1
|
Gao J, Yin J, Li S, Jia P, Hong R, Chen J, Qu X, Zhang Z, Li M, Zhao H. Discovery of 4-(4-(3-(1-(2-(piperidin-1-yl)ethyl)-1H-benzo[d]imidazole-2-yl)isoxazol-5-yl)phenyl)morpholine as a novel c-Myc inhibitor against lung cancer in vitro and in vivo. Eur J Med Chem 2025; 281:117023. [PMID: 39531932 DOI: 10.1016/j.ejmech.2024.117023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/09/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
The critical role of c-Myc as a driving factor in the development and progression of lung cancer establishes it as a pivotal target for anti-lung cancer therapeutic research. In our previous study, we reported on the discovery of D347-2761, a novel small-molecule inhibitor that specifically targets the unstable domain of c-Myc and disrupts the c-Myc/Max heterodimer. To enhance targeted therapies further, we conducted an extensive structural analysis and designed a series of innovative benzimidazole derivatives. The cytotoxic activities of these compounds were assessed using the CCK-8 assay, revealing that compound A1 displayed IC50 values of 6.32 μM and 11.39 μM against the A549 and NCI-H1299 lung cancer cell lines, respectively, while compound A5 exhibited IC50 values of 4.08 μM and 7.86 μM against the same cell lines. Our findings revealed that compounds A1 and A5 exhibited potent anticancer activity by disrupting the interaction between c-Myc and Max proteins, leading to the downregulation of c-Myc protein levels and induction of apoptosis through apoptotic pathways. Notably, compound A5 demonstrated superior inhibitory capacity compared to other compounds tested. Furthermore, in a syngeneic tumor model, compound A5 exhibited excellent efficacy with a tumor growth inhibition rate reaching up to 76.4 %, accompanied by a significant reduction in c-Myc protein expression levels. Therefore, compound A5 holds promise as a potential agent for targeting c-Myc in anti-lung cancer therapy.
Collapse
Affiliation(s)
- Jian Gao
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Jiacheng Yin
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Shihao Li
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Pingting Jia
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Renjie Hong
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Jiahui Chen
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Xinxin Qu
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Zihui Zhang
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Mengting Li
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Hui Zhao
- School of Medicine, Anhui University of Science and Technology, Huainan, China.
| |
Collapse
|
2
|
Li S, Wang Y, Yin J, Li K, Liu L, Gao J. Design, synthesis, and activity evaluation of 2-iminobenzimidazoles as c-Myc inhibitors for treating multiple myeloma. Heliyon 2024; 10:e28411. [PMID: 38590884 PMCID: PMC10999938 DOI: 10.1016/j.heliyon.2024.e28411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 04/10/2024] Open
Abstract
Multiple myeloma (MM) is a plasma cell malignancy that remains incurable and poses a significant threat to global public health. The multifunctional transcription factor c-Myc plays a crucial role in various cellular processes and is closely associated with MM progression. As part of the basic-helix-loop-helix-leucine zipper (bHLHZip) family, c-Myc forms heterodimers with its obligate partner Max, binds to the Enhancer-box (E-box) of DNA, and ultimately co-regulates gene expression. Therefore, impeding the capacity for heterodimerization to bind to DNA represents a favored strategy in thwarting c-Myc transcription. In this study, we first synthesized a series of novel 2-iminobenzimidazole derivatives and further estimated their potential anti-MM activity. Notably, among all the derivatives, 5b and 5d demonstrated remarkable inhibitory activity against RPMI-8226 and U266 cells, with IC50 values of 0.85 μM and 0.97 μM for compound 5b, and 0.96 μM and 0.89 μM for compound 5d. Western blot and dual-luciferase reporter assays demonstrated that compounds 5b and 5d effectively suppressed both c-Myc protein expression and transcriptional activity of the c-Myc promoter in RPMI-8226 and U266 cells. Furthermore, these compounds induced apoptosis and G1 cell cycle arrest in the aforementioned MM cells. Molecular docking studies revealed that 5b and 5d exhibited strong binding affinity to the interface between c-Myc/Max and E-box of DNA. Taken together, our findings suggest that further investigations are warranted for potential therapeutic applications of 5b and 5d for c-Myc-related diseases.
Collapse
Affiliation(s)
- Shihao Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Yinchuan Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Jiacheng Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Kaihang Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Linlin Liu
- College of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Jian Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
- School of Medicine, Anhui University of Science and Technology, Huainan, PR China
| |
Collapse
|
3
|
Papadimitropoulou A, Makri M, Zoidis G. MYC the oncogene from hell: Novel opportunities for cancer therapy. Eur J Med Chem 2024; 267:116194. [PMID: 38340508 DOI: 10.1016/j.ejmech.2024.116194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024]
Abstract
Cancer comprises a heterogeneous disease, characterized by diverse features such as constitutive expression of oncogenes and/or downregulation of tumor suppressor genes. MYC constitutes a master transcriptional regulator, involved in many cellular functions and is aberrantly expressed in more than 70 % of human cancers. The Myc protein belongs to a family of transcription factors whose structural pattern is referred to as basic helix-loop-helix-leucine zipper. Myc binds to its partner, a smaller protein called Max, forming an Myc:Max heterodimeric complex that interacts with specific DNA recognition sequences (E-boxes) and regulates the expression of downstream target genes. Myc protein plays a fundamental role for the life of a cell, as it is involved in many physiological functions such as proliferation, growth and development since it controls the expression of a very large percentage of genes (∼15 %). However, despite the strict control of MYC expression in normal cells, MYC is often deregulated in cancer, exhibiting a key role in stimulating oncogenic process affecting features such as aberrant proliferation, differentiation, angiogenesis, genomic instability and oncogenic transformation. In this review we aim to meticulously describe the fundamental role of MYC in tumorigenesis and highlight its importance as an anticancer drug target. We focus mainly on the different categories of novel small molecules that act as inhibitors of Myc function in diverse ways hence offering great opportunities for an efficient cancer therapy. This knowledge will provide significant information for the development of novel Myc inhibitors and assist to the design of treatments that would effectively act against Myc-dependent cancers.
Collapse
Affiliation(s)
- Adriana Papadimitropoulou
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, 11527, Greece
| | - Maria Makri
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, GR-15771, Athens, Greece
| | - Grigoris Zoidis
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, GR-15771, Athens, Greece.
| |
Collapse
|
4
|
Di X, Pan Y, Yan J, Liu J, Wen D, Jiang H, Zhang S. Therapeutic potential of anti-PIK3CG treatment for multiple myeloma via inhibiting c-Myc pathway. Heliyon 2024; 10:e23165. [PMID: 38163179 PMCID: PMC10756980 DOI: 10.1016/j.heliyon.2023.e23165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
Multiple myeloma (MM) is a malignant plasma cell disease. The activity of PIK3CG (PI3K catalytic subunit γ) is regulated directly by G-protein-coupled receptor and has been confirmed to be highly expressed in MM cells. This study aimed to determine the effect of pharmacological inhibition of PIK3CG on MM. We found that different concentrations of the PIK3CG inhibitor AS-605240 could suppress the growth of MM cell lines and the expression of c-Myc. The combination of PIK3CG inhibitor and the chemotherapy Melphalan could effectively inhibit the proliferation and migration of MM cells, promote the cell apoptosis, and decrease the ratio of Bcl-2/Bax and the expression of vimentin. The expression of proto-oncogene c-Myc was decreased and the sensitivity of cells to chemotherapeutic drugs was enhanced. Collectively, PIK3CG regulates growth of MM via c-Myc pathway, thus emerging as a promising molecular targeted therapy.
Collapse
Affiliation(s)
- Xiaotang Di
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Yiwen Pan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, 410013, China
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, 710061, China
| | - Jinhua Yan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Jing Liu
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Doudou Wen
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Hao Jiang
- Department of Biomedical Informatics, School of Life Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Shubing Zhang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, 410013, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan, 410013, China
| |
Collapse
|
5
|
Nakamura K, Asanuma K, Okamoto T, Iino T, Hagi T, Nakamura T, Sudo A. Combination of Everolimus and Bortezomib Inhibits the Growth and Metastasis of Bone and Soft Tissue Sarcomas via JNK/p38/ERK MAPK and AKT Pathways. Cancers (Basel) 2023; 15:cancers15092468. [PMID: 37173935 PMCID: PMC10177427 DOI: 10.3390/cancers15092468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
The combination of the mammalian target of rapamycin and proteasome inhibitors is a new treatment strategy for various tumors. Herein, we investigated the synergistic effect of everolimus and bortezomib on tumor growth and metastasis in bone and soft tissue sarcomas. The antitumor effects of everolimus and bortezomib were assessed in a human fibrosarcoma (FS) cell line (HT1080) and mouse osteosarcoma (OS) cell line (LM8) by MTS assays and Western blotting. The effects of everolimus and bortezomib on HT1080 and LM8 tumor growth in xenograft mouse models were evaluated using tumor volume and the number of metastatic nodes of the resected lungs. Immunohistochemistry was used to evaluate cleaved PARP expression. The combination therapy decreased FS and OS cell proliferation compared with either drug alone. This combination induced more intense p-p38, p-JNK, and p-ERK and activated apoptosis signals, such as caspase-3, compared with single-agent treatment. The combination treatment reduced p-AKT and MYC expression, decreased FS and OS tumor volumes, and suppressed lung metastases of OS. The combination therapy inhibited tumor growth in FS and OS and metastatic progression of OS via the JNK/p38/ERK MAPK and AKT pathways. These results could aid in the development of new therapeutic strategies for sarcomas.
