1
|
Broer T, Tsintolas N, Hammond S, Helfer A, Lee J, Purkey K, DeLuca S, Khodabukus A, Bursac N. Human Myobundle Platform for Studying the Role of Notch Signaling in Satellite Cell Phenotype and Function. Adv Healthc Mater 2025; 14:e2404695. [PMID: 40123310 DOI: 10.1002/adhm.202404695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 02/27/2025] [Indexed: 03/25/2025]
Abstract
Notch signaling plays a pivotal role in regulating satellite cell (SC) behavior during skeletal muscle development, homeostasis, and repair. While well-characterized in mouse models, the impact of Notch signaling in human muscle tissues remains largely underexplored. Here, a 3D tissue-engineered model of human skeletal muscle ("myobundles") is utilized as an in vitro platform for temporal control and studies of Notch singaling. Myofiber-specific overexpression of the Notch ligand, DLL1, early in myobundle differentiation increases the abundance of 3D SCs and shifts their phenotype to a more quiescent-like state, along with decreasing muscle mass and function. In contrast, myofiber-specific DLL1 overexpression after one week of myobundle differentiation does not affect 3D SC abundance or muscle function, but increases transcriptomic markers of SC quiescence, confirming the temporal dependence of SC activation and self-renewal on Notch signaling activity. Finally, for the first time these studies show that even after a transient, myofiber-specific upregulation of Notch signaling in myobundles, 3D SCs expanded from these tissues can re-form functional "secondary" myobundles containing an amplified SC pool. Future studies in the described human myobundle platform are expected to aid the development of novel Notch-targeted therapies for muscular dystrophies and aging.
Collapse
Affiliation(s)
- Torie Broer
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Nick Tsintolas
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Stewart Hammond
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Abbigail Helfer
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Joonbum Lee
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Karly Purkey
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Sophia DeLuca
- Department of Cell Biology, Duke University, Durham, NC, 27708, USA
| | - Alastair Khodabukus
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
2
|
Kim YE, Hann SH, Jo YW, Yoo K, Kim JH, Lee JW, Kong YY. Mll4 in skeletal muscle fibers maintains muscle stem cells. Skelet Muscle 2024; 14:35. [PMID: 39710699 DOI: 10.1186/s13395-024-00369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/06/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND Muscle stem cells (MuSCs) undergo numerous state transitions throughout life, which are critical for supporting normal muscle growth and regeneration. Epigenetic modifications in skeletal muscle play a significant role in influencing the niche and cellular states of MuSCs. Mixed-lineage leukemia 4 (Mll4) is a histone methyltransferase critical for activating the transcription of various target genes and is highly expressed in skeletal muscle. This raises the question of whether Mll4 has a regulatory function in modulating the state transitions of MuSCs, warranting further investigation. METHODS To assess if myofiber-expressed Mll4, a histone methyltransferase, contributes to the maintenance of MuSCs, we crossed MCKCre/+ or HSAMerCreMer/+ mice to Mll4f/f mice to generate myofiber-specific Mll4-deleted mice. Investigations were conducted using 8-week-old and 4-week-old MCKCre/+;Mll4f/f mice, and adult HSAMerCreMer/+;Mll4f/f mice between the ages of 3 months and 6 months. RESULTS During postnatal myogenesis, Mll4 deleted muscles were observed with increased number of cycling MuSCs that proceeded to a differentiation state, leading to MuSC deprivation. This phenomenon occurred independently of gender. When Mll4 was ablated in adult muscles using the inducible method, adult MuSCs lost their quiescence and differentiated into myoblasts, also causing the depletion of MuSCs. Such roles of Mll4 in myofibers coincided with decreased expression levels of distinct Notch ligands: Jag1 and Dll1 in pubertal and Jag2 and Dll4 in adult muscles. CONCLUSIONS Our study suggests that Mll4 is crucial for maintaining MuSCs in both pubertal and adult muscles, which may be accomplished through the modulation of distinct Notch ligand expressions in myofibers. These findings offer new insights into the role of myofiber-expressed Mll4 as a master regulator of MuSCs, highlighting its significance not only in developmental myogenesis but also in adult muscle, irrespective of sex.
Collapse
Affiliation(s)
- Yea-Eun Kim
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sang-Hyeon Hann
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young-Woo Jo
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyusang Yoo
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ji-Hoon Kim
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jae W Lee
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 142604, USA
| | - Young-Yun Kong
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
3
|
Kim YE, Hann SH, Jo YW, Yoo K, Kim JH, Lee JW, Kong YY. Mll4 in Skeletal Muscle Fiber Maintains Muscle Stem Cells by Regulating Notch Ligands. RESEARCH SQUARE 2024:rs.3.rs-5413133. [PMID: 39649158 PMCID: PMC11623770 DOI: 10.21203/rs.3.rs-5413133/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Background Muscle stem cells (MuSCs) undergo numerous state transitions throughout life, which are critical for supporting normal muscle growth and regeneration. Therefore, it is crucial to investigate the regulatory mechanisms governing the transition of MuSC states across different postnatal developmental stages. Methods To assess if myofiber-expressed Mll4 contributes to the maintenance of MuSCs, we crossed MCK Cre/+ or HSA MerCreMer/+ mice to Mll4 f/f mice to generate myofiber-specific Mll4-deleted mice. Investigations were conducted using 8-week-old and 4-week-old MCK Cre/+ ;Mll4 f/f mice Investigations were conducted using 8-week-old and 4-week-old HSA Cre/+ ;Mll4 f/f mice were utilized. Results During postnatal myogenesis, Mll4 deleted muscles were observed with increased number of cycling MuSCs that proceeded to a differentiation state, leading to MuSC deprivation. This phenomenon occurred independently of gender. When Mll4 was ablated in adult muscles using the inducible method, adult MuSCs lost their quiescence and differentiated into myoblasts, also causing the depletion of MuSCs. Such roles of Mll4 in myofibers coincided with decreased expression levels of distinct Notch ligands: Jag1 and Dll1 in pubertal and Jag2 and Dll4 in adult muscles. Conclusions Our study suggests that Mll4 is crucial for maintaining MuSCs in both pubertal and adult muscles, which may be accomplished through the modulation of distinct Notch ligand expressions in myofibers. These findings offer new insights into the role of myofiber-expressed Mll4 as a master regulator of MuSCs, highlighting its significance not only in developmental myogenesis but also in adult muscle, irrespective of sex.
Collapse
|
4
|
Yang S, Xiong L, Yang G, Xiang J, Li L, Kang L, Liang Z. KLF13 restrains Dll4-muscular Notch2 axis to improve the muscle atrophy. J Cachexia Sarcopenia Muscle 2024; 15:1869-1882. [PMID: 38973459 PMCID: PMC11446702 DOI: 10.1002/jcsm.13538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/25/2024] [Accepted: 06/03/2024] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Muscle atrophy can cause muscle dysfunction and weakness. Krüppel-like factor 13 (KLF13), a central regulator of cellular energy metabolism, is highly expressed in skeletal muscles and implicated in the pathogenesis of several diseases. This study investigated the role of KLF13 in muscle atrophy, which could be a novel therapeutic target. METHODS The effects of gene knockdown and pharmacological targeting of KLF13 on skeletal muscle atrophy were investigated using cell-based and animal models. Clofoctol, an antibiotic and KLF13 agonist, was also investigated as a candidate for repurposing. The mechanisms related to skeletal muscle atrophy were assessed by measuring the expression levels and activation statuses of key regulatory pathways and validated using gene knockdown and RNA sequencing. RESULTS In a dexamethasone-induced muscle atrophy mouse model, the KLF13 knockout group had decreased muscle strength (N) (1.77 ± 0.10 vs. 1.48 ± 0.16, P < 0.01), muscle weight (%) [gastrocnemius (Gas): 76.0 ± 5.69 vs. 60.7 ± 7.23, P < 0.001; tibialis anterior (TA): 75.8 ± 6.21 vs. 67.5 ± 5.01, P < 0.05], and exhaustive running distance (m) (495.5 ± 64.8 vs. 315.5 ± 60.9, P < 0.05) compared with the control group. KLF13 overexpression preserved muscle mass (Gas: 100 ± 6.38 vs. 120 ± 14.4, P < 0.01) and the exhaustive running distance (423.8 ± 59.04 vs. 530.2 ± 77.45, P < 0.05) in an in vivo diabetes-induced skeletal muscle atrophy model. Clofoctol treatment protected against dexamethasone-induced muscle atrophy. Myotubes treated with dexamethasone, an atrophy-inducing glucocorticoid, were aggravated by KLF13 knockout, but anti-atrophic effects were achieved by inducing KLF13 overexpression. We performed a transcriptome analysis and luciferase reporter assays to further explore this mechanism, finding that delta-like 4 (Dll4) was a novel target gene of KLF13. The KLF13 transcript repressed Dll4, inhibiting the Dll4-Notch2 axis and preventing muscle atrophy. Dexamethasone inhibited KLF13 expression by inhibiting myogenic differentiation 1 (i.e., MYOD1)-mediated KLF13 transcriptional activation and promoting F-Box and WD repeat domain containing 7 (i.e., FBXW7)-mediated KLF13 ubiquitination. CONCLUSIONS This study sheds new light on the mechanisms underlying skeletal muscle atrophy and potential drug targets. KLF13 regulates muscle atrophy and is a potential therapeutic target. Clofoctol is an attractive compound for repurposing studies to treat skeletal muscle atrophy.
Collapse
Affiliation(s)
- Shu Yang
- Department of Geriatrics, The First Affiliated Hospital (Shenzhen People's Hospital)Southern University of Science and TechnologyShenzhenChina
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, The Second Clinical Medical CollegeJinan University (Shenzhen People's Hospital)ShenzhenChina
| | - Lijiao Xiong
- Department of Geriatrics, The First Affiliated Hospital (Shenzhen People's Hospital)Southern University of Science and TechnologyShenzhenChina
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, The Second Clinical Medical CollegeJinan University (Shenzhen People's Hospital)ShenzhenChina
| | - Guangyan Yang
- Department of Geriatrics, The First Affiliated Hospital (Shenzhen People's Hospital)Southern University of Science and TechnologyShenzhenChina
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, The Second Clinical Medical CollegeJinan University (Shenzhen People's Hospital)ShenzhenChina
| | - Jiaqing Xiang
- Department of Geriatrics, The First Affiliated Hospital (Shenzhen People's Hospital)Southern University of Science and TechnologyShenzhenChina
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, The Second Clinical Medical CollegeJinan University (Shenzhen People's Hospital)ShenzhenChina
| | - Lixing Li
- Department of Geriatrics, The First Affiliated Hospital (Shenzhen People's Hospital)Southern University of Science and TechnologyShenzhenChina
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, The Second Clinical Medical CollegeJinan University (Shenzhen People's Hospital)ShenzhenChina
| | - Lin Kang
- Department of Geriatrics, The First Affiliated Hospital (Shenzhen People's Hospital)Southern University of Science and TechnologyShenzhenChina
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, The Second Clinical Medical CollegeJinan University (Shenzhen People's Hospital)ShenzhenChina
- The Biobank of National Innovation Center for Advanced Medical DevicesShenzhen People's HospitalShenzhenChina
| | - Zhen Liang
- Department of Geriatrics, The First Affiliated Hospital (Shenzhen People's Hospital)Southern University of Science and TechnologyShenzhenChina
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, The Second Clinical Medical CollegeJinan University (Shenzhen People's Hospital)ShenzhenChina
| |
Collapse
|
5
|
Saliu TP, Goh J, Kang G, Burke BI, Ismaeel A, McCarthy JJ. Satellite cell dynamics during skeletal muscle hypertrophy. Biochem Soc Trans 2024; 52:1921-1926. [PMID: 39136196 PMCID: PMC11660404 DOI: 10.1042/bst20240201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/26/2024]
Abstract
Skeletal muscle stem cells (MuSCs) display distinct behavior crucial for tissue maintenance and repair. Upon activation, MuSCs exhibit distinct modes of division: symmetric division, facilitating either self-renewal or differentiation, and asymmetric division, which dictates divergent cellular fates. This review explores the nuanced dynamics of MuSC division and the molecular mechanisms governing this behavior. Furthermore, it introduces a novel phenomenon observed in a subset of MuSCs under hypertrophic stimuli termed division-independent differentiation. Insights into the underlying mechanisms driving this process are discussed, alongside its broader implications for muscle physiology.
Collapse
Affiliation(s)
- Tolulope P. Saliu
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, U.S.A
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, U.S.A
| | - Jensen Goh
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, U.S.A
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, U.S.A
| | - Gyumin Kang
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, U.S.A
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, U.S.A
- Division of Biomedical Informatics, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY, U.S.A
| | - Benjamin I. Burke
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, U.S.A
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, U.S.A
| | - Ahmed Ismaeel
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, U.S.A
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, U.S.A
| | - John J. McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, U.S.A
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, U.S.A
| |
Collapse
|
6
|
Majchrzak K, Hentschel E, Hönzke K, Geithe C, von Maltzahn J. We need to talk-how muscle stem cells communicate. Front Cell Dev Biol 2024; 12:1378548. [PMID: 39050890 PMCID: PMC11266305 DOI: 10.3389/fcell.2024.1378548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Skeletal muscle is one of the tissues with the highest ability to regenerate, a finely controlled process which is critically depending on muscle stem cells. Muscle stem cell functionality depends on intrinsic signaling pathways and interaction with their immediate niche. Upon injury quiescent muscle stem cells get activated, proliferate and fuse to form new myofibers, a process involving the interaction of multiple cell types in regenerating skeletal muscle. Receptors in muscle stem cells receive the respective signals through direct cell-cell interaction, signaling via secreted factors or cell-matrix interactions thereby regulating responses of muscle stem cells to external stimuli. Here, we discuss how muscle stem cells interact with their immediate niche focusing on how this controls their quiescence, activation and self-renewal and how these processes are altered in age and disease.
