1
|
Gómez-Ochoa SA, Möhn M, Malz MV, Ottenheijm R, Lanzer JD, Wiedmann F, Kraft M, Muka T, Schmidt C, Freichel M, Levinson RT. The transcriptional landscape of atrial fibrillation: A systematic review and meta-analysis. PLoS One 2025; 20:e0323534. [PMID: 40446189 PMCID: PMC12124854 DOI: 10.1371/journal.pone.0323534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 04/09/2025] [Indexed: 06/02/2025] Open
Abstract
BACKGROUND Despite advances in understanding atrial fibrillation (AF) pathophysiology, there is limited agreement on the key genes driving its pathophysiology. To understand the genome-wide transcriptomic landscape, we performed a meta-analysis from studies reporting gene expression patterns in atrial heart tissue from patients with AF and controls in sinus rhythm (SR). METHODS Bibliographic databases and data repositories were systematically searched for studies reporting gene expression patterns in atrial heart auricle tissue from patients with AF and controls in sinus rhythm. We calculated the pooled differences in individual gene expression from fourteen studies comprising 534 samples (353 AF and 181 SR) to create a consensus signature (CS), from which we identified differentially regulated pathways, estimated transcription factor activity, and evaluated its performance in classifying validation samples as AF or SR. RESULTS Despite heterogeneity in the top differentially expressed genes across studies, the AF-CS in both chambers were robust, showing a better performance in classifying AF status than individual study signatures. Functional analysis revealed commonality in the dysregulated cellular processes between chambers, including extracellular matrix remodeling (highlighting epithelial mesenchymal transition, actin filament organization, and actin binding hallmark pathways), cardiac conduction (including cardiac muscle cell action potential, gated channel activity, and cation channel activity pathways), metabolic derangements (highlighting oxidative phosphorylation and asparagine n linked glycosylation), and innate immune system activity (mainly neutrophil degranulation, and TNFα signaling pathways). Finally, the AF-CS showed a good performance differentiating AF from controls in three validation datasets (two from peripheral blood and one from left ventricle samples). CONCLUSIONS Despite variability in individual studies, this meta-analysis elucidated conserved molecular pathways involved in AF pathophysiology across its phenotypes and the potential of a transcriptomic signature in identifying AF from peripheral blood samples. Our work highlights the value of integrating published transcriptomics data in AF and the need for better data deposition practices.
Collapse
Affiliation(s)
- Sergio Alejandro Gómez-Ochoa
- Department of General Internal Medicine and Psychosomatics, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
| | - Malte Möhn
- Department of General Internal Medicine and Psychosomatics, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
- Institute for Computational Biomedicine, Heidelberg University Faculty of Medicine, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
| | | | - Roger Ottenheijm
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Jan D. Lanzer
- Institute for Computational Biomedicine, Heidelberg University Faculty of Medicine, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
| | - Felix Wiedmann
- Department of Cardiology, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
- HCR, Heidelberg Center for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany,
| | - Manuel Kraft
- Department of Cardiology, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
- HCR, Heidelberg Center for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany,
| | | | - Constanze Schmidt
- Department of Cardiology, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
- HCR, Heidelberg Center for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany,
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Rebecca T. Levinson
- Department of General Internal Medicine and Psychosomatics, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
- Institute for Computational Biomedicine, Heidelberg University Faculty of Medicine, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
2
|
Mainkar G, Ghiringhelli M, Zangi L. The Potential of RNA Therapeutics in Treating Cardiovascular Disease. Drugs 2025; 85:659-676. [PMID: 40175855 DOI: 10.1007/s40265-025-02173-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2025] [Indexed: 04/04/2025]
Abstract
Despite significant advances in cardiology over the past few decades, cardiovascular diseases (CVDs) remain the leading cause of global mortality and morbidity. This underscores the need for novel therapeutic interventions that go beyond symptom management to address the underlying causal mechanisms of CVDs. RNA-based therapeutics represent a new class of drugs capable of regulating specific genetic and molecular pathways, positioning them as strong candidates for targeting the root causes of a wide range of diseases. Moreover, owing to the vast diversity in RNA form and function, these molecules can be utilized to induce changes at different levels of gene expression regulation, making them suitable for a broad array of medical applications, even within a single disease context. Several RNA-based therapies are currently being investigated for their potential to address various CVD pathologies. These include treatments aimed at promoting cardiac revascularization and regeneration, preventing cardiomyocyte apoptosis, reducing harmful circulating cholesterols and fats, lowering blood pressure, reversing cardiac fibrosis and remodeling, and correcting the genetic basis of inherited CVDs. In this review, we discuss the current landscape of RNA therapeutics for CVDs, with an emphasis on their classifications, modes of action, advancements in delivery strategies and considerations for their implementation, as well as CVD targets with proven therapeutic potential.