Collapse
Affiliation(s)
- Koichi Nakamura
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu 514-0001, Japan
| | - Kunihiro Asanuma
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu 514-0001, Japan
| | - Takayuki Okamoto
- Department of Pharmacology, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan
| | - Takahiro Iino
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu 514-0001, Japan
| | - Tomohito Hagi
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu 514-0001, Japan
| | - Tomoki Nakamura
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu 514-0001, Japan
| | - Akihiro Sudo
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu 514-0001, Japan
| |
Collapse
|
6
|
Mamalis D, Panagiotopoulou A, Couladouros EA, Tzeli D, Vidali VP. A DFT Study towards the Amide cis‐trans Isomerization Process of the Myc‐Max Inhibitor Mycro 3 and Its Photophysical Properties; Synthesis and NMR Studies of the trans‐Conformation. ChemistrySelect 2022. [DOI: 10.1002/slct.202201639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dimitrios Mamalis
- Laboratory of Physical Chemistry Department of Chemistry National and Kapodistrian University of Athens Panepistimiopolis Athens 157 71 Greece
- Institute of Nanoscience and Nanotechnology National Center for Scientific Research “Demokritos” Ag. Paraskevi 153 41 Athens Greece
- Theoretical and Physical Chemistry Institute National Hellenic Research Foundation, 48 Vassileos Constantinou Ave. Athens 116 35 Greece
| | - Angeliki Panagiotopoulou
- Institute of Biosciences and Applications National Center for Scientific Research “Demokritos”, Ag. Paraskevi 153 41 Athens Greece
| | - Elias A. Couladouros
- Agricultural University of Athens Department of Food Science and Human Nutrition Iera Odos 75 Athens 118 55 Greece
| | - Demeter Tzeli
- Laboratory of Physical Chemistry Department of Chemistry National and Kapodistrian University of Athens Panepistimiopolis Athens 157 71 Greece
- Theoretical and Physical Chemistry Institute National Hellenic Research Foundation, 48 Vassileos Constantinou Ave. Athens 116 35 Greece
| | - Veroniki P. Vidali
- Institute of Nanoscience and Nanotechnology National Center for Scientific Research “Demokritos” Ag. Paraskevi 153 41 Athens Greece
| |
Collapse
|
7
|
Zhuang Y, Che J, Wu M, Guo Y, Xu Y, Dong X, Yang H. Altered pathways and targeted therapy in double hit lymphoma. J Hematol Oncol 2022; 15:26. [PMID: 35303910 PMCID: PMC8932183 DOI: 10.1186/s13045-022-01249-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/07/2022] [Indexed: 12/20/2022] Open
Abstract
High-grade B-cell lymphoma with translocations involving MYC and BCL2 or BCL6, usually referred to as double hit lymphoma (DHL), is an aggressive hematological malignance with distinct genetic features and poor clinical prognosis. Current standard chemoimmunotherapy fails to confer satisfying outcomes and few targeted therapeutics are available for the treatment against DHL. Recently, the delineating of the genetic landscape in tumors has provided insight into both biology and targeted therapies. Therefore, it is essential to understand the altered signaling pathways of DHL to develop treatment strategies with better clinical benefits. Herein, we summarized the genetic alterations in the two DHL subtypes (DHL-BCL2 and DHL-BCL6). We further elucidate their implications on cellular processes, including anti-apoptosis, epigenetic regulations, B-cell receptor signaling, and immune escape. Ongoing and potential therapeutic strategies and targeted drugs steered by these alterations were reviewed accordingly. Based on these findings, we also discuss the therapeutic vulnerabilities that coincide with these genetic changes. We believe that the understanding of the DHL studies will provide insight into this disease and capacitate the finding of more effective treatment strategies.
Collapse
Affiliation(s)
- Yuxin Zhuang
- Department of Lymphoma, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| | - Jinxin Che
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, People’s Republic of China
| | - Meijuan Wu
- Department of Pathology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
| | - Yu Guo
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, People’s Republic of China
| | - Yongjin Xu
- Department of Lymphoma, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
| | - Xiaowu Dong
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, People’s Republic of China
- Cancer Center, Zhejiang University, Hangzhou, People’s Republic of China
| | - Haiyan Yang
- Department of Lymphoma, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
| |
Collapse
|
8
|
Martínez-Martín S, Soucek L. MYC inhibitors in multiple myeloma. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:842-865. [PMID: 35582389 PMCID: PMC8992455 DOI: 10.20517/cdr.2021.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/30/2021] [Accepted: 08/12/2021] [Indexed: 11/25/2022]
Abstract
The importance of MYC function in cancer was discovered in the late 1970s when the sequence of the avian retrovirus that causes myelocytic leukemia was identified. Since then, over 40 years of unceasing research have highlighted the significance of this protein in malignant transformation, especially in hematologic diseases. Indeed, some of the earliest connections among the higher expression of proto-oncogenes (such as MYC), genetic rearrangements and their relation to cancer development were made in Burkitt lymphoma, chronic myeloid leukemia and mouse plasmacytomas. Multiple myeloma (MM), in particular, is a plasma cell malignancy strictly associated with MYC deregulation, suggesting that therapeutic strategies against it would be beneficial in treating this disease. However, targeting MYC was - and, somehow, still is - challenging due to its unique properties: lack of defined three-dimensional structure, nuclear localization and absence of a targetable enzymatic pocket. Despite these difficulties, however, many studies have shown the potential therapeutic impact of direct or indirect MYC inhibition. Different molecules have been tested, in fact, in the context of MM. In this review, we summarize the current status of the different compounds, including the results of their clinical testing, and propose to continue with the efforts to identify, repurpose, redesign or improve drug candidates to combine them with standard of care therapies to overcome resistance and enable better management of myeloma treatment.
Collapse
Affiliation(s)
- Sandra Martínez-Martín
- Preclinical & Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Peptomyc S.L., Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Laura Soucek
- Preclinical & Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Peptomyc S.L., Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| |
Collapse
|
9
|
Singh A, Kumar A, Kumar P, Nayak N, Bhardwaj T, Giri R, Garg N. A novel inhibitor L755507 efficiently blocks c-Myc-MAX heterodimerization and induces apoptosis in cancer cells. J Biol Chem 2021; 297:100903. [PMID: 34157284 PMCID: PMC8294579 DOI: 10.1016/j.jbc.2021.100903] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 01/24/2023] Open
Abstract
c-Myc is a transcription factor that plays a crucial role in cellular homeostasis, and its deregulation is associated with highly aggressive and chemotherapy-resistant cancers. After binding with partner MAX, the c-Myc-MAX heterodimer regulates the expression of several genes, leading to an oncogenic phenotype. Although considered a crucial therapeutic target, no clinically approved c-Myc-targeted therapy has yet been discovered. Here, we report the discovery via computer-aided drug discovery of a small molecule, L755507, which functions as a c-Myc inhibitor to efficiently restrict the growth of diverse Myc-expressing cells with low micromolar IC50 values. L755507 successfully disrupts the c-Myc-MAX heterodimer, resulting in decreased expression of c-Myc target genes. Spectroscopic and computational experiments demonstrated that L755507 binds to the c-Myc peptide and thereby stabilizes the helix-loop-helix conformation of the c-Myc transcription factor. Taken together, this study suggests that L755507 effectively inhibits the c-Myc-MAX heterodimerization and may be used for further optimization to develop a c-Myc-targeted antineoplastic drug.
Collapse
Affiliation(s)
- Ashutosh Singh
- School of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Ankur Kumar
- School of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Prateek Kumar
- School of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Namyashree Nayak
- School of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Taniya Bhardwaj
- School of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Rajanish Giri
- School of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Neha Garg
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
| |
Collapse
|
10
|
Whitfield JR, Soucek L. The long journey to bring a Myc inhibitor to the clinic. J Cell Biol 2021; 220:212429. [PMID: 34160558 PMCID: PMC8240852 DOI: 10.1083/jcb.202103090] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022] Open
Abstract
The oncogene Myc is deregulated in the majority of human tumors and drives numerous hallmarks of cancer. Despite its indisputable role in cancer development and maintenance, Myc is still undrugged. Developing a clinical inhibitor for Myc has been particularly challenging owing to its intrinsically disordered nature and lack of a binding pocket, coupled with concerns regarding potentially deleterious side effects in normal proliferating tissues. However, major breakthroughs in the development of Myc inhibitors have arisen in the last couple of years. Notably, the direct Myc inhibitor that we developed has just entered clinical trials. Celebrating this milestone, with this Perspective, we pay homage to the different strategies developed so far against Myc and all of the researchers focused on developing treatments for a target long deemed undruggable.
Collapse
Affiliation(s)
| | - Laura Soucek
- Vall d'Hebron Institute of Oncology, Edifici Cellex, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Peptomyc S.L., Barcelona, Spain
| |
Collapse
|
11
|
Henley MJ, Koehler AN. Advances in targeting 'undruggable' transcription factors with small molecules. Nat Rev Drug Discov 2021; 20:669-688. [PMID: 34006959 DOI: 10.1038/s41573-021-00199-0] [Citation(s) in RCA: 205] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2021] [Indexed: 02/07/2023]
Abstract
Transcription factors (TFs) represent key biological players in diseases including cancer, autoimmunity, diabetes and cardiovascular disease. However, outside nuclear receptors, TFs have traditionally been considered 'undruggable' by small-molecule ligands due to significant structural disorder and lack of defined small-molecule binding pockets. Renewed interest in the field has been ignited by significant progress in chemical biology approaches to ligand discovery and optimization, especially the advent of targeted protein degradation approaches, along with increasing appreciation of the critical role a limited number of collaborators play in the regulation of key TF effector genes. Here, we review current understanding of TF-mediated gene regulation, discuss successful targeting strategies and highlight ongoing challenges and emerging approaches to address them.
Collapse
Affiliation(s)
- Matthew J Henley
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA. .,The Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Angela N Koehler
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA. .,The Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
12
|
Madden SK, de Araujo AD, Gerhardt M, Fairlie DP, Mason JM. Taking the Myc out of cancer: toward therapeutic strategies to directly inhibit c-Myc. Mol Cancer 2021; 20:3. [PMID: 33397405 PMCID: PMC7780693 DOI: 10.1186/s12943-020-01291-6] [Citation(s) in RCA: 237] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/29/2020] [Indexed: 02/07/2023] Open
Abstract
c-Myc is a transcription factor that is constitutively and aberrantly expressed in over 70% of human cancers. Its direct inhibition has been shown to trigger rapid tumor regression in mice with only mild and fully reversible side effects, suggesting this to be a viable therapeutic strategy. Here we reassess the challenges of directly targeting c-Myc, evaluate lessons learned from current inhibitors, and explore how future strategies such as miniaturisation of Omomyc and targeting E-box binding could facilitate translation of c-Myc inhibitors into the clinic.
