohhot 010018, China
- College of Life Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
25
|
Owen CM, Jaffe LA. Luteinizing hormone stimulates ingression of mural granulosa cells within the mouse preovulatory follicle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.21.537855. [PMID: 37131774 PMCID: PMC10153244 DOI: 10.1101/2023.04.21.537855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Luteinizing hormone (LH) induces ovulation by acting on its receptors in the mural granulosa cells that surround a mammalian oocyte in an ovarian follicle. However, much remains unknown about how activation of the LH receptor modifies the structure of the follicle such that the oocyte is released and the follicle remnants are transformed into the corpus luteum. The present study shows that the preovulatory surge of LH stimulates LH receptor-expressing granulosa cells, initially located almost entirely in the outer layers of the mural granulosa, to rapidly extend inwards, intercalating between other cells. The cellular ingression begins within 30 minutes of the peak of the LH surge, and the proportion of LH receptor-expressing cell bodies in the inner half of the mural granulosa layer increases until the time of ovulation, which occurs at about 10 hours after the LH peak. During this time, many of the initially flask-shaped cells appear to detach from the basal lamina, acquiring a rounder shape with multiple filipodia. Starting at about 4 hours after the LH peak, the mural granulosa layer at the apical surface of the follicle where ovulation will occur begins to thin, and the basolateral surface develops invaginations and constrictions. Our findings raise the question of whether LH stimulation of granulosa cell ingression may contribute to these changes in the follicular structure that enable ovulation.
Collapse
Affiliation(s)
- Corie M. Owen
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030 USA
| | - Laurinda A. Jaffe
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030 USA
| |
Collapse
|
26
|
Li WL, Huang Q, Li JL, Wu P, Wei B, Li XJ, Tang QH, Dong ZX, Xiong J, Tang H, Zhang J, Zhao CH, Cao Z, Chen Y, Zhao WZ, Wang K, Guo J. Gut microbiota-driven regulation of queen bee ovarian metabolism. Microbiol Spectr 2023; 11:e0214523. [PMID: 37750696 PMCID: PMC10581225 DOI: 10.1128/spectrum.02145-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/16/2023] [Indexed: 09/27/2023] Open
Abstract
With the global prevalence of Varroa mites, more and more beekeepers resort to confining the queen bee in a queen cage to control mite infestation or to breed superior and robust queen bees. However, the impact of such practices on the queen bee remains largely unknown. Therefore, we subjected the queen bees to a 21-day egg-laying restriction treatment (from the egg stage to the emergence of adult worker bees) and analyzed the queen bees' ovarian metabolites and gut microbiota after 21 days, aiming to assess the queen bees' quality and assist beekeepers in better hive management. Our findings revealed a significant reduction in the relative expression levels of Vg and Hex110 genes in the ovaries of egg laying-restricted queen bees compared to unrestricted egg-laying queens. The diversity of gut microbiota in the queen bee exhibited a notable decrease, accompanied by corresponding changes in the core bacteria of the microbial community, the relative abundance of Lactobacillus and Bifidobacterium increased from 22.34% to 53.14% (P = 0.01) and from 0.053% to 0.580% (P = 0.04), respectively. The relative abundance of Bombella decreased from 25.85% to 1.720% (P = 0.002). Following egg-laying restriction, the activity of the queen bee's ovaries decreased, while the metabolism of glycerophospholipids remained or stored more lipid molecules, awaiting environmental changes for the queen bee to resume egg laying promptly. Furthermore, we observed that Bombella in the queen bee's gut may regulate the queen's ovarian metabolism through tryptophan metabolism. These findings provide novel insights into the interplay among queen egg laying, gut microbiota, and ovarian metabolism. IMPORTANCE With Varroa mite infestation, beekeepers often confine the queen bee in cages for control or breeding. However, the impact on the queen bee is largely unknown. We evaluated queen bee quality by restricting egg laying and analyzing ovarian metabolites and gut microbiota. In this study, we provided a comprehensive explanation of the expression of ovarian genes, the diversity of gut microbiota, and changes in ovarian metabolism in the queen bee. Through integrated analysis of the queen bee's gut microbiota and ovarian metabolism, we discovered that the gut microbiota can regulate the queen bee's ovarian metabolism. These findings provide valuable insights into the interplay among egg laying, gut microbiota, and the reproductive health of the queen bee. Understanding these relationships can contribute to the development of better strategies for Varroa mite control and queen bee breeding.
Collapse
Affiliation(s)
- Wan-Li Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan province, China
| | - Qi Huang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan province, China
| | - Jia-Li Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan province, China
| | - Ping Wu
- Nanchuan District Livestock, Veterinary and Fisheries Center, Chongqing, China
| | - Bangrong Wei
- Chongqing Nanchuan District Livestock, Veterinary and Fishery Center, Chongqing, China
| | - Xi-Jie Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan province, China
| | - Qi-He Tang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan province, China
| | - Zhi-Xiang Dong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan province, China
| | - Jian Xiong
- Yunnan Zhongfeng Technology Development Co. Ltd., Kunming, Yunnan, China
| | - Hong Tang
- Chongqing Nanchuan Bee Breeding Center, Chongqing, China
| | - Jun Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan province, China
| | - Chong-Hui Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan province, China
| | - Zhe Cao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan province, China
| | - Yuan Chen
- Pujia Life Technology (Fuzhou) Co., LTD, Fuzhou, China
| | - Wen-zheng Zhao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Heilongtan, North Suburb, China
| | - Kai Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan province, China
- Yunnan Zhongfeng Technology Development Co. Ltd., Kunming, Yunnan, China
| |
Collapse
|
27
|
Denicol AC, Siqueira LGB. Maternal contributions to pregnancy success: from gamete quality to uterine environment. Anim Reprod 2023; 20:e20230085. [PMID: 37720724 PMCID: PMC10503891 DOI: 10.1590/1984-3143-ar2023-0085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/21/2023] [Indexed: 09/19/2023] Open
Abstract
The establishment and maintenance of a pregnancy that goes to term is sine qua non for the long-term sustainability of dairy and beef cattle operations. The oocyte plays a critical role in providing the factors necessary for preimplantation embryonic development. Furthermore, the female, or maternal, environment where oocytes and embryos develop is crucial for the establishment and maintenance of a pregnancy to term. During folliculogenesis, the oocyte must sequentially acquire meiotic and developmental competence, which are the results of a series of molecular events preparing the highly specialized gamete to return to totipotency after fertilization. Given that folliculogenesis is a lengthy process in the cow, the occurrence of disease, metabolic imbalances, heat stress, or other adverse events can make it challenging to maintain oocyte quality. Following fertilization, the newly formed embryo must execute a tightly planned program that includes global DNA remodeling, activation of the embryonic genome, and cell fate decisions to form a blastocyst within a few days and cell divisions. The increasing use of assisted reproductive technologies creates an additional layer of complexity to ensure the highest oocyte and embryo quality given that in vitro systems do not faithfully recreate the physiological maternal environment. In this review, we discuss cellular and molecular factors and events known to be crucial for proper oocyte development and maturation, as well as adverse events that may negatively affect the oocyte; and the importance of the uterine environment, including signaling proteins in the maternal-embryonic interactions that ensure proper embryo development. We also discuss the impact of assisted reproductive technologies in oocyte and embryo quality and developmental potential, and considerations when looking into the prospects for developing systems that allow for in vitro gametogenesis as a tool for assisted reproduction in cattle.