Collapse
Affiliation(s)
- Karolina Majchrzak
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus–Senftenberg, Senftenberg, Germany
| | - Erik Hentschel
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus–Senftenberg, Senftenberg, Germany
| | - Katja Hönzke
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus–Senftenberg, Senftenberg, Germany
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Christiane Geithe
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus–Senftenberg, Senftenberg, Germany
| | - Julia von Maltzahn
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus–Senftenberg, Senftenberg, Germany
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
- Faculty for Environment and Natural Sciences, Brandenburg University of Technology Cottbus—Senftenberg, Senftenberg, Germany
| |
Collapse
|
7
|
Li Q, Chen Y, Chen Y, Hua Z, Gong B, Liu Z, Thiele CJ, Li Z. Novel small molecule DMAMCL induces differentiation in rhabdomyosarcoma by downregulating of DLL1. Biomed Pharmacother 2024; 174:116562. [PMID: 38626518 DOI: 10.1016/j.biopha.2024.116562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/18/2024] Open
Abstract
Rhabdomyosarcoma (RMS), a mesenchymal tumor occurring in the soft tissue of children, is associated with a defect in differentiation. This study unveils a novel anti-tumor mechanism of dimethylaminomicheliolide (DMAMCL), which is a water-soluble derivative of Micheliolide. First, we demonstrate that DMAMCL inhibits RMS cell growth without obvious cell death, leading to morphological alterations, enhanced expression of muscle differentiation markers, and a shift from a malignant to a more benign metabolic phenotype. Second, we detected decreased expression of DLL1 in RMS cells after DMAMCL treatment, known as a pivotal ligand in the Notch signaling pathway. Downregulation of DLL1 inhibits RMS cell growth and induces morphological changes similar to the effects of DMAMCL. Furthermore, DMAMCL treatment or loss of DLL1 expression also inhibits RMS xenograft tumor growth and augmented the expression of differentiation markers. Surprisingly, in C2C12 cells DMAMCL treatment or DLL1 downregulation also induces cell growth inhibition and an elevation in muscle differentiation marker expression. These data indicated that DMAMCL induced RMS differentiation and DLL1 is an important factor for RMS differentiation, opening a new window for the clinical use of DMAMCL as an agent for differentiation-inducing therapy for RMS treatment.
Collapse
Affiliation(s)
- Qi Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110001, China; Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environment and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yexi Chen
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110001, China; Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environment and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yang Chen
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110001, China; Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environment and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Zhongyan Hua
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110001, China; Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environment and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Baocheng Gong
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110001, China; Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environment and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Zhihui Liu
- Cell and Molecular Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Carol J Thiele
- Cell and Molecular Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Zhijie Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110001, China; Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environment and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
8
|
Chandel AS, Keseroglu K, Özbudak EM. Oscillatory control of embryonic development. Development 2024; 151:dev202191. [PMID: 38727565 PMCID: PMC11128281 DOI: 10.1242/dev.202191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2024]
Abstract
Proper embryonic development depends on the timely progression of a genetic program. One of the key mechanisms for achieving precise control of developmental timing is to use gene expression oscillations. In this Review, we examine how gene expression oscillations encode temporal information during vertebrate embryonic development by discussing the gene expression oscillations occurring during somitogenesis, neurogenesis, myogenesis and pancreas development. These oscillations play important but varied physiological functions in different contexts. Oscillations control the period of somite formation during somitogenesis, whereas they regulate the proliferation-to-differentiation switch of stem cells and progenitor cells during neurogenesis, myogenesis and pancreas development. We describe the similarities and differences of the expression pattern in space (i.e. whether oscillations are synchronous or asynchronous across neighboring cells) and in time (i.e. different time scales) of mammalian Hes/zebrafish Her genes and their targets in different tissues. We further summarize experimental evidence for the functional role of their oscillations. Finally, we discuss the outstanding questions for future research.
Collapse
Affiliation(s)
- Angad Singh Chandel
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Systems Biology and Physiology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Kemal Keseroglu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ertuğrul M. Özbudak
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
9
|
Sampilo NF, Song JL. microRNA-1 regulates sea urchin skeletogenesis by directly targeting skeletogenic genes and modulating components of signaling pathways. Dev Biol 2024; 508:123-137. [PMID: 38290645 PMCID: PMC10985635 DOI: 10.1016/j.ydbio.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 01/09/2024] [Accepted: 01/22/2024] [Indexed: 02/01/2024]
Abstract
microRNAs are evolutionarily conserved non-coding RNAs that direct post-transcriptional regulation of target transcripts. In vertebrates, microRNA-1 (miR-1) is expressed in muscle and has been found to play critical regulatory roles in vertebrate angiogenesis, a process that has been proposed to be analogous to sea urchin skeletogenesis. Results indicate that both miR-1 inhibitor and miR-1 mimic-injected larvae have significantly less F-actin enriched circumpharyngeal muscle fibers and fewer gut contractions. In addition, miR-1 regulates the positioning of skeletogenic primary mesenchyme cells (PMCs) and skeletogenesis of the sea urchin embryo. Interestingly, the gain-of-function of miR-1 leads to more severe PMC patterning and skeletal branching defects than its loss-of-function. The results suggest that miR-1 directly suppresses Ets1/2, Tbr, and VegfR7 of the skeletogenic gene regulatory network, and Nodal, and Wnt1 signaling components. This study identifies potential targets of miR-1 that impacts skeletogenesis and muscle formation and contributes to a deeper understanding of miR-1's function during development.
Collapse
Affiliation(s)
- Nina Faye Sampilo
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Jia L Song
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
10
|
Liu G, Wei J, Xiao W, Xie W, Ru Q, Chen L, Wu Y, Mobasheri A, Li Y. Insights into the Notch signaling pathway in degenerative musculoskeletal disorders: Mechanisms and perspectives. Biomed Pharmacother 2023; 169:115884. [PMID: 37981460 DOI: 10.1016/j.biopha.2023.115884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023] Open
Abstract
Degenerative musculoskeletal disorders are a group of age-related diseases of the locomotive system that severely affects the patient's ability to work and cause adverse sequalae such as fractures and even death. The incidence and prevalence of degenerative musculoskeletal disorders is rising owing to the aging of the world's population. The Notch signaling pathway, which is expressed in almost all organ systems, extensively regulates cell proliferation and differentiation as well as cellular fate. Notch signaling shows increased activity in degenerative musculoskeletal disorders and retards the progression of degeneration to some extent. The review focuses on four major degenerative musculoskeletal disorders (osteoarthritis, intervertebral disc degeneration, osteoporosis, and sarcopenia) and summarizes the pathophysiological functions of Notch signaling in these disorders, especially its role in stem/progenitor cells in each disorder. Finally, a conclusion will be presented to explore the research and application of the perspectives on Notch signaling in degenerative musculoskeletal disorders.
Collapse
Affiliation(s)
- Gaoming Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410011, China
| | - Jun Wei
- Department of Clinical Medical School, Xinjiang Medical University, Urumqi 830054, China
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410011, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410011, China
| | - Qin Ru
- Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Lin Chen
- Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Yuxiang Wu
- Department of Health and Physical Education, Jianghan University, Wuhan 430056, China.
| | - Ali Mobasheri
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland; Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania; Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; World Health Organization Collaborating Center for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, Liège, Belgium.
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410011, China; Department of Clinical Medical School, Xinjiang Medical University, Urumqi 830054, China.
| |
Collapse
|
11
|
Hermosilla Aguayo V, Martin P, Tian N, Zheng J, Aho R, Losa M, Selleri L. ESCRT-dependent control of craniofacial morphogenesis with concomitant perturbation of NOTCH signaling. Dev Biol 2023; 503:25-42. [PMID: 37573008 DOI: 10.1016/j.ydbio.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
Craniofacial development is orchestrated by transcription factor-driven regulatory networks, epigenetic modifications, and signaling pathways. Signaling molecules and their receptors rely on endo-lysosomal trafficking to prevent accumulation on the plasma membrane. ESCRT (Endosomal Sorting Complexes Required for Transport) machinery is recruited to endosomal membranes enabling degradation of such endosomal cargoes. Studies in vitro and in invertebrate models established the requirements of the ESCRT machinery in membrane remodeling, endosomal trafficking, and lysosomal degradation of activated membrane receptors. However, investigations during vertebrate development have been scarce. By ENU-induced mutagenesis, we isolated a mouse line, Vps25ENU/ENU, carrying a hypomorphic allele of the ESCRT-II component Vps25, with craniofacial anomalies resembling features of human congenital syndromes. Here, we assessed the spatiotemporal dynamics of Vps25 and additional ESCRT-encoding genes during murine development. We show that these genes are ubiquitously expressed although enriched in discrete domains of the craniofacial complex, heart, and limbs. ESCRT-encoding genes, including Vps25, are expressed in both cranial neural crest-derived mesenchyme and epithelium. Unlike constitutive ESCRT mutants, Vps25ENU/ENU embryos display late lethality. They exhibit hypoplastic lower jaw, stunted snout, dysmorphic ear pinnae, and secondary palate clefting. Thus, we provide the first evidence for critical roles of ESCRT-II in craniofacial morphogenesis and report perturbation of NOTCH signaling in craniofacial domains of Vps25ENU/ENU embryos. Given the known roles of NOTCH signaling in the developing cranium, and notably the lower jaw, we propose that the NOTCH pathway partly mediates the craniofacial defects of Vps25ENU/ENU mouse embryos.
Collapse
Affiliation(s)
- Viviana Hermosilla Aguayo
- Program in Craniofacial Biology, Institute for Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research, Dept of Orofacial Sciences and Dept of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Peter Martin
- Program in Craniofacial Biology, Institute for Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research, Dept of Orofacial Sciences and Dept of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nuo Tian
- Program in Craniofacial Biology, Institute for Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research, Dept of Orofacial Sciences and Dept of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - James Zheng
- Program in Craniofacial Biology, Institute for Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research, Dept of Orofacial Sciences and Dept of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Robert Aho
- Program in Craniofacial Biology, Institute for Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research, Dept of Orofacial Sciences and Dept of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Marta Losa
- Program in Craniofacial Biology, Institute for Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research, Dept of Orofacial Sciences and Dept of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Licia Selleri
- Program in Craniofacial Biology, Institute for Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research, Dept of Orofacial Sciences and Dept of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
12
|
Oprescu SN, Baumann N, Chen X, Sun Q, Zhao Y, Yue F, Wang H, Kuang S. Sox11 is enriched in myogenic progenitors but dispensable for development and regeneration of the skeletal muscle. Skelet Muscle 2023; 13:15. [PMID: 37705115 PMCID: PMC10498607 DOI: 10.1186/s13395-023-00324-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/24/2023] [Indexed: 09/15/2023] Open
Abstract
Transcription factors (TFs) play key roles in regulating differentiation and function of stem cells, including muscle satellite cells (MuSCs), a resident stem cell population responsible for postnatal regeneration of the skeletal muscle. Sox11 belongs to the Sry-related HMG-box (SOX) family of TFs that play diverse roles in stem cell behavior and tissue specification. Analysis of single-cell RNA-sequencing (scRNA-seq) datasets identify a specific enrichment of Sox11 mRNA in differentiating but not quiescent MuSCs. Consistent with the scRNA-seq data, Sox11 levels increase during differentiation of murine primary myoblasts in vitro. scRNA-seq data comparing muscle regeneration in young and old mice further demonstrate that Sox11 expression is reduced in aged MuSCs. Age-related decline of Sox11 expression is associated with reduced chromatin contacts within the topologically associating domains. Unexpectedly, Myod1Cre-driven deletion of Sox11 in embryonic myoblasts has no effects on muscle development and growth, resulting in apparently healthy muscles that regenerate normally. Pax7CreER- or Rosa26CreER- driven (MuSC-specific or global) deletion of Sox11 in adult mice similarly has no effects on MuSC differentiation or muscle regeneration. These results identify Sox11 as a novel myogenic differentiation marker with reduced expression in quiescent and aged MuSCs, but the specific function of Sox11 in myogenesis remains to be elucidated.
Collapse
Affiliation(s)
- Stephanie N Oprescu
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Nick Baumann
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Xiyue Chen
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Qiang Sun
- Department of Orthopedics and Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong; Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong, China
| | - Yu Zhao
- Department of Orthopedics and Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong; Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong, China
| | - Feng Yue
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Huating Wang
- Department of Orthopedics and Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong; Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong, China
| | - Shihuan Kuang
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA.
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA.
- Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
13
|
Marco-Bonilla M, Herencia R, Fresnadillo M, Huete-Toral F, Carracedo G, Largo R, Herrero-Beaumont G, Mediero A. Dipyridamole activates adenosine A2B receptor and AMPK/cAMP signaling and promotes myogenic differentiation of myoblastic C2C12 cells. Front Pharmacol 2023; 14:1247664. [PMID: 37771723 PMCID: PMC10522837 DOI: 10.3389/fphar.2023.1247664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
Introduction: Sarcopenia is defined as a loss of muscle mass and strength. ATP homeostasis is crucial during myogenesis. We determined how the purinergic system modulates myogenesis using dipyridamole (blocks adenosine taken up by the cells) and tenofovir (inhibits ATP release) in a myoblast cell line. Methods: C2C12 cells were differentiated in the presence/absence of tenofovir/dipyridamole, with/without the A2B selective inhibitor PSB-603. Extra-/intracellular nucleotides were examined via HPLC. The expression of muscle differentiation proteins (Pax7, Mif5, MyoD, MyoG, and MHC), PKA/CREB, adenosine receptors (A1, A2A, A2B, and A3), ATP-channel pannexin-1 and the P2X7 receptor was analyzed via WB and RT-PCR. cAMP and AMPK activation was measured. Results: Tenofovir increased intracellular ATP and reduced extracellular adenosine, decreasing Pax7 expression and increasing MHC expression prematurely. Dipyridamole increased intracellular AMP and extracellular adenosine, counteracting the premature myogenesis promoted by tenofovir. All adenosine receptors were expressed during differentiation with dipyridamole, increasing A2B expression. Tenofovir maintained inactive AMPK and decreased cAMP levels, as well as PKAα and pCREB expression, which were recovered with dipyridamole. Discussion: Adenosine and ATP act as mediators in muscle myogenesis. The blockade of ATP release by tenofovir promotes premature myogenesis, with dipyridamole counteracting the premature differentiation promoted by tenofovir via the adenosine A2B receptor and cAMP/AMPK pathways. Therefore, dipyridamole might be of interest as a therapeutic approach in sarcopenia.