Collapse
Affiliation(s)
- Sarah K Madden
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Aline Dantas de Araujo
- Division of Chemistry and Structural Biology and ARC 1066 Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Mara Gerhardt
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - David P Fairlie
- Division of Chemistry and Structural Biology and ARC 1066 Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jody M Mason
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
13
|
Yang J, Cao C, Luo D, Lan S, Luo M, Shan H, Ma X, Liu Y, Yu S, Zhong X, Li R. Discovery of 4-(3,5-dimethoxy-4-(((4-methoxyphenethyl)amino)methyl)phenoxy)-N-phenylaniline as a novel c-myc inhibitor against colorectal cancer in vitro and in vivo. Eur J Med Chem 2020; 198:112336. [PMID: 32387836 DOI: 10.1016/j.ejmech.2020.112336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 04/11/2020] [Accepted: 04/13/2020] [Indexed: 02/08/2023]
Abstract
Proto-oncogene c-Myc plays an essential role in the development of colorectal cancer (CRC), since downregulation of c-Myc inhibits intestinal polyposis, which is the most cardinal pathological change in the development of CRC. Herein, a series of novel phenoxy-N-phenylaniline derivatives were designed and synthesized. The cytotoxicity activities of all the derivatives were measured by MTT assay in different colon cancer cells, 4-(3,5-dimethoxy-4-(((4-methoxyphenethyl)amino)methyl)phenoxy)-N-phenylaniline (42) was discovered, the lead compound 42 with excellent cytotoxicity activity of IC50 = 0.32 μM, IC50 = 0.51 μM, in HT29 and HCT 15 cells, respectively. Compound 42 had a good inhibitory activity of c-Myc/MAX dimerization and DNA binding. Besides, compound 42 could effectively induce apoptosis and induced G2/M arrest in low concentration and G0/G1 arrest in high concentration to prevent the proliferation and differentiation in colon cancer cells. Western blot analysis confirmed the 42 strongly down-regulated expression of c-Myc. Furthermore, during 30 days treatment 42 exhibited excellent efficacy in HT29 tumor xenograft model without causing significant weight loss and toxicity. Consequently, 42 could be a promising drug candidate for CRC therapy.
Collapse
Affiliation(s)
- Jie Yang
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Chaoguo Cao
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Dan Luo
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Suke Lan
- College of Chemistry & Environment Protection Engineering, Southwest Minzu University, Chengdu, 610041, China
| | - Meng Luo
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Huifang Shan
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xinyu Ma
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yuanyuan Liu
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Su Yu
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xinxin Zhong
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Rui Li
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
14
|
Han H, Jain AD, Truica MI, Izquierdo-Ferrer J, Anker JF, Lysy B, Sagar V, Luan Y, Chalmers ZR, Unno K, Mok H, Vatapalli R, Yoo YA, Rodriguez Y, Kandela I, Parker JB, Chakravarti D, Mishra RK, Schiltz GE, Abdulkadir SA. Small-Molecule MYC Inhibitors Suppress Tumor Growth and Enhance Immunotherapy. Cancer Cell 2019; 36:483-497.e15. [PMID: 31679823 PMCID: PMC6939458 DOI: 10.1016/j.ccell.2019.10.001] [Citation(s) in RCA: 291] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 08/19/2019] [Accepted: 09/30/2019] [Indexed: 01/16/2023]
Abstract
Small molecules that directly target MYC and are also well tolerated in vivo will provide invaluable chemical probes and potential anti-cancer therapeutic agents. We developed a series of small-molecule MYC inhibitors that engage MYC inside cells, disrupt MYC/MAX dimers, and impair MYC-driven gene expression. The compounds enhance MYC phosphorylation on threonine-58, consequently increasing proteasome-mediated MYC degradation. The initial lead, MYC inhibitor 361 (MYCi361), suppressed in vivo tumor growth in mice, increased tumor immune cell infiltration, upregulated PD-L1 on tumors, and sensitized tumors to anti-PD1 immunotherapy. However, 361 demonstrated a narrow therapeutic index. An improved analog, MYCi975 showed better tolerability. These findings suggest the potential of small-molecule MYC inhibitors as chemical probes and possible anti-cancer therapeutic agents.
Collapse
Affiliation(s)
- Huiying Han
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Atul D Jain
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, IL 60208, USA
| | - Mihai I Truica
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Javier Izquierdo-Ferrer
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, IL 60208, USA
| | - Jonathan F Anker
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Barbara Lysy
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Vinay Sagar
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yi Luan
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Zachary R Chalmers
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kenji Unno
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Hanlin Mok
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Rajita Vatapalli
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Young A Yoo
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yara Rodriguez
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Irawati Kandela
- Center for Developmental Therapeutics, Northwestern University, Evanston, IL 60208, USA
| | - J Brandon Parker
- Division of Reproductive Science in Medicine, Department of OB/GYN, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Debabrata Chakravarti
- Division of Reproductive Science in Medicine, Department of OB/GYN, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago IL 60611, USA
| | - Rama K Mishra
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, IL 60208, USA; Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago IL 60611, USA
| | - Gary E Schiltz
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, IL 60208, USA; The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago IL 60611, USA
| | - Sarki A Abdulkadir
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
15
|
Wu L, Yi B, Wei S, Rao D, He Y, Naik G, Bae S, Liu XM, Yang WH, Sonpavde G, Liu R, Wang L. Loss of FOXP3 and TSC1 Accelerates Prostate Cancer Progression through Synergistic Transcriptional and Posttranslational Regulation of c-MYC. Cancer Res 2019; 79:1413-1425. [PMID: 30733194 DOI: 10.1158/0008-5472.can-18-2049] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/07/2018] [Accepted: 02/04/2019] [Indexed: 01/05/2023]
Abstract
Although c-MYC and mTOR are frequently activated proteins in prostate cancer, any interaction between the two is largely untested. Here, we characterize the functional cross-talk between FOXP3-c-MYC and TSC1-mTOR signaling during tumor progression. Deletion of Tsc1 in mouse embryonic fibroblasts (MEF) decreased phosphorylation of c-MYC at threonine 58 (pT58) and increased phosphorylation at serine 62 (pS62), an observation validated in prostate cancer cells. Conversely, inhibition of mTOR increased pT58 but decreased pS62. Loss of both FOXP3 and TSC1 in prostate cancer cells synergistically enhanced c-MYC expression via regulation of c-Myc transcription and protein phosphorylation. This crosstalk between FOXP3 and TSC1 appeared to be mediated by both the mTOR-4EBP1-c-MYC and FOXP3-c-MYC pathways. In mice, Tsc1 and Foxp3 double deletions in the prostate led to prostate carcinomas at an early age; this did not occur in these mice with an added c-Myc deletion. In addition, we observed synergistic antitumor effects of cotreating mice with inhibitors of mTOR and c-MYC in prostate cancer cells and in Foxp3 and Tsc1 double-mutant mice. In human prostate cancer, loss of nuclear FOXP3 is often accompanied by low expression of TSC1. Because loss of FOXP3 transcriptionally induces c-Myc expression and loss of TSC1 activates mTOR signaling, these data suggest cross-talk between FOXP3-c-MYC and TSC1-mTOR signaling that converges on c-MYC to regulate tumor progression. Coadministration of c-MYC and mTOR inhibitors may overcome the resistance to mTOR inhibition commonly observed in prostate cancer cells. SIGNIFICANCE: These results establish the principle of a synergistic action of TSC1 and FOXP3 during prostate cancer progression and provide new therapeutic targets for patients who have prostate cancer with two signaling defects.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/7/1413/F1.large.jpg.
Collapse
Affiliation(s)
- Lianpin Wu
- Institute of Translational Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Baozhu Yi
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Shi Wei
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Dapeng Rao
- Department of Urology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Youhua He
- Department of Urology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Gurudatta Naik
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sejong Bae
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Xiaoguang M Liu
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | - Wei-Hsiung Yang
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia
| | | | - Runhua Liu
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama.
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lizhong Wang
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama.
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
16
|
|
17
|
Carabet LA, Rennie PS, Cherkasov A. Therapeutic Inhibition of Myc in Cancer. Structural Bases and Computer-Aided Drug Discovery Approaches. Int J Mol Sci 2018; 20:E120. [PMID: 30597997 PMCID: PMC6337544 DOI: 10.3390/ijms20010120] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/08/2018] [Accepted: 12/21/2018] [Indexed: 12/23/2022] Open
Abstract
Myc (avian myelocytomatosis viral oncogene homolog) represents one of the most sought after drug targets in cancer. Myc transcription factor is an essential regulator of cell growth, but in most cancers it is overexpressed and associated with treatment-resistance and lethal outcomes. Over 40 years of research and drug development efforts did not yield a clinically useful Myc inhibitor. Drugging the "undruggable" is problematic, as Myc inactivation may negatively impact its physiological functions. Moreover, Myc is a disordered protein that lacks effective binding pockets on its surface. It is well established that the Myc function is dependent on dimerization with its obligate partner, Max (Myc associated factor X), which together form a functional DNA-binding domain to activate genomic targets. Herein, we provide an overview of the knowledge accumulated to date on Myc regulation and function, its critical role in cancer, and summarize various strategies that are employed to tackle Myc-driven malignant transformation. We focus on important structure-function relationships of Myc with its interactome, elaborating structural determinants of Myc-Max dimer formation and DNA recognition exploited for therapeutic inhibition. Chronological development of small-molecule Myc-Max prototype inhibitors and corresponding binding sites are comprehensively reviewed and particular emphasis is placed on modern computational drug design methods. On the outlook, technological advancements may soon provide the so long-awaited Myc-Max clinical candidate.