Collapse
Affiliation(s)
- Anna Carolina Denicol
- Department of Animal Science, University of California, Davis, CA, United States of America
| | | |
Collapse
|
28
|
Sheikh S, Lo BKM, Kaune H, Bansal J, Deleva A, Williams SA. Rescue of follicle development after oocyte-induced ovary dysfunction and infertility in a model of POI. Front Cell Dev Biol 2023; 11:1202411. [PMID: 37614224 PMCID: PMC10443433 DOI: 10.3389/fcell.2023.1202411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/20/2023] [Indexed: 08/25/2023] Open
Abstract
The mechanisms and aetiology underlying the development of premature ovarian insufficiency (POI) are poorly understood. However, the oocyte clearly has a role as demonstrated by the Double Mutant (DM) mouse model where ovarian dysfunction (6 weeks) is followed by POI (3 months) due to oocyte-specific deletion of complex and hybrid N- and O-glycans. The ovaries of DM mice contain more primary follicles (3a stage) accompanied by fewer developing follicles, indicating a block in follicle development. To investigate this block, we first analysed early follicle development in postnatal (8-day), pre-pubertal (3-week) and post-pubertal (6-week and 3-month) DM (C1galt1 F/F Mgat1 F/F:ZP3Cre) and Control (C1galt1 F/F Mgat1 F/F) mice. Second, we investigated if transplantation of DM ovaries into a "normal" endocrine environment would restore follicle development. Third, we determined if replacing DM ovarian somatic cells would rescue development of DM oocytes. At 3-week, DM primary 3a follicles contain large oocytes accompanied by early development of a second GC layer and increased GC proliferation. At 6-week, DM primary 3a follicles contain abnormally large oocytes, accompanied with decreased GC proliferation. Transplantation of DM ovaries into a 'normal' endocrine environment did not restore normal follicle development. However, replacing somatic cells by generating reaggregated ovaries (ROs) did enable follicle development to progress and thus highlighted intra-ovarian factors were responsible for the onset of POI in DM females. Thus, these studies demonstrate oocyte-initiated altered communication between GCs and oocytes results in abnormal primary follicles which fail to progress and leads to POI.
Collapse
Affiliation(s)
| | | | | | | | | | - Suzannah A. Williams
- Nuffield Department of Women’s and Reproductive Health, Women’s Centre, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
29
|
Miao X, Guo R, Williams A, Lee C, Ma J, Wang PJ, Cui W. Replication Protein A1 is essential for DNA damage repair during mammalian oogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.04.547725. [PMID: 37461444 PMCID: PMC10349974 DOI: 10.1101/2023.07.04.547725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Persistence of unrepaired DNA damage in oocytes is detrimental and may cause genetic aberrations, miscarriage, and infertility. RPA, an ssDNA-binding complex, is essential for various DNA-related processes. Here we report that RPA plays a novel role in DNA damage repair during postnatal oocyte development after meiotic recombination. To investigate the role of RPA during oogenesis, we inactivated RPA1 (replication protein A1), the largest subunit of the heterotrimeric RPA complex, specifically in oocytes using two germline-specific Cre drivers (Ddx4-Cre and Zp3-Cre). We find that depletion of RPA1 leads to the disassembly of the RPA complex, as evidenced by the absence of RPA2 and RPA3 in RPA1-deficient oocytes. Strikingly, severe DNA damage occurs in RPA1-deficient GV-stage oocytes. Loss of RPA in oocytes triggered the canonical DNA damage response mechanisms and pathways, such as activation of ATM, ATR, DNA-PK, and p53. In addition, the RPA deficiency causes chromosome misalignment at metaphase I and metaphase II stages of oocytes, which is consistent with altered transcript levels of genes involved in cytoskeleton organization in RPA1-deficient oocytes. Absence of the RPA complex in oocytes severely impairs folliculogenesis and leads to a significant reduction in oocyte number and female infertility. Our results demonstrate that RPA plays an unexpected role in DNA damage repair during mammalian folliculogenesis.
Collapse
Affiliation(s)
- Xiaosu Miao
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Rui Guo
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
| | - Andrea Williams
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Catherine Lee
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Jun Ma
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - P. Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Wei Cui
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
- Animal Models Core Facility, Institute for Applied Life Sciences (IALS), University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
30
|
Cuitiño MC, Fleming JL, Jain S, Cetnar A, Ayan AS, Woollard J, Manring H, Meng W, McElroy JP, Blakaj DM, Gupta N, Chakravarti A. Comparison of Gonadal Toxicity of Single-Fraction Ultra-High Dose Rate and Conventional Radiation in Mice. Adv Radiat Oncol 2023; 8:101201. [PMID: 37008254 PMCID: PMC10050676 DOI: 10.1016/j.adro.2023.101201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/08/2023] [Indexed: 02/25/2023] Open
Abstract
Purpose Increasing evidence suggests that ultra-high-dose-rate (UHDR) radiation could result in similar tumor control as conventional (CONV) radiation therapy (RT) while reducing toxicity to surrounding healthy tissues. Considering that radiation toxicity to gonadal tissues can cause hormone disturbances and infertility in young patients with cancer, the purpose of this study was to assess the possible role of UHDR-RT in reducing toxicity to healthy gonads in mice compared with CONV-RT. Methods and Materials Radiation was delivered to the abdomen or pelvis of female (8 or 16 Gy) and male (5 Gy) C57BL/6J mice, respectively, at conventional (∼0.4 Gy/s) or ultrahigh (>100 Gy/s) dose rates using an IntraOp Mobetron linear accelerator. Organ weights along with histopathology and immunostaining of irradiated gonads were used to compare toxicity between radiation modalities. Results CONV-RT and UHDR-RT induced a similar decrease in uterine weights at both studied doses (∼50% of controls), which indicated similarly reduced ovarian follicular activity. Histologically, ovaries of CONV- and UHDR-irradiated mice exhibited a comparable lack of follicles. Weights of CONV- and UHDR-irradiated testes were reduced to ∼30% of controls, and the percentage of degenerate seminiferous tubules was also similar between radiation modalities (∼80% above controls). Pairwise comparisons of all quantitative data indicated statistical significance between irradiated (CONV or UHDR) and control groups (from P ≤ .01 to P ≤ .0001) but not between radiation modalities. Conclusions The data presented here suggest that the short-term effects of UHDR-RT on the mouse gonads are comparable to those of CONV-RT.