Collapse
Affiliation(s)
- Gayatri Mainkar
- Icahn School of Medicine at Mount Sinai, Cardiovascular Research Institute, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Matteo Ghiringhelli
- Icahn School of Medicine at Mount Sinai, Cardiovascular Research Institute, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lior Zangi
- Icahn School of Medicine at Mount Sinai, Cardiovascular Research Institute, New York, NY, 10029, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
3
|
Lachowicz JI, Gać P. Short-Term and Long-Term Effects of Inhaled Ultrafine Particles on Blood Markers of Cardiovascular Diseases: A Systematic Review and Meta-Analysis. J Clin Med 2025; 14:2846. [PMID: 40283676 PMCID: PMC12028172 DOI: 10.3390/jcm14082846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/03/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: Air pollution is the highest environmental risk factor of mortality and morbidity worldwide, leading to over 4 million deaths each year. Among different air pollutants, ultrafine particles (UFPs) constitute the highest risk factor of cardiovascular diseases (CVDs). Epidemiological studies have associated UFPs with the short- and long-term imbalance of numerous blood markers. Our objective was to systematically review the short-term and long-term impact of UFP exposure on blood markers of CVDs. Methods: We prepared the systematic review of CVD blood markers and meta-analyses of the short- and long-term effects of UFP exposure on high-sensitivity C-reactive protein (hsCRP) concentration. The eligibility criteria were established with the use of the Provider, Enrollment, Chain, and Ownership System (PECOS) model, and the literature search was conducted in Web of Science, PubMed, and Scopus databases from 1 January 2013 to 9 January 2025. The risk of bias (RoB) was prepared according to a World Health Organization (WHO) template. Results: The results showed an increase in hsCRP as a result of both short-term and long-term UFPs. Moreover, IL-6 and IL-1β together with other inflammatory markers increased after short-term UFP exposure. In addition, different nucleic acids, among which were miR-24-3p and let-7d-5p, were differentially expressed (DE) as a result of short-term UFP exposure. Chronic exposure to UFPs could lead to a persistent increase in hsCRP and other blood markers of CVDs. Conclusions: Our findings underline that UFPs may lead to the development and/or worsening of cardiovascular outcomes in fragile populations living in air-polluted areas.
Collapse
Affiliation(s)
- Joanna Izabela Lachowicz
- Department of Environmental Health, Occupational Medicine and Epidemiology, Wroclaw Medical University, Mikulicza-Radeckiego 7, 50-368 Wroclaw, Poland;
| | | |
Collapse
|
4
|
Jin Y, Duan J, Yin Q, Ma Y, Lou J, Zhang W. Bibliometric and visual analysis of miRNAs in heart diseases from 2004 to 2023. Front Cardiovasc Med 2025; 12:1465646. [PMID: 40182423 PMCID: PMC11965657 DOI: 10.3389/fcvm.2025.1465646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 02/10/2025] [Indexed: 04/05/2025] Open
Abstract
Background MicroRNAs (miRNAs) add a new dimension to HD forecast, diagnosis, and therapy based on the potential applications. The miRNA-related research in the heart disease (HD) field has received close attention in the past two decades. However, there is a lack of studies that comprehensively and objectively analyze the current situation of miRNA application in the HD field using the bibliometrics method. Objective To comprehensively analyze the global scientific outputs of miRNAs in HD research from 2004 to 2023. Methods All the articles and reviews of miRNA-related research in the HD field were retrieved using the Web of Science core collection (WOSCC) title search, and bibliometric analysis was performed in Microsoft Excel 2019, CiteSpace, VOSviewer, and Bibliometrics (R-Tool of R-Studio). Results 3,874 publications were included in the bibliometric analysis. Collaborative network analysis indicates that China with the maximum number of publications (2,063) and the USA with the highest total citations (59,331) are influential countries in this field. Peking Union Medical College is the most prolific university with the maximum publications (134), and the University of California System is the most authoritative institution regarding betweenness centrality (0.27). PLOS ONE tops the journal