1
|
Ismatullah H, Jabeen I, Kiani YS. Structural and functional insight into a new emerging target IP 3R in cancer. J Biomol Struct Dyn 2024; 42:2170-2196. [PMID: 37070253 DOI: 10.1080/07391102.2023.2201332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/05/2023] [Indexed: 04/19/2023]
Abstract
Calcium signaling has been identified as an important phenomenon in a plethora of cellular processes. Inositol 1,4,5-trisphosphate receptors (IP3Rs) are ER-residing intracellular calcium (Ca2+) release channels responsible for cell bioenergetics by transferring calcium from the ER to the mitochondria. The recent availability of full-length IP3R channel structure has enabled the researchers to design the IP3 competitive ligands and reveal the channel gating mechanism by elucidating the conformational changes induced by ligands. However, limited knowledge is available for IP3R antagonists and the exact mechanism of action of these antagonists within a tumorigenic environment of a cell. Here in this review a summarized information about the role of IP3R in cell proliferation and apoptosis has been discussed. Moreover, structure and gating mechanism of IP3R in the presence of antagonists have been provided in this review. Additionally, compelling information about ligand-based studies (both agonists and antagonists) has been discussed. The shortcomings of these studies and the challenges toward the design of potent IP3R modulators have also been provided in this review. However, the conformational changes induced by antagonists for channel gating mechanism still display some major drawbacks that need to be addressed. However, the design, synthesis and availability of isoform-specific antagonists is a rather challenging one due to intra-structural similarity within the binding domain of each isoform. HighlightsThe intricate complexity of IP3R's in cellular processes declares them an important target whereby, the recently solved structure depicts the receptor's potential involvement in a complex network of processes spanning from cell proliferation to cell death.Pharmacological inhibition of IP3R attenuates the proliferation or invasiveness of cancers, thus inducing necrotic cell death.Despite significant advancements, there is a tremendous need to design new potential hits to target IP3R, based upon 3D structural features and pharmacophoric patterns.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Humaira Ismatullah
- Department of Sciences, School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Ishrat Jabeen
- Department of Sciences, School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Yusra Sajid Kiani
- Department of Sciences, School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
2
|
Baker MR, Fan G, Arige V, Yule DI, Serysheva II. Understanding IP 3R channels: From structural underpinnings to ligand-dependent conformational landscape. Cell Calcium 2023; 114:102770. [PMID: 37393815 PMCID: PMC10529787 DOI: 10.1016/j.ceca.2023.102770] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/04/2023]
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3Rs) are ubiquitously expressed large-conductance Ca2+-permeable channels predominantly localized to the endoplasmic reticulum (ER) membranes of virtually all eukaryotic cell types. IP3Rs work as Ca2+ signaling hubs through which diverse extracellular stimuli and intracellular inputs are processed and then integrated to result in delivery of Ca2+ from the ER lumen to generate cytosolic Ca2+ signals with precise temporal and spatial properties. IP3R-mediated Ca2+ signals control a vast repertoire of cellular functions ranging from gene transcription and secretion to the more enigmatic brain activities such as learning and memory. IP3Rs open and release Ca2+ when they bind both IP3 and Ca2+, the primary channel agonists. Despite overwhelming evidence supporting functional interplay between IP3 and Ca2+ in activation and inhibition of IP3Rs, the mechanistic understanding of how IP3R channels convey their gating through the interplay of two primary agonists remains one of the major puzzles in the field. The last decade has seen much progress in the use of cryogenic electron microscopy to elucidate the molecular mechanisms of ligand binding, ion permeation, ion selectivity and gating of the IP3R channels. The results of these studies, summarized in this review, provide a prospective view of what the future holds in structural and functional research of IP3Rs.
Collapse
Affiliation(s)
- Mariah R Baker
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School at The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Guizhen Fan
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School at The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Vikas Arige
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - David I Yule
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA.
| | - Irina I Serysheva
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School at The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA.
| |
Collapse
|
3
|
Smith HA, Thillaiappan NB, Rossi AM. IP 3 receptors: An "elementary" journey from structure to signals. Cell Calcium 2023; 113:102761. [PMID: 37271052 DOI: 10.1016/j.ceca.2023.102761] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/06/2023]
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3Rs) are large tetrameric channels which sit mostly in the membrane of the endoplasmic reticulum (ER) and mediate Ca2+ release from intracellular stores in response to extracellular stimuli in almost all cells. Dual regulation of IP3Rs by IP3 and Ca2+ itself, upstream "licensing", and the arrangement of IP3Rs into small clusters in the ER membrane, allow IP3Rs to generate spatially and temporally diverse Ca2+ signals. The characteristic biphasic regulation of IP3Rs by cytosolic Ca2+ concentration underpins regenerative Ca2+ signals by Ca2+-induced Ca2+-release, while also preventing uncontrolled explosive Ca2+ release. In this way, cells can harness a simple ion such as Ca2+ as a near-universal intracellular messenger to regulate diverse cellular functions, including those with conflicting outcomes such as cell survival and cell death. High-resolution structures of the IP3R bound to IP3 and Ca2+ in different combinations have together started to unravel the workings of this giant channel. Here we discuss, in the context of recently published structures, how the tight regulation of IP3Rs and their cellular geography lead to generation of "elementary" local Ca2+ signals known as Ca2+ "puffs", which form the fundamental bottleneck through which all IP3-mediated cytosolic Ca2+ signals must first pass.
Collapse
Affiliation(s)
- Holly A Smith
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | | | - Ana M Rossi
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom.
| |
Collapse
|
4
|
Woll KA, Van Petegem F. Calcium Release Channels: Structure and Function of IP3 Receptors and Ryanodine Receptors. Physiol Rev 2021; 102:209-268. [PMID: 34280054 DOI: 10.1152/physrev.00033.2020] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ca2+-release channels are giant membrane proteins that control the release of Ca2+ from the endoplasmic and sarcoplasmic reticulum. The two members, ryanodine receptors (RyRs) and inositol-1,4,5-trisphosphate Receptors (IP3Rs), are evolutionarily related and are both activated by cytosolic Ca2+. They share a common architecture, but RyRs have evolved additional modules in the cytosolic region. Their massive size allows for the regulation by tens of proteins and small molecules, which can affect the opening and closing of the channels. In addition to Ca2+, other major triggers include IP3 for the IP3Rs, and depolarization of the plasma membrane for a particular RyR subtype. Their size has made them popular targets for study via electron microscopic methods, with current structures culminating near 3Å. The available structures have provided many new mechanistic insights int the binding of auxiliary proteins and small molecules, how these can regulate channel opening, and the mechanisms of disease-associated mutations. They also help scrutinize previously proposed binding sites, as some of these are now incompatible with the structures. Many questions remain around the structural effects of post-translational modifications, additional binding partners, and the higher-order complexes these channels can make in situ. This review summarizes our current knowledge about the structures of Ca2+-release channels and how this informs on their function.
Collapse
Affiliation(s)
- Kellie A Woll
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
5
|
Azumaya CM, Linton EA, Risener CJ, Nakagawa T, Karakas E. Cryo-EM structure of human type-3 inositol triphosphate receptor reveals the presence of a self-binding peptide that acts as an antagonist. J Biol Chem 2020; 295:1743-1753. [PMID: 31915246 PMCID: PMC7008357 DOI: 10.1074/jbc.ra119.011570] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/06/2020] [Indexed: 01/04/2023] Open
Abstract
Calcium-mediated signaling through inositol 1,4,5-triphosphate receptors (IP3Rs) is essential for the regulation of numerous physiological processes, including fertilization, muscle contraction, apoptosis, secretion, and synaptic plasticity. Deregulation of IP3Rs leads to pathological calcium signaling and is implicated in many common diseases, including cancer and neurodegenerative, autoimmune, and metabolic diseases. Revealing the mechanism of activation and inhibition of this ion channel will be critical to an improved understanding of the biological processes that are controlled by IP3Rs. Here, we report structural findings of the human type-3 IP3R (IP3R-3) obtained by cryo-EM (at an overall resolution of 3.8 Å), revealing an unanticipated regulatory mechanism where a loop distantly located in the primary sequence occupies the IP3-binding site and competitively inhibits IP3 binding. We propose that this inhibitory mechanism must differ qualitatively among IP3R subtypes because of their diverse loop sequences, potentially serving as a key molecular determinant of subtype-specific calcium signaling in IP3Rs. In summary, our structural characterization of human IP3R-3 provides critical insights into the mechanistic function of IP3Rs and into subtype-specific regulation of these important calcium-regulatory channels.