Collapse
Affiliation(s)
- Maria C. Cuitiño
- Department of Radiation Oncology, Arthur G. James Hospital, Comprehensive Cancer Center, Columbus, Ohio
| | - Jessica L. Fleming
- Department of Radiation Oncology, Arthur G. James Hospital, Comprehensive Cancer Center, Columbus, Ohio
| | - Sagarika Jain
- Department of Radiation Oncology, Arthur G. James Hospital, Comprehensive Cancer Center, Columbus, Ohio
| | - Ashley Cetnar
- Department of Radiation Oncology, Arthur G. James Hospital, Comprehensive Cancer Center, Columbus, Ohio
| | - Ahmet S. Ayan
- Department of Radiation Oncology, Arthur G. James Hospital, Comprehensive Cancer Center, Columbus, Ohio
| | - Jeffrey Woollard
- Department of Radiation Oncology, Arthur G. James Hospital, Comprehensive Cancer Center, Columbus, Ohio
| | - Heather Manring
- Department of Radiation Oncology, Arthur G. James Hospital, Comprehensive Cancer Center, Columbus, Ohio
| | - Wei Meng
- Department of Radiation Oncology, Arthur G. James Hospital, Comprehensive Cancer Center, Columbus, Ohio
| | - Joseph P. McElroy
- Department of Biomedical Informatics, Center for Biostatistics, Ohio State University, Columbus, Ohio
| | - Dukagjin M. Blakaj
- Department of Radiation Oncology, Arthur G. James Hospital, Comprehensive Cancer Center, Columbus, Ohio
| | - Nilendu Gupta
- Department of Radiation Oncology, Arthur G. James Hospital, Comprehensive Cancer Center, Columbus, Ohio
| | - Arnab Chakravarti
- Department of Radiation Oncology, Arthur G. James Hospital, Comprehensive Cancer Center, Columbus, Ohio
| |
Collapse
|
31
|
Zareifard A, Beaudry F, Ndiaye K. Janus Kinase 3 phosphorylation and the JAK/STAT pathway are positively modulated by follicle-stimulating hormone (FSH) in bovine granulosa cells. BMC Mol Cell Biol 2023; 24:21. [PMID: 37337185 DOI: 10.1186/s12860-023-00482-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 05/09/2023] [Indexed: 06/21/2023] Open
Abstract
Janus kinase 3 (JAK3) is a member of the JAK family of tyrosine kinase proteins involved in cytokine receptor-mediated intracellular signal transduction through the JAK/STAT signaling pathway. JAK3 was previously shown as differentially expressed in granulosa cells (GC) of bovine pre-ovulatory follicles suggesting that JAK3 could modulate GC function and activation/inhibition of downstream targets. We used JANEX-1, a JAK3 inhibitor, and FSH treatments and analyzed proliferation markers, steroidogenic enzymes and phosphorylation of target proteins including STAT3, CDKN1B/p27Kip1 and MAPK8IP3/JIP3. Cultured GC were treated with or without FSH in the presence or not of JANEX-1. Expression of steroidogenic enzyme CYP11A1, but not CYP19A1, was upregulated in GC treated with FSH and both were significantly decreased when JAK3 was inhibited. Proliferation markers CCND2 and PCNA were reduced in JANEX-1-treated GC and upregulated by FSH. Western blots analyses showed that JANEX-1 treatment reduced pSTAT3 amounts while JAK3 overexpression increased pSTAT3. Similarly, FSH treatment increased pSTAT3 even in JANEX-1-treated GC. UHPLC-MS/MS analyses revealed phosphorylation of specific amino acid residues within JAK3 as well as CDKN1B and MAPK8IP3 suggesting possible activation or inhibition post-FSH or JANEX-1 treatments. We show that FSH activates JAK3 in GC, which could phosphorylate target proteins and likely modulate other signaling pathways involving CDKN1B and MAPK8IP3, therefore controlling GC proliferation and steroidogenic activity.
Collapse
Affiliation(s)
- Amir Zareifard
- Centre de Recherche en Reproduction Et Fertilité, Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, CRRF, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, 3200, Canada
| | - Francis Beaudry
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, 3200, Canada
- Centre de Recherche Sur Le Cerveau Et L'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada
| | - Kalidou Ndiaye
- Centre de Recherche en Reproduction Et Fertilité, Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, CRRF, Université de Montréal, Saint-Hyacinthe, Québec, Canada.
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, 3200, Canada.
| |
Collapse
|
32
|
Pellicer N, Cozzolino M, Diaz-García C, Galliano D, Cobo A, Pellicer A, Herraiz S. Ovarian rescue in women with premature ovarian insufficiency: facts and fiction. Reprod Biomed Online 2023; 46:543-565. [PMID: 36710157 DOI: 10.1016/j.rbmo.2022.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/16/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022]
Abstract
The ovary has a comparatively short functional lifespan compared with other organs, and genetic and pathological injuries can further shorten its functional life. Thus, preserving ovarian function should be considered in the context of women with threats to ovarian reserve, such as ageing, premature ovarian insufficiency (POI) and diminished ovarian reserve (DOR). Indeed, one-third of women with POI retain resting follicles that can be reactivated to produce competent oocytes, as proved by the in-vitro activation of dormant follicles. This paper discusses mechanisms and clinical data relating to new therapeutic strategies using ovarian fragmentation, stem cells or platelet-rich plasma to regain ovarian function in women of older age (>38 years) or with POI or DOR. Follicle reactivation techniques show promising experimental outcomes and have been successful in some cases, when POI is established or DOR diagnosed; however, there is scarce clinical evidence to warrant their widespread clinical use. Beyond these contexts, also discussed is how new insights into the biological mechanisms governing follicular dynamics and oocyte competence may play a role in reversing ovarian damage, as no technique modifies oocyte quality. Additional studies should focus on increasing follicle number and quality. Finally, there is a small but important subgroup of women lacking residual follicles and requiring oocyte generation from stem cells.
