1
|
Keller B, Kfir-Erenfeld S, Matusewicz P, Hartl F, Lev A, Lee YN, Simon AJ, Stauber T, Elpeleg O, Somech R, Stepensky P, Minguet S, Schraven B, Warnatz K. Combined Immunodeficiency Caused by a Novel Nonsense Mutation in LCK. J Clin Immunol 2023; 44:4. [PMID: 38112969 PMCID: PMC10730691 DOI: 10.1007/s10875-023-01614-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/14/2023] [Indexed: 12/21/2023]
Abstract
Mutations affecting T-cell receptor (TCR) signaling typically cause combined immunodeficiency (CID) due to varying degrees of disturbed T-cell homeostasis and differentiation. Here, we describe two cousins with CID due to a novel nonsense mutation in LCK and investigate the effect of this novel nonsense mutation on TCR signaling, T-cell function, and differentiation. Patients underwent clinical, genetic, and immunological investigations. The effect was addressed in primary cells and LCK-deficient T-cell lines after expression of mutated LCK. RESULTS: Both patients primarily presented with infections in early infancy. The LCK mutation led to reduced expression of a truncated LCK protein lacking a substantial part of the kinase domain and two critical regulatory tyrosine residues. T cells were oligoclonal, and especially naïve CD4 and CD8 T-cell counts were reduced, but regulatory and memory including circulating follicular helper T cells were less severely affected. A diagnostic hallmark of this immunodeficiency is the reduced surface expression of CD4. Despite severely impaired TCR signaling mTOR activation was partially preserved in patients' T cells. LCK-deficient T-cell lines reconstituted with mutant LCK corroborated partially preserved signaling. Despite detectable differentiation of memory and effector T cells, their function was severely disturbed. NK cell cytotoxicity was unaffected. Residual TCR signaling in LCK deficiency allows for reduced, but detectable T-cell differentiation, while T-cell function is severely disturbed. Our findings expand the previous report on one single patient on the central role of LCK in human T-cell development and function.
Collapse
Affiliation(s)
- Baerbel Keller
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Shlomit Kfir-Erenfeld
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Paul Matusewicz
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Frederike Hartl
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Atar Lev
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center; Edmond and Lily Safra Children's Hospital, Sheba Medical Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Yu Nee Lee
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center; Edmond and Lily Safra Children's Hospital, Sheba Medical Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Amos J Simon
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center; Edmond and Lily Safra Children's Hospital, Sheba Medical Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Tali Stauber
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center; Edmond and Lily Safra Children's Hospital, Sheba Medical Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Orly Elpeleg
- Department of Genetics, Hadassah, Hebrew University Medical Center, Jerusalem, Israel
| | - Raz Somech
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center; Edmond and Lily Safra Children's Hospital, Sheba Medical Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Polina Stepensky
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Susana Minguet
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Burkhart Schraven
- Health Campus Immunology, Infectiology and Inflammation (GC-I3) Medical Faculty, Otto-Von Guericke University Magdeburg, Magdeburg, Germany
- Center of Health and Medical Prevention (CHaMP), Otto-Von Guericke University Magdeburg, Magdeburg, Germany
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Lewis DA, Ly T. Cell Cycle Entry Control in Naïve and Memory CD8 + T Cells. Front Cell Dev Biol 2021; 9:727441. [PMID: 34692683 PMCID: PMC8526999 DOI: 10.3389/fcell.2021.727441] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/07/2021] [Indexed: 12/20/2022] Open
Abstract
CD8+ T cells play important roles in immunity and immuno-oncology. Upon antigen recognition and co-stimulation, naïve CD8+ T cells escape from dormancy to engage in a complex programme of cellular growth, cell cycle entry and differentiation, resulting in rapid proliferation cycles that has the net effect of producing clonally expanded, antigen-specific cytotoxic T lymphocytes (CTLs). A fraction of activated T cells will re-enter dormancy by differentiating into memory T cells, which have essential roles in adaptive immunity. In this review, we discuss the current understanding of cell cycle entry control in CD8+ T cells and crosstalk between these mechanisms and pathways regulating immunological phenotypes.
Collapse
Affiliation(s)
- David A. Lewis
- Ashworth Laboratories, Institute of Immunology and Infectious Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Tony Ly
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
3
|
Dunsmore G, Rosero EP, Shahbaz S, Santer DM, Jovel J, Lacy P, Houston S, Elahi S. Neutrophils promote T-cell activation through the regulated release of CD44-bound Galectin-9 from the cell surface during HIV infection. PLoS Biol 2021; 19:e3001387. [PMID: 34411088 PMCID: PMC8407585 DOI: 10.1371/journal.pbio.3001387] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 08/31/2021] [Accepted: 08/04/2021] [Indexed: 12/14/2022] Open
Abstract
The interaction of neutrophils with T cells has been the subject of debate and controversies. Previous studies have suggested that neutrophils may suppress or activate T cells. Despite these studies, the interaction between neutrophils and T cells has remained a largely unexplored field. Here, based on our RNA sequencing (RNA-seq) analysis, we found that neutrophils have differential transcriptional and functional profiling depending on the CD4 T-cell count of the HIV-infected individual. In particular, we identified that neutrophils in healthy individuals express surface Galectin-9 (Gal-9), which is down-regulated upon activation, and is consistently down-regulated in HIV-infected individuals. However, down-regulation of Gal-9 was associated with CD4 T-cell count of patients. Unstimulated neutrophils express high levels of surface Gal-9 that is bound to CD44, and, upon stimulation, neutrophils depalmitoylate CD44 and induce its movement out of the lipid raft. This process causes the release of Gal-9 from the surface of neutrophils. In addition, we found that neutrophil-derived exogenous Gal-9 binds to cell surface CD44 on T cells, which promotes LCK activation and subsequently enhances T-cell activation. Furthermore, this process was regulated by glycolysis and can be inhibited by interleukin (IL)-10. Together, our data reveal a novel mechanism of Gal-9 shedding from the surface of neutrophils. This could explain elevated plasma Gal-9 levels in HIV-infected individuals as an underlying mechanism of the well-characterized chronic immune activation in HIV infection. This study provides a novel role for the Gal-9 shedding from neutrophils. We anticipate that our results will spark renewed investigation into the role of neutrophils in T-cell activation in other acute and chronic conditions, as well as improved strategies for modulating Gal-9 shedding. This study shows that HIV-infected individuals have different neutrophil profiles depending on their CD4 T cell count. In particular, neutrophils express high levels of surface Gal-9 but this is shed upon stimulation; this exogenous Gal-9 binds to CD44 on T cells, which promotes LCK activation and subsequently enhances T cell activation.
Collapse
Affiliation(s)
- Garett Dunsmore
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Eliana Perez Rosero
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Shima Shahbaz
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Deanna M. Santer
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Juan Jovel
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Paige Lacy
- Department of Medicine, Division of Pulmonary Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Stan Houston
- Department of Medicine, Division of Infectious Disease, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Shokrollah Elahi
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- * E-mail:
| |
Collapse
|
4
|
Kuang W, Hu J, Wu H, Fen X, Dai Q, Fu Q, Xiao W, Frantz L, Roos C, Nadler T, Irwin DM, Zhou L, Yang X, Yu L. Genetic Diversity, Inbreeding Level, and Genetic Load in Endangered Snub-Nosed Monkeys ( Rhinopithecus). Front Genet 2020; 11:615926. [PMID: 33384722 PMCID: PMC7770136 DOI: 10.3389/fgene.2020.615926] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/17/2020] [Indexed: 11/16/2022] Open
Abstract
The snub-nosed monkey genus (Rhinopithecus) comprises five closely related species (R. avunculus, R. bieti, R. brelichi, R. roxellana, and R. strykeri). All are among the world's rarest and most endangered primates. However, the genomic impact associated with their population decline remains unknown. We analyzed population genomic data of all five snub-nosed monkey species to assess their genetic diversity, inbreeding level, and genetic load. For R. roxellana, R. bieti, and R. strykeri, population size is positively correlated with genetic diversity and negatively correlated with levels of inbreeding. Other species, however, which possess small population sizes, such as R. brelichi and R. avunculus, show high levels of genetic diversity and low levels of genomic inbreeding. Similarly, in the three populations of R. roxellana, the Shennongjia population, which possesses the lowest population size, displays a higher level of genetic diversity and lower level of genomic inbreeding. These findings suggest that although R. brelichi and R. avunculus and the Shennongjia population might be at risk, it possess significant genetic diversity and could thus help strengthen their long-term survival potential. Intriguingly, R. roxellana with large population size possess high genetic diversity and low level of genetic load, but they show the highest recent inbreeding level compared with the other snub-nosed monkeys. This suggests that, despite its large population size, R. roxellana has likely been experiencing recent inbreeding, which has not yet affected its mutational load and fitness. Analyses of homozygous-derived deleterious mutations identified in all snub-nosed monkey species indicate that these mutations are affecting immune, especially in smaller population sizes, indicating that the long-term consequences of inbreeding may be resulting in an overall reduction of immune capability in the snub-nosed monkeys, which could provide a dramatic effect on their long-term survival prospects. Altogether, our study provides valuable information concerning the genomic impact of population decline of the snub-nosed monkeys. We revealed multiple counterintuitive and unexpected patterns of genetic diversity in small and large population, which will be essential for conservation management of these endangered species.
Collapse
Affiliation(s)
- Weimin Kuang
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Jingyang Hu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Hong Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Xiaotian Fen
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, IVPP, CAS, Beijing, China
- Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
- Beijing College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Qingyan Dai
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, IVPP, CAS, Beijing, China
- Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
- Beijing College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, IVPP, CAS, Beijing, China
- Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
- Beijing College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Wen Xiao
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, China
| | - Laurent Frantz
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
- The Palaeogenomics and Bio-Archaeology Research Network, Department of Archaeology, University of Oxford, Oxford, United Kingdom
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | | | - David M. Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Linchun Zhou
- Lushui Management and Conservation Branch of Gaoligong Mountain National Nature Reserve, Nujiang, China
| | - Xu Yang
- Lushui Forestry and Grassland Council, Nujiang, China
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
5
|
Abstract
One of the hallmarks of the vertebrate adaptive immune system is the prolific expansion of individual cell clones that encounter their cognate antigen. More recently, however, there is growing evidence for the clonal expansion of innate lymphocytes, particularly in the context of pathogen challenge. Clonal expansion not only serves to amplify the number of specific lymphocytes to mount a robust protective response to the pathogen at hand but also results in selection and differentiation of the responding lymphocytes to generate a multitude of cell fates. Here, we summarize the evidence for clonal expansion in innate lymphocytes, which has primarily been observed in natural killer (NK) cells responding to cytomegalovirus infection, and consider the requirements for such a response in NK cells in light of those for T cells. Furthermore, we discuss multiple aspects of heterogeneity that both contribute to and result from the fundamental immunological process of clonal expansion, highlighting the parallels between innate and adaptive lymphocytes, with a particular focus on NK cells and CD8+ T cells.
