1
|
Kim JA, Choi SS, Lim JK, Kim ES. Unlocking marine treasures: isolation and mining strategies of natural products from sponge-associated bacteria. Nat Prod Rep 2025. [PMID: 40277137 DOI: 10.1039/d5np00013k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Covering: 2019 to early 2025Marine sponges form unique ecosystems through symbiosis with diverse microbial communities, producing natural products including bioactive compounds. This review comprehensively addresses the key steps in the discovery of natural products from sponge-associated microorganisms, encompassing microbial isolation and cultivation, compound identification, and characterisation. Various cultivation methods, such as floating filter cultivation, microcapsule-based cultivation, and in situ systems, are examined to highlight their applications and strategies for overcoming limitations of conventional approaches. Additionally, the integration of genome-based methodologies and compound screening is explored to enhance the discovery of novel bioactive substances and establish a sustainable platform for natural product research. This review provides insights into the latest trends in sponge-associated microbial research and offers practical perspectives for expanding the utilization of marine biological resources.
Collapse
Affiliation(s)
- Jeong-A Kim
- Korea Institute of Ocean Science and Technology (KIOST), Jeju Bio Research Center, Jeju 63349, Republic of Korea.
| | - Si-Sun Choi
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea.
| | - Jae Kyu Lim
- Korea Institute of Ocean Science and Technology (KIOST), Jeju Bio Research Center, Jeju 63349, Republic of Korea.
- University of Science and Technology (UST), KIOST School, Daejeon 34113, Republic of Korea
| | - Eung-Soo Kim
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea.
| |
Collapse
|
2
|
Pereira O, Qin W, Galand PE, Debroas D, Lami R, Hochart C, Zhou Y, Zhou J, Zhang C. Metabolic activities of marine ammonia-oxidizing archaea orchestrated by quorum sensing. MLIFE 2024; 3:417-429. [PMID: 39359677 PMCID: PMC11442133 DOI: 10.1002/mlf2.12144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/22/2024] [Accepted: 06/18/2024] [Indexed: 10/04/2024]
Abstract
Ammonia-oxidizing archaea (AOA) play crucial roles in marine carbon and nitrogen cycles by fixing inorganic carbon and performing the initial step of nitrification. Evaluation of carbon and nitrogen metabolism popularly relies on functional genes such as amoA and accA. Increasing studies suggest that quorum sensing (QS) mainly studied in biofilms for bacteria may serve as a universal communication and regulatory mechanism among prokaryotes; however, this has yet to be demonstrated in marine planktonic archaea. To bridge this knowledge gap, we employed a combination of metabolic activity markers (amoA, accA, and grs) to elucidate the regulation of AOA-mediated nitrogen, carbon processes, and their interactions with the surrounding heterotrophic population. Through co-transcription investigations linking metabolic markers to potential key QS genes, we discovered that QS molecules could regulate AOA's carbon, nitrogen, and lipid metabolisms under different conditions. Interestingly, specific AOA ecotypes showed a preference for employing distinct QS systems and a distinct QS circuit involving a typical population. Overall, our data demonstrate that QS orchestrates nitrogen and carbon metabolism, including the exchange of organic metabolites between AOA and surrounding heterotrophic bacteria, which has been previously overlooked in marine AOA research.
Collapse
Affiliation(s)
- Olivier Pereira
- Shenzhen Key Laboratory of Marine Geo-Omics of Archaea, Department of Science and Engineering Southern University of Science and Technology Shenzhen China
- Institut WUT-AMU Wuhan University of Technology and Aix-Marseille Université Wuhan China
| | - Wei Qin
- School of Biological Sciences, Institute for Environmental Genomics University of Oklahoma Norman Oklahoma USA
| | - Pierre E Galand
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB) Banyuls sur Mer France
| | - Didier Debroas
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Genome et Environnement Clermont-Ferrand France
| | - Raphael Lami
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM) Banyuls sur Mer France
| | - Corentin Hochart
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB) Banyuls sur Mer France
| | - Yangkai Zhou
- Shenzhen Key Laboratory of Marine Geo-Omics of Archaea, Department of Science and Engineering Southern University of Science and Technology Shenzhen China
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School Tsinghua University Shenzhen China
| | - Chuanlun Zhang
- Shenzhen Key Laboratory of Marine Geo-Omics of Archaea, Department of Science and Engineering Southern University of Science and Technology Shenzhen China
- Shanghai Sheshan National Geophysical Observatory Shanghai Earthquake Agency Shanghai China
| |
Collapse
|
3
|
Efremova J, Mazzella V, Mirasole A, Teixidó N, Núñez-Pons L. Divergent morphological and microbiome strategies of two neighbor sponges to cope with low pH in Mediterranean CO 2 vents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170171. [PMID: 38246375 DOI: 10.1016/j.scitotenv.2024.170171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/23/2023] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
Ocean Acidification (OA) profoundly impacts marine biochemistry, resulting in a net loss of biodiversity. Porifera are often forecasted as winner taxa, yet the strategies to cope with OA can vary and may generate diverse fitness status. In this study, microbial shifts based on the V3-V4 16S rRNA gene marker were compared across neighboring Chondrosia reniformis sponges with high microbial abundance (HMA), and Spirastrella cunctatrix with low microbial abundance (LMA) microbiomes. Sponge holobionts co-occurred in a CO2 vent system with low pH (pHT ~ 7.65), and a control site with Ambient pH (pHT ~ 8.05) off Ischia Island, representing natural analogues to study future OA, and species' responses in the face of global environmental change. Microbial diversity and composition varied in both species across sites, yet at different levels. Increased numbers of core taxa were detected in S. cunctatrix, and a more diverse and flexible core microbiome was reported in C. reniformis under OA. Vent S. cunctatrix showed morphological impairment, along with signs of putative stress-induced dysbiosis, manifested by: 1) increases in alpha diversity, 2) shifts from sponge related microbes towards seawater microbes, and 3) high dysbiosis scores. Chondrosia reniformis in lieu, showed no morphological variation, low dysbiosis scores, and experienced a reduction in alpha diversity and less number of core taxa in vent specimens. Therefore, C. reniformis is hypothesized to maintain an state of normobiosis and acclimatize to OA, thanks to a more diverse, and likely metabolically versatile microbiome. A consortium of differentially abundant microbes was identified associated to either vent or control sponges, and chiefly related to carbon, nitrogen and sulfur-metabolisms for nutrient cycling and vitamin production, as well as probiotic symbionts in C. reniformis. Diversified symbiont associates supporting functional convergence could be the key behind resilience towards OA, yet specific acclimatization traits should be further investigated.
Collapse
Affiliation(s)
- Jana Efremova
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy.
| | - Valerio Mazzella
- NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy; Stazione Zoologica Anton Dohrn, National Institute of Marine Biology, Ecology and Biotechnology, Ischia Marine Centre, Ischia 80077, Naples, Italy.
| | - Alice Mirasole
- Stazione Zoologica Anton Dohrn, National Institute of Marine Biology, Ecology and Biotechnology, Ischia Marine Centre, Ischia 80077, Naples, Italy.
| | - Núria Teixidó
- NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy; Stazione Zoologica Anton Dohrn, National Institute of Marine Biology, Ecology and Biotechnology, Ischia Marine Centre, Ischia 80077, Naples, Italy; Laboratoire d'Océanographie de Villefranche, Sorbonne Université, CNRS, Villefranche-sur-mer, France.
| | - Laura Núñez-Pons
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy.
| |
Collapse
|
4
|
Mao Y, Wu J, Yang R, Ma Y, Ye J, Zhong J, Deng N, He X, Hong Y. Novel database for accA gene revealed a vertical variability pattern of autotrophic carbon fixation potential of ammonia oxidizing archaea in a permeable subterranean estuary. MARINE ENVIRONMENTAL RESEARCH 2024; 194:106342. [PMID: 38185001 DOI: 10.1016/j.marenvres.2024.106342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
The autotrophic carbon fixation pathway of ammonia-oxidizing archaea (AOA) was the 3-hydroxypropionate/4-hydroxybutyrate (3-HP/4-HB) cycle, of which the acetyl-CoA carboxylase α-submit (accA) gene is widely recognized as the indicator. To date, there is no reference database or suitable cut-off value for operational taxonomic unit (OTU) clustering to analyze the diversity of AOA based on the accA gene. In this study, a reference database with 489 sequences was constructed, all the accA gene sequences was obtained from the AOA enrichment culture, pure culture and environmental samples. Additionally, the 79% was determined as the cut-off value for OTU clustering by comparing the similarity between the accA gene and the 16S rRNA gene. The developed method was verified by analyzing samples from the subterranean estuary and a vertical variation pattern of autotrophic carbon fixation potential of AOA was revealed. This study provided an effective method to analyze the diversity and autotrophic carbon fixation potential of AOA based on accA gene.
Collapse
Affiliation(s)
- Yixiang Mao
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Jiapeng Wu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China.
| | - Ruotong Yang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Yuexi Ma
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Jiaqi Ye
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Jiarui Zhong
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Nanling Deng
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Xiang He
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Yiguo Hong
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
5
|
Zheng Y, Wang B, Gao P, Yang Y, Xu B, Su X, Ning D, Tao Q, Li Q, Zhao F, Wang D, Zhang Y, Li M, Winkler MKH, Ingalls AE, Zhou J, Zhang C, Stahl DA, Jiang J, Martens-Habbena W, Qin W. Novel order-level lineage of ammonia-oxidizing archaea widespread in marine and terrestrial environments. THE ISME JOURNAL 2024; 18:wrad002. [PMID: 38365232 PMCID: PMC10811736 DOI: 10.1093/ismejo/wrad002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/03/2023] [Accepted: 10/28/2023] [Indexed: 02/18/2024]
Abstract
Ammonia-oxidizing archaea (AOA) are among the most ubiquitous and abundant archaea on Earth, widely distributed in marine, terrestrial, and geothermal ecosystems. However, the genomic diversity, biogeography, and evolutionary process of AOA populations in subsurface environments are vastly understudied compared to those in marine and soil systems. Here, we report a novel AOA order Candidatus (Ca.) Nitrosomirales which forms a sister lineage to the thermophilic Ca. Nitrosocaldales. Metagenomic and 16S rRNA gene-read mapping demonstrates the abundant presence of Nitrosomirales AOA in various groundwater environments and their widespread distribution across a range of geothermal, terrestrial, and marine habitats. Terrestrial Nitrosomirales AOA show the genetic capacity of using formate as a source of reductant and using nitrate as an alternative electron acceptor. Nitrosomirales AOA appear to have acquired key metabolic genes and operons from other mesophilic populations via horizontal gene transfer, including genes encoding urease, nitrite reductase, and V-type ATPase. The additional metabolic versatility conferred by acquired functions may have facilitated their radiation into a variety of subsurface, marine, and soil environments. We also provide evidence that each of the four AOA orders spans both marine and terrestrial habitats, which suggests a more complex evolutionary history for major AOA lineages than previously proposed. Together, these findings establish a robust phylogenomic framework of AOA and provide new insights into the ecology and adaptation of this globally abundant functional guild.
Collapse
Affiliation(s)
- Yue Zheng
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Baozhan Wang
- Department of Microbiology, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ping Gao
- Department of Microbiology, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yiyan Yang
- National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, United States
| | - Bu Xu
- Department of Ocean Science and Engineering, Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen 518055, China
- Shanghai Sheshan National Geophysical Observatory , Shanghai 201602, China
| | - Xiaoquan Su
- College of Computer Science and Technology, Qingdao University , Qingdao 266101, China
| | - Daliang Ning
- School of Biological Sciences, Institute for Environmental Genomics, University of Oklahoma, Norman, OK 73019, United States
| | - Qing Tao
- School of Biological Sciences, Institute for Environmental Genomics, University of Oklahoma, Norman, OK 73019, United States
| | - Qian Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Feng Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Dazhi Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Yao Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Mari-K H Winkler
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, United States
| | - Anitra E Ingalls
- School of Oceanography, University of Washington, Seattle, WA 98195, United States
| | - Jizhong Zhou
- School of Biological Sciences, Institute for Environmental Genomics, University of Oklahoma, Norman, OK 73019, United States
- School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK 73019, United States
- Department of Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Chuanlun Zhang
- Department of Ocean Science and Engineering, Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen 518055, China
- Shanghai Sheshan National Geophysical Observatory , Shanghai 201602, China
| | - David A Stahl
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, United States
| | - Jiandong Jiang
- Department of Microbiology, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Willm Martens-Habbena
- Department of Microbiology and Cell Science, Fort Lauderdale Research and Education Center, University of Florida, Davie, FL 33314, United States
| | - Wei Qin
- School of Biological Sciences, Institute for Environmental Genomics, University of Oklahoma, Norman, OK 73019, United States
| |
Collapse
|
6
|
Moeller FU, Herbold CW, Schintlmeister A, Mooshammer M, Motti C, Glasl B, Kitzinger K, Behnam F, Watzka M, Schweder T, Albertsen M, Richter A, Webster NS, Wagner M. Taurine as a key intermediate for host-symbiont interaction in the tropical sponge Ianthella basta. THE ISME JOURNAL 2023; 17:1208-1223. [PMID: 37188915 PMCID: PMC10356861 DOI: 10.1038/s41396-023-01420-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023]
Abstract
Marine sponges are critical components of marine benthic fauna assemblages, where their filter-feeding and reef-building capabilities provide bentho-pelagic coupling and crucial habitat. As potentially the oldest representation of a metazoan-microbe symbiosis, they also harbor dense, diverse, and species-specific communities of microbes, which are increasingly recognized for their contributions to dissolved organic matter (DOM) processing. Recent omics-based studies of marine sponge microbiomes have proposed numerous pathways of dissolved metabolite exchange between the host and symbionts within the context of the surrounding environment, but few studies have sought to experimentally interrogate these pathways. By using a combination of metaproteogenomics and laboratory incubations coupled with isotope-based functional assays, we showed that the dominant gammaproteobacterial symbiont, 'Candidatus Taurinisymbion ianthellae', residing in the marine sponge, Ianthella basta, expresses a pathway for the import and dissimilation of taurine, a ubiquitously occurring sulfonate metabolite in marine sponges. 'Candidatus Taurinisymbion ianthellae' incorporates taurine-derived carbon and nitrogen while, at the same time, oxidizing the dissimilated sulfite into sulfate for export. Furthermore, we found that taurine-derived ammonia is exported by the symbiont for immediate oxidation by the dominant ammonia-oxidizing thaumarchaeal symbiont, 'Candidatus Nitrosospongia ianthellae'. Metaproteogenomic analyses also suggest that 'Candidatus Taurinisymbion ianthellae' imports DMSP and possesses both pathways for DMSP demethylation and cleavage, enabling it to use this compound as a carbon and sulfur source for biomass, as well as for energy conservation. These results highlight the important role of biogenic sulfur compounds in the interplay between Ianthella basta and its microbial symbionts.