Collapse
Affiliation(s)
| | - Raquel Herencia
- Bone and Joint Research Unit, FIIS-Fundación Jiménez Díaz UAM, Madrid, Spain
| | - María Fresnadillo
- Bone and Joint Research Unit, FIIS-Fundación Jiménez Díaz UAM, Madrid, Spain
| | - Fernando Huete-Toral
- Ocupharm Group Research, Faculty of Optic and Optometry, University Complutense of Madrid, Madrid, Spain
| | - Gonzalo Carracedo
- Ocupharm Group Research, Faculty of Optic and Optometry, University Complutense of Madrid, Madrid, Spain
- Department of Optometry and Vision, Faculty of Optic and Optometry, University Complutense of Madrid, Madrid, Spain
| | - Raquel Largo
- Bone and Joint Research Unit, FIIS-Fundación Jiménez Díaz UAM, Madrid, Spain
| | | | - Aránzazu Mediero
- Bone and Joint Research Unit, FIIS-Fundación Jiménez Díaz UAM, Madrid, Spain
| |
Collapse
|
14
|
Sahai-Hernandez P, Pouget C, Eyal S, Svoboda O, Chacon J, Grimm L, Gjøen T, Traver D. Dermomyotome-derived endothelial cells migrate to the dorsal aorta to support hematopoietic stem cell emergence. eLife 2023; 12:e58300. [PMID: 37695317 PMCID: PMC10495111 DOI: 10.7554/elife.58300] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/03/2023] [Indexed: 09/12/2023] Open
Abstract
Development of the dorsal aorta is a key step in the establishment of the adult blood-forming system, since hematopoietic stem and progenitor cells (HSPCs) arise from ventral aortic endothelium in all vertebrate animals studied. Work in zebrafish has demonstrated that arterial and venous endothelial precursors arise from distinct subsets of lateral plate mesoderm. Here, we profile the transcriptome of the earliest detectable endothelial cells (ECs) during zebrafish embryogenesis to demonstrate that tissue-specific EC programs initiate much earlier than previously appreciated, by the end of gastrulation. Classic studies in the chick embryo showed that paraxial mesoderm generates a subset of somite-derived endothelial cells (SDECs) that incorporate into the dorsal aorta to replace HSPCs as they exit the aorta and enter circulation. We describe a conserved program in the zebrafish, where a rare population of endothelial precursors delaminates from the dermomyotome to incorporate exclusively into the developing dorsal aorta. Although SDECs lack hematopoietic potential, they act as a local niche to support the emergence of HSPCs from neighboring hemogenic endothelium. Thus, at least three subsets of ECs contribute to the developing dorsal aorta: vascular ECs, hemogenic ECs, and SDECs. Taken together, our findings indicate that the distinct spatial origins of endothelial precursors dictate different cellular potentials within the developing dorsal aorta.
Collapse
Affiliation(s)
- Pankaj Sahai-Hernandez
- Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
| | - Claire Pouget
- Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
| | - Shai Eyal
- Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
| | - Ondrej Svoboda
- Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
- Department of Cell Differentiation, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic v.v.i, Prague, Czech Republic
| | - Jose Chacon
- Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
| | - Lin Grimm
- Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
| | - Tor Gjøen
- Department of Pharmacy, University of Oslo, Oslo, Norway
| | - David Traver
- Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
| |
Collapse
|
15
|
Wurmser M, Madani R, Chaverot N, Backer S, Borok M, Dos Santos M, Comai G, Tajbakhsh S, Relaix F, Santolini M, Sambasivan R, Jiang R, Maire P. Overlapping functions of SIX homeoproteins during embryonic myogenesis. PLoS Genet 2023; 19:e1010781. [PMID: 37267426 DOI: 10.1371/journal.pgen.1010781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 05/10/2023] [Indexed: 06/04/2023] Open
Abstract
Four SIX homeoproteins display a combinatorial expression throughout embryonic developmental myogenesis and they modulate the expression of the myogenic regulatory factors. Here, we provide a deep characterization of their role in distinct mouse developmental territories. We showed, at the hypaxial level, that the Six1:Six4 double knockout (dKO) somitic precursor cells adopt a smooth muscle fate and lose their myogenic identity. At the epaxial level, we demonstrated by the analysis of Six quadruple KO (qKO) embryos, that SIX are required for fetal myogenesis, and for the maintenance of PAX7+ progenitor cells, which differentiated prematurely and are lost by the end of fetal development in qKO embryos. Finally, we showed that Six1 and Six2 are required to establish craniofacial myogenesis by controlling the expression of Myf5. We have thus described an unknown role for SIX proteins in the control of myogenesis at different embryonic levels and refined their involvement in the genetic cascades operating at the head level and in the genesis of myogenic stem cells.
Collapse
Affiliation(s)
- Maud Wurmser
- Université de Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Rouba Madani
- Université de Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Nathalie Chaverot
- Université de Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Stéphanie Backer
- Université de Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Matthew Borok
- Univ Paris Est Creteil, INSERM, EnvA, EFS, AP-HP, IMRB, Creteil, France
| | | | - Glenda Comai
- Stem Cells & Development, Institut Pasteur, Paris, France
- CNRS UMR 3738, Institut Pasteur, Paris, France
| | - Shahragim Tajbakhsh
- Stem Cells & Development, Institut Pasteur, Paris, France
- CNRS UMR 3738, Institut Pasteur, Paris, France
| | - Frédéric Relaix
- Univ Paris Est Creteil, INSERM, EnvA, EFS, AP-HP, IMRB, Creteil, France
| | - Marc Santolini
- Université de Paris Cité, Interaction Data Lab, CRI Paris, INSERM. Paris, France
| | - Ramkumar Sambasivan
- Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, India
| | - Rulang Jiang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Pascal Maire
- Université de Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| |
Collapse
|
16
|
Oprescu SN, Baumann N, Chen X, Sun Q, Zhao Y, Yue F, Wang H, Kuang S. Sox11 is enriched in myogenic progenitors but dispensable for development and regeneration of skeletal muscle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.30.534956. [PMID: 37034612 PMCID: PMC10081271 DOI: 10.1101/2023.03.30.534956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Transcription factors (TFs) play key roles in regulating the differentiation and function of stem cells, including muscle satellite cells (MuSCs), a resident stem cell population responsible for postnatal regeneration of the skeletal muscle. Sox11 belongs to the Sry-related HMG-box (SOX) family of TFs that play diverse roles in stem cell behavior and tissue specification. Analysis of single-cell RNA-sequencing (scRNA-seq) datasets identify a specific enrichment of Sox11 mRNA in differentiating but not quiescent MuSCs. Consistent with the scRNA-seq data, Sox11 levels increase during differentiation of murine primary myoblasts in vitro. scRNA-seq data comparing muscle regeneration in young and old mice further demonstrate that Sox11 expression is reduced in aged MuSCs. Age-related decline of Sox11 expression is associated with reduced chromatin contacts within the topologically associated domains. Unexpectedly, Myod1 Cre -driven deletion of Sox11 in embryonic myoblasts has no effects on muscle development and growth, resulting in apparently healthy muscles that regenerate normally. Pax7 CreER or Rosa26 CreER driven (MuSC-specific or global) deletion of Sox11 in adult mice similarly has no effects on MuSC differentiation or muscle regeneration. These results identify Sox11 as a novel myogenic differentiation marker with reduced expression in quiescent and aged MuSCs, but the specific function of Sox11 in myogenesis remain to be elucidated.
Collapse
|
17
|
Yeh CJ, Sattler KM, Lepper C. Molecular regulation of satellite cells via intercellular signaling. Gene 2023; 858:147172. [PMID: 36621659 PMCID: PMC9928918 DOI: 10.1016/j.gene.2023.147172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Somatic stem cells are tissue-specific reserve cells tasked to sustain tissue homeostasis in adulthood and/or effect tissue regeneration after traumatic injury. The stem cells of skeletal muscle tissue are the satellite cells, which were originally described and named after their localization beneath the muscle fiber lamina and attached to the multi-nucleated muscle fibers. During adult homeostasis, satellite cells are maintained in quiescence, a state of reversible cell cycle arrest. Yet, upon injury, satellite cells are rapidly activated, becoming highly mitotically active to generate large numbers of myoblasts that differentiate and fuse to regenerate the injured muscle fibers. A subset self-renews to replenish the pool of muscle stem cells.Complex intrinsic gene regulatory networks maintain the quiescent state of satellite cells, or upon injury, direct their activation, proliferation, differentiation and self-renewal. Molecular cues from the satellite cells' environment provide the essential information as to when and where satellite cells are to stay quiescent or break quiescence and effect regenerative myogenesis. Predominantly, these cues are secreted, diffusible or membrane-bound ligands that bind to and activate their specific cognate receptors on the satellite cell to activate downstream signaling cascades and elicit context-specific cell behavior. This review aims to offer a concise overview of major intercellular signaling pathways regulating satellite cells during quiescence and in injury-induced skeletal muscle regeneration.
Collapse
Affiliation(s)
- Chung-Ju Yeh
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States
| | - Kristina M Sattler
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States
| | - Christoph Lepper
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
18
|
Cai S, Hu B, Wang X, Liu T, Lin Z, Tong X, Xu R, Chen M, Duo T, Zhu Q, Liang Z, Li E, Chen Y, Li J, Liu X, Mo D. Integrative single-cell RNA-seq and ATAC-seq analysis of myogenic differentiation in pig. BMC Biol 2023; 21:19. [PMID: 36726129 PMCID: PMC9893630 DOI: 10.1186/s12915-023-01519-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/18/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Skeletal muscle development is a multistep process whose understanding is central in a broad range of fields and applications, from the potential medical value to human society, to its economic value associated with improvement of agricultural animals. Skeletal muscle initiates in the somites, with muscle precursor cells generated in the dermomyotome and dermomyotome-derived myotome before muscle differentiation ensues, a developmentally regulated process that is well characterized in model organisms. However, the regulation of skeletal muscle ontogeny during embryonic development remains poorly defined in farm animals, for instance in pig. Here, we profiled gene expression and chromatin accessibility in developing pig somites and myotomes at single-cell resolution. RESULTS We identified myogenic cells and other cell types and constructed a differentiation trajectory of pig skeletal muscle ontogeny. Along this trajectory, the dynamic changes in gene expression and chromatin accessibility coincided with the activities of distinct cell type-specific transcription factors. Some novel genes upregulated along the differentiation trajectory showed higher expression levels in muscular dystrophy mice than that in healthy mice, suggesting their involvement in myogenesis. Integrative analysis of chromatin accessibility, gene expression data, and in vitro experiments identified EGR1 and RHOB as critical regulators of pig embryonic myogenesis. CONCLUSIONS Collectively, our results enhance our understanding of the molecular and cellular dynamics in pig embryonic myogenesis and offer a high-quality resource for the further study of pig skeletal muscle development and human muscle disease.
Collapse
Affiliation(s)
- Shufang Cai
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
| | - Bin Hu
- Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
| | - Xiaoyu Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Tongni Liu
- Faculty of Forestry, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Zhuhu Lin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Xian Tong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Rong Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Meilin Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Tianqi Duo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Qi Zhu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Ziyun Liang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Enru Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Jianhao Li
- Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Delin Mo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| |
Collapse
|
19
|
Lahmann I, Birchmeier C. Visualizing MyoD Oscillations in Muscle Stem Cells. Methods Mol Biol 2023; 2640:259-276. [PMID: 36995601 DOI: 10.1007/978-1-0716-3036-5_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
The bHLH transcription factor MyoD is a master regulator of myogenic differentiation, and its sustained expression in fibroblasts suffices to differentiate them into muscle cells. MyoD expression oscillates in activated muscle stem cells of developing, postnatal and adult muscle under various conditions: when the stem cells are dispersed in culture, when they remain associated with single muscle fibers, or when they reside in muscle biopsies. The oscillatory period is around 3 h and thus much shorter than the cell cycle or circadian rhythm. Unstable MyoD oscillations and long periods of sustained MyoD expression are observed when stem cells undergo myogenic differentiation. The oscillatory expression of MyoD is driven by the oscillatory expression of the bHLH transcription factor Hes1 that periodically represses MyoD. Ablation of the Hes1 oscillator interferes with stable MyoD oscillations and leads to prolonged periods of sustained MyoD expression. This interferes with the maintenance of activated muscle stem cells and impairs muscle growth and repair. Thus, oscillations of MyoD and Hes1 control the balance between the proliferation and differentiation of muscle stem cells. Here, we describe time-lapse imaging methods using luciferase reporters, which can monitor dynamic MyoD gene expression in myogenic cells.
Collapse
Affiliation(s)
- Ines Lahmann
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Developmental Biology/Signal Transduction Group, Berlin, Germany
- Neurowissenschaftliches Forschungzentrum, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Carmen Birchmeier
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Developmental Biology/Signal Transduction Group, Berlin, Germany.
