1
|
Swain J, Askenasy I, Rudland Nazeer R, Ho PM, Labrini E, Mancini L, Xu Q, Hollendung F, Sheldon I, Dickson C, Welch A, Agbamu A, Godlee C, Welch M. Pathogenicity and virulence of Pseudomonas aeruginosa: Recent advances and under-investigated topics. Virulence 2025; 16:2503430. [PMID: 40353451 PMCID: PMC12087490 DOI: 10.1080/21505594.2025.2503430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/23/2025] [Accepted: 05/03/2025] [Indexed: 05/14/2025] Open
Abstract
Pseudomonas aeruginosa is a model for the study of quorum sensing, protein secretion, and biofilm formation. Consequently, it has become one of the most intensely reviewed pathogens, with many excellent articles in the current literature focusing on these aspects of the organism's biology. Here, though, we aim to take a slightly different approach and consider some less well appreciated (but nonetheless important) factors that affect P. aeruginosa virulence. We start by reminding the reader of the global importance of P. aeruginosa infection and that the "virulome" is very niche-specific. Overlooked but obvious questions such as "what prevents secreted protein products from being digested by co-secreted proteases?" are discussed, and we suggest how the nutritional preference(s) of the organism might dictate its environmental reservoirs. Recent studies identifying host genes associated with genetic predisposition towards P. aeruginosa infection (and even infection by specific P. aeruginosa strains) and the role(s) of intracellular P. aeruginosa are introduced. We also discuss the fact that virulence is a high-risk strategy and touch on how expression of the two main classes of virulence factors is regulated. A particular focus is on recent findings highlighting how nutritional status and metabolism are as important as quorum sensing in terms of their impact on virulence, and how co-habiting microbial species at the infection site impact on P. aeruginosa virulence (and vice versa). It is our view that investigation of these issues is likely to dominate many aspects of research into this WHO-designated priority pathogen over the next decade.
Collapse
Affiliation(s)
- Jemima Swain
- Department of Biochemistry, Cambridge University, Cambridge, UK
| | - Isabel Askenasy
- Department of Biochemistry, Cambridge University, Cambridge, UK
| | | | - Pok-Man Ho
- Department of Biochemistry, Cambridge University, Cambridge, UK
| | - Edoardo Labrini
- Department of Biochemistry, Cambridge University, Cambridge, UK
| | | | - Qingqing Xu
- Department of Biochemistry, Cambridge University, Cambridge, UK
| | | | | | - Camilla Dickson
- Department of Biochemistry, Cambridge University, Cambridge, UK
| | - Amelie Welch
- Department of Biochemistry, Cambridge University, Cambridge, UK
| | - Adam Agbamu
- Department of Biochemistry, Cambridge University, Cambridge, UK
| | - Camilla Godlee
- Department of Biochemistry, Cambridge University, Cambridge, UK
| | - Martin Welch
- Department of Biochemistry, Cambridge University, Cambridge, UK
| |
Collapse
|
2
|
Sørensen S, Kvich L, Xu Y, Thomsen TR, Bjarnsholt T, Thaarup I. Development of a tri-species wound model for studying fungal-bacterial interactions and antimicrobial therapies. Biofilm 2025; 9:100256. [PMID: 39927095 PMCID: PMC11804781 DOI: 10.1016/j.bioflm.2025.100256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/10/2025] [Accepted: 01/17/2025] [Indexed: 02/11/2025] Open
Abstract
Chronic wounds are increasing in numbers and biofilm-producing bacteria are highly prevalent in these wounds and often create resilient polymicrobial infections. Moreover, estimates suggest that up to 23 % of wounds contain fungi, particularly Candida albicans. Currently, inter-kingdom chronic wound models are scarce; thus, this study presents one of the few in vitro models that incorporate both bacterial and fungal species in a wound-relevant environment, addressing a critical gap in current biofilm research. The newly developed model contained the commonly isolated wound bacteria Pseudomonas aeruginosa and Staphylococcus aureus, and the fungus Candida albicans. Inter-species interactions were investigated through selective plate counting and pH and oxygen measurements, as well as confocal microscopy. Investigations were carried out before and after exposure to commonly used clinical antimicrobial treatments, including silver-infused bandages. When grown in a tri-species consortium, P. aeruginosa and S. aureus exhibited a higher tolerance towards silver-infused bandages than when they were grown individually. This suggests that C. albicans plays a protective role for the bacteria. In addition, the treatment also caused a shift in species ratios, moving from a P. aeruginosa-dominated consortium to a S. aureus-dominated consortium. Moreover, confocal microscopy revealed a change in biofilm architecture when comparing single-species models to tri-species models. Finally, we observed that silver-infused bandages increased the pH in the tri-species model as well as partially restoring the oxygenation within the wound model. In conclusion, our novel model exemplifies how inter-kingdom interactions in fungal-bacterial infections can complicate both the microenvironment and treatment efficacy.
Collapse
Affiliation(s)
- Stine Sørensen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Lasse Kvich
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Center for Surgical Science, Zealand University Hospital, Køge, Denmark
| | - Yijuan Xu
- SEGES Innovation P/S, Aarhus, Denmark
| | - Trine R. Thomsen
- Department of Chemistry and Biotechnology, Aalborg University, Aalborg, Denmark
- Danish Technology Institute, Aarhus, Denmark
| | - Thomas Bjarnsholt
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ida Thaarup
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Lee WH, Zygiel EM, Lee CH, Oglesby AG, Nolan EM. Calprotectin-mediated survival of Staphylococcus aureus in coculture with Pseudomonas aeruginosa occurs without nutrient metal sequestration. mBio 2025; 16:e0384624. [PMID: 40152583 PMCID: PMC12077171 DOI: 10.1128/mbio.03846-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/05/2025] [Indexed: 03/29/2025] Open
Abstract
Pseudomonas aeruginosa and Staphylococcus aureus are bacterial pathogens of major clinical concern that cause polymicrobial infections in diverse patient populations. Human calprotectin (CP; S100A8/S100A9 heterooligomer, MRP8/MRP14 heterooligomer) is a host-defense protein that contributes to nutritional immunity by sequestering multiple nutrient metal ions including Mn(II), Fe(II), and Zn(II). Here, we examine the consequences of metal availability and CP treatment on cocultures of P. aeruginosa and S. aureus. We report that CP elicits Fe-starvation responses in both P. aeruginosa and S. aureus in coculture, including the upregulation of genes involved in Fe uptake by both organisms. Moreover, analyses of pseudomonal metabolites in coculture supernatants further demonstrate Fe-starvation responses, showing that CP treatment leads to increased siderophore levels and reduced phenazine levels. Consistent with prior studies, growth under conditions of Fe depletion accelerated P. aeruginosa killing of S. aureus in coculture, but treatment with CP promoted S. aureus survival. Treatment with CP site variants lacking functional transition-metal-binding sites and metalated CP also enhanced S. aureus survival in coculture with P. aeruginosa, revealing that this consequence of CP treatment is independent of its canonical metal-sequestering function. Thus, the protective effects of CP treatment during coculture appear to override the observed Fe-starvation effects that make P. aeruginosa more virulent toward S. aureus. This work highlights an unappreciated facet of how CP contributes to host-pathogen and pathogen-pathogen interactions that are relevant to human infectious disease. IMPORTANCE The current working model that describes how the innate immune protein calprotectin (CP) protects the host against bacterial pathogens focuses on its capacity to sequester multiple essential metal nutrients in a process called nutritional immunity. Our study further explores this function by focusing on the effects of metal availability and CP treatment on the dynamics of Pseudomonas aeruginosa and Staphylococcus aureus grown in coculture. These two bacterial pathogens are of significant clinical concern and colocalize with CP at infection sites. This work reveals that CP modulates P. aeruginosa/S. aureus coculture dynamics in a manner that is independent of its ability to sequester nutrient metal ions. This surprising result is important because it demonstrates that CP has metal-independent function and thus contributes to the host-pathogen and pathogen-pathogen interactions in ways that are not accounted for in the current working model focused on metal sequestration.
Collapse
Affiliation(s)
- Wei H. Lee
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Emily M. Zygiel
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Celis H. Lee
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Amanda G. Oglesby
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Elizabeth M. Nolan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
4
|
Lin L, Li J, Zhang C, Li J, Wu B, Huang Z, Lv J, Liu M, Li W, Zhang W, Fang X. Comprehensive analysis of culture-negative periprosthetic joint infection with metagenomic next-generation sequencing. Front Cell Infect Microbiol 2025; 15:1564488. [PMID: 40415958 PMCID: PMC12098451 DOI: 10.3389/fcimb.2025.1564488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 04/11/2025] [Indexed: 05/27/2025] Open
Abstract
Objective This study aimed to identify the risk factors and microbial profiles of patients with culture-negative periprosthetic joint infection (PJI) using metagenomic next generation sequencing (mNGS) and to compare the clinical characteristics and treatment outcomes of culture-negative PJI (CN PJI) with culture-positive PJI (CP PJI). Methods A retrospective analysis was conducted on 223 patients who met the International Consensus Meeting criteria for PJI and underwent surgical treatment at our hospital between February 2013 and January 2023. Clinical and follow-up data, including microbiological culture results and mNGS findings, were collected. Based on culture results, patients were divided into the CP PJI and CN PJI groups. Risk factors and microbial profiles of CN PJI patients were summarized with the aid of mNGS results. Differences in clinical characteristics and treatment outcomes between the two groups were also analyzed. Results Among the 223 patients, 168 were in the CP PJI group, and 55 were in the CN PJI group. Risk factors for negative cultures included polymicrobial infections, infections caused by rare pathogens, and prolonged antibiotic use prior to sampling. In the CN PJI group, over a quarter of cases involved polymicrobial infections (25.5%) or rare pathogen infections (38.2%), with Mycoplasma sp. being the most frequently identified rare pathogen (7.2%). Compared to the CP PJI group, the CN PJI group exhibited distinctly longer hospital stays (P<0.001), extended antibiotic use (P=0.02), and a higher rate of antibiotic-related complications (P=0.026). However, no significant difference was noted in reinfection rates between the two groups (P=0.412). Conclusion CN PJI presents a unique microbial spectrum and distinct clinical therapeutic characteristics. mNGS offers a more comprehensive understanding of infecting microorganisms, particularly those often missed by conventional culture techniques. With advancements in sample collection, optimized culture methods, molecular diagnostic tools, and early targeted therapies, CN PJI may achieve clinical outcomes comparable to CP PJI.
Collapse
Affiliation(s)
- Lan Lin
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jiayu Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Canhong Zhang
- Department of Orthopedic Surgery, Quanzhou First Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Juncheng Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Baijian Wu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Zida Huang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jianhua Lv
- Department of Orthopedic Surgery, Affiliated Hospital of Putian University, Putian, China
| | - Mingzhong Liu
- Department of Orthopedic Surgery, Quanzhou First Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Wenbo Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Wenming Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xinyu Fang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
5
|
Antonini G, Fares M, Hauck D, Mała P, Gillon E, Belvisi L, Bernardi A, Titz A, Varrot A, Mazzotta S. Toward Dual-Target Glycomimetics against Two Bacterial Lectins to Fight Pseudomonas aeruginosa- Burkholderia cenocepacia Infections: A Biophysical Study. J Med Chem 2025; 68:9681-9693. [PMID: 40279549 PMCID: PMC12067436 DOI: 10.1021/acs.jmedchem.5c00405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/27/2025]
Abstract
Chronic lung infections caused by Pseudomonas aeruginosa and Burkholderia cenocepacia pose a severe threat to immunocompromised patients, particularly those with cystic fibrosis. These pathogens often infect the respiratory tract, and available treatments are limited due to antibiotic resistance. Targeting bacterial lectins involved in biofilm formation and host-pathogen interactions represents a promising therapeutic strategy. In this study, we evaluate the potential of synthetic fucosylamides as inhibitors of the two lectins LecB (P. aeruginosa) and BC2L-C-Nt (B. cenocepacia). Using a suite of biophysical assays, we assessed their binding affinities, identifying three β-fucosylamides as promising dual-target ligands, while crystallography studies revealed the atomic basis of these ligands to interact with both bacterial lectins. The emerged classes of compounds represent a solid starting point for the necessary hit-to-lead optimization for future dual inhibitors aiming at the treatment of coinfections with these two bacterial pathogens.
Collapse
Affiliation(s)
- Giulia Antonini
- Dipartimento
di Chimica, Università degli Studi
di Milano, Via Golgi 19, 20133 Milan, Italy
| | - Mario Fares
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, D-66123 Saarbrücken, Germany
- Deutsches
Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, D-38124 Braunschweig, Germany
- Department
of Chemistry, PharmaScienceHub (PSH), Saarland
University, D-66123 Saarbrücken, Germany
| | - Dirk Hauck
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, D-66123 Saarbrücken, Germany
- Deutsches
Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, D-38124 Braunschweig, Germany
- Department
of Chemistry, PharmaScienceHub (PSH), Saarland
University, D-66123 Saarbrücken, Germany
| | - Patrycja Mała
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, D-66123 Saarbrücken, Germany
- Deutsches
Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, D-38124 Braunschweig, Germany
- Department
of Chemistry, PharmaScienceHub (PSH), Saarland
University, D-66123 Saarbrücken, Germany
| | - Emilie Gillon
- CERMAV, Univ. Grenoble Alpes, CNRS, 38000 Grenoble, France
| | - Laura Belvisi
- Dipartimento
di Chimica, Università degli Studi
di Milano, Via Golgi 19, 20133 Milan, Italy
| | - Anna Bernardi
- Dipartimento
di Chimica, Università degli Studi
di Milano, Via Golgi 19, 20133 Milan, Italy
| | - Alexander Titz
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, D-66123 Saarbrücken, Germany
- Deutsches
Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, D-38124 Braunschweig, Germany
- Department
of Chemistry, PharmaScienceHub (PSH), Saarland
University, D-66123 Saarbrücken, Germany
| | | | - Sarah Mazzotta
- Dipartimento
di Chimica, Università degli Studi
di Milano, Via Golgi 19, 20133 Milan, Italy
| |
Collapse
|
6
|
Gao S, Liu B, Yuan S, Quan Y, Song S, Jin W, Wang Y, Wang Y. Cross-talk between signal transduction systems and metabolic networks in antibiotic resistance and tolerance. Int J Antimicrob Agents 2025; 65:107479. [PMID: 40024604 DOI: 10.1016/j.ijantimicag.2025.107479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/19/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
The comprehensive antibiotic resistance of pathogens signifies the oneset of the "post-antibiotic era", and the myriad treatment challenges posed by "superbugs" have emerged as the primary threat to human health. Recent studies indicate that bacterial resistance and tolerance development are mediated at the metabolic level by various signalling networks (e.g., quorum sensing systems, second messenger systems, and two-component systems), resulting in metabolic rearrangements and alterations in bacterial community behaviour. This review focuses on current research, highlighting the intrinsic link between signalling and metabolic networks in bacterial resistance and tolerance.