Collapse
|
6
|
Shi W, Shao T, Li JY, Fan DD, Lin AF, Xiang LX, Shao JZ. BTLA-HVEM Checkpoint Axis Regulates Hepatic Homeostasis and Inflammation in a ConA-Induced Hepatitis Model in Zebrafish. THE JOURNAL OF IMMUNOLOGY 2019; 203:2425-2442. [PMID: 31562209 DOI: 10.4049/jimmunol.1900458] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/29/2019] [Indexed: 12/18/2022]
Abstract
The BTLA-HVEM checkpoint axis plays extensive roles in immunomodulation and diseases, including cancer and autoimmune disorders. However, the functions of this checkpoint axis in hepatitis remain limited. In this study, we explored the regulatory role of the Btla-Hvem axis in a ConA-induced hepatitis model in zebrafish. Results showed that Btla and Hvem were differentially expressed on intrahepatic Cd8+ T cells and hepatocytes. Knockdown of Btla or Hvem significantly promoted hepatic inflammation. Btla was highly expressed in Cd8+ T cells in healthy liver but was downregulated in inflamed liver, as evidenced by a disparate proportion of Cd8+Btla+ and Cd8+Btla- T cells in individuals without or with ConA stimulation. Cd8+Btla+ T cells showed minimal cytotoxicity to hepatocytes, whereas Cd8+Btla- T cells were strongly reactive. The depletion of Cd8+Btla- T cells reduced hepatitis, whereas their transfer enhanced hepatic inflammation. These observations indicate that Btla endowed Cd8+Btla+ T cells with self-tolerance, thereby preventing them from attacking hepatocytes. Btla downregulation deprived this tolerization. Mechanistically, Btla-Hvem interaction contributed to Cd8+Btla+ T cell tolerization, which was impaired by Hvem knockdown but rescued by soluble Hvem protein administration. Notably, Light was markedly upregulated on Cd8+Btla- T cells, accompanied by the transition of Cd8+Btla+Light- to Cd8+Btla-Light+ T cells during hepatitis, which could be modulated by Cd4+ T cells. Light blockade attenuated hepatitis, thereby suggesting the positive role of Light in hepatic inflammation. These findings provide insights into a previously unrecognized Btla-Hvem-Light regulatory network in hepatic homeostasis and inflammation, thus adding a new potential therapeutic intervention for hepatitis.
Collapse
Affiliation(s)
- Wei Shi
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Tong Shao
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Jiang-Yuan Li
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Dong-Dong Fan
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Ai-Fu Lin
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Li-Xin Xiang
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Jian-Zhong Shao
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; and .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, People's Republic of China
| |
Collapse
|
7
|
Khan ST, Karges W, Cooper CL, Crawley AM. Hepatitis C virus core protein reduces CD8 + T-cell proliferation, perforin production and degranulation but increases STAT5 activation. Immunology 2018; 154:156-165. [PMID: 29266204 PMCID: PMC5904700 DOI: 10.1111/imm.12882] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 12/07/2017] [Accepted: 12/12/2017] [Indexed: 12/24/2022] Open
Abstract
Clearance of hepatitis C virus (HCV) is dependent on an effective virus-specific CD8+ T-cell response, which is dysfunctional in chronic HCV infection. Dysfunction in bulk or non-HCV-specific CD8+ T-cells in HCV infection has also been observed. This may contribute to observed reductions in immunity to other diseases (e.g. cancer, viral co-infections) in HCV-infected individuals. Evidence suggests that the HCV core protein (found in blood as free protein) may contribute to this impairment. To determine if HCV core contributes to the impairment of effector functions and survival potential of CD8+ T-cells, isolated human CD8+ T-cells from healthy donors were pre-incubated with recombinant HCV core protein for 72 hr and then stimulated in vitro to evaluate proliferation, survival potential and effector functions. Pre-incubation of stimulated CD8+ T-cells with HCV core significantly reduced their proliferation. Perforin production and degranulation were also decreased, but interferon-γ production was unchanged. Additionally, when CD8+ T-cells were treated with serum from HCV+ individuals, they produced less perforin than cells treated with healthy serum. Up-regulation of anti-apoptotic Bcl-2 was slightly lower in cells treated with HCV core, but signal transducer and activator of transcription 5 (STAT5) activation was increased, suggesting dysregulation downstream of STAT activation. Our study reveals that HCV core reduces the activity and target lysis-associated functions of CD8+ T-cells. This may contribute to the generalized impairment of CD8+ T-cells observed in HCV infection. These findings provide insight for the design of novel counteractive immune-mediated strategies including the design of effective therapeutic vaccines for use in HCV+ individuals.
Collapse
Affiliation(s)
- Sarwat Tahsin Khan
- Department of Biochemistry, Microbiology and ImmunologyUniversity of OttawaOttawaONCanada
- Chronic Diseases ProgrammeOttawa Hospital Research InstituteOttawaONCanada
| | - Winston Karges
- Department of Biochemistry, Microbiology and ImmunologyUniversity of OttawaOttawaONCanada
- Chronic Diseases ProgrammeOttawa Hospital Research InstituteOttawaONCanada
| | - Curtis L. Cooper
- School of EpidemiologyPublic Health and Preventative MedicineUniversity of OttawaOttawaONCanada
- Division of Infectious DiseasesThe Ottawa HospitalOttawaONCanada
- Clinical Epidemiology ProgrammeOttawa Hospital Research InstituteOttawaONCanada
| | - Angela M. Crawley
- Department of Biochemistry, Microbiology and ImmunologyUniversity of OttawaOttawaONCanada
- Chronic Diseases ProgrammeOttawa Hospital Research InstituteOttawaONCanada
- Department of BiologyCarleton UniversityOttawaONCanada
| |
Collapse
|
8
|
Affiliation(s)
- Byron B. Au-Yeung
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Neel H. Shah
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - Lin Shen
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, University of California, San Francisco, California 94143, USA;,
| | - Arthur Weiss
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, University of California, San Francisco, California 94143, USA;,
- Howard Hughes Medical Institute, University of California, San Francisco, California 94143, USA
| |
Collapse
|
9
|
DNA-binding of the Tet-transactivator curtails antigen-induced lymphocyte activation in mice. Nat Commun 2017; 8:1028. [PMID: 29044097 PMCID: PMC5647323 DOI: 10.1038/s41467-017-01022-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 08/14/2017] [Indexed: 12/31/2022] Open
Abstract
The Tet-On/Off system for conditional transgene expression constitutes state-of-the-art technology to study gene function by facilitating inducible expression in a timed and reversible manner. Several studies documented the suitability and versatility of this system to trace lymphocyte fate and to conditionally express oncogenes or silence tumour suppressor genes in vivo. Here, we show that expression of the tetracycline/doxycycline-controlled Tet-transactivator, while tolerated well during development and in immunologically unchallenged animals, impairs the expansion of antigen-stimulated T and B cells and thereby curtails adaptive immune responses in vivo. Transactivator-mediated cytotoxicity depends on DNA binding, but can be overcome by BCL2 overexpression, suggesting that apoptosis induction upon lymphocyte activation limits cellular and humoral immune responses. Our findings suggest a possible system-intrinsic biological bias of the Tet-On/Off system in vivo that will favour the outgrowth of apoptosis resistant clones, thus possibly confounding data published using such systems. Tet-transactivators are used for direct regulation of gene expression, RNA interference and for CRISPR/Cas9-based systems. Here the authors show that DNA-bound Tet-transactivators can induce cell death in antigen-activated lymphocytes in vivo, putting into question the use of, and in vivo data generated with, these molecular tools.
Collapse
|
10
|
Tan TCJ, Knight J, Sbarrato T, Dudek K, Willis AE, Zamoyska R. Suboptimal T-cell receptor signaling compromises protein translation, ribosome biogenesis, and proliferation of mouse CD8 T cells. Proc Natl Acad Sci U S A 2017; 114:E6117-E6126. [PMID: 28696283 PMCID: PMC5544288 DOI: 10.1073/pnas.1700939114] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Global transcriptomic and proteomic analyses of T cells have been rich sources of unbiased data for understanding T-cell activation. Lack of full concordance of these datasets has illustrated that important facets of T-cell activation are controlled at the level of translation. We undertook translatome analysis of CD8 T-cell activation, combining polysome profiling and microarray analysis. We revealed that altering T-cell receptor stimulation influenced recruitment of mRNAs to heavy polysomes and translation of subsets of genes. A major pathway that was compromised, when TCR signaling was suboptimal, was linked to ribosome biogenesis, a rate-limiting factor in both cell growth and proliferation. Defective TCR signaling affected transcription and processing of ribosomal RNA precursors, as well as the translation of specific ribosomal proteins and translation factors. Mechanistically, IL-2 production was compromised in weakly stimulated T cells, affecting the abundance of Myc protein, a known regulator of ribosome biogenesis. Consequently, weakly activated T cells showed impaired production of ribosomes and a failure to maintain proliferative capacity after stimulation. We demonstrate that primary T cells respond to various environmental cues by regulating ribosome biogenesis and mRNA translation at multiple levels to sustain proliferation and differentiation.