- Neurowissenschaftliches Forschungzentrum, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
20
|
Zhang M, Guo Y, Su R, Corazzin M, Hou R, Xie J, Zhang Y, Zhao L, Su L, Jin Y. Transcriptome analysis reveals the molecular regulatory network of muscle development and meat quality in Sunit lamb supplemented with dietary probiotic. Meat Sci 2022; 194:108996. [PMID: 36195032 DOI: 10.1016/j.meatsci.2022.108996] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/13/2022] [Accepted: 09/23/2022] [Indexed: 11/27/2022]
Abstract
Supplementing animal feed with probiotic additives can promote muscle production and improve meat quality. The study aimed to explore the effects of dietary probiotics supplementation on the performance, meat quality and muscle transcriptome profile in Sunit lamb. Overall, feeding probiotics significantly increased the body length, LT area, pH24h and intramuscular fat (IMF) content, but decreased cooking loss and meat shear force compared to the control group (P < .05). A total of 651 differentially expressed genes (DEGs) were found in probiotic supplemented lambs. Pathway analysis revealed that DEGs were involved in multiple pathways related to muscle development and fat deposition, such as the ECM-receptor interactions, the MAPK signaling pathway and the FoxO signaling pathway. Therefore, dietary probiotic supplementation can improve muscle development and final meat quality in Sunit lambs by altering gene expression profiles associated with key pathways, providing unique insights into the molecular mechanisms by which dietary probiotics regulate muscle development in the lamb industry.
Collapse
Affiliation(s)
- Min Zhang
- College of Food Science and Engineering, Inner Mongolia Agriculture University, China
| | - Yueying Guo
- College of Food Science and Engineering, Inner Mongolia Agriculture University, China
| | - Rina Su
- Inner Mongolia Vocational College of Chemical Engineering, China
| | - Mirco Corazzin
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Italy
| | - Ran Hou
- College of Food Science and Engineering, Inner Mongolia Agriculture University, China
| | - Jingyu Xie
- College of Food Science and Engineering, Inner Mongolia Agriculture University, China
| | - Yue Zhang
- College of Food Science and Engineering, Inner Mongolia Agriculture University, China
| | - Lihua Zhao
- College of Food Science and Engineering, Inner Mongolia Agriculture University, China
| | - Lin Su
- College of Food Science and Engineering, Inner Mongolia Agriculture University, China
| | - Ye Jin
- College of Food Science and Engineering, Inner Mongolia Agriculture University, China.
| |
Collapse
|
21
|
Jo YW, Park I, Yoo K, Woo HY, Kim YL, Kim YE, Kim JH, Kong YY. Notch1 and Notch2 Signaling Exclusively but Cooperatively Maintain Fetal Myogenic Progenitors. Stem Cells 2022; 40:1031-1042. [PMID: 35922037 DOI: 10.1093/stmcls/sxac056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/27/2022] [Indexed: 11/14/2022]
Abstract
Myogenic progenitors (MPs) generate myocytes that fuse to form myofibers during skeletal muscle development while maintaining the progenitor pool, which is crucial for generating sufficient muscle. Notch signaling has been known to reserve a population of embryonic MPs during primary myogenesis by promoting cell cycle exit and suppressing premature differentiation. However, the roles of individual Notch receptors (Notch1-4) during embryonic/fetal myogenesis are still elusive. In this study, we found that Notch1 and Notch2, which exhibit the highest structural similarity among Notch receptors, maintain the MP population by distinct mechanisms: Notch1 induces cell cycle exit and Notch2 suppresses premature differentiation. Moreover, genetic and cell culture studies showed that Notch1 and Notch2 signaling in MPs are distinctively activated by interacting with Notch ligand-expressing myofibers and MP-lineage cells, respectively. These results suggest that through different activation modes, Notch1 and Notch2 distinctively and cooperatively maintain MP population during fetal myogenesis for proper muscle development.
Collapse
Affiliation(s)
- Young-Woo Jo
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Inkuk Park
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kyusang Yoo
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyun-Young Woo
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ye Lynne Kim
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yea-Eun Kim
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ji-Hoon Kim
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.,Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Young-Yun Kong
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
22
|
Shen J, Wang J, Zhen H, Liu Y, Li L, Luo Y, Hu J, Liu X, Li S, Hao Z, Li M, Zhao Z. MicroRNA-381 Regulates Proliferation and Differentiation of Caprine Skeletal Muscle Satellite Cells by Targeting PTEN and JAG2. Int J Mol Sci 2022; 23:ijms232113587. [PMID: 36362373 PMCID: PMC9656929 DOI: 10.3390/ijms232113587] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
In our previous study, microRNA (miR)-381 was found to be the most down-regulated miRNA in skeletal muscle of Liaoning cashmere goats with higher skeletal muscle mass, but the molecular mechanism involved remains unclear. In this study, primary caprine skeletal muscle satellite cells (SMSCs) were isolated and identified. We investigated the effect of miR-381 on the viability, proliferation and differentiation of caprine SMSCs, and the target relationships of miR-381 with jagged canonical Notch ligand 2 (JAG2) and phosphatase and tensin homolog (PTEN). Cells isolated were positive for SMSC-specific marker protein Pax7. This suggests that purified SMSCs were obtained. The expression level of miR-381 achieved a peak value on day 4 after SMSC differentiation, and miR-381 also significantly increased the expression levels of myogenic differentiation marker genes: myosin heavy chain (MyHC), myogenin (MyoG) and myocyte enhancer factor 2C (MEF2C) in differentiated SMSCs, the area of MyHC-positive myotubes and the myogenic index. These findings suggest that miR-381 promoted myogenic differentiation of caprine SMSCs. The CCK8 assay and EDU staining analysis showed that miR-381 mimic both inhibited the viability of SMSCs and decreased the percentage of EDU-labeled positive SMSCs. In contrast, miR-381 inhibitor had the opposite effect with miR-381 mimic. A dual luciferase reporter assay verified that miR-381 can target JAG2 and PTEN by binding to the 3′-untranslated regions (3′-UTR) of the genes. The transfection of miR-381 mimic into caprine SMSCs resulted in decreases in expression levels of JAG2 and PTEN, while miR-381 inhibitor increased the two target genes in expression. This is the first study to reveal the biological mechanisms by which miR-381 regulates caprine SMSC activities.
Collapse
Affiliation(s)
| | - Jiqing Wang
- Correspondence: ; Tel./Fax: +86-931-763-2469
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Choi S, Ferrari G, Moyle LA, Mackinlay K, Naouar N, Jalal S, Benedetti S, Wells C, Muntoni F, Tedesco FS. Assessing and enhancing migration of human myogenic progenitors using directed iPS cell differentiation and advanced tissue modelling. EMBO Mol Med 2022; 14:e14526. [PMID: 36161772 PMCID: PMC9549733 DOI: 10.15252/emmm.202114526] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 02/05/2023] Open
Abstract
Muscle satellite stem cells (MuSCs) are responsible for skeletal muscle growth and regeneration. Despite their differentiation potential, human MuSCs have limited in vitro expansion and in vivo migration capacity, limiting their use in cell therapies for diseases affecting multiple skeletal muscles. Several protocols have been developed to derive MuSC-like progenitors from human induced pluripotent stem (iPS) cells (hiPSCs) to establish a source of myogenic cells with controllable proliferation and differentiation. However, current hiPSC myogenic derivatives also suffer from limitations of cell migration, ultimately delaying their clinical translation. Here we use a multi-disciplinary approach including bioinformatics and tissue engineering to show that DLL4 and PDGF-BB improve migration of hiPSC-derived myogenic progenitors. Transcriptomic analyses demonstrate that this property is conserved across species and multiple hiPSC lines, consistent with results from single cell motility profiling. Treated cells showed enhanced trans-endothelial migration in transwell assays. Finally, increased motility was detected in a novel humanised assay to study cell migration using 3D artificial muscles, harnessing advanced tissue modelling to move hiPSCs closer to future muscle gene and cell therapies.
Collapse
Affiliation(s)
- SungWoo Choi
- The Francis Crick InstituteLondonUK
- Department of Cell and Developmental BiologyUniversity College LondonLondonUK
| | - Giulia Ferrari
- Department of Cell and Developmental BiologyUniversity College LondonLondonUK
| | - Louise A Moyle
- Department of Cell and Developmental BiologyUniversity College LondonLondonUK
- Present address:
Institute of Biomedical EngineeringUniversity of TorontoTorontoONCanada
| | - Kirsty Mackinlay
- Department of Cell and Developmental BiologyUniversity College LondonLondonUK
- Present address:
Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Naira Naouar
- Institut de Biologie Paris Seine FR3631, Plateforme de Bioinformatique ARTbioSorbonne UniversitéParisFrance
| | - Salma Jalal
- The Francis Crick InstituteLondonUK
- Department of Cell and Developmental BiologyUniversity College LondonLondonUK
| | - Sara Benedetti
- UCL Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
- National Institute for Health Research Great Ormond Street Hospital Biomedical Research CentreLondonUK
| | - Christine Wells
- Centre for Stem Cell SystemsThe University of MelbourneMelbourneVICAustralia
| | - Francesco Muntoni
- National Institute for Health Research Great Ormond Street Hospital Biomedical Research CentreLondonUK
- Dubowitz Neuromuscular CentreUCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital for ChildrenLondonUK
| | - Francesco Saverio Tedesco
- The Francis Crick InstituteLondonUK
- Department of Cell and Developmental BiologyUniversity College LondonLondonUK
- Dubowitz Neuromuscular CentreUCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital for ChildrenLondonUK
| |
Collapse
|
24
|
Notch signaling leads to a slower progression of embryonic myogenic differentiation in Landrace than in Langtang pigs. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1122-1132. [PMID: 35866607 PMCID: PMC9827795 DOI: 10.3724/abbs.2022095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Delving into porcine embryonic myogenesis is the key to elucidate the complex regulation of breed-specific differences in growth performance and meat production. Increasing evidence proves that pigs with less meat production show earlier embryonic myogenesis, but little is known about the underlying mechanisms. In this study, we examine the longissimus dorsi muscle (LDM) by immunohistochemistry and confirm that the differentiation of myogenic progenitors is increased ( P<0.05) in Lantang (LT, fatty) pigs compared with that in Landrace (LR, lean) pigs, which results in more ( P<0.001) differentiated myoblasts (Pax7 -/MyoD +) and less ( P<0.001) myogenic progenitors (Pax7 +/MyoD -) in LT pigs at 35 days post-conception (35dpc). Additionally, embryonic myogenic progenitors isolated from LT pigs show greater ( P<0.001) differentiation capacity with earlier expression of MyoD compared with those from LR pigs. Moreover, Notch signaling is more active ( P<0.05) in LR pig myogenic progenitors than in LT pig myogenic progenitors. Inhibition of Notch signaling in LR myogenic progenitors suppresses Pax7 expression and increases MyoD expression, thus promoting myogenic differentiation. Consistently, the process of myogenic progenitors differentiating into myoblasts in ex vivo embryo limbs is accelerated when Notch signaling is inhibited. These results indicate that Notch signaling facilitates the maintenance of myogenic progenitors and antagonizes myogenic differentiation by promoting Pax7 expression and preventing MyoD expression in LR pigs.
Collapse
|
25
|
Sánchez-Iranzo H, Halavatyi A, Diz-Muñoz A. Strength of interactions in the Notch gene regulatory network determines patterning and fate in the notochord. eLife 2022; 11:75429. [PMID: 35658971 PMCID: PMC9170247 DOI: 10.7554/elife.75429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Development of multicellular organisms requires the generation of gene expression patterns that determines cell fate and organ shape. Groups of genetic interactions known as Gene Regulatory Networks (GRNs) play a key role in the generation of such patterns. However, how the topology and parameters of GRNs determine patterning in vivo remains unclear due to the complexity of most experimental systems. To address this, we use the zebrafish notochord, an organ where coin-shaped precursor cells are initially arranged in a simple unidimensional geometry. These cells then differentiate into vacuolated and sheath cells. Using newly developed transgenic tools together with in vivo imaging, we identify jag1a and her6/her9 as the main components of a Notch GRN that generates a lateral inhibition pattern and determines cell fate. Making use of this experimental system and mathematical modeling we show that lateral inhibition patterning is promoted when ligand-receptor interactions are stronger within the same cell than in neighboring cells. Altogether, we establish the zebrafish notochord as an experimental system to study pattern generation, and identify and characterize how the properties of GRNs determine self-organization of gene patterning and cell fate.
Collapse
Affiliation(s)
- Héctor Sánchez-Iranzo
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Aliaksandr Halavatyi
- Advanced Light Microscopy Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Alba Diz-Muñoz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
26
|
Perrone C, Pomella S, Cassandri M, Pezzella M, Milano GM, Colletti M, Cossetti C, Pericoli G, Di Giannatale A, de Billy E, Vinci M, Petrini S, Marampon F, Quintarelli C, Taulli R, Roma J, Gallego S, Camero S, Mariottini P, Cervelli M, Maestro R, Miele L, De Angelis B, Locatelli F, Rota R. MET Inhibition Sensitizes Rhabdomyosarcoma Cells to NOTCH Signaling Suppression. Front Oncol 2022; 12:835642. [PMID: 35574376 PMCID: PMC9092259 DOI: 10.3389/fonc.2022.835642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is a pediatric myogenic soft tissue sarcoma. The Fusion-Positive (FP) subtype expresses the chimeric protein PAX3-FOXO1 (P3F) while the Fusion-Negative (FN) is devoid of any gene translocation. FP-RMS and metastatic FN-RMS are often unresponsive to conventional therapy. Therefore, novel therapeutic approaches are needed to halt tumor progression. NOTCH signaling has oncogenic functions in RMS and its pharmacologic inhibition through γ-secretase inhibitors blocks tumor growth in vitro and in vivo. Here, we show that NOTCH signaling blockade resulted in the up-regulation and phosphorylation of the MET oncogene in both RH30 (FP-RMS) and RD (FN-RMS) cell lines. Pharmacologic inhibition of either NOTCH or MET signaling slowed proliferation and restrained cell survival compared to control cells partly by increasing Annexin V and CASP3/7 activation. Co-treatment with NOTCH and MET inhibitors significantly amplified these effects and enhanced PARP1 cleavage in both cell lines. Moreover, it severely hampered cell migration, colony formation, and anchorage-independent growth compared to single-agent treatments in both cell lines and significantly prevented the growth of FN-RMS cells grown as spheroids. Collectively, our results unveil the overexpression of the MET oncogene by NOTCH signaling targeting in RMS cells and show that MET pathway blockade sensitizes them to NOTCH inhibition.