Collapse
Affiliation(s)
- Shuji Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, China
| | - Baobao Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, China
| | - Shuo Yuan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, China
| | - Yingying Quan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, China
| | - Shenao Song
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, China
| | - Wenjie Jin
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, China.
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, China.
| |
Collapse
|
7
|
Bhattarai B, Christopher GF. Mechanical properties of Staphylococcus aureus and Pseudomonas aeruginosa dual-species biofilms grown in chronic wound-based models. SOFT MATTER 2025; 21:3290-3303. [PMID: 40178412 DOI: 10.1039/d4sm01441c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Wound infections become chronic due to biofilm formation by pathogenic bacteria; two such pathogens are Staphylococcus aureus and Pseudomonas aeruginosa. These bacteria are known to form polymicrobial biofilms in wounds, which exhibit increased colonization rates, enhanced chronicity, and greater resistance to treatment. Previously, the impacts of a wound bed environment on the mechanical properties of P. aeruginosa biofilms have been explored, and in this work the role of a wound bed environment in the viscoelasticity and microstructure of polymicrobial biofilms is characterized. We hypothesize that common wound bed proteins mediate interactions between S. aureus and P. aeruginosa to enable the formation of more elastic and stiff biofilms. Growth media with varying protein content as well as additional collagen, a protein associated with a wound extracellular matrix, were utilized to test our hypothesis. Microrheology indicates that both P. aeruginosa and S. aureus form relatively stiffer single-species biofilms in a wound environment with collagen. S. aureus produced stiffer biofilms in the presence of collagen, regardless of other wound proteins, likely due to its interactions with collagen. When both species were grown together in wound-like media, synergistic effects led to stiffer dual-species biofilms compared to their single-species forms. Under all growth conditions, collagen significantly contributed to stiffening P. aeruginosa/S. aureus dual-species biofilms, suggesting that it mediates complex interspecies interactions. High-resolution imaging and analysis revealed that collagen also influenced the microstructures of P. aeruginosa/S. aureus dual-species biofilms. In media containing wound proteins and collagen, S. aureus clusters were larger and exhibited more complex shapes. These results indicate that the wound bed environment not only provides improved antibacterial resistance due to cooperative interactions, but also improved mechanical protection, which impact common treatment methods like debridement.
Collapse
Affiliation(s)
- Bikash Bhattarai
- Department of Mechanical Engineering, Whitacre College of Engineering, Texas Tech University, Lubbock, TX, USA.
| | - Gordon F Christopher
- Department of Mechanical Engineering, Whitacre College of Engineering, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
8
|
Saleh NM, Sudan ESF, Mohamed SH, El-Shahed MM, Hamouda RE, El-Gendy AO, Farag AA. Pathogen Partnerships or Power Struggles? Pseudomonas aeruginosa, and Staphylococcus aureus Dynamics in Cystic Fibrosis. Curr Microbiol 2025; 82:236. [PMID: 40198369 DOI: 10.1007/s00284-025-04167-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 02/26/2025] [Indexed: 04/10/2025]
Abstract
Cystic fibrosis (CF) is a polymicrobial infection characterized by interactions among various bacterial species that affect one another's cohabitation. The investigation of interspecies interactions in dual infections is essential to understand their reaction in the environment better and assist in the development of treatment regimens and innovative disease control approaches. Our hypothesis posits that co-infection interactions promote the adaptation of Staphylococcus aureus and Pseudomonas aeruginosa, potentially leading to synergistic action. To explore this, we examined dual-species interactions in co-isolated pairs of these organisms from Egyptian CF patients using laboratory media and artificial sputum media (ASM). Based on demographic data, 82 collected bacterial isolates from single, dual, and triple cultures were identified from 50 enrolled patients. In the interaction of the pairs in mimic media, P. aeruginosa exo-products significantly enhanced the biofilm formation and growth of S. aureus. Conversely, S. aureus did not inhibit P. aeruginosa biofilm formation. Furthermore, the biofilm mode of dual-organism growth provides protection in the CF context, as bacterial biofilms can withstand much higher antimicrobial levels compared to planktonically grown bacteria. Additionally, key biofilm genes regulated by quorum sensing were differentially expressed in both species in an isolate-dependent manner, highlighting their significant role in coexistence dual-species biofilm coexistence. In conclusion, our study illuminates the competitive and cooperative interactions between these two pathogens, which impact their coexistence and encourage biofilm production. This, in turn, accelerates disease progression and compromises patient health.
Collapse
Affiliation(s)
- Neveen M Saleh
- Department of Microbiology, Egyptian Drug Authority (Former National Organization for Drug Control and Research (NODCAR)), Giza, Egypt.
- College of Public Health, University of Nebraska Medical Center (UNMC), Omaha, United States.
| | - Esraa S F Sudan
- Department of Microbiology, Egyptian Drug Authority (Former National Organization for Drug Control and Research (NODCAR)), Giza, Egypt
| | - Sara H Mohamed
- Department of Microbiology, Egyptian Drug Authority (Former National Organization for Drug Control and Research (NODCAR)), Giza, Egypt
| | - Maram M El-Shahed
- Department of Microbiology, Egyptian Drug Authority (Former National Organization for Drug Control and Research (NODCAR)), Giza, Egypt
| | - Reda E Hamouda
- Department of Animal Production Systems Research, Animal Production Research Institute, Agricultural Research Center, Ministry of Agriculture and Land Reclamation, Giza, Egypt
| | - Ahmed Osama El-Gendy
- Microbiology and Immunology Department, Faculty of Pharmacy, Beni-Suef University, Beni Suef, 62514, Egypt
| | - Ahmed A Farag
- Microbiology and Immunology Department, Faculty of Pharmacy, Beni-Suef University, Beni Suef, 62514, Egypt
| |
Collapse
|
9
|
Roman-Rodriguez F, Kim J, Parker D, Boyd JM. An effective response to respiratory inhibition by a Pseudomonas aeruginosa excreted quinoline promotes Staphylococcus aureus fitness and survival in co-culture. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.12.642861. [PMID: 40161799 PMCID: PMC11952440 DOI: 10.1101/2025.03.12.642861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Pseudomonas aeruginosa and Staphylococcus aureus are primary bacterial pathogens isolated from the airways of cystic fibrosis patients. P. aeruginosa produces secondary metabolites that negatively impact the fitness of S. aureus, allowing P. aeruginosa to become the most prominent bacterium when the species are co-cultured. Some of these metabolites inhibit S. aureus respiration. SrrAB is a staphylococcal two-component regulatory system (TCRS) that responds to alterations in respiratory status and helps S. aureus transition between fermentative and respiratory metabolisms. We used P. aeruginosa mutant strains and chemical genetics to demonstrate that P. aeruginosa secondary metabolites, HQNO in particular, inhibit S. aureus respiration, resulting in modified SrrAB stimulation. Metabolomic analyses found that the ratio of NAD+ to NADH increased upon prolonged culture with HQNO. Consistent with this, the activity of the Rex transcriptional regulator, which senses and responds to alterations in the NAD+ / NADH ratio, had altered activity upon HQNO treatment. The presence of SrrAB increased fitness when cultured with HQNO and increased survival when challenged with P. aeruginosa. S. aureus strains with a decreased ability to maintain redox homeostasis via fermentation had decreased fitness when challenged with HQNO and decreased survival when challenged with P. aeruginosa. These findings led to a model wherein P. aeruginosa secreted HQNO inhibits S. aureus respiration, stimulating SrrAB, which promotes fitness and survival by increasing carbon flux through fermentative pathways to maintain redox homeostasis.
Collapse
Affiliation(s)
- Franklin Roman-Rodriguez
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Jisun Kim
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Dane Parker
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Jeffrey M. Boyd
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
10
|
Yuan VG, Xia A, Santa Maria PL. Chronic suppurative otitis media: disrupted host-microbial interactions and immune dysregulation. Front Immunol 2025; 16:1547206. [PMID: 40114926 PMCID: PMC11923626 DOI: 10.3389/fimmu.2025.1547206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/17/2025] [Indexed: 03/22/2025] Open
Abstract
Recent research has uncovered new mechanisms that disrupt the balance between the host and microbes in the middle ear, potentially leading to dysbiosis and chronic suppurative otitis media (CSOM). Dysbiotic microbial communities, including core pathogens such as persister cells, are recognized for displaying cooperative virulence. These microbial communities not only evade the host's immune defenses but also promote inflammation that leads to tissue damage. This leads to uncontrolled disorder and pathogen proliferation, potentially causing hearing loss and systemic complications. In this discussion, we examine emerging paradigms in the study of CSOM that could provide insights into other polymicrobial inflammatory diseases. Additionally, we underscore critical knowledge gaps essential for developing a comprehensive understanding of how microbes interact with both the innate and adaptive immune systems to trigger and maintain CSOM.
Collapse
Affiliation(s)
- Vincent G. Yuan
- Department of Otolaryngology-Head and Neck Surgery, University of Pittsburgh Medical Center, Pittsburg, PA, United States
| | - Anping Xia
- Department of Otolaryngology-Head and Neck Surgery, University of Pittsburgh Medical Center, Pittsburg, PA, United States
| | - Peter L. Santa Maria
- Department of Otolaryngology-Head and Neck Surgery, University of Pittsburgh Medical Center, Pittsburg, PA, United States
| |
Collapse
|
11
|
Martini AM, Alexander SA, Khare A. Mutations in the Staphylococcus aureus Global Regulator CodY confer tolerance to an interspecies redox-active antimicrobial. PLoS Genet 2025; 21:e1011610. [PMID: 40053555 PMCID: PMC11918324 DOI: 10.1371/journal.pgen.1011610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/18/2025] [Accepted: 02/06/2025] [Indexed: 03/09/2025] Open
Abstract
Bacteria often exist in multispecies communities where interactions among different species can modify individual fitness and behavior. Although many competitive interactions have been described, molecular adaptations that can counter this antagonism and preserve or increase fitness remain underexplored. Here, we characterize the adaptation of Staphylococcus aureus to pyocyanin, a redox-active interspecies antimicrobial produced by Pseudomonas aeruginosa, a co-infecting pathogen frequently isolated from wound and chronic lung infections with S. aureus. Using experimental evolution, we identified mutations in a conserved global transcriptional regulator, CodY, that confer tolerance to pyocyanin and thereby enhance survival of S. aureus. A pyocyanin tolerant CodY mutant also had a survival advantage in co-culture with P. aeruginosa, likely through tolerance specifically to pyocyanin. The transcriptional response of the CodY mutant to pyocyanin indicated a two-pronged defensive response compared to the wild type. First, the CodY mutant strongly suppressed metabolism by downregulating core metabolic pathways , especially translation-associated genes, upon exposure to pyocyanin. Metabolic suppression via ATP depletion was sufficient to provide comparable protection against pyocyanin to the wild-type strain. Second, while both the wild-type and CodY mutant strains upregulated oxidative stress response pathways upon pyocyanin exposure, the CodY mutant overexpressed multiple stress response genes compared to the wild type. We determined that catalase overexpression was critical to pyocyanin tolerance as its absence eliminated tolerance in the CodY mutant and overexpression of catalase was sufficient to impart tolerance to the wild-type strain against purified pyocyanin and in co-culture with WT P. aeruginosa. Together, these results suggest that both transcriptional responses of reduced metabolism and an increased oxidative stress response likely contribute to pyocyanin tolerance in the CodY mutant. Our data thus provide new mechanistic insight into adaptation toward interbacterial antagonism via altered regulation that facilitates multifaceted protective cellular responses.
Collapse
Affiliation(s)
- Anthony M. Martini
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sara A. Alexander
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Anupama Khare
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
12
|
Lee J, Jin Y, Wu W, Lee Y, Ha UH. Pseudomonas aeruginosa-derived DnaJ induces TLR2 expression through TLR10-mediated activation of the PI3K-SGK1 pathway in macrophages. Microbes Infect 2025:105481. [PMID: 39978578 DOI: 10.1016/j.micinf.2025.105481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/13/2025] [Accepted: 02/16/2025] [Indexed: 02/22/2025]
Abstract
TLR2 is a key component of the innate immune system, responsible for recognizing Gram-positive bacterial components and initiating inflammatory signaling cascades that activate defense responses. However, little is known about the regulatory effects of Pseudomonas aeruginosa (P. aeruginosa) on TLR2 expression. In this study, we investigated the potential link between P. aeruginosa-derived DnaJ and TLR2 expression in macrophages, as well as the activation of downstream signaling pathways. Our findings revealed that DnaJ significantly induced TLR2 expression in a dose- and time-dependent manner, predominantly affecting TLR2 with minimal impact on other TLRs, such as TLR4 and TLR5, which detect bacterial PAMPs. The DnaJ-mediated TLR2 induction was driven by activation of the PI3K-SGK1 signaling pathway, with TLR10 playing a crucial role in facilitating these effects. This increase in TLR2 expression led to enhanced production of inflammatory cytokines in response to secondary Staphylococcus aureus infections, indicating a role in boosting host defense mechanisms. In conclusion, these findings suggest that P. aeruginosa-derived DnaJ promotes TLR2 expression via TLR10-mediated activation of the PI3K-SGK1 pathway, thereby enhancing host immune responses against Gram-positive bacterial infections.