Collapse
Affiliation(s)
- Lavinia A Carabet
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada.
| | - Paul S Rennie
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada.
| | - Artem Cherkasov
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada.
| |
Collapse
|
18
|
Identification of a novel c-Myc inhibitor with antitumor effects on multiple myeloma cells. Biosci Rep 2018; 38:BSR20181027. [PMID: 30068698 PMCID: PMC6146296 DOI: 10.1042/bsr20181027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/23/2018] [Accepted: 07/31/2018] [Indexed: 12/16/2022] Open
Abstract
Increasing evidence shows that c-Myc oncoprotein is tightly associated with multiple myeloma (MM) progression. Herein, we identified compound 7594-0035, which is a novel inhibitor that specifically targets c-Myc. It was identified from the ChemDiv compound database by molecular docking-based, high-throughput virtual screening. Compound 7594-0035 inhibited MM cell proliferation in vitro, induced cell cycle G2-phase arrest, and triggered MM cell death by disturbing the stability of c-Myc protein. Additionally, we also found that compound 7594-0035 overcame bortezomib (BTZ) drug resistance and increased the killing effect on MM cells in combination with BTZ. The severe combined immune deficiency (SCID) mouse xenograft model revealed that compound 7594-0035 partially decreased the primary tumor growth of Roswell Park Memorial Institute (RPMI)-8226 cells in vivo The novel small molecular compound 7594-0035 described in the present study that targets c-Myc protein is likely to be a promising therapeutic agent for relapsed/refractory MM.
Collapse
|
19
|
Castell A, Yan Q, Fawkner K, Hydbring P, Zhang F, Verschut V, Franco M, Zakaria SM, Bazzar W, Goodwin J, Zinzalla G, Larsson LG. A selective high affinity MYC-binding compound inhibits MYC:MAX interaction and MYC-dependent tumor cell proliferation. Sci Rep 2018; 8:10064. [PMID: 29968736 PMCID: PMC6030159 DOI: 10.1038/s41598-018-28107-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/22/2018] [Indexed: 02/07/2023] Open
Abstract
MYC is a key player in tumor development, but unfortunately no specific MYC-targeting drugs are clinically available. MYC is strictly dependent on heterodimerization with MAX for transcription activation. Aiming at targeting this interaction, we identified MYCMI-6 in a cell-based protein interaction screen for small inhibitory molecules. MYCMI-6 exhibits strong selective inhibition of MYC:MAX interaction in cells and in vitro at single-digit micromolar concentrations, as validated by split Gaussia luciferase, in situ proximity ligation, microscale thermophoresis and surface plasmon resonance (SPR) assays. Further, MYCMI-6 blocks MYC-driven transcription and binds selectively to the MYC bHLHZip domain with a KD of 1.6 ± 0.5 μM as demonstrated by SPR. MYCMI-6 inhibits tumor cell growth in a MYC-dependent manner with IC50 concentrations as low as 0.5 μM, while sparing normal cells. The response to MYCMI-6 correlates with MYC expression based on data from 60 human tumor cell lines and is abrogated by MYC depletion. Further, it inhibits MYC:MAX interaction, reduces proliferation and induces massive apoptosis in tumor tissue from a MYC-driven xenograft tumor model without severe side effects. Since MYCMI-6 does not affect MYC expression, it is a unique molecular tool to specifically target MYC:MAX pharmacologically and it has good potential for drug development.
Collapse
Affiliation(s)
- Alina Castell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Qinzi Yan
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Karin Fawkner
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 65, Stockholm, Sweden
- TLV, Box 225 20, 104 22, Stockholm, Sweden
| | - Per Hydbring
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 65, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, SE-17176, Stockholm, Sweden
| | - Fan Zhang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Vasiliki Verschut
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Marcela Franco
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Siti Mariam Zakaria
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Wesam Bazzar
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Jacob Goodwin
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Giovanna Zinzalla
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Lars-Gunnar Larsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 65, Stockholm, Sweden.
| |
Collapse
|
20
|
Li XX, Shi L, Zhou XJ, Wu J, Xia TS, Zhou WB, Sun X, Zhu L, Wei JF, Ding Q. The role of c-Myc-RBM38 loop in the growth suppression in breast cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:49. [PMID: 28399911 PMCID: PMC5387383 DOI: 10.1186/s13046-017-0521-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/31/2017] [Indexed: 01/01/2023]
Abstract
Background RNA-binding protein 38 (RBM38) is a member of the RNA recognition motif (RRM) family of RNA-binding proteins (RBPs). RBM38 often exerts its function by forming regulatory loops with relevant genes. c-Myc is an oncogenic transcription factor that is upregulated in one-third of breast cancers and involved in many cellular processes in this malignancy. In our previous study, RBM38 was identified as a tumor suppressor in breast cancer. In the present study, we investigated the mechanisms underlying the regulation of this tumor suppressor. Methods Lentivirus transfections, Western blotting analysis, qRT-PCR and immunohistochemistry were employed to study the expression of c-Myc and RBM38. Chromatin immunoprecipitation and dual-luciferase reporter assays were performed to investigate the direct relationship between c-Myc protein and the RBM38 gene. RNA immunoprecipitation combined with dual-luciferase reporter assays was conducted to confirm the direct relationship between the RBM38 protein and the c-Myc transcript. Results Knockdown of c-Myc increased RBM38 expression by binding directly to specific DNA sequences (5′-CACGTG-3′), known as the E-box motif, in the promoter region of RBM38 gene. Additionally, RBM38 destabilized the c-Myc transcript by directly targeting AU-rich elements (AREs) in the 3′-untranslated region (3′-UTR) of c-Myc mRNA to suppress c-Myc expression. Moreover, specific inhibitors of c-Myc transcriptional activity inhibited RBM38-induced suppression of growth, implying that RBM38 acts as a tumor suppressor via a mechanism that depends, at least partially, on the reduction of c-Myc expression in breast cancer. Conclusions RBM38 and c-Myc form a unique mutually antagonistic RBM38-c-Myc loop in breast cancer. Electronic supplementary material The online version of this article (doi:10.1186/s13046-017-0521-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiao-Xia Li
- Jiangsu Breast Disease Center, the First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Liang Shi
- Jiangsu Breast Disease Center, the First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Xu-Jie Zhou
- Jiangsu Breast Disease Center, the First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Jing Wu
- Jiangsu Breast Disease Center, the First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Tian-Song Xia
- Jiangsu Breast Disease Center, the First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Wen-Bin Zhou
- Jiangsu Breast Disease Center, the First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Xi Sun
- Jiangsu Breast Disease Center, the First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Lei Zhu
- Jiangsu Breast Disease Center, the First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Ji-Fu Wei
- Research Division of Clinical Pharmacology, the First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| | - Qiang Ding
- Jiangsu Breast Disease Center, the First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
21
|
The MYCN Protein in Health and Disease. Genes (Basel) 2017; 8:genes8040113. [PMID: 28358317 PMCID: PMC5406860 DOI: 10.3390/genes8040113] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 12/22/2022] Open
Abstract
MYCN is a member of the MYC family of proto-oncogenes. It encodes a transcription factor, MYCN, involved in the control of fundamental processes during embryonal development. The MYCN protein is situated downstream of several signaling pathways promoting cell growth, proliferation and metabolism of progenitor cells in different developing organs and tissues. Conversely, deregulated MYCN signaling supports the development of several different tumors, mainly with a childhood onset, including neuroblastoma, medulloblastoma, rhabdomyosarcoma and Wilms’ tumor, but it is also associated with some cancers occurring during adulthood such as prostate and lung cancer. In neuroblastoma, MYCN-amplification is the most consistent genetic aberration associated with poor prognosis and treatment failure. Targeting MYCN has been proposed as a therapeutic strategy for the treatment of these tumors and great efforts have allowed the development of direct and indirect MYCN inhibitors with potential clinical use.
Collapse
|
22
|
Grimley E, Liao C, Ranghini EJ, Nikolovska-Coleska Z, Dressler GR. Inhibition of Pax2 Transcription Activation with a Small Molecule that Targets the DNA Binding Domain. ACS Chem Biol 2017; 12:724-734. [PMID: 28094913 DOI: 10.1021/acschembio.6b00782] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Pax gene family encodes DNA binding transcription factors that control critical steps in embryonic development and differentiation of specific cell lineages. Often, Pax proteins are re-expressed or ectopically expressed in cancer and other diseases of abnormal proliferation, making them attractive targets for tissue specific inhibition by small molecules. In this report, we used a homology model of the Pax2 paired domain and a virtual screen to identify small molecules that can inhibit binding of the paired domain to DNA and Pax2 mediated transcription activation. Candidates from the virtual screen were then confirmed in a cell based Pax2 transactivation assay. Subsequently, we tested analogs of these hits to identify a single compound that effectively blocked Pax2 activity and DNA binding with a Kd of 1.35-1.5 μM. The compound, termed EG1, was used to inhibit embryonic kidney development, a process directly dependent on Pax2 activity. Furthermore, we show that EG1 can inhibit proliferation of Pax2 positive renal and ovarian cancer cell lines but has little effect on Pax2 negative cancer cells. These data confirm that small molecules targeting the DNA binding paired domain can be identified and may be good lead compounds for developing tissue and cell-type specific anticancer therapies.