list of publications, closely followed by the International Journal of Molecular Sciences and Scientific Reports with more than 100 articles. Considering the number of publications, citations, and total link strength overall, Olson. Eric N, Van Rooij Eva, Thum Thomas, Yang Baofeng, Wang Kun; and Lu Yanjie are authoritative authors in this field. The expression changes and regulatory mechanisms of specific miRNAs in various heart biological and pathophysiological processes have been the continuous research hotspots. "exosomes", "extracellular vesicles", "autophagy", and "management" have been novel hot research topics since 2018, which focused on the diagnosis and treatment of HD. The current research development trend is how to translate the achievement of miRNA-related diagnosis and therapeutic drugs for HD into the clinic. Conclusion Our study revealed the intellectual structure of miRNA in HD research, which may help scholars understand this field comprehensively and find partners.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Zhang
- Department of Geriatrics, Air Force Medical Center, PLA, Beijing, China
| |
Collapse
|
5
|
Gregorich ZR, Guo W. Alternative splicing factors and cardiac disease: more than just missplicing? RNA (NEW YORK, N.Y.) 2025; 31:300-306. [PMID: 39773891 PMCID: PMC11874993 DOI: 10.1261/rna.080332.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025]
Abstract
Alternative splicing (AS) is the process wherein the exons from a single gene are joined in different combinations to produce nonidentical, albeit related, RNA transcripts. This process is important for the development and physiological function of many organs and is particularly important in the heart. Notably, AS has been implicated in cardiac disease and failure, and a growing number of genetic variants in AS factors have been identified in association with cardiac malformation and/or disease. With the field poised to interrogate how these variants affect cardiac development and disease, an understandable point of emphasis will undoubtedly be on downstream target gene missplicing. In this Perspective article, we would like to encourage consideration not only of the potential for novel disease mechanisms, but also for contributions from disruption of the ever-expanding list of nonsplicing functions ascribed to many AS factors. We discuss the emergence of a novel cardiac disease mechanism based on pathogenic RNA granules and speculate on the generality of such a mechanism among localization-disrupting AS factor genetic variants. We also highlight emerging nonsplicing functions attributed to several AS factors with cardiac disease-associated genetic variants in the hopes of pointing to avenues for exploration of mechanisms that may contribute to disease alongside target gene missplicing.
Collapse
Affiliation(s)
- Zachery R Gregorich
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Wei Guo
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
6
|
Nagy RN, Makkos A, Baranyai T, Giricz Z, Szabó M, Kravcsenko-Kiss B, Bereczki Z, Ágg B, Puskás LG, Faragó N, Schulz R, Gyöngyösi M, Lukovic D, Varga ZV, Görbe A, Ferdinandy P. Cardioprotective microRNAs (protectomiRs) in a pig model of acute myocardial infarction and cardioprotection by ischaemic conditioning: MiR-450a. Br J Pharmacol 2025; 182:396-416. [PMID: 39294819 DOI: 10.1111/bph.17313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 06/05/2024] [Accepted: 07/04/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND AND PURPOSE Cardioprotective miRNAs (protectomiRs) are promising therapeutic tools. Here, we aimed to identify protectomiRs in a translational porcine model of acute myocardial infarction (AMI) and to validate their cardiocytoprotective effect. EXPERIMENTAL APPROACH ProtectomiR candidates were selected after systematic analysis of miRNA expression changes in cardiac tissue samples from a closed-chest AMI model in pigs subjected to sham operation, AMI and ischaemic preconditioning, postconditioning or remote preconditioning, respectively. Cross-species orthologue protectomiR candidates were validated in simulated ischaemia-reperfusion injury (sI/R) model of isolated rat ocardiomyocytes and in human AC16 cells as well. For miR-450a, we performed target prediction and analysed the potential mechanisms of action by GO enrichment and KEGG pathway analysis. KEY RESULTS Out of the 