Collapse
Affiliation(s)
- Florian U Moeller
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Craig W Herbold
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Arno Schintlmeister
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
- Large-Instrument Facility for Environmental and Isotope Mass Spectrometry, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Maria Mooshammer
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Cherie Motti
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Bettina Glasl
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Katharina Kitzinger
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Faris Behnam
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Margarete Watzka
- Centre for Microbiology and Environmental Systems Science, Division of Terrestrial Ecosystem Research, University of Vienna, Vienna, Austria
| | - Thomas Schweder
- Institute of Marine Biotechnology e.V., Greifswald, Germany
- Institute of Pharmacy, Pharmaceutical Biotechnology, University of Greifswald, Greifswald, Germany
| | - Mads Albertsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Andreas Richter
- Centre for Microbiology and Environmental Systems Science, Division of Terrestrial Ecosystem Research, University of Vienna, Vienna, Austria
| | - Nicole S Webster
- Australian Institute of Marine Science, Townsville, QLD, Australia
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, St Lucia, QLD, Australia
- Australian Antarctic Division, Kingston, TAS, Australia
| | - Michael Wagner
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria.
- Large-Instrument Facility for Environmental and Isotope Mass Spectrometry, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
7
|
Santini S, Schenkelaars Q, Jourda C, Duchesne M, Belahbib H, Rocher C, Selva M, Riesgo A, Vervoort M, Leys SP, Kodjabachian L, Le Bivic A, Borchiellini C, Claverie JM, Renard E. The compact genome of the sponge Oopsacas minuta (Hexactinellida) is lacking key metazoan core genes. BMC Biol 2023; 21:139. [PMID: 37337252 DOI: 10.1186/s12915-023-01619-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 05/09/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Explaining the emergence of the hallmarks of bilaterians is a central focus of evolutionary developmental biology-evodevo-and evolutionary genomics. For this purpose, we must both expand and also refine our knowledge of non-bilaterian genomes, especially by studying early branching animals, in particular those in the metazoan phylum Porifera. RESULTS We present a comprehensive analysis of the first whole genome of a glass sponge, Oopsacas minuta, a member of the Hexactinellida. Studying this class of sponge is evolutionary relevant because it differs from the three other Porifera classes in terms of development, tissue organization, ecology, and physiology. Although O. minuta does not exhibit drastic body simplifications, its genome is among the smallest of animal genomes sequenced so far, and surprisingly lacks several metazoan core genes (including Wnt and several key transcription factors). Our study also provides the complete genome of a symbiotic Archaea dominating the associated microbial community: a new Thaumarchaeota species. CONCLUSIONS The genome of the glass sponge O. minuta differs from all other available sponge genomes by its compactness and smaller number of encoded proteins. The unexpected loss of numerous genes previously considered ancestral and pivotal for metazoan morphogenetic processes most likely reflects the peculiar syncytial tissue organization in this group. Our work further documents the importance of convergence during animal evolution, with multiple convergent evolution of septate-like junctions, electrical-signaling and multiciliated cells in metazoans.
Collapse
Affiliation(s)
- Sébastien Santini
- Aix Marseille Univ, CNRS, IGS, UMR 7256, IMM, IM2B, IOM, Marseille, France
| | - Quentin Schenkelaars
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France
- Institut Jacques Monod, CNRS, UMR 7592, Univ Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Cyril Jourda
- Aix Marseille Univ, CNRS, IGS, UMR 7256, IMM, IM2B, IOM, Marseille, France
- CIRAD, UMR PVBMT, La Réunion, France
| | - Marc Duchesne
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Hassiba Belahbib
- Aix Marseille Univ, CNRS, IGS, UMR 7256, IMM, IM2B, IOM, Marseille, France
| | - Caroline Rocher
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France
| | - Marjorie Selva
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France
| | - Ana Riesgo
- Department of Biodiversity and Evolutionary Biology, Madrid, Spain
- Department of Life Sciences, Natural History Museum of London, London, SW7 5BD, UK
| | - Michel Vervoort
- Institut Jacques Monod, CNRS, UMR 7592, Univ Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Sally P Leys
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Laurent Kodjabachian
- Aix Marseille Univ, CNRS, IBDM, UMR 7288, Turing Center for Living Systems, Marseille, France
| | - André Le Bivic
- Aix Marseille Univ, CNRS, IBDM, UMR 7288, Marseille, France
| | | | | | - Emmanuelle Renard
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France.
- Aix Marseille Univ, CNRS, IBDM, UMR 7288, Marseille, France.
| |
Collapse
|
8
|
Roveta C, Calcinai B, Girolametti F, Fernandes Couceiro J, Puce S, Annibaldi A, Costa R. The prokaryotic community of Chondrosia reniformis Nardo, 1847: from diversity to mercury detection. ZOOLOGY 2023; 158:126091. [PMID: 37003141 DOI: 10.1016/j.zool.2023.126091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 02/21/2023] [Accepted: 03/16/2023] [Indexed: 03/31/2023]
Abstract
Microbial communities inhabiting sponges are known to take part in many metabolic pathways, including nutrient cycles, and possibly also in the bioaccumulation of trace elements (TEs). Here, we used high-throughput, Illumina sequencing of 16S rRNA genes to characterize the prokaryotic communities present in the cortex and choanosome, respectively the external and internal body region of Chondrosia reniformis, and in the surrounding seawater. Furthermore, we estimated the total mercury content (THg) in these body regions of the sponge and in the corresponding microbial cell pellets. Fifteen prokaryotic phyla were detected in association with C. reniformis, 13 belonging to the domain Bacteria and two to the Archaea. No significant differences between the prokaryotic community composition of the two regions were found. Three lineages of ammonium-oxidizing organisms (Cenarchaeum symbiosum, Nitrosopumilus maritimus, and Nitrosococcus sp.) co-dominated the prokaryotic community, suggesting ammonium oxidation/nitrification as a key metabolic pathway within the microbiome of C. reniformis. In the sponge fractions, higher THg levels were found in the choanosome compared to the cortex. In contrast, comparable THg levels found in the microbial pellets obtained from both regions were significantly lower than those observed in the corresponding sponge fractions. Our work provides new insights into the prokaryotic communities and TEs distribution in different body parts of a model organism relevant for marine conservation and biotechnology. In this sense, this study paves the way for scientists to deepen the possible application of sponges not only as bioindicators, but also as bioremediation tools of metal polluted environments.
Collapse
Affiliation(s)
- Camilla Roveta
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Barbara Calcinai
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Federico Girolametti
- Department of Industrial Engineering and Mathematical Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Joana Fernandes Couceiro
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Stefania Puce
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Anna Annibaldi
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Rodrigo Costa
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Centre of Marine Sciences (CCMAR), University of Algarve, Portugal
| |
Collapse
|
9
|
Qu YN, Rao YZ, Qi YL, Li YX, Li A, Palmer M, Hedlund BP, Shu WS, Evans PN, Nie GX, Hua ZS, Li WJ. Panguiarchaeum symbiosum, a potential hyperthermophilic symbiont in the TACK superphylum. Cell Rep 2023; 42:112158. [PMID: 36827180 DOI: 10.1016/j.celrep.2023.112158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/27/2022] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
The biology of Korarchaeia remains elusive due to the lack of genome representatives. Here, we reconstruct 10 closely related metagenome-assembled genomes from hot spring habitats and place them into a single species, proposed herein as Panguiarchaeum symbiosum. Functional investigation suggests that Panguiarchaeum symbiosum is strictly anaerobic and grows exclusively in thermal habitats by fermenting peptides coupled with sulfide and hydrogen production to dispose of electrons. Due to its inability to biosynthesize archaeal membranes, amino acids, and purines, this species likely exists in a symbiotic lifestyle similar to DPANN archaea. Population metagenomics and metatranscriptomic analyses demonstrated that genes associated with amino acid/peptide uptake and cell attachment exhibited positive selection and were highly expressed, supporting the proposed proteolytic catabolism and symbiotic lifestyle. Our study sheds light on the metabolism, evolution, and potential symbiotic lifestyle of Panguiarchaeum symbiosum, which may be a unique host-dependent archaeon within the TACK superphylum.
Collapse
Affiliation(s)
- Yan-Ni Qu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Yang-Zhi Rao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Yan-Ling Qi
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yu-Xian Li
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Andrew Li
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Marike Palmer
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Wen-Sheng Shu
- School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Paul N Evans
- The Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Guo-Xing Nie
- College of Fisheries, Henan Normal University, Xinxiang, China
| | - Zheng-Shuang Hua
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China.
| |
Collapse
|
10
|
Wei TS, Gao ZM, Gong L, Li QM, Zhou YL, Chen HG, He LS, Wang Y. Genome-centric view of the microbiome in a new deep-sea glass sponge species Bathydorus sp. Front Microbiol 2023; 14:1078171. [PMID: 36846759 PMCID: PMC9944714 DOI: 10.3389/fmicb.2023.1078171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/12/2023] [Indexed: 02/10/2023] Open
Abstract
Sponges are widely distributed in the global ocean and harbor diverse symbiotic microbes with mutualistic relationships. However, sponge symbionts in the deep sea remain poorly studied at the genome level. Here, we report a new glass sponge species of the genus Bathydorus and provide a genome-centric view of its microbiome. We obtained 14 high-quality prokaryotic metagenome-assembled genomes (MAGs) affiliated with the phyla Nitrososphaerota, Pseudomonadota, Nitrospirota, Bdellovibrionota, SAR324, Bacteroidota, and Patescibacteria. In total, 13 of these MAGs probably represent new species, suggesting the high novelty of the deep-sea glass sponge microbiome. An ammonia-oxidizing Nitrososphaerota MAG B01, which accounted for up to 70% of the metagenome reads, dominated the sponge microbiomes. The B01 genome had a highly complex CRISPR array, which likely represents an advantageous evolution toward a symbiotic lifestyle and forceful ability to defend against phages. A sulfur-oxidizing Gammaproteobacteria species was the second most dominant symbiont, and a nitrite-oxidizing Nitrospirota species could also be detected, but with lower relative abundance. Bdellovibrio species represented by two MAGs, B11 and B12, were first reported as potential predatory symbionts in deep-sea glass sponges and have undergone dramatic genome reduction. Comprehensive functional analysis indicated that most of the sponge symbionts encoded CRISPR-Cas systems and eukaryotic-like proteins for symbiotic interactions with the host. Metabolic reconstruction further illustrated their essential roles in carbon, nitrogen, and sulfur cycles. In addition, diverse putative phages were identified from the sponge metagenomes. Our study expands the knowledge of microbial diversity, evolutionary adaption, and metabolic complementarity in deep-sea glass sponges.
Collapse
Affiliation(s)
- Tao-Shu Wei
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China,University of Chinese Academy of Sciences, Beijing, China
| | - Zhao-Ming Gao
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China,*Correspondence: Zhao-Ming Gao ✉
| | - Lin Gong
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Qing-Mei Li
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| | - Ying-Li Zhou
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| | - Hua-Guan Chen
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China,University of Chinese Academy of Sciences, Beijing, China
| | - Li-Sheng He
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| | - Yong Wang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China,Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China,Yong Wang ✉
| |
Collapse
|
11
|
Wang P, Li M, Dong L, Zhang C, Xie W. Comparative Genomics of Thaumarchaeota From Deep-Sea Sponges Reveal Their Niche Adaptation. Front Microbiol 2022; 13:869834. [PMID: 35859738 PMCID: PMC9289680 DOI: 10.3389/fmicb.2022.869834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022] Open
Abstract
Thaumarchaeota account for a large portion of microbial symbionts in deep-sea sponges and are even dominant in some cases. In this study, we investigated three new sponge-associated Thaumarchaeota from the deep West Pacific Ocean. Thaumarchaeota were found to be the most dominant phylum in this sponge by both prokaryotic 16S rRNA amplicons and metagenomic sequencing. Fifty-seven published Thaumarchaeota genomes from sponges and other habitats were included for genomic comparison. Similar to shallow sponge-associated Thaumarchaeota, those Thaumarchaeota in deep-sea sponges have extended genome sizes and lower coding density compared with their free-living lineages. Thaumarchaeota in deep-sea sponges were specifically enriched in genes related to stress adapting, symbiotic adhesion and stability, host–microbe interaction and protein transportation. The genes involved in defense mechanisms, such as the restriction-modification system, clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system, and toxin-antitoxin system were commonly enriched in both shallow and deep sponge-associated Thaumarchaeota. Our study demonstrates the significant effects of both depth and symbiosis on forming genomic characteristics of Thaumarchaeota, and provides novel insights into their niche adaptation in deep-sea sponges.