Collapse
Affiliation(s)
- Jaehoo Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, 30019, Republic of Korea; Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong, 30019, Republic of Korea
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, Nankai University, Tianjin, 300071, China
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, Nankai University, Tianjin, 300071, China
| | - Yeji Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, 30019, Republic of Korea.
| | - Un-Hwan Ha
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, 30019, Republic of Korea; Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong, 30019, Republic of Korea.
| |
Collapse
|
13
|
Hallinen KM, Bodine SP, Stone HA, Muir TW, Wingreen NS, Gitai Z. Bacterial species with different nanocolony morphologies have distinct flow-dependent colonization behaviors. Proc Natl Acad Sci U S A 2025; 122:e2419899122. [PMID: 39928871 PMCID: PMC11848407 DOI: 10.1073/pnas.2419899122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/25/2024] [Indexed: 02/12/2025] Open
Abstract
Fluid flows are dominant features of many bacterial environments, and flow can often impact bacterial behaviors in unexpected ways. For example, the most common type of cardiovascular infection is heart valve colonization by gram-positive bacteria like Staphylococcus aureus and Enterococcus faecalis (endocarditis). This behavior is counterintuitive because heart valves experience high shear rates that would naively be expected to reduce colonization. To determine whether these bacteria preferentially colonize higher shear rate environments, we developed a microfluidic system to quantify the effect of flow conditions on the colonization of S. aureus and E. faecalis. We find that the preferential colonization in high flow of both species is not specific to heart valves and can be found in simple configurations lacking any host factors. This behavior enables bacteria that are outcompeted in low flow to dominate in high flow. Surprisingly, experimental and computational studies reveal that the two species achieve this behavior via distinct mechanisms. S. aureus grows in cell clusters and produces a dispersal signal whose transport is affected by shear rate. Meanwhile, E. faecalis grows in linear chains whose mechanical properties result in less dispersal in the presence of higher shear force. In addition to establishing two divergent mechanisms by which these bacteria each preferentially colonize high-flow environments, our findings highlight the importance of understanding bacterial behaviors at the level of collective interactions among cells. These results suggest that distinct multicellular nanocolony morphologies have previously unappreciated costs and benefits in different environments, like those introduced by fluid flow.
Collapse
Affiliation(s)
| | - Steven P. Bodine
- Department of Chemistry, Princeton University, Princeton, NJ08544
| | - Howard A. Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ08544
| | - Tom W. Muir
- Department of Chemistry, Princeton University, Princeton, NJ08544
| | - Ned S. Wingreen
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ08544
- Department of Molecular Biology, Princeton University, Princeton, NJ08544
| | - Zemer Gitai
- Department of Molecular Biology, Princeton University, Princeton, NJ08544
| |
Collapse
|
14
|
Mitra S, Banka N, Basu S, Rao T. Ultrastructural polymicrobial Staphylococcus aureus-Pseudomonas aeruginosa interactions and antimicrobial resistance in ex vivo cornea model. Future Microbiol 2025; 20:117-135. [PMID: 39503536 PMCID: PMC11792815 DOI: 10.1080/17460913.2024.2417617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/14/2024] [Indexed: 02/02/2025] Open
Abstract
Aim: To investigate antagonistic interactions among pathogens, in ex vivo donor corneas infected with monomicrobial or polymicrobial combinations of antibiotic susceptible and resistant clinical isolates of Staphylococcus aureus (MSSA, MRSA) and Pseudomonas aeruginosa (S-PA, MDR-PA).Materials & methods: Scanning electron microscopy and antimicrobial susceptibility testing (AST, broth microdilution for minimum inhibitory and bactericidal concentrations [MIC/MBC]) pre-and post-polymicrobial interactions, in infected donor corneas.Results: MSSA lost viability with S-PA/MDR-PA, while MRSA formed larger cells, biofilm and lower MIC (teicoplanin) with S-PA, but lost viability with MDR-PA. S-PA had lower MIC (ceftazidime, meropenem, chloramphenicol) with MSSA, and lower MBC (cefoperazone, ciprofloxacin) and fewer cells with MRSA. MDR-PA had abundant cells and no change in AST with MSSA or MRSA.Conclusion: Significant antagonistic interactions occur in ocular polymicrobial infections, affecting antibiotic susceptible isolates more than resistant ones.
Collapse
Affiliation(s)
- Sanchita Mitra
- Consultant Microbiologist, Jhaveri Microbiology Centre, LV Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, 500034, India
| | - Nagapriya Banka
- Senior Technician, Scanning Electron Microscopy, LV Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, 500034, India
| | - Soumyava Basu
- Consultant Ophthalmologist, Uveitis Services, LV Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, 500034, India
| | - Tirupathi Rao
- Research Technician,Prof. Krothapalli Ravindranath Ophthalmic Research Biorepository, LV Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, 500034, India
| |
Collapse
|
15
|
Bollar GE, Shaffer KM, Keith JD, Oden AM, Dowell AE, Ryan KJ, Acosta EP, Guimbellot JS, Kiedrowski MR, Birket SE. Evaluating the effects of ivacaftor exposure on Staphylococcus aureus small colony variant development and antibiotic tolerance. JAC Antimicrob Resist 2024; 6:dlae185. [PMID: 39659642 PMCID: PMC11630538 DOI: 10.1093/jacamr/dlae185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024] Open
Abstract
Background Ivacaftor exhibits anti-staphylococcal properties but does not clear Staphylococcus aureus from the lungs of people with cystic fibrosis (pwCF). We assessed whether exposure to therapeutic concentrations of ivacaftor could allow S. aureus to form small colony variants (SCVs), a phenotype commonly associated with bacterial persistence. Methods Humanized G551D-CFTR (hG551D) rats were treated with ivacaftor for 7 days. Concentrations in the plasma, epithelial lining fluid and lung tissue lysate were measured using LC-MS/MS. Survival of S. aureus during ivacaftor treatment was assessed in an hG551D rat model of lung infection. S. aureus adaptation to therapeutic concentrations of ivacaftor was investigated in vitro by serial passage in the presence of 10 µM ivacaftor. Bacterial survival in the presence of antimicrobials was evaluated using growth curves and density assays. Results Ivacaftor plasma concentrations of treated hG551D rats reached 3.488 ± 1.118 µM, with more variable concentrations in the epithelial lining fluid and lung tissue lysate. During S. aureus infection, ivacaftor-treated hG551D rats returned similar numbers of bacteria from the lung, compared with vehicle-treated controls. Exposure of S. aureus to ivacaftor in vitro led to the formation of ivacaftor-tolerant SCVs with an unstable phenotype and increased antibiotic tolerance. Conclusions Treatment with ivacaftor did not alter S. aureus burden in the cystic fibrosis rat and led to the formation of tolerant SCVs in vitro, suggesting that development of an SCV phenotype may allow S. aureus to persist in the cystic fibrosis lung during ivacaftor therapy.
Collapse
Affiliation(s)
- Gretchen E Bollar
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kendall M Shaffer
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Johnathan D Keith
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ashley M Oden
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alexander E Dowell
- Department of Pharmacology and Toxicology, Division of Clinical Pharmacology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kevin J Ryan
- Department of Pharmacology and Toxicology, Division of Clinical Pharmacology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Edward P Acosta
- Department of Pharmacology and Toxicology, Division of Clinical Pharmacology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jennifer S Guimbellot
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Pediatrics, Division of Pediatric Pulmonary and Sleep Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Megan R Kiedrowski
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Susan E Birket
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
16
|
Ding H, Huang J, Lin L, Chen Y, Wang Q, Li W, Huang Y, Fang X, Zhang W. Shedding light on negative cultures in osteoarticular infections: leveraging mNGS to unravel risk factors and microbial profiles. Front Cell Infect Microbiol 2024; 14:1457639. [PMID: 39654973 PMCID: PMC11625738 DOI: 10.3389/fcimb.2024.1457639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024] Open
Abstract
Background The objective of this study is to utilize metagenomic next-generation sequencing (mNGS) to analyze the risk factors causing negative microbial cultures, comprehensively delineate the microbial profiles neglected by traditional cultures, and optimize the pathogenetic diagnostic procedure accordingly. Research design and methods We enrolled 341 patients diagnosed with OI at our center between 2016 and 2022, and gathered data including age, gender, clinical diagnosis, duration of antibiotic use prior to sampling, microbial culture results, and mNGS results for these patients. According to microbial detection results, risk factors for negative microbial culture and mNGS results were investigated through univariate and multivariate analyses, and the microbial profile in cases with negative microbial cultures was summarized in conjunction with mNGS results. Building upon this, we suggest strategies to enhance the positivity rate of microbial cultures based on clinical experience. Results Invasive osteoarticular infection (IOI), multi-infections, rare pathogen infections, and prior antibiotic use are risk factors for negative microbial cultures. When the duration of prior antibiotic use is ≥3 days, mNGS demonstrates significantly higher pathogen detection efficiency than microbial culture. Moreover, the risk of negative microbial culture increases by 4.8 times with the exposure to each additional risk factor (OR=4.043, 95%CI [2.835, 5.765], P<0.001). Additionally, over one-third of culture-negative OI involve polymicrobial infections or rare pathogens. Conclusions Clinicians should tailor microbial culture strategies based on patient conditions. When needed, they can collaborate with mNGS or optimize microbial culture conditions based on mNGS results to enhance the efficiency of pathogen diagnosis.
Collapse
Affiliation(s)
- Haiqi Ding
- Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Fuzhou, China
- Department of Orthopaedic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jiexin Huang
- Department of Orthopedic Surgery, Nanping First Hospital Affiliated to Fujian Medical University, Nanping, China
| | - Lan Lin
- Department of Orthopaedic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yang Chen
- Department of Orthopaedic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Qijin Wang
- Department of Orthopedics, Affiliated Mindong Hospital of Fujian Medical University, Ningde, China
| | - Wenbo Li
- Department of Orthopaedic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ying Huang
- Department of Orthopaedic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xinyu Fang
- Department of Orthopaedic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Wenming Zhang
- Department of Orthopaedic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
17
|
Baker EJ, Allcott G, Cox JAG. Polymicrobial infection in cystic fibrosis and future perspectives for improving Mycobacterium abscessus drug discovery. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:38. [PMID: 39843836 PMCID: PMC11721438 DOI: 10.1038/s44259-024-00060-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/03/2024] [Indexed: 01/24/2025]
Abstract
Polymicrobial communities inhabit the cystic fibrosis (CF) airway, whereby microbial interactions can occur. One prominent CF pathogen is Mycobacterium abscessus, whose treatment is largely unsuccessful. This creates a need to discover novel antimicrobial agents to treat M. abscessus, however the methods used within antibiotic discovery are typically monomicrobial. This review will discuss this pathogen whilst considering the CF polymicrobial environment, to highlight future perspectives to improve M. abscessus drug discovery.
Collapse
Affiliation(s)
- Emily J Baker
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Gemma Allcott
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Jonathan A G Cox
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| |
Collapse
|
18
|
Landa G, Clarhaut J, Buyck J, Mendoza G, Arruebo M, Tewes F. Impact of mixed Staphylococcus aureus-Pseudomonas aeruginosa biofilm on susceptibility to antimicrobial treatments in a 3D in vitro model. Sci Rep 2024; 14:27877. [PMID: 39538008 PMCID: PMC11561256 DOI: 10.1038/s41598-024-79573-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024] Open
Abstract
Staphylococcus aureus and Pseudomonas aeruginosa are the most common bacteria co-isolated from chronic infected wounds. Their interactions remain unclear but this coexistence is beneficial for both bacteria and may lead to resistance to antimicrobial treatments. Besides, developing an in vitro model where this coexistence is recreated remains challenging, making difficult their study. The aim of this work was to develop a reliable polymicrobial in vitro model of both species to further understand their interrelationships and the effects of different antimicrobials in coculture. In this work, bioluminescent and fluorescent bacteria were used to evaluate the activity of two antiseptics (chlorhexidine and thymol) against these bacteria planktonically grown, or when forming single and mixed biofilms. At the doses tested (0.4-1,000 mg/L), thymol showed selective antimicrobial action against S. aureus in planktonic and biofilm states, in contrast with chlorhexidine which exerted antimicrobial effects against both bacteria. Furthermore, the initial conditions for both bacteria in the co-culture determined the antimicrobial outcome, showing that P. aeruginosa impaired the proliferation and metabolism of S. aureus. Moreover, S. aureus showed an increased tolerance against antiseptic treatments when co-cultured, attributed to the formation of a thicker mixed biofilm compared to those obtained when monocultured, and also, by the reduction of S. aureus metabolic activity induced by diffusible molecules produced by P. aeruginosa. This work underlines the relevance of polymicrobial populations and their crosstalk and microenvironment in the search of disruptive and effective treatments for polymicrobial biofilms.
Collapse
Affiliation(s)
- Guillermo Landa
- Aragon Institute of Nanoscience and Materials (INMA), CSIC-University of Zaragoza, Zaragoza, 50009, Spain.
- Department of Chemical and Environmental Engineering, University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, Zaragoza, 50018, Spain.
- Aragon Health Research Institute (IIS Aragon), Zaragoza, 50009, Spain.
| | - Jonathan Clarhaut
- INSERM U1070 "Pharmacology of antimicrobial agents and resistances", University of Poitiers, Pôle Biologie Santé, 1 rue Georges Bonnet, Poitiers, 86022, France
- CHU Poitiers, 2 rue de la Milétrie, Poitiers, 86021, France
| | - Julien Buyck
- INSERM U1070 "Pharmacology of antimicrobial agents and resistances", University of Poitiers, Pôle Biologie Santé, 1 rue Georges Bonnet, Poitiers, 86022, France
| | - Gracia Mendoza
- Aragon Health Research Institute (IIS Aragon), Zaragoza, 50009, Spain.