Collapse
Affiliation(s)
- Clara Perrone
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Department of Science, "Department of Excellence 2018-2022", University of Rome "Roma Tre", Rome, Italy
| | - Silvia Pomella
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Matteo Cassandri
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Department of Radiotherapy, Sapienza University, Rome, Italy
| | - Michele Pezzella
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giuseppe Maria Milano
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marta Colletti
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Cristina Cossetti
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giulia Pericoli
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Angela Di Giannatale
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Emmanuel de Billy
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria Vinci
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Concetta Quintarelli
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | | | - Josep Roma
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Insti-tute-Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Soledad Gallego
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Insti-tute-Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Simona Camero
- Department of Maternal, Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Paolo Mariottini
- Department of Science, "Department of Excellence 2018-2022", University of Rome "Roma Tre", Rome, Italy
| | - Manuela Cervelli
- Department of Science, "Department of Excellence 2018-2022", University of Rome "Roma Tre", Rome, Italy
| | - Roberta Maestro
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO Aviano) IRCCS, National Cancer Institute, Aviano, Italy
| | - Lucio Miele
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Biagio De Angelis
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Franco Locatelli
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Department of Pediatrics, Sapienza University, Rome, Italy
| | - Rossella Rota
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
27
|
Shirakawa T, Toyono T, Inoue A, Matsubara T, Kawamoto T, Kokabu S. Factors Regulating or Regulated by Myogenic Regulatory Factors in Skeletal Muscle Stem Cells. Cells 2022; 11:cells11091493. [PMID: 35563799 PMCID: PMC9104119 DOI: 10.3390/cells11091493] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/23/2022] Open
Abstract
MyoD, Myf5, myogenin, and MRF4 (also known as Myf6 or herculin) are myogenic regulatory factors (MRFs). MRFs are regarded as master transcription factors that are upregulated during myogenesis and influence stem cells to differentiate into myogenic lineage cells. In this review, we summarize MRFs, their regulatory factors, such as TLE3, NF-κB, and MRF target genes, including non-myogenic genes such as taste receptors. Understanding the function of MRFs and the physiology or pathology of satellite cells will contribute to the development of cell therapy and drug discovery for muscle-related diseases.
Collapse
Affiliation(s)
- Tomohiko Shirakawa
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Kyushu Dental University, Kitakyushu 803-8580, Japan; (T.S.); (A.I.); (T.K.)
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu 803-8580, Japan;
| | - Takashi Toyono
- Division of Anatomy, Department of Health Promotion, Kyushu Dental University, Kitakyushu 803-8580, Japan;
| | - Asako Inoue
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Kyushu Dental University, Kitakyushu 803-8580, Japan; (T.S.); (A.I.); (T.K.)
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu 803-8580, Japan;
| | - Takuma Matsubara
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu 803-8580, Japan;
| | - Tatsuo Kawamoto
- Division of Orofacial Functions and Orthodontics, Department of Health Improvement, Kyushu Dental University, Kitakyushu 803-8580, Japan; (T.S.); (A.I.); (T.K.)
| | - Shoichiro Kokabu
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Kitakyushu 803-8580, Japan;
- Correspondence: ; Tel.: +81-93-582-1131; Fax: +81-93-285-6000
| |
Collapse
|
28
|
Gioftsidi S, Relaix F, Mourikis P. The Notch signaling network in muscle stem cells during development, homeostasis, and disease. Skelet Muscle 2022; 12:9. [PMID: 35459219 PMCID: PMC9027478 DOI: 10.1186/s13395-022-00293-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/16/2022] [Indexed: 01/22/2023] Open
Abstract
Skeletal muscle stem cells have a central role in muscle growth and regeneration. They reside as quiescent cells in resting muscle and in response to damage they transiently amplify and fuse to produce new myofibers or self-renew to replenish the stem cell pool. A signaling pathway that is critical in the regulation of all these processes is Notch. Despite the major differences in the anatomical and cellular niches between the embryonic myotome, the adult sarcolemma/basement-membrane interphase, and the regenerating muscle, Notch signaling has evolved to support the context-specific requirements of the muscle cells. In this review, we discuss the diverse ways by which Notch signaling factors and other modifying partners are operating during the lifetime of muscle stem cells to establish an adaptive dynamic network.
Collapse
Affiliation(s)
- Stamatia Gioftsidi
- Université Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale (INSERM), Mondor Institute for Biomedical Research (IMRB), F-94010, Créteil, France
| | - Frederic Relaix
- Université Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale (INSERM), Mondor Institute for Biomedical Research (IMRB), F-94010, Créteil, France
- EnvA, IMRB, F-94700, Maisons-Alfort, France
- Etablissement Français du Sang (EFS), IMRB, F-94010, Creteil, France
- Assistance Publique-Hôpitaux de Paris, Hopital Mondor, Service d'Histologie, F-94010, Creteil, France
| | - Philippos Mourikis
- Université Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale (INSERM), Mondor Institute for Biomedical Research (IMRB), F-94010, Créteil, France.
| |
Collapse
|
29
|
Vergnol A, Traoré M, Pietri-Rouxel F, Falcone S. New Insights in CaVβ Subunits: Role in the Regulation of Gene Expression and Cellular Homeostasis. Front Cell Dev Biol 2022; 10:880441. [PMID: 35465309 PMCID: PMC9019481 DOI: 10.3389/fcell.2022.880441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/16/2022] [Indexed: 11/23/2022] Open
Abstract
The voltage-gated calcium channels (CaVs or VGCCs) are fundamental regulators of intracellular calcium homeostasis. When electrical activity induces their activation, the influx of calcium that they mediate or their interaction with intracellular players leads to changes in intracellular Ca2+ levels which regulate many processes such as contraction, secretion and gene expression, depending on the cell type. The essential component of the pore channel is the CaVα1 subunit. However, the fine-tuning of Ca2+-dependent signals is guaranteed by the modulatory role of the auxiliary subunits β, α2δ, and γ of the CaVs. In particular, four different CaVβ proteins (CaVβ1, CaVβ2, CaVβ3, and CaVβ4) are encoded by four different genes in mammalians, each of them displaying several splice variants. Some of these isoforms have been described in regulating CaVα1 docking and stability at the membrane and controlling the channel complex’s conformational changes. In addition, emerging evidences have highlighted other properties of the CaVβ subunits, independently of α1 and non-correlated to its channel or voltage sensing functions. This review summarizes the recent findings reporting novel roles of the auxiliary CaVβ subunits and in particular their direct or indirect implication in regulating gene expression in different cellular contexts.
Collapse
|
30
|
A Long Journey before Cycling: Regulation of Quiescence Exit in Adult Muscle Satellite Cells. Int J Mol Sci 2022; 23:ijms23031748. [PMID: 35163665 PMCID: PMC8836154 DOI: 10.3390/ijms23031748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 02/04/2023] Open
Abstract
Skeletal muscle harbors a pool of stem cells called muscle satellite cells (MuSCs) that are mainly responsible for its robust regenerative capacities. Adult satellite cells are mitotically quiescent in uninjured muscles under homeostasis, but they exit quiescence upon injury to re-enter the cell cycle to proliferate. While most of the expanded satellites cells differentiate and fuse to form new myofibers, some undergo self-renewal to replenish the stem cell pool. Specifically, quiescence exit describes the initial transition of MuSCs from quiescence to the first cell cycle, which takes much longer than the time required for subsequent cell cycles and involves drastic changes in cell size, epigenetic and transcriptomic profiles, and metabolic status. It is, therefore, an essential period indispensable for the success of muscle regeneration. Diverse mechanisms exist in MuSCs to regulate quiescence exit. In this review, we summarize key events that occur during quiescence exit in MuSCs and discuss the molecular regulation of this process with an emphasis on multiple levels of intrinsic regulatory mechanisms. A comprehensive understanding of how quiescence exit is regulated will facilitate satellite cell-based muscle regenerative therapies and advance their applications in various disease and aging conditions.
Collapse
|
31
|
Fujimaki S, Matsumoto T, Muramatsu M, Nagahisa H, Horii N, Seko D, Masuda S, Wang X, Asakura Y, Takahashi Y, Miyamoto Y, Usuki S, Yasunaga KI, Kamei Y, Nishinakamura R, Minami T, Fukuda T, Asakura A, Ono Y. The endothelial Dll4-muscular Notch2 axis regulates skeletal muscle mass. Nat Metab 2022; 4:180-189. [PMID: 35228746 DOI: 10.1038/s42255-022-00533-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 01/17/2022] [Indexed: 02/03/2023]
Abstract
Adult skeletal muscle is a highly plastic tissue that readily reduces or gains its mass in response to mechanical and metabolic stimulation; however, the upstream mechanisms that control muscle mass remain unclear. Notch signalling is highly conserved, and regulates many cellular events, including proliferation and differentiation of various types of tissue stem cell via cell-cell contact. Here we reveal that multinucleated myofibres express Notch2, which plays a crucial role in disuse- or diabetes-induced muscle atrophy. Mechanistically, in both atrophic conditions, the microvascular endothelium upregulates and releases the Notch ligand, Dll4, which then activates muscular Notch2 without direct cell-cell contact. Inhibition of the Dll4-Notch2 axis substantively prevents these muscle atrophy and promotes mechanical overloading-induced muscle hypertrophy in mice. Our results illuminate a tissue-specific function of the endothelium in controlling tissue plasticity and highlight the endothelial Dll4-muscular Notch2 axis as a central upstream mechanism that regulates catabolic signals from mechanical and metabolic stimulation, providing a therapeutic target for muscle-wasting diseases.
Collapse
Affiliation(s)
- Shin Fujimaki
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
- Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomohiro Matsumoto
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Masashi Muramatsu
- Division of Molecular and Vascular Biology, IRDA, Kumamoto University, Kumamoto, Japan
| | - Hiroshi Nagahisa
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Naoki Horii
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Daiki Seko
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
- Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shinya Masuda
- Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Xuerui Wang
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Yoko Asakura
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Yukie Takahashi
- International Research Center for Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuta Miyamoto
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shingo Usuki
- Liaison Laboratory Research Promotion Center, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Kei-Ichiro Yasunaga
- Liaison Laboratory Research Promotion Center, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Yasutomi Kamei
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Ryuichi Nishinakamura
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Takashi Minami
- Division of Molecular and Vascular Biology, IRDA, Kumamoto University, Kumamoto, Japan
| | - Takaichi Fukuda
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Atsushi Asakura
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Yusuke Ono
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan.
- Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University Faculty of Life Sciences, Kumamoto, Japan.
| |
Collapse
|
32
|
Della Gaspera B, Weill L, Chanoine C. Evolution of Somite Compartmentalization: A View From Xenopus. Front Cell Dev Biol 2022; 9:790847. [PMID: 35111756 PMCID: PMC8802780 DOI: 10.3389/fcell.2021.790847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/26/2021] [Indexed: 11/13/2022] Open
Abstract
Somites are transitory metameric structures at the basis of the axial organization of vertebrate musculoskeletal system. During evolution, somites appear in the chordate phylum and compartmentalize mainly into the dermomyotome, the myotome, and the sclerotome in vertebrates. In this review, we summarized the existing literature about somite compartmentalization in Xenopus and compared it with other anamniote and amniote vertebrates. We also present and discuss a model that describes the evolutionary history of somite compartmentalization from ancestral chordates to amniote vertebrates. We propose that the ancestral organization of chordate somite, subdivided into a lateral compartment of multipotent somitic cells (MSCs) and a medial primitive myotome, evolves through two major transitions. From ancestral chordates to vertebrates, the cell potency of MSCs may have evolved and gave rise to all new vertebrate compartments, i.e., the dermomyome, its hypaxial region, and the sclerotome. From anamniote to amniote vertebrates, the lateral MSC territory may expand to the whole somite at the expense of primitive myotome and may probably facilitate sclerotome formation. We propose that successive modifications of the cell potency of some type of embryonic progenitors could be one of major processes of the vertebrate evolution.
Collapse
|
33
|
Esteves de Lima J, Blavet C, Bonnin MA, Hirsinger E, Havis E, Relaix F, Duprez D. TMEM8C-mediated fusion is regionalized and regulated by NOTCH signalling during foetal myogenesis. Development 2022; 149:274065. [PMID: 35005776 DOI: 10.1242/dev.199928] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/15/2021] [Indexed: 12/30/2022]
Abstract
The location and regulation of fusion events within skeletal muscles during development remain unknown. Using the fusion marker myomaker (Mymk), named TMEM8C in chicken, as a readout of fusion, we identified a co-segregation of TMEM8C-positive cells and MYOG-positive cells in single-cell RNA-sequencing datasets of limbs from chicken embryos. We found that TMEM8C transcripts, MYOG transcripts and the fusion-competent MYOG-positive cells were preferentially regionalized in central regions of foetal muscles. We also identified a similar regionalization for the gene encoding the NOTCH ligand JAG2 along with an absence of NOTCH activity in TMEM8C+ fusion-competent myocytes. NOTCH function in myoblast fusion had not been addressed so far. We analysed the consequences of NOTCH inhibition for TMEM8C expression and myoblast fusion during foetal myogenesis in chicken embryos. NOTCH inhibition increased myoblast fusion and TMEM8C expression and released the transcriptional repressor HEYL from the TMEM8C regulatory regions. These results identify a regionalization of TMEM8C-dependent fusion and a molecular mechanism underlying the fusion-inhibiting effect of NOTCH in foetal myogenesis. The modulation of NOTCH activity in the fusion zone could regulate the flux of fusion events.