Collapse
Affiliation(s)
- Thomas C J Tan
- Institute of Immunology and Infection Research, Ashworth Laboratories, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - John Knight
- Medical Research Council Toxicology Unit, Leicester LE1 9HN, United Kingdom
| | - Thomas Sbarrato
- Medical Research Council Toxicology Unit, Leicester LE1 9HN, United Kingdom
| | - Kate Dudek
- Medical Research Council Toxicology Unit, Leicester LE1 9HN, United Kingdom
| | - Anne E Willis
- Medical Research Council Toxicology Unit, Leicester LE1 9HN, United Kingdom
| | - Rose Zamoyska
- Institute of Immunology and Infection Research, Ashworth Laboratories, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom;
| |
Collapse
|
11
|
Maru S, Jin G, Schell TD, Lukacher AE. TCR stimulation strength is inversely associated with establishment of functional brain-resident memory CD8 T cells during persistent viral infection. PLoS Pathog 2017; 13:e1006318. [PMID: 28410427 PMCID: PMC5406018 DOI: 10.1371/journal.ppat.1006318] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/26/2017] [Accepted: 03/27/2017] [Indexed: 11/22/2022] Open
Abstract
Establishing functional tissue-resident memory (TRM) cells at sites of infection is a newfound objective of T cell vaccine design. To directly assess the impact of antigen stimulation strength on memory CD8 T cell formation and function during a persistent viral infection, we created a library of mouse polyomavirus (MuPyV) variants with substitutions in a subdominant CD8 T cell epitope that exhibit a broad range of efficiency in stimulating TCR transgenic CD8 T cells. By altering a subdominant epitope in a nonstructural viral protein and monitoring memory differentiation of donor monoclonal CD8 T cells in immunocompetent mice, we circumvented potentially confounding changes in viral infection levels, virus-associated inflammation, size of the immunodominant virus-specific CD8 T cell response, and shifts in TCR affinity that may accompany temporal recruitment of endogenous polyclonal cells. Using this strategy, we found that antigen stimulation strength was inversely associated with the function of memory CD8 T cells during a persistent viral infection. We further show that CD8 TRM cells recruited to the brain following systemic infection with viruses expressing epitopes with suboptimal stimulation strength respond more efficiently to challenge CNS infection with virus expressing cognate antigen. These data demonstrate that the strength of antigenic stimulation during recruitment of CD8 T cells influences the functional integrity of TRM cells in a persistent viral infection. Tissue-resident memory (TRM) cells are a subset of memory T cells that primarily reside in non-lymphoid tissues and serve as sentinels and effectors against secondary infections. TRM cells have been extensively characterized in mucosal barriers, but much less is known about this population in non-barrier sites such as the brain. In this study, we designed a novel strategy to evaluate the impact of T cell stimulation strength on the generation and functionality of memory CD8 T cells in both lymphoid and nonlymphoid tissues. Using a mouse polyomavirus (MuPyV) library expressing variants of a subdominant epitope recognized by TCR transgenic CD8 T cells, we found that systemic infection producing weaker responses during T cell priming was sufficient for recruitment of effector cells to the brain. Furthermore, lower stimulation conferred greater functionality to memory T cells in the spleen and to brain TRM cells. Our findings demonstrate that the strength of antigenic stimulation experienced by a naïve T cell early in infection is a determinant of memory functional integrity during viral persistence in a non-barrier organ.
Collapse
Affiliation(s)
- Saumya Maru
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Ge Jin
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Todd D. Schell
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Aron E. Lukacher
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
12
|
Arosa FA, Esgalhado AJ, Padrão CA, Cardoso EM. Divide, Conquer, and Sense: CD8 +CD28 - T Cells in Perspective. Front Immunol 2017; 7:665. [PMID: 28096804 PMCID: PMC5206803 DOI: 10.3389/fimmu.2016.00665] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/16/2016] [Indexed: 12/18/2022] Open
Abstract
Understanding the rationale for the generation of a pool of highly differentiated effector memory CD8+ T cells displaying a weakened capacity to scrutinize for peptides complexed with major histocompatibility class I molecules via their T cell receptor, lacking the “signal 2” CD28 receptor, and yet expressing a highly diverse array of innate receptors, from natural killer receptors, interleukin receptors, and damage-associated molecular pattern receptors, among others, is one of the most challenging issues in contemporary human immunology. The prevalence of these differentiated CD8+ T cells, also known as CD8+CD28−, CD8+KIR+, NK-like CD8+ T cells, or innate CD8+ T cells, in non-lymphoid organs and tissues, in peripheral blood of healthy elderly, namely centenarians, but also in stressful and chronic inflammatory conditions suggests that they are not merely end-of-the-line dysfunctional cells. These experienced CD8+ T cells are highly diverse and capable of sensing a variety of TCR-independent signals, which enables them to respond and fine-tune tissue homeostasis.
Collapse
Affiliation(s)
- Fernando A Arosa
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior, Covilhã, Portugal; Faculty of Health Sciences (FCS-UBI), Universidade da Beira Interior, Covilhã, Portugal
| | - André J Esgalhado
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior , Covilhã , Portugal
| | - Carolina A Padrão
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior , Covilhã , Portugal
| | - Elsa M Cardoso
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior, Covilhã, Portugal; Faculty of Health Sciences (FCS-UBI), Universidade da Beira Interior, Covilhã, Portugal
| |
Collapse
|
13
|
Goplen NP, Saxena V, Knudson KM, Schrum AG, Gil D, Daniels MA, Zamoyska R, Teixeiro E. IL-12 Signals through the TCR To Support CD8 Innate Immune Responses. THE JOURNAL OF IMMUNOLOGY 2016; 197:2434-43. [PMID: 27521342 DOI: 10.4049/jimmunol.1600037] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 07/13/2016] [Indexed: 01/19/2023]
Abstract
CD8 T cells must integrate antigenic and inflammatory signals to differentiate into efficient effector and memory T cells able to protect us from infections. The mechanisms by which TCR signaling and proinflammatory cytokine receptor signaling cooperate in these processes are poorly defined. In this study, we show that IL-12 and other proinflammatory cytokines transduce signals through the TCR signalosome in a manner that requires Fyn activity and self-peptide-MHC (self-pMHC) interactions. This mechanism is crucial for CD8 innate T cell functions. Loss of Fyn activity or blockade of self-pMHC interactions severely impaired CD8 T cell IFN-γ and NKG2D expression, proliferation, and cytotoxicity upon cytokine-mediated bystander activation. Most importantly, in the absence of self-pMHC interactions, CD8 memory T cells fail to undergo bystander activation upon an unrelated infection. Thus, CD8 T cell bystander activation, although independent of cognate Ag, still requires self-pMHC and TCR signaling.
Collapse
Affiliation(s)
- Nicholas P Goplen
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212
| | - Vikas Saxena
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212
| | - Karin M Knudson
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212
| | - Adam G Schrum
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905; and
| | - Diana Gil
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905; and
| | - Mark A Daniels
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212
| | - Rose Zamoyska
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, Ashworth Laboratories, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| | - Emma Teixeiro
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212;
| |
Collapse
|
14
|
Moogk D, Zhong S, Yu Z, Liadi I, Rittase W, Fang V, Dougherty J, Perez-Garcia A, Osman I, Zhu C, Varadarajan N, Restifo NP, Frey AB, Krogsgaard M. Constitutive Lck Activity Drives Sensitivity Differences between CD8+ Memory T Cell Subsets. THE JOURNAL OF IMMUNOLOGY 2016; 197:644-54. [PMID: 27271569 DOI: 10.4049/jimmunol.1600178] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/04/2016] [Indexed: 12/16/2022]
Abstract
CD8(+) T cells develop increased sensitivity following Ag experience, and differences in sensitivity exist between T cell memory subsets. How differential TCR signaling between memory subsets contributes to sensitivity differences is unclear. We show in mouse effector memory T cells (TEM) that >50% of lymphocyte-specific protein tyrosine kinase (Lck) exists in a constitutively active conformation, compared with <20% in central memory T cells (TCM). Immediately proximal to Lck signaling, we observed enhanced Zap-70 phosphorylation in TEM following TCR ligation compared with TCM Furthermore, we observed superior cytotoxic effector function in TEM compared with TCM, and we provide evidence that this results from a lower probability of TCM reaching threshold signaling owing to the decreased magnitude of TCR-proximal signaling. We provide evidence that the differences in Lck constitutive activity between CD8(+) TCM and TEM are due to differential regulation by SH2 domain-containing phosphatase-1 (Shp-1) and C-terminal Src kinase, and we use modeling of early TCR signaling to reveal the significance of these differences. We show that inhibition of Shp-1 results in increased constitutive Lck activity in TCM to levels similar to TEM, as well as increased cytotoxic effector function in TCM Collectively, this work demonstrates a role for constitutive Lck activity in controlling Ag sensitivity, and it suggests that differential activities of TCR-proximal signaling components may contribute to establishing the divergent effector properties of TCM and TEM. This work also identifies Shp-1 as a potential target to improve the cytotoxic effector functions of TCM for adoptive cell therapy applications.
Collapse
Affiliation(s)
- Duane Moogk
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016
| | - Shi Zhong
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016
| | - Zhiya Yu
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Ivan Liadi
- Department of Chemical and Biomolecular Engineering, University of Houston, TX 77004
| | - William Rittase
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Victoria Fang
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016; New York University Medical Scientist Training Program, New York, NY 10016
| | - Janna Dougherty
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016
| | - Arianne Perez-Garcia
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016
| | - Iman Osman
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016; Ronald Perelman Department of Dermatology, New York University School of Medicine, New York, NY 10016
| | - Cheng Zhu
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Navin Varadarajan
- Department of Chemical and Biomolecular Engineering, University of Houston, TX 77004
| | - Nicholas P Restifo
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Alan B Frey
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016; and
| | - Michelle Krogsgaard
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016; Department of Pathology, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
15
|
Abstract
T cell memory plays a critical role in our protection against pathogens and tumors. The antigen and its interaction with the T cell receptor (TCR) is one of the initiating elements that shape T cell memory together with inflammation and costimulation. Over the last decade, several transcription factors and signaling pathways that support memory programing have been identified. However, how TCR signals regulate them is still poorly understood. Recent studies have shown that the biochemical rules that govern T cell memory, strikingly, change depending on the TCR signal strength. Furthermore, TCR signal strength regulates the input of cytokine signaling, including pro-inflammatory cytokines. These highlight how tailoring antigenic signals can improve immune therapeutics. In this review, we focus on how TCR signaling regulates T cell memory and how the quantity and quality of TCR–peptide–MHC interactions impact the multiple fates a T cell can adopt in the memory pool.
Collapse
Affiliation(s)
- Mark A Daniels
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri , Columbia, MO , USA
| | - Emma Teixeiro
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri , Columbia, MO , USA
| |
Collapse
|
16
|
Abstract
The proliferation of specific lymphocytes is the central tenet of the clonal selection paradigm. Antigen recognition by T cells triggers a series of events that produces expanded clones of differentiated effector cells. TCR signaling events are detectable within seconds and minutes and are likely to continue for hours and days in vivo. Here, I review the work done on the importance of TCR signals in the later part of the expansion phase of the primary T cell response, primarily regarding the regulation of the cell cycle in CD4(+) and CD8(+) cells. The results suggest a degree of programing by early signals for effector differentiation, particularly in the CD8(+) T cell compartment, with optimal expansion supported by persistent antigen presentation later on. Differences to CD4(+) T cell expansion and new avenues toward a molecular understanding of cell cycle regulation in lymphocytes are discussed.