Collapse
Affiliation(s)
| | | | - César Diaz-García
- IVI London, EGA Institute for Women's Health, UCL, London, UK; IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | | | - Ana Cobo
- IVI RMA Valencia, Valencia, Spain
| | - Antonio Pellicer
- IVI RMA Rome, Rome, Italy; IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Sonia Herraiz
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain.
| |
Collapse
|
33
|
Sugiura K, Maruyama N, Akimoto Y, Matsushita K, Endo T. Paracrine regulation of granulosa cell development in the antral follicles in mammals. Reprod Med Biol 2023; 22:e12538. [PMID: 37638351 PMCID: PMC10457553 DOI: 10.1002/rmb2.12538] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/29/2023] Open
Abstract
Background Development of ovarian follicles is regulated by a complex interaction of intra- and extra-follicular signals. Oocyte-derived paracrine factors (ODPFs) play a central role in this process in cooperation with other signals. Methods This review provides an overview of the recent advances in our understanding of the paracrine regulation of antral follicle development in mammals. It specifically focuses on the regulation of granulosa cell development by ODPFs, along with other intrafollicular signals. Main Findings Bi-directional communication between oocytes and surrounding cumulus cells is a fundamental mechanism that determines cumulus cell differentiation. Along with estrogen, ODPFs promote the expression of forkhead box L2, a critical transcription factor required for mural granulosa cells. Follicle-stimulating hormone (FSH) facilitates these processes by stimulating estrogen production in mural granulosa cells. Conclusion Cooperative interactions among ODPFs, FSH, and estrogen are critical in determining the fate of cumulus and mural granulosa cells, as well as the development of oocytes.
Collapse
Affiliation(s)
- Koji Sugiura
- Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Natsumi Maruyama
- Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Yuki Akimoto
- Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Kodai Matsushita
- Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Tsutomu Endo
- Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| |
Collapse
|
34
|
Ito H, Emori C, Kobayashi M, Maruyama N, Fujii W, Naito K, Sugiura K. Cooperative effects of oocytes and estrogen on the forkhead box L2 expression in mural granulosa cells in mice. Sci Rep 2022; 12:20158. [PMID: 36424497 PMCID: PMC9691737 DOI: 10.1038/s41598-022-24680-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022] Open
Abstract
Forkhead box L2 (FOXL2) plays a critical role in the development and function of mammalian ovaries. In fact, the causative effects of FOXL2 misregulations have been identified in many ovarian diseases, such as primary ovarian insufficiency and granulosa cell tumor; however, the mechanism by which FOXL2 expression is regulated is not well studied. Here, we showed that FOXL2 expression in ovarian mural granulosa cells (MGCs) requires stimulation by both oocyte-derived signals and estrogen in mice. In the absence of oocytes or estrogen, expression of FOXL2 and its transcriptional targets, Cyp19a1 and Fst mRNA, in MGCs were significantly decreased. Moreover, expression levels of Sox9 mRNA, but not SOX9 protein, were significantly increased in the FOXL2-reduced MGCs. FOXL2 expression in MGCs was maintained with either oocytes or recombinant proteins of oocyte-derived paracrine factors, BMP15 and GDF9, together with estrogen, and this oocyte effect was abrogated with an ALK5 inhibitor, SB431542. In addition, the FOXL2 level was significantly decreased in MGCs isolated from Bmp15-/- /Gdf9+/- mice. Therefore, oocyte, probably with estrogen, plays a critical role in the regulation of FOXL2 expression in mural granulosa cells in mice.
Collapse
Affiliation(s)
- Haruka Ito
- grid.26999.3d0000 0001 2151 536XLaboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Chihiro Emori
- grid.26999.3d0000 0001 2151 536XLaboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan ,grid.136593.b0000 0004 0373 3971Present Address: Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Mei Kobayashi
- grid.26999.3d0000 0001 2151 536XLaboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Natsumi Maruyama
- grid.26999.3d0000 0001 2151 536XLaboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Wataru Fujii
- grid.26999.3d0000 0001 2151 536XLaboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kunihiko Naito
- grid.26999.3d0000 0001 2151 536XLaboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Koji Sugiura
- grid.26999.3d0000 0001 2151 536XLaboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
35
|
Esencan E, Beroukhim G, Seifer DB. Age-related changes in Folliculogenesis and potential modifiers to improve fertility outcomes - A narrative review. Reprod Biol Endocrinol 2022; 20:156. [PMID: 36397149 PMCID: PMC9670479 DOI: 10.1186/s12958-022-01033-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/06/2022] [Indexed: 11/19/2022] Open
Abstract
Reproductive aging is characterized by a decline in oocyte quantity and quality, which is directly associated with a decline in reproductive potential, as well as poorer reproductive success and obstetrical outcomes. As women delay childbearing, understanding the mechanisms of ovarian aging and follicular depletion have become increasingly more relevant. Age-related meiotic errors in oocytes are well established. In addition, it is also important to understand how intraovarian regulators change with aging and how certain treatments can mitigate the impact of aging. Individual studies have demonstrated that reproductive pathways involving antimullerian hormone (AMH), vascular endothelial growth factor (VEGF), neurotropins, insulin-like growth factor 1 (IGF1), and mitochondrial function are pivotal for healthy oocyte and cumulus cell development and are altered with increasing age. We provide a comprehensive review of these individual studies and explain how these factors change in oocytes, cumulus cells, and follicular fluid. We also summarize how modifiers of folliculogenesis, such as vitamin D, coenzyme Q, and dehydroepiandrosterone (DHEA) may be used to potentially overcome age-related changes and enhance fertility outcomes of aged follicles, as evidenced by human and rodent studies.