Collapse
Affiliation(s)
- Joana Esteves de Lima
- Sorbonne Université, Institut Biologie Paris Seine, CNRS UMR7622, Developmental Biology Laboratory, Inserm U1156, F-75005 Paris, France.,Univ Paris Est Creteil, INSERM, EnvA, EFS, AP-HP, IMRB, F-94010 Creteil, France
| | - Cédrine Blavet
- Sorbonne Université, Institut Biologie Paris Seine, CNRS UMR7622, Developmental Biology Laboratory, Inserm U1156, F-75005 Paris, France
| | - Marie-Ange Bonnin
- Sorbonne Université, Institut Biologie Paris Seine, CNRS UMR7622, Developmental Biology Laboratory, Inserm U1156, F-75005 Paris, France
| | - Estelle Hirsinger
- Sorbonne Université, Institut Biologie Paris Seine, CNRS UMR7622, Developmental Biology Laboratory, Inserm U1156, F-75005 Paris, France
| | - Emmanuelle Havis
- Sorbonne Université, Institut Biologie Paris Seine, CNRS UMR7622, Developmental Biology Laboratory, Inserm U1156, F-75005 Paris, France
| | - Frédéric Relaix
- Univ Paris Est Creteil, INSERM, EnvA, EFS, AP-HP, IMRB, F-94010 Creteil, France
| | - Delphine Duprez
- Sorbonne Université, Institut Biologie Paris Seine, CNRS UMR7622, Developmental Biology Laboratory, Inserm U1156, F-75005 Paris, France
| |
Collapse
|
34
|
Myoparr-Associated and -Independent Multiple Roles of Heterogeneous Nuclear Ribonucleoprotein K during Skeletal Muscle Cell Differentiation. Int J Mol Sci 2021; 23:ijms23010108. [PMID: 35008534 PMCID: PMC8744952 DOI: 10.3390/ijms23010108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/17/2022] Open
Abstract
RNA-binding proteins (RBPs) regulate cell physiology via the formation of ribonucleic-protein complexes with coding and non-coding RNAs. RBPs have multiple functions in the same cells; however, the precise mechanism through which their pleiotropic functions are determined remains unknown. In this study, we revealed the multiple inhibitory functions of heterogeneous nuclear ribonucleoprotein K (hnRNPK) for myogenic differentiation. We first identified hnRNPK as a lncRNA Myoparr binding protein. Gain- and loss-of-function experiments showed that hnRNPK repressed the expression of myogenin at the transcriptional level. The hnRNPK-binding region of Myoparr was required to repress myogenin expression. Moreover, hnRNPK repressed the expression of a set of genes coding for aminoacyl-tRNA synthetases in a Myoparr-independent manner. Mechanistically, hnRNPK regulated the eIF2α/Atf4 pathway, one branch of the intrinsic pathways of the endoplasmic reticulum sensors, in differentiating myoblasts. Thus, our findings demonstrate that hnRNPK plays lncRNA-associated and -independent multiple roles during myogenic differentiation, indicating that the analysis of lncRNA-binding proteins will be useful for elucidating both the physiological functions of lncRNAs and the multiple functions of RBPs.
Collapse
|
35
|
Lesieur-Sebellin M, Till M, Khau Van Kien P, Herve B, Bourgon N, Dupont C, Tabet AC, Barrois M, Coussement A, Loeuillet L, Mousty E, Ea V, El Assal A, Mary L, Jaillard S, Beneteau C, Le Vaillant C, Coutton C, Devillard F, Goumy C, Delabaere A, Redon S, Laurent Y, Lamouroux A, Massardier J, Turleau C, Sanlaville D, Cantagrel V, Sonigo P, Vialard F, Salomon LJ, Malan V. Terminal 6q deletions cause brain malformations, a phenotype mimicking heterozygous DLL1 pathogenic variants: A multicenter retrospective case series. Prenat Diagn 2021; 42:118-135. [PMID: 34894355 DOI: 10.1002/pd.6074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Terminal 6q deletion is a rare genetic condition associated with a neurodevelopmental disorder characterized by intellectual disability and structural brain anomalies. Interestingly, a similar phenotype is observed in patients harboring pathogenic variants in the DLL1 gene. Our study aimed to further characterize the prenatal phenotype of this syndrome as well as to attempt to establish phenotype-genotype correlations. METHOD We collected ultrasound findings from 22 fetuses diagnosed with a pure 6qter deletion. We reviewed the literature and compared our 22 cases with 14 fetuses previously reported as well as with patients with heterozygous DLL1 pathogenic variants. RESULTS Brain structural alterations were observed in all fetuses. The most common findings (>70%) were cerebellar hypoplasia, ventriculomegaly, and corpus callosum abnormalities. Gyration abnormalities were observed in 46% of cases. Occasional findings included cerebral heterotopia, aqueductal stenosis, vertebral malformations, dysmorphic features, and kidney abnormalities. CONCLUSION This is the first series of fetuses diagnosed with pure terminal 6q deletion. Based on our findings, we emphasize the prenatal sonographic anomalies, which may suggest the syndrome. Furthermore, this study highlights the importance of chromosomal microarray analysis to search for submicroscopic deletions of the 6q27 region involving the DLL1 gene in fetuses with these malformations.
Collapse
Affiliation(s)
- Marion Lesieur-Sebellin
- Service de Médecine Génomique des Maladies Rares, APHP-Centre, Hôpital Necker-Enfants Malades, Paris, France
- Faculté de Médecine, Sorbonne Université, Paris, France
| | - Marianne Till
- Laboratoire de Cytogénétique, service de Génétique, Hospices Civils de Lyon, Groupement Hospitalier Est, Bron, France
| | | | - Bérénice Herve
- Département de Génétique, CHI Poissy Saint-Germain, Saint-Germain, France
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
| | - Nicolas Bourgon
- Service d'Obstétrique et de Médecine Fœtale, APHP-Centre, Hôpital Necker-Enfants Malades, Paris, France
| | - Céline Dupont
- Département de Génétique, Unité de Cytogénétique, Hôpital Robert Debré, APHP Nord, Paris, France
| | - Anne-Claude Tabet
- Département de Génétique, Unité de Cytogénétique, Hôpital Robert Debré, APHP Nord, Paris, France
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, UMR3571 CNRS, Université de Paris, Paris, France
| | - Mathilde Barrois
- Maternité Port Royal, APHP Centre, Hôpital Cochin, Paris, France
| | - Aurélie Coussement
- Service des Maladies Génétiques de système et d'organes, APHP-Centre, Hôpital Cochin, Paris, France
| | - Laurence Loeuillet
- Service de Médecine Génomique des Maladies Rares, APHP-Centre, Hôpital Necker-Enfants Malades, Paris, France
| | - Eve Mousty
- Service de Gynécologie Obstétrique, Hôpital Caremeau, Nîmes, France
| | - Vuthy Ea
- UF de Cytogénétique et Génétique Médicale, Hôpital Caremeau, Nîmes, France
| | - Amal El Assal
- Département de Gynécologie Obstétrique, CHI Poissy Saint-Germain, Saint-Germain, France
| | - Laura Mary
- Service d'Anatomie Pathologique, CHU Rennes, Rennes, France
- Service de Cytogénétique et Biologie Cellulaire, CHU Rennes, Rennes, France
| | - Sylvie Jaillard
- Service de Cytogénétique et Biologie Cellulaire, CHU Rennes, Rennes, France
- INSERM, EHESP, IRSET, Université Rennes 1, Rennes, France
| | - Claire Beneteau
- Service de Génétique Médicale, CHU Nantes, Nantes, France
- UF de Fœtopathologie et Génétique, CHU de Nantes, Nantes, France
| | | | - Charles Coutton
- Service de Génétique, Génomique et Procréation, Hôpital Couple Enfant, CHU Grenoble Alpes, Grenoble, France
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institut pour l'Avancée des Biosciences, Equipe Génétique, Epigénétique et Thérapies de l'infertilité, Grenoble, France
| | - Françoise Devillard
- Service de Génétique, Génomique et Procréation, Hôpital Couple Enfant, CHU Grenoble Alpes, Grenoble, France
| | - Carole Goumy
- Cytogénétique Médicale, CHU Clermont-Ferrand, CHU Estaing, Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, Clermont-Ferrand, France
| | | | - Sylvia Redon
- CHU Brest, Inserm, Université de Brest, Brest, France
| | - Yves Laurent
- Service de Gynécologie et Obstétrique, GHBS Lorient, Lorient, France
| | - Audrey Lamouroux
- Service de Génétique Clinique, CHU Montpellier, Université de Montpellier, Montpellier, France
- Service de Gynécologie Obstétrique, CHU Nîmes, Université de Montpellier, Nîmes, France
| | - Jérôme Massardier
- Service de Gynécologie et Obstétrique, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, Bron, France
| | - Catherine Turleau
- Service de Médecine Génomique des Maladies Rares, APHP-Centre, Hôpital Necker-Enfants Malades, Paris, France
| | - Damien Sanlaville
- Laboratoire de Cytogénétique, service de Génétique, Hospices Civils de Lyon, Groupement Hospitalier Est, Bron, France
| | - Vincent Cantagrel
- Université de Paris, Institut Imagine, Laboratoire de génétique des troubles du neurodéveloppement, Paris, France
- Université de Paris, Paris, France
| | - Pascale Sonigo
- Service de Radiologie Pédiatrique, APHP-Centre, Hôpital Necker-Enfants Malades, Paris, France
| | - François Vialard
- Département de Génétique, CHI Poissy Saint-Germain, Saint-Germain, France
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
| | - Laurent J Salomon
- Service d'Obstétrique et de Médecine Fœtale, APHP-Centre, Hôpital Necker-Enfants Malades, Paris, France
- Université de Paris, Paris, France
| | - Valérie Malan
- Service de Médecine Génomique des Maladies Rares, APHP-Centre, Hôpital Necker-Enfants Malades, Paris, France
- Université de Paris, Institut Imagine, Laboratoire de génétique des troubles du neurodéveloppement, Paris, France
- Université de Paris, Paris, France
| |
Collapse
|
36
|
Esteves de Lima J, Relaix F. Master regulators of skeletal muscle lineage development and pluripotent stem cells differentiation. CELL REGENERATION 2021; 10:31. [PMID: 34595600 PMCID: PMC8484369 DOI: 10.1186/s13619-021-00093-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/24/2021] [Indexed: 12/16/2022]
Abstract
In vertebrates, the skeletal muscles of the body and their associated stem cells originate from muscle progenitor cells, during development. The specification of the muscles of the trunk, head and limbs, relies on the activity of distinct genetic hierarchies. The major regulators of trunk and limb muscle specification are the paired-homeobox transcription factors PAX3 and PAX7. Distinct gene regulatory networks drive the formation of the different muscles of the head. Despite the redeployment of diverse upstream regulators of muscle progenitor differentiation, the commitment towards the myogenic fate requires the expression of the early myogenic regulatory factors MYF5, MRF4, MYOD and the late differentiation marker MYOG. The expression of these genes is activated by muscle progenitors throughout development, in several waves of myogenic differentiation, constituting the embryonic, fetal and postnatal phases of muscle growth. In order to achieve myogenic cell commitment while maintaining an undifferentiated pool of muscle progenitors, several signaling pathways regulate the switch between proliferation and differentiation of myoblasts. The identification of the gene regulatory networks operating during myogenesis is crucial for the development of in vitro protocols to differentiate pluripotent stem cells into myoblasts required for regenerative medicine.
Collapse
Affiliation(s)
| | - Frédéric Relaix
- Univ Paris Est Creteil, INSERM, EnvA, EFS, AP-HP, IMRB, 94010, Creteil, France.
| |
Collapse
|
37
|
Schuster-Gossler K, Boldt K, Bornhorst D, Delany-Heiken P, Ueffing M, Gossler A. Activity of the mouse Notch ligand DLL1 is sensitive to C-terminal tagging in vivo. BMC Res Notes 2021; 14:383. [PMID: 34583743 PMCID: PMC8477538 DOI: 10.1186/s13104-021-05785-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/14/2021] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE The mammalian Notch ligand DLL1 has essential functions during development. To visualise DLL1 in tissues, for sorting and enrichment of DLL1-expressing cells, and to efficiently purify DLL1 protein complexes we tagged DLL1 in mice with AcGFPHA or Strep/FLAG. RESULTS We generated constructs to express DLL1 that carried C-terminal in-frame an AcGFPHA tag flanked by loxP sites followed by a Strep/FLAG (SF) tag out of frame. Cre-mediated recombination replaced AcGFP-HA by SF. The AcGFPHAstopSF cassette was added to DLL1 for tests in cultured cells and introduced into endogenous DLL1 in mice by homologous recombination. Tagged DLL1 protein was detected by antibodies against GFP and HA or Flag, respectively, both in CHO cells and embryo lysates. In CHO cells the AcGFP fluorophore fused to DLL1 was functional. In vivo AcGFP expression was below the level of detection by direct fluorescence. However, the SF tag allowed us to specifically purify DLL1 complexes from embryo lysates. Homozygous mice expressing AcGFPHA or SF-tagged DLL1 revealed a vertebral column phenotype reminiscent of disturbances in AP polarity during somitogenesis, a process most sensitive to reduced DLL1 function. Thus, even small C-terminal tags can impinge on sensitive developmental processes requiring DLL1 activity.