Collapse
Affiliation(s)
- Reinhard Obst
- Institute for Immunology, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
17
|
Selective protein kinase Cθ (PKCθ) inhibitors for the treatment of autoimmune diseases. Biochem Soc Trans 2015; 42:1524-8. [PMID: 25399564 DOI: 10.1042/bst20140167] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Protein kinase Cθ (PKCθ) is a member of a large family of serine/threonine kinases that are involved in diverse cellular functions. PKCθ has roles in T-cell activation and survival, where the dependency of T-cell responses on this enzyme appears to be dictated by both the nature of the antigen and by the inflammatory environment. Studies in PKCθ-deficient mice have demonstrated that although anti-viral responses are PKCθ-independent, T-cell responses associated with autoimmune diseases are PKCθ-dependent. PKCθ-deficient mice are either resistant to or show markedly reduced symptoms in models of MS (multiple sclerosis), IBD (inflammatory bowel disease), arthritis and asthma. Thus potent and selective inhibition of PKCθ has the potential to block T-cell-mediated autoimmunity without compromising anti-viral responses. The present review describes the design and optimization of potent and selective PKCθ inhibitors and their efficacy in both in vitro and in vivo studies. First, our compounds confirm the critical role for PKCθ in T-cell activation and proliferation and secondly they help to demonstrate that murine and human memory T-cell function continues to be dependent on this enzyme. In addition, these inhibitors demonstrate impressive efficacy in treating established autoimmune disease in murine models of IBD and MS.
Collapse
|
18
|
Hou J, Deng L, Zhuo H, Lin Z, Chen Y, Jiang R, Chen D, Zhang X, Huang X, Sun B. PTPROt maintains T cell immunity in the microenvironment of hepatocellular carcinoma. J Mol Cell Biol 2015; 7:338-50. [PMID: 26117839 DOI: 10.1093/jmcb/mjv047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/19/2015] [Indexed: 12/13/2022] Open
Abstract
Intratumoral T cells play a central role in anti-tumor immunity, and the balance between T effector cells (Teff) and regulatory T cells (Treg) affects the prognosis of cancer patients. However, educated by tumor microenvironment, T cells frequently fail in their responsibility. In this study, we aimed to investigate the role of truncated isoform of protein tyrosine phosphatase receptor-type O (PTPROt) in T cell-mediated anti-tumor immunity. We recruited 70 hepatocellular carcinoma (HCC) patients and 30 healthy volunteers for clinical investigation, and analyzed cellular tumor immunity by using ptpro(-/-) C57BL/6 mice and NOD/SCID mice. PTPROt expression was significantly downregulated in human HCC-infiltrating T cells due to the hypoxia microenvironment; PTPROt expression highly correlated with the intratumoral Teff/Treg ratio and clinicopathologic characteristics. Moreover, PTPROt deficiency attenuated T cell-mediated anti-tumor immunity and remarkably promoted mouse HCC growth. Mechanistically, deletion of PTPROt decreased Teff quantity and quality through phosphorylation of lymphocyte-specific tyrosine kinase, but increased Treg differentiation through phosphorylation of signal transducer and activator of transcription 5. In support of the Teff/Treg homeostasis, PTPROt serves as an important tumor suppressor in HCC microenvironment.
Collapse
Affiliation(s)
- Jiajie Hou
- Liver Transplantation Center of the First Affiliated Hospital, Nanjing Medical University, Nanjing, China Present address: Liver Transplantation Center, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Lei Deng
- Liver Transplantation Center of the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Han Zhuo
- Liver Transplantation Center of the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Zhe Lin
- Liver Transplantation Center of the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yun Chen
- Liver Transplantation Center of the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Runqiu Jiang
- Liver Transplantation Center of the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Dianyu Chen
- Liver Transplantation Center of the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Xudong Zhang
- Liver Transplantation Center of the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Xingxu Huang
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, China
| | - Beicheng Sun
- Liver Transplantation Center of the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
19
|
Rabenstein H, Behrendt AC, Ellwart JW, Naumann R, Horsch M, Beckers J, Obst R. Differential kinetics of antigen dependency of CD4+ and CD8+ T cells. THE JOURNAL OF IMMUNOLOGY 2014; 192:3507-17. [PMID: 24639353 DOI: 10.4049/jimmunol.1302725] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ag recognition via the TCR is necessary for the expansion of specific T cells that then contribute to adaptive immunity as effector and memory cells. Because CD4+ and CD8+ T cells differ in terms of their priming APCs and MHC ligands we compared their requirements of Ag persistence during their expansion phase side by side. Proliferation and effector differentiation of TCR transgenic and polyclonal mouse T cells were thus analyzed after transient and continuous TCR signals. Following equally strong stimulation, CD4+ T cell proliferation depended on prolonged Ag presence, whereas CD8+ T cells were able to divide and differentiate into effector cells despite discontinued Ag presentation. CD4+ T cell proliferation was neither affected by Th lineage or memory differentiation nor blocked by coinhibitory signals or missing inflammatory stimuli. Continued CD8+ T cell proliferation was truly independent of self-peptide/MHC-derived signals. The subset divergence was also illustrated by surprisingly broad transcriptional differences supporting a stronger propensity of CD8+ T cells to programmed expansion. These T cell data indicate an intrinsic difference between CD4+ and CD8+ T cells regarding the processing of TCR signals for proliferation. We also found that the presentation of a MHC class II-restricted peptide is more efficiently prolonged by dendritic cell activation in vivo than a class I bound one. In summary, our data demonstrate that CD4+ T cells require continuous stimulation for clonal expansion, whereas CD8+ T cells can divide following a much shorter TCR signal.
Collapse
Affiliation(s)
- Hannah Rabenstein
- Institute for Immunology, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
20
|
Mehlhop-Williams ER, Bevan MJ. Memory CD8+ T cells exhibit increased antigen threshold requirements for recall proliferation. ACTA ACUST UNITED AC 2014; 211:345-56. [PMID: 24493801 PMCID: PMC3920562 DOI: 10.1084/jem.20131271] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Memory CD8+ T cells require stronger TCR stimulation than naive cells to enter cell cycle due to reduced Zap70 activation and increased levels of protein tyrosine phosphatases. A hallmark of immunological memory is the ability of previously primed T cells to undergo rapid recall responses upon antigen reencounter. Classic work has suggested that memory T cells proliferate in response to lower doses of antigen than naive T cells and with reduced requirements for co-stimulation. In contrast to this premise, we observed that naive but not memory T cells proliferate in vivo in response to limited antigen presentation. To reconcile these observations, we tested the antigen threshold requirement for cell cycle entry in naive and central memory CD8+ T cells. Although both naive and memory T cells detect low dose antigen, only naive T cells activate cell cycle effectors. Direct comparison of TCR signaling on a single cell basis indicated that central memory T cells do not activate Zap70, induce cMyc expression, or degrade p27 in response to antigen levels that activate these functions in naive T cells. The reduced sensitivity of memory T cells may result from both decreased surface TCR expression and increased expression of protein tyrosine phosphatases as compared with naive T cells. Our data describe a novel aspect of memory T cell antigen threshold sensitivity that may critically regulate recall expansion.
Collapse
Affiliation(s)
- Erin R Mehlhop-Williams
- Department of Immunology and 2 the Howard Hughes Medical Institute, University of Washington, Seattle, WA 98109
| | | |
Collapse
|
21
|
Abstract
Immunodeficiencies with nonfunctional T cells comprise a heterogeneous group of conditions characterized by altered function of T lymphocytes in spite of largely preserved T cell development. Some of these forms are due to hypomorphic mutations in genes causing severe combined immunodeficiency. More recently, advances in human genome sequencing have facilitated the identification of novel genetic defects that do not affect T cell development, but alter T cell function and homeostasis. Along with increased susceptibility to infections, these conditions are characterized by autoimmunity and higher risk of malignancies. The study of these diseases, and of corresponding animal models, has provided fundamental insights on the mechanisms that govern immune homeostasis.
Collapse
|
22
|
Nerreter T, Distler E, Köchel C, Einsele H, Herr W, Seggewiss-Bernhardt R. Combining dasatinib with dexamethasone long-term leads to maintenance of antiviral and antileukemia specific cytotoxic T cell responses in vitro. Exp Hematol 2013; 41:604-614.e4. [DOI: 10.1016/j.exphem.2013.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 02/12/2013] [Accepted: 02/22/2013] [Indexed: 11/30/2022]
|
23
|
Iborra S, Ramos M, Arana DM, Lázaro S, Aguilar F, Santos E, López D, Fernández-Malavé E, Del Val M. N-ras couples antigen receptor signaling to Eomesodermin and to functional CD8+ T cell memory but not to effector differentiation. ACTA ACUST UNITED AC 2013; 210:1463-79. [PMID: 23776078 PMCID: PMC3698526 DOI: 10.1084/jem.20112495] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
N-ras−/− CD8+ T cells have an intrinsic defect in Eomes expression resulting in impaired generation of protective memory cells that can be rescued by enforced Eomes expression. Signals from the TCR that specifically contribute to effector versus memory CD8+ T cell differentiation are poorly understood. Using mice and adoptively transferred T lymphocytes lacking the small GTPase N-ras, we found that N-ras–deficient CD8+ T cells differentiate efficiently into antiviral primary effectors but have a severe defect in generating protective memory cells. This defect was rescued, although only partly, by rapamycin-mediated inhibition of mammalian target of rapamycin (mTOR) in vivo. The memory defect correlated with a marked impairment in vitro and in vivo of the antigen-mediated early induction of T-box transcription factor Eomesodermin (Eomes), whereas T-bet was unaffected. Besides N-ras, early Eomes induction in vitro required phosphoinositide 3-kinase (PI3K)–AKT but not extracellular signal-regulated kinase (ERK) activation, and it was largely insensitive to rapamycin. Consistent with N-ras coupling Eomes to T cell memory, retrovirally enforced expression of Eomes in N-ras–deficient CD8+ T cells effectively rescued their memory differentiation. Thus, our study identifies a critical role for N-ras as a TCR-proximal regulator of Eomes for early determination of the CD8+ T cell memory fate.