Collapse
Affiliation(s)
- Edward Grimley
- Department
of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Molecular
and Cellular Pathology Graduate Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Chenzhong Liao
- Department
of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Egon J. Ranghini
- Department
of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Gregory R. Dressler
- Department
of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
23
|
Whitfield JR, Beaulieu ME, Soucek L. Strategies to Inhibit Myc and Their Clinical Applicability. Front Cell Dev Biol 2017; 5:10. [PMID: 28280720 PMCID: PMC5322154 DOI: 10.3389/fcell.2017.00010] [Citation(s) in RCA: 240] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/03/2017] [Indexed: 12/20/2022] Open
Abstract
Myc is an oncogene deregulated in most-perhaps all-human cancers. Each Myc family member, c-, L-, and N-Myc, has been connected to tumor progression and maintenance. Myc is recognized as a "most wanted" target for cancer therapy, but has for many years been considered undruggable, mainly due to its nuclear localization, lack of a defined ligand binding site, and physiological function essential to the maintenance of normal tissues. The challenge of identifying a pharmacophore capable of overcoming these hurdles is reflected in the current absence of a clinically-viable Myc inhibitor. The first attempts to inhibit Myc used antisense technology some three decades ago, followed by small molecule inhibitors discovered through "classical" compound library screens. Notable breakthroughs proving the feasibility of systemic Myc inhibition were made with the Myc dominant negative mutant Omomyc, showing both the great promise in targeting this infamous oncogene for cancer treatment as well as allaying fears about the deleterious side effects that Myc inhibition might have on normal proliferating tissues. During this time many other strategies have appeared in an attempt to drug the undruggable, including direct and indirect targeting, knockdown, protein/protein and DNA interaction inhibitors, and translation and expression regulation. The inhibitors range from traditional small molecules to natural chemicals, to RNA and antisense, to peptides and miniproteins. Here, we briefly describe the many approaches taken so far, with a particular focus on their potential clinical applicability.
Collapse
Affiliation(s)
- Jonathan R Whitfield
- Vall d'Hebron Institute of Oncology, Edifici Cellex, Hospital Vall d'Hebron Barcelona, Spain
| | | | - Laura Soucek
- Vall d'Hebron Institute of Oncology, Edifici Cellex, Hospital Vall d'HebronBarcelona, Spain; Peptomyc, Edifici Cellex, Hospital Vall d'HebronBarcelona, Spain; Institució Catalana de Recerca i Estudis AvançatsBarcelona, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de BarcelonaBellaterra, Spain
| |
Collapse
|
24
|
Boudjadi S, Carrier JC, Groulx JF, Beaulieu JF. Integrin α1β1 expression is controlled by c-MYC in colorectal cancer cells. Oncogene 2016; 35:1671-1678. [PMID: 26096932 PMCID: PMC4820680 DOI: 10.1038/onc.2015.231] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 04/15/2015] [Accepted: 05/10/2015] [Indexed: 12/13/2022]
Abstract
The α1β1 collagen receptor is only present in a few epithelial cell types. In the intestine, it is specifically expressed in proliferating crypt cells. This integrin has been reported to be involved in various cancers where it mediates the downstream activation of the Ras/ERK proliferative pathway. We have recently shown that integrin α1β1 is present in two-thirds of colon adenocarcinomas, but the mechanism by which ITGA1 expression is regulated is not known. DNA methylation, involved in ITGA1 repression during megakaryocyte differentiation, is not the mechanism of ITGA1 regulation in colorectal cancer cells. Our in silico analysis of the ITGA1 promoter revealed two response elements for MYC, an oncogenic factor known to regulate cancer cell proliferation, invasion and migration. In situ, the expressions of both MYC and ITGA1 are localized in the lower crypt of the normal colon and correlate in 72% of the 65 analyzed colorectal cancers. MYC pharmacological inhibition or downregulation of expression with short hairpin RNA in HT29, T84 and SW480 cells resulted in reduced ITGA1 expression at both the transcript and protein levels. Chromatin immunoprecipitation assays revealed that MYC was bound to the chromatin region of the ITGA1 proximal promoter, whereas MYC overexpression enhanced ITGA1 promoter activity that was reduced with MAD co-transfection or by the disruption of the response elements. We concluded that MYC is a key regulating factor for the control of ITGA1 expression.
Collapse
Affiliation(s)
- S Boudjadi
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - J C Carrier
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - J-F Groulx
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - J-F Beaulieu
- Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
25
|
CHOI SUNGKYUNG, HONG SEONGHWI, KIM HYUKSOON, SHIN CHANYOUNG, NAM SUKWOO, CHOI WAHNSOO, HAN JEUNGWHAN, YOU JUENGSOO. JQ1, an inhibitor of the epigenetic reader BRD4, suppresses the bidirectional MYC-AP4 axis via multiple mechanisms. Oncol Rep 2015; 35:1186-94. [DOI: 10.3892/or.2015.4410] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/06/2015] [Indexed: 11/06/2022] Open
|
26
|
Chou CC, Salunke SB, Kulp SK, Chen CS. Prospects on strategies for therapeutically targeting oncogenic regulatory factors by small-molecule agents. J Cell Biochem 2014; 115:611-24. [PMID: 24166934 DOI: 10.1002/jcb.24704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 10/22/2013] [Indexed: 12/12/2022]
Abstract
Although the Human Genome Project has raised much hope for the identification of druggable genetic targets for cancer and other diseases, this genetic target-based approach has not improved productivity in drug discovery over the traditional approach. Analyses of known human target proteins of currently marketed drugs reveal that these drugs target only a limited number of proteins as compared to the whole proteome. In contrast to genome-based targets, mechanistic targets are derived from empirical research, at cellular or molecular levels, in disease models and/or in patients, thereby enabling the exploration of a greater number of druggable targets beyond the genome and epigenome. The paradigm shift has made a tremendous headway in developing new therapeutic agents targeting different clinically relevant mechanisms/pathways in cancer cells. In this Prospects article, we provide an overview of potential drug targets related to the following four emerging areas: (1) tumor metabolism (the Warburg effect), (2) dysregulated protein turnover (E3 ubiquitin ligases), (3) protein-protein interactions, and (4) unique DNA high-order structures and protein-DNA interactions. Nonetheless, considering the genetic and phenotypic heterogeneities that characterize cancer cells, the development of drug resistance in cancer cells by adapting signaling circuitry to take advantage of redundant pathways or feedback/crosstalk systems is possible. This "phenotypic adaptation" underlies the rationale of using therapeutic combinations of these targeted agents with cytotoxic drugs.
Collapse
Affiliation(s)
- Chih-Chien Chou
- Division of Medicinal Chemistry, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | | | | | | |
Collapse
|
27
|
Chen BJ, Wu YL, Tanaka Y, Zhang W. Small molecules targeting c-Myc oncogene: promising anti-cancer therapeutics. Int J Biol Sci 2014; 10:1084-96. [PMID: 25332683 PMCID: PMC4202025 DOI: 10.7150/ijbs.10190] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 08/25/2014] [Indexed: 02/07/2023] Open
Abstract
The nuclear transcription factor c-Myc is a member of the Myc gene family with multiple functions and located on band q24.1 of chromosome 8. The c-Myc gene is activated by chromosomal translocation, rearrangement, and amplification. Its encoded protein transduces intracellular signals to the nucleus, resulting in the regulation of cell proliferation, differentiation, and apoptosis, and has the ability to transform cells and bind chromosomal DNA. c-Myc also plays a critical role in malignant transformation. The abnormal over-expression of c-Myc is frequently observed in some tumors, including carcinomas of the breast, colon, and cervix, as well as small-cell lung cancer, osteosarcomas, glioblastomas, and myeloid leukemias, therefore making it a possible target for anticancer therapy. In this minireview, we summarize unique characteristics of c-Myc and therapeutic strategies against cancer using small molecules targeting the oncogene, and discuss the prospects in the development of agents targeting c-Myc, in particular G-quadruplexes formed in c-Myc promoter and c-Myc/Max dimerization. Such information will be of importance for the research and development of c-Myc-targeted drugs.
Collapse
Affiliation(s)
- Bing-Jia Chen
- 1. Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China
| | - Yan-Ling Wu
- 2. Lab of Molecular Immunology, Virus Inspection Department, Zhejiang Provincial Center for Disease Control and Prevention, 630 Xincheng Road, Hangzhou, 310051, China. ; 1. Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China
| | - Yoshimasa Tanaka
- 3. Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Wen Zhang
- 1. Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China
| |
Collapse
|
28
|
Uversky VN, Davé V, Iakoucheva LM, Malaney P, Metallo SJ, Pathak RR, Joerger AC. Pathological unfoldomics of uncontrolled chaos: intrinsically disordered proteins and human diseases. Chem Rev 2014; 114:6844-79. [PMID: 24830552 PMCID: PMC4100540 DOI: 10.1021/cr400713r] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute University of South Florida, Tampa, Florida 33612, United States
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 22254, Saudi Arabia
| | - Vrushank Davé
- Department of Pathology and Cell Biology , Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, United States
| | - Lilia M. Iakoucheva
- Department of Psychiatry, University of California San Diego, La Jolla, California 92093, United States
| | - Prerna Malaney
- Department of Pathology and Cell Biology , Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Steven J. Metallo
- Department of Chemistry, Georgetown University, Washington, District of Columbia 20057, United States
| | - Ravi Ramesh Pathak
- Department of Pathology and Cell Biology , Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Andreas C. Joerger
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
29
|
Fletcher S, Prochownik EV. Small-molecule inhibitors of the Myc oncoprotein. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:525-43. [PMID: 24657798 DOI: 10.1016/j.bbagrm.2014.03.005] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 03/09/2014] [Accepted: 03/12/2014] [Indexed: 01/23/2023]
Abstract
The c-Myc (Myc) oncoprotein is among the most attractive of cancer targets given that it is de-regulated in the majority of tumors and that its inhibition profoundly affects their growth and/or survival. However, its role as a seldom-mutated transcription factor, its lack of enzymatic activity for which suitable pharmaceutical inhibitors could be crafted and its expression by normal cells have largely been responsible for its being viewed as "undruggable". Work over the past several years, however, has begun to reverse this idea by allowing us to view Myc within the larger context of global gene regulatory control. Thus, Myc and its obligate heterodimeric partner, Max, are integral to the coordinated recruitment and post-translational modification of components of the core transcriptional machinery. Moreover, Myc over-expression re-programs numerous critical cellular functions and alters the cell's susceptibility to their inhibition. This new knowledge has therefore served as a framework upon which to develop new pharmaceutical approaches. These include the continuing development of small molecules which act directly to inhibit the critical Myc-Max interaction, those which act indirectly to prevent Myc-directed post-translational modifications necessary to initiate productive transcription and those which inhibit vital pathways upon which the Myc-transformed cell is particularly reliant. This article is part of a Special Issue entitled: Myc proteins in cell biology and pathology.