- Department of Pharmacology and Physiology, Forensic and Legal Medicine, University of Zaragoza, Zaragoza, 50009, Spain.
| | - Manuel Arruebo
- Aragon Institute of Nanoscience and Materials (INMA), CSIC-University of Zaragoza, Zaragoza, 50009, Spain
- Department of Chemical and Environmental Engineering, University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, Zaragoza, 50018, Spain
- Aragon Health Research Institute (IIS Aragon), Zaragoza, 50009, Spain
| | - Frederic Tewes
- INSERM U1070 "Pharmacology of antimicrobial agents and resistances", University of Poitiers, Pôle Biologie Santé, 1 rue Georges Bonnet, Poitiers, 86022, France
| |
Collapse
|
19
|
Belcher T, Coutte L, Debrie AS, Sencio V, Trottein F, Locht C, Cauchi S. Pertussis toxin-dependent and -independent protection by Bordetella pertussis against influenza. Microbes Infect 2024; 26:105404. [PMID: 39128538 DOI: 10.1016/j.micinf.2024.105404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
Bacterial-viral co-infections are frequent, but their reciprocal effects are not well understood. Here, we examined the effect Bordetella pertussis infection and the role of pertussis toxin (PT) on influenza A virus (IAV) infection and disease. In C57BL/6J mice, prior nasal administration of virulent B. pertussis BPSM and PT-deficient BPRA provided effective and sustained protection from IAV-induced mortality. However, BPSM or BPRA administered together with purified PT (BPRA + PT) had a stronger protective effect on weight loss compared to BPRA alone, reduced the viral load, and induced IL-17A in the lungs. In IL-17-/- mice, BPSM- and BPRA + PT-mediated protection against viral replication was abolished, while BPSM, BPRA and BPRA + PT provided similar levels of protection against IAV-induced mortality and weight loss. In conclusion, B. pertussis infection protects against influenza by two mechanisms: one reducing viral replication depending on PT and IL-17, and the other, independently of PT and IL-17, resulting in protection against influenza disease without reducing the viral load.
Collapse
Affiliation(s)
- Thomas Belcher
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL-Centre for Infection and Immunity of Lille, F-59000 Lille, France
| | - Loïc Coutte
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL-Centre for Infection and Immunity of Lille, F-59000 Lille, France
| | - Anne-Sophie Debrie
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL-Centre for Infection and Immunity of Lille, F-59000 Lille, France
| | - Valentin Sencio
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL-Centre for Infection and Immunity of Lille, F-59000 Lille, France
| | - François Trottein
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL-Centre for Infection and Immunity of Lille, F-59000 Lille, France
| | - Camille Locht
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL-Centre for Infection and Immunity of Lille, F-59000 Lille, France
| | - Stephane Cauchi
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL-Centre for Infection and Immunity of Lille, F-59000 Lille, France.
| |
Collapse
|
20
|
Shah R, Narh JK, Urlaub M, Jankiewicz O, Johnson C, Livingston B, Dahl JU. Pseudomonas aeruginosa kills Staphylococcus aureus in a polyphosphate-dependent manner. mSphere 2024; 9:e0068624. [PMID: 39365057 PMCID: PMC11520310 DOI: 10.1128/msphere.00686-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 09/16/2024] [Indexed: 10/05/2024] Open
Abstract
Due to their frequent coexistence in many polymicrobial infections, including in patients with cystic fibrosis or burn/chronic wounds, many studies have investigated the mechanistic details of the interaction between the opportunistic pathogens Pseudomonas aeruginosa and Staphylococcus aureus. P. aeruginosa rapidly outcompetes S. aureus under in vitro cocultivation conditions, which is mediated by several of P. aeruginosa's virulence factors. Here, we report that polyphosphate (polyP), an efficient stress defense system and virulence factor in P. aeruginosa, plays a role in the pathogen's ability to inhibit and kill S. aureus in a contact-independent manner. We show that P. aeruginosa cells characterized by low polyP levels are less detrimental to S. aureus growth and survival while the Gram-positive pathogen is significantly more compromised by the presence of P. aeruginosa cells that produce high levels of polyP. The polyP-dependent phenotype of P. aeruginosa-mediated killing of S. aureus could at least in part be direct, as polyP was detected in the spent media and causes significant damage to the S. aureus cell envelope. However, more likely is that polyP's effects are indirect through modulating the production of one of P. aeruginosa's virulence factors, pyocyanin. We show that pyocyanin production in P. aeruginosa occurs polyP-dependently and harms S. aureus through membrane damage and potentially the generation of reactive oxygen species, resulting in the increased expression of antioxidant enzymes. In summary, our study adds a new component to the list of biomolecules that the Gram-negative pathogen P. aeruginosa generates to compete with S. aureus for resources.IMPORTANCEHow do interactions between microorganisms shape the course of polymicrobial infections? Previous studies have provided evidence that the two opportunistic pathogens Pseudomonas aeruginosa and Staphylococcus aureus generate molecules that modulate their interaction with potentially significant impact on disease outcomes. Our study identified the biopolymer polyphosphate (polyP) as a new effector molecule that impacts P. aeruginosa's interaction with S. aureus. We show that P. aeruginosa kills S. aureus in a polyP-dependent manner, which occurs primarily through the polyP-dependent production of the P. aeruginosa virulence factor pyocyanin. Our findings add a new role for polyP to an already extensive list of functions. A more in-depth understanding of how polyP influences interspecies interactions is critical, as targeting polyP synthesis in bacteria such as P. aeruginosa may have a significant impact on other microorganisms and potentially result in dynamic changes in the microbial composition.
Collapse
Affiliation(s)
- Ritika Shah
- School of Biological Sciences, Illinois State University, Microbiology, Normal, Illinois, USA
| | - Julius Kwesi Narh
- School of Biological Sciences, Illinois State University, Microbiology, Normal, Illinois, USA
| | - Magdalena Urlaub
- School of Biological Sciences, Illinois State University, Microbiology, Normal, Illinois, USA
| | - Olivia Jankiewicz
- School of Biological Sciences, Illinois State University, Microbiology, Normal, Illinois, USA
| | - Colton Johnson
- School of Biological Sciences, Illinois State University, Microbiology, Normal, Illinois, USA
| | - Barry Livingston
- School of Biological Sciences, Illinois State University, Microbiology, Normal, Illinois, USA
| | - Jan-Ulrik Dahl
- School of Biological Sciences, Illinois State University, Microbiology, Normal, Illinois, USA
| |
Collapse
|
21
|
Saiman L, Waters V, LiPuma JJ, Hoffman LR, Alby K, Zhang SX, Yau YC, Downey DG, Sermet-Gaudelus I, Bouchara JP, Kidd TJ, Bell SC, Brown AW. Practical Guidance for Clinical Microbiology Laboratories: Updated guidance for processing respiratory tract samples from people with cystic fibrosis. Clin Microbiol Rev 2024; 37:e0021521. [PMID: 39158301 PMCID: PMC11391703 DOI: 10.1128/cmr.00215-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Abstract
SUMMARYThis guidance presents recommendations for clinical microbiology laboratories for processing respiratory samples from people with cystic fibrosis (pwCF). Appropriate processing of respiratory samples is crucial to detect bacterial and fungal pathogens, guide treatment, monitor the epidemiology of cystic fibrosis (CF) pathogens, and assess therapeutic interventions. Thanks to CF transmembrane conductance regulator modulator therapy, the health of pwCF has improved, but as a result, fewer pwCF spontaneously expectorate sputum. Thus, the collection of sputum samples has decreased, while the collection of other types of respiratory samples such as oropharyngeal and bronchoalveolar lavage samples has increased. To optimize the detection of microorganisms, including Pseudomonas aeruginosa, Staphylococcus aureus, Haemophilus influenzae, and Burkholderia cepacia complex; other less common non-lactose fermenting Gram-negative bacilli, e.g., Stenotrophomonas maltophilia, Inquilinus, Achromobacter, Ralstonia, and Pandoraea species; and yeasts and filamentous fungi, non-selective and selective culture media are recommended for all types of respiratory samples, including samples obtained from pwCF after lung transplantation. There are no consensus recommendations for laboratory practices to detect, characterize, and report small colony variants (SCVs) of S. aureus, although studies are ongoing to address the potential clinical impact of SCVs. Accurate identification of less common Gram-negative bacilli, e.g., S. maltophilia, Inquilinus, Achromobacter, Ralstonia, and Pandoraea species, as well as yeasts and filamentous fungi, is recommended to understand their epidemiology and clinical importance in pwCF. However, conventional biochemical tests and automated platforms may not accurately identify CF pathogens. MALDI-TOF MS provides excellent genus-level identification, but databases may lack representation of CF pathogens to the species-level. Thus, DNA sequence analysis should be routinely available to laboratories for selected clinical circumstances. Antimicrobial susceptibility testing (AST) is not recommended for every routine surveillance culture obtained from pwCF, although selective AST may be helpful, e.g., for unusual pathogens or exacerbations unresponsive to initial therapy. While this guidance reflects current care paradigms for pwCF, recommendations will continue to evolve as CF research expands the evidence base for laboratory practices.
Collapse
Affiliation(s)
- Lisa Saiman
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
- Department of Infection Prevention and Control, NewYork-Presbyterian Hospital, New York, New York, USA
| | - Valerie Waters
- Division of Infectious Diseases, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - John J LiPuma
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lucas R Hoffman
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Kevin Alby
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Sean X Zhang
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yvonne C Yau
- Division of Microbiology, Department of Paediatric Laboratory Medicine, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Damian G Downey
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, Ireland
| | | | - Jean-Philippe Bouchara
- University of Angers-University of Brest, Infections Respiratoires Fongiques, Angers, France
| | - Timothy J Kidd
- Microbiology Division, Pathology Queensland Central Laboratory, The University of Queensland, Brisbane, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Scott C Bell
- The Prince Charles Hospital, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- The Translational Research Institute, Brisbane, Australia
| | - A Whitney Brown
- Cystic Fibrosis Foundation, Bethesda, Maryland, USA
- Inova Advanced Lung Disease and Transplant Program, Inova Fairfax Hospital, Falls Church, Virginia, USA
| |
Collapse
|
22
|
Burford-Gorst CM, Kidd SP. Phenotypic Variation in Staphylococcus aureus during Colonisation Involves Antibiotic-Tolerant Cell Types. Antibiotics (Basel) 2024; 13:845. [PMID: 39335018 PMCID: PMC11428495 DOI: 10.3390/antibiotics13090845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Staphylococcus aureus is a bacterial species that is commonly found colonising healthy individuals but that presents a paradoxical nature: simultaneously, it can migrate within the body and cause a range of diseases. Many of these become chronic by resisting immune responses, antimicrobial treatment, and medical intervention. In part, this ability to persist can be attributed to the adoption of multiple cell types within a single cellular population. These dynamics in the S. aureus cell population could be the result of its interplay with host cells or other co-colonising bacteria-often coagulase-negative Staphylococcal (CoNS) species. Further understanding of the unique traits of S. aureus alternative cell types, the drivers for their selection or formation during disease, as well as their presence even during non-pathological colonisation could advance the development of diagnostic tools and drugs tailored to target specific cells that are eventually responsible for chronic infections.
Collapse
Affiliation(s)
- Chloe M Burford-Gorst
- Department of Molecular and Biomedical Sciences, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
- Research Centre for Infectious Diseases (RCID), The University of Adelaide, Adelaide, SA 5005, Australia
| | - Stephen P Kidd
- Department of Molecular and Biomedical Sciences, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
- Research Centre for Infectious Diseases (RCID), The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
23
|
Sachdeva C, Satyamoorthy K, Murali TS. Pseudomonas aeruginosa: metabolic allies and adversaries in the world of polymicrobial infections. Crit Rev Microbiol 2024:1-20. [PMID: 39225080 DOI: 10.1080/1040841x.2024.2397359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 08/10/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Pseudomonas aeruginosa (PA), an opportunistic human pathogen that is frequently linked with chronic infections in immunocompromised individuals, is also metabolically versatile, and thrives in diverse environments. Additionally, studies report that PA can interact with other microorganisms, such as bacteria, and fungi, producing unique metabolites that can modulate the host immune response, and contribute to disease pathogenesis. This review summarizes the current knowledge related to the metabolic interactions of PA with other microorganisms (Staphylococcus, Acinetobacter, Klebsiella, Enterococcus, and Candida) and human hosts, and the importance of these interactions in a polymicrobial context. Further, we highlight the potential applications of studying these metabolic interactions toward designing better diagnostic tools, and therapeutic strategies to prevent, and treat infections caused by this pathogen.
Collapse
Affiliation(s)
- Chandni Sachdeva
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kapaettu Satyamoorthy
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
- SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara (SDM) University, Sattur, Karnataka, India
| | - Thokur Sreepathy Murali
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
24
|
Smith NM, Kaur H, Kaur R, Minoza T, Kent M, Barekat A, Lenhard JR. Influence of β-lactam pharmacodynamics on the systems microbiology of gram-positive and gram-negative polymicrobial communities. Front Pharmacol 2024; 15:1339858. [PMID: 38895629 PMCID: PMC11183306 DOI: 10.3389/fphar.2024.1339858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/06/2024] [Indexed: 06/21/2024] Open
Abstract
Objectives We sought to evaluate the pharmacodynamics of β-lactam antibacterials against polymicrobial communities of clinically relevant gram-positive and gram-negative pathogens. Methods Two Enterococcus faecalis isolates, two Staphylococcus aureus isolates, and three Escherichia coli isolates with varying β-lactamase production were evaluated in static time-killing experiments. Each gram-positive isolate was exposed to a concentration array of ampicillin (E. faecalis) or cefazolin (S. aureus) alone and during co-culture with an E. coli isolate that was β-lactamase-deficient, produced TEM-1, or produced KPC-3/TEM-1B. The results of the time-killing experiments were summarized using an integrated pharmacokinetic/pharmacodynamics analysis as well as mathematical modelling to fully characterize the antibacterial pharmacodynamics. Results In the integrated analysis, the maximum killing of ampicillin (Emax) against both E. faecalis isolates was ≥ 4.11 during monoculture experiments or co-culture with β-lactamase-deficient E. coli, whereas the Emax was reduced to ≤ 1.54 during co-culture with β-lactamase-producing E. coli. In comparison to monoculture experiments, culturing S. aureus with KPC-producing E. coli resulted in reductions of the cefazolin Emax from 3.25 and 3.71 down to 2.02 and 2.98, respectively. Two mathematical models were created to describe the interactions between E. coli and either E. faecalis or S. aureus. When in co-culture with E. coli, S. aureus experienced a reduction in its cefazolin Kmax by 24.8% (23.1%RSE). Similarly, β-lactamase-producing E. coli preferentially protected the ampicillin-resistant E. faecalis subpopulation, reducing Kmax,r by 90.1% (14%RSE). Discussion β-lactamase-producing E. coli were capable of protecting S. aureus and E. faecalis from exposure to β-lactam antibacterials.