Collapse
Affiliation(s)
- Salvador Iborra
- Centro de Biología Molecular Severo Ochoa, CSIC/Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ou-Yang CW, Zhu M, Sullivan SA, Fuller DM, Zhang W. The requirement of linker for activation of T cells in the primary and memory responses of CD8 T cells. THE JOURNAL OF IMMUNOLOGY 2013; 190:2938-47. [PMID: 23401587 DOI: 10.4049/jimmunol.1203163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Linker for activation of T cells (LAT) is a transmembrane adaptor protein that links TCR engagement to downstream signaling events. Although it is clear that LAT is essential in thymocyte development and initiation of T cell activation, its function during T cell expansion, contraction, and memory formation remains unknown. To study the role of TCR-mediated signaling in CD8 T cells during the course of pathogen infection, we used an inducible mouse model to delete LAT in Ag-specific CD8 T cells at different stages of Listeria infection and analyzed the effect of deletion on T cell responses. Our data showed that LAT is important for maintaining CD8 T cell expansion during the priming phase; however, it is not required for CD8 T cell contraction and memory maintenance. Moreover, LAT deficiency accelerates memory differentiation during the effector-to-memory transition, leading to a higher frequency of KLRG1(low)IL-7R(high)CD62L(high) memory T cells. Nonetheless, these LAT-deficient memory T cells were unable to proliferate or produce cytokines upon secondary infection. Our data demonstrated that, although TCR-mediated signaling is dispensable for contraction and memory maintenance, it regulates CD8 T cell memory differentiation and is essential for the memory response against pathogens.
Collapse
Affiliation(s)
- Chih-wen Ou-Yang
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
25
|
Rossy J, Williamson DJ, Benzing C, Gaus K. The integration of signaling and the spatial organization of the T cell synapse. Front Immunol 2012. [PMID: 23189081 PMCID: PMC3504718 DOI: 10.3389/fimmu.2012.00352] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Engagement of the T cell antigen receptor (TCR) triggers signaling pathways that lead to T cell selection, differentiation and clonal expansion. Superimposed onto the biochemical network is a spatial organization that describes individual receptor molecules, dimers, oligomers and higher order structures. Here we discuss recent findings and new concepts that may regulate TCR organization in naïve and memory T cells. A key question that has emerged is how antigen-TCR interactions encode spatial information to direct T cell activation and differentiation. Single molecule super-resolution microscopy may become an important tool in decoding receptor organization at the molecular level.
Collapse
Affiliation(s)
- Jérémie Rossy
- Centre for Vascular Research and Australian Centre for Nanomedicine, University of New South Wales Sydney, NSW, Australia
| | | | | | | |
Collapse
|
26
|
Immunoglobulin-like transcript receptors on human dermal CD14+ dendritic cells act as a CD8-antagonist to control cytotoxic T cell priming. Proc Natl Acad Sci U S A 2012; 109:18885-90. [PMID: 23112154 DOI: 10.1073/pnas.1205785109] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Human Langerhans cells (LCs) are highly efficient at priming cytolytic CD8(+) T cells compared with dermal CD14(+) dendritic cells (DCs). Here we show that dermal CD14(+) DCs instead prime a fraction of naïve CD8(+) T cells into cells sharing the properties of type 2 cytokine-secreting CD8(+) T cells (TC2). Differential expression of the CD8-antagonist receptors on dermal CD14(+) DCs, the Ig-like transcript (ILT) inhibitory receptors, explains the difference between the two types of DCs. Inhibition of CD8 function on LCs inhibited cytotoxic T lymphocytes (CTLs) and enhanced TC2 generation. In addition, blocking ILT2 or ILT4 on dermal CD14(+) DCs enhanced the generation of CTLs and inhibited TC2 cytokine production. Lastly, addition of soluble ILT2 and ILT4 receptors inhibited CTL priming by LCs. Thus, ILT receptor expression explains the polarization of CD8(+) T-cell responses by LCs vs. dermal CD14(+) DCs.
Collapse
|
27
|
Hauck F, Randriamampita C, Martin E, Gerart S, Lambert N, Lim A, Soulier J, Maciorowski Z, Touzot F, Moshous D, Quartier P, Heritier S, Blanche S, Rieux-Laucat F, Brousse N, Callebaut I, Veillette A, Hivroz C, Fischer A, Latour S, Picard C. Primary T-cell immunodeficiency with immunodysregulation caused by autosomal recessive LCK deficiency. J Allergy Clin Immunol 2012; 130:1144-1152.e11. [PMID: 22985903 DOI: 10.1016/j.jaci.2012.07.029] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 07/19/2012] [Accepted: 07/19/2012] [Indexed: 12/12/2022]
Abstract
BACKGROUND Signals emanating from the antigen T-cell receptor (TCR) are required for T-cell development and function. The T lymphocyte-specific protein tyrosine kinase (Lck) is a key component of the TCR signaling machinery. On the basis of its function, we considered LCK a candidate gene in patients with combined immunodeficiency. OBJECTIVE We identify and describe a child with a T-cell immunodeficiency caused by a homozygous missense mutation of the LCK gene (c.1022T>C) resulting from uniparental disomy. METHODS Genetic, molecular, and functional analyses were performed to characterize the Lck deficiency, and the associated clinical and immunologic phenotypes are reported. RESULTS The mutant LCK protein (p.L341P) was weakly expressed with no kinase activity and failed to reconstitute TCR signaling in LCK-deficient T cells. The patient presented with recurrent respiratory tract infections together with predominant early-onset inflammatory and autoimmune manifestations. The patient displayed CD4(+) T-cell lymphopenia and low levels of CD4 and CD8 expression on the T-cell surface. The residual T lymphocytes had an oligoclonal T-cell repertoire and exhibited a profound TCR signaling defect, with only weak tyrosine phosphorylation signals and no Ca(2+) mobilization in response to TCR stimulation. CONCLUSION We report a new form of T-cell immunodeficiency caused by a LCK gene defect, highlighting the essential role of Lck in human T-cell development and responses. Our results also point out that defects in the TCR signaling cascade often result in abnormal T-cell differentiation and functions, leading to an important risk factor for inflammation and autoimmunity.
Collapse
Affiliation(s)
- Fabian Hauck
- INSERM 768, Laboratoire du Développement Normal et Pathologique du Système Immunitaire, Hôpital Necker-Enfants Malades, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kannan A, Huang W, Huang F, August A. Signal transduction via the T cell antigen receptor in naïve and effector/memory T cells. Int J Biochem Cell Biol 2012; 44:2129-34. [PMID: 22981631 DOI: 10.1016/j.biocel.2012.08.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 08/27/2012] [Accepted: 08/28/2012] [Indexed: 10/27/2022]
Abstract
T cells play an indispensable role in immune defense against infectious agents, but can also be pathogenic. These T cells develop in the thymus, are exported into the periphery as naïve cells and participate in immune responses. Upon recognition of antigen, they are activated and differentiate into effector and memory T cells. While effector T cells carry out the function of the immune response, memory T cells can last up to the life time of the individual, and are activated by subsequent antigenic exposure. Throughout this life cycle, the T cell uses the same receptor for antigen, the T cell Receptor, a complex multi-subunit receptor. Recognition of antigen presented by peptide/MHC complexes on antigen presenting cells unleashes signaling pathways that control T cell activation at each stage. In this review, we discuss the signals regulated by the T cell receptor in naïve and effector/memory T cells.
Collapse
Affiliation(s)
- Arun Kannan
- The Department of Microbiology & Immunology, Cornell University, Ithaca, NY, USA
| | | | | | | |
Collapse
|
29
|
Zehn D, King C, Bevan MJ, Palmer E. TCR signaling requirements for activating T cells and for generating memory. Cell Mol Life Sci 2012; 69:1565-75. [PMID: 22527712 PMCID: PMC11114768 DOI: 10.1007/s00018-012-0965-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Revised: 03/13/2012] [Accepted: 03/13/2012] [Indexed: 12/12/2022]
Abstract
Over the last two decades the molecular and cellular mechanisms underlying T cell activation, expansion, differentiation, and memory formation have been intensively investigated. These studies revealed that the generation of memory T cells is critically impacted by a number of factors, including the magnitude of the inflammatory response and cytokine production, the type of dendritic cell [DC] that presents the pathogen derived antigen, their maturation status, and the concomitant provision of costimulation. Nevertheless, the primary stimulus leading to T cell activation is generated through the T cell receptor [TCR] following its engagement with a peptide MHC ligand [pMHC]. The purpose of this review is to highlight classical and recent findings on how antigen recognition, the degree of TCR stimulation, and intracellular signal transduction pathways impact the formation of effector and memory T cells.
Collapse
Affiliation(s)
- Dietmar Zehn
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois and Swiss Vaccine Research Institute, Centre des Laboratoires d'Epalinges-CLE, Bipole 3, Ch. des Boveresses 155, Epalinges, Switzerland.
| | | | | | | |
Collapse
|
30
|
Wiede F, Shields BJ, Chew SH, Kyparissoudis K, van Vliet C, Galic S, Tremblay ML, Russell SM, Godfrey DI, Tiganis T. T cell protein tyrosine phosphatase attenuates T cell signaling to maintain tolerance in mice. J Clin Invest 2011; 121:4758-74. [PMID: 22080863 PMCID: PMC3226006 DOI: 10.1172/jci59492] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 10/07/2011] [Indexed: 12/14/2022] Open
Abstract
Many autoimmune diseases exhibit familial aggregation, indicating that they have genetic determinants. Single nucleotide polymorphisms in PTPN2, which encodes T cell protein tyrosine phosphatase (TCPTP), have been linked with the development of several autoimmune diseases, including type 1 diabetes and Crohn's disease. In this study, we have identified TCPTP as a key negative regulator of TCR signaling, which might explain the association of PTPN2 SNPs with autoimmune disease. We found that TCPTP dephosphorylates and inactivates Src family kinases to regulate T cell responses. Using T cell-specific TCPTP-deficient mice, we established that TCPTP attenuates T cell activation and proliferation in vitro and blunts antigen-induced responses in vivo. TCPTP deficiency lowered the in vivo threshold for TCR-dependent CD8(+) T cell proliferation. Consistent with this, T cell-specific TCPTP-deficient mice developed widespread inflammation and autoimmunity that was transferable to wild-type recipient mice by CD8(+) T cells alone. This autoimmunity was associated with increased serum levels of proinflammatory cytokines and anti-nuclear antibodies, T cell infiltrates in non-lymphoid tissues, and liver disease. These data indicate that TCPTP is a critical negative regulator of TCR signaling that sets the threshold for TCR-induced naive T cell responses to prevent autoimmune and inflammatory disorders arising.