Collapse
Affiliation(s)
- Ecem Esencan
- Yale School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, New Haven, CT, USA.
| | - Gabriela Beroukhim
- Yale School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, New Haven, CT, USA
| | - David B Seifer
- Yale School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, New Haven, CT, USA
| |
Collapse
|
36
|
Godakumara K, Dissanayake K, Hasan MM, Kodithuwakku SP, Fazeli A. Role of extracellular vesicles in intercellular communication during reproduction. Reprod Domest Anim 2022; 57 Suppl 5:14-21. [PMID: 35837748 PMCID: PMC9796405 DOI: 10.1111/rda.14205] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/12/2022] [Indexed: 01/01/2023]
Abstract
The mammalian reproduction is a process of controlled cellular growth and development regulated by constant communication between the gametes, the subsequent embryo and the maternal system. Extracellular vesicles (EVs) are involved in these communications to a significant degree from the gamete production and maturation to fertilization, embryo development and implantation. They regulate the cellular physiology and the immune reaction to bring about a favourable environment for a successful pregnancy. Deciphering the mechanisms employed in EV-mediated embryo maternal communication could improve our knowledge in mammalian reproduction and increase the efficiency of animal breeding.
Collapse
Affiliation(s)
- Kasun Godakumara
- Department of Pathophysiology, Institute of Biomedicine and Translational MedicineFaculty of Medicine, Tartu UniversityTartuEstonia,Institute of Veterinary Medicine and Animal SciencesEstonian University of Life SciencesTartuEstonia
| | - Keerthie Dissanayake
- Department of Pathophysiology, Institute of Biomedicine and Translational MedicineFaculty of Medicine, Tartu UniversityTartuEstonia,Institute of Veterinary Medicine and Animal SciencesEstonian University of Life SciencesTartuEstonia,Department of Anatomy, Faculty of MedicineUniversity of PeradeniyaPeradeniyaSri Lanka
| | - Mohammad Mehedi Hasan
- Department of Pathophysiology, Institute of Biomedicine and Translational MedicineFaculty of Medicine, Tartu UniversityTartuEstonia,Institute of Veterinary Medicine and Animal SciencesEstonian University of Life SciencesTartuEstonia,Maternal and Fetal Medicine Department, Institute of Women's HealthUniversity College LondonLondonUK
| | - Suranga. P. Kodithuwakku
- Institute of Veterinary Medicine and Animal SciencesEstonian University of Life SciencesTartuEstonia,Department of Animal Science, Faculty of AgricultureUniversity of PeradeniyaPeradeniyaSri Lanka
| | - Alireza Fazeli
- Department of Pathophysiology, Institute of Biomedicine and Translational MedicineFaculty of Medicine, Tartu UniversityTartuEstonia,Institute of Veterinary Medicine and Animal SciencesEstonian University of Life SciencesTartuEstonia,Academic Unit of Reproductive and Developmental MedicineThe University of SheffieldSheffieldUK
| |
Collapse
|
37
|
Chen X, Tang Z, Guan H, Xia H, Gu C, Xu Y, Li B, Zhang W. Rapamycin maintains the primordial follicle pool and protects ovarian reserve against cyclophosphamide-induced damage. J Reprod Dev 2022; 68:287-294. [PMID: 35718464 PMCID: PMC9334315 DOI: 10.1262/jrd.2022-001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 05/25/2022] [Indexed: 11/20/2022] Open
Abstract
Any abnormal activation of primordial follicles and subsequent depletion can irreversibly diminish the ovarian reserve, which is one of the major chemotherapy-induced adverse effects in young patients with cancer. Herein, we investigated the effects of rapamycin on the activation and development of ovarian follicles to evaluate its fertility-sparing therapeutic value in a cyclophosphamide (CTX)-treated mouse model. Based on ovarian histomorphological changes and follicle counting in 50 SPF female C57BL/6 mice, daily administration of 5 mg/kg rapamycin for 30 days was deemed an ideal dosage and duration for administration in subsequent experiments. Compared with the control group, rapamycin treatment inhibited the activation of quiescent primordial follicles, with no obvious side effects observed. Finally, 48 mice were randomly divided into four groups: control, rapamycin-treated, cyclophosphamide-treated, and rapamycin intervention. Body weight, ovarian histomorphological changes, number of primordial follicles, DDX4/MVH expression, apoptosis of follicular cells, and expression of apoptosis protease-activating factor (APAF)-1, cleaved caspase 3, and caspase 3 were monitored. Co-administration of rapamycin reduced primordial follicle loss and the development of follicular cell apoptosis, thereby rescuing the ovarian reserve after CTX treatment. On analyzing the mTOR signaling pathway, we observed that rapamycin significantly decreased CTX-mediated overactivation of mTOR and its downstream molecules. These findings suggest that rapamycin exhibits potential as an ovarian-protective agent that could maintain the ovarian primordial follicle pool and preserve fertility in young female patients with cancer undergoing chemotherapy.
Collapse
Affiliation(s)
- Xiuying Chen
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Zhijing Tang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Haiyun Guan
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Hexia Xia
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Chao Gu
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Yan Xu
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Bin Li
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Wei Zhang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| |
Collapse
|
38
|
Bello SF, Adeola AC, Nie Q. The study of candidate genes in the improvement of egg production in ducks – a review. Poult Sci 2022; 101:101850. [PMID: 35544958 PMCID: PMC9108513 DOI: 10.1016/j.psj.2022.101850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 11/01/2022] Open
Abstract
Duck is the second-largest poultry species aside from chicken. The rate of egg production is a major determinant of the economic income of poultry farmers. Among the reproductive organs, the ovary is a major part of the female reproductive system which is highly important for egg production. Based on the importance of this organ, several studies have been carried out to identify candidate genes at the transcriptome level, and also the expression level of these genes at different tissues or egg-laying conditions, and single nucleotide polymorphism (SNPs) of genes associated with egg production in duck. In this review, expression profile and association study analyses at SNPs level of different candidate genes with egg production traits of duck were highlighted. Furthermore, different studies on transcriptome analysis, Quantitative Trait Loci (QTL) mapping, and Genome Wide Association Study (GWAS) approach used to identify potential candidate genes for egg production in ducks were reported. This review would widen our knowledge on molecular markers that are associated or have a positive correlation to improving egg production in ducks, for the increasing world populace.