Collapse
Affiliation(s)
- Karin Schuster-Gossler
- Institute for Molecular Biology, OE5250, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Karsten Boldt
- Institute of Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Elfriede-Aulhorn-Strasse 7, 72076, Tübingen, Germany
| | - Dorothee Bornhorst
- Institute for Molecular Biology, OE5250, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,Institute of Biochemistry and Biology, Potsdam University, 14476, Potsdam, Germany.,Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, USA.,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, USA
| | - Patricia Delany-Heiken
- Institute for Molecular Biology, OE5250, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Marius Ueffing
- Institute of Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Elfriede-Aulhorn-Strasse 7, 72076, Tübingen, Germany
| | - Achim Gossler
- Institute for Molecular Biology, OE5250, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
38
|
Genetic Characterization, Current Model Systems and Prognostic Stratification in PAX Fusion-Negative vs. PAX Fusion-Positive Rhabdomyosarcoma. Genes (Basel) 2021; 12:genes12101500. [PMID: 34680895 PMCID: PMC8535289 DOI: 10.3390/genes12101500] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/19/2021] [Accepted: 09/24/2021] [Indexed: 12/17/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children and adolescents and accounts for approximately 2% of soft tissue sarcomas in adults. It is subcategorized into distinct subtypes based on histological features and fusion status (PAX-FOXO1/VGLL2/NCOA2). Despite advances in our understanding of the pathobiological and molecular landscape of RMS, the prognosis of these tumors has not significantly improved in recent years. Developing a better understanding of genetic abnormalities and risk stratification beyond the fusion status are crucial to developing better therapeutic strategies. Herein, we aim to highlight the genetic pathways/abnormalities involved, specifically in fusion-negative RMS, assess the currently available model systems to study RMS pathogenesis, and discuss available prognostic factors as well as their importance for risk stratification to achieve optimal therapeutic management.
Collapse
|
39
|
Feedback regulation of Notch signaling and myogenesis connected by MyoD-Dll1 axis. PLoS Genet 2021; 17:e1009729. [PMID: 34370738 PMCID: PMC8376015 DOI: 10.1371/journal.pgen.1009729] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/19/2021] [Accepted: 07/20/2021] [Indexed: 12/27/2022] Open
Abstract
Muscle precursor cells known as myoblasts are essential for muscle development and regeneration. Notch signaling is an ancient intercellular communication mechanism that plays prominent roles in controlling the myogenic program of myoblasts. Currently whether and how the myogenic cues feedback to refine Notch activities in these cells are largely unknown. Here, by mouse and human gene gain/loss-of-function studies, we report that MyoD directly turns on the expression of Notch-ligand gene Dll1 which activates Notch pathway to prevent precautious differentiation in neighboring myoblasts, while autonomously inhibits Notch to facilitate a myogenic program in Dll1 expressing cells. Mechanistically, we studied cis-regulatory DNA motifs underlying the MyoD-Dll1-Notch axis in vivo by characterizing myogenesis of a novel E-box deficient mouse model, as well as in human cells through CRISPR-mediated interference. These results uncovered the crucial transcriptional mechanism that mediates the reciprocal controls of Notch and myogenesis.
Collapse
|
40
|
Yartseva V, Goldstein LD, Rodman J, Kates L, Chen MZ, Chen YJJ, Foreman O, Siebel CW, Modrusan Z, Peterson AS, Jovičić A. Heterogeneity of Satellite Cells Implicates DELTA1/NOTCH2 Signaling in Self-Renewal. Cell Rep 2021; 30:1491-1503.e6. [PMID: 32023464 DOI: 10.1016/j.celrep.2019.12.100] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 09/27/2019] [Accepted: 12/30/2019] [Indexed: 12/20/2022] Open
Abstract
How satellite cells and their progenitors balance differentiation and self-renewal to achieve sustainable tissue regeneration is not well understood. A major roadblock to understanding satellite cell fate decisions has been the difficulty of studying this process in vivo. By visualizing expression dynamics of myogenic transcription factors during early regeneration in vivo, we identify the time point at which cells undergo decisions to differentiate or self-renew. Single-cell RNA sequencing reveals heterogeneity of satellite cells, including a subpopulation enriched in Notch2 receptor expression, during both muscle homeostasis and regeneration. Furthermore, we reveal that differentiating cells express the Dll1 ligand. Using antagonistic antibodies, we demonstrate that the DLL1 and NOTCH2 signaling pair is required for satellite cell self-renewal. Thus, differentiating cells provide the self-renewing signal during regeneration, enabling proportional regeneration in response to injury while maintaining the satellite cell pool. These findings have implications for therapeutic control of muscle regeneration.
Collapse
Affiliation(s)
- Valeria Yartseva
- Department of Molecular Biology, Genentech Inc., South San Francisco, CA 94080, USA; Department of Neuroscience, Genentech Inc., South San Francisco, CA 94080, USA
| | - Leonard D Goldstein
- Department of Molecular Biology, Genentech Inc., South San Francisco, CA 94080, USA; Department of Bioinformatics & Computational Biology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Julia Rodman
- Department of Molecular Biology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Lance Kates
- Department of Molecular Biology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Mark Z Chen
- Department of Molecular Biology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Ying-Jiun J Chen
- Department of Molecular Biology, Genentech Inc., South San Francisco, CA 94080, USA; Department of Protein Chemistry, Genentech Inc., South San Francisco, CA 94080, USA
| | - Oded Foreman
- Department of Pathology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Christian W Siebel
- Department of Discovery Oncology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Zora Modrusan
- Department of Molecular Biology, Genentech Inc., South San Francisco, CA 94080, USA; Department of Protein Chemistry, Genentech Inc., South San Francisco, CA 94080, USA
| | - Andrew S Peterson
- Department of Molecular Biology, Genentech Inc., South San Francisco, CA 94080, USA; Seven Rivers Genomic Medicines, MedGenome, Foster City, CA, USA
| | - Ana Jovičić
- Department of Molecular Biology, Genentech Inc., South San Francisco, CA 94080, USA; Department of Neuroscience, Genentech Inc., South San Francisco, CA 94080, USA.
| |
Collapse
|
41
|
Zhang Y, Lahmann I, Baum K, Shimojo H, Mourikis P, Wolf J, Kageyama R, Birchmeier C. Oscillations of Delta-like1 regulate the balance between differentiation and maintenance of muscle stem cells. Nat Commun 2021; 12:1318. [PMID: 33637744 PMCID: PMC7910593 DOI: 10.1038/s41467-021-21631-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 02/04/2021] [Indexed: 02/07/2023] Open
Abstract
Cell-cell interactions mediated by Notch are critical for the maintenance of skeletal muscle stem cells. However, dynamics, cellular source and identity of functional Notch ligands during expansion of the stem cell pool in muscle growth and regeneration remain poorly characterized. Here we demonstrate that oscillating Delta-like 1 (Dll1) produced by myogenic cells is an indispensable Notch ligand for self-renewal of muscle stem cells in mice. Dll1 expression is controlled by the Notch target Hes1 and the muscle regulatory factor MyoD. Consistent with our mathematical model, our experimental analyses show that Hes1 acts as the oscillatory pacemaker, whereas MyoD regulates robust Dll1 expression. Interfering with Dll1 oscillations without changing its overall expression level impairs self-renewal, resulting in premature differentiation of muscle stem cells during muscle growth and regeneration. We conclude that the oscillatory Dll1 input into Notch signaling ensures the equilibrium between self-renewal and differentiation in myogenic cell communities.
Collapse
Affiliation(s)
- Yao Zhang
- Developmental Biology/Signal Transduction, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.
| | - Ines Lahmann
- Developmental Biology/Signal Transduction, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Katharina Baum
- Mathematical Modelling of Cellular Processes, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Hasso Plattner Institute, Digital Engineering Faculty, University of Potsdam, Potsdam, Germany
| | - Hiromi Shimojo
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | | | - Jana Wolf
- Mathematical Modelling of Cellular Processes, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Department of Mathematics and Computer Science, Free University Berlin, Berlin, Germany
| | - Ryoichiro Kageyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Carmen Birchmeier
- Developmental Biology/Signal Transduction, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.
- Neurowissenschaftliches Forschungzentrum, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
42
|
Rybalka E, Timpani CA, Debruin DA, Bagaric RM, Campelj DG, Hayes A. The Failed Clinical Story of Myostatin Inhibitors against Duchenne Muscular Dystrophy: Exploring the Biology behind the Battle. Cells 2020; 9:E2657. [PMID: 33322031 PMCID: PMC7764137 DOI: 10.3390/cells9122657] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/18/2022] Open
Abstract
Myostatin inhibition therapy has held much promise for the treatment of muscle wasting disorders. This is particularly true for the fatal myopathy, Duchenne Muscular Dystrophy (DMD). Following on from promising pre-clinical data in dystrophin-deficient mice and dogs, several clinical trials were initiated in DMD patients using different modality myostatin inhibition therapies. All failed to show modification of disease course as dictated by the primary and secondary outcome measures selected: the myostatin inhibition story, thus far, is a failed clinical story. These trials have recently been extensively reviewed and reasons why pre-clinical data collected in animal models have failed to translate into clinical benefit to patients have been purported. However, the biological mechanisms underlying translational failure need to be examined to ensure future myostatin inhibitor development endeavors do not meet with the same fate. Here, we explore the biology which could explain the failed translation of myostatin inhibitors in the treatment of DMD.
Collapse
Affiliation(s)
- Emma Rybalka
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria 8001, Australia; (D.A.D.); (R.M.B.); (D.G.C.); (A.H.)
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St Albans, Victoria 3021, Australia
| | - Cara A. Timpani
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria 8001, Australia; (D.A.D.); (R.M.B.); (D.G.C.); (A.H.)
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St Albans, Victoria 3021, Australia
| | - Danielle A. Debruin
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria 8001, Australia; (D.A.D.); (R.M.B.); (D.G.C.); (A.H.)
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St Albans, Victoria 3021, Australia
| | - Ryan M. Bagaric
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria 8001, Australia; (D.A.D.); (R.M.B.); (D.G.C.); (A.H.)
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St Albans, Victoria 3021, Australia
| | - Dean G. Campelj
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria 8001, Australia; (D.A.D.); (R.M.B.); (D.G.C.); (A.H.)
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St Albans, Victoria 3021, Australia
| | - Alan Hayes
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria 8001, Australia; (D.A.D.); (R.M.B.); (D.G.C.); (A.H.)
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St Albans, Victoria 3021, Australia
- Department of Medicine—Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, 3021 Victoria, Australia
| |
Collapse
|
43
|
Wurmser M, Chaverot N, Madani R, Sakai H, Negroni E, Demignon J, Saint-Pierre B, Mouly V, Amthor H, Tapscott S, Birchmeier C, Tajbakhsh S, Le Grand F, Sotiropoulos A, Maire P. SIX1 and SIX4 homeoproteins regulate PAX7+ progenitor cell properties during fetal epaxial myogenesis. Development 2020; 147:dev.185975. [PMID: 32591430 DOI: 10.1242/dev.185975] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 06/18/2020] [Indexed: 01/09/2023]
Abstract
Pax7 expression marks stem cells in developing skeletal muscles and adult satellite cells during homeostasis and muscle regeneration. The genetic determinants that control the entrance into the myogenic program and the appearance of PAX7+ cells during embryogenesis are poorly understood. SIX homeoproteins are encoded by the sine oculis-related homeobox Six1-Six6 genes in vertebrates. Six1, Six2, Six4 and Six5 are expressed in the muscle lineage. Here, we tested the hypothesis that Six1 and Six4 could participate in the genesis of myogenic stem cells. We show that fewer PAX7+ cells occupy a satellite cell position between the myofiber and its associated basal lamina in Six1 and Six4 knockout mice (s1s4KO) at E18. However, PAX7+ cells are detected in remaining muscle masses present in the epaxial region of the double mutant embryos and are able to divide and contribute to muscle growth. To further characterize the properties of s1s4KO PAX7+ cells, we analyzed their transcriptome and tested their properties after transplantation in adult regenerating tibialis anterior muscle. Mutant stem cells contribute to hypotrophic myofibers that are not innervated but retain the ability to self-renew.
Collapse
Affiliation(s)
- Maud Wurmser
- Université de Paris, Institut Cochin, INSERM, CNRS, 24 rue du Fg St Jacques, F-75014 Paris, France
| | - Nathalie Chaverot
- Université de Paris, Institut Cochin, INSERM, CNRS, 24 rue du Fg St Jacques, F-75014 Paris, France
| | - Rouba Madani
- Université de Paris, Institut Cochin, INSERM, CNRS, 24 rue du Fg St Jacques, F-75014 Paris, France
| | - Hiroshi Sakai
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, Ehime, 791-0295, Japan.,Stem Cells and Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, 25 rue du Dr. Roux, 75015, Paris, France.,CNRS UMR 3738, Institut Pasteur, 75015 Paris, France
| | - Elisa Negroni
- Sorbonne Université, Institut de Myologie, INSERM, 75013 Paris, France
| | - Josiane Demignon
- Université de Paris, Institut Cochin, INSERM, CNRS, 24 rue du Fg St Jacques, F-75014 Paris, France
| | - Benjamin Saint-Pierre
- Université de Paris, Institut Cochin, INSERM, CNRS, 24 rue du Fg St Jacques, F-75014 Paris, France
| | - Vincent Mouly
- Sorbonne Université, Institut de Myologie, INSERM, 75013 Paris, France
| | - Helge Amthor
- INSERM U1179, LIA BAHN CSM, Université de Versailles Saint-Quentin-en-Yvelines, Montigny-le-Bretonneux, France
| | | | | | - Shahragim Tajbakhsh
- Stem Cells and Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, 25 rue du Dr. Roux, 75015, Paris, France.,CNRS UMR 3738, Institut Pasteur, 75015 Paris, France
| | - Fabien Le Grand
- Université de Paris, Institut Cochin, INSERM, CNRS, 24 rue du Fg St Jacques, F-75014 Paris, France.,Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS, INSERM, 69008 Lyon, France
| | - Athanassia Sotiropoulos
- Université de Paris, Institut Cochin, INSERM, CNRS, 24 rue du Fg St Jacques, F-75014 Paris, France
| | - Pascal Maire
- Université de Paris, Institut Cochin, INSERM, CNRS, 24 rue du Fg St Jacques, F-75014 Paris, France
| |
Collapse
|
44
|
Al Tanoury Z, Rao J, Tassy O, Gobert B, Gapon S, Garnier JM, Wagner E, Hick A, Hall A, Gussoni E, Pourquié O. Differentiation of the human PAX7-positive myogenic precursors/satellite cell lineage in vitro. Development 2020; 147:dev187344. [PMID: 32541004 PMCID: PMC7328153 DOI: 10.1242/dev.187344] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/29/2020] [Indexed: 12/12/2022]
Abstract
Satellite cells (SC) are muscle stem cells that can regenerate adult muscles upon injury. Most SC originate from PAX7+ myogenic precursors set aside during development. Although myogenesis has been studied in mouse and chicken embryos, little is known about human muscle development. Here, we report the generation of human induced pluripotent stem cell (iPSC) reporter lines in which fluorescent proteins have been introduced into the PAX7 and MYOG loci. We use single cell RNA sequencing to analyze the developmental trajectory of the iPSC-derived PAX7+ myogenic precursors. We show that the PAX7+ cells generated in culture can produce myofibers and self-renew in vitro and in vivo Together, we demonstrate that cells exhibiting characteristics of human fetal satellite cells can be produced in vitro from iPSC, opening interesting avenues for muscular dystrophy cell therapy. This work provides significant insights into the development of the human myogenic lineage.