Collapse
MESH Headings
- Animals
- Antibodies, Antinuclear/biosynthesis
- Autoimmune Diseases/enzymology
- Autoimmune Diseases/etiology
- Autoimmune Diseases/immunology
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/transplantation
- Immune Tolerance/immunology
- Inflammation/blood
- Inflammation/genetics
- Inflammation/immunology
- Lymphocyte Activation
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Phosphorylation
- Protein Processing, Post-Translational
- Protein Tyrosine Phosphatase, Non-Receptor Type 2/deficiency
- Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics
- Protein Tyrosine Phosphatase, Non-Receptor Type 2/physiology
- Radiation Chimera
- Receptors, Antigen, T-Cell/immunology
- Signal Transduction/immunology
- T-Lymphocyte Subsets/enzymology
- T-Lymphocyte Subsets/immunology
- Thymocytes/pathology
- ZAP-70 Protein-Tyrosine Kinase/physiology
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
- Florian Wiede
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia.
McGill Cancer Centre and Department of Biochemistry, McGill University, Montreal, Quebec, Canada.
Immune Signaling Laboratory, Cancer Immunology, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia.
Centre for MicroPhotonics, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Benjamin J. Shields
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia.
McGill Cancer Centre and Department of Biochemistry, McGill University, Montreal, Quebec, Canada.
Immune Signaling Laboratory, Cancer Immunology, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia.
Centre for MicroPhotonics, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Sock Hui Chew
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia.
McGill Cancer Centre and Department of Biochemistry, McGill University, Montreal, Quebec, Canada.
Immune Signaling Laboratory, Cancer Immunology, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia.
Centre for MicroPhotonics, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Konstantinos Kyparissoudis
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia.
McGill Cancer Centre and Department of Biochemistry, McGill University, Montreal, Quebec, Canada.
Immune Signaling Laboratory, Cancer Immunology, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia.
Centre for MicroPhotonics, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Catherine van Vliet
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia.
McGill Cancer Centre and Department of Biochemistry, McGill University, Montreal, Quebec, Canada.
Immune Signaling Laboratory, Cancer Immunology, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia.
Centre for MicroPhotonics, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Sandra Galic
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia.
McGill Cancer Centre and Department of Biochemistry, McGill University, Montreal, Quebec, Canada.
Immune Signaling Laboratory, Cancer Immunology, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia.
Centre for MicroPhotonics, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Michel L. Tremblay
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia.
McGill Cancer Centre and Department of Biochemistry, McGill University, Montreal, Quebec, Canada.
Immune Signaling Laboratory, Cancer Immunology, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia.
Centre for MicroPhotonics, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Sarah M. Russell
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia.
McGill Cancer Centre and Department of Biochemistry, McGill University, Montreal, Quebec, Canada.
Immune Signaling Laboratory, Cancer Immunology, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia.
Centre for MicroPhotonics, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Dale I. Godfrey
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia.
McGill Cancer Centre and Department of Biochemistry, McGill University, Montreal, Quebec, Canada.
Immune Signaling Laboratory, Cancer Immunology, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia.
Centre for MicroPhotonics, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Tony Tiganis
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia.
McGill Cancer Centre and Department of Biochemistry, McGill University, Montreal, Quebec, Canada.
Immune Signaling Laboratory, Cancer Immunology, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia.
Centre for MicroPhotonics, Swinburne University of Technology, Hawthorn, Victoria, Australia
| |
Collapse
|
31
|
Bernardo I, Mancebo E, Aguiló I, Anel A, Allende LM, Guerra-Vales JM, Ruiz-Contreras J, Serrano A, Talayero P, de la Calle O, Gonzalez-Santesteban C, Paz-Artal E. Phenotypic and functional evaluation of CD3+CD4-CD8- T cells in human CD8 immunodeficiency. Haematologica 2011; 96:1195-203. [PMID: 21546492 DOI: 10.3324/haematol.2011.041301] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Human CD8 immunodeficiency is characterized by undetectable CD8(+) lymphocytes and an increased population of CD4(-)CD8(-) (double negative) T lymphocytes. DESIGN AND METHODS We hypothesized that the double negative subset corresponds to the cellular population that should express CD8 and is committed to the cytotoxic T lymphocyte lineage. To assess this, we determined the phenotype and function of peripheral blood mononuclear cells and/or magnetically isolated double negative T lymphocytes from two CD8-deficient patients. To analyze the expression and co-localization with different organelles, 293T cells were transfected with plasmids bearing wild-type or mutated CD8α. RESULTS CD8α mutated protein was retained in the cytoplasm of transfected cells. The percentages of double negative cells in patients were lower than the percentages of CD8(+) T cells in healthy controls. Double negative cells mostly had an effector or effector memory phenotype whereas naïve T cells were under-represented. A low concentration of T-cell receptor excision circles together with a skewed T-cell receptor-V repertoire were observed in the double negative population. These data suggest that, in the absence of CD8 co-receptor, the thymic positive selection functions suboptimally and a limited number of mature T-cell clones would emerge from the thymus. In vitro, the double negative cells showed a mild defect in cytotoxic function and decreased proliferative capacity. CONCLUSIONS It is possible that the double negative cells are major histocompatibility complex class-I restricted T cells with cytolytic function. These results show for the first time in humans that the presence of the CD8 co-receptor is dispensable for cytotoxic ability, but that it affects the generation of thymic precursors committed to the cytotoxic T lymphocyte lineage and the proliferation of mature cytotoxic T cells.
Collapse
Affiliation(s)
- Iván Bernardo
- Servicio de Inmunología, Hospital Universitario 12 de Octubre, Avda. de Córdoba s/n, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Loss of tonic T-cell receptor signals alters the generation but not the persistence of CD8+ memory T cells. Blood 2010; 116:5560-70. [PMID: 20884806 DOI: 10.1182/blood-2010-06-292458] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The requirements for tonic T-cell receptor (TCR) signaling in CD8(+) memory T-cell generation and homeostasis are poorly defined. The SRC homology 2 (SH2)-domain-containing leukocyte protein of 76 kDa (SLP-76) is critical for proximal TCR-generated signaling. We used temporally mediated deletion of SLP-76 to interrupt tonic and activating TCR signals after clearance of the lymphocytic choriomeningitis virus (LCMV). SLP-76-dependent signals are required during the contraction phase of the immune response for the normal generation of CD8 memory precursor cells. Conversely, LCMV-specific memory CD8 T cells generated in the presence of SLP-76 and then acutely deprived of TCR-mediated signals persist in vivo in normal numbers for more than 40 weeks. Tonic TCR signals are not required for the transition of the memory pool toward a central memory phenotype, but the absence of SLP-76 during memory homeostasis substantially alters the kinetics. Our data are consistent with a model in which tonic TCR signals are required at multiple stages of differentiation, but are dispensable for memory CD8 T-cell persistence.
Collapse
|
33
|
Daniels MA, Teixeiro E. The persistence of T cell memory. Cell Mol Life Sci 2010; 67:2863-78. [PMID: 20364394 PMCID: PMC11115859 DOI: 10.1007/s00018-010-0362-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2010] [Accepted: 03/19/2010] [Indexed: 12/14/2022]
Abstract
T cell memory is a crucial feature of the adaptive immune system in the defense against pathogens. During the last years, numerous studies have focused their efforts on uncovering the signals, inflammatory cues, and extracellular factors that support memory differentiation. This research is beginning to decipher the complex gene network that controls memory programming. However, how the different signals, that a T cell receives during the process of differentiation, interplay to trigger memory programming is still poorly defined. In this review, we focus on the most recent advances in the field and discuss how T cell receptor signaling and inflammation control CD8 memory differentiation.
Collapse
Affiliation(s)
- Mark A Daniels
- Department of Molecular Microbiology and Immunology, School of Medicine, Center for Cellular and Molecular Immunology, University of Missouri, M616 Medical Sciences Bldg., One Hospital Dr., Columbia, MO 65212, USA.
| | | |
Collapse
|
34
|
Olaharski AJ, Bitter H, Gonzaludo N, Kondru R, Goldstein DM, Zabka TS, Lin H, Singer T, Kolaja K. Modeling bone marrow toxicity using kinase structural motifs and the inhibition profiles of small molecular kinase inhibitors. Toxicol Sci 2010; 118:266-75. [PMID: 20810542 DOI: 10.1093/toxsci/kfq258] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The cellular function of kinases combined with the difficulty of designing selective small molecule kinase inhibitors (SMKIs) poses a challenge for drug development. The late-stage attrition of SMKIs could be lessened by integrating safety information of kinases into the lead optimization stage of drug development. Herein, a mathematical model to predict bone marrow toxicity (BMT) is presented which enables the rational design of SMKIs away from this safety liability. A specific example highlights how this model identifies critical structural modifications to avoid BMT. The model was built using a novel algorithm, which selects 19 representative kinases from a panel of 277 based upon their ATP-binding pocket sequences and ability to predict BMT in vivo for 48 SMKIs. A support vector machine classifier was trained on the selected kinases and accurately predicts BMT with 74% accuracy. The model provides an efficient method for understanding SMKI-induced in vivo BMT earlier in drug discovery.