Collapse
Affiliation(s)
- Peng Wang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Minchun Li
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Liang Dong
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Cheng Zhang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Wei Xie
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- *Correspondence: Wei Xie,
| |
Collapse
|
12
|
Ren M, Wang J. Phylogenetic divergence and adaptation of Nitrososphaeria across lake depths and freshwater ecosystems. THE ISME JOURNAL 2022; 16:1491-1501. [PMID: 35091647 PMCID: PMC9123079 DOI: 10.1038/s41396-022-01199-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 01/05/2022] [Accepted: 01/17/2022] [Indexed: 04/29/2023]
Abstract
Thaumarchaeota (now the class Nitrososphaeria in the phylum Thermoproteota in GTDB taxonomy) are abundant across marine and soil habitats; however, their genomic diversity and evolutionary history in freshwater environments remain elusive. Here, we reconstructed 17 high-quality metagenome-assembled genomes of Nitrososphaeria from a deep lake and two great rivers, and compared all available genomes between freshwater and marine habitats regarding their phylogenetic positions, relative abundance, and genomic content. We found that freshwater Nitrososphaeria were dominated by the family Nitrosopumilaceae and could be grouped into three distinct clades closely related to the genera Nitrosopumilus, Nitrosoarchaeum, and Nitrosotenuis. The Nitrosopumilus-like clade was exclusively from deep lakes, while the Nitrosoarchaeum-like clade was dominated by species from deep lakes and rivers, and the Nitrosotenuis-like clade was mainly from rivers, deep lakes, and estuaries. Interestingly, there was vertical niche separation between two clades in deep lakes, showing that the Nitrosopumilus-like species dominated shallow layers, whereas the relative abundance of the Nitrosoarchaeum-like clade increased toward deep waters. Phylogenetic clustering patterns in the Nitrosopumilaceae supported at least one freshwater-to-marine and two marine-to-freshwater transitions, the former of which refined the potential terrestrial-to-marine evolutionary path as previously proposed. The occurrence of the two marine-to-freshwater transitions were accompanied by horizontal transfer of the genes involved in nutrition regulation, osmoregulation, and cell motility during their colonization to freshwater habitats. Specifically, the Nitrosopumilus-like clade showed losses of genes encoding flagella assembly and ion transport, whereas the Nitrosoarchaeum-like clade had losses of intact genes involved in urea uptake and utilization and gains of genes encoding osmolarity-mediated mechanosensitive channels. Collectively, our results reveal for the first time the high genomic diversity of the class Nitrososphaeria across freshwater ecosystems and provide novel insights into their adaptive mechanisms and evolutionary histories.
Collapse
Affiliation(s)
- Minglei Ren
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
13
|
Wu J, Hong Y, He X, Liu X, Ye J, Jiao L, Li Y, Wang Y, Ye F, Yang Y, Du J. Niche differentiation of ammonia-oxidizing archaea and related autotrophic carbon fixation potential in the water column of the South China Sea. iScience 2022; 25:104333. [PMID: 35602962 PMCID: PMC9118673 DOI: 10.1016/j.isci.2022.104333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/12/2022] [Accepted: 04/26/2022] [Indexed: 11/07/2022] Open
Abstract
The significant primary production by ammonia-oxidizing archaea (AOA) in the ocean was reported, but the carbon fixation process of AOA and its community composition along the water depth remain unclear. Here, we investigated the abundance, community composition, and potential carbon fixation of AOA in water columns of the South China Sea. Higher abundances of the amoA and accA genes of AOA were found below the euphotic zone. Similarly, higher carbon fixation potential of AOA, evaluated by the ratios of amoA to accA gene, was also observed below euphotic zone and the ratios increased with increasing water depth. The vertical niche differentiation of AOA was further evidenced, with the dominant genus shifting from Nitrosopelagicus in the epipelagic zone to uncultured genus in the meso- and bathypelagic zones. Our findings highlight the higher carbon fixation potential of AOA in deep water and the significance of AOA to the ocean carbon budget.
Collapse
Affiliation(s)
- Jiapeng Wu
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yiguo Hong
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xiang He
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xiaohan Liu
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Jiaqi Ye
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Lijing Jiao
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yiben Li
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yu Wang
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Fei Ye
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yunhua Yang
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Juan Du
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
14
|
Reji L, Cardarelli EL, Boye K, Bargar JR, Francis CA. Diverse ecophysiological adaptations of subsurface Thaumarchaeota in floodplain sediments revealed through genome-resolved metagenomics. THE ISME JOURNAL 2022; 16:1140-1152. [PMID: 34873295 PMCID: PMC8940955 DOI: 10.1038/s41396-021-01167-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/17/2021] [Accepted: 11/26/2021] [Indexed: 02/03/2023]
Abstract
The terrestrial subsurface microbiome contains vastly underexplored phylogenetic diversity and metabolic novelty, with critical implications for global biogeochemical cycling. Among the key microbial inhabitants of subsurface soils and sediments are Thaumarchaeota, an archaeal phylum that encompasses ammonia-oxidizing archaea (AOA) as well as non-ammonia-oxidizing basal lineages. Thaumarchaeal ecology in terrestrial systems has been extensively characterized, particularly in the case of AOA. However, there is little knowledge on the diversity and ecophysiology of Thaumarchaeota in deeper soils, as most lineages, particularly basal groups, remain uncultivated and underexplored. Here we use genome-resolved metagenomics to examine the phylogenetic and metabolic diversity of Thaumarchaeota along a 234 cm depth profile of hydrologically variable riparian floodplain sediments in the Wind River Basin near Riverton, Wyoming. Phylogenomic analysis of the metagenome-assembled genomes (MAGs) indicates a shift in AOA population structure from the dominance of the terrestrial Nitrososphaerales lineage in the well-drained top ~100 cm of the profile to the typically marine Nitrosopumilales in deeper, moister, more energy-limited sediment layers. We also describe two deeply rooting non-AOA MAGs with numerous unexpected metabolic features, including the reductive acetyl-CoA (Wood-Ljungdahl) pathway, tetrathionate respiration, a form III RuBisCO, and the potential for extracellular electron transfer. These MAGs also harbor tungsten-containing aldehyde:ferredoxin oxidoreductase, group 4f [NiFe]-hydrogenases and a canonical heme catalase, typically not found in Thaumarchaeota. Our results suggest that hydrological variables, particularly proximity to the water table, impart a strong control on the ecophysiology of Thaumarchaeota in alluvial sediments.
Collapse
Affiliation(s)
- Linta Reji
- grid.168010.e0000000419368956Department of Earth System Science, Stanford University, Stanford, CA USA ,grid.16750.350000 0001 2097 5006Present Address: Department of Geosciences, Princeton University, Princeton, NJ USA
| | - Emily L. Cardarelli
- grid.168010.e0000000419368956Department of Earth System Science, Stanford University, Stanford, CA USA ,grid.20861.3d0000000107068890Present Address: Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Kristin Boye
- grid.445003.60000 0001 0725 7771Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - John R. Bargar
- grid.445003.60000 0001 0725 7771Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - Christopher A. Francis
- grid.168010.e0000000419368956Department of Earth System Science, Stanford University, Stanford, CA USA
| |
Collapse
|
15
|
Dat TTH, Steinert G, Cuc NTK, Smidt H, Sipkema D. Bacteria Cultivated From Sponges and Bacteria Not Yet Cultivated From Sponges-A Review. Front Microbiol 2021; 12:737925. [PMID: 34867854 PMCID: PMC8634882 DOI: 10.3389/fmicb.2021.737925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022] Open
Abstract
The application of high-throughput microbial community profiling as well as "omics" approaches unveiled high diversity and host-specificity of bacteria associated with marine sponges, which are renowned for their wide range of bioactive natural products. However, exploration and exploitation of bioactive compounds from sponge-associated bacteria have been limited because the majority of the bacteria remains recalcitrant to cultivation. In this review, we (i) discuss recent/novel cultivation techniques that have been used to isolate sponge-associated bacteria, (ii) provide an overview of bacteria isolated from sponges until 2017 and the associated culture conditions and identify the bacteria not yet cultured from sponges, and (iii) outline promising cultivation strategies for cultivating the uncultivated majority of bacteria from sponges in the future. Despite intensive cultivation attempts, the diversity of bacteria obtained through cultivation remains much lower than that seen through cultivation-independent methods, which is particularly noticeable for those taxa that were previously marked as "sponge-specific" and "sponge-enriched." This poses an urgent need for more efficient cultivation methods. Refining cultivation media and conditions based on information obtained from metagenomic datasets and cultivation under simulated natural conditions are the most promising strategies to isolate the most wanted sponge-associated bacteria.
Collapse
Affiliation(s)
- Ton That Huu Dat
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Georg Steinert
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Nguyen Thi Kim Cuc
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
16
|
Li F, Leu A, Poff K, Carlson LT, Ingalls AE, DeLong EF. Planktonic Archaeal Ether Lipid Origins in Surface Waters of the North Pacific Subtropical Gyre. Front Microbiol 2021; 12:610675. [PMID: 34589060 PMCID: PMC8473941 DOI: 10.3389/fmicb.2021.610675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 08/23/2021] [Indexed: 01/04/2023] Open
Abstract
Thaumarchaeota and Thermoplasmatota are the most abundant planktonic archaea in the sea. Thaumarchaeota contain tetraether lipids as their major membrane lipids, but the lipid composition of uncultured planktonic Thermoplasmatota representatives remains unknown. To address this knowledge gap, we quantified archaeal cells and ether lipids in open ocean depth profiles (0–200 m) of the North Pacific Subtropical Gyre. Planktonic archaeal community structure and ether lipid composition in the water column partitioned into two separate clusters: one above the deep chlorophyll maximum, the other within and below it. In surface waters, Thermoplasmatota densities ranged from 2.11 × 106 to 6.02 × 106 cells/L, while Thaumarchaeota were undetectable. As previously reported for Thaumarchaeota, potential homologs of archaeal tetraether ring synthases were present in planktonic Thermoplasmatota metagenomes. Despite the absence of Thaumarchaeota in surface waters, measurable amounts of intact polar ether lipids were found there. Based on cell abundance estimates, these surface water archaeal ether lipids contributed only 1.21 × 10–9 ng lipid/Thermoplasmatota cell, about three orders of magnitude less than that reported for Thaumarchaeota cells. While these data indicate that even if some tetraether and diether lipids may be derived from Thermoplasmatota, they would only comprise a small fraction of Thermoplasmatota total biomass. Therefore, while both MGI Thaumarchaeota and MGII/III Thermoplasmatota are potential biological sources of archaeal GDGTs, the Thaumarchaeota appear to be the major contributors of archaeal tetraether lipids in planktonic marine habitats. These results extend and confirm previous reports of planktonic archaeal lipid sources, and further emphasize the need for Thermoplasmatota cultivation, to better characterize the membrane lipid constituents of marine planktonic Thermoplasmatota, and more precisely define the sources and patterns of archaeal tetraether lipid distributions in marine plankton.
Collapse
Affiliation(s)
- Fuyan Li
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at Mânoa, Honolulu, HI, United States
| | - Andy Leu
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at Mânoa, Honolulu, HI, United States
| | - Kirsten Poff
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at Mânoa, Honolulu, HI, United States
| | - Laura T Carlson
- School of Oceanography, University of Washington, Seattle, WA, United States
| | - Anitra E Ingalls
- School of Oceanography, University of Washington, Seattle, WA, United States
| | - Edward F DeLong
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at Mânoa, Honolulu, HI, United States
| |
Collapse
|
17
|
Chen Z, Liu WS, Zhong X, Zheng M, Fei YH, He H, Ding K, Chao Y, Tang YT, Wang S, Qiu R. Genome- and community-level interaction insights into the ecological role of archaea in rare earth element mine drainage in South China. WATER RESEARCH 2021; 201:117331. [PMID: 34153824 DOI: 10.1016/j.watres.2021.117331] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
Microbial communities play crucial roles in mine drainage generation and remediation. Despite the wide distribution of archaea in the mine ecosystem, their diversity and ecological roles remain less understood than bacteria. Here, we retrieved 56 archaeal metagenome-assembled genomes from a river impacted by rare earth element (REE) mining activities in South China. Genomic analysis showed that archaea represented four distinct lineages, including phyla of Thaumarchaeota, Micrarchaeota, Nanoarchaeota and Thermoplasmata. These archaea represented a considerable fraction (up to 40%) of the total prokaryote community, which might contribute to nitrogen and sulfur cycling in the REE mine drainage. Reconstructed metabolic potential among diverse archaea taxa revealed that archaea were involved in the network of ammonia oxidation, denitrification, sulfate redox reaction, and required substrates supplied by other community members. As the dominant driver of ammonia oxidation, Thaumarchaeota might provide substrates to support the survival of two nano-sized archaea belonging to Micrarchaeota and Nanoarchaeota. Despite the absence of biosynthesis pathways for amino acids and nucleotides, the potential capacity for nitrite reduction (nirD) was observed in Micrarchaeota, indicating that these nano-sized archaea encompassed diverse metabolisms. Moreover, Thermoplasmata, as keystone taxa in community, might be the main genetic donor for the other three archaeal phyla, transferring many environmental resistance related genes (e.g., V/A-type ATPase and Vitamin B12-transporting ATPase). The genetic interactions within archaeal community through horizontal gene transfer might be the key to the formation of archaeal resistance and functional partitioning. This study provides putative metabolic and genetic insights into the diverse archaea taxa from community-level perspectives, and highlights the ecological roles of archaea in REE contaminated aquatic environment.