Collapse
|
39
|
Molecular characterization of TRIB1 gene and its role in regulation of steroidogenesis in bos grunniens granulosa cells. Theriogenology 2022; 191:1-9. [DOI: 10.1016/j.theriogenology.2022.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 01/09/2023]
|
40
|
Marchais M, Gilbert I, Bastien A, Macaulay A, Robert C. Mammalian cumulus-oocyte complex communication: a dialog through long and short distance messaging. J Assist Reprod Genet 2022; 39:1011-1025. [PMID: 35499777 PMCID: PMC9107539 DOI: 10.1007/s10815-022-02438-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 02/13/2022] [Indexed: 12/13/2022] Open
Abstract
Communications are crucial to ovarian follicle development and to ovulation, and while both folliculogenesis and oogenesis are distinct processes, they share highly interdependent signaling pathways. Signals from distant organs such as the brain must be processed and compartments within the follicle have to be synchronized. The hypothalamic–pituitary–gonadal (HPG) axis relies on long-distance signalling analogous to wireless communication by which data is disseminated in the environment and cells equipped with the appropriate receptors receive and interpret the messages. In contrast, direct cell-to-cell transfer of molecules is a very targeted, short distance messaging system. Numerous signalling pathways have been identified and proven to be essential for the production of a developmentally competent egg. The development of the cumulus-oocyte complex relies largely on short distance communications or direct transfer type via extensions of corona radiata cells through the zona pellucida. The type of information transmitted through these transzonal projections is still largely uncharacterized. This review provides an overview of current understanding of the mechanisms by which the gamete receives and transmits information within the follicle. Moreover, it highlights the fact that in addition to the well-known systemic long-distance based communications from the HPG axis, these mechanisms acting more locally should also be considered as important targets for controlling/optimizing oocyte quality.
Collapse
Affiliation(s)
- Mathilde Marchais
- Département des sciences animales, Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Réseau Québécois en Reproduction (RQR), Pavillon Paul Comtois, Université Laval, Québec, QC, Canada
| | - Isabelle Gilbert
- Département des sciences animales, Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Réseau Québécois en Reproduction (RQR), Pavillon Paul Comtois, Université Laval, Québec, QC, Canada
| | - Alexandre Bastien
- Département des sciences animales, Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Réseau Québécois en Reproduction (RQR), Pavillon Paul Comtois, Université Laval, Québec, QC, Canada
| | - Angus Macaulay
- Département des sciences animales, Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Réseau Québécois en Reproduction (RQR), Pavillon Paul Comtois, Université Laval, Québec, QC, Canada
| | - Claude Robert
- Département des sciences animales, Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Réseau Québécois en Reproduction (RQR), Pavillon Paul Comtois, Université Laval, Québec, QC, Canada.
| |
Collapse
|
41
|
Ozkemahli G, Ozyurt AB, Erkekoglu P, Zeybek ND, Yersal N, Kocer-Gumusel B. The Effects of Prenatal and Lactational Bisphenol A and/or Di(2-Ethylhexyl) Phthalate Exposure on Female Reproductive System. Toxicol Mech Methods 2022; 32:597-605. [PMID: 35321620 DOI: 10.1080/15376516.2022.2057265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Bisphenol A (BPA) and di(2-ethylhexyl) phthalate (DEHP) are endocrine disrupting chemicals (EDCs) which are abundantly used in polyvinyl chloride plastics, polycarbonates and epoxy resins. Prenatal and early postnatal exposures to EDCs are suggested to be more critical. Such exposures can lead to reprotoxic effects, hormonal and metabolic consequences in adulthood. Moreover, combined exposure to different EDCs can lead to more serious adverse effects, some of which cannot be predicted by examining their individual toxicity profiles. This study aimed to evaluate effects of single and combined prenatal and lactational exposures to BPA and/or DEHP on female reproductive hormones and ovarian follicle development. Pregnant Sprague-Dawley rats were divided randomly to four groups (n = 3/group): Control (received vehicle only); DEHP (30 mg/kg/day); BPA (50 mg/kg/day) and BPA + DEHP (30 mg/kg/day DEHP; 50 mg/kg/day BPA) through 6-21 gestational days and lactation by intra-gastric lavage. Female offspring (n = 6/group) were fed until the end of twelfth postnatal week and then euthanized. Reproductive hormones, ovarian follicle numbers and ovarian development were determined. Plasma testosterone and estradiol levels of BPA and BPA + DEHP groups were significantly lower than control. In BPA group, the number of tertiary ovarian follicles decreased significantly compared to control. In the combined exposure group, the number of corpus luteum (29%) as well as the number of primordial follicles (36%) showed marked decreases compared to control group.It can be suggested that early life exposure to BPA and DEHP may cause late life adverse effects in female reproductive system especially after combined exposure.
Collapse
Affiliation(s)
- Gizem Ozkemahli
- Faculty of Pharmacy, Department of Toxicology, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Aylin Balci Ozyurt
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Hacettepe University, Ankara, Turkey
| | - Pinar Erkekoglu
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Hacettepe University, Ankara, Turkey
| | - Naciye Dilara Zeybek
- Faculty of Medicine, Department of Histology and Embryology, Hacettepe University, Ankara, Turkey
| | - Nilgun Yersal
- Faculty of Medicine, Department of Histology and Embryology, Gaziosmanpasa University, Tokat, Turkey
| | - Belma Kocer-Gumusel
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Lokman Hekim University, Ankara, Turkey
| |
Collapse
|
42
|
Lee SH, Sun MH, Zhou D, Jiang WJ, Li XH, Heo G, Cui XS. High Temperature Disrupts Organelle Distribution and Functions Affecting Meiotic Maturation in Porcine Oocytes. Front Cell Dev Biol 2022; 10:826801. [PMID: 35252192 PMCID: PMC8894851 DOI: 10.3389/fcell.2022.826801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/31/2022] [Indexed: 12/13/2022] Open
Abstract
Heat stress (HS) has been known to cause reproductive failure in animals, especially in summer. HS severely affects the developmental potential of oocytes and leads to low fertility rates. Previous studies have reported that HS compromises embryo development in bovine oocytes, and reduces ovarian development in mice, thereby impairing reproductive function in animals. However, the effect of high temperature (HT) on the organelles of porcine oocytes is unknown. In this study, we reported that exposure to HT for 24 h (41°C) significantly decreased meiotic maturation in porcine oocytes (p < 0.05). Further experiments on organelles found that HT induced mitochondrial dysfunction, increased abnormal mitochondrial distribution, and decreased mitochondrial membrane potential (MMP). We also found that HT induced abnormal endoplasmic reticulum (ER) distribution and higher expression of glucose regulatory protein 78 (GRP78), suggesting that HT exposure induces ER stress. Our results also indicated that exposure to HT induced abnormal distribution and dysfunction of the Golgi apparatus, which resulted from a decrease in the expression of the vesicle transporter, Ras-related protein Rab-11A (RAB11A). In addition, we found that HT exposure led to lysosomal damage by increasing the expression of lysosome-associated membrane protein 2 (LAMP2) and microtubule-associated protein 1A/1B-light chain 3 (LC3). In summary, our study revealed that HT exposure disrupts organelle dynamics, which further leads to the failure of meiotic maturation in porcine oocytes.