Collapse
Affiliation(s)
- Steven Fletcher
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, USA; University of Maryland Greenebaum Cancer Center, Baltimore, USA
| | - Edward V Prochownik
- Section of Hematology/Oncology, Children's Hospital of Pittsburgh of UPMC, USA; Department of Microbiology and Molecular Genetics, The University of Pittsburgh School of Medicine, USA; The University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.
| |
Collapse
|
30
|
Fan-Minogue H, Bodapati S, Solow-Cordero D, Fan A, Paulmurugan R, Massoud TF, Felsher DW, Gambhir SS. A c-Myc activation sensor-based high-throughput drug screening identifies an antineoplastic effect of nitazoxanide. Mol Cancer Ther 2013; 12:1896-905. [PMID: 23825064 DOI: 10.1158/1535-7163.mct-12-1243] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Deregulation of c-Myc plays a central role in the tumorigenesis of many human cancers. Yet, the development of drugs regulating c-Myc activity has been challenging. To facilitate the identification of c-Myc inhibitors, we developed a molecular imaging sensor-based high-throughput screening (HTS) system. This system uses a cell-based assay to detect c-Myc activation in a HTS format, which is established from a pure clone of a stable breast cancer cell line that constitutively expresses a c-Myc activation sensor. Optimization of the assay performance in the HTS format resulted in uniform and robust signals at the baseline. Using this system, we conducted a quantitative HTS against approximately 5,000 existing bioactive compounds from five different libraries. Thirty-nine potential hits were identified, including currently known c-Myc inhibitors. There are a few among the top potent hits that are not known for anti-c-Myc activity. One of these hits is nitazoxanide, a thiazolide for treating human protozoal infections. Validation of nitazoxanide in different cancer cell lines revealed a high potency for c-Myc inhibition with IC50 ranging between 10 and 500 nmol/L. Oral administration of nitazoxanide in breast cancer xenograft mouse models significantly suppressed tumor growth by inhibition of c-Myc and induction of apoptosis. These findings suggest a potential of nitazoxanide to be repurposed as a new antitumor agent for inhibition of c-Myc-associated neoplasia. Our work also demonstrated the unique advantage of molecular imaging in accelerating discovery of drugs for c-Myc-targeted cancer therapy.
Collapse
Affiliation(s)
- Hua Fan-Minogue
- Corresponding Author: Sanjiv S. Gambhir, Molecular Imaging Program at Stanford, Stanford University School of Medicine, 318 Campus Drive, East Wing, 1st Floor, Stanford, CA 94305-5427.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
MYC inhibition induces metabolic changes leading to accumulation of lipid droplets in tumor cells. Proc Natl Acad Sci U S A 2013; 110:10258-63. [PMID: 23733953 DOI: 10.1073/pnas.1222404110] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The MYC genes are the most frequently activated oncogenes in human tumors and are hence attractive therapeutic targets. MYCN amplification leads to poor clinical outcome in childhood neuroblastoma, yet strategies to modulate the function of MYCN do not exist. Here we show that 10058-F4, a characterized c-MYC/Max inhibitor, also targets the MYCN/Max interaction, leading to cell cycle arrest, apoptosis, and neuronal differentiation in MYCN-amplified neuroblastoma cells and to increased survival of MYCN transgenic mice. We also report the discovery that inhibition of MYC is accompanied by accumulation of intracellular lipid droplets in tumor cells as a direct consequence of mitochondrial dysfunction. This study expands on the current knowledge of how MYC proteins control the metabolic reprogramming of cancer cells, especially highlighting lipid metabolism and the respiratory chain as important pathways involved in neuroblastoma pathogenesis. Together our data support direct MYC inhibition as a promising strategy for the treatment of MYC-driven tumors.
Collapse
|
32
|
Yap JL, Wang H, Hu A, Chauhan J, Jung KY, Gharavi RB, Prochownik EV, Fletcher S. Pharmacophore identification of c-Myc inhibitor 10074-G5. Bioorg Med Chem Lett 2012. [PMID: 23177256 DOI: 10.1016/j.bmcl.2012.10.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A structure-activity relationship (SAR) study of the c-Myc (Myc) inhibitor 10074-G5 (N-([1,1'-biphenyl]-2-yl)-7-nitrobenzo[c][1,2,5]oxadiazol-4-amine, 1) - which targets a hydrophobic domain of the Myc oncoprotein that is flanked by arginine residues - was executed in order to determine its pharmacophore. Whilst the 7-nitrobenzofurazan was found to be critical for inhibitory activity, the ortho-biphenyl could be replaced with a para-carboxyphenyl group to furnish the new inhibitor JY-3-094 (3q). Around five times as potent as the lead with an IC(50) of 33 μM for disruption of the Myc-Max heterodimer, JY-3-094 demonstrated excellent selectivity over Max-Max homodimers, with no apparent effect at 100 μM. Importantly, the carboxylic acid of JY-3-094 improves the physicochemical properties of the lead compound, which will facilitate the incorporation of additional hydrophobicity that might enhance Myc inhibitory activity further still.
Collapse
Affiliation(s)
- Jeremy L Yap
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N Pine St, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Follis AV, Galea CA, Kriwacki RW. Intrinsic Protein Flexibility in Regulation of Cell Proliferation: Advantages for Signaling and Opportunities for Novel Therapeutics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 725:27-49. [DOI: 10.1007/978-1-4614-0659-4_3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
34
|
Yap JL, Chauhan J, Jung KY, Chen L, Prochownik EV, Fletcher S. Small-molecule inhibitors of dimeric transcription factors: Antagonism of protein–protein and protein–DNA interactions. MEDCHEMCOMM 2012. [DOI: 10.1039/c2md00289b] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
35
|
Frenzel A, Zirath H, Vita M, Albihn A, Henriksson MA. Identification of cytotoxic drugs that selectively target tumor cells with MYC overexpression. PLoS One 2011; 6:e27988. [PMID: 22132187 PMCID: PMC3223192 DOI: 10.1371/journal.pone.0027988] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 10/30/2011] [Indexed: 01/03/2023] Open
Abstract
Expression of MYC is deregulated in a wide range of human cancers, and is often associated with aggressive disease and poorly differentiated tumor cells. Identification of compounds with selectivity for cells overexpressing MYC would hence be beneficial for the treatment of these tumors. For this purpose we used cell lines with conditional MYCN or c-MYC expression, to screen a library of 80 conventional cytotoxic compounds for their ability to reduce tumor cell viability and/or growth in a MYC dependent way. We found that 25% of the studied compounds induced apoptosis and/or inhibited proliferation in a MYC-specific manner. The activities of the majority of these were enhanced both by c-MYC or MYCN over-expression. Interestingly, these compounds were acting on distinct cellular targets, including microtubules (paclitaxel, podophyllotoxin, vinblastine) and topoisomerases (10-hydroxycamptothecin, camptothecin, daunorubicin, doxorubicin, etoposide) as well as DNA, RNA and protein synthesis and turnover (anisomycin, aphidicholin, gliotoxin, MG132, methotrexate, mitomycin C). Our data indicate that MYC overexpression sensitizes cells to disruption of specific pathways and that in most cases c-MYC and MYCN overexpression have similar effects on the responses to cytotoxic compounds. Treatment of the cells with topoisomerase I inhibitors led to down-regulation of MYC protein levels, while doxorubicin and the small molecule MYRA-A was found to disrupt MYC-Max interaction. We conclude that the MYC pathway is only targeted by a subset of conventional cytotoxic drugs currently used in the clinic. Elucidating the mechanisms underlying their specificity towards MYC may be of importance for optimizing treatment of tumors with MYC deregulation. Our data also underscores that MYC is an attractive target for novel therapies and that cellular screenings of chemical libraries can be a powerful tool for identifying compounds with a desired biological activity.
Collapse
Affiliation(s)
- Anna Frenzel
- Department of Microbiology Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Hanna Zirath
- Department of Microbiology Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Marina Vita
- Department of Microbiology Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Ami Albihn
- Department of Microbiology Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Marie Arsenian Henriksson
- Department of Microbiology Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
36
|
Abstract
The MYC protein controls many cellular processes, including proliferation, cell cycle progression, cell growth, metabolism, angiogenesis, differentiation, cell adhesion, and motility. This is primarily achieved through transcriptional regulation of large gene networks that ultimately results in activation or repression of target genes. Given its broad regulatory scope, the expression of the MYC gene itself needs to be tightly controlled. Deregulation of MYC expression promotes tumorigenesis and, not surprisingly, MYC is frequently activated in many different human cancers. Furthermore, these tumors become highly dependent on sustained MYC expression, while MYC inactivation results in desirable anticancer effects, such as cell death, differentiation, and/or senescence. Thus, MYC has emerged as an attractive target for cancer therapy. In addition to regulating protein-coding genes, MYC also governs the expression of microRNAs, many of which have important regulatory roles in cancer development and progression. Here we will discuss how MYC-regulated miRNAs could be exploited for therapeutic development for cancer.
Collapse
Affiliation(s)
- Anna Frenzel
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
37
|
Kuo MT, Savaraj N, Feun LG. Targeted cellular metabolism for cancer chemotherapy with recombinant arginine-degrading enzymes. Oncotarget 2011; 1:246-51. [PMID: 21152246 PMCID: PMC2998341 DOI: 10.18632/oncotarget.135] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
It has been shown that a subset of human cancers, notably, melanoma and hepatocellular carcinoma (HCC) are auxotrophic for arginine (Arg), because they do not express argininosuccinate synthetase (ASS), the rate-limiting enzyme for the biosynthesis of arginine from citrulline. These ASS-negative cancer cells require Arg from extracellular sources for survival. When they are exposed to recombinant Arg-degrading enzymes, e.g. arginine deiminase (ADI) or arginase, they die because of Arg starvation; whereas normal cells which express ASS are able to survive. A pegylated ADI (ADI-PEG20) has been developed for clinical trials for advanced melanoma and HCC; and favorable results have been obtained. ADI-PEG20 treatment induces autophagy in auxotrophic cancer cells leading to cell death. Clinical studies in melanoma patients show that re-expression of ASS is associated with ADI-PEG20 resistance. ADI-PEG20 treatment down-regulates the expression of HIF-1α but up-regulates c-Myc in culture melanoma cells. Induction of ASS by ADI-PEG20 involves positive regulators c-Myc and Sp4 and negative regulator HIF1α. Since both HIF-1α and c-Myc play important roles in cancer cell energy metabolism, together these results suggest that targeted cancer cell metabolism through modulation of HIF-1α and c-Myc expression may improve the efficacy of ADI-PEG20 in treating Arg auxotrophic tumors.