Collapse
Affiliation(s)
- Ziwu Chen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Wen-Shen Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510275, China
| | - Xi Zhong
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Mengyuan Zheng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Ying-Heng Fei
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Huan He
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Kengbo Ding
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuanqing Chao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510275, China.
| | - Ye-Tao Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510275, China
| | - Shizhong Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510275, China
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
18
|
Rodriguez-R LM, Jain C, Conrad RE, Aluru S, Konstantinidis KT. Reply to: "Re-evaluating the evidence for a universal genetic boundary among microbial species". Nat Commun 2021; 12:4060. [PMID: 34234115 PMCID: PMC8263725 DOI: 10.1038/s41467-021-24129-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 05/20/2021] [Indexed: 11/18/2022] Open
Affiliation(s)
- Luis M Rodriguez-R
- School of Civil and Environmental Engineering, and School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Microbiology, and Digital Science Center (DiSC), University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Chirag Jain
- Department of Computational and Data Sciences, Indian Institute of Science, Bengaluru, India
| | - Roth E Conrad
- School of Civil and Environmental Engineering, and School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Srinivas Aluru
- School of Computational Science and Engineering, and Institute for Data Engineering and Science, Georgia Institute of Technology, Atlanta, GA, USA
| | - Konstantinos T Konstantinidis
- School of Civil and Environmental Engineering, and School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
19
|
Murray CS, Gao Y, Wu M. Re-evaluating the evidence for a universal genetic boundary among microbial species. Nat Commun 2021; 12:4059. [PMID: 34234129 PMCID: PMC8263626 DOI: 10.1038/s41467-021-24128-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 05/20/2021] [Indexed: 01/07/2023] Open
Affiliation(s)
- Connor S Murray
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Yingnan Gao
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Martin Wu
- Department of Biology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
20
|
A standardized archaeal taxonomy for the Genome Taxonomy Database. Nat Microbiol 2021; 6:946-959. [PMID: 34155373 DOI: 10.1038/s41564-021-00918-8] [Citation(s) in RCA: 209] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/10/2021] [Indexed: 02/05/2023]
Abstract
The accrual of genomic data from both cultured and uncultured microorganisms provides new opportunities to develop systematic taxonomies based on evolutionary relationships. Previously, we established a bacterial taxonomy through the Genome Taxonomy Database. Here, we propose a standardized archaeal taxonomy that is derived from a 122-concatenated-protein phylogeny that resolves polyphyletic groups and normalizes ranks based on relative evolutionary divergence. The resulting archaeal taxonomy, which forms part of the Genome Taxonomy Database, is stable for a range of phylogenetic variables including marker gene selection, inference methods, corrections for rate heterogeneity and compositional bias, tree rooting scenarios and expansion of the genome database. Rank normalization is shown to robustly correct for substitution rates varying up to 30-fold using simulated datasets. Taxonomic curation follows the rules of the International Code of Nomenclature of Prokaryotes while taking into account proposals to formally recognize the rank of phylum and to use genome sequences as type material. This taxonomy is based on 2,392 archaeal genomes, 93.3% of which required one or more changes to their existing taxonomy, mainly owing to incomplete classification. We identify 16 archaeal phyla and reclassify 3 major monophyletic units from the former Euryarchaeota and one phylum that unites the Thaumarchaeota-Aigarchaeota-Crenarchaeota-Korarchaeota (TACK) superphylum into a single phylum.
Collapse
|
21
|
Changes in soil ammonia oxidizers and potential nitrification after clear-cutting of boreal forests in China. World J Microbiol Biotechnol 2021; 37:126. [PMID: 34180026 DOI: 10.1007/s11274-021-03087-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/02/2021] [Indexed: 10/21/2022]
Abstract
The Korean pine and broad-leaved mixed forests are the most typical and complete ecosystem among the global boreal forests, with extremely important ecological functions. However, few studies on the changes of soil ammonia oxidizers and potential nitrification after clear-cutting of forests are reported. In this study, in contrast to primary Korean pine forests, nitrate (NO3-) was significantly higher in secondary broad-leaved forests, while ammonium (NH4+) was on the contrary. The abundance of ammonia-oxidizing bacteria (AOB) was greatly higher in secondary broad-leaved forests, while levels of ammonia-oxidizing archaea (AOA) were not significantly different between them. The significant differences of community structure of AOA and AOB were observed in different forest types and soil layers. Compared with AOA, community compositions of AOB was more sensitive to forest type. The dominant groups of AOA were Nitrososphaera and Nitrosotalea, and the dominant group of AOB was Nitrosospira, of which Nitrosospira cluster 2 and 4 were functional groups with highly activity. Soil potential nitrification rate (PNR) was higher in secondary broad-leaved forests. Furthermore, PNR and AOB abundance had a significant positive correlation, but no significant correlation with AOA abundance. These results provide insights into the soil nitrogen balance and effects on forest restoration after clear-cutting.
Collapse
|
22
|
Teske A, Amils R, Ramírez GA, Reysenbach AL. Editorial: Archaea in the Environment: Views on Archaeal Distribution, Activity, and Biogeography. Front Microbiol 2021; 12:667596. [PMID: 33776986 PMCID: PMC7994603 DOI: 10.3389/fmicb.2021.667596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 02/19/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Andreas Teske
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ricardo Amils
- Planetology and Habitability Department, Centro de Astrobiología, Madrid, Spain
| | - Gustavo A. Ramírez
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Western University of Health Sciences, College of Veterinary Medicine, Pomona, CA, United States
| | | |
Collapse
|
23
|
Effects of Seasonal Anoxia on the Microbial Community Structure in Demosponges in a Marine Lake in Lough Hyne, Ireland. mSphere 2021; 6:6/1/e00991-20. [PMID: 33536324 PMCID: PMC7860989 DOI: 10.1128/msphere.00991-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Climate change is expanding marine oxygen minimum zones (OMZs), while anthropogenic nutrient input depletes oxygen concentrations locally. The effects of deoxygenation on animals are generally detrimental; however, some sponges (Porifera) exhibit hypoxic and anoxic tolerance through currently unknown mechanisms. Sponges harbor highly specific microbiomes, which can include microbes with anaerobic capabilities. Sponge-microbe symbioses must also have persisted through multiple anoxic/hypoxic periods throughout Earth's history. Since sponges lack key components of the hypoxia-inducible factor (HIF) pathway responsible for hypoxic responses in other animals, it was hypothesized that sponge tolerance to deoxygenation may be facilitated by its microbiome. To test this hypothesis, we determined the microbial composition of sponge species tolerating seasonal anoxia and hypoxia in situ in a semienclosed marine lake, using 16S rRNA amplicon sequencing. We discovered a high degree of cryptic diversity among sponge species tolerating seasonal deoxygenation, including at least nine encrusting species of the orders Axinellida and Poecilosclerida. Despite significant changes in microbial community structure in the water, sponge microbiomes were species specific and remarkably stable under varied oxygen conditions, which was further explored for Eurypon spp. 2 and Hymeraphia stellifera However, some symbiont sharing occurred under anoxia. At least three symbiont combinations, all including large populations of Thaumarchaeota, corresponded with deoxygenation tolerance, and some combinations were shared between some distantly related hosts. We propose hypothetical host-symbiont interactions following deoxygenation that could confer deoxygenation tolerance.IMPORTANCE The oceans have an uncertain future due to anthropogenic stressors and an uncertain past that is becoming clearer with advances in biogeochemistry. Both past and future oceans were, or will be, deoxygenated in comparison to present conditions. Studying how sponges and their associated microbes tolerate deoxygenation provides insights into future marine ecosystems. Moreover, sponges form the earliest branch of the animal evolutionary tree, and they likely resemble some of the first animals. We determined the effects of variable environmental oxygen concentrations on the microbial communities of several demosponge species during seasonal anoxia in the field. Our results indicate that anoxic tolerance in some sponges may depend on their symbionts, but anoxic tolerance was not universal in sponges. Therefore, some sponge species could likely outcompete benthic organisms like corals in future, reduced-oxygen ecosystems. Our results support the molecular evidence that sponges and other animals have a Neoproterozoic origin and that animal evolution was not limited by low-oxygen conditions.
Collapse
|
24
|
DeLong EF. Genome-enabled exploration of microbial ecology and evolution in the sea: a rising tide lifts all boats. Environ Microbiol 2021; 23:1301-1321. [PMID: 33459471 PMCID: PMC8049014 DOI: 10.1111/1462-2920.15403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 11/26/2022]
Abstract
As a young bacteriologist just launching my career during the early days of the 'microbial revolution' in the 1980s, I was fortunate to participate in some early discoveries, and collaborate in the development of cross-disciplinary methods now commonly referred to as "metagenomics". My early scientific career focused on applying phylogenetic and genomic approaches to characterize 'wild' bacteria, archaea and viruses in their natural habitats, with an emphasis on marine systems. These central interests have not changed very much for me over the past three decades, but knowledge, methodological advances and new theoretical perspectives about the microbial world certainly have. In this invited 'How we did it' perspective, I trace some of the trajectories of my lab's collective efforts over the years, including phylogenetic surveys of microbial assemblages in marine plankton and sediments, development of microbial community gene- and genome-enabled surveys, and application of genome-guided, cultivation-independent functional characterization of novel enzymes, pathways and their relationships to in situ biogeochemistry. Throughout this short review, I attempt to acknowledge, all the mentors, students, postdocs and collaborators who enabled this research. Inevitably, a brief autobiographical review like this cannot be fully comprehensive, so sincere apologies to any of my great colleagues who are not explicitly mentioned herein. I salute you all as well!
Collapse
Affiliation(s)
- Edward F DeLong
- Daniel K. Inouye Centre for Microbial Oceanography: Research and Education, University of Hawaii, Manoa, Honolulu, HI, 96822, USA
| |
Collapse
|
25
|
DeLong EF. Exploring Marine Planktonic Archaea: Then and Now. Front Microbiol 2021; 11:616086. [PMID: 33519774 PMCID: PMC7838436 DOI: 10.3389/fmicb.2020.616086] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/18/2020] [Indexed: 12/24/2022] Open
Abstract
In 1977, Woese and Fox leveraged molecular phylogenetic analyses of ribosomal RNAs and identified a new microbial domain of life on Earth, the Archaebacteria (now known as Archaea). At the time of their discovery, only one archaebacterial group, the strictly anaerobic methanogens, was known. But soon, other phenotypically unrelated microbial isolates were shown to belong to the Archaea, many originating from extreme habitats, including extreme halophiles, extreme thermophiles, and thermoacidophiles. Since most Archaea seemed to inhabit extreme or strictly anoxic habitats, it came as a surprise in 1992 when two new lineages of archaea were reported to be abundant in oxygen rich, temperate marine coastal waters and the deep ocean. Since that time, studies of marine planktonic archaea have revealed many more surprises, including their unexpected ubiquity, unusual symbiotic associations, unpredicted physiologies and biogeochemistry, and global abundance. In this Perspective, early work conducted on marine planktonic Archaea by my lab group and others is discussed in terms of the relevant historical context, some of the original research motivations, and surprises and discoveries encountered along the way.
Collapse
Affiliation(s)
- Edward F DeLong
- Daniel K. Inouye Center for Microbial Oceanography Research and Education, University of Hawai'i at Mănoa, Honolulu, HI, United States
| |
Collapse
|
26
|
Haber M, Burgsdorf I, Handley KM, Rubin-Blum M, Steindler L. Genomic Insights Into the Lifestyles of Thaumarchaeota Inside Sponges. Front Microbiol 2021; 11:622824. [PMID: 33537022 PMCID: PMC7848895 DOI: 10.3389/fmicb.2020.622824] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/14/2020] [Indexed: 11/28/2022] Open
Abstract
Sponges are among the oldest metazoans and their success is partly due to their abundant and diverse microbial symbionts. They are one of the few animals that have Thaumarchaeota symbionts. Here we compare genomes of 11 Thaumarchaeota sponge symbionts, including three new genomes, to free-living ones. Like their free-living counterparts, sponge-associated Thaumarchaeota can oxidize ammonia, fix carbon, and produce several vitamins. Adaptions to life inside the sponge host include enrichment in transposases, toxin-antitoxin systems and restriction modifications systems, enrichments previously reported also from bacterial sponge symbionts. Most thaumarchaeal sponge symbionts lost the ability to synthesize rhamnose, which likely alters their cell surface and allows them to evade digestion by the host. All but one archaeal sponge symbiont encoded a high-affinity, branched-chain amino acid transporter system that was absent from the analyzed free-living thaumarchaeota suggesting a mixotrophic lifestyle for the sponge symbionts. Most of the other unique features found in sponge-associated Thaumarchaeota, were limited to only a few specific symbionts. These features included the presence of exopolyphosphatases and a glycine cleavage system found in the novel genomes. Thaumarchaeota have thus likely highly specific interactions with their sponge host, which is supported by the limited number of host sponge species to which each of these symbionts is restricted.