Collapse
Affiliation(s)
- Nicholas M. Smith
- School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Harpreet Kaur
- California Northstate University College of Pharmacy, Elk Grove, CA, United States
| | - Ravneet Kaur
- California Northstate University College of Pharmacy, Elk Grove, CA, United States
| | - Trisha Minoza
- California Northstate University College of Pharmacy, Elk Grove, CA, United States
| | - Michael Kent
- California Northstate University College of Pharmacy, Elk Grove, CA, United States
| | - Ayeh Barekat
- California Northstate University College of Pharmacy, Elk Grove, CA, United States
| | - Justin R. Lenhard
- California Northstate University College of Pharmacy, Elk Grove, CA, United States
| |
Collapse
|
25
|
Bényei ÉB, Nazeer RR, Askenasy I, Mancini L, Ho PM, Sivarajan GAC, Swain JEV, Welch M. The past, present and future of polymicrobial infection research: Modelling, eavesdropping, terraforming and other stories. Adv Microb Physiol 2024; 85:259-323. [PMID: 39059822 DOI: 10.1016/bs.ampbs.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Over the last two centuries, great advances have been made in microbiology as a discipline. Much of this progress has come about as a consequence of studying the growth and physiology of individual microbial species in well-defined laboratory media; so-called "axenic growth". However, in the real world, microbes rarely live in such "splendid isolation" (to paraphrase Foster) and more often-than-not, share the niche with a plethora of co-habitants. The resulting interactions between species (and even between kingdoms) are only very poorly understood, both on a theoretical and experimental level. Nevertheless, the last few years have seen significant progress, and in this review, we assess the importance of polymicrobial infections, and show how improved experimental traction is advancing our understanding of these. A particular focus is on developments that are allowing us to capture the key features of polymicrobial infection scenarios, especially as those associated with the human airways (both healthy and diseased).
Collapse
Affiliation(s)
| | | | - Isabel Askenasy
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | - Leonardo Mancini
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | - Pok-Man Ho
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | | | - Jemima E V Swain
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | - Martin Welch
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom.
| |
Collapse
|
26
|
Choi SY, Chung IY, Bae HW, Cho YH. Autolysis of Pseudomonas aeruginosa Quorum-Sensing Mutant Is Suppressed by Staphylococcus aureus through Iron-Dependent Metabolism. J Microbiol Biotechnol 2024; 34:795-803. [PMID: 38303126 DOI: 10.4014/jmb.2312.12028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/03/2024]
Abstract
Microorganisms usually coexist as a multifaceted polymicrobial community in the natural habitats and at mucosal sites of the human body. Two opportunistic human pathogens, Pseudomonas aeruginosa and Staphylococcus aureus commonly coexist in the bacterial infections for hospitalized and/or immunocompromised patients. Here, we observed that autolysis of the P. aeruginosa quorum-sensing (QS) mutant (lasRmvfR) was suppressed by the presence of the S. aureus cells in vitro. The QS mutant still displayed killing against S. aureus cells, suggesting the link between the S. aureus-killing activity and the autolysis suppression. Independent screens of the P. aeruginosa transposon mutants defective in the S. aureus-killing and the S. aureus transposon mutants devoid of the autolysis suppression revealed the genetic link between both phenotypes, suggesting that the iron-dependent metabolism involving S. aureus exoproteins might be central to both phenotypes. The autolysis was suppressed by iron treatment as well. These results suggest that the interaction between P. aeruginosa and S. aureus might be governed by mechanisms that necessitate the QS circuitry as well as the metabolism involving the extracellular iron resources during the polymicrobial infections in the human airway.
Collapse
Affiliation(s)
- Shin-Yae Choi
- Program of Biopharmaceutical Science and Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do 13488, Republic of Korea
| | - In-Young Chung
- Program of Biopharmaceutical Science and Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do 13488, Republic of Korea
| | - Hee-Won Bae
- Program of Biopharmaceutical Science and Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do 13488, Republic of Korea
| | - You-Hee Cho
- Program of Biopharmaceutical Science and Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do 13488, Republic of Korea
| |
Collapse
|
27
|
Weaver AA, Jia J, Cutri AR, Madukoma CS, Vaerewyck CM, Bohn PW, Shrout JD. Alkyl quinolones mediate heterogeneous colony biofilm architecture that improves community-level survival. J Bacteriol 2024; 206:e0009524. [PMID: 38564677 PMCID: PMC11025328 DOI: 10.1128/jb.00095-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
Bacterial communities exhibit complex self-organization that contributes to their survival. To better understand the molecules that contribute to transforming a small number of cells into a heterogeneous surface biofilm community, we studied acellular aggregates, structures seen by light microscopy in Pseudomonas aeruginosa colony biofilms using light microscopy and chemical imaging. These structures differ from cellular aggregates, cohesive clusters of cells important for biofilm formation, in that they are visually distinct from cells using light microscopy and are reliant on metabolites for assembly. To investigate how these structures benefit a biofilm community we characterized three recurrent types of acellular aggregates with distinct geometries that were each abundant in specific areas of these biofilms. Alkyl quinolones (AQs) were essential for the formation of all aggregate types with AQ signatures outside the aggregates below the limit of detection. These acellular aggregates spatially sequester AQs and differentiate the biofilm space. However, the three types of aggregates showed differing properties in their size, associated cell death, and lipid content. The largest aggregate type co-localized with spatially confined cell death that was not mediated by Pf4 bacteriophage. Biofilms lacking AQs were absent of localized cell death but exhibited increased, homogeneously distributed cell death. Thus, these AQ-rich aggregates regulate metabolite accessibility, differentiate regions of the biofilm, and promote survival in biofilms.IMPORTANCEPseudomonas aeruginosa is an opportunistic pathogen with the ability to cause infection in the immune-compromised. It is well established that P. aeruginosa biofilms exhibit resilience that includes decreased susceptibility to antimicrobial treatment. This work examines the self-assembled heterogeneity in biofilm communities studying acellular aggregates, regions of condensed matter requiring alkyl quinolones (AQs). AQs are important to both virulence and biofilm formation. Aggregate structures described here spatially regulate the accessibility of these AQs, differentiate regions of the biofilm community, and despite their association with autolysis, correlate with improved P. aeruginosa colony biofilm survival.
Collapse
Affiliation(s)
- Abigail A. Weaver
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Jin Jia
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Allison R. Cutri
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Chinedu S. Madukoma
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Catherine M. Vaerewyck
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Paul W. Bohn
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, USA
| | - Joshua D. Shrout
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
28
|
Duckett M, Taylor MN, Bowman C, Vega NM. Parallel evolution of alternate morphotypes of Chryseobacterium gleum during experimental evolution with Caenorhabditis elegans. FEMS Microbiol Ecol 2024; 100:fiae039. [PMID: 38549432 PMCID: PMC11004935 DOI: 10.1093/femsec/fiae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/05/2024] [Accepted: 03/27/2024] [Indexed: 04/11/2024] Open
Abstract
Microbial evolution within polymicrobial communities is a complex process. Here, we report within-species diversification within multispecies microbial communities during experimental evolution with the nematode Caenorhabditis elegans. We describe morphological diversity in the target species Chryseobacterium gleum, which developed a novel colony morphotype in a small number of replicate communities. Alternate morphotypes coexisted with original morphotypes in communities, as well as in single-species experiments using evolved isolates. We found that the original and alternate morphotypes differed in motility and in spatial expansion in the presence of C. elegans. This study provides insight into the emergence and maintenance of intraspecies diversity in the context of microbial communities.
Collapse
Affiliation(s)
- Marissa Duckett
- Department of Biology, Emory University, 1510 Clifton Road NE #2006, Atlanta, GA 30322, United States
| | - Megan N Taylor
- Department of Biology, Emory University, 1510 Clifton Road NE #2006, Atlanta, GA 30322, United States
| | - Claire Bowman
- Department of Biology, Emory University, 1510 Clifton Road NE #2006, Atlanta, GA 30322, United States
| | - Nic M Vega
- Department of Biology, Emory University, 1510 Clifton Road NE #2006, Atlanta, GA 30322, United States
- Department of Physics, Emory University, 400 Dowman Dr, Atlanta, GA 30322, United States
| |
Collapse
|
29
|
Alexander AM, Luu JM, Raghuram V, Bottacin G, van Vliet S, Read TD, Goldberg JB. Experimentally evolved Staphylococcus aureus shows increased survival in the presence of Pseudomonas aeruginosa by acquiring mutations in the amino acid transporter, GltT. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001445. [PMID: 38426877 PMCID: PMC10999751 DOI: 10.1099/mic.0.001445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
When cultured together under standard laboratory conditions Pseudomonas aeruginosa has been shown to be an effective inhibitor of Staphylococcus aureus. However, P. aeruginosa and S. aureus are commonly observed in coinfections of individuals with cystic fibrosis (CF) and in chronic wounds. Previous work from our group revealed that S. aureus isolates from CF infections are able to persist in the presence of P. aeruginosa strain PAO1 with a range of tolerances with some isolates being eliminated entirely and others maintaining large populations. In this study, we designed a serial transfer, evolution experiment to identify mutations that allow S. aureus to survive in the presence of P. aeruginosa. Using S. aureus USA300 JE2 as our ancestral strain, populations of S. aureus were repeatedly cocultured with fresh P. aeruginosa PAO1. After eight coculture periods, S. aureus populations that survived better in the presence of PAO1 were observed. We found two independent mutations in the highly conserved S. aureus aspartate transporter, gltT, that were unique to evolved P. aeruginosa-tolerant isolates. Subsequent phenotypic testing demonstrated that gltT mutants have reduced uptake of glutamate and outcompeted wild-type S. aureus when glutamate was absent from chemically defined media. These findings together demonstrate that the presence of P. aeruginosa exerts selective pressure on S. aureus to alter its uptake and metabolism of key amino acids when the two are cultured together.
Collapse
Affiliation(s)
- Ashley M. Alexander
- Population Biology, Ecology, and Evolution Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
- Division of Infectious Diseases and Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Justin M. Luu
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Vishnu Raghuram
- Division of Infectious Diseases and Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Giulia Bottacin
- Biozentrum, University of Basel, Spitalstrasse 41,4056 Basel, Switzerland
| | - Simon van Vliet
- Biozentrum, University of Basel, Spitalstrasse 41,4056 Basel, Switzerland
- Department of Fundamental Microbiology, University of Lausanne, Quartier Unil-Sorge, 1015 Lausanne, Switzerland
| | - Timothy D. Read
- Division of Infectious Diseases and Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Joanna B. Goldberg
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
30
|
Liu Y, McQuillen EA, Rana PSJB, Gloag ES, Parsek MR, Wozniak DJ. A bacterial pigment provides cross-species protection from H 2O 2- and neutrophil-mediated killing. Proc Natl Acad Sci U S A 2024; 121:e2312334121. [PMID: 38170744 PMCID: PMC10786307 DOI: 10.1073/pnas.2312334121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
Bacterial infections are often polymicrobial. Pseudomonas aeruginosa and Staphylococcus aureus cause chronic co-infections, which are more problematic than mono-species infections. Understanding the mechanisms of their interactions is crucial for treating co-infections. Staphyloxanthin (STX), a yellow pigment synthesized by the S. aureus crt operon, promotes S. aureus resistance to oxidative stress and neutrophil-mediated killing. We found that STX production by S. aureus, either as surface-grown macrocolonies or planktonic cultures, was elevated when exposed to the P. aeruginosa exoproduct, 2-heptyl-4-hydroxyquinoline N-oxide (HQNO). This was observed with both mucoid and non-mucoid P. aeruginosa strains. The induction phenotype was found in a majority of P. aeruginosa and S. aureus clinical isolates examined. When subjected to hydrogen peroxide or human neutrophils, P. aeruginosa survival was significantly higher when mixed with wild-type (WT) S. aureus, compared to P. aeruginosa alone or with an S. aureus crt mutant deficient in STX production. In a murine wound model, co-infection with WT S. aureus, but not the STX-deficient mutant, enhanced P. aeruginosa burden and disease compared to mono-infection. In conclusion, we identified a role for P. aeruginosa HQNO mediating polymicrobial interactions with S. aureus by inducing STX production, which consequently promotes resistance to the innate immune effectors H2O2 and neutrophils. These results further our understanding of how different bacterial species cooperatively cause co-infections.
Collapse
Affiliation(s)
- Yiwei Liu
- Department of Microbiology, Ohio State University, Columbus, OH43210
- Department of Microbial Infection and Immunity, Ohio State University College of Medicine, Columbus, OH43210
| | - Eleanor A. McQuillen
- Department of Health and Rehabilitation Sciences, Ohio State University College of Medicine, Columbus, OH43210
| | - Pranav S. J. B. Rana
- Department of Microbiology, Ohio State University, Columbus, OH43210
- Department of Microbial Infection and Immunity, Ohio State University College of Medicine, Columbus, OH43210
| | - Erin S. Gloag
- Department of Microbial Infection and Immunity, Ohio State University College of Medicine, Columbus, OH43210
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA24060
| | - Matthew R. Parsek
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA98195
| | - Daniel J. Wozniak
- Department of Microbiology, Ohio State University, Columbus, OH43210
- Department of Microbial Infection and Immunity, Ohio State University College of Medicine, Columbus, OH43210
| |
Collapse
|
31
|
Akturk E, Melo LD, Oliveira H, Crabbé A, Coenye T, Azeredo J. Combining phages and antibiotic to enhance antibiofilm efficacy against an in vitro dual species wound biofilm. Biofilm 2023; 6:100147. [PMID: 37662851 PMCID: PMC10474582 DOI: 10.1016/j.bioflm.2023.100147] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023] Open
Abstract
Chronic wound management is extremely challenging because of the persistence of biofilm-forming pathogens, such as Pseudomonas aeruginosa and Staphylococcus aureus, which are the prevailing bacterial species that co-infect chronic wounds. Phage therapy has gained an increased interest to treat biofilm-associated infections, namely when combined with antibiotics. Here, we tested the effect of gentamicin as a co-adjuvant of phages in a dual species-biofilm wound model formed on artificial dermis. The biofilm-killing capacity of the tested treatments was significantly increased when phages were combined with gentamicin and applied multiple times as multiple dose (three doses, every 8 h). Our results suggest that gentamycin is an effective adjuvant of phage therapy particularly when applied simultaneously with phages and in three consecutive doses. The multiple and simultaneous dose treatment seems to be essential to avoid bacterial resistance development to each of the antimicrobial agents.