Collapse
Affiliation(s)
- Macus Tien Kuo
- Department of Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, USA.
| | | | | |
Collapse
|
38
|
Mao B, Zhao G, Lv X, Chen HZ, Xue Z, Yang B, Liu DP, Liang CC. Sirt1 deacetylates c-Myc and promotes c-Myc/Max association. Int J Biochem Cell Biol 2011; 43:1573-81. [PMID: 21807113 DOI: 10.1016/j.biocel.2011.07.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 07/02/2011] [Accepted: 07/18/2011] [Indexed: 01/06/2023]
Abstract
The c-Myc oncoprotein plays critical roles in multiple biological processes by controlling cell proliferation, apoptosis, differentiation, and metabolism. Especially, c-Myc is frequently overexpressed in many human cancers and widely involved in tumorigenesis. However, how the post-translational modifications, especially acetylation of c-Myc, contribute to its activity in the leukemia cells remains largely unknown. Sirt1, a NAD-dependent class III histone deacetylase, has a paradoxical role in tumorigenesis by deacetylating several transcription factors, including p53, E2F1 and forkhead proteins. In this study, we show that Sirt1 interacts physically with the C-terminus of c-Myc and deacetylates c-Myc both in vitro and in vivo. Moreover, the deacetylation of c-Myc by Sirt1 promotes its association with Max, a partner essential for its activation, thereby facilitating c-Myc transactivation activity on hTERT promoter. Finally, inhibition of endogenous Sirt1 in K562 cells by either RNAi or its inhibitor NAM causes the overall decrease of c-Myc target genes expression, including hTERT, cyclinD2 and LDHA, which further suppress cell proliferation and arrest cell cycle at G1/S phase. Thus, our results demonstrate the positive effect of Sirt1 on c-Myc activity by efficiently enhancing c-Myc/Max association in human leukemia cell line K562, suggesting a potential role of Sirt1 in tumorigenesis.
Collapse
Affiliation(s)
- Beibei Mao
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Clausen DM, Guo J, Parise RA, Beumer JH, Egorin MJ, Lazo JS, Prochownik EV, Eiseman JL. In vitro cytotoxicity and in vivo efficacy, pharmacokinetics, and metabolism of 10074-G5, a novel small-molecule inhibitor of c-Myc/Max dimerization. J Pharmacol Exp Ther 2010; 335:715-27. [PMID: 20801893 PMCID: PMC2993546 DOI: 10.1124/jpet.110.170555] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 08/24/2010] [Indexed: 01/29/2023] Open
Abstract
The c-Myc oncoprotein is overexpressed in many tumors and is essential for maintaining the proliferation of transformed cells. To function as a transcription factor, c-Myc must dimerize with Max via the basic helix-loop-helix leucine zipper protein (bHLH-ZIP) domains in each protein. The small molecule 7-nitro-N-(2-phenylphenyl)-2,1,3-benzoxadiazol-4-amine (10074-G5) binds to and distorts the bHLH-ZIP domain of c-Myc, thereby inhibiting c-Myc/Max heterodimer formation and inhibiting its transcriptional activity. We report in vitro cytotoxicity and in vivo efficacy, pharmacodynamics, pharmacokinetics, and metabolism of 10074-G5 in human xenograft-bearing mice. In vitro, 10074-G5 inhibited the growth of Daudi Burkitt's lymphoma cells and disrupted c-Myc/Max dimerization. 10074-G5 had no effect on the growth of Daudi xenografts in C.B-17 SCID mice that were treated with 20 mg/kg 10074-G5 intravenously for 5 consecutive days. Inhibition of c-Myc/Max dimerization in Daudi xenografts was not seen 2 or 24 h after treatment. Concentrations of 10074-G5 in various matrices were determined by high-performance liquid chromatography-UV, and metabolites of 10074-G5 were identified by liquid chromatography/tandem mass spectrometry. The plasma half-life of 10074-G5 in mice treated with 20 mg/kg i.v. was 37 min, and peak plasma concentration was 58 μM, which was 10-fold higher than peak tumor concentration. The lack of antitumor activity probably was caused by the rapid metabolism of 10074-G5 to inactive metabolites, resulting in tumor concentrations of 10074-G5 insufficient to inhibit c-Myc/Max dimerization. Our identification of 10074-G5 metabolites in mice will help design new, more metabolically stable small-molecule inhibitors of c-Myc.
Collapse
Affiliation(s)
- Dana M Clausen
- Molecular Therapeutics/Drug Discovery Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Uversky VN. Targeting intrinsically disordered proteins in neurodegenerative and protein dysfunction diseases: another illustration of the D(2) concept. Expert Rev Proteomics 2010; 7:543-64. [PMID: 20653509 DOI: 10.1586/epr.10.36] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Many biologically active proteins, which are usually called intrinsically disordered or natively unfolded proteins, lack stable tertiary and/or secondary structure under physiological conditions in vitro. Their functions complement the functional repertoire of ordered proteins, with intrinsically disordered proteins (IDPs) often being involved in regulation, signaling and control. Their amino acid sequences and compositions are very different from those of ordered proteins, making reliable identification of IDPs possible at the proteome level. IDPs are highly abundant in various human diseases, including neurodegeneration and other protein dysfunction maladies and, therefore, represent attractive novel drug targets. Some of the aspects of IDPs, as well as their roles in neurodegeneration and protein dysfunction diseases, are discussed in this article, together with the peculiarities of IDPs as potential drug targets.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Institute for Intrinsically Disordered Protein Research, Center for Computational Biology and Bioinformatics, and Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
41
|
Abstract
The cytoplasmic Myc protein (c-Myc) regulates various human genes and is dysregulated in many human cancers. Phosphorylation mediates the protein activation of c-Myc and is essential for the function of this transcription factor in normal cell behavior and tumor growth. To date, however, the targeting of Myc as a therapeutic approach for cancer treatment has been achieved primarily at the nonprotein level. We have developed a molecular imaging sensor for noninvasive imaging of c-Myc activity in living subjects using a split Firefly luciferase (FL) complementation strategy to detect and quantify the phosphorylation-mediated interaction between glycogen synthase kinase 3beta (GSK3beta) and c-Myc. This sensor system consists of two fusion proteins, GSK 35-433-CFL and NFL-c-Myc, in which specific fragments of GSK3beta and c-Myc are fused with C-terminal and N-terminal fragments of the split FL, respectively. The sensor detects phosphorylation-specific GSK3beta-c-Myc interaction, the imaging signal of which correlates with the steady-state and temporal regulation of c-Myc phosphorylation in cell culture. The sensor also detects inhibition of c-Myc activity via differential pathways, allowing noninvasive monitoring of c-Myc-targeted drug efficacy in intact cells and living mice. Notably, this drug inhibition is detected before changes in tumor size are apparent in mouse xenograft and liver tumor models. This reporter system not only provides an innovative way to investigate the role of functional c-Myc in normal and cancer-related biological processes, but also facilitates c-Myc-targeted drug development by providing a rapid quantitative approach to assessing cancer response to therapy in living subjects.
Collapse
|
42
|
Metallo SJ. Intrinsically disordered proteins are potential drug targets. Curr Opin Chem Biol 2010; 14:481-8. [PMID: 20598937 DOI: 10.1016/j.cbpa.2010.06.169] [Citation(s) in RCA: 229] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 06/03/2010] [Accepted: 06/08/2010] [Indexed: 01/01/2023]
Abstract
Intrinsically disordered (ID) proteins that lack stable secondary and tertiary structure in substantial regions (or throughout) are prevalent in eukaryotes. They exist as ensembles of rapidly fluctuating structures and many undergo coupled folding and binding reactions. Because ID proteins are overrepresented in major disease pathways they are desirable targets for inhibition; however, the feasibility of targeting proteins without defined structures was unclear. Recently, small molecules have been found that bind to the disordered regions of c-Myc, Abeta, EWS-Fli1, and various peptides. As with structured targets, initial hits were further optimized to increase specificity and affinity. Given the number and biological importance of ID proteins, the ability to inhibit their interactions opens tremendous potential in chemical biology and drug discovery.
Collapse
Affiliation(s)
- Steven J Metallo
- Department of Chemistry, Georgetown University, 37th & O Streets, NW, Washington, DC 20057, United States.
| |
Collapse
|
43
|
Uversky VN, Dunker AK. Understanding protein non-folding. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1804:1231-64. [PMID: 20117254 PMCID: PMC2882790 DOI: 10.1016/j.bbapap.2010.01.017] [Citation(s) in RCA: 925] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Revised: 01/09/2010] [Accepted: 01/21/2010] [Indexed: 02/07/2023]
Abstract
This review describes the family of intrinsically disordered proteins, members of which fail to form rigid 3-D structures under physiological conditions, either along their entire lengths or only in localized regions. Instead, these intriguing proteins/regions exist as dynamic ensembles within which atom positions and backbone Ramachandran angles exhibit extreme temporal fluctuations without specific equilibrium values. Many of these intrinsically disordered proteins are known to carry out important biological functions which, in fact, depend on the absence of a specific 3-D structure. The existence of such proteins does not fit the prevailing structure-function paradigm, which states that a unique 3-D structure is a prerequisite to function. Thus, the protein structure-function paradigm has to be expanded to include intrinsically disordered proteins and alternative relationships among protein sequence, structure, and function. This shift in the paradigm represents a major breakthrough for biochemistry, biophysics and molecular biology, as it opens new levels of understanding with regard to the complex life of proteins. This review will try to answer the following questions: how were intrinsically disordered proteins discovered? Why don't these proteins fold? What is so special about intrinsic disorder? What are the functional advantages of disordered proteins/regions? What is the functional repertoire of these proteins? What are the relationships between intrinsically disordered proteins and human diseases?