Collapse
Affiliation(s)
- Markus Haber
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre CAS, České Budějovice, Czechia
| | - Ilia Burgsdorf
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Kim M. Handley
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Maxim Rubin-Blum
- Israel Oceanographic and Limnological Research Institute, Haifa, Israel
| | - Laura Steindler
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
27
|
Muturi SM, Muthui LW, Njogu PM, Onguso JM, Wachira FN, Opiyo SO, Pelle R. Metagenomics survey unravels diversity of biogas microbiomes with potential to enhance productivity in Kenya. PLoS One 2021; 16:e0244755. [PMID: 33395690 PMCID: PMC7781671 DOI: 10.1371/journal.pone.0244755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/16/2020] [Indexed: 12/27/2022] Open
Abstract
The obstacle to optimal utilization of biogas technology is poor understanding of biogas microbiomes diversities over a wide geographical coverage. We performed random shotgun sequencing on twelve environmental samples. Randomized complete block design was utilized to assign the twelve treatments to four blocks, within eastern and central regions of Kenya. We obtained 42 million paired-end reads that were annotated against sixteen reference databases using two ENVO ontologies, prior to β-diversity studies. We identified 37 phyla, 65 classes and 132 orders. Bacteria dominated and comprised 28 phyla, 42 classes and 92 orders, conveying substrate's versatility in the treatments. Though, Fungi and Archaea comprised 5 phyla, the Fungi were richer; suggesting the importance of hydrolysis and fermentation in biogas production. High β-diversity within the taxa was largely linked to communities' metabolic capabilities. Clostridiales and Bacteroidales, the most prevalent guilds, metabolize organic macromolecules. The identified Cytophagales, Alteromonadales, Flavobacteriales, Fusobacteriales, Deferribacterales, Elusimicrobiales, Chlamydiales, Synergistales to mention but few, also catabolize macromolecules into smaller substrates to conserve energy. Furthermore, δ-Proteobacteria, Gloeobacteria and Clostridia affiliates syntrophically regulate PH2 and reduce metal to provide reducing equivalents. Methanomicrobiales and other Methanomicrobia species were the most prevalence Archaea, converting formate, CO2(g), acetate and methylated substrates into CH4(g). Thermococci, Thermoplasmata and Thermoprotei were among the sulfur and other metal reducing Archaea that contributed to redox balancing and other metabolism within treatments. Eukaryotes, mainly fungi were the least abundant guild, comprising largely Ascomycota and Basidiomycota species. Chytridiomycetes, Blastocladiomycetes and Mortierellomycetes were among the rare species, suggesting their metabolic and substrates limitations. Generally, we observed that environmental and treatment perturbations influenced communities' abundance, β-diversity and reactor performance largely through stochastic effect. Understanding diversity of biogas microbiomes over wide environmental variables and its' productivity provided insights into better management strategies that ameliorate biochemical limitations to effective biogas production.
Collapse
Affiliation(s)
- Samuel Mwangangi Muturi
- Department of Biological Sciences, University of Eldoret, Eldoret, Kenya
- Institute for Bioteschnology Research, Jomo Kenyatta University of Agriculture and Technology, Juja, Kenya
| | - Lucy Wangui Muthui
- Biosciences Eastern and Central Africa—International Livestock Research Institute (BecA-ILRI) Hub, Nairobi, Kenya
| | - Paul Mwangi Njogu
- Institute for Energy and Environmental Technology, Jomo Kenyatta University of Agriculture and Technology, Juja, Kenya
| | - Justus Mong’are Onguso
- Institute for Bioteschnology Research, Jomo Kenyatta University of Agriculture and Technology, Juja, Kenya
| | | | - Stephen Obol Opiyo
- OARDC, Molecular and Cellular Imaging Center-Columbus, Ohio State University, Columbus, Ohio, United States of America
- The University of Sacread Heart, Gulu, Uganda
| | - Roger Pelle
- Biosciences Eastern and Central Africa—International Livestock Research Institute (BecA-ILRI) Hub, Nairobi, Kenya
| |
Collapse
|
28
|
Vitamin B 12-dependent biosynthesis ties amplified 2-methylhopanoid production during oceanic anoxic events to nitrification. Proc Natl Acad Sci U S A 2020; 117:32996-33004. [PMID: 33318211 DOI: 10.1073/pnas.2012357117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacterial hopanoid lipids are ubiquitous in the geologic record and serve as biomarkers for reconstructing Earth's climatic and biogeochemical evolution. Specifically, the abundance of 2-methylhopanoids deposited during Mesozoic ocean anoxic events (OAEs) and other intervals has been interpreted to reflect proliferation of nitrogen-fixing marine cyanobacteria. However, there currently is no conclusive evidence for 2-methylhopanoid production by extant marine cyanobacteria. As an alternative explanation, here we report 2-methylhopanoid production by bacteria of the genus Nitrobacter, cosmopolitan nitrite oxidizers that inhabit nutrient-rich freshwater, brackish, and marine environments. The model organism Nitrobacter vulgaris produced only trace amounts of 2-methylhopanoids when grown in minimal medium or with added methionine, the presumed biosynthetic methyl donor. Supplementation of cultures with cobalamin (vitamin B12) increased nitrite oxidation rates and stimulated a 33-fold increase of 2-methylhopanoid abundance, indicating that the biosynthetic reaction mechanism is cobalamin dependent. Because Nitrobacter spp. cannot synthesize cobalamin, we postulate that they acquire it from organisms inhabiting a shared ecological niche-for example, ammonia-oxidizing archaea. We propose that during nutrient-rich conditions, cobalamin-based mutualism intensifies upper water column nitrification, thus promoting 2-methylhopanoid deposition. In contrast, anoxia underlying oligotrophic surface ocean conditions in restricted basins would prompt shoaling of anaerobic ammonium oxidation, leading to low observed 2-methylhopanoid abundances. The first scenario is consistent with hypotheses of enhanced nutrient loading during OAEs, while the second is consistent with the sedimentary record of Pliocene-Pleistocene Mediterranean sapropel events. We thus hypothesize that nitrogen cycling in the Pliocene-Pleistocene Mediterranean resembled modern, highly stratified basins, whereas no modern analog exists for OAEs.
Collapse
|
29
|
Archaeal communities of low and high microbial abundance sponges inhabiting the remote western Indian Ocean island of Mayotte. Antonie van Leeuwenhoek 2020; 114:95-112. [DOI: 10.1007/s10482-020-01503-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022]
|
30
|
Abstract
Host-associated microbial communities have an important role in shaping the health and fitness of plants and animals. Most studies have focused on the bacterial, fungal or viral communities, but often the archaeal component has been neglected. The archaeal community, the so-called archaeome, is now increasingly recognized as an important component of host-associated microbiomes. It is composed of various lineages, including mainly Methanobacteriales and Methanomassiliicoccales (Euryarchaeota), as well as representatives of the Thaumarchaeota. Host-archaeome interactions have mostly been delineated from methanogenic archaea in the gastrointestinal tract, where they contribute to substantial methane production and are potentially also involved in disease-relevant processes. In this Review, we discuss the diversity and potential roles of the archaea associated with protists, plants and animals. We also present the current understanding of the archaeome in humans, the specific adaptations involved in interaction with the resident microbial community as well as with the host, and the roles of the archaeome in both health and disease.
Collapse
|
31
|
Sedlacek CJ. It Takes a Village: Discovering and Isolating the Nitrifiers. Front Microbiol 2020; 11:1900. [PMID: 32849473 PMCID: PMC7431685 DOI: 10.3389/fmicb.2020.01900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/20/2020] [Indexed: 11/13/2022] Open
Abstract
It has been almost 150 years since Jean-Jacques Schloesing and Achille Müntz discovered that the process of nitrification, the oxidation of ammonium to nitrate, is a biological process carried out by microorganisms. In the following 15 years, numerous researchers independently contributed paradigm shifting discoveries that formed the foundation of nitrification and nitrification-related research. One of them was Sergei Winogradsky, whose major accomplishments include the discovery of both lithotrophy (in sulfur-oxidizing bacteria) and chemoautotrophy (in nitrifying bacteria). However, Winogradsky often receives most of the credit for many other foundational nitrification discoveries made by his contemporaries. This accumulation of credit over time is at least in part due to the increased attention, Winogradsky receives in the scientific literature and textbooks as a "founder of microbiology" and "the founder of microbial ecology." Here, some light is shed on several other researchers who are often overlooked, but whose work was instrumental to the emerging field of nitrification and to the work of Winogradsky himself. Specifically, the discovery of the biological process of nitrification by Schloesing and Müntz, the isolation of the first nitrifier by Grace and Percy Frankland, and the observation that nitrification is carried out by two distinct groups of microorganisms by Robert Warington are highlighted. Finally, the more recent discoveries of the chemolithoautotrophic ammonia-oxidizing archaea and complete ammonia oxidizers are put into this historical context.
Collapse
Affiliation(s)
- Christopher J. Sedlacek
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| |
Collapse
|
32
|
Bayer K, Busch K, Kenchington E, Beazley L, Franzenburg S, Michels J, Hentschel U, Slaby BM. Microbial Strategies for Survival in the Glass Sponge Vazella pourtalesii. mSystems 2020; 5:e00473-20. [PMID: 32788407 PMCID: PMC7426153 DOI: 10.1128/msystems.00473-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/23/2020] [Indexed: 01/04/2023] Open
Abstract
Few studies have explored the microbiomes of glass sponges (Hexactinellida). The present study seeks to elucidate the composition of the microbiota associated with the glass sponge Vazella pourtalesii and the functional strategies of the main symbionts. We combined microscopic approaches with metagenome-guided microbial genome reconstruction and amplicon community profiling toward this goal. Microscopic imaging revealed that the host and microbial cells appeared within dense biomass patches that are presumably syncytial tissue aggregates. Based on abundances in amplicon libraries and metagenomic data, SAR324 bacteria, Crenarchaeota, Patescibacteria, and Nanoarchaeota were identified as abundant members of the V. pourtalesii microbiome; thus, their genomic potentials were analyzed in detail. A general pattern emerged in that the V. pourtalesii symbionts had very small genome sizes, in the range of 0.5 to 2.2 Mb, and low GC contents, even below those of seawater relatives. Based on functional analyses of metagenome-assembled genomes (MAGs), we propose two major microbial strategies: the "givers," namely, Crenarchaeota and SAR324, heterotrophs and facultative anaerobes, produce and partly secrete all required amino acids and vitamins. The "takers," Nanoarchaeota and Patescibacteria, are anaerobes with reduced genomes that tap into the microbial community for resources, e.g., lipids and DNA, likely using pilus-like structures. We posit that the existence of microbial cells in sponge syncytia together with the low-oxygen conditions in the seawater environment are factors that shape the unique compositional and functional properties of the microbial community associated with V. pourtalesii IMPORTANCE We investigated the microbial community of V. pourtalesii that forms globally unique, monospecific sponge grounds under low-oxygen conditions on the Scotian Shelf, where it plays a key role in its vulnerable ecosystem. The microbial community was found to be concentrated within biomass patches and is dominated by small cells (<1 μm). MAG analyses showed consistently small genome sizes and low GC contents, which is unusual compared to known sponge symbionts. These properties, as well as the (facultatively) anaerobic metabolism and a high degree of interdependence between the dominant symbionts regarding amino acid and vitamin synthesis, are likely adaptations to the unique conditions within the syncytial tissue of their hexactinellid host and the low-oxygen environment.
Collapse
Affiliation(s)
- Kristina Bayer
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Marine Symbioses, Kiel, Germany
| | - Kathrin Busch
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Marine Symbioses, Kiel, Germany
| | - Ellen Kenchington
- Department of Fisheries and Oceans, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada
| | - Lindsay Beazley
- Department of Fisheries and Oceans, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada
| | - Sören Franzenburg
- Institute for Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Jan Michels
- Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Kiel, Germany
| | - Ute Hentschel
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Marine Symbioses, Kiel, Germany
- Kiel University, Kiel, Germany
| | - Beate M Slaby
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Marine Symbioses, Kiel, Germany
| |
Collapse
|
33
|
Diversity, ecology and evolution of Archaea. Nat Microbiol 2020; 5:887-900. [PMID: 32367054 DOI: 10.1038/s41564-020-0715-z] [Citation(s) in RCA: 254] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 03/30/2020] [Indexed: 12/23/2022]
Abstract
Compared to bacteria, our knowledge of archaeal biology is limited. Historically, microbiologists have mostly relied on culturing and single-gene diversity surveys to understand Archaea in nature. However, only six of the 27 currently proposed archaeal phyla have cultured representatives. Advances in genomic sequencing and computational approaches are revolutionizing our understanding of Archaea. The recovery of genomes belonging to uncultured groups from the environment has resulted in the description of several new phyla, many of which are globally distributed and are among the predominant organisms on the planet. In this Review, we discuss how these genomes, together with long-term enrichment studies and elegant in situ measurements, are providing insights into the metabolic capabilities of the Archaea. We also debate how such studies reveal how important Archaea are in mediating an array of ecological processes, including global carbon and nutrient cycles, and how this increase in archaeal diversity has expanded our view of the tree of life and early archaeal evolution, and has provided new insights into the origin of eukaryotes.