Collapse
|
35
|
Dyer MD, Neff C, Dufford M, Rivera CG, Shattuck D, Bassaganya-Riera J, Murali TM, Sobral BW. The human-bacterial pathogen protein interaction networks of Bacillus anthracis, Francisella tularensis, and Yersinia pestis. PLoS One 2010; 5:e12089. [PMID: 20711500 PMCID: PMC2918508 DOI: 10.1371/journal.pone.0012089] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 07/17/2010] [Indexed: 01/01/2023] Open
Abstract
Background Bacillus anthracis, Francisella tularensis, and Yersinia pestis are bacterial pathogens that can cause anthrax, lethal acute pneumonic disease, and bubonic plague, respectively, and are listed as NIAID Category A priority pathogens for possible use as biological weapons. However, the interactions between human proteins and proteins in these bacteria remain poorly characterized leading to an incomplete understanding of their pathogenesis and mechanisms of immune evasion. Methodology In this study, we used a high-throughput yeast two-hybrid assay to identify physical interactions between human proteins and proteins from each of these three pathogens. From more than 250,000 screens performed, we identified 3,073 human-B. anthracis, 1,383 human-F. tularensis, and 4,059 human-Y. pestis protein-protein interactions including interactions involving 304 B. anthracis, 52 F. tularensis, and 330 Y. pestis proteins that are uncharacterized. Computational analysis revealed that pathogen proteins preferentially interact with human proteins that are hubs and bottlenecks in the human PPI network. In addition, we computed modules of human-pathogen PPIs that are conserved amongst the three networks. Functionally, such conserved modules reveal commonalities between how the different pathogens interact with crucial host pathways involved in inflammation and immunity. Significance These data constitute the first extensive protein interaction networks constructed for bacterial pathogens and their human hosts. This study provides novel insights into host-pathogen interactions.
Collapse
Affiliation(s)
- Matthew D. Dyer
- Virginia Bioinformatics Institute, Blacksburg, Virginia, United States of America
| | - Chris Neff
- Myriad Genetics, Salt Lake City, Utah, United States of America
| | - Max Dufford
- Myriad Genetics, Salt Lake City, Utah, United States of America
| | - Corban G. Rivera
- Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Donna Shattuck
- Myriad Genetics, Salt Lake City, Utah, United States of America
| | | | - T. M. Murali
- Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- * E-mail: (TMM); (BWS)
| | - Bruno W. Sobral
- Virginia Bioinformatics Institute, Blacksburg, Virginia, United States of America
- * E-mail: (TMM); (BWS)
| |
Collapse
|
36
|
Fowler CC, Pao LI, Blattman JN, Greenberg PD. SHP-1 in T cells limits the production of CD8 effector cells without impacting the formation of long-lived central memory cells. THE JOURNAL OF IMMUNOLOGY 2010; 185:3256-67. [PMID: 20696858 DOI: 10.4049/jimmunol.1001362] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During responses against viruses and malignancies, naive CD8 T lymphocytes expand to form both short-lived effector cells and a population containing cells with the potential to be long-lived and participate in memory responses (memory precursor effector cells). The strength of antigenic, costimulatory, and cytokine signals during responses impacts the magnitude and type of CD8 populations formed. In vitro studies have revealed that the tyrosine phosphatase Src homology region 2 domain-containing phosphatase-1 (SHP-1) regulates signal transduction from receptors on T cells including the TCR, helping set the activation threshold, and therefore may shape responses of mature CD8 T cells in vivo. Analysis of CD8 T cells from motheaten mice, which are globally deficient in SHP-1, proved problematic due to cell-extrinsic effects of SHP-1 deficiency in non-T cells on CD8 T cells. Therefore, a conditional knockout of SHP-1 in mature single-positive T cells was developed to analyze cell-intrinsic consequences of complete and partial SHP-1 deficiency on CD8 T cell responses to acute viral infection. The results demonstrated that SHP-1 has disparate effects on subpopulations of responding cells, limiting the magnitude and quality of primary and secondary responses by reducing the number of short-lived effector cells generated without affecting the size of the memory precursor effector cell pool that leads to formation of long-term memory.
Collapse
Affiliation(s)
- Carla C Fowler
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA 98195- 6425, USA
| | | | | | | |
Collapse
|
37
|
Ongrádi J, Kövesdi V. Factors that may impact on immunosenescence: an appraisal. Immun Ageing 2010; 7:7. [PMID: 20546588 PMCID: PMC2895578 DOI: 10.1186/1742-4933-7-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 06/14/2010] [Indexed: 12/12/2022]
Abstract
The increasing ratio of ageing population poses new challenges to healthcare systems. The elderly frequently suffer from severe infections. Vaccination could protect them against several infectious diseases, but it can be effective only if cells that are capable of responding are still present in the repertoire. Recent vaccination strategies in the elderly might achieve low effectiveness due to age-related immune impairment. Immunosenescence affects both the innate and adaptive immunity.Beside individual variations of genetic predisposition, epigenetic changes over the full course of human life exert immunomodulating effects. Disturbances in macrophage-derived cytokine release and reduction of the natural killer cell mediated cytotoxicity lead to increased frequency of infections. Ageing dampens the ability of B cells to produce antibodies against novel antigens. Exhausted memory B lymphocyte subsets replace naïve cells. Decline of cell-mediated immunity is the consequence of multiple changes, including thymic atrophy, reduced output of new T lymphocytes, accumulation of anergic memory cells, and deficiencies in cytokines production. Persistent viral and parasitic infections contribute to the loss of immunosurveillance and premature exhaustion of T cells. Reduced telomerase activity and Toll-like receptor expression can be improved by chemotherapy. Reversion of thymic atrophy could be achieved by thymus transplantation, depletion of accumulated dysfunctional naive T cells and herpesvirus-specific exhausted memory cells. Administration of interleukin (IL)-2, IL-7, IL-10, keratinocyte growth factor, thymic stromal lymphopoietin, as well as leptin and growth hormone boost thymopoiesis. In animals, several strategies have been explored to produce superior vaccines. Among them, virosomal vaccines containing polypeptide antigens or DNA plasmids as well as new adjuvanted vaccine formulations elicit higher dendritic cell activity and more effective serologic than conventional vaccines responses in the elderly. Hopefully, at least some of these approaches can be translated to human medicine in a not too far future.
Collapse
Affiliation(s)
- Joseph Ongrádi
- Institute of Public Health, Semmelweis University, Budapest, Hungary
| | - Valéria Kövesdi
- Institute of Public Health, Semmelweis University, Budapest, Hungary
| |
Collapse
|
38
|
Abstract
The functional roles of memory B and T lymphocytes underlie the phenomenal success of prophylactic vaccinations, which have decreased morbidities and mortalities from infectious diseases globally over the last 50 years. However, it is becoming increasingly appreciated that memory cells are also capable of mediating the pathology associated with autoimmune disorders and transplant rejection, and may pose a significant barrier to future clinical advancement in immunoregulation. Therefore, understanding the unique properties of memory lymphocytes (as compared to their naive precursors) is a major area of investigation. Here, we focus on one of those singular properties of memory T cells (T(M))-rapid recall. As will be discussed in more detail, rapid recall refers to the ability of quiescent T(M) cells to efficiently and robustly express 'effector functions' following stimulation. Studies that have advanced our understanding of T(M) cells' rapid recall using CD4(+) T cells have been expertly reviewed elsewhere, so we will focus primarily on studies of CD8(+) T cells. We will first review the different ways that CD8(+) T(M) cells can be generated, followed by discussing how this influences their functional properties in the settings of immune protection and pathology. Then, rapid recall ability will be discussed, with emphasis placed on what is currently known about the mechanisms that underlie this unique property of T(M) cells.
Collapse
|
39
|
Dorner BG, Dorner MB, Zhou X, Opitz C, Mora A, Güttler S, Hutloff A, Mages HW, Ranke K, Schaefer M, Jack RS, Henn V, Kroczek RA. Selective expression of the chemokine receptor XCR1 on cross-presenting dendritic cells determines cooperation with CD8+ T cells. Immunity 2009; 31:823-33. [PMID: 19913446 DOI: 10.1016/j.immuni.2009.08.027] [Citation(s) in RCA: 326] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 06/18/2009] [Accepted: 08/21/2009] [Indexed: 01/22/2023]
Abstract
The expression of the chemokine receptor XCR1 and the function of its ligand XCL1 (otherwise referred to as ATAC, lymphotactin, or SCM-1) remained elusive to date. In the present report we demonstrated that XCR1 is exclusively expressed on murine CD8(+) dendritic cells (DCs) and showed that XCL1 is a potent and highly specific chemoattractant for this DC subset. CD8(+) T cells abundantly secreted XCL1 8-36 hr after antigen recognition on CD8(+) DCs in vivo, in a period in which stable T cell-DC interactions are known to occur. Functionally, XCL1 increased the pool of antigen-specific CD8(+) T cells and their capacity to secrete IFN-gamma. Absence of XCL1 impaired the development of cytotoxicity to antigens cross-presented by CD8(+) DCs. The XCL1-XCR1 axis thus emerges as an integral component in the development of efficient cytotoxic immunity in vivo.
Collapse
|
40
|
Ongrádi J, Stercz B, Kövesdi V, Vértes L. Immunosenescence and vaccination of the elderly, I. Age-related immune impairment. Acta Microbiol Immunol Hung 2009; 56:199-210. [PMID: 19789136 DOI: 10.1556/amicr.56.2009.3.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The sharp increase of life expectancy and the increasing ratio of ageing population pose new challenges for the public health system. The elderly suffer from more frequent and severe infections than young people. Theoretically, vaccination could protect the elderly against several infectious diseases, but due to their age-related immune impairment, vaccination might fail in many cases. Instead of ineffective vaccination campaigns, exploration and restoration of age-dependent dysregulation of their immune functions have to be placed into the focus of recent research. Frequent comorbidities in these people augment immune defects. Immunosenescence affects both the innate and adaptive immunity. Disturbances in macrophage-derived cytokine release and reduction of the natural killer cell mediated cytotoxicity lead to increased frequency of respiratory, gastrointestinal and skin infections. Although the humoral immunity retains most of its original activity through life span, ageing dampens the ability of B cells to produce antibodies against novel antigens. Age-related declination of the cellular immunity is the consequence of thymic atrophy, reduced output of new T lymphocytes, accumulation of anergic memory cells, deficiencies in the cytokine production and uncertain antigen presentation. Persistent infection by different herpesviruses and other parasites contribute to the loss of immunosurveillance and premature exhaustion of T cells.
Collapse
Affiliation(s)
- J Ongrádi
- Institute of Public Health, Semmelweis University, Budapest Hungary.
| | | | | | | |
Collapse
|
41
|
Raué HP, Slifka MK. CD8+ T cell immunodominance shifts during the early stages of acute LCMV infection independently from functional avidity maturation. Virology 2009; 390:197-204. [PMID: 19539966 DOI: 10.1016/j.virol.2009.05.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 05/14/2009] [Accepted: 05/16/2009] [Indexed: 02/01/2023]
Abstract
Virus-specific T cell responses are often directed to a small subset of possible epitopes and their relative magnitude defines their hierarchy. We determined the size and functional avidity of 4 representative peptide-specific CD8(+) T cell populations in C57BL/6 mice at different time points after lymphocytic choriomeningitis virus (LCMV) infection. We found that the frequency of different peptide-specific T cell populations in the spleen changed independently over the first 8 days after infection. These changes were not associated with a larger or more rapid increase in functional avidity and yet still resulted in a shift in the final immunodominance hierarchy. Thus, the immunodominance observed at the peak of an antiviral T cell response is not necessarily determined by the initial size or rate of functional avidity maturation of peptide-specific T cell populations.