Collapse
Affiliation(s)
- Ziad Al Tanoury
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Development and Stem Cells, CNRS (UMR 7104), Inserm U964, Université de Strasbourg, 67404, Illkirch Graffenstaden, France
- Department of Pathology, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA
| | - Jyoti Rao
- Department of Pathology, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA
| | - Olivier Tassy
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Development and Stem Cells, CNRS (UMR 7104), Inserm U964, Université de Strasbourg, 67404, Illkirch Graffenstaden, France
| | - Bénédicte Gobert
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Development and Stem Cells, CNRS (UMR 7104), Inserm U964, Université de Strasbourg, 67404, Illkirch Graffenstaden, France
- Anagenesis Biotechnologies, Parc d'innovation - BioParc 3, 850 Boulevard Sébastien Brandt, 67400 Illkirch Graffenstaden, France
| | - Svetlana Gapon
- Department of Pathology, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA
| | - Jean-Marie Garnier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Development and Stem Cells, CNRS (UMR 7104), Inserm U964, Université de Strasbourg, 67404, Illkirch Graffenstaden, France
| | - Erica Wagner
- Department of Pathology, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA
| | - Aurore Hick
- Anagenesis Biotechnologies, Parc d'innovation - BioParc 3, 850 Boulevard Sébastien Brandt, 67400 Illkirch Graffenstaden, France
| | - Arielle Hall
- Division of Genetics and Genomics, Boston Children's Hospital, 3 Blackfan Circle, CLS, Boston, MA 15021, USA
| | - Emanuela Gussoni
- Division of Genetics and Genomics, Boston Children's Hospital, 3 Blackfan Circle, CLS, Boston, MA 15021, USA
| | - Olivier Pourquié
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Development and Stem Cells, CNRS (UMR 7104), Inserm U964, Université de Strasbourg, 67404, Illkirch Graffenstaden, France
- Department of Pathology, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
45
|
Helmbacher F, Stricker S. Tissue cross talks governing limb muscle development and regeneration. Semin Cell Dev Biol 2020; 104:14-30. [PMID: 32517852 DOI: 10.1016/j.semcdb.2020.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/14/2022]
Abstract
For decades, limb development has been a paradigm of three-dimensional patterning. Moreover, as the limb muscles and the other tissues of the limb's musculoskeletal system arise from distinct developmental sources, it has been a prime example of integrative morphogenesis and cross-tissue communication. As the limbs grow, all components of the musculoskeletal system (muscles, tendons, connective tissue, nerves) coordinate their growth and differentiation, ultimately giving rise to a functional unit capable of executing elaborate movement. While the molecular mechanisms governing global three-dimensional patterning and formation of the skeletal structures of the limbs has been a matter of intense research, patterning of the soft tissues is less understood. Here, we review the development of limb muscles with an emphasis on their interaction with other tissue types and the instructive roles these tissues play. Furthermore, we discuss the role of adult correlates of these embryonic accessory tissues in muscle regeneration.
Collapse
Affiliation(s)
| | - Sigmar Stricker
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany.
| |
Collapse
|
46
|
Huot JR, Marino JS, Turner MJ, Arthur ST. Notch Inhibition via GSI Treatment Elevates Protein Synthesis in C2C12 Myotubes. BIOLOGY 2020; 9:biology9060115. [PMID: 32498424 PMCID: PMC7345243 DOI: 10.3390/biology9060115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 12/11/2022]
Abstract
The role of Notch signaling is widely studied in skeletal muscle regeneration but little is known about its influences on muscle protein synthesis (MPS). The purpose of this study was to investigate whether Notch signaling is involved in the regulation of MPS. C2C12 cells were treated with a γ-secretase inhibitor (GSI), to determine the effect of reduced Notch signaling on MPS and anabolic signaling markers. GSI treatment increased myotube hypertrophy by increasing myonuclear accretion (nuclei/myotube: p = 0.01) and myonuclear domain (myotube area per fusing nuclei: p < 0.001) in differentiating C2C12 cells. GSI treatment also elevated myotube hypertrophy in differentiated C2C12s (area/myotube; p = 0.01). In concert, GSI treatment augmented pmTOR Ser2448 (p = 0.01) and protein synthesis (using SUnSET method) in myotubes (p < 0.001). Examining protein expression upstream of mTOR revealed reductions in PTEN (p = 0.04), with subsequent elevations in pAKT Thr308 (p < 0.001) and pAKT Ser473 (p = 0.05). These findings reveal that GSI treatment elevates myotube hypertrophy through both augmentation of fusion and MPS. This study sheds light on the potential multifaceted roles of Notch within skeletal muscle. Furthermore, we have demonstrated that Notch may modulate the PTEN/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Joshua R. Huot
- Laboratory of Systems Physiology, Department of Kinesiology, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (J.R.H.); (J.S.M.); (M.J.T.)
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Joseph S. Marino
- Laboratory of Systems Physiology, Department of Kinesiology, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (J.R.H.); (J.S.M.); (M.J.T.)
| | - Michael J. Turner
- Laboratory of Systems Physiology, Department of Kinesiology, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (J.R.H.); (J.S.M.); (M.J.T.)
| | - Susan T. Arthur
- Laboratory of Systems Physiology, Department of Kinesiology, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (J.R.H.); (J.S.M.); (M.J.T.)
- Correspondence: ; Tel.: +1-(704)-687-0856
| |
Collapse
|
47
|
Sun C, Serra C, Lee G, Wagner KR. Stem cell-based therapies for Duchenne muscular dystrophy. Exp Neurol 2019; 323:113086. [PMID: 31639376 DOI: 10.1016/j.expneurol.2019.113086] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 02/08/2023]
Abstract
Muscular dystrophies are a group of genetic muscle disorders that cause progressive muscle weakness and degeneration. Within this group, Duchenne muscular dystrophy (DMD) is the most common and one of the most severe. DMD is an X chromosome linked disease that occurs to 1 in 3500 to 1 in 5000 boys. The cause of DMD is a mutation in the dystrophin gene, whose encoded protein provides both structural support and cell signaling capabilities. So far, there are very limited therapeutic options available and there is no cure for this disease. In this review, we discuss the existing cell therapy research, especially stem cell-based, which utilize myoblasts, satellite cells, bone marrow cells, mesoangioblasts and CD133+ cells. Finally, we focus on human pluripotent stem cells (hPSCs) which hold great potential in treating DMD. hPSCs can be used for autologous transplantation after being specified to a myogenic lineage. Over the last few years, there has been a rapid development of isolation, as well as differentiation, techniques in order to achieve effective transplantation results of myogenic cells specified from hPSCs. In this review, we summarize the current methods of hPSCs myogenic commitment/differentiation, and describe the current status of hPSC-derived myogenic cell transplantation.
Collapse
Affiliation(s)
- Congshan Sun
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Center for Genetic Muscle Disorders, Hugo W. Moser Research Institute at Kennedy Krieger Institute, Baltimore, MD 21205, USA.
| | - Carlo Serra
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Center for Genetic Muscle Disorders, Hugo W. Moser Research Institute at Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Gabsang Lee
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kathryn R Wagner
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Center for Genetic Muscle Disorders, Hugo W. Moser Research Institute at Kennedy Krieger Institute, Baltimore, MD 21205, USA
| |
Collapse
|
48
|
Ding S, Nie Y, Zhang X, Liu X, Wang C, Yuan R, Chen K, Zhu Q, Cai S, Fang Y, Chen Y, Mo D. The SNPs in myoD gene from normal muscle developing individuals have no effect on muscle mass. BMC Genet 2019; 20:72. [PMID: 31477002 PMCID: PMC6720383 DOI: 10.1186/s12863-019-0772-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/19/2019] [Indexed: 11/18/2022] Open
Abstract
Background Myogenic Differentiation 1 (MyoD) is a crucial master switch in regulating muscle-specific gene transcription. Forced expression of myoD is equipped to induce several cell lineages into myoblast, which then differentiate and fuse into myotube. Pig is one of the most significant livestock supplying meat, and has been classified into lean, fat and miniature pig breeds. However, the mechanisms underlying muscle mass variation among different pig breeds have remained unclear. Considering the important effect of MyoD on muscle development, it remains to be investigated whether the difference in muscle mass is caused by its single nucleotide polymorphisms (SNPs) which are the major differences among pig breeds at DNA level. Results In this study, we identified the locations of porcine myoD regulatory regions including proximal regulatory region (PRR), distal regulatory region (DRR), and core enhancer (CE) region. There are 8 SNPs in the regulatory regions and 6 SNPs in gene body region, which were identified from lean, fat and miniature pig populations. However, these SNPs have no effects on its temporal expression and transcriptional activity which might lead to the distinction in postnatal muscle mass. In addition, overexpression of myoD clones across from amphibious to mammals including xenopus tropicalis, chicken, mouse and pig whose gene identities vary from 68 to 84%, could promote myogenesis in NIH3T3 fibroblasts cells. Conclusions These results proved that myoD nucleotide variations from different pig populations have no effect on muscle mass, suggesting that the function of myoD is highly conserved not only among different pig breeds, but also across different species. Thus, it would be futile to discover SNPs affecting muscle mass in pig populations with normal muscle development. Electronic supplementary material The online version of this article (10.1186/s12863-019-0772-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Suying Ding
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Yaping Nie
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Xumeng Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Chen Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Renqiang Yuan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Keren Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Qi Zhu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Shufang Cai
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Ying Fang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Delin Mo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
49
|
Han S, Cui C, Wang Y, He H, Shen X, Chen Y, Liu Z, Zhu Q, Li D, Yin H. FHL3 negatively regulates the differentiation of skeletal muscle satellite cells in chicken. 3 Biotech 2019; 9:206. [PMID: 31139537 DOI: 10.1007/s13205-019-1735-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/26/2019] [Indexed: 10/26/2022] Open
Abstract
As a member of four and a half LIM domain proteins, FHL3 gene-encoded protein (FHL3) plays an important role in skeletal muscle development and contraction. In this study, we determined the potential role of FHL3 in the proliferation and differentiation of primary satellite cells in chicken. RT-qPCR results showed that FHL3 mRNA was highly expressed in skeletal muscle in 12 chicken tissues. Four cell proliferation assays (CCK8 assay; EDU staining assay; flow cytometric detection of cell cycle assay; and detection of cell proliferation marker genes Ki67 and N-Ras assay) revealed that FHL3 knockdown had no effect on the proliferation rate of chicken satellite cells. FHL3 knockdown promoted the differentiation of satellite cells into myotubes, as evidenced by increased fusion index, number of nuclei per myotube, Myog, Myh7, Myf5, and Mrf4 mRNA expressions, and myog and myosin heavy chain protein expressions of myogenic markers (P < 0.05). These results showed that the FHL3 was a negative regulator of the differentiation and fusion of chicken satellite cells into myotubes. However, FHL3 expression was increased during the differentiation of chicken satellite cells into myotubes. The study suggested that FHL3 might have different functions in chicken myotubes compared with that in chicken satellite cells.
Collapse
|
50
|
Haworth AS, Brackenbury WJ. Emerging roles for multifunctional ion channel auxiliary subunits in cancer. Cell Calcium 2019; 80:125-140. [PMID: 31071485 PMCID: PMC6553682 DOI: 10.1016/j.ceca.2019.04.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 02/07/2023]
Abstract
Several superfamilies of plasma membrane channels which regulate transmembrane ion flux have also been shown to regulate a multitude of cellular processes, including proliferation and migration. Ion channels are typically multimeric complexes consisting of conducting subunits and auxiliary, non-conducting subunits. Auxiliary subunits modulate the function of conducting subunits and have putative non-conducting roles, further expanding the repertoire of cellular processes governed by ion channel complexes to processes such as transcellular adhesion and gene transcription. Given this expansive influence of ion channels on cellular behaviour it is perhaps no surprise that aberrant ion channel expression is a common occurrence in cancer. This review will focus on the conducting and non-conducting roles of the auxiliary subunits of various Ca2+, K+, Na+ and Cl- channels and the burgeoning evidence linking such auxiliary subunits to cancer. Several subunits are upregulated (e.g. Cavβ, Cavγ) and downregulated (e.g. Kvβ) in cancer, while other subunits have been functionally implicated as oncogenes (e.g. Navβ1, Cavα2δ1) and tumour suppressor genes (e.g. CLCA2, KCNE2, BKγ1) based on in vivo studies. The strengthening link between ion channel auxiliary subunits and cancer has exposed these subunits as potential biomarkers and therapeutic targets. However further mechanistic understanding is required into how these subunits contribute to tumour progression before their therapeutic potential can be fully realised.
Collapse
Affiliation(s)
- Alexander S Haworth
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK
| | - William J Brackenbury
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|