Collapse
|
34
|
Engelberts JP, Robbins SJ, de Goeij JM, Aranda M, Bell SC, Webster NS. Characterization of a sponge microbiome using an integrative genome-centric approach. THE ISME JOURNAL 2020; 14:1100-1110. [PMID: 31992859 PMCID: PMC7174397 DOI: 10.1038/s41396-020-0591-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 01/08/2020] [Accepted: 01/16/2020] [Indexed: 11/09/2022]
Abstract
Marine sponges often host diverse and species-specific communities of microorganisms that are critical for host health. Previous functional genomic investigations of the sponge microbiome have focused primarily on specific symbiont lineages, which frequently make up only a small fraction of the overall community. Here, we undertook genome-centric analysis of the symbiont community in the model species Ircinia ramosa and analyzed 259 unique, high-quality metagenome-assembled genomes (MAGs) that comprised 74% of the I. ramosa microbiome. Addition of these MAGs to genome trees containing all publicly available microbial sponge symbionts increased phylogenetic diversity by 32% within the archaea and 41% within the bacteria. Metabolic reconstruction of the MAGs showed extensive redundancy across taxa for pathways involved in carbon fixation, B-vitamin synthesis, taurine metabolism, sulfite oxidation, and most steps of nitrogen metabolism. Through the acquisition of all major taxa present within the I. ramosa microbiome, we were able to analyze the functional potential of a sponge-associated microbial community in unprecedented detail. Critical functions, such as carbon fixation, which had previously only been assigned to a restricted set of sponge-associated organisms, were actually spread across diverse symbiont taxa, whereas other essential pathways, such as ammonia oxidation, were confined to specific keystone taxa.
Collapse
Affiliation(s)
- J Pamela Engelberts
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Steven J Robbins
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Jasper M de Goeij
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Manuel Aranda
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Sara C Bell
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Nicole S Webster
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
- Australian Institute of Marine Science, Townsville, QLD, Australia.
| |
Collapse
|
35
|
Steinert G, Busch K, Bayer K, Kodami S, Arbizu PM, Kelly M, Mills S, Erpenbeck D, Dohrmann M, Wörheide G, Hentschel U, Schupp PJ. Compositional and Quantitative Insights Into Bacterial and Archaeal Communities of South Pacific Deep-Sea Sponges (Demospongiae and Hexactinellida). Front Microbiol 2020; 11:716. [PMID: 32390977 PMCID: PMC7193145 DOI: 10.3389/fmicb.2020.00716] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/27/2020] [Indexed: 12/01/2022] Open
Abstract
In the present study, we profiled bacterial and archaeal communities from 13 phylogenetically diverse deep-sea sponge species (Demospongiae and Hexactinellida) from the South Pacific by 16S rRNA-gene amplicon sequencing. Additionally, the associated bacteria and archaea were quantified by real-time qPCR. Our results show that bacterial communities from the deep-sea sponges are mostly host-species specific similar to what has been observed for shallow-water demosponges. The archaeal deep-sea sponge community structures are different from the bacterial community structures in that they are almost completely dominated by a single family, which are the ammonia-oxidizing genera within the Nitrosopumilaceae. Remarkably, the archaeal communities are mostly specific to individual sponges (rather than sponge-species), and this observation applies to both hexactinellids and demosponges. Finally, archaeal 16s gene numbers, as detected by quantitative real-time PCR, were up to three orders of magnitude higher than in shallow-water sponges, highlighting the importance of the archaea for deep-sea sponges in general.
Collapse
Affiliation(s)
- Georg Steinert
- RD3 Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Oldenburg, Germany
| | - Kathrin Busch
- RD3 Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Kristina Bayer
- RD3 Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Sahar Kodami
- German Center for Marine Biodiversity Research, Senckenberg Research Institute, Wilhelmshaven, Germany
| | - Pedro Martinez Arbizu
- German Center for Marine Biodiversity Research, Senckenberg Research Institute, Wilhelmshaven, Germany
| | - Michelle Kelly
- National Institute of Water and Atmospheric Research, Ltd., Auckland, New Zealand
| | - Sadie Mills
- National Institute of Water and Atmospheric Research, Ltd., Wellington, New Zealand
| | - Dirk Erpenbeck
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Martin Dohrmann
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Gert Wörheide
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany
- Bayerische Staatssammlung für Paläontologie und Geologie, Munich, Germany
| | - Ute Hentschel
- RD3 Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Christian-Albrecht University of Kiel, Kiel, Germany
| | - Peter J. Schupp
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Oldenburg, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg, Germany
| |
Collapse
|
36
|
Pinto OHB, Silva TF, Vizzotto CS, Santana RH, Lopes FAC, Silva BS, Thompson FL, Kruger RH. Genome-resolved metagenomics analysis provides insights into the ecological role of Thaumarchaeota in the Amazon River and its plume. BMC Microbiol 2020; 20:13. [PMID: 31941452 PMCID: PMC6964070 DOI: 10.1186/s12866-020-1698-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 01/09/2020] [Indexed: 11/15/2022] Open
Abstract
Background Thaumarchaeota are abundant in the Amazon River, where they are the only ammonia-oxidizing archaea. Despite the importance of Thaumarchaeota, little is known about their physiology, mainly because few isolates are available for study. Therefore, information about Thaumarchaeota was obtained primarily from genomic studies. The aim of this study was to investigate the ecological roles of Thaumarchaeota in the Amazon River and the Amazon River plume. Results The archaeal community of the shallow in Amazon River and its plume is dominated by Thaumarchaeota lineages from group 1.1a, which are mainly affiliated to Candidatus Nitrosotenuis uzonensis, members of order Nitrosopumilales, Candidatus Nitrosoarchaeum, and Candidatus Nitrosopelagicus sp. While Thaumarchaeota sequences have decreased their relative abundance in the plume, Candidatus Nitrosopelagicus has increased. One genome was recovered from metagenomic data of the Amazon River (ThauR71 [1.05 Mpb]), and two from metagenomic data of the Amazon River plume (ThauP25 [0.94 Mpb] and ThauP41 [1.26 Mpb]). Phylogenetic analysis placed all three Amazon genome bins in Thaumarchaeota Group 1.1a. The annotation revealed that most genes are assigned to the COG subcategory coenzyme transport and metabolism. All three genomes contain genes involved in the hydroxypropionate/hydroxybutyrate cycle, glycolysis, tricarboxylic acid cycle, oxidative phosphorylation. However, ammonia-monooxygenase genes were detected only in ThauP41 and ThauR71. Glycoside hydrolases and auxiliary activities genes were detected only in ThauP25. Conclusions Our data indicate that Amazon River is a source of Thaumarchaeota, where these organisms are important for primary production, vitamin production, and nitrification.
Collapse
Affiliation(s)
- Otávio H B Pinto
- Department of Enzymology, Institute of Biological Sciences, University of Brasília, Brasilia, 70910-900, Brazil
| | - Thais F Silva
- Department of Enzymology, Institute of Biological Sciences, University of Brasília, Brasilia, 70910-900, Brazil
| | - Carla S Vizzotto
- Department of Enzymology, Institute of Biological Sciences, University of Brasília, Brasilia, 70910-900, Brazil.,Department of Civil and Environmental Engineering, University of Brasília, Brasilia, 70910-900, Brazil
| | | | - Fabyano A C Lopes
- Laboratory of Microbiology, Federal University of Tocantins, Palmas, 77500-000, Brazil
| | - Bruno S Silva
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil
| | - Fabiano L Thompson
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil
| | - Ricardo H Kruger
- Department of Enzymology, Institute of Biological Sciences, University of Brasília, Brasilia, 70910-900, Brazil.
| |
Collapse
|
37
|
Herber J, Klotz F, Frommeyer B, Weis S, Straile D, Kolar A, Sikorski J, Egert M, Dannenmann M, Pester M. A single Thaumarchaeon drives nitrification in deep oligotrophic Lake Constance. Environ Microbiol 2019; 22:212-228. [PMID: 31657089 DOI: 10.1111/1462-2920.14840] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 08/30/2019] [Accepted: 08/30/2019] [Indexed: 12/15/2022]
Abstract
Ammonia released during organic matter mineralization is converted during nitrification to nitrate. We followed spatiotemporal dynamics of the nitrifying microbial community in deep oligotrophic Lake Constance. Depth-dependent decrease of total ammonium (0.01-0.84 μM) indicated the hypolimnion as the major place of nitrification with 15 N-isotope dilution measurements indicating a threefold daily turnover of hypolimnetic total ammonium. This was mirrored by a strong increase of ammonia-oxidizing Thaumarchaeota towards the hypolimnion (13%-21% of bacterioplankton) throughout spring to autumn as revealed by amplicon sequencing and quantitative polymerase chain reaction. Ammonia-oxidizing bacteria were typically two orders of magnitude less abundant and completely ammonia-oxidizing (comammox) bacteria were not detected. Both, 16S rRNA gene and amoA (encoding ammonia monooxygenase subunit B) analyses identified only one major species-level operational taxonomic unit (OTU) of Thaumarchaeota (99% of all ammonia oxidizers in the hypolimnion), which was affiliated to Nitrosopumilus spp. The relative abundance distribution of the single Thaumarchaeon strongly correlated to an equally abundant Chloroflexi clade CL500-11 OTU and a Nitrospira OTU that was one order of magnitude less abundant. The latter dominated among recognized nitrite oxidizers. This extremely low diversity of nitrifiers shows how vulnerable the ecosystem process of nitrification may be in Lake Constance as Central Europe's third largest lake.
Collapse
Affiliation(s)
- Janina Herber
- Department of Biology, University of Konstanz, Universitätsstrasse 10, Constance, 78457, Germany
| | - Franziska Klotz
- Department of Biology, University of Konstanz, Universitätsstrasse 10, Constance, 78457, Germany
| | - Benjamin Frommeyer
- Department of Biology, University of Konstanz, Universitätsstrasse 10, Constance, 78457, Germany
| | - Severin Weis
- Faculty of Medical and Life Sciences, Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Str. 17, Villingen-Schwenningen, 78054, Germany
| | - Dietmar Straile
- Limnological Institute, University of Konstanz, Mainaustraße 252, Constance, 78464, Germany
| | - Allison Kolar
- Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Kreuzeckbahnstr. 19, 82467, Garmisch-Partenkirchen, Germany
| | - Johannes Sikorski
- Department of Microorganisms, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B, 38124, Braunschweig, Germany
| | - Markus Egert
- Faculty of Medical and Life Sciences, Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Str. 17, Villingen-Schwenningen, 78054, Germany
| | - Michael Dannenmann
- Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Kreuzeckbahnstr. 19, 82467, Garmisch-Partenkirchen, Germany
| | - Michael Pester
- Department of Biology, University of Konstanz, Universitätsstrasse 10, Constance, 78457, Germany.,Department of Microorganisms, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B, 38124, Braunschweig, Germany.,Technical University of Braunschweig, Institute for Microbiology, Spielmannstrasse 7, Braunschweig, 38106, Germany
| |
Collapse
|
38
|
Sharma PK, Sharma V, Sharma S, Bhatia G, Singh K, Sharma R. Comparative metatranscriptome analysis revealed broad response of microbial communities in two soil types, agriculture versus organic soil. J Genet Eng Biotechnol 2019; 17:6. [PMID: 31659568 PMCID: PMC6821142 DOI: 10.1186/s43141-019-0006-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 09/05/2019] [Indexed: 01/11/2023]
Abstract
BACKGROUND Studying expression of genes by direct sequencing and analysis of metatranscriptomes at a particular time and space can disclose structural and functional insights about microbial communities. The present study reports comparative analysis of metatranscriptome from two distinct soil ecosystems referred as M1 (agriculture soil) and O1 (organic soil). RESULTS Analysis of sequencing reads revealed Proteobacteria as major dominant phyla in both soil types. The order of the top 3 abundant phyla in M1 sample was Proteobacteria > Ascomycota > Firmicutes, whereas in sample O1, the order was Proteobacteria > Cyanobacteria > Actinobacteria. Analysis of differentially expressed genes demonstrated high expression of transcripts related to copper-binding proteins, proteins involved in electron carrier activity, DNA integration, endonuclease activity, MFS transportation, and other uncharacterized proteins in M1 compared to O1. Of the particular interests, several transcripts related to nitrification, ammonification, stress response, and alternate carbon fixation pathways were highly expressed in M1. In-depth analysis of the sequencing data revealed that transcripts of archaeal origin had high expression in M1 compared to O1 indicating the active role of Archaea in metal- and pesticide-contaminated environment. In addition, transcripts encoding 4-hydroxyphenylpyruvate dioxygenase, glyoxalase/bleomycin resistance protein/dioxygenase, metapyrocatechase, and ring hydroxylating dioxygenases of aromatic hydrocarbon degradation pathways had high expression in M1. Altogether, this study provided important insights about the transcripts and pathways upregulating in the presence of pesticides and herbicides. CONCLUSION Altogether, this study claims a high expression of microbial transcripts in two ecosystems with a wide range of functions. It further provided clue about several molecular markers which could be a strong indicator of metal and pesticide contamination in soils. Interestingly, our study revealed that Archaea are playing a significant role in nitrification process as compared to bacteria in metal- and pesticide-contaminated soil. In particular, high expression of transcripts related to aromatic hydrocarbon degradation in M1 soil indicates their important role in biodegradation of pollutants, and therefore, further investigation is needed.