220 detected miRNAs, four were up-regulated and 10 were down-regulated due to all three conditionings versus AMI. MiR-450a and miR-451 mimics at 25 nM were protective in rat cardiomyocytes, and miR-450a showed protection in human cardiomyocytes as well. MiR-450a has 3987 predicted mRNA targets in pigs, 4279 in rats and 8328 in humans. Of these, 607 genes are expressed in all three species. A total of 421 common enriched GO terms were identified in all three species, whereas KEGG pathway analysis revealed 13 common pathways. CONCLUSION AND IMPLICATIONS This is the first demonstration that miR-450a is associated with cardioprotection by ischaemic conditioning in a clinically relevant porcine model and shows cardiocytoprotective effect in human cardiomyocytes, making it a promising drug candidate. The mechanism of action of miR-450a involves multiple cardioprotective pathways. LINKED ARTICLES This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
Grants
- OTKA ANN 107803 Hungarian Scientific Research Fund
- OTKA K-105555 Hungarian Scientific Research Fund
- 2018-1.3.1-VKE-2018-00024 National Research, Development and Innovation Office
- NVKP-16-1-2016-0017 National Heart Program National Research, Development and Innovation Office
- OTKA-FK 134751 National Research, Development and Innovation Office
- TKP/ITM/NFKIH National Research, Development and Innovation Office
- OTKAK21-139105 National Research, Development and Innovation Office
- RRF-2.3.1-21-2022-00003 European Union
- EU COST Action CardioRNA.eu, Cardioprotection.eu
- 88öu1 Austrian-Hungarian Action Scholarship
- 739593 European Union's Horizon 2020
- 2019-1.1.1-PIACI-KFI-2019-00367 National Research, Development and Innovation Fund
- 2020-1.1.5-GYORSÍTÓSÁV-2021-00011 National Research, Development and Innovation Fund
- ÚNKP-20-5 National Research, Development and Innovation Fund
- ÚNKP-23-4-II-SE-34 National Research, Development and Innovation Fund
- János Bolyai Research Scholarship of Hungarian Academy of Sciences
Collapse
Affiliation(s)
- Regina N Nagy
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - András Makkos
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Tamás Baranyai
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Zoltán Giricz
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Márta Szabó
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Bernadett Kravcsenko-Kiss
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Zoltán Bereczki
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Bence Ágg
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - László G Puskás
- Laboratory of Functional Genomics, Biological Research Centre, Szeged, Hungary
| | - Nóra Faragó
- Laboratory of Functional Genomics, Biological Research Centre, Szeged, Hungary
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University of Giessen, Giessen, Germany
| | - Mariann Gyöngyösi
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Dominika Lukovic
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Zoltán V Varga
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, Budapest, Hungary
| | - Anikó Görbe
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Péter Ferdinandy
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| |
Collapse
|
7
|
Song R, Zhang L. MicroRNAs and therapeutic potentials in acute and chronic cardiac disease. Drug Discov Today 2024; 29:104179. [PMID: 39276921 DOI: 10.1016/j.drudis.2024.104179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/23/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
microRNAs (miRNAs) are small regulatory RNAs implicated in various cardiac disorders. In this review, the role of miRNAs is discussed in relation to acute myocardial infarction and chronic heart failure. In both settings, miRNAs are altered, contributing to injury and adverse remodeling. Notably, miRNA profiles differ between acute ischemic injury and progressive heart failure. Owing to miRNA variabilities between disease stages and delivery difficulties, translation of animal studies to the clinic remains challenging. The identification of distinct miRNA signatures could lead to the development of miRNA therapies tailored to different disease stages. Here, we summarize the current understanding of miRNAs in acute and chronic cardiac diseases, identify knowledge gaps and discuss progress in developing miRNA-based treatment strategies.