Collapse
Affiliation(s)
- Hans-Peter Raué
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA
| | | |
Collapse
|
42
|
Liu SD, Tomassian T, Bruhn KW, Miller JF, Poirier F, Miceli MC. Galectin-1 Tunes TCR Binding and Signal Transduction to Regulate CD8 Burst Size. THE JOURNAL OF IMMUNOLOGY 2009; 182:5283-95. [DOI: 10.4049/jimmunol.0803811] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
43
|
Salmond RJ, Filby A, Qureshi I, Caserta S, Zamoyska R. T-cell receptor proximal signaling via the Src-family kinases, Lck and Fyn, influences T-cell activation, differentiation, and tolerance. Immunol Rev 2009; 228:9-22. [PMID: 19290918 DOI: 10.1111/j.1600-065x.2008.00745.x] [Citation(s) in RCA: 273] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
T-cell development in the thymus and activation of mature T cells in secondary lymphoid organs requires the ability of cells to respond appropriately to environmental signals at multiple stages of their development. The process of thymocyte selection insures a functional T-cell repertoire, while activation of naive peripheral T cells induces proliferation, gain of effector function, and, ultimately, long-lived T-cell memory. The T-cell immune response is initiated upon engagement of the T-cell receptor (TCR) and coreceptor, CD4 or CD8, by cognate antigen/major histocompatibility complexes presented by antigen-presenting cells. TCR/coreceptor engagement induces the activation of biochemical signaling pathways that, in combination with signals from costimulator molecules and cytokine receptors, direct the outcome of the response. Activation of the src-family kinases p56(lck) (Lck) and p59(fyn) (Fyn) is central to the initiation of TCR signaling pathways. This review focuses on our current understanding of the mechanisms by which these two proteins orchestrate T-cell function.
Collapse
Affiliation(s)
- Robert J Salmond
- Molecular Immunology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, UK
| | | | | | | | | |
Collapse
|
44
|
Stemberger C, Neuenhahn M, Gebhardt FE, Schiemann M, Buchholz VR, Busch DH. Stem cell-like plasticity of naïve and distinct memory CD8+ T cell subsets. Semin Immunol 2009; 21:62-8. [PMID: 19269852 DOI: 10.1016/j.smim.2009.02.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 02/04/2009] [Indexed: 12/18/2022]
Abstract
Most models regarding the 'clonal' origin of CD8(+) T cell effector and memory subset diversification suggest that during the first contact of a naïve T cell with the priming antigen-presenting cell major decisions for subsequent differentiation are made. Data using novel single-cell T cell tracking technologies demonstrate that a single naïve CD8(+) T cell can give rise to virtually all different subtypes of effector and memory T cells, and direct major determinants of subset diversification to the time period beyond the first cell division. Thereby, some 'stem cell-like' characteristics typical for naïve T cells are probably still maintained within distinct subsets of memory T cells. These observations have direct consequences for clinical applications like adoptive T cell therapy.
Collapse
Affiliation(s)
- Christian Stemberger
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University Munich, Munich, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Derhovanessian E, Solana R, Larbi A, Pawelec G. Immunity, ageing and cancer. IMMUNITY & AGEING 2008; 5:11. [PMID: 18816370 PMCID: PMC2564902 DOI: 10.1186/1742-4933-5-11] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 09/24/2008] [Indexed: 11/22/2022]
Abstract
Compromised immunity contributes to the decreased ability of the elderly to control infectious disease and to their generally poor response to vaccination. It is controversial as to how far this phenomenon contributes to the well-known age-associated increase in the occurrence of many cancers in the elderly. However, should the immune system be important in controlling cancer, for which there is a great deal of evidence, it is logical to propose that dysfunctional immunity in the elderly would contribute to compromised immunosurveillance and increased cancer occurrence. The chronological age at which immunosenescence becomes clinically important is known to be influenced by many factors, including the pathogen load to which individuals are exposed throughout life. It is proposed here that the cancer antigen load may have a similar effect on "immune exhaustion" and that pathogen load and tumor load may act additively to accelerate immunosenescence. Understanding how and why immune responsiveness changes in humans as they age is essential for developing strategies to prevent or restore dysregulated immunity and assure healthy longevity, clearly possible only if cancer is avoided. Here, we provide an overview of the impact of age on human immune competence, emphasizing T-cell-dependent adaptive immunity, which is the most sensitive to ageing. This knowledge will pave the way for rational interventions to maintain or restore appropriate immune function not only in the elderly but also in the cancer patient.
Collapse
|
46
|
van Stipdonk M, Sluijter M, Han W, Offringa R. Development of CTL memory despite arrested clonal expansion. Eur J Immunol 2008; 38:1839-46. [DOI: 10.1002/eji.200737974] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
47
|
Zeng H, Chen Y, Yu M, Xue L, Gao X, Morris SW, Wang D, Wen R. T cell receptor-mediated activation of CD4+CD44hi T cells bypasses Bcl10: an implication of differential NF-kappaB dependence of naïve and memory T cells during T cell receptor-mediated responses. J Biol Chem 2008; 283:24392-9. [PMID: 18583339 DOI: 10.1074/jbc.m802344200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Previous studies have demonstrated that Bcl10 (B-cell leukemia/lymphoma 10) is essential for T cell receptor-mediated NF-kappaB activation and subsequent proliferation and interleukin 2 (IL2) production. However, here we demonstrate that, contrary to expectations, Bcl10 is differentially required for T cell activation, including for both proliferation and cytokine production. When CD4+ and CD8+ T cells were divided based on expression levels of CD44, which distinguishes naïve cells (CD44lo) versus those that are antigen-experienced (CD44hi), IL2 production by and proliferation of CD4+CD44lo naïve cells and both subpopulations of CD8+ T cells were clearly Bcl10-dependent, whereas these same functional properties of CD4+CD44hi T cells occurred largely independent of Bcl10. As with the other subpopulations of T cells, CD4+CD44hi T cells did not activate the NF-kappaB pathway in the absence of Bcl10; nevertheless, these CD4+CD44hi antigen-experienced T cells efficiently secreted IL2 after T cell receptor stimulation. Strikingly, therefore, T cell receptor-mediated IL2 production in these cells is NF-kappaB-independent. Our studies suggest that antigen-experienced CD4+ T cells differ from their naïve counterparts and from CD8+ T cells in their ability to achieve activation independent of the Bcl10/NF-kappaB pathway.
Collapse
Affiliation(s)
- Hu Zeng
- Model Animal Research Center, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 225001, China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Weichsel R, Dix C, Wooldridge L, Clement M, Fenton-May A, Sewell AK, Zezula J, Greiner E, Gostick E, Price DA, Einsele H, Seggewiss R. Profound inhibition of antigen-specific T-cell effector functions by dasatinib. Clin Cancer Res 2008; 14:2484-91. [PMID: 18413841 DOI: 10.1158/1078-0432.ccr-07-4393] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The dual BCR-ABL/SRC kinase inhibitor dasatinib entered the clinic for the treatment of chronic myeloid leukemia and Ph+ acute lymphoblastic leukemia. Because SRC kinases are known to play an important role in physiologic T-cell activation, we analyzed the immunobiological effects of dasatinib on T-cell function. The effect of dasatinib on multiple T-cell effector functions was examined at clinically relevant doses (1-100 nmol/L); the promiscuous tyrosine kinase inhibitor staurosporine was used as a comparator. EXPERIMENTAL DESIGN Purified human CD3+ cells and virus-specific CD8+ T cells from healthy blood donors were studied directly ex vivo; antigen-specific effects were confirmed in defined T-cell clones. Functional outcomes included cytokine production (interleukin-2, IFN gamma, and tumor necrosis factor alpha), degranulation (CD107a/b mobilization), activation (CD69 up-regulation), proliferation (carboxyfluorescein diacetate succinimidyl ester dilution), apoptosis/necrosis induction, and signal transduction. RESULTS Both dasatinib and staurosporine inhibited T-cell activation, proliferation, cytokine production, and degranulation in a dose-dependent manner. Mechanistically, this was mediated by the blockade of early signal transduction events and was not due to loss of T-cell viability. Overall, CD4+ T cells seemed to be more sensitive to these effects than CD8+ T cells, and naïve T cells more sensitive than memory T-cell subsets. The inhibitory effects of dasatinib were so profound that all T-cell effector functions were shut down at therapeutically relevant concentrations. CONCLUSION These findings indicate that caution is warranted with use of this drug in the clinical setting and provide a rationale to explore the potential of dasatinib as an immunosuppressant in the fields of transplantation and T-cell-driven autoimmune diseases.
Collapse
Affiliation(s)
- Ralf Weichsel
- Immune Recovery Section, Med. Klinik und Poliklinik II, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Choudhuri K, van der Merwe PA. Molecular mechanisms involved in T cell receptor triggering. Semin Immunol 2007; 19:255-61. [PMID: 17560121 DOI: 10.1016/j.smim.2007.04.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 04/14/2007] [Indexed: 12/19/2022]
Abstract
Despite intensive investigation we still do not understand how the T cell antigen receptor (TCR) tranduces signals across the plasma membrane, a process referred to as TCR triggering. Three basic mechanisms have been proposed, involving aggregation, conformational change, or segregation of the TCR upon binding pMHC ligand. Given the low density of pMHC ligand it remains doubtful that TCR aggregation initiates triggering, although it is likely to enhance subsequent signalling. Structural studies to date have not provided definitive evidence for or against a conformational change mechanism, but they have ruled out certain types of conformational change. Size-induced segregation of the bound TCR from inhibitory membrane tyrosine phosphatases seems to be required, but is probably not the only mechanism. Current evidence suggests that TCR triggering is initiated by a combination of segregation and conformational change, with subsequent aggregation contributing to amplification of the signal.
Collapse
Affiliation(s)
- Kaushik Choudhuri
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom
| | | |
Collapse
|
50
|
In Brief. Nat Rev Immunol 2006. [DOI: 10.1038/nri1986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|