Collapse
Affiliation(s)
| | - Vinay Sharma
- Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab 140407 India
| | - Shailesh Sharma
- National Institute of Animal Biotechnology (NIAB), Miyapur, Hyderabad, Telangana 500 049 India
| | - Garima Bhatia
- Department of Biotechnology, Panjab University, Chandigarh, 160014 India
| | - Kashmir Singh
- Department of Biotechnology, Panjab University, Chandigarh, 160014 India
| | - Rohit Sharma
- Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab 140407 India
| |
Collapse
|
39
|
Zhang F, Jonas L, Lin H, Hill RT. Microbially mediated nutrient cycles in marine sponges. FEMS Microbiol Ecol 2019; 95:5582607. [DOI: 10.1093/femsec/fiz155] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 10/04/2019] [Indexed: 01/05/2023] Open
Abstract
ABSTRACTEfficient nutrient cycles mediated by symbiotic microorganisms with their hosts are vital to support the high productivity of coral reef ecosystems. In these ecosystems, marine sponges are important habitat-forming organisms in the benthic community and harbor abundant microbial symbionts. However, few studies have reviewed the critical microbially mediated nutrient cycling processes in marine sponges. To bridge this gap, in this review article, we summarize existing knowledge and recent advances in understanding microbially mediated carbon (C), nitrogen (N), phosphorus (P) and sulfur (S) cycles in sponges, propose a conceptual model that describes potential interactions and constraints in the major nutrient cycles, and suggest that shifting redox state induced by animal behavior like sponge pumping can exert great influence on the activities of symbiotic microbial communities. Constraints include the lack of knowledge on spatial and temporal variations and host behavior; more studies are needed in these areas. Sponge microbiomes may have a significant impact on the nutrient cycles in the world’s coral reef ecosystems.
Collapse
Affiliation(s)
- Fan Zhang
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Columbus Center, 701 East Pratt Street, Baltimore Maryland 21202, USA
| | - Lauren Jonas
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Columbus Center, 701 East Pratt Street, Baltimore Maryland 21202, USA
| | - Hanzhi Lin
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Columbus Center, 701 East Pratt Street, Baltimore Maryland 21202, USA
| | - Russell T Hill
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Columbus Center, 701 East Pratt Street, Baltimore Maryland 21202, USA
| |
Collapse
|
40
|
Moeller FU, Webster NS, Herbold CW, Behnam F, Domman D, Albertsen M, Mooshammer M, Markert S, Turaev D, Becher D, Rattei T, Schweder T, Richter A, Watzka M, Nielsen PH, Wagner M. Characterization of a thaumarchaeal symbiont that drives incomplete nitrification in the tropical sponge Ianthella basta. Environ Microbiol 2019; 21:3831-3854. [PMID: 31271506 PMCID: PMC6790972 DOI: 10.1111/1462-2920.14732] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/25/2022]
Abstract
Marine sponges represent one of the few eukaryotic groups that frequently harbour symbiotic members of the Thaumarchaeota, which are important chemoautotrophic ammonia-oxidizers in many environments. However, in most studies, direct demonstration of ammonia-oxidation by these archaea within sponges is lacking, and little is known about sponge-specific adaptations of ammonia-oxidizing archaea (AOA). Here, we characterized the thaumarchaeal symbiont of the marine sponge Ianthella basta using metaproteogenomics, fluorescence in situ hybridization, qPCR and isotope-based functional assays. 'Candidatus Nitrosospongia ianthellae' is only distantly related to cultured AOA. It is an abundant symbiont that is solely responsible for nitrite formation from ammonia in I. basta that surprisingly does not harbour nitrite-oxidizing microbes. Furthermore, this AOA is equipped with an expanded set of extracellular subtilisin-like proteases, a metalloprotease unique among archaea, as well as a putative branched-chain amino acid ABC transporter. This repertoire is strongly indicative of a mixotrophic lifestyle and is (with slight variations) also found in other sponge-associated, but not in free-living AOA. We predict that this feature as well as an expanded and unique set of secreted serpins (protease inhibitors), a unique array of eukaryotic-like proteins, and a DNA-phosporothioation system, represent important adaptations of AOA to life within these ancient filter-feeding animals.
Collapse
Affiliation(s)
- Florian U. Moeller
- Centre for Microbiology and Environmental Systems Science, Division of Microbial EcologyUniversity of ViennaAustria
| | - Nicole S. Webster
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
- Australian Centre for Ecogenomics, School of Chemistry and Molecular BiosciencesUniversity of QueenslandSt LuciaQueenslandAustralia
| | - Craig W. Herbold
- Centre for Microbiology and Environmental Systems Science, Division of Microbial EcologyUniversity of ViennaAustria
| | - Faris Behnam
- Centre for Microbiology and Environmental Systems Science, Division of Microbial EcologyUniversity of ViennaAustria
| | - Daryl Domman
- Centre for Microbiology and Environmental Systems Science, Division of Microbial EcologyUniversity of ViennaAustria
| | - Mads Albertsen
- Center for Microbial Communities, Department of Chemistry and BioscienceAalborg University9220AalborgDenmark
| | - Maria Mooshammer
- Centre for Microbiology and Environmental Systems Science, Division of Microbial EcologyUniversity of ViennaAustria
| | - Stephanie Markert
- Institute of Marine Biotechnology e.VGreifswaldGermany
- Institute of Pharmacy, Pharmaceutical BiotechnologyUniversity of GreifswaldGreifswaldGermany
| | - Dmitrij Turaev
- Centre for Microbiology and Environmental Systems Science, Division of Computational Systems BiologyUniversity of ViennaAustria
| | - Dörte Becher
- Institute of Microbiology, Microbial ProteomicsUniversity of GreifswaldGreifswaldGermany
| | - Thomas Rattei
- Centre for Microbiology and Environmental Systems Science, Division of Computational Systems BiologyUniversity of ViennaAustria
| | - Thomas Schweder
- Institute of Marine Biotechnology e.VGreifswaldGermany
- Institute of Pharmacy, Pharmaceutical BiotechnologyUniversity of GreifswaldGreifswaldGermany
| | - Andreas Richter
- Centre for Microbiology and Environmental Systems Science, Division of Terrestrial Ecosystem ResearchUniversity of ViennaAustria
| | - Margarete Watzka
- Centre for Microbiology and Environmental Systems Science, Division of Terrestrial Ecosystem ResearchUniversity of ViennaAustria
| | - Per Halkjaer Nielsen
- Center for Microbial Communities, Department of Chemistry and BioscienceAalborg University9220AalborgDenmark
| | - Michael Wagner
- Centre for Microbiology and Environmental Systems Science, Division of Microbial EcologyUniversity of ViennaAustria
- Center for Microbial Communities, Department of Chemistry and BioscienceAalborg University9220AalborgDenmark
| |
Collapse
|
41
|
A genomic view of the reef-building coral Porites lutea and its microbial symbionts. Nat Microbiol 2019; 4:2090-2100. [DOI: 10.1038/s41564-019-0532-4] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 07/05/2019] [Indexed: 11/09/2022]
|
42
|
Zhang S, Song W, Wemheuer B, Reveillaud J, Webster N, Thomas T. Comparative Genomics Reveals Ecological and Evolutionary Insights into Sponge-Associated Thaumarchaeota. mSystems 2019; 4:e00288-19. [PMID: 31409660 PMCID: PMC6697440 DOI: 10.1128/msystems.00288-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/22/2019] [Indexed: 01/25/2023] Open
Abstract
Thaumarchaeota are frequently reported to associate with marine sponges (phylum Porifera); however, little is known about the features that distinguish them from their free-living thaumarchaeal counterparts. In this study, thaumarchaeal metagenome-assembled genomes (MAGs) were reconstructed from metagenomic data sets derived from the marine sponges Hexadella detritifera, Hexadella cf. detritifera, and Stylissa flabelliformis Phylogenetic and taxonomic analyses revealed that the three thaumarchaeal MAGs represent two new species within the genus Nitrosopumilus and one novel genus, for which we propose the names "Candidatus UNitrosopumilus hexadellus," "Candidatus UNitrosopumilus detritiferus," and "Candidatus UCenporiarchaeum stylissum" (the U superscript indicates that the taxon is uncultured). Comparison of these genomes to data from the Sponge Earth Microbiome Project revealed that "Ca UCenporiarchaeum stylissum" has been exclusively detected in sponges and can hence be classified as a specialist, while "Ca UNitrosopumilus detritiferus" and "Ca UNitrosopumilus hexadellus" are also detected outside the sponge holobiont and likely lead a generalist lifestyle. Comparison of the sponge-associated MAGs to genomes of free-living Thaumarchaeota revealed signatures that indicate functional features of a sponge-associated lifestyle, and these features were related to nutrient transport and metabolism, restriction-modification, defense mechanisms, and host interactions. Each species exhibited distinct functional traits, suggesting that they have reached different stages of evolutionary adaptation and/or occupy distinct ecological niches within their sponge hosts. Our study therefore offers new evolutionary and ecological insights into the symbiosis between sponges and their thaumarchaeal symbionts.IMPORTANCE Sponges represent ecologically important models to understand the evolution of symbiotic interactions of metazoans with microbial symbionts. Thaumarchaeota are commonly found in sponges, but their potential adaptations to a host-associated lifestyle are largely unknown. Here, we present three novel sponge-associated thaumarchaeal species and compare their genomic and predicted functional features with those of closely related free-living counterparts. We found different degrees of specialization of these thaumarchaeal species to the sponge environment that is reflected in their host distribution and their predicted molecular and metabolic properties. Our results indicate that Thaumarchaeota may have reached different stages of evolutionary adaptation in their symbiosis with sponges.
Collapse
Affiliation(s)
- Shan Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
- Center for Marine Science & Innovation, University of New South Wales, Sydney, Australia
| | - Weizhi Song
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
- Center for Marine Science & Innovation, University of New South Wales, Sydney, Australia
| | - Bernd Wemheuer
- Center for Marine Science & Innovation, University of New South Wales, Sydney, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Julie Reveillaud
- ASTRE, INRA, CIRAD, University of Montpellier, Montpellier, France
| | - Nicole Webster
- Australian Institute of Marine Science, Townsville, Australia
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, Australia
| | - Torsten Thomas
- Center for Marine Science & Innovation, University of New South Wales, Sydney, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
43
|
Reji L, Tolar BB, Smith JM, Chavez FP, Francis CA. Depth distributions of nitrite reductase (nirK) gene variants reveal spatial dynamics of thaumarchaeal ecotype populations in coastal Monterey Bay. Environ Microbiol 2019; 21:4032-4045. [PMID: 31330081 DOI: 10.1111/1462-2920.14753] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/16/2019] [Accepted: 07/16/2019] [Indexed: 11/29/2022]
Abstract
Ammonia-oxidizing archaea (AOA) of the phylum Thaumarchaeota are key players in nutrient cycling, yet large gaps remain in our understanding of their ecology and metabolism. Despite multiple lines of evidence pointing to a central role for copper-containing nitrite reductase (NirK) in AOA metabolism, the thaumarchaeal nirK gene is rarely studied in the environment. In this study, we examine the diversity of nirK in the marine pelagic environment, in light of previously described ecological patterns of pelagic thaumarchaeal populations. Phylogenetic analyses show that nirK better resolves diversification patterns of marine Thaumarchaeota, compared to the conventionally used marker gene amoA. Specifically, we demonstrate that the three major phylogenetic clusters of marine nirK correspond to the three 'ecotype' populations of pelagic Thaumarchaeota. In this context, we further examine the relative distributions of the three variant groups in metagenomes and metatranscriptomes representing two depth profiles in coastal Monterey Bay. Our results reveal that nirK effectively tracks the dynamics of thaumarchaeal ecotype populations, particularly finer-scale diversification patterns within major lineages. We also find evidence for multiple copies of nirK per genome in a fraction of thaumarchaeal cells in the water column, which must be taken into account when using it as a molecular marker.