Collapse
Affiliation(s)
- Rui Song
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
8
|
Fatehi Hassanabad A, Zarzycki AN, Patel VB, Fedak PWM. Current concepts in the epigenetic regulation of cardiac fibrosis. Cardiovasc Pathol 2024; 73:107673. [PMID: 38996851 DOI: 10.1016/j.carpath.2024.107673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/18/2024] [Accepted: 07/07/2024] [Indexed: 07/14/2024] Open
Abstract
Cardiac fibrosis is a significant driver of congestive heart failure, a syndrome that continues to affect a growing patient population globally. Cardiac fibrosis results from a constellation of complex processes at the transcription, receptor, and signaling axes levels. Various mediators and signaling cascades, such as the transformation growth factor-beta pathway, have been implicated in the pathophysiology of cardiac tissue fibrosis. Our understanding of these markers and pathways has improved in recent years as more advanced technologies and assays have been developed, allowing for better delineation of the crosstalk between specific factors. There is mounting evidence suggesting that epigenetic modulation plays a pivotal role in the progression of cardiac fibrosis. Transcriptional regulation of key pro- and antifibrotic pathways can accentuate or blunt the rate and extent of fibrosis at the tissue level. Exosomes, micro-RNAs, and long noncoding RNAs all belong to factors that can impact the epigenetic signature in cardiac fibrosis. Herein, we comprehensively review the latest literature about exosomes, their contents, and cardiac fibrosis. In doing so, we highlight the specific transcriptional factors with pro- or antifibrotic properties. We also assimilate the data supporting these mediators' potential utility as diagnostic or prognostic biomarkers. Finally, we offer insight into where further work can be done to fill existing gaps to translate preclinical findings better and improve clinical outcomes.
Collapse
Affiliation(s)
- Ali Fatehi Hassanabad
- Section of Cardiac Surgery, Department of Cardiac Science, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Anna N Zarzycki
- Section of Cardiac Surgery, Department of Cardiac Science, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Vaibhav B Patel
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Paul W M Fedak
- Section of Cardiac Surgery, Department of Cardiac Science, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
9
|
Sharma S, Artner T, Preissner KT, Lang IM. Nucleic acid liquid biopsies in cardiovascular disease: Cell-free RNA liquid biopsies in cardiovascular disease. Atherosclerosis 2024; 398:118584. [PMID: 39306538 DOI: 10.1016/j.atherosclerosis.2024.118584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/15/2024] [Accepted: 08/29/2024] [Indexed: 11/17/2024]
Abstract
Cardiovascular diseases (CVD) and their complications continue to be the leading cause of mortality globally. With recent advancements in molecular analytics, individualized treatments are gradually applied to the diagnosis and treatment of CVD. In the field of diagnostics, liquid biopsy combined with modern analytical technologies is the most popular natural source to identify disease biomarkers, as has been successfully demonstrated in the cancer field. While it is not easy to obtain any diseased tissue for different types of CVD such as atherosclerosis, deep vein thrombosis or stroke, liquid biopsies provide a simple and non-invasive alternative to surgical tissue specimens to obtain dynamic molecular information reflecting disease states. The release of cell-free ribonucleic acids (cfRNA) from stressed/damaged/dying and/or necrotic cells is a common physiological phenomenon. CfRNAs are a heterogeneous population of various types of extracellular RNA found in body fluids (blood, urine, saliva, cerebrospinal fluid) or in association with vascular/atherosclerotic tissue, offering insights into disease pathology on a diagnostic front. In particular, cf-ribosomal RNA has been shown to act as a damaging molecule in several cardio-vascular disease conditions. Moreover, such pathophysiological functions of cfRNA in CVD have been successfully antagonized by the administration of RNases. In this review, we discuss the origin, structure, types, and potential utilization of cfRNA in the diagnosis of CVD. Together with the analysis of established CVD biomarkers, the profiling of cfRNA in body fluids may thereby provide a promising approach for early disease detection and monitoring.