Collapse
Affiliation(s)
- Ergun Akturk
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS – Associate Laboratory, Braga, Guimarães, Portugal
| | - Luís D.R. Melo
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS – Associate Laboratory, Braga, Guimarães, Portugal
- ESCMID Study Group for Biofilms (ESGB), Switzerland
| | - Hugo Oliveira
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS – Associate Laboratory, Braga, Guimarães, Portugal
- ESCMID Study Group for Biofilms (ESGB), Switzerland
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology (LPM), Ghent University, Ghent, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology (LPM), Ghent University, Ghent, Belgium
- ESCMID Study Group for Biofilms (ESGB), Switzerland
| | - Joana Azeredo
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS – Associate Laboratory, Braga, Guimarães, Portugal
- ESCMID Study Group for Biofilms (ESGB), Switzerland
| |
Collapse
|
32
|
Vanderpool EJ, Rumbaugh KP. Host-microbe interactions in chronic rhinosinusitis biofilms and models for investigation. Biofilm 2023; 6:100160. [PMID: 37928619 PMCID: PMC10622848 DOI: 10.1016/j.bioflm.2023.100160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 11/07/2023] Open
Abstract
Chronic rhinosinusitis (CRS) is a debilitating condition characterized by long-lasting inflammation of the paranasal sinuses. It affects a significant portion of the population, causing a considerable burden on individuals and healthcare systems. The pathogenesis of CRS is multifactorial, with bacterial infections playing a crucial role in CRS development and persistence. In recent years, the presence of biofilms has emerged as a key contributor to the chronicity of sinusitis, further complicating treatment and exacerbating symptoms. This review aims to explore the role of biofilms in CRS, focusing on the involvement of the bacterial species Staphylococcus aureus and Pseudomonas aeruginosa, their interactions in chronic infections, and model systems for studying biofilms in CRS. These species serve as an example of how microbial interplay can influence disease progression and exemplify the need for continued investigation and innovation in CRS research.
Collapse
Affiliation(s)
- Emily J. Vanderpool
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Burn Center of Research Excellence, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Kendra P. Rumbaugh
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Burn Center of Research Excellence, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
33
|
Genito CJ, Darwitz BP, Greenwald MA, Wolfgang MC, Thurlow LR. Hyperglycemia potentiates increased Staphylococcus aureus virulence and resistance to growth inhibition by Pseudomonas aeruginosa. Microbiol Spectr 2023; 11:e0229923. [PMID: 37933971 PMCID: PMC10715105 DOI: 10.1128/spectrum.02299-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/29/2023] [Indexed: 11/08/2023] Open
Abstract
IMPORTANCE Individuals with diabetes are prone to more frequent and severe infections, with many of these infections being polymicrobial. Polymicrobial infections are frequently observed in skin infections and in individuals with cystic fibrosis, as well as in indwelling device infections. Two bacteria frequently co-isolated from infections are Staphylococcus aureus and Pseudomonas aeruginosa. Several studies have examined the interactions between these microorganisms. The majority of these studies use in vitro model systems that cannot accurately replicate the microenvironment of diabetic infections. We employed a novel murine indwelling device model to examine interactions between S. aureus and P. aeruginosa. Our data show that competition between these bacteria results in reduced growth in a normal infection. In a diabetic infection, we observe increased growth of both microbes and more severe infection as both bacteria invade surrounding tissues. Our results demonstrate that diabetes changes the interaction between bacteria resulting in poor infection outcomes.
Collapse
Affiliation(s)
- Christopher J. Genito
- Division of Oral and Craniofacial Health Sciences, University of North Carolina at Chapel Hill Adams School of Dentistry, Chapel Hill, North Carolina, USA
| | - Benjamin P. Darwitz
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Matthew A. Greenwald
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
- Marsico Lung Institute, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Matthew C. Wolfgang
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
- Marsico Lung Institute, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Lance R. Thurlow
- Division of Oral and Craniofacial Health Sciences, University of North Carolina at Chapel Hill Adams School of Dentistry, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
34
|
Shah R, Jankiewicz O, Johnson C, Livingston B, Dahl JU. Pseudomonas aeruginosa kills Staphylococcus aureus in a polyphosphate-dependent manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570291. [PMID: 38106195 PMCID: PMC10723280 DOI: 10.1101/2023.12.05.570291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Due to their frequent coexistence in many polymicrobial infections, including in patients with burn or chronic wounds or cystic fibrosis, recent studies have started to investigate the mechanistic details of the interaction between the opportunistic pathogens Pseudomonas aeruginosa and Staphylococcus aureus. P. aeruginosa rapidly outcompetes S. aureus under in vitro co-cultivation conditions, which is mediated by several of P. aeruginosa's virulence factors. Here, we report that polyphosphate (polyP), an efficient stress defense system and virulence factor in P. aeruginosa, plays a role for the pathogen's ability to inhibit and kill S. aureus in a contact-independent manner. We show that P. aeruginosa cells characterized by low polyP level are less detrimental to S. aureus growth and survival while the gram-positive pathogen is significantly more compromised by the presence of P. aeruginosa cells that produce high level of polyP. We show that the polyP-dependent phenotype could be a direct effect by the biopolymer, as polyP is present in the spent media and causes significant damage to the S. aureus cell envelope. However, more likely is that polyP's effects are indirect through the regulation of one of P. aeruginosa's virulence factors, pyocyanin. We show that pyocyanin production in P. aeruginosa occurs polyP-dependent and harms S. aureus through membrane damage and the generation of reactive oxygen species, resulting in increased expression of antioxidant enzymes. In summary, our study adds a new component to the list of biomolecules that the gram-negative pathogen P. aeruginosa generates to compete with S. aureus for resources.
Collapse
Affiliation(s)
- Ritika Shah
- School of Biological Sciences, Illinois State University, Microbiology, Normal, IL, USA
| | - Olivia Jankiewicz
- School of Biological Sciences, Illinois State University, Microbiology, Normal, IL, USA
| | - Colton Johnson
- School of Biological Sciences, Illinois State University, Microbiology, Normal, IL, USA
| | - Barry Livingston
- School of Biological Sciences, Illinois State University, Microbiology, Normal, IL, USA
| | - Jan-Ulrik Dahl
- School of Biological Sciences, Illinois State University, Microbiology, Normal, IL, USA
| |
Collapse
|
35
|
Vasiljevs S, Gupta A, Baines D. Effect of glucose on growth and co-culture of Staphylococcus aureus and Pseudomonas aeruginosa in artificial sputum medium. Heliyon 2023; 9:e21469. [PMID: 37908712 PMCID: PMC10613906 DOI: 10.1016/j.heliyon.2023.e21469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/05/2023] [Accepted: 10/21/2023] [Indexed: 11/02/2023] Open
Abstract
People with cystic fibrosis-related diabetes (CFRD) suffer from chronic infections with Staphylococcus aureus and/or Pseudomonas aeruginosa. In people with CFRD, the concentration of glucose in the airway surface liquid (ASL) was shown to be elevated from 0.4 to 4 mM. The effect of glucose on bacterial growth/interactions in ASL is not well understood and here we studied the relationship between these lung pathogens in artificial sputum medium (ASM), an environment similar to ASL in vivo. S. aureus exhibited more rapid adaptation to growth in ASM than P. aeruginosa. Supplementation of ASM with glucose significantly increased the growth of S. aureus (p < 0.01, n = 5) and P. aeruginosa (p < 0.001, n = 3). ASM conditioned by the presence of S. aureus promoted growth of P. aeruginosa with less lag time compared with non-conditioned ASM, or conditioned medium that had been heated to 121 °C. Stable co-culture of S. aureus and P. aeruginosa could be established in a 50:50 mix of ASM and S. aureus-conditioned supernatant. These data indicate that glucose, in a nutrient depleted environment, can promote the growth of S. aureus and P. aeruginosa. In addition, heat labile factors present in S. aureus pre-conditioned ASM promoted the growth of P. aeruginosa. We suggest that the use of ASM allows investigation of the effects of nutrients such as glucose on common lung pathogens. ASM could be further used to understand the relationship between S. aureus and P. aeruginosa in a co-culture scenario. Our model of stable co-culture could be extrapolated to include other common lung pathogens and could be used to better understand disease progression in vitro.
Collapse
Affiliation(s)
- Stanislavs Vasiljevs
- Institute for Infection and Immunity, St George's University of London, Cranmer Terrace, Tooting, London, SW17 0RE, UK
| | - Arya Gupta
- School of Health, Leeds Beckett University, Leeds, LS1 3HE, UK
| | - Deborah Baines
- Institute for Infection and Immunity, St George's University of London, Cranmer Terrace, Tooting, London, SW17 0RE, UK
| |
Collapse
|
36
|
Niggli S, Schwyter L, Poveda L, Grossmann J, Kümmerli R. Rapid and strain-specific resistance evolution of Staphylococcus aureus against inhibitory molecules secreted by Pseudomonas aeruginosa. mBio 2023; 14:e0315322. [PMID: 37646506 PMCID: PMC10653847 DOI: 10.1128/mbio.03153-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 06/30/2023] [Indexed: 09/01/2023] Open
Abstract
IMPORTANCE Polymicrobial infections are common. In chronic infections, the different pathogens may repeatedly interact, which could spur evolutionary dynamics with pathogens adapting to one another. Here, we explore the potential of Staphylococcus aureus to adapt to its competitor Pseudomonas aeruginosa. These two pathogens frequently co-occur, and P. aeruginosa is seen as the dominant species being able to displace S. aureus. We studied three different S. aureus strains and found that all became quickly resistant to inhibitory compounds secreted by P. aeruginosa. Our experimental evolution revealed strains-specific adaptations with three main factors contributing to resistance evolution: (i) overproduction of staphyloxanthin, a molecule protecting from oxidative stress; (ii) the formation of small colony variants also protecting from oxidative stress; and (iii) alterations of membrane transporters possibly reducing toxin uptake. Our results show that species interactions can change over time potentially favoring species co-existence, which in turn could affect disease progression and treatment options.
Collapse
Affiliation(s)
- Selina Niggli
- Department of Quantitative Biomedicine, University of Zurich, Winterthurerstrasse, Zurich, Switzerland
| | - Lukas Schwyter
- Department of Quantitative Biomedicine, University of Zurich, Winterthurerstrasse, Zurich, Switzerland
| | - Lucy Poveda
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Winterthurerstrasse, Zurich, Switzerland
- Swiss Institute of Bioinformatics (SIB) Quartier Sorge-Batiment Amphipole, Lausanne, Switzerland
| | - Jonas Grossmann
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Winterthurerstrasse, Zurich, Switzerland
- Swiss Institute of Bioinformatics (SIB) Quartier Sorge-Batiment Amphipole, Lausanne, Switzerland
| | - Rolf Kümmerli
- Department of Quantitative Biomedicine, University of Zurich, Winterthurerstrasse, Zurich, Switzerland
| |
Collapse
|
37
|
Silva E, Teixeira JA, Pereira MO, Rocha CMR, Sousa AM. Evolving biofilm inhibition and eradication in clinical settings through plant-based antibiofilm agents. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:154973. [PMID: 37499434 DOI: 10.1016/j.phymed.2023.154973] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/05/2023] [Accepted: 07/15/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND After almost 100 years since evidence of biofilm mode of growth and decades of intensive investigation about their formation, regulatory pathways and mechanisms of antimicrobial tolerance, nowadays there are still no therapeutic solutions to eradicate bacterial biofilms and their biomedical related issues. PURPOSE This review intends to provide a comprehensive summary of the recent and most relevant published studies on plant-based products, or their isolated compounds with antibiofilm activity mechanisms of action or identified molecular targets against bacterial biofilms. The objective is to offer a new perspective of most recent data for clinical researchers aiming to prevent or eliminate biofilm-associated infections caused by bacterial pathogens. METHODS The search was performed considering original research articles published on PubMed, Web of Science and Scopus from 2015 to April 2023, using keywords such as "antibiofilm", "antivirulence", "phytochemicals" and "plant extracts". RESULTS Over 180 articles were considered for this review with a focus on the priority human pathogens listed by World Health Organization, including Pseudomonas aeruginosa, Staphylococcus aureus, Klebsiella pneumoniae and Escherichia coli. Inhibition and detachment or dismantling of biofilms formed by these pathogens were found using plant-based extract/products or derivative compounds. Although combination of plant-based products and antibiotics were recorded and discussed, this topic is currently poorly explored and only for a reduced number of bacterial species. CONCLUSIONS This review clearly demonstrates that plant-based products or derivative compounds may be a promising therapeutic strategy to eliminate bacterial biofilms and their associated infections. After thoroughly reviewing the vast amount of research carried out over years, it was concluded that plant-based products are mostly able to prevent biofilm formation through inhibition of quorum sensing signals, but also to disrupt mature biofilms developed by multidrug resistant bacteria targeting the biofilm extracellular polymeric substance. Flavonoids and phenolic compounds seemed the most effective against bacterial biofilms.