Collapse
|
43
|
Alberico HC, Woods DC. Role of Granulosa Cells in the Aging Ovarian Landscape: A Focus on Mitochondrial and Metabolic Function. Front Physiol 2022; 12:800739. [PMID: 35153812 PMCID: PMC8829508 DOI: 10.3389/fphys.2021.800739] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/29/2021] [Indexed: 01/11/2023] Open
Abstract
Mitochondria are at the intersection of aging and fertility, with research efforts centered largely on the role that these specialized organelles play in the relatively rapid decline in oocyte quality that occurs as females approach reproductive senescence. In addition to various roles in oocyte maturation, fertilization, and embryogenesis, mitochondria are critical to granulosa cell function. Herein, we provide a review of the literature pertaining to the role of mitochondria in granulosa cell function, with emphasis on how mitochondrial aging in granulosa cells may impact reproduction in female mammals.
Collapse
|
44
|
Doherty CA, Amargant F, Shvartsman SY, Duncan FE, Gavis ER. Bidirectional communication in oogenesis: a dynamic conversation in mice and Drosophila. Trends Cell Biol 2021; 32:311-323. [PMID: 34922803 DOI: 10.1016/j.tcb.2021.11.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023]
Abstract
In most animals, the oocyte is the largest cell by volume. The oocyte undergoes a period of large-scale growth during its development, prior to fertilization. At first glance, tissues that support the development of the oocyte in different organisms have diverse cellular characteristics that would seem to prohibit functional comparisons. However, these tissues often act with a common goal of establishing dynamic forms of two-way communication with the oocyte. We propose that this bidirectional communication between oocytes and support cells is a universal phenomenon that can be directly compared across species. Specifically, we highlight fruit fly and mouse oogenesis to demonstrate that similarities and differences in these systems should be used to inform and design future experiments in both models.
Collapse
Affiliation(s)
- Caroline A Doherty
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Farners Amargant
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Stanislav Y Shvartsman
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Center for Computational Biology, Flatiron Institute, New York, NY, USA.
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Elizabeth R Gavis
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
45
|
Mechanical mapping of mammalian follicle development using Brillouin microscopy. Commun Biol 2021; 4:1133. [PMID: 34580426 PMCID: PMC8476509 DOI: 10.1038/s42003-021-02662-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 09/08/2021] [Indexed: 02/08/2023] Open
Abstract
In early mammalian development, the maturation of follicles containing the immature oocytes is an important biological process as the functional oocytes provide the bulk genetic and cytoplasmic materials for successful reproduction. Despite recent work demonstrating the regulatory role of mechanical stress in oocyte growth, quantitative studies of ovarian mechanical properties remain lacking both in vivo and ex vivo. In this work, we quantify the material properties of ooplasm, follicles and connective tissues in intact mouse ovaries at distinct stages of follicle development using Brillouin microscopy, a non-invasive tool to probe mechanics in three-dimensional (3D) tissues. We find that the ovarian cortex and its interior stroma have distinct material properties associated with extracellular matrix deposition, and that intra-follicular mechanical compartments emerge during follicle maturation. Our work provides an alternative approach to study the role of mechanics in follicle morphogenesis and might pave the way for future understanding of mechanotransduction in reproductive biology, with potential implications for infertility diagnosis and treatment.
Collapse
|
46
|
Contrasting effects of the Toll-like receptor 4 in determining ovarian follicle endowment and fertility in female adult mice. ZYGOTE 2021; 30:227-233. [PMID: 34405787 DOI: 10.1017/s096719942100054x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Toll-like receptor 4 (TLR4) is best known for its role in bacteria-produced lipopolysaccharide recognition. Regarding female reproduction, TLR4 is expressed by murine cumulus cells and participates in ovulation and in cumulus-oocyte complex (COC) expansion, maternal-fetal interaction and preterm labour. Despite these facts, the role of TLR4 in ovarian physiology is not fully understood. Therefore, the aim of the present study was to investigate the effects of TLR4 genetic ablation on mice folliculogenesis and female fertility, through analysis of reproductive crosses, ovarian responsiveness and follicular quantification in TLR4-/- (n = 94) and C57BL/6 mice [wild type (WT), n = 102]. TLR4-deficient pairs showed a reduced number of pups per litter (P = 0.037) compared with WT. TLR4-/- mice presented more primordial, primary, secondary and antral follicles (P < 0.001), however there was no difference in estrous cyclicity (P > 0.05). A lower (P = 0.006) number of COC was recovered from TLR4-/- mice oviducts after superovulation, and in heterozygous pairs, TLR4-/- females also showed a reduction in the pregnancy rate and in the number of fetuses per uterus (P = 0.007) when compared with WT. Altogether, these data suggest that TLR4 plays a role in the regulation of murine folliculogenesis and in determining ovarian endowment. TLR4 deficiency may affect ovulation and pregnancy rates, potentially decreasing fertility, therefore the potential side effects of its blockade have to be carefully investigated.
Collapse
|
47
|
Mu X, Tu Z, Chen X, Hong Y, Geng Y, Zhang Y, Ji X, Liu T, Wang Y, He J. In utero Exposure to Excessive Estrogen Impairs Homologous Recombination and Oogenesis via Estrogen Receptor 2 in Mice. Front Cell Dev Biol 2021; 9:669732. [PMID: 34150762 PMCID: PMC8212019 DOI: 10.3389/fcell.2021.669732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/03/2021] [Indexed: 01/01/2023] Open
Abstract
The association between the accumulation of synthetic chemicals with estrogenic activity and risks to oogenesis has become a growing concern. This study indicates that in utero estrogen exposure can affect homologous recombination in early oogenesis and influence the reproductive potential and lifespan of female offspring. We conducted this study in developing mouse ovaries using two different models: oral doses administered to the mother, and fetal ovary cultures. Our analyses of meiotic fetal oocytes suggest that 17-β-estradiol induces gross aberrations in prophase I events, including delayed meiotic progression, increased unrepaired DNA damage, and altered homologous recombination levels. These effects were mainly mediated by estrogen receptor 2 (ESR2) activation. Mid-gestation exposure to estrogen also led to delayed primordial folliculogenesis after birth, impaired follicle development after prepuberty, and ultimately reduced the total litter size of the offspring. This raises the concern that maternal exposures to substances activating ESR2 may compromise the fertility of the exposed female fetus.