Collapse
Affiliation(s)
- Vladimir N Uversky
- Institute for Intrinsically Disordered Protein Research, Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | |
Collapse
|
44
|
Koehler AN. A complex task? Direct modulation of transcription factors with small molecules. Curr Opin Chem Biol 2010; 14:331-40. [PMID: 20395165 PMCID: PMC3248789 DOI: 10.1016/j.cbpa.2010.03.022] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 02/25/2010] [Accepted: 03/21/2010] [Indexed: 12/31/2022]
Abstract
Transcription factors with aberrant activity in disease are promising yet untested targets for therapeutic development, particularly in oncology. Directly inhibiting or activating the function of a transcription factor requires specific disruption or recruitment of protein-protein or protein-DNA interactions. The discovery or design of small molecules that specifically modulate these interactions has thus far proven to be a significant challenge and the protein class is often perceived to be 'undruggable.' This review will summarize recent progress in the development of small-molecule probes of transcription factors and provide evidence to challenge the notion that this important protein class is chemically intractable.
Collapse
Affiliation(s)
- Angela N Koehler
- Broad Institute of Harvard and MIT, Chemical Biology Program, 7 Cambridge Center, Cambridge, MA 02142, USA.
| |
Collapse
|
45
|
Podar K, Anderson KC. A therapeutic role for targeting c-Myc/Hif-1-dependent signaling pathways. Cell Cycle 2010; 9:1722-8. [PMID: 20404562 DOI: 10.4161/cc.9.9.11358] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Deregulated c-Myc occurs in approximately 30% of human cancers. Similarly, hypoxia-inducible factor (HIF) is commonly overexpressed in a variety of human malignancies. Under physiologic conditions, HIF inhibits c-Myc activity; however, when deregulated oncogenic c-Myc collaborates with HIF in inducing the expression of VEGF, PDK1 and hexokinase 2. Most of the knowledge of HIF derives from studies investigating a role of HIF under hypoxic conditions, however, HIF-1alpha stabilization is also found in normoxic conditions. Specifically, under hypoxic conditions HIF-1-mediated regulation of oncogenic c-Myc plays a pivotal role in conferring metabolic advantages to tumor cells as well as adaptation to the tumorigenic micromilieu. In addition, our own results show that under normoxic conditions oncogenic c-Myc is required for constitutive high HIF-1 protein levels and activity in Multiple Myeloma (MM) cells, thereby influencing VEGF secretion and angiogenic activity within the bone marrow microenvironment. Further studies are needed to delineate the functional relevance of HIF, MYC, and the HIF-MYC collaboration in MM and other malignancies, also integrating the tumor microenvironment and the cellular context. Importantly, early studies already demonstrate promising preclinical of novel agents, predominantly small molecules, which target c-Myc, HIF or both.
Collapse
Affiliation(s)
- Klaus Podar
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
46
|
Albihn A, Johnsen JI, Henriksson MA. MYC in oncogenesis and as a target for cancer therapies. Adv Cancer Res 2010; 107:163-224. [PMID: 20399964 DOI: 10.1016/s0065-230x(10)07006-5] [Citation(s) in RCA: 186] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
MYC proteins (c-MYC, MYCN, and MYCL) regulate processes involved in many if not all aspects of cell fate. Therefore, it is not surprising that the MYC genes are deregulated in several human neoplasias as a result from genetic and epigenetic alterations. The near "omnipotency" together with the many levels of regulation makes MYC an attractive target for tumor intervention therapy. Here, we summarize some of the current understanding of MYC function and provide an overview of different cancer forms with MYC deregulation. We also describe available treatments and highlight novel approaches in the pursuit for MYC-targeting therapies. These efforts, at different stages of development, constitute a promising platform for novel, more specific treatments with fewer side effects. If successful a MYC-targeting therapy has the potential for tailored treatment of a large number of different tumors.
Collapse
Affiliation(s)
- Ami Albihn
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
47
|
Larsson LG, Henriksson MA. The Yin and Yang functions of the Myc oncoprotein in cancer development and as targets for therapy. Exp Cell Res 2010; 316:1429-37. [PMID: 20382143 DOI: 10.1016/j.yexcr.2010.03.025] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 03/31/2010] [Indexed: 12/21/2022]
Abstract
The Myc proto-oncoprotein coordinates a number of normal physiological processes necessary for growth and expansion of somatic cells by controlling the expression of numerous target genes. Deregulation of MYC as a consequence of carciogenic events enforces cells to undergo a transition to a hyperproliferative state. This increases the risk of additional oncogenic mutations that in turn can result in further tumor progression. However, Myc activation also provokes intrinsic tumor suppressor mechanisms including apoptosis, cellular senescence and DNA damage responses that act as barriers for tumor development and therefore needs to be overcome during tumorigenesis. Myc thus possesses two seemingly contradictory "faces" here referred to as "Yin and Yang". Observations that many tumor suppressor pathways remain intact but are latent in tumor cells opens the possibility that pharmacological inhibition of the Yin or activation of the Yang functions can prevail and offer new attractive approaches for treating diverse types of cancer.
Collapse
Affiliation(s)
- Lars-Gunnar Larsson
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Box 280, 171 77 Stockholm, Sweden.
| | | |
Collapse
|
48
|
Hammoudeh DI, Follis AV, Prochownik EV, Metallo SJ. Multiple independent binding sites for small-molecule inhibitors on the oncoprotein c-Myc. J Am Chem Soc 2009; 131:7390-401. [PMID: 19432426 DOI: 10.1021/ja900616b] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Deregulation of the c-Myc transcription factor is involved in many types of cancer, making this oncoprotein an attractive target for drug discovery. One approach to its inhibition has been to disrupt the dimeric complex formed between its basic helix-loop-helix leucine zipper (bHLHZip) domain and a similar domain on its dimerization partner, Max. As monomers, bHLHZip proteins are intrinsically disordered (ID). Previously we showed that two c-Myc-Max inhibitors, 10058-F4 and 10074-G5, bound to distinct ID regions of the monomeric c-Myc bHLHZip domain. Here, we use circular dichroism, fluorescence polarization, and NMR to demonstrate the presence of an additional binding site located between those for 10058-F4 and 10074-G5. All seven of the originally identified Myc inhibitors are shown to bind to one of these three discrete sites within the 85-residue bHLHZip domain of c-Myc. These binding sites are composed of short contiguous stretches of amino acids that can selectively and independently bind small molecules. Inhibitor binding induces only local conformational changes, preserves the overall disorder of c-Myc, and inhibits dimerization with Max. NMR experiments further show that binding at one site on c-Myc affects neither the affinity nor the structural changes taking place upon binding to the other sites. Rather, binding can occur simultaneously and independently on the three identified sites. Our results suggest the widespread existence of peptide regions prone to small-molecule binding within ID domains. A rational and generic approach to the inhibition of protein-protein interactions involving ID proteins may therefore be possible through the targeting of ID sequence.
Collapse
Affiliation(s)
- Dalia I Hammoudeh
- Department of Chemistry, Georgetown University, Washington, District of Columbia 20057, USA
| | | | | | | |
Collapse
|
49
|
Van Roy N, De Preter K, Hoebeeck J, Van Maerken T, Pattyn F, Mestdagh P, Vermeulen J, Vandesompele J, Speleman F. The emerging molecular pathogenesis of neuroblastoma: implications for improved risk assessment and targeted therapy. Genome Med 2009; 1:74. [PMID: 19638189 PMCID: PMC2717400 DOI: 10.1186/gm74] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Neuroblastoma is one of the most common solid tumors of childhood, arising from immature sympathetic nervous system cells. The clinical course of patients with neuroblastoma is highly variable, ranging from spontaneous regression to widespread metastatic disease. Although the outcome for children with cancer has improved considerably during the past decades, the prognosis of children with aggressive neuroblastoma remains dismal. The clinical heterogeneity of neuroblastoma mirrors the biological and genetic heterogeneity of these tumors. Ploidy and MYCN amplification have been used as genetic markers for risk stratification and therapeutic decision making, and, more recently, gene expression profiling and genome-wide DNA copy number analysis have come into the picture as sensitive and specific tools for assessing prognosis. The applica tion of new genetic tools also led to the discovery of an important familial neuroblastoma cancer gene, ALK, which is mutated in approximately 8% of sporadic tumors, and genome-wide association studies have unveiled loci with risk alleles for neuroblastoma development. For some of the genomic regions that are deleted in some neuroblastomas, on 1p, 3p and 11q, candidate tumor suppressor genes have been identified. In addition, evidence has emerged for the contribution of epigenetic disturbances in neuroblastoma oncogenesis. As in other cancer entities, altered microRNA expression is also being recognized as an important player in neuroblastoma. The recent successes in unraveling the genetic basis of neuroblastoma are now opening opportunities for development of targeted therapies.
Collapse
Affiliation(s)
- Nadine Van Roy
- Center for Medical Genetics, Ghent University Hospital, De Pintelaan 185, B-9000 Ghent, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Medulloblastoma and neuroblastoma are malignant embryonal childhood tumours of the central and peripheral nervous systems, respectively, which often show poor clinical prognosis due to resistance to current chemotherapy. Both these tumours have deficient apoptotic machineries adopted from their respective progenitor cells. This review focuses on the specific background for tumour development, and highlights biological pathways that present potential targets for novel therapeutic approaches.
Collapse
Affiliation(s)
- John Inge Johnsen
- Department of Woman and Child Health, Karolinska Institutet, Astrid Lindgren Children's Hospital, Childhood Cancer Research Unit, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | |
Collapse
|