Collapse
Affiliation(s)
- Eduarda Silva
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - José A Teixeira
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal; LABBELS - Associate Laboratory, Guimarães, Braga, Portugal
| | - Maria Olivia Pereira
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal; LABBELS - Associate Laboratory, Guimarães, Braga, Portugal
| | - Cristina M R Rocha
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal; LABBELS - Associate Laboratory, Guimarães, Braga, Portugal
| | - Ana Margarida Sousa
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal; LABBELS - Associate Laboratory, Guimarães, Braga, Portugal.
| |
Collapse
|
38
|
Bru JL, Kasallis SJ, Chang R, Zhuo Q, Nguyen J, Pham P, Warren E, Whiteson K, Høyland-Kroghsbo NM, Limoli DH, Siryaporn A. The great divide: rhamnolipids mediate separation between P. aeruginosa and S. aureus. Front Cell Infect Microbiol 2023; 13:1245874. [PMID: 37780859 PMCID: PMC10540625 DOI: 10.3389/fcimb.2023.1245874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023] Open
Abstract
The interactions between bacterial species during infection can have significant impacts on pathogenesis. Pseudomonas aeruginosa and Staphylococcus aureus are opportunistic bacterial pathogens that can co-infect hosts and cause serious illness. The factors that dictate whether one species outcompetes the other or whether the two species coexist are not fully understood. We investigated the role of surfactants in the interactions between these two species on a surface that enables P. aeruginosa to swarm. We found that P. aeruginosa swarms are repelled by colonies of clinical S. aureus isolates, creating physical separation between the two strains. This effect was abolished in mutants of S. aureus that were defective in the production of phenol-soluble modulins (PSMs), which form amyloid fibrils around wild-type S. aureus colonies. We investigated the mechanism that establishes physical separation between the two species using Imaging of Reflected Illuminated Structures (IRIS), which is a non-invasive imaging method that tracks the flow of surfactants produced by P. aeruginosa. We found that PSMs produced by S. aureus deflected the surfactant flow, which in turn, altered the direction of P. aeruginosa swarms. These findings show that rhamnolipids mediate physical separation between P. aeruginosa and S. aureus, which could facilitate coexistence between these species. Additionally, we found that a number of molecules repelled P. aeruginosa swarms, consistent with a surfactant deflection mechanism. These include Bacillus subtilis surfactant, the fatty acids oleic acid and linoleic acid, and the synthetic lubricant polydimethylsiloxane. Lung surfactant repelled P. aeruginosa swarms and inhibited swarm expansion altogether at higher concentration. Our results suggest that surfactant interactions could have major impacts on bacteria-bacteria and bacteria-host relationships. In addition, our findings uncover a mechanism responsible for P. aeruginosa swarm development that does not rely solely on sensing but instead is based on the flow of surfactant.
Collapse
Affiliation(s)
- Jean-Louis Bru
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Summer J. Kasallis
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, United States
- Department of Physics & Astronomy, University of California, Irvine, Irvine, CA, United States
| | - Rendell Chang
- School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Quantum Zhuo
- Department of Physics & Astronomy, University of California, Irvine, Irvine, CA, United States
| | - Jacqueline Nguyen
- School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Phillip Pham
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Elizabeth Warren
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
| | - Katrine Whiteson
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, United States
| | | | - Dominique H. Limoli
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
| | - Albert Siryaporn
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, United States
- Department of Physics & Astronomy, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
39
|
Hu R, Wan L, Liu X, Lu J, Hu X, Zhang X, Zhang M. K. pneumoniae and M. smegmatis infect epithelial cells via different strategies. J Thorac Dis 2023; 15:4396-4412. [PMID: 37691650 PMCID: PMC10482649 DOI: 10.21037/jtd-23-493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/07/2023] [Indexed: 09/12/2023]
Abstract
Background As the first line of defense, epithelial cells play a vital role in the initiation and control of both innate and adaptive immunity, which participate in the development of disease. Despite its therapeutic significance, little is understood about the specific interaction between pathogenic microorganisms and lung epithelial cells. Methods In this study, we performed a head-to-head comparison of the virulence and infection mechanisms of Klebsiella pneumoniae (K. pneumoniae) and Mycobacterium smegmatis (M. smegmatis), which represent Gram-negative/positive respiratory pathogens, respectively, in lung epithelial cell models for the first time. Results Through scanning electron microscopy combined with bacterial infection experiments, we confirmed the ability of K. pneumoniae and M. smegmatis strains to form biofilm and cord factor out of the cell wall. M. smegmatis has stronger adhesion and intracellular retention ability, while K. pneumoniae is more likely to induce acute infection. These pathogens could stay and proliferate in lung epithelial cells and stimulate the secretion of specific cytokines and chemokines through a gene transcription regulator. M. smegmatis infection can promote crosstalk among epithelial cells and other immune cells in the lung from a very early stage by prompting the secretion of pro-inflammatory cytokines. Meanwhile, there were significant correlations between K. pneumonia infection and higher levels of interleukin-15 (IL-15), interleukin-1Rα (IL-1Rα), fibroblast growth factor (FGF) basic, and granulocyte colony-stimulating factor (G-CSF). At the same time, K. pneumonia infection also led to changes in the expression of cytoskeletal proteins in epithelial cells. Conclusions Our results emphasized the immunoprotection and immunomodulation of lung epithelial cells against exogenous pathogenic microorganisms, indicating that different pathogens damaged the host through different strategies and induced varying innate immune responses. At the same time, they provided important clues and key immune factors for dealing with complicated pulmonary infections.
Collapse
Affiliation(s)
- Renjing Hu
- Department of Laboratory Medicine, Jiangnan University Medical Center, Wuxi, China
| | - Lin Wan
- Department of Laboratory Medicine, Jiangnan University Medical Center, Wuxi, China
| | - Xiaoyun Liu
- Center Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jie Lu
- Department of Laboratory Medicine, Jiangnan University Medical Center, Wuxi, China
| | - Xichi Hu
- Department of Laboratory Medicine, Jiangnan University Medical Center, Wuxi, China
| | - Xiaoli Zhang
- Department of Dermatology, Jiangnan University Medical Center, Wuxi, China
| | | |
Collapse
|
40
|
Oliveira M, Cunha E, Tavares L, Serrano I. P. aeruginosa interactions with other microbes in biofilms during co-infection. AIMS Microbiol 2023; 9:612-646. [PMID: 38173971 PMCID: PMC10758579 DOI: 10.3934/microbiol.2023032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/10/2023] [Accepted: 07/26/2023] [Indexed: 01/05/2024] Open
Abstract
This review addresses the topic of biofilms, including their development and the interaction between different counterparts. There is evidence that various diseases, such as cystic fibrosis, otitis media, diabetic foot wound infections, and certain cancers, are promoted and aggravated by the presence of polymicrobial biofilms. Biofilms are composed by heterogeneous communities of microorganisms protected by a matrix of polysaccharides. The different types of interactions between microorganisms gives rise to an increased resistance to antimicrobials and to the host's defense mechanisms, with the consequent worsening of disease symptoms. Therefore, infections caused by polymicrobial biofilms affecting different human organs and systems will be discussed, as well as the role of the interactions between the gram-negative bacteria Pseudomonas aeruginosa, which is at the base of major polymicrobial infections, and other bacteria, fungi, and viruses in the establishment of human infections and diseases. Considering that polymicrobial biofilms are key to bacterial pathogenicity, it is fundamental to evaluate which microbes are involved in a certain disease to convey an appropriate and efficacious antimicrobial therapy.
Collapse
Affiliation(s)
- Manuela Oliveira
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Eva Cunha
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Luís Tavares
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Isa Serrano
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| |
Collapse
|
41
|
Mariani F, Galvan EM. Staphylococcus aureus in Polymicrobial Skinand Soft Tissue Infections: Impact of Inter-Species Interactionsin Disease Outcome. Antibiotics (Basel) 2023; 12:1164. [PMID: 37508260 PMCID: PMC10376372 DOI: 10.3390/antibiotics12071164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Polymicrobial biofilms provide a complex environment where co-infecting microorganisms can behave antagonistically, additively, or synergistically to alter the disease outcome compared to monomicrobial infections. Staphylococcus aureus skin and soft tissue infections (Sa-SSTIs) are frequently reported in healthcare and community settings, and they can also involve other bacterial and fungal microorganisms. This polymicrobial aetiology is usually found in chronic wounds, such as diabetic foot ulcers, pressure ulcers, and burn wounds, where the establishment of multi-species biofilms in chronic wounds has been extensively described. This review article explores the recent updates on the microorganisms commonly found together with S. aureus in SSTIs, such as Pseudomonas aeruginosa, Escherichia coli, Enterococcus spp., Acinetobacter baumannii, and Candida albicans, among others. The molecular mechanisms behind these polymicrobial interactions in the context of infected wounds and their impact on pathogenesis and antimicrobial susceptibility are also revised.
Collapse
Affiliation(s)
- Florencia Mariani
- Laboratorio de Patogénesis Bacteriana, Departamento de Investigaciones Bioquímicas y Farmacéuticas, Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Hidalgo 775, Buenos Aires C1405, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires A4400, Argentina
| | - Estela Maria Galvan
- Laboratorio de Patogénesis Bacteriana, Departamento de Investigaciones Bioquímicas y Farmacéuticas, Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Hidalgo 775, Buenos Aires C1405, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires A4400, Argentina
| |
Collapse
|
42
|
Millette G, Séguin DL, Isabelle C, Chamberland S, Lucier JF, Rodrigue S, Cantin AM, Malouin F. Staphylococcus aureus Small-Colony Variants from Airways of Adult Cystic Fibrosis Patients as Precursors of Adaptive Antibiotic-Resistant Mutations. Antibiotics (Basel) 2023; 12:1069. [PMID: 37370388 PMCID: PMC10294822 DOI: 10.3390/antibiotics12061069] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Prototypic Staphylococcus aureus and their small-colony variants (SCVs) are predominant in cystic fibrosis (CF), but the interdependence of these phenotypes is poorly understood. We characterized S. aureus isolates from adult CF patients over several years. Of 18 S. aureus-positive patients (58%), 13 (72%) were positive for SCVs. Characterization included genotyping, SCCmec types, auxotrophy, biofilm production, antibiotic susceptibilities and tolerance, and resistance acquisition rates. Whole-genome sequencing revealed that several patients were colonized with prototypical and SCV-related clones. Some clonal pairs showed acquisition of aminoglycoside resistance that was not explained by aminoglycoside-modifying enzymes, suggesting a mutation-based process. The characteristics of SCVs that could play a role in resistance acquisition were thus investigated further. For instance, SCV isolates produced more biofilm (p < 0.05) and showed a higher survival rate upon exposure to ciprofloxacin and vancomycin compared to their prototypic associated clones. SCVs also developed spontaneous rifampicin resistance mutations at a higher frequency. Accordingly, a laboratory-derived SCV (ΔhemB) acquired resistance to ciprofloxacin and gentamicin faster than its parent counterpart after serial passages in the presence of sub-inhibitory concentrations of antibiotics. These results suggest a role for SCVs in the establishment of persistent antibiotic-resistant clones in adult CF patients.
Collapse
Affiliation(s)
- Guillaume Millette
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (G.M.); (D.L.S.); (C.I.); (S.C.); (J.-F.L.); (S.R.)
| | - David Lalonde Séguin
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (G.M.); (D.L.S.); (C.I.); (S.C.); (J.-F.L.); (S.R.)
| | - Charles Isabelle
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (G.M.); (D.L.S.); (C.I.); (S.C.); (J.-F.L.); (S.R.)
| | - Suzanne Chamberland
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (G.M.); (D.L.S.); (C.I.); (S.C.); (J.-F.L.); (S.R.)
| | - Jean-François Lucier
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (G.M.); (D.L.S.); (C.I.); (S.C.); (J.-F.L.); (S.R.)
| | - Sébastien Rodrigue
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (G.M.); (D.L.S.); (C.I.); (S.C.); (J.-F.L.); (S.R.)
| | - André M. Cantin
- Service de Pneumologie, Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - François Malouin
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (G.M.); (D.L.S.); (C.I.); (S.C.); (J.-F.L.); (S.R.)
| |
Collapse
|
43
|
Lee J, Mashayamombe M, Walsh TP, Kuang BKP, Pena GN, Vreugde S, Cooksley C, Carda-Diéguez M, Mira A, Jesudason D, Fitridge R, Zilm PS, Dawson J, Kidd SP. The bacteriology of diabetic foot ulcers and infections and incidence of Staphylococcus aureus Small Colony Variants. J Med Microbiol 2023; 72. [PMID: 37326607 DOI: 10.1099/jmm.0.001716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
Introduction. Uninfected diabetes-related foot ulcer (DFU) progression to diabetes-related foot infection (DFI) is a prevalent complication for patients with diabetes. DFI often progresses to osteomyelitis (DFI-OM). Active (growing) Staphylococcus aureus is the most common pathogen in these infections. There is relapse in 40-60 % of cases even when the initial treatment at the DFI stage apparently clears infection.Hypothesis. S. aureus adopts the quasi-dormant Small Colony Variant (SCV) state during DFU and consequently infection, and when present in DFI cases also permits survival in non-diseased tissues as a reservoir to cause relapse.Aim. The aim of this study was to investigate the bacterial factors that facilitate persistent infections.Methodology. People with diabetes were recruited from two tertiary hospitals. Clinical and bacterial data was taken from 153 patients with diabetes (51 from a control group with no ulcer or infection) and samples taken from 102 patients with foot complications to identify bacterial species and their variant colony types, and then compare the bacterial composition in those with uninfected DFU, DFI and those with DFI-OM, of whom samples were taken both from wounds (DFI-OM/W) and bone (DFI-OM/B). Intracellular, extracellular and proximal 'healthy' bone were examined.Results. S. aureus was identified as the most prevalent pathogen in diabetes-related foot pathologies (25 % of all samples). For patients where disease progressed from DFU to DFI-OM, S. aureus was isolated as a diversity of colony types, with increasing numbers of SCVs present. Intracellular (bone) SCVs were found, and even within uninfected bone SCVs were present. Wounds of 24 % of patients with uninfected DFU contained active S. aureus. All patients with a DFI with a wound but not bone infection had previously had S. aureus isolated from an infection (including amputation), representing a relapse.Conclusion. The presence of S. aureus SCVs in recalcitrant pathologies highlights their importance in persistent infections through the colonization of reservoirs, such as bone. The survival of these cells in intracellular bone is an important clinical finding supporting in vitro data. Also, there seems to be a link between the genetics of S. aureus found in deeper infections compared to those only found in DFU.