Collapse
Affiliation(s)
- Linta Reji
- Department of Earth System Science, Stanford University, Stanford, CA
| | - Bradley B Tolar
- Department of Earth System Science, Stanford University, Stanford, CA
| | - Jason M Smith
- Monterey Bay Aquarium Research Institute, Moss Landing, CA.,Marine Science Institute, University of California Santa Barbara, Santa Barbara, CA
| | | | | |
Collapse
|
44
|
Feng G, Zhang F, Banakar S, Karlep L, Li Z. Analysis of functional gene transcripts suggests active CO2 assimilation and CO oxidation by diverse bacteria in marine sponges. FEMS Microbiol Ecol 2019; 95:5513993. [DOI: 10.1093/femsec/fiz087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/08/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Guofang Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, China
| | - Fengli Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, China
| | - Shivakumar Banakar
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, China
| | - Liisi Karlep
- Department of Chemistry and Biotechnology, Division of Gene Technology, Tallinn University of Technology, Ehitajate 5, Tallinn 19086, Estonia
| | - Zhiyong Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, China
| |
Collapse
|
45
|
Ren M, Feng X, Huang Y, Wang H, Hu Z, Clingenpeel S, Swan BK, Fonseca MM, Posada D, Stepanauskas R, Hollibaugh JT, Foster PG, Woyke T, Luo H. Phylogenomics suggests oxygen availability as a driving force in Thaumarchaeota evolution. ISME JOURNAL 2019; 13:2150-2161. [PMID: 31024152 DOI: 10.1038/s41396-019-0418-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/07/2019] [Accepted: 04/03/2019] [Indexed: 11/09/2022]
Abstract
Ammonia-oxidizing archaea (AOA) of the phylum Thaumarchaeota are widespread in marine and terrestrial habitats, playing a major role in the global nitrogen cycle. However, their evolutionary history remains unexplored, which limits our understanding of their adaptation mechanisms. Here, our comprehensive phylogenomic tree of Thaumarchaeota supports three sequential events: origin of AOA from terrestrial non-AOA ancestors, colonization of the shallow ocean, and expansion to the deep ocean. Careful molecular dating suggests that these events coincided with the Great Oxygenation Event around 2300 million years ago (Mya), and oxygenation of the shallow and deep ocean around 800 and 635-560 Mya, respectively. The first transition was likely enabled by the gain of an aerobic pathway for energy production by ammonia oxidation and biosynthetic pathways for cobalamin and biotin that act as cofactors in aerobic metabolism. The first transition was also accompanied by the loss of dissimilatory nitrate and sulfate reduction, loss of oxygen-sensitive pyruvate oxidoreductase, which reduces pyruvate to acetyl-CoA, and loss of the Wood-Ljungdahl pathway for anaerobic carbon fixation. The second transition involved gain of a K+ transporter and of the biosynthetic pathway for ectoine, which may function as an osmoprotectant. The third transition was accompanied by the loss of the uvr system for repairing ultraviolet light-induced DNA lesions. We conclude that oxygen availability drove the terrestrial origin of AOA and their expansion to the photic and dark oceans, and that the stressors encountered during these events were partially overcome by gene acquisitions from Euryarchaeota and Bacteria, among other sources.
Collapse
Affiliation(s)
- Minglei Ren
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong.,Shenzhen Research Institute, The Chinese University of Hong Kong, 518000, Shenzhen, China
| | - Xiaoyuan Feng
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yongjie Huang
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong.,Shenzhen Research Institute, The Chinese University of Hong Kong, 518000, Shenzhen, China
| | - Hui Wang
- Biology Department, College of Science, Shantou University, 515063, Shantou, China
| | - Zhong Hu
- Biology Department, College of Science, Shantou University, 515063, Shantou, China
| | | | - Brandon K Swan
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, 04544, USA.,National Biodefense Analysis and Countermeasures Center, Frederick, MD, 21702, USA
| | - Miguel M Fonseca
- CINBIO and Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310, Vigo, Spain
| | - David Posada
- CINBIO and Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310, Vigo, Spain
| | | | - James T Hollibaugh
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Peter G Foster
- Department of Life Sciences, Natural History Museum, London, SW7 5BD, UK
| | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Haiwei Luo
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong. .,Shenzhen Research Institute, The Chinese University of Hong Kong, 518000, Shenzhen, China.
| |
Collapse
|
46
|
Bayer B, Vojvoda J, Reinthaler T, Reyes C, Pinto M, Herndl GJ. Nitrosopumilus adriaticus sp. nov. and Nitrosopumilus piranensis sp. nov., two ammonia-oxidizing archaea from the Adriatic Sea and members of the class Nitrososphaeria. Int J Syst Evol Microbiol 2019; 69:1892-1902. [PMID: 30938665 DOI: 10.1099/ijsem.0.003360] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two mesophilic, neutrophilic and aerobic marine ammonia-oxidizing archaea, designated strains NF5T and D3CT, were isolated from coastal surface water of the Northern Adriatic Sea. Cells were straight small rods 0.20-0.25 µm wide and 0.49-2.00 µm long. Strain NF5T possessed archaella as cell appendages. Glycerol dibiphytanyl glycerol tetraethers with zero to four cyclopentane moieties (GDGT-0 to GDGT-4) and crenarchaeol were the major core lipids. Menaquinone MK6 : 0 was the major respiratory quinone. Both isolates gained energy by oxidizing ammonia (NH3) to nitrite (NO2-) and used bicarbonate as a carbon source. Strain D3CT was able use urea as a source of ammonia for energy production and growth. Addition of hydrogen peroxide (H2O2) scavengers (catalase or α-keto acids) was required to sustain growth. Optimal growth occurred between 30 and 32 °C, pH 7.1 and 7.3 and between 34 and 37‰ salinity. The cellular metal abundance ranking of both strains was Fe>Zn>Cu>Mn>Co. The genomes of strains NF5T and D3CT have a DNA G+C content of 33.4 and 33.8 mol%, respectively. Phylogenetic analyses of 16S rRNA gene sequences revealed that both strains are affiliated with the class Nitrososphaeria, sharing ~85 % 16S rRNA gene sequence identity with Nitrososphaera viennensis EN76T. The two isolates are separated by phenotypic and genotypic characteristics and are assigned to distinct species within the genus Nitrosopumilus gen. nov. according to average nucleotide identity thresholds of their closed genomes. Isolates NF5T (=JCM 32270T =NCIMB 15114T) and D3CT (=JCM 32271T =DSM 106147T =NCIMB 15115T) are type strains of the species Nitrosopumilusadriaticus sp. nov. and Nitrosopumiluspiranensis sp. nov., respectively.
Collapse
Affiliation(s)
- Barbara Bayer
- 1Department of Limnology and Bio-Oceanography, Center of Functional Ecology, University of Vienna, Vienna, Austria
| | - Jana Vojvoda
- 1Department of Limnology and Bio-Oceanography, Center of Functional Ecology, University of Vienna, Vienna, Austria
| | - Thomas Reinthaler
- 1Department of Limnology and Bio-Oceanography, Center of Functional Ecology, University of Vienna, Vienna, Austria
| | - Carolina Reyes
- 2Department of Environmental Geosciences, Environmental Science Research Network, University of Vienna, Vienna, Austria
| | - Maria Pinto
- 1Department of Limnology and Bio-Oceanography, Center of Functional Ecology, University of Vienna, Vienna, Austria
| | - Gerhard J Herndl
- 1Department of Limnology and Bio-Oceanography, Center of Functional Ecology, University of Vienna, Vienna, Austria.,3Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Utrecht University, Den Burg, The Netherlands
| |
Collapse
|
47
|
Krupovic M, Makarova KS, Wolf YI, Medvedeva S, Prangishvili D, Forterre P, Koonin EV. Integrated mobile genetic elements in Thaumarchaeota. Environ Microbiol 2019; 21:2056-2078. [PMID: 30773816 PMCID: PMC6563490 DOI: 10.1111/1462-2920.14564] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/10/2019] [Accepted: 02/13/2019] [Indexed: 12/20/2022]
Abstract
To explore the diversity of mobile genetic elements (MGE) associated with archaea of the phylum Thaumarchaeota, we exploited the property of most MGE to integrate into the genomes of their hosts. Integrated MGE (iMGE) were identified in 20 thaumarchaeal genomes amounting to 2 Mbp of mobile thaumarchaeal DNA. These iMGE group into five major classes: (i) proviruses, (ii) casposons, (iii) insertion sequence-like transposons, (iv) integrative-conjugative elements and (v) cryptic integrated elements. The majority of the iMGE belong to the latter category and might represent novel families of viruses or plasmids. The identified proviruses are related to tailed viruses of the order Caudovirales and to tailless icosahedral viruses with the double jelly-roll capsid proteins. The thaumarchaeal iMGE are all connected within a gene sharing network, highlighting pervasive gene exchange between MGE occupying the same ecological niche. The thaumarchaeal mobilome carries multiple auxiliary metabolic genes, including multicopper oxidases and ammonia monooxygenase subunit C (AmoC), and stress response genes, such as those for universal stress response proteins (UspA). Thus, iMGE might make important contributions to the fitness and adaptation of their hosts. We identified several iMGE carrying type I-B CRISPR-Cas systems and spacers matching other thaumarchaeal iMGE, suggesting antagonistic interactions between coexisting MGE and symbiotic relationships with the ir archaeal hosts.
Collapse
Affiliation(s)
- Mart Krupovic
- Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, 75015, Paris, France
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Sofia Medvedeva
- Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, 75015, Paris, France.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Russia.,Sorbonne Université, Collège doctoral, 75005, Paris, France
| | - David Prangishvili
- Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, 75015, Paris, France
| | - Patrick Forterre
- Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, 75015, Paris, France.,Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris- Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, Paris, France
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| |
Collapse
|
48
|
Differential co-occurrence relationships shaping ecotype diversification within Thaumarchaeota populations in the coastal ocean water column. ISME JOURNAL 2019; 13:1144-1158. [PMID: 30610232 DOI: 10.1038/s41396-018-0311-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 10/18/2018] [Accepted: 10/23/2018] [Indexed: 01/09/2023]
Abstract
Ecological factors contributing to depth-related diversification of marine Thaumarchaeota populations remain largely unresolved. To investigate the role of potential microbial associations in shaping thaumarchaeal ecotype diversification, we examined co-occurrence relationships in a community composition dataset (16S rRNA V4-V5 region) collected as part of a 2-year time series in coastal Monterey Bay. Ecotype groups previously defined based on functional gene diversity-water column A (WCA), water column B (WCB) and Nitrosopumilus-like clusters-were recovered in the thaumarchaeal 16S rRNA gene phylogeny. Networks systematically reflected depth-related patterns in the abundances of ecotype populations, suggesting thaumarchaeal ecotypes as keystone members of the microbial community below the euphotic zone. Differential environmental controls on the ecotype populations were further evident in subnetwork modules showing preferential co-occurrence of OTUs belonging to the same ecotype cluster. Correlated abundances of Thaumarchaeota and heterotrophic bacteria (e.g., Bacteroidetes, Marinimicrobia and Gammaproteobacteria) indicated potential reciprocal interactions via dissolved organic matter transformations. Notably, the networks recovered ecotype-specific associations between thaumarchaeal and Nitrospina OTUs. Even at depths where WCB-like Thaumarchaeota dominated, Nitrospina OTUs were found to preferentially co-occur with WCA-like and Nitrosopumilus-like thaumarchaeal OTUs, highlighting the need to investigate the ecological implications of the composition of nitrifier assemblages in marine waters.
Collapse
|
49
|
Abstract
Archaea are ubiquitous and abundant members of the marine plankton. Once thought of as rare organisms found in exotic extremes of temperature, pressure, or salinity, archaea are now known in nearly every marine environment. Though frequently referred to collectively, the planktonic archaea actually comprise four major phylogenetic groups, each with its own distinct physiology and ecology. Only one group-the marine Thaumarchaeota-has cultivated representatives, making marine archaea an attractive focus point for the latest developments in cultivation-independent molecular methods. Here, we review the ecology, physiology, and biogeochemical impact of the four archaeal groups using recent insights from cultures and large-scale environmental sequencing studies. We highlight key gaps in our knowledge about the ecological roles of marine archaea in carbon flow and food web interactions. We emphasize the incredible uncultivated diversity within each of the four groups, suggesting there is much more to be done.
Collapse
Affiliation(s)
- Alyson E Santoro
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, California 93106, USA;
| | | | | |
Collapse
|
50
|
Holmes DE, Dang Y, Smith JA. Nitrogen cycling during wastewater treatment. ADVANCES IN APPLIED MICROBIOLOGY 2019; 106:113-192. [PMID: 30798802 DOI: 10.1016/bs.aambs.2018.10.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many wastewater treatment plants in the world do not remove reactive nitrogen from wastewater prior to release into the environment. Excess reactive nitrogen not only has a negative impact on human health, it also contributes to air and water pollution, and can cause complex ecosystems to collapse. In order to avoid the deleterious effects of excess reactive nitrogen in the environment, tertiary wastewater treatment practices that ensure the removal of reactive nitrogen species need to be implemented. Many wastewater treatment facilities rely on chemicals for tertiary treatment, however, biological nitrogen removal practices are much more environmentally friendly and cost effective. Therefore, interest in biological treatment is increasing. Biological approaches take advantage of specific groups of microorganisms involved in nitrogen cycling to remove reactive nitrogen from reactor systems by converting ammonia to nitrogen gas. Organisms known to be involved in this process include autotrophic ammonia-oxidizing bacteria, heterotrophic ammonia-oxidizing bacteria, ammonia-oxidizing archaea, anaerobic ammonia oxidizing bacteria (anammox), nitrite-oxidizing bacteria, complete ammonia oxidizers, and dissimilatory nitrate reducing microorganisms. For example, in nitrifying-denitrifying reactors, ammonia- and nitrite-oxidizing bacteria convert ammonia to nitrate and then denitrifying microorganisms reduce nitrate to nonreactive dinitrogen gas. Other nitrogen removal systems (anammox reactors) take advantage of anammox bacteria to convert ammonia to nitrogen gas using NO as an oxidant. A number of promising new biological treatment technologies are emerging and it is hoped that as the cost of these practices goes down more wastewater treatment plants will start to include a tertiary treatment step.
Collapse
|