Collapse
Affiliation(s)
- Xinyi Mu
- College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, China
| | - Zhihan Tu
- Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, China.,Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Xuemei Chen
- Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, China.,Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Yi Hong
- Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, China.,Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Yanqing Geng
- College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, China
| | - Yan Zhang
- Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, China.,Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Xingduo Ji
- Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, China.,Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Taihang Liu
- College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, China
| | - Yingxiong Wang
- College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, China
| | - Junlin He
- Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, China.,Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| |
Collapse
|
48
|
Dozortsev DI, Diamond MP. Luteinizing hormone-independent rise of progesterone as the physiological trigger of the ovulatory gonadotropins surge in the human. Fertil Steril 2021; 114:191-199. [PMID: 32741458 DOI: 10.1016/j.fertnstert.2020.06.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 02/09/2023]
Abstract
The current ovarian cycle paradigm postulates that ovulation is triggered by a critically sustained elevation of estradiol. However, an in-depth look into the published data reveals considerable uncertainty about the relative roles of progesterone and estradiol in the ovulation process.This review provides compelling evidences that the role of estradiol in ovulation has been misinterpreted and that the true physiological trigger of ovulation is a luteinizing hormone-independent preovulatory progesterone surge in the circulation to approximately 0.5 ng/mL. Furthermore, the current work reconciles the ability of progesterone to trigger ovulation, with its well-established ability to block ovulation during pregnancy, or when administered in the form of a synthetic progestin in birth control formulations and with experimental data that estradiol benzoate triggers ovulation in the complete absence of progesterone.
Collapse
|
49
|
Bourdon G, Cadoret V, Charpigny G, Couturier-Tarrade A, Dalbies-Tran R, Flores MJ, Froment P, Raliou M, Reynaud K, Saint-Dizier M, Jouneau A. Progress and challenges in developing organoids in farm animal species for the study of reproduction and their applications to reproductive biotechnologies. Vet Res 2021; 52:42. [PMID: 33691745 PMCID: PMC7944619 DOI: 10.1186/s13567-020-00891-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
Within the past decades, major progress has been accomplished in isolating germ/stem/pluripotent cells, in refining culture medium and conditions and in establishing 3-dimensional culture systems, towards developing organoids for organs involved in reproduction in mice and to some extent in humans. Haploid male germ cells were generated in vitro from primordial germ cells. So were oocytes, with additional support from ovarian cells and subsequent follicle culture. Going on with the female reproductive tract, spherical oviduct organoids were obtained from adult stem/progenitor cells. Multicellular endometrial structures mimicking functional uterine glands were derived from endometrial cells. Trophoblastic stem cells were induced to form 3-dimensional syncytial-like structures and exhibited invasive properties, a crucial point for placentation. Finally, considering the embryo itself, pluripotent embryonic cells together with additional extra-embryonic cells, could self-organize into a blastoid, and eventually into a post-implantation-like embryo. Most of these accomplishments have yet to be reached in farm animals, but much effort is devoted towards this goal. Here, we review the progress and discuss the specific challenges of developing organoids for the study of reproductive biology in these species. We consider the use of such organoids in basic research to delineate the physiological mechanisms involved at each step of the reproductive process, or to understand how they are altered by environmental factors relevant to animal breeding. We evaluate their potential in reproduction of animals with a high genetic value, from a breeding point of view or in the context of preserving local breeds with limited headcounts.
Collapse
Affiliation(s)
- Guillaume Bourdon
- INRAE, CNRS, Université de Tours, IFCE, PRC, 37380, Nouzilly, France
| | - Véronique Cadoret
- INRAE, CNRS, Université de Tours, IFCE, PRC, 37380, Nouzilly, France
- CHU Bretonneau, Médecine et Biologie de la Reproduction-CECOS, 37044, Tours, France
| | - Gilles Charpigny
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire D'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Anne Couturier-Tarrade
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire D'Alfort, BREED, 94700, Maisons-Alfort, France
| | | | - Maria-José Flores
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire D'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Pascal Froment
- INRAE, CNRS, Université de Tours, IFCE, PRC, 37380, Nouzilly, France
| | - Mariam Raliou
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire D'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Karine Reynaud
- INRAE, CNRS, Université de Tours, IFCE, PRC, 37380, Nouzilly, France
| | - Marie Saint-Dizier
- INRAE, CNRS, Université de Tours, IFCE, PRC, 37380, Nouzilly, France
- Faculty of Sciences and Techniques, University of Tours, 37200, Tours, France
| | - Alice Jouneau
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France.
- Ecole Nationale Vétérinaire D'Alfort, BREED, 94700, Maisons-Alfort, France.
| |
Collapse
|
50
|
Roth Z. Heat stress reduces maturation and developmental capacity in bovine oocytes. Reprod Fertil Dev 2021; 33:66-75. [PMID: 38769677 DOI: 10.1071/rd20213] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
The ovarian pool of follicles, and their enclosed oocytes, is highly sensitive to hyperthermia. Heat-induced changes in small antral follicles can later manifest as impaired follicle development and compromised competence of the enclosed oocytes to undergo maturation, fertilisation and further development into an embryo. This review describes the main changes documented so far that underlie the oocyte damage. The review discusses some cellular and molecular mechanisms by which heat stress compromises oocyte developmental competence, such as impairment of nuclear and cytoplasmic maturation and mitochondrial function, changes in the expression of both nuclear and mitochondrial transcripts and the induction of apoptosis. The review emphasises that although the oocyte is exposed to heat stress, changes are also evident in the developed embryo. Moreover, the effect of heat stress is not limited to the summer; it carries over to the cold autumn, as manifest by impaired steroid production, low oocyte competence and reduced fertility. The spontaneous recovery of oocytes from the end of the summer through the autumn until the beginning of winter suggests that only subpopulations of follicles, rather than the entire ovarian reserve, are damaged upon heat exposure.
Collapse
Affiliation(s)
- Zvi Roth
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, POB 12 Rehovot, 76100, Israel
| |
Collapse
|