Collapse
MESH Headings
- Binding Sites
- Calcium Signaling
- Cryoelectron Microscopy
- Humans
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate Receptors/antagonists & inhibitors
- Inositol 1,4,5-Trisphosphate Receptors/chemistry
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Inositol 1,4,5-Trisphosphate Receptors/ultrastructure
- Models, Molecular
- Peptides/metabolism
- Protein Conformation
Collapse
Affiliation(s)
- Caleigh M Azumaya
- Department of Molecular Physiology and Biophysics, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232
| | - Emily A Linton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232
| | - Caitlin J Risener
- Department of Molecular Physiology and Biophysics, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232
| | - Terunaga Nakagawa
- Department of Molecular Physiology and Biophysics, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232; Center for Structural Biology, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232; Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232
| | - Erkan Karakas
- Department of Molecular Physiology and Biophysics, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232; Center for Structural Biology, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232.
| |
Collapse
|
6
|
Abstract
In the body, extracellular stimuli produce inositol 1,4,5-trisphosphate (IP3), an intracellular chemical signal that binds to the IP3 receptor (IP3R) to release calcium ions (Ca2+) from the endoplasmic reticulum. In the past 40 years, the wide-ranging functions mediated by IP3R and its genetic defects causing a variety of disorders have been unveiled. Recent cryo-electron microscopy and X-ray crystallography have resolved IP3R structures and begun to integrate with concurrent functional studies, which can explicate IP3-dependent opening of Ca2+-conducting gates placed ∼90 Å away from IP3-binding sites and its regulation by Ca2+. This review highlights recent research progress on the IP3R structure and function. We also propose how protein plasticity within IP3R, which involves allosteric gating and assembly transformations accompanied by rapid and chronic structural changes, would enable it to regulate diverse functions at cellular microdomains in pathophysiological states.
Collapse
Affiliation(s)
- Kozo Hamada
- Laboratory of Cell Calcium Signaling, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, 201210, China; ,
| | - Katsuhiko Mikoshiba
- Laboratory of Cell Calcium Signaling, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, 201210, China; ,
| |
Collapse
|
7
|
Structural Insights into IP3R Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 981:121-147. [DOI: 10.1007/978-3-319-55858-5_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
8
|
Baker MR, Fan G, Serysheva II. Structure of IP 3R channel: high-resolution insights from cryo-EM. Curr Opin Struct Biol 2017; 46:38-47. [PMID: 28618351 PMCID: PMC5683905 DOI: 10.1016/j.sbi.2017.05.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 05/08/2017] [Accepted: 05/25/2017] [Indexed: 01/19/2023]
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3Rs) are ubiquitously expressed intracellular Ca2+ channels and the major mediators of cellular Ca2+ signals generated by the release of Ca2+ ions from intracellular stores in response to a variety of extracellular stimuli. Despite established physiological significance and proven involvements of IP3R channels in many human diseases, detailed structural basis for signal detection by these ion channels and their gating remain obscure. Recently, single particle electron cryomicroscopy (cryo-EM) has yielded a long-awaited near-atomic resolution structure of the entire full-length type 1 IP3R. This structure provided exciting mechanistic insights into the molecular assembly of IP3R, revealing the pronounced structural conservation of Ca2+ release channels and raising many fundamental and controversial questions on their activation and gating. Here we summarize the major technological advances that propelled our cryo-EM analysis of IP3R to near-atomic resolution and discuss what the future holds for structural biology of Ca2+ release channels.
Collapse
Affiliation(s)
- Mariah R Baker
- Structural Biology Imaging Center, Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Guizhen Fan
- Structural Biology Imaging Center, Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Irina I Serysheva
- Structural Biology Imaging Center, Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA.
| |
Collapse
|
9
|
De Zorzi R, Mi W, Liao M, Walz T. Single-particle electron microscopy in the study of membrane protein structure. Microscopy (Oxf) 2015; 65:81-96. [PMID: 26470917 DOI: 10.1093/jmicro/dfv058] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/20/2015] [Indexed: 01/13/2023] Open
Abstract
Single-particle electron microscopy (EM) provides the great advantage that protein structure can be studied without the need to grow crystals. However, due to technical limitations, this approach played only a minor role in the study of membrane protein structure. This situation has recently changed dramatically with the introduction of direct electron detection device cameras, which allow images of unprecedented quality to be recorded, also making software algorithms, such as three-dimensional classification and structure refinement, much more powerful. The enhanced potential of single-particle EM was impressively demonstrated by delivering the first long-sought atomic model of a member of the biomedically important transient receptor potential channel family. Structures of several more membrane proteins followed in short order. This review recounts the history of single-particle EM in the study of membrane proteins, describes the technical advances that now allow this approach to generate atomic models of membrane proteins and provides a brief overview of some of the membrane protein structures that have been studied by single-particle EM to date.
Collapse
Affiliation(s)
- Rita De Zorzi
- Department of Cell Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA Howard Hughes Medical Institute, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Wei Mi
- Department of Cell Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Maofu Liao
- Department of Cell Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Thomas Walz
- Department of Cell Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA Howard Hughes Medical Institute, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
10
|
Van Petegem F. Ryanodine Receptors: Allosteric Ion Channel Giants. J Mol Biol 2015; 427:31-53. [DOI: 10.1016/j.jmb.2014.08.004] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/02/2014] [Accepted: 08/05/2014] [Indexed: 01/27/2023]
|
11
|
Serysheva II. Toward a high-resolution structure of IP₃R channel. Cell Calcium 2014; 56:125-32. [PMID: 25159857 DOI: 10.1016/j.ceca.2014.08.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 08/01/2014] [Accepted: 08/02/2014] [Indexed: 12/11/2022]
Abstract
The ability of cells to maintain low levels of Ca(2+) under resting conditions and to create rapid and transient increases in Ca(2+) upon stimulation is a fundamental property of cellular Ca(2+) signaling mechanism. An increase of cytosolic Ca(2+) level in response to diverse stimuli is largely accounted for by the inositol 1,4,5-trisphosphate receptor (IP3R) present in the endoplasmic reticulum membranes of virtually all eukaryotic cells. Extensive information is currently available on the function of IP3Rs and their interaction with modulators. Very little, however, is known about their molecular architecture and therefore most critical issues surrounding gating of IP3R channels are still ambiguous, including the central question of how opening of the IP3R pore is initiated by IP3 and Ca(2+). Membrane proteins such as IP3R channels have proven to be exceptionally difficult targets for structural analysis due to their large size, their location in the membrane environment, and their dynamic nature. To date, a 3D structure of complete IP3R channel is determined by single-particle cryo-EM at intermediate resolution, and the best crystal structures of IP3R are limited to a soluble portion of the cytoplasmic region representing ∼15% of the entire channel protein. Together these efforts provide the important structural information for this class of ion channels and serve as the basis for further studies aiming at understanding of the IP3R function.
Collapse
Affiliation(s)
- Irina I Serysheva
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA.
| |
Collapse
|
12
|
Means SA, Cheng LK. Mitochondrial calcium handling within the interstitial cells of Cajal. Am J Physiol Gastrointest Liver Physiol 2014; 307:G107-21. [PMID: 24789203 PMCID: PMC4080165 DOI: 10.1152/ajpgi.00380.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The interstitial cells of Cajal (ICC) drive rhythmic pacemaking contractions in the gastrointestinal system. The ICC generate pacemaking signals by membrane depolarizations associated with the release of intracellular calcium (Ca(2+)) in the endoplasmic reticulum (ER) through inositol-trisphosphate (IP3) receptors (IP3R) and uptake by mitochondria (MT). This Ca(2+) dynamic is hypothesized to generate pacemaking signals by calibrating ER Ca(2+) store depletions and membrane depolarization with ER store-operated Ca(2+) entry mechanisms. Using a biophysically based spatio-temporal model of integrated Ca(2+) transport in the ICC, we determined the feasibility of ER depletion timescale correspondence with experimentally observed pacemaking frequencies while considering the impact of IP3R Ca(2+) release and MT uptake on bulk cytosolic Ca(2+) levels because persistent elevations of free intracellular Ca(2+) are toxic to the cell. MT densities and distributions are varied in the model geometry to observe MT influence on free cytosolic Ca(2+) and the resulting frequencies of ER Ca(2+) store depletions, as well as the sarco-endoplasmic reticulum Ca(2+) ATP-ase (SERCA) and IP3 agonist concentrations. Our simulations show that high MT densities observed in the ICC are more relevant to ER establishing Ca(2+) depletion frequencies than protection of the cytosol from elevated free Ca(2+), whereas the SERCA pump is more relevant to containing cytosolic Ca(2+) elevations. Our results further suggest that the level of IP3 agonist stimulating ER Ca(2+) release, subsequent MT uptake, and eventual activation of ER store-operated Ca(2+) entry may determine frequencies of rhythmic pacemaking exhibited by the ICC across species and tissue types.
Collapse
Affiliation(s)
- Shawn A. Means
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Leo K. Cheng
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
13
|
Camors E, Valdivia HH. CaMKII regulation of cardiac ryanodine receptors and inositol triphosphate receptors. Front Pharmacol 2014; 5:101. [PMID: 24847270 PMCID: PMC4021131 DOI: 10.3389/fphar.2014.00101] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 04/17/2014] [Indexed: 01/08/2023] Open
Abstract
Ryanodine receptors (RyRs) and inositol triphosphate receptors (InsP3Rs) are structurally related intracellular calcium release channels that participate in multiple primary or secondary amplified Ca(2+) signals, triggering muscle contraction and oscillatory Ca(2+) waves, or activating transcription factors. In the heart, RyRs play an indisputable role in the process of excitation-contraction coupling as the main pathway for Ca(2+) release from sarcoplasmic reticulum (SR), and a less prominent role in the process of excitation-transcription coupling. Conversely, InsP3Rs are believed to contribute in subtle ways, only, to contraction of the heart, and in more important ways to regulation of transcription factors. Because uncontrolled activity of either RyRs or InsP3Rs may elicit life-threatening arrhythmogenic and/or remodeling Ca(2+) signals, regulation of their activity is of paramount importance for normal cardiac function. Due to their structural similarity, many regulatory factors, accessory proteins, and post-translational processes are equivalent for RyRs and InsP3Rs. Here we discuss regulation of RyRs and InsP3Rs by CaMKII phosphorylation, but touch on other kinases whenever appropriate. CaMKII is emerging as a powerful modulator of RyR and InsP3R activity but interestingly, some of the complexities and controversies surrounding phosphorylation of RyRs also apply to InsP3Rs, and a clear-cut effect of CaMKII on either channel eludes investigators for now. Nevertheless, some effects of CaMKII on global cellular activity, such as SR Ca(2+) leak or force-frequency potentiation, appear clear now, and this constrains the limits of the controversies and permits a more tractable approach to elucidate the effects of phosphorylation at the single channel level.