Collapse
Affiliation(s)
- James Lee
- Department of Molecular and Biomedical Sciences, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Research Centre for Infectious Disease (RCID), University of Adelaide, Adelaide, South Australia, Australia
- Australian Centre for Antimicrobial Resistance Ecology (ACARE), University of Adelaide, Adelaide, South Australia, Australia
| | - Matipaishe Mashayamombe
- Department of Vascular Surgery, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Tom P Walsh
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology (QUT), Kelvin Grove, Queensland 4059, Australia
| | - Beatrice K P Kuang
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology (QUT), Kelvin Grove, Queensland 4059, Australia
- Discipline of Surgery, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Guilherme N Pena
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology (QUT), Kelvin Grove, Queensland 4059, Australia
- Discipline of Surgery, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Sarah Vreugde
- Basil Hetzel Institute for Translational Health Research, Queen Elizabeth Hospital, Adelaide, South Australia, Australia
| | - Clare Cooksley
- Basil Hetzel Institute for Translational Health Research, Queen Elizabeth Hospital, Adelaide, South Australia, Australia
| | - Miguel Carda-Diéguez
- Department of Health and Genomics, Center for Advanced Research in Public Health, FISABIO Institute, Valencia, Province of Valencia, Spain
| | - Alex Mira
- Department of Health and Genomics, Center for Advanced Research in Public Health, FISABIO Institute, Valencia, Province of Valencia, Spain
| | - David Jesudason
- Endocrinology Unit, Queen Elizabeth Hospital, Adelaide, South Australia, Australia
| | - Robert Fitridge
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology (QUT), Kelvin Grove, Queensland 4059, Australia
- Discipline of Surgery, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Peter S Zilm
- Adelaide Dental School, University of Adelaide, Adelaide, South Australia, Australia
| | - Joseph Dawson
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology (QUT), Kelvin Grove, Queensland 4059, Australia
- Discipline of Surgery, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Stephen P Kidd
- Department of Molecular and Biomedical Sciences, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Research Centre for Infectious Disease (RCID), University of Adelaide, Adelaide, South Australia, Australia
- Australian Centre for Antimicrobial Resistance Ecology (ACARE), University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
44
|
Al-Wrafy FA, Alariqi R, Noman EA, Al-Gheethi AA, Mutahar M. Pseudomonas aeruginosa behaviour in polymicrobial communities: The competitive and cooperative interactions conducting to the exacerbation of infections. Microbiol Res 2023; 268:127298. [PMID: 36610273 DOI: 10.1016/j.micres.2022.127298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023]
Abstract
Pseudomonas aeruginosa is mostly associated with persistent infections and antibiotic resistance as a result of several factors, biofilms one of them. Microorganisms within the polymicrobial biofilm (PMB) reveal various transcriptional profiles and affect each other which might influence their pathogenicity and antibiotic tolerance and subsequent worsening of the biofilm infection. P. aeruginosa within PMB exhibits various behaviours toward other microorganisms, which may enhance or repress the virulence of these microbes. Microbial neighbours, in turn, may affect P. aeruginosa's virulence either positively or negatively. Such interactions among microorganisms lead to emerging persistent and antibiotic-resistant infections. This review highlights the relationship between P. aeruginosa and its microbial neighbours within the PMB in an attempt to better understand the mechanisms of polymicrobial interaction and the correlation between increased exacerbations of infection and the P. aeruginosa-microbe interaction. Researching in the literature that was carried out in vitro either in co-cultures or in the models to simulate the environment at the site of infection suggested that the interplay between P. aeruginosa and other microorganisms is one main reason for the worsening of the infection and which in turn requires a treatment approach different from that followed with P. aeruginosa mono-infection.
Collapse
Affiliation(s)
- Fairoz Ali Al-Wrafy
- Department of Applied Microbiology, Faculty of Applied Science, Taiz University, 6350 Taiz, Yemen.
| | - Reem Alariqi
- Microbiology Department, Faculty of Medicine and Health Sciences, Sana'a University, 1247 Sana'a, Yemen
| | - Efaq Ali Noman
- Department of Applied Microbiology, Faculty of Applied Science, Taiz University, 6350 Taiz, Yemen
| | - Adel Ali Al-Gheethi
- Civil Department, Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia, 86400 Batu Pahat, Johor, Malaysia
| | - Mahdi Mutahar
- Faculty of Science & Health, University of Portsmouth Dental Academy, PO1 2QG Portsmouth, United Kingdom
| |
Collapse
|
45
|
Selegato DM, Castro-Gamboa I. Enhancing chemical and biological diversity by co-cultivation. Front Microbiol 2023; 14:1117559. [PMID: 36819067 PMCID: PMC9928954 DOI: 10.3389/fmicb.2023.1117559] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/06/2023] [Indexed: 02/04/2023] Open
Abstract
In natural product research, microbial metabolites have tremendous potential to provide new therapeutic agents since extremely diverse chemical structures can be found in the nearly infinite microbial population. Conventionally, these specialized metabolites are screened by single-strain cultures. However, owing to the lack of biotic and abiotic interactions in monocultures, the growth conditions are significantly different from those encountered in a natural environment and result in less diversity and the frequent re-isolation of known compounds. In the last decade, several methods have been developed to eventually understand the physiological conditions under which cryptic microbial genes are activated in an attempt to stimulate their biosynthesis and elicit the production of hitherto unexpressed chemical diversity. Among those, co-cultivation is one of the most efficient ways to induce silenced pathways, mimicking the competitive microbial environment for the production and holistic regulation of metabolites, and has become a golden methodology for metabolome expansion. It does not require previous knowledge of the signaling mechanism and genome nor any special equipment for cultivation and data interpretation. Several reviews have shown the potential of co-cultivation to produce new biologically active leads. However, only a few studies have detailed experimental, analytical, and microbiological strategies for efficiently inducing bioactive molecules by co-culture. Therefore, we reviewed studies applying co-culture to induce secondary metabolite pathways to provide insights into experimental variables compatible with high-throughput analytical procedures. Mixed-fermentation publications from 1978 to 2022 were assessed regarding types of co-culture set-ups, metabolic induction, and interaction effects.
Collapse
|
46
|
Wang GZ, Warren EA, Haas AL, Peña AS, Kiedrowski MR, Lomenick B, Chou TF, Bomberger JM, Tirrell DA, Limoli DH. Staphylococcal secreted cytotoxins are competition sensing signals for Pseudomonas aeruginosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.29.526047. [PMID: 36747623 PMCID: PMC9900984 DOI: 10.1101/2023.01.29.526047] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Coinfection with two notorious opportunistic pathogens, the Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus , dominates chronic pulmonary infections. While coinfection is associated with poor patient outcomes, the interspecies interactions responsible for such decline remain unknown. Here, we dissected molecular mechanisms of interspecies sensing between P. aeruginosa and S. aureus . We discovered that P. aeruginosa senses S. aureus secreted peptides and, counterintuitively, moves towards these toxins. P. aeruginosa tolerates such a strategy through "competition sensing", whereby it preempts imminent danger/competition by arming cells with type six secretion (T6S) and iron acquisition systems. Intriguingly, while T6S is predominantly described as weaponry targeting Gram-negative and eukaryotic cells, we find that T6S is essential for full P. aeruginosa competition with S. aureus , a previously undescribed role for T6S. Importantly, competition sensing was activated during coinfection of bronchial epithelia, including T6S islands targeting human cells. This study reveals critical insight into both interspecies competition and how antagonism may cause collateral damage to the host environment.
Collapse
|
47
|
Liu Y, McQuillen EA, Rana PSJB, Gloag ES, Wozniak DJ. Cross-Species Protection to Innate Immunity Mediated by A Bacterial Pigment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.15.524085. [PMID: 36711503 PMCID: PMC9882196 DOI: 10.1101/2023.01.15.524085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Bacterial infections are often polymicrobial. Pseudomonas aeruginosa and Staphylococcus aureus cause chronic co-infections, which are more problematic than mono-species infections. We found that the production of S. aureus membrane-bound pigment staphyloxanthin (STX), was induced by the P. aeruginosa exoproduct, 2-heptyl-4-hydroxyquinoline N-oxide (HQNO). The induction phenotype was conserved in P. aeruginosa and S. aureus clinical isolates examined. When subjected to hydrogen peroxide or human neutrophils, P. aeruginosa survival was significantly higher when mixed with wild-type (WT) S. aureus , compared to a mutant deficient in STX production or P. aeruginosa alone. In a murine wound model, co-infection with WT S. aureus , but not the STX-deficient mutant, enhanced P. aeruginosa burden and disease compared to mono-infection. In conclusion, we discovered a novel role for P. aeruginosa HQNO mediating polymicrobial interactions with S. aureus by inducing STX production, which consequently promotes resistance of both pathogens to innate immune effectors. These results further our understanding of how different bacterial species cooperatively cause co-infections.
Collapse
|
48
|
Khalid A, Cookson AR, Whitworth DE, Beeton ML, Robins LI, Maddocks SE. A Synthetic Polymicrobial Community Biofilm Model Demonstrates Spatial Partitioning, Tolerance to Antimicrobial Treatment, Reduced Metabolism, and Small Colony Variants Typical of Chronic Wound Biofilms. Pathogens 2023; 12:pathogens12010118. [PMID: 36678466 PMCID: PMC9862141 DOI: 10.3390/pathogens12010118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
Understanding chronic wound infection is key for successful treatment and requires accurate laboratory models. We describe a modified biofilm flow device that effectively mimics the chronic wound environment, including simulated wound fluid, a collagen-based 3D biofilm matrix, and a five-species mixture of clinically relevant bacteria (Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, Enterococcus faecalis, and Citrobacter freundii). Mixed biofilms were cultured for between 3 and 14 days with consistent numbers of bacteria that exhibited reduced metabolic activity, which increased with a high dose of glucose. S. aureus was recovered from biofilms as a small colony variant, but as a normal colony variant if P. aeruginosa was excluded from the system. Bacteria within the biofilm did not co-aggregate but formed discrete, species-specific clusters. Biofilms demonstrated differential tolerance to the topical antimicrobials Neosporin and HOCl, consistent with protection due to the biofilm lifestyle. The characteristics exhibited within this model match those of real-world wound biofilms, reflecting the clinical scenario and yielding a powerful in vitro tool that is versatile, inexpensive, and pivotal for understanding chronic wound infection.
Collapse
Affiliation(s)
- Ammara Khalid
- Microbiology and Infection Research Group, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
| | - Alan R. Cookson
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DD, UK
| | - David E. Whitworth
- Department of Life Sciences, Aberystwyth University, Aberystwyth SY23 3DD, UK
| | - Michael L. Beeton
- Microbiology and Infection Research Group, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
| | - Lori I. Robins
- Department of Physical Sciences, University of Washington, Bothell, WA 98011-8246, USA
| | - Sarah E. Maddocks
- Microbiology and Infection Research Group, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
- Correspondence:
| |
Collapse
|
49
|
Liu CC, Lin MH. Hitchhiking motility of Staphylococcus aureus involves the interaction between its wall teichoic acids and lipopolysaccharide of Pseudomonas aeruginosa. Front Microbiol 2023; 13:1068251. [PMID: 36687638 PMCID: PMC9849799 DOI: 10.3389/fmicb.2022.1068251] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/13/2022] [Indexed: 01/07/2023] Open
Abstract
Staphylococcus aureus, which lacks pili and flagella, is nonmotile. However, it hitchhikes motile bacteria, such as Pseudomonas aeruginosa, to migrate in the environment. This study demonstrated that the hitchhiking motility of S. aureus SA113 was reduced after the tagO, which encodes an enzyme for wall teichoic acids (WTA) synthesis, was deleted. The hitchhiking motility was restored after the mutation was complemented by transforming a plasmid expressing TagO into the mutant. We also showed that adding purified lipopolysaccharide (LPS) to a culture that contains S. aureus SA113 and P. aeruginosa PAO1, reduced the movement of S. aureus, showing that WTA and LPS are involved in the hitchhiking motility of S. aureus. This study also found that P. aeruginosa promoted the movement of S. aureus in the digestive tract of Caenorhabditis elegans and in mice. In conclusion, this study reveals how S. aureus hitchhikes P. aeruginosa for translocation in an ecosystem. The results from this study improve our understanding on how a nonmotile pathogen moves in the environment and spreads in animals.
Collapse
Affiliation(s)
- Chao-Chin Liu
- 1Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Mei-Hui Lin
- 1Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan,2Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan,3Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan,*Correspondence: Mei-Hui Lin, ✉
| |
Collapse
|
50
|
Ishiai T, Subsomwong P, Narita K, Kawai N, Teng W, Suzuki S, Sukchawalit R, Nakane A, Asano K. Extracellular vesicles of Pseudomonas aeruginosa downregulate pyruvate fermentation enzymes and inhibit the initial growth of Staphylococcus aureus. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 4:100190. [PMID: 37131486 PMCID: PMC10149184 DOI: 10.1016/j.crmicr.2023.100190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
Staphylococcus aureus and Pseudomonas aeruginosa are well-known opportunistic pathogens that frequently coexist in chronic wounds and cystic fibrosis. The exoproducts of P. aeruginosa have been shown to affect the growth and pathogenicity of S. aureus, but the detailed mechanisms are not well understood. In this study, we investigated the effect of extracellular vesicles from P. aeruginosa (PaEVs) on the growth of S. aureus. We found that PaEVs inhibited the S. aureus growth independently of iron chelation and showed no bactericidal activity. This growth inhibitory effect was also observed with methicillin-resistant S. aureus but not with Acinetobacter baumannii, Enterococcus faecalis, S. Typhimurium, E. coli, Listeria monocytogenes, or Candida albicans, suggesting that the growth inhibitory effect of PaEVs is highly specific for S. aureus. To better understand the detailed mechanism, the difference in protein production of S. aureus between PaEV-treated and non-treated groups was further analyzed. The results revealed that lactate dehydrogenase 2 and formate acetyltransferase enzymes in the pyruvate fermentation pathway were significantly reduced after PaEV treatment. Likewise, the expression of ldh2 gene for lactate dehydrogenase 2 and pflB gene for formate acetyltransferase in S. aureus was reduced by PaEV treatment. In addition, this inhibitory effect of PaEVs was abolished by supplementation with pyruvate or oxygen. These results suggest that PaEVs inhibit the growth of S. aureus by suppressing the pyruvate fermentation pathway. This study reported a mechanism of PaEVs in inhibiting S. aureus growth which may be important for better management of S. aureus and P. aeruginosa co-infections.
Collapse
Affiliation(s)
- Takahito Ishiai
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Phawinee Subsomwong
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Kouj Narita
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
- Institute for Animal Experimentation, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Noriaki Kawai
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Wei Teng
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Sachio Suzuki
- Department of Respiratory Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Rojana Sukchawalit
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand
| | - Akio Nakane
- Department of Biopolymer and Health Science, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 306-8562, Japan
| | - Krisana Asano
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
- Department of Biopolymer and Health Science, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 306-8562, Japan
- Corresponding author at: Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan.
| |
Collapse
|