Collapse
Affiliation(s)
- Smriti Sharma
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Vienna, Austria
| | - Tyler Artner
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Vienna, Austria
| | - Klaus T Preissner
- Kerckhoff-Heart Research Institute, Department Cardiology, Justus-Liebig-University, Giessen, Germany
| | - Irene M Lang
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
10
|
Ueno Y, Morishima Y, Hata T, Shindo A, Murata H, Saito T, Nakamura Y, Shindo K. Current progress in microRNA profiling of circulating extracellular vesicles in amyotrophic lateral sclerosis: A systematic review. Neurobiol Dis 2024; 200:106639. [PMID: 39168358 DOI: 10.1016/j.nbd.2024.106639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024] Open
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease affecting upper and lower motor neurons, leading to death resulting mainly from respiratory failure, for which there is currently no curative treatment. Underlying pathological mechanisms for the development of ALS are diverse and have yet to be elucidated. Non-invasive testing to isolate circulating molecules including microRNA to diagnose ALS has been reported, but circulating extracellular vesicle (EV)-derived microRNA has not been fully studied in the ALS population. METHODS A systematic literature review to explore studies investigating the profile of microRNAs in EVs from blood samples of ALS patients was carried out according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guideline. RESULTS Eleven studies including a total of 263 patients with ALS were included in the present systematic review. The majority of patients had sporadic ALS, though a small number of patients with ALS having genetic mutations were included. Seven studies used plasma-derived EVs, and the remaining four studies used serum-derived EVs. RNA sequencing or microarrays were used in eight studies, and quantitative PCR was used in eight studies, of which five studies used RNA sequencing or microarrays for screening and quantitative PCR for validation. There was overlap of miR-199a-3p and miR-199a-5p in three studies. CONCLUSIONS Overall, the systematic review addressed the current advances in the profiling of microRNAs in circulating EVs of ALS patients. Blood samples, isolation of EVs, and microRNA analysis were diverse. Although there was an overlap of miR-199a-3p and miR-199a-5p, collection of further evidence is warranted.
Collapse
Affiliation(s)
- Yuji Ueno
- Department of Neurology, University of Yamanashi, Chuo, Japan.
| | - Yuto Morishima
- Department of Neurology, University of Yamanashi, Chuo, Japan
| | - Takanori Hata
- Department of Neurology, University of Yamanashi, Chuo, Japan
| | - Atsuhiko Shindo
- Department of Neurology, University of Yamanashi, Chuo, Japan
| | - Hiroaki Murata
- Department of Neurology, University of Yamanashi, Chuo, Japan
| | - Tatsuya Saito
- Department of Neurology, University of Yamanashi, Chuo, Japan
| | - Yuki Nakamura
- Department of Neurology, University of Yamanashi, Chuo, Japan
| | - Kazumasa Shindo
- Department of Neurology, University of Yamanashi, Chuo, Japan
| |
Collapse
|
11
|
Lin C, Yang YS, Ma H, Chen Z, Chen D, John AA, Xie J, Gao G, Shim JH. Engineering a targeted and safe bone anabolic gene therapy to treat osteoporosis in alveolar bone loss. Mol Ther 2024; 32:3080-3100. [PMID: 38937970 PMCID: PMC11403231 DOI: 10.1016/j.ymthe.2024.06.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/04/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024] Open
Abstract
Alveolar bone loss in elderly populations is highly prevalent and increases the risk of tooth loss, gum disease susceptibility, and facial deformity. Unfortunately, there are very limited treatment options available. Here, we developed a bone-targeted gene therapy that reverses alveolar bone loss in patients with osteoporosis by targeting the adaptor protein Schnurri-3 (SHN3). SHN3 is a promising therapeutic target for alveolar bone regeneration, because SHN3 expression is elevated in the mandible tissues of humans and mice with osteoporosis while deletion of SHN3 in mice greatly increases alveolar bone and tooth dentin mass. We used a bone-targeted recombinant adeno-associated virus (rAAV) carrying an artificial microRNA (miRNA) that silences SHN3 expression to restore alveolar bone loss in mouse models of both postmenopausal and senile osteoporosis by enhancing WNT signaling and osteoblast function. In addition, rAAV-mediated silencing of SHN3 enhanced bone formation and collagen production of human skeletal organoids in xenograft mice. Finally, rAAV expression in the mandible was tightly controlled via liver- and heart-specific miRNA-mediated repression or via a vibration-inducible mechanism. Collectively, our results demonstrate that AAV-based bone anabolic gene therapy is a promising strategy to treat alveolar bone loss in osteoporosis.
Collapse
Affiliation(s)
- Chujiao Lin
- Department of Medicine/Division of Rheumatology, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Yeon-Suk Yang
- Department of Medicine/Division of Rheumatology, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Hong Ma
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA 01655, USA; Horae Gene Therapy Center, Umass Chan Medical School, Worcester, MA 01655, USA; Viral Vector Core, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Zhihao Chen
- Department of Medicine/Division of Rheumatology, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Dong Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Implantology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Aijaz Ahmad John
- Department of Medicine/Division of Rheumatology, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Jun Xie
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA 01655, USA; Horae Gene