Collapse
Affiliation(s)
- Emmanuel Camors
- Division of Cardiovascular Medicine, Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor MI, USA
| | - Héctor H Valdivia
- Division of Cardiovascular Medicine, Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor MI, USA
| |
Collapse
|
14
|
Fedorenko OA, Popugaeva E, Enomoto M, Stathopulos PB, Ikura M, Bezprozvanny I. Intracellular calcium channels: inositol-1,4,5-trisphosphate receptors. Eur J Pharmacol 2013; 739:39-48. [PMID: 24300389 DOI: 10.1016/j.ejphar.2013.10.074] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 09/28/2013] [Accepted: 10/17/2013] [Indexed: 01/13/2023]
Abstract
The inositol-1,4,5-trisphosphate receptors (InsP3Rs) are the major intracellular Ca(2+)-release channels in cells. Activity of InsP3Rs is essential for elementary and global Ca(2+) events in the cell. There are three InsP3Rs isoforms that are present in mammalian cells. In this review we will focus primarily on InsP3R type 1. The InsP3R1 is a predominant isoform in neurons and it is the most extensively studied isoform. Combination of biophysical and structural methods revealed key mechanisms of InsP3R function and modulation. Cell biological and biochemical studies lead to identification of a large number of InsP3R-binding proteins. InsP3Rs are involved in the regulation of numerous physiological processes, including learning and memory, proliferation, differentiation, development and cell death. Malfunction of InsP3R1 play a role in a number of neurodegenerative disorders and other disease states. InsP3Rs represent a potentially valuable drug target for treatment of these disorders and for modulating activity of neurons and other cells. Future studies will provide better understanding of physiological functions of InsP3Rs in health and disease.
Collapse
Affiliation(s)
- Olena A Fedorenko
- Department of Brain Physiology, Bogomoletz Institute of Physiology, 01024 Kiev, Ukraine; State Key Laboratory of Molecular and Cellular Biology, 01024 Kiev, Ukraine
| | - Elena Popugaeva
- Laboratory of Molecular Neurodegeneration, Department of Medical Physics, St. Petersburg State Polytechnical University, 195251 St. Petersburg, Russia
| | - Masahiro Enomoto
- Princess Margaret Cancer Centre, Department of Medical Biophysics, University of Toronto, M5G1L7 Toronto, Ontario, Canada
| | - Peter B Stathopulos
- Princess Margaret Cancer Centre, Department of Medical Biophysics, University of Toronto, M5G1L7 Toronto, Ontario, Canada
| | - Mitsuhiko Ikura
- Princess Margaret Cancer Centre, Department of Medical Biophysics, University of Toronto, M5G1L7 Toronto, Ontario, Canada
| | - Ilya Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Department of Medical Physics, St. Petersburg State Polytechnical University, 195251 St. Petersburg, Russia; Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
15
|
Stathopulos PB, Seo MD, Enomoto M, Amador FJ, Ishiyama N, Ikura M. Themes and variations in ER/SR calcium release channels: structure and function. Physiology (Bethesda) 2013; 27:331-42. [PMID: 23223627 DOI: 10.1152/physiol.00013.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Calcium (Ca(2+)) release from reticular stores is a vital regulatory signal in eukaryotes. Recent structural data on large NH(2)-terminal regions of IP(3)Rs and RyRs and their tetrameric arrangement in the full-length context reveal striking mechanistic similarities in Ca(2+) release channel function. A common ancestor found in unicellular genomes underscores the fundamentality of these elements to Ca(2+) release channels.
Collapse
Affiliation(s)
- Peter B Stathopulos
- Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
16
|
Lyumkis D, Vinterbo S, Potter CS, Carragher B. Optimod--an automated approach for constructing and optimizing initial models for single-particle electron microscopy. J Struct Biol 2013; 184:417-26. [PMID: 24161732 DOI: 10.1016/j.jsb.2013.10.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 10/04/2013] [Accepted: 10/08/2013] [Indexed: 12/13/2022]
Abstract
Single-particle cryo-electron microscopy is now well established as a technique for the structural characterization of large macromolecules and macromolecular complexes. The raw data is very noisy and consists of two-dimensional projections, from which the 3D biological object must be reconstructed. The 3D object depends upon knowledge of proper angular orientations assigned to the 2D projection images. Numerous algorithms have been developed for determining relative angular orientations between 2D images, but the transition from 2D to 3D remains challenging and can result in erroneous and conflicting results. Here we describe a general, automated procedure, called OptiMod, for reconstructing and optimizing 3D models using common-lines methodologies. OptiMod approximates orientation angles and reconstructs independent maps from 2D class averages. It then iterates the procedure, while considering each map as a raw solution that needs to be compared with other possible outcomes. We incorporate procedures for 3D alignment, clustering, and refinement to optimize each map, as well as standard scoring metrics to facilitate the selection of the optimal model. We also show that small angle tilt-pair data can be included as one of the scoring metrics to improve the selection of the optimal initial model, and also to provide a validation check. The overall approach is demonstrated using two experimental cryo-EM data sets--the 80S ribosome that represents a relatively straightforward case for ab initio reconstruction, and the Tf-TfR complex that represents a challenging case in that it has previously been shown to provide multiple equally plausible solutions to the initial model problem.
Collapse
Affiliation(s)
- Dmitry Lyumkis
- National Resource for Automated Molecular Microscopy, The Department of Integrative Structural and Computational Biology, The Scripps Institute, La Jolla, CA 92037, United States
| | | | | | | |
Collapse
|
17
|
Avoiding the pitfalls of single particle cryo-electron microscopy: Einstein from noise. Proc Natl Acad Sci U S A 2013; 110:18037-41. [PMID: 24106306 DOI: 10.1073/pnas.1314449110] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Single particle cryo-electron microscopy is currently poised to produce high-resolution structures of many biological assemblies, but several pitfalls can trap the unwary. This critique highlights one problem that is particularly relevant when smaller structures are being studied. It is known as "Einstein from noise," in which the experimenter honestly believes they have recorded images of their particles, whereas in reality, most if not all of their data consist of pure noise. Selection of particles using cross-correlation methods can then lead to 3D maps that resemble the model used in the initial selection and provide the illusion of progress. Suggestions are given about how to circumvent the problem.
Collapse
|
18
|
Martins TV, Evans MJ, Woolfenden HC, Morris RJ. Towards the Physics of Calcium Signalling in Plants. PLANTS (BASEL, SWITZERLAND) 2013; 2:541-88. [PMID: 27137393 PMCID: PMC4844391 DOI: 10.3390/plants2040541] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/17/2013] [Accepted: 09/22/2013] [Indexed: 12/21/2022]
Abstract
Calcium is an abundant element with a wide variety of important roles within cells. Calcium ions are inter- and intra-cellular messengers that are involved in numerous signalling pathways. Fluctuating compartment-specific calcium ion concentrations can lead to localised and even plant-wide oscillations that can regulate downstream events. Understanding the mechanisms that give rise to these complex patterns that vary both in space and time can be challenging, even in cases for which individual components have been identified. Taking a systems biology approach, mathematical and computational techniques can be employed to produce models that recapitulate experimental observations and capture our current understanding of the system. Useful models make novel predictions that can be investigated and falsified experimentally. This review brings together recent work on the modelling of calcium signalling in plants, from the scale of ion channels through to plant-wide responses to external stimuli. Some in silico results that have informed later experiments are highlighted.
Collapse
Affiliation(s)
- Teresa Vaz Martins
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Matthew J Evans
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Hugh C Woolfenden
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Richard J Morris
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
19
|
Bhanumathy C, da Fonseca PCA, Morris EP, Joseph SK. Identification of functionally critical residues in the channel domain of inositol trisphosphate receptors. J Biol Chem 2012; 287:43674-84. [PMID: 23086950 PMCID: PMC3527953 DOI: 10.1074/jbc.m112.415786] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We have combined alanine mutagenesis and functional assays to identify amino acid residues in the channel domain that are critical for inositol 1,4,5-trisphosphate receptor (IP(3)R) channel function. The residues selected were highly conserved in all three IP(3)R isoforms and were located in the cytosolic end of the S6 pore-lining helix and proximal portion of the C-tail. Two adjacent hydrophobic amino acids (Ile-2588 and Ile-2589) at the putative cytosolic interface of the S6 helix inactivated channel function and could be candidates for the channel gate. Of five negatively charged residues mutated, none completely eliminated channel function. Of five positively charged residues mutated, only one inactivated the channel (Arg-2596). In addition to the previously identified role of a pair of cysteines in the C-tail (Cys-2610 and Cys-2613), a pair of highly conserved histidines (His-2630 and His-2635) were also essential for channel function. Expression of the H2630A and H2635A mutants (but not R2596A) produced receptors with destabilized interactions between the N-terminal fragment and the channel domain. A previously unrecognized association between the cytosolic C-tail and the TM 4,5-loop was demonstrated using GST pulldown assays. However, none of the mutations in the C-tail interfered with this interaction or altered the ability of the C-tail to assemble into dimers. Our present findings and recent information on IP(3)R structure from electron microscopy and crystallography are incorporated into a revised model of channel gating.
Collapse
MESH Headings
- Amino Acid Substitution
- Animals
- COS Cells
- Chlorocebus aethiops
- HEK293 Cells
- Humans
- Inositol 1,4,5-Trisphosphate Receptors/chemistry
- Inositol 1,4,5-Trisphosphate Receptors/genetics
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Ion Channel Gating/physiology
- Models, Molecular
- Mutation, Missense
- Protein Multimerization/physiology
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Rats
Collapse
Affiliation(s)
- Cunnigaiper Bhanumathy
- From the Department of Pathology and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 and
| | - Paula C. A. da Fonseca
- the Institute for Cancer Research, Chester Beatty Laboratories, London, SW3 6JB, United Kingdom
| | - Edward P. Morris
- the Institute for Cancer Research, Chester Beatty Laboratories, London, SW3 6JB, United Kingdom
| | - Suresh K. Joseph
- From the Department of Pathology and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 and
- To whom correspondence should be addressed: Dept. of Pathology & Cell Biology, Rm. 230A JAH, 1020 Locust St., Philadelphia, PA 19107. Tel.: 215-503-1222; E-mail:
| |
Collapse
|
20
|
Vais H, Foskett JK, Ullah G, Pearson JE, Mak DOD. Permeant calcium ion feed-through regulation of single inositol 1,4,5-trisphosphate receptor channel gating. ACTA ACUST UNITED AC 2012; 140:697-716. [PMID: 23148262 PMCID: PMC3514735 DOI: 10.1085/jgp.201210804] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ubiquitous inositol 1,4,5-trisphosphate (InsP(3)) receptor (InsP(3)R) Ca(2+) release channel plays a central role in the generation and modulation of intracellular Ca(2+) signals, and is intricately regulated by multiple mechanisms including cytoplasmic ligand (InsP(3), free Ca(2+), free ATP(4-)) binding, posttranslational modifications, and interactions with cytoplasmic and endoplasmic reticulum (ER) luminal proteins. However, regulation of InsP(3)R channel activity by free Ca(2+) in the ER lumen ([Ca(2+)](ER)) remains poorly understood because of limitations of Ca(2+) flux measurements and imaging techniques. Here, we used nuclear patch-clamp experiments in excised luminal-side-out configuration with perfusion solution exchange to study the effects of [Ca(2+)](ER) on homotetrameric rat type 3 InsP(3)R channel activity. In optimal [Ca(2+)](i) and subsaturating [InsP(3)], jumps of [Ca(2+)](ER) from 70 nM to 300 µM reduced channel activity significantly. This inhibition was abrogated by saturating InsP(3) but restored when [Ca(2+)](ER) was raised to 1.1 mM. In suboptimal [Ca(2+)](i), jumps of [Ca(2+)](ER) (70 nM to 300 µM) enhanced channel activity. Thus, [Ca(2+)](ER) effects on channel activity exhibited a biphasic dependence on [Ca(2+)](i). In addition, the effect of high [Ca(2+)](ER) was attenuated when a voltage was applied to oppose Ca(2+) flux through the channel. These observations can be accounted for by Ca(2+) flux driven through the open InsP(3)R channel by [Ca(2+)](ER), raising local [Ca(2+)](i) around the channel to regulate its activity through its cytoplasmic regulatory Ca(2+)-binding sites. Importantly, [Ca(2+)](ER) regulation of InsP(3)R channel activity depended on cytoplasmic Ca(2+)-buffering conditions: it was more pronounced when [Ca(2+)](i) was weakly buffered but completely abolished in strong Ca(2+)-buffering conditions. With strong cytoplasmic buffering and Ca(2+) flux sufficiently reduced by applied voltage, both activation and inhibition of InsP(3)R channel gating by physiological levels of [Ca(2+)](ER) were completely abolished. Collectively, these results rule out Ca(2+) regulation of channel activity by direct binding to the luminal aspect of the channel.
Collapse
Affiliation(s)
- Horia Vais
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
21
|
Henderson R, Sali A, Baker ML, Carragher B, Devkota B, Downing KH, Egelman EH, Feng Z, Frank J, Grigorieff N, Jiang W, Ludtke SJ, Medalia O, Penczek PA, Rosenthal PB, Rossmann MG, Schmid MF, Schröder GF, Steven AC, Stokes DL, Westbrook JD, Wriggers W, Yang H, Young J, Berman HM, Chiu W, Kleywegt GJ, Lawson CL. Outcome of the first electron microscopy validation task force meeting. Structure 2012; 20:205-14. [PMID: 22325770 PMCID: PMC3328769 DOI: 10.1016/j.str.2011.12.014] [Citation(s) in RCA: 389] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 12/29/2011] [Accepted: 12/29/2011] [Indexed: 11/10/2022]
Abstract
This Meeting Review describes the proceedings and conclusions from the inaugural meeting of the Electron Microscopy Validation Task Force organized by the Unified Data Resource for 3DEM (http://www.emdatabank.org) and held at Rutgers University in New Brunswick, NJ on September 28 and 29, 2010. At the workshop, a group of scientists involved in collecting electron microscopy data, using the data to determine three-dimensional electron microscopy (3DEM) density maps, and building molecular models into the maps explored how to assess maps, models, and other data that are deposited into the Electron Microscopy Data Bank and Protein Data Bank public data archives. The specific recommendations resulting from the workshop aim to increase the impact of 3DEM in biology and medicine.
Collapse
Affiliation(s)
- Richard Henderson
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Lusche DF, Wessels D, Scherer A, Daniels K, Kuhl S, Soll DR. The IplA Ca2+ channel of Dictyostelium discoideum is necessary for chemotaxis mediated through Ca2+, but not through cAMP, and has a fundamental role in natural aggregation. J Cell Sci 2012; 125:1770-83. [PMID: 22375061 DOI: 10.1242/jcs.098301] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
During aggregation of Dictyostelium discoideum, nondissipating, symmetrical, outwardly moving waves of cAMP direct cells towards aggregation centers. It has been assumed that the spatial and temporal characteristics of the front and back of each cAMP wave regulate both chemokinesis and chemotaxis. However, during the period preceding aggregation, cells acquire not only the capacity to chemotax in a spatial gradient of cAMP, but also in a spatial gradient of Ca(2+). The null mutant of the putative IplA Ca(2+) channel gene, iplA(-), undergoes normal chemotaxis in spatial gradients of cAMP and normal chemokinetic responses to increasing temporal gradients of cAMP, both generated in vitro. However, iplA(-) cells lose the capacity to undergo chemotaxis in response to a spatial gradient of Ca(2+), suggesting that IplA is either the Ca(2+) chemotaxis receptor or an essential component of the Ca(2+) chemotaxis regulatory pathway. In response to natural chemotactic waves generated by wild-type cells, the chemokinetic response of iplA(-) cells to the temporal dynamics of the cAMP wave is intact, but the capacity to reorient in the direction of the aggregation center at the onset of each wave is lost. These results suggest that transient Ca(2+) gradients formed between cells at the onset of each natural cAMP wave augment reorientation towards the aggregation center. If this hypothesis proves correct, it will provide a more complex contextual framework for interpreting D. discoideum chemotaxis.
Collapse
Affiliation(s)
- Daniel F Lusche
- W M Keck Dynamic Image Analysis Facility, Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
23
|
Szlufcik K, Missiaen L, Parys JB, Callewaert G, De Smedt H. Uncoupled IP3 receptor can function as a Ca2+-leak channel: cell biological and pathological consequences. Biol Cell 2012; 98:1-14. [PMID: 16354157 DOI: 10.1042/bc20050031] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ca(2+) release via intracellular release channels, IP(3)Rs (inositol 1,4,5-trisphosphate receptors) and RyRs (ryanodine receptors), is perhaps the most ubiquitous and versatile cellular signalling mechanism, and is involved in a vast number of cellular processes. In addition to this classical release pathway there is limited, but yet persistent, information about less well-defined Ca(2+)-leak pathways that may play an important role in the control of the Ca(2+) load of the endo(sarco)plasmic reticulum. The mechanisms responsible for this 'basal' leak are not known, but recent data suggest that both IP(3)Rs and RyRs may also operate as Ca(2+)-leak channels, particularly in pathological conditions. Proteolytic cleavage or biochemical modification (such as hyperphosphorylation or nitrosylation), for example, occurring during conditions of cell stress or apoptosis, can functionally uncouple the cytoplasmic control domains from the channel domain of the receptor. Highly significant information has been obtained from studies of malfunctioning channels in various disorders; for example, RyRs in cardiac malfunction or genetic muscle diseases and IP(3)Rs in neurodegenerative diseases. In this review we aim to summarize the existing information about functionally uncoupled IP(3)R and RyR channels, and to discuss the concept that those channels can participate in Ca(2+)-leak pathways.
Collapse
|
24
|
Abstract
The Ca(2) (+) signals evoked by inositol 1,4,5-trisphosphate (IP(3)) are built from elementary Ca(2) (+) release events involving progressive recruitment of IP(3) receptors (IP(3)R), intracellular Ca(2) (+) channels that are expressed in almost all animal cells. The smallest events ('blips') result from opening of single IP(3)R. Larger events ('puffs') reflect the near-synchronous opening of a small cluster of IP(3)R. These puffs become more frequent as the stimulus intensity increases and they eventually trigger regenerative Ca(2) (+) waves that propagate across the cell. This hierarchical recruitment of IP(3)R is important in allowing Ca(2) (+) signals to be delivered locally to specific target proteins or more globally to the entire cell. Co-regulation of IP(3)R by Ca(2) (+) and IP(3), the ability of a single IP(3)R rapidly to mediate a large efflux of Ca(2) (+) from the endoplasmic reticulum, and the assembly of IP(3)R into clusters are key features that allow IP(3)R to propagate Ca(2) (+) signals regeneratively. We review these properties of IP(3)R and the structural basis of IP(3)R behavior.
Collapse
Affiliation(s)
- Colin W Taylor
- Department of Pharmacology, Tennis Court Road, CB2 1PD, Cambridge, UK,
| | | |
Collapse
|
25
|
The Discovery and Structural Investigation of the IP3 Receptor and the Associated IRBIT Protein. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:281-304. [DOI: 10.1007/978-94-007-2888-2_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
26
|
Ludtke SJ, Tran TP, Ngo QT, Moiseenkova-Bell VY, Chiu W, Serysheva II. Flexible architecture of IP3R1 by Cryo-EM. Structure 2011; 19:1192-9. [PMID: 21827954 DOI: 10.1016/j.str.2011.05.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Revised: 04/28/2011] [Accepted: 05/02/2011] [Indexed: 11/16/2022]
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3Rs) play a fundamental role in generating Ca2+ signals that trigger many cellular processes in virtually all eukaryotic cells. Thus far, the three-dimensional (3D) structure of these channels has remained extremely controversial. Here, we report a subnanometer resolution electron cryomicroscopy (cryo-EM) structure of a fully functional type 1 IP3R from cerebellum in the closed state. The transmembrane region reveals a twisted bundle of four α helices, one from each subunit, that form a funnel shaped structure around the 4-fold symmetry axis, strikingly similar to the ion-conduction pore of K+ channels. The lumenal face of IP3R1 has prominent densities that surround the pore entrance and similar to the highly structured turrets of Kir channels. 3D statistical analysis of the cryo-EM density map identifies high variance in the cytoplasmic region. This structural variation could be attributed to genuine structural flexibility of IP3R1.
Collapse
Affiliation(s)
- Steven J Ludtke
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
27
|
The structural biology of ryanodine receptors. SCIENCE CHINA-LIFE SCIENCES 2011; 54:712-24. [DOI: 10.1007/s11427-011-4198-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Accepted: 05/30/2011] [Indexed: 10/18/2022]
|
28
|
Goto JI, Mikoshiba K. Inositol 1,4,5-Trisphosphate Receptor-Mediated Calcium Release in Purkinje Cells: From Molecular Mechanism to Behavior. THE CEREBELLUM 2011; 10:820-33. [DOI: 10.1007/s12311-011-0270-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
29
|
Abstract
Inositol 1,4,5-trisphosphate receptors (IP(3)R) and their relatives, ryanodine receptors, are the channels that most often mediate Ca(2+) release from intracellular stores. Their regulation by Ca(2+) allows them also to propagate cytosolic Ca(2+) signals regeneratively. This brief review addresses the structural basis of IP(3)R activation by IP(3) and Ca(2+). IP(3) initiates IP(3)R activation by promoting Ca(2+) binding to a stimulatory Ca(2+)-binding site, the identity of which is unresolved. We suggest that interactions of critical phosphate groups in IP(3) with opposite sides of the clam-like IP(3)-binding core cause it to close and propagate a conformational change toward the pore via the adjacent N-terminal suppressor domain. The pore, assembled from the last pair of transmembrane domains and the intervening pore loop from each of the four IP(3)R subunits, forms a structure in which a luminal selectivity filter and a gate at the cytosolic end of the pore control cation fluxes through the IP(3)R.
Collapse
Affiliation(s)
- Colin W Taylor
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, United Kingdom.
| | | |
Collapse
|
30
|
Vais H, Foskett JK, Daniel Mak DO. Unitary Ca(2+) current through recombinant type 3 InsP(3) receptor channels under physiological ionic conditions. J Gen Physiol 2010; 136:687-700. [PMID: 21078871 PMCID: PMC2995152 DOI: 10.1085/jgp.201010513] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 10/21/2010] [Indexed: 11/20/2022] Open
Abstract
The ubiquitous inositol 1,4,5-trisphosphate (InsP(3)) receptor (InsP(3)R) channel, localized primarily in the endoplasmic reticulum (ER) membrane, releases Ca(2+) into the cytoplasm upon binding InsP(3), generating and modulating intracellular Ca(2+) signals that regulate numerous physiological processes. Together with the number of channels activated and the open probability of the active channels, the size of the unitary Ca(2+) current (i(Ca)) passing through an open InsP(3)R channel determines the amount of Ca(2+) released from the ER store, and thus the amplitude and the spatial and temporal nature of Ca(2+) signals generated in response to extracellular stimuli. Despite its significance, i(Ca) for InsP(3)R channels in physiological ionic conditions has not been directly measured. Here, we report the first measurement of i(Ca) through an InsP(3)R channel in its native membrane environment under physiological ionic conditions. Nuclear patch clamp electrophysiology with rapid perfusion solution exchanges was used to study the conductance properties of recombinant homotetrameric rat type 3 InsP(3)R channels. Within physiological ranges of free Ca(2+) concentrations in the ER lumen ([Ca(2+)](ER)), free cytoplasmic [Ca(2+)] ([Ca(2+)](i)), and symmetric free [Mg(2+)] ([Mg(2+)](f)), the i(Ca)-[Ca(2+)](ER) relation was linear, with no detectable dependence on [Mg(2+)](f). i(Ca) was 0.15 +/- 0.01 pA for a filled ER store with 500 microM [Ca(2+)](ER). The i(Ca)-[Ca(2+)](ER) relation suggests that Ca(2+) released by an InsP(3)R channel raises [Ca(2+)](i) near the open channel to approximately 13-70 microM, depending on [Ca(2+)](ER). These measurements have implications for the activities of nearby InsP(3)-liganded InsP(3)R channels, and they confirm that Ca(2+) released by an open InsP(3)R channel is sufficient to activate neighboring channels at appropriate distances away, promoting Ca(2+)-induced Ca(2+) release.
Collapse
Affiliation(s)
- Horia Vais
- Department of Physiology and Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - J. Kevin Foskett
- Department of Physiology and Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Don-On Daniel Mak
- Department of Physiology and Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
31
|
Cárdenas C, Escobar M, García A, Osorio-Reich M, Härtel S, Foskett JK, Franzini-Armstrong C. Visualization of inositol 1,4,5-trisphosphate receptors on the nuclear envelope outer membrane by freeze-drying and rotary shadowing for electron microscopy. J Struct Biol 2010; 171:372-81. [PMID: 20457258 PMCID: PMC2916234 DOI: 10.1016/j.jsb.2010.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Accepted: 05/04/2010] [Indexed: 01/27/2023]
Abstract
The receptors for the second messenger InsP(3) comprise a family of closely related ion channels that release Ca(2+) from intracellular stores, most prominently the endoplasmic reticulum and its extension into the nuclear envelope. The precise sub-cellular localization of InsP(3)Rs and the spatial relationships among them are important for the initiation, spatial and temporal properties and propagation of local and global Ca(2+) signals, but the spatial organization of InsP(3)Rs in Ca(2+) stores is poorly characterized. Using nuclei isolated from insect Sf9 cells and freeze-dry rotary shadowing, we have addressed this by directly visualizing the cytoplasmic domain of InsP(3)R located on the cytoplasmic side of the nuclear envelope. Identification of approximately 15 nm structures as the cytoplasmic domain of InsP(3)R was indirectly supported by a marked increase in their frequency after transient transfections with cDNAs for rat types 1 and 3 InsP(3)R, and directly confirmed by gold labeling either with heparin or a specific anti-InsP(3)R antibody. Over-expression of InsP(3)R did not result in the formation of arrays or clusters with channels touching each other. Gold-labeling suggests that the channel amino terminus resides near the center of the cytoplasmic tetrameric quaternary structure. The combination of nuclear isolation with freeze-drying and rotary shadow techniques allows direct visualization of InsP(3)Rs in native nuclear envelopes and can be used to determine their spatial distribution and density.
Collapse
Affiliation(s)
- Cesar Cárdenas
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104-6085, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Mio K, Maruyama Y, Ogura T, Kawata M, Moriya T, Mio M, Sato C. Single particle reconstruction of membrane proteins: A tool for understanding the 3D structure of disease-related macromolecules. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2010; 103:122-30. [DOI: 10.1016/j.pbiomolbio.2010.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 02/06/2010] [Accepted: 03/07/2010] [Indexed: 11/28/2022]
|
33
|
Means SA, Sneyd J. Spatio-temporal calcium dynamics in pacemaking units of the interstitial cells of Cajal. J Theor Biol 2010; 267:137-52. [PMID: 20705074 DOI: 10.1016/j.jtbi.2010.08.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 08/05/2010] [Accepted: 08/05/2010] [Indexed: 01/17/2023]
Abstract
The interstitial cells of Cajal (ICC) are responsible for producing pacemaking signals that stimulate rhythmic contractions in the gastro-intestinal system. The pacemaking signals are generated by membrane depolarizations, which are in turn linked to the integrated transport of calcium between the endoplasmic reticulum (ER), through inositol-trisphosphate receptor (IP(3)R) release, and mitochondria, through the uniporter. A non-specific cation channel (NSCC) is associated with the membrane depolarizations, and is inhibited by intracellular calcium. One theory proposes that the integrated calcium transport occurs within specific regions of the ICC called "pacemaker units," and results in localized calcium concentration reductions within these units, which in turn activate the NSCC and depolarize the membrane. We have constructed a model of the spatio-temporal calcium dynamics within an ICC pacemaker unit to determine under what conditions the local calcium concentrations may reduce below baseline. We obtain reductions of calcium concentrations below baseline but only under certain conditions. Without strong and persistent stimulation of the IP(3)R, reductions of calcium below baseline occur only with a non-physiological, time-dependent uniporter. Alternatively, sufficient IP(3)R release leads to reductions of calcium below baseline, due to depletion of the ER calcium store over the time scale of seconds, although these reductions require strong mitochondrial and ER calcium uptake.
Collapse
Affiliation(s)
- Shawn A Means
- Department of Mathematics, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | | |
Collapse
|
34
|
Joseph SK. Role of thiols in the structure and function of inositol trisphosphate receptors. CURRENT TOPICS IN MEMBRANES 2010; 66:299-322. [PMID: 22353485 DOI: 10.1016/s1063-5823(10)66013-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
35
|
|
36
|
Anyatonwu G, Khan MT, Schug ZT, da Fonseca PCA, Morris EP, Joseph SK. Calcium-dependent conformational changes in inositol trisphosphate receptors. J Biol Chem 2010; 285:25085-93. [PMID: 20530483 DOI: 10.1074/jbc.m110.123208] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We have used limited trypsin digestion and reactivity with PEG-maleimides (MPEG) to study Ca(2+)-induced conformational changes of IP(3)Rs in their native membrane environment. We found that Ca(2+) decreased the formation of the 95-kDa C-terminal tryptic fragment when detected by an Ab directed at a C-terminal epitope (CT-1) but not with an Ab recognizing a protected intraluminal epitope. This suggests that Ca(2+) induces a conformational change in the IP(3)R that allows trypsin to cleave the C-terminal epitope. Half-maximal effects of Ca(2+) were observed at approximately 0.5 microm and was sensitive to inhibition by IP(3). Ca(2+) also stimulated the reaction of MPEG-5 with an endogenous thiol in the 95-kDa fragment. This effect was eliminated when six closely spaced cysteine residues proximal to the transmembrane domains were mutated (C2000S, C2008S, C2010S, C2043S, C2047S, and C2053S) or when the N-terminal suppressor domain (amino acids 1-225) was deleted. A cysteine substitution mutant introduced at the C-terminal residue (A2749C) was freely accessible to MPEG-5 or MPEG-20 in the absence of Ca(2+). However, cysteine substitution mutants in the interior of the tail were poorly reactive with MPEG-5, although reactivity was enhanced by Ca(2+). We conclude the following: a) that large conformational changes induced by Ca(2+) can be detected in IP(3)Rs in situ; b) these changes may be driven by Ca(2+) binding to the N-terminal suppressor domain and expose a group of closely spaced endogenous thiols in the channel domain; and c) that the C-terminal cytosol-exposed tail of the IP(3)R may be relatively inaccessible to regulatory proteins unless Ca(2+) is present.
Collapse
Affiliation(s)
- Georgia Anyatonwu
- Department of Pathology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | |
Collapse
|
37
|
Wolfram F, Morris E, Taylor C. Three-dimensional structure of recombinant type 1 inositol 1,4,5-trisphosphate receptor. Biochem J 2010; 428:483-9. [PMID: 20377523 PMCID: PMC3685215 DOI: 10.1042/bj20100143] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 03/29/2010] [Accepted: 04/08/2010] [Indexed: 11/17/2022]
Abstract
IP3Rs (inositol 1,4,5-trisphosphate receptors) are the intracellular channels that mediate release of Ca2+ from the endoplasmic reticulum in response to the many stimuli that evoke Ins(1,4,5)P3 formation. We characterized and purified type 1 IP3R heterologously expressed in Sf9 insect cells, and used the purified IP3R1 to determine its three-dimensional structure by electron microscopy and single-particle analysis. Recombinant IP3R1 has 4-fold symmetry with overall dimensions of approx. 19.5 nm x 19.5 nm x 17.5 nm. It comprises a small domain, which is likely to include the pore, linked by slender bridges to a large cytoplasmic domain with four petal-like regions. Our structures of recombinant IP3R1 and native cerebellar IP3R have similar appearances and dimensions. The only notable difference is the absence of a central stigma-like domain from the cytoplasmic region of recombinant IP3R1. The first structure of a recombinant IP3R is an important step towards developing three-dimensional structures of IP3R that better contribute to our understanding of the structural basis of IP3R activation.
Collapse
Key Words
- calcium channel
- electron microscopy (em)
- inositol 1,4,5-trisphosphate receptor (ip3r)
- single-particle analysis (spa)
- clm, cytosol-like medium
- ddm, dodecyl maltoside
- ecfp, enhanced cyan fluorescent protein
- em, electron microscopy
- er, endoplasmic reticulum
- ip3r, inositol 1,4,5-trisphosphate receptor
- pbm, phosphate-buffered medium
- peg, poly(ethylene glycol)
- ryr, ryanodine receptor
- spa, single-particle analysis
- tem, tris/edta medium
Collapse
Affiliation(s)
- Francis Wolfram
- *Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| | - Edward Morris
- †Section of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, London SW3 6JB, U.K
| | - Colin W. Taylor
- *Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| |
Collapse
|
38
|
Taylor CW, Rahman T, Tovey SC, Dedos SG, Taylor EJA, Velamakanni S. IP3 receptors: some lessons from DT40 cells. Immunol Rev 2009; 231:23-44. [PMID: 19754888 DOI: 10.1111/j.1600-065x.2009.00807.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inositol-1,4,5-trisphosphate receptors (IP3Rs) are intracellular Ca2+ channels that are regulated by IP3 and Ca2+ and are modulated by many additional signals. These properties allow them to initiate and, via Ca2+-induced Ca2+ release, regeneratively propagate Ca2+ signals evoked by receptors that stimulate formation of IP3. The ubiquitous expression of IP3R highlights their importance, but it also presents problems when attempting to resolve the behavior of defined IP3R. DT40 cells are a pre-B-lymphocyte cell line in which high rates of homologous recombination afford unrivalled opportunities to disrupt endogenous genes. DT40-knockout cells with both alleles of each of the three IP3R genes disrupted provide the only null-background for analysis of homogenous recombinant IP3R. We review the properties of DT40 cells and consider three areas where they have contributed to understanding IP3R behavior. Patch-clamp recording from the nuclear envelope and Ca2+ release from intracellular stores loaded with a low-affinity Ca2+ indicator address the mechanisms leading to activation of IP(3)R. We show that IP3 causes intracellular IP3R to cluster and re-tune their responses to IP3 and Ca2+, better equipping them to mediate regenerative Ca2+ signals. Finally, we show that DT40 cells reliably count very few IP3R into the plasma membrane, where they mediate about half the Ca2+ entry evoked by the B-cell antigen receptor.
Collapse
Affiliation(s)
- Colin W Taylor
- Department of Pharmacology, University of Cambridge, Cambridge, UK.
| | | | | | | | | | | |
Collapse
|
39
|
Taylor CW, Pantazaka E. Targeting and clustering of IP3 receptors: key determinants of spatially organized Ca2+ signals. CHAOS (WOODBURY, N.Y.) 2009; 19:037102. [PMID: 19798811 DOI: 10.1063/1.3127593] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3R) are intracellular Ca2+ channels that are almost ubiquitously expressed in animal cells. The spatiotemporal complexity of the Ca2+ signals evoked by IP3R underlies their versatility in cellular signaling. Here we review the mechanisms that contribute to the subcellular targeting of IP3R and the dynamic interplay between IP3R that underpin their ability to generate complex intracellular Ca2+ signals.
Collapse
|
40
|
Béliveau E, Guillemette G. Microfilament and microtubule assembly is required for the propagation of inositol trisphosphate receptor-induced Ca2+ waves in bovine aortic endothelial cells. J Cell Biochem 2009; 106:344-52. [PMID: 19097121 DOI: 10.1002/jcb.22011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ca2+ is a highly versatile second messenger that plays a key role in the regulation of numerous cell processes. One-way cells ensure the specificity and reliability of Ca2+ signals is by organizing them spatially in the form of waves that propagate throughout the cell or within a specific subcellular region. In non-excitable cells, the inositol 1,4,5-trisphosphate receptor (IP3R) is responsible for the release of Ca2+ from the endoplasmic reticulum. The spatial aspect of the Ca2+ signal depends on the organization of various elements of the Ca2+ signaling toolkit and varies from tissue to tissue. Ca2+ is implicated in many of endothelium functions that thus depend on the versatility of Ca2+ signaling. In the present study, we showed that the disruption of caveolae microdomains in bovine aortic endothelial cells (BAEC) with methyl-beta-cyclodextrin was not sufficient to disorganize the propagation of Ca2+ waves when the cells were stimulated with ATP or bradykinin. However, disorganizing microfilaments with latrunculin B and microtubules with colchicine both prevented the formation of Ca2+ waves. These results suggest that the organization of the Ca2+ waves mediated by IP3R channels does not depend on the integrity of caveolae in BAEC, but that microtubule and microfilament cytoskeleton assembly is crucial.
Collapse
Affiliation(s)
- Eric Béliveau
- Faculty of Medicine and Health Sciences, Department of Pharmacology, Université de Sherbrooke, Sherbrooke, Quebec J1H5N4, Canada
| | | |
Collapse
|
41
|
Pearce MMP, Wormer DB, Wilkens S, Wojcikiewicz RJH. An endoplasmic reticulum (ER) membrane complex composed of SPFH1 and SPFH2 mediates the ER-associated degradation of inositol 1,4,5-trisphosphate receptors. J Biol Chem 2009; 284:10433-45. [PMID: 19240031 DOI: 10.1074/jbc.m809801200] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
How endoplasmic reticulum (ER) proteins that are substrates for the ER-associated degradation (ERAD) pathway are recognized for polyubiquitination and proteasomal degradation is largely unresolved. Inositol 1,4,5-trisphosphate receptors (IP(3)Rs) form tetrameric calcium channels in ER membranes, whose primary role is to control the release of ER calcium stores, but whose levels are also regulated, in an activation-dependent manner, by the ERAD pathway. Here we report that the ER membrane protein SPFH1 and its homolog SPFH2 form a heteromeric approximately 2 MDa complex that binds to IP(3)R tetramers immediately after their activation and is required for their processing. The complex is ring-shaped (diameter approximately 250A(),) and RNA interference-mediated depletion of SPFH1 and SPFH2 blocks IP(3)R polyubiquitination and degradation. We propose that this novel SPFH1/2 complex is a recognition factor that targets IP(3)Rs and perhaps other substrates for ERAD.
Collapse
Affiliation(s)
- Margaret M P Pearce
- Departments of Pharmacology and Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York 13210, USA
| | | | | | | |
Collapse
|
42
|
Anyatonwu G, Joseph SK. Surface accessibility and conformational changes in the N-terminal domain of type I inositol trisphosphate receptors: studies using cysteine substitution mutagenesis. J Biol Chem 2009; 284:8093-102. [PMID: 19141613 DOI: 10.1074/jbc.m806932200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To identify surface-accessible residues and monitor conformational changes of the type I inositol 1,4,5-trisphosphate receptor protein in membranes, we have introduced 10 cysteine substitutions into the N-terminal ligand-binding domain. The reactivity of these mutants with progressively larger maleimide-polyethylene glycol derivatives (MPEG) was measured using a gel shift assay of tryptic fragments. The results indicate that the mutations fall into four categories as follows: sites that are highly accessible based on reactivity with the largest 20-kDa MPEG (S2C); sites that are moderately accessible based on reactivity only with 5-kDa MPEG (S6C, S7C, A189C, and S277C); sites whose accessibility is markedly enhanced by Ca(2+) (S171C, S277C, and A575C); and sites that are inaccessible irrespective of incubation conditions (S217C, A245C, and S436C). The stimulation of accessibility induced by Ca(2+) at the S277C site occurred with an EC(50) of 0.8 mum and was mimicked by Sr(2+) but not Ba(2+). Inositol 1,4,5-trisphosphate alone did not affect reactivity of any of the mutants in the presence or absence of Ca(2+). The data are interpreted using crystal structures and EM reconstructions of the receptor. Our data identify N-terminal regions of the protein that become exposed upon Ca(2+) binding and suggest possible orientations of the suppressor and ligand-binding domains that have implications for the mechanism of gating of the channel.
Collapse
Affiliation(s)
- Georgia Anyatonwu
- Department of Pathology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | |
Collapse
|
43
|
Solovey G, Fraiman D, Pando B, Ponce Dawson S. Simplified model of cytosolic Ca2+ dynamics in the presence of one or several clusters of Ca2+ -release channels. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 78:041915. [PMID: 18999463 DOI: 10.1103/physreve.78.041915] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Indexed: 05/27/2023]
Abstract
Calcium release from intracellular stores plays a key role in the regulation of a variety of cellular activities. In various cell types this release occurs through inositol-triphosphate (IP3) receptors which are Ca2+ channels whose open probability is modulated by the cytosolic Ca2+ concentration itself. Thus, the combination of Ca2+ release and Ca2+ diffusion evokes a variety of Ca2+ signals depending on the number and relative location of the channels that participate of them. In fact, a hierarchy of Ca2+ signals has been observed in Xenopus laevis oocytes, ranging from very localized events (puffs and blips) to waves that propagate throughout the cell. In this cell type channels are organized in clusters. The behavior of individual channels within a cluster cannot be resolved with current optical techniques. Therefore, a combination of experiments and mathematical modeling is unavoidable to understand these signals. However, the numerical simulation of a detailed mathematical model of the problem is very hard given the large range of spatial and temporal scales that must be covered. In this paper we present an alternative model in which the cluster region is modeled using a relatively fine grid but where several approximations are made to compute the cytosolic Ca2+ concentration ([Ca;{2+}]) distribution. The inner-cluster [Ca;{2+}] distribution is used to determine the openings and closings of the channels of the cluster. The spatiotemporal [Ca;{2+}] distribution outside the cluster is determined using a coarser grid in which each (active) cluster is represented by a point source whose current is proportional to the number of open channels determined before. A full reaction-diffusion system is solved on this coarser grid.
Collapse
Affiliation(s)
- G Solovey
- Departamento de Física, FCEN-UBA, Ciudad Universitaria, Pabellón I, (1428) Buenos Aires, Argentina
| | | | | | | |
Collapse
|
44
|
Kline CF, Cunha SR, Lowe JS, Hund TJ, Mohler PJ. Revisiting ankyrin-InsP3 receptor interactions: ankyrin-B associates with the cytoplasmic N-terminus of the InsP3 receptor. J Cell Biochem 2008; 104:1244-53. [PMID: 18275062 PMCID: PMC2858327 DOI: 10.1002/jcb.21704] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Inositol 1,4,5-trisphosphate (InsP(3)) receptors are calcium-release channels found in the endoplasmic/sarcoplasmic reticulum (ER/SR) membrane of diverse cell types. InsP(3) receptors release Ca(2+) from ER/SR lumenal stores in response to InsP(3) generated from various stimuli. The complex spatial and temporal patterns of InsP(3) receptor-mediated Ca(2+) release regulate many cellular processes, ranging from gene transcription to memory. Ankyrins are adaptor proteins implicated in the targeting of ion channels and transporters to specialized membrane domains. Multiple independent studies have documented in vitro and in vivo interactions between ankyrin polypeptides and the InsP(3) receptor. Moreover, loss of ankyrin-B leads to loss of InsP(3) receptor membrane expression and stability in cardiomyocytes. Despite extensive biochemical and functional data, the validity of in vivo ankyrin-InsP(3) receptor interactions remains controversial. This controversy is based on inconsistencies between a previously identified ankyrin-binding region on the InsP(3) receptor and InsP(3) receptor topology data that demonstrate the inaccessibility of this lumenal binding site on the InsP(3) receptor to cytosolic ankyrin polypeptides. Here we use two methods to revisit the requirements on InsP(3) receptor for ankyrin binding. We demonstrate that ankyrin-B interacts with the cytoplasmic N-terminal domain of InsP(3) receptor. In summary, our findings demonstrate that the ankyrin-binding site is located on the cytoplasmic face of the InsP(3) receptor, thus validating the feasibility of in vivo ankyrin-InsP(3) receptor interactions.
Collapse
Affiliation(s)
- Crystal F. Kline
- Department of Internal Medicine, Division of Cardiology, University of Iowa Carver College of Medicine; Iowa City, IA 52242
- Graduate Program in Molecular Pathology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Shane R. Cunha
- Department of Internal Medicine, Division of Cardiology, University of Iowa Carver College of Medicine; Iowa City, IA 52242
| | - John S. Lowe
- Department of Internal Medicine, Division of Cardiology, University of Iowa Carver College of Medicine; Iowa City, IA 52242
- Graduate Program in Molecular Pathology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Thomas J. Hund
- Department of Internal Medicine, Division of Cardiology, University of Iowa Carver College of Medicine; Iowa City, IA 52242
| | - Peter J. Mohler
- Department of Internal Medicine, Division of Cardiology, University of Iowa Carver College of Medicine; Iowa City, IA 52242
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine; Iowa City, IA 52242
| |
Collapse
|
45
|
Abstract
Inositol 1,4,5-trisphosphate (IP(3)) is a second messenger that induces the release of Ca(2+) from the endoplasmic reticulum (ER). The IP(3) receptor (IP(3)R) was discovered as a developmentally regulated glyco-phosphoprotein, P400, that was missing in strains of mutant mice. IP(3)R can allosterically and dynamically change its form in a reversible manner. The crystal structures of the IP(3)-binding core and N-terminal suppressor sequence of IP(3)R have been identified. An IP(3) indicator (known as IP(3)R-based IP(3) sensor) was developed from the IP(3)-binding core. The IP(3)-binding core's affinity to IP(3) is very similar among the three isoforms of IP(3)R; instead, the N-terminal IP(3) binding suppressor region is responsible for isoform-specific IP(3)-binding affinity tuning. Various pathways for the trafficking of IP(3)R have been identified; for example, the ER forms a meshwork upon which IP(3)R moves by lateral diffusion, and vesicular ER subcompartments containing IP(3)R move rapidly along microtubles using a kinesin motor. Furthermore, IP(3)R mRNA within mRNA granules also moves along microtubules. IP(3)Rs are involved in exocrine secretion. ERp44 works as a redox sensor in the ER and regulates IP(3)R1 activity. IP(3) has been found to release Ca(2+), but it also releases IRBIT (IP(3)R-binding protein released with IP(3)). IRBIT is a pseudo-ligand for IP(3) that regulates the frequency and amplitude of Ca(2+) oscillations through IP(3)R. IRBIT binds to pancreas-type Na, bicarbonate co-transporter 1, which is important for acid-base balance. The presence of many kinds of binding partners, like homer, protein 4.1N, huntingtin-associated protein-1A, protein phosphatases (PPI and PP2A), RACK1, ankyrin, chromogranin, carbonic anhydrase-related protein, IRBIT, Na,K-ATPase, and ERp44, suggest that IP(3)Rs form a macro signal complex and function as a center for signaling cascades. The structure of IP(3)R1, as revealed by cryoelectron microscopy, fits closely with these molecules.
Collapse
Affiliation(s)
- Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute and Calcium Oscillation Project, ICORP-SORST, Hirosawa, Wako-shi, Saitama, Japan
| |
Collapse
|
46
|
Chan J, Whitten AE, Jeffries CM, Bosanac I, Mal TK, Ito J, Porumb H, Michikawa T, Mikoshiba K, Trewhella J, Ikura M. Ligand-induced Conformational Changes via Flexible Linkers in the Amino-terminal region of the Inositol 1,4,5-Trisphosphate Receptor. J Mol Biol 2007; 373:1269-80. [PMID: 17915250 DOI: 10.1016/j.jmb.2007.08.057] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Revised: 08/24/2007] [Accepted: 08/24/2007] [Indexed: 11/18/2022]
Abstract
Cytoplasmic Ca2+ signals are highly regulated by various ion transporters, including the inositol 1,4,5-trisphosphate (IP(3)) receptor (IP(3)R), which functions as a Ca2+ release channel on the endoplasmic reticulum membrane. Crystal structures of the two N-terminal regulatory regions from type 1 IP(3)R have been reported; those of the IP(3)-binding core (IP(3)R(CORE)) with bound IP(3), and the suppressor domain. This study examines the structural effects of ligand binding on an IP(3)R construct, designated IP(3)R(N), that contains both the IP(3)-binding core and the suppressor domain. Our circular dichroism results reveal that the IP(3)-bound and IP(3)-free states have similar secondary structure content, consistent with preservation of the overall fold within the individual domains. Thermal denaturation data show that, while IP(3) has a large effect on the stability of IP(3)R(CORE), it has little effect on IP(3)R(N), indicating that the suppressor domain is critical to the stability of IP(3)R(N). The NMR data for IP(3)R(N) provide evidence for chemical exchange, which may be due to protein conformational dynamics in both apo and IP(3)-bound states: a conclusion supported by the small-angle X-ray scattering data. Further, the scattering data show that IP(3)R(N) undergoes a change in average conformation in response to IP(3) binding and the presence of Ca2+ in the solution. Taken together, these data lead us to propose that there are two flexible linkers in the N-terminal region of IP(3)R that join stably folded domains and give rise to an equilibrium mixture of conformational sub-states containing compact and more extended structures. IP(3) binding drives the conformational equilibrium toward more compact structures, while the presence of Ca2+ drives it to a more extended set.
Collapse
Affiliation(s)
- Jenny Chan
- Division of Signaling Biology, Ontario Cancer Institute, Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada M5G 1L7
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
The inositol 1,4,5-trisphosphate (InsP3) receptors (InsP3Rs) are a family of Ca2+ release channels localized predominately in the endoplasmic reticulum of all cell types. They function to release Ca2+ into the cytoplasm in response to InsP3 produced by diverse stimuli, generating complex local and global Ca2+ signals that regulate numerous cell physiological processes ranging from gene transcription to secretion to learning and memory. The InsP3R is a calcium-selective cation channel whose gating is regulated not only by InsP3, but by other ligands as well, in particular cytoplasmic Ca2+. Over the last decade, detailed quantitative studies of InsP3R channel function and its regulation by ligands and interacting proteins have provided new insights into a remarkable richness of channel regulation and of the structural aspects that underlie signal transduction and permeation. Here, we focus on these developments and review and synthesize the literature regarding the structure and single-channel properties of the InsP3R.
Collapse
Affiliation(s)
- J Kevin Foskett
- Department of Physiology, University of Pennsylvania, Philadelphia 19104-6085, USA.
| | | | | | | |
Collapse
|
48
|
Valério P, Pereira MM, Goes AM, Leite MF. BG60S dissolution interferes with osteoblast calcium signals. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2007; 18:265-71. [PMID: 17323157 DOI: 10.1007/s10856-006-0688-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Accepted: 08/23/2006] [Indexed: 05/14/2023]
Abstract
We investigated the influence of extracellular calcium concentration, caused by the dissolution of a bioactive glass with 60% of silicon (BG60S), on intracellular calcium (Ca(i) (2 +)) signals and expression of inositol 1, 4, 5-triphosphate receptors (InsP(3)R) in primary culture of osteoblasts. We found that BG60S caused an increase in Ca(i) (2 +) signals in this cell type. Additionally, osteoblasts pre-incubated in the presence of BG60S showed an increase in Ca(i) (2 +) when cells were stimulated with vasopressin. On the other hand, a decrease in Ca(i) (2 +) signals were observed in osteoblasts pre-treated with BG60S and stimulated with KCl. We furher found that in osteoblasts, the type I InsP(3)R is preferentially distributed in the nucleus while the type II InsP(3)R in the cytoplasm. Preincubation of osteoblasts with BG60S altered the receptor expression level, increasing the type I InsP(3)R in the nucleus and decreasing type II InsP(3)R in the cytosol. Together, our results showed that in osteoblasts, BG60S increased Ca(i) (2 +)signals and altered Ca(i) (2 +) machinery.
Collapse
Affiliation(s)
- P Valério
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Av Antonio Carlos 6627, Pampulha, ICB, Bloco A4, Belo Horizonte, MG, Brazil.
| | | | | | | |
Collapse
|
49
|
Means S, Smith AJ, Shepherd J, Shadid J, Fowler J, Wojcikiewicz RJH, Mazel T, Smith GD, Wilson BS. Reaction diffusion modeling of calcium dynamics with realistic ER geometry. Biophys J 2006; 91:537-57. [PMID: 16617072 PMCID: PMC1483115 DOI: 10.1529/biophysj.105.075036] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Accepted: 03/15/2006] [Indexed: 11/18/2022] Open
Abstract
We describe a finite-element model of mast cell calcium dynamics that incorporates the endoplasmic reticulum's complex geometry. The model is built upon a three-dimensional reconstruction of the endoplasmic reticulum (ER) from an electron tomographic tilt series. Tetrahedral meshes provide volumetric representations of the ER lumen, ER membrane, cytoplasm, and plasma membrane. The reaction-diffusion model simultaneously tracks changes in cytoplasmic and ER intraluminal calcium concentrations and includes luminal and cytoplasmic protein buffers. Transport fluxes via PMCA, SERCA, ER leakage, and Type II IP3 receptors are also represented. Unique features of the model include stochastic behavior of IP3 receptor calcium channels and comparisons of channel open times when diffusely distributed or aggregated in clusters on the ER surface. Simulations show that IP3R channels in close proximity modulate activity of their neighbors through local Ca2+ feedback effects. Cytoplasmic calcium levels rise higher, and ER luminal calcium concentrations drop lower, after IP3-mediated release from receptors in the diffuse configuration. Simulation results also suggest that the buffering capacity of the ER, and not restricted diffusion, is the predominant factor influencing average luminal calcium concentrations.
Collapse
Affiliation(s)
- Shawn Means
- Sandia National Laboratory, Albuquerque, New Mexico, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Inositol 1,4,5-trisphosphate (IP(3)) receptor is a Ca(2+) release channel localized on the endoplasmic reticulum (ER) and plays an important role in neuronal function. IP(3) receptor was discovered as a developmentally regulated protein missing in the cerebellar mutant mice. Recent studies indicate that IP(3)Rs are involved in early development and neuronal plasticity. IP(3) works to release IRBIT from the IP(3) binding core in addition to release Ca(2+). IRBIT binds to and activates Na, Bicarbonate cotransporter. Electron microscopic study show the IP(3) receptor has allosteric property to change its form from square to windmill in the presence of Ca(2+). IP(3)R associates with ERp44, a redox sensor, Homer, other proteins and is transported as vesicular ER on microtubules. All these data suggests IP(3) receptor/CA(2+) channel works as a signaling center inside cells.
Collapse
Affiliation(s)
- Katsuhiko Mikoshiba
- The Institute of Medical Science, The University of Tokyo, RIKEN, Brain Science Institute, Calcium Oscillation Project, SORST, JST, Tokyo, Japan.
| |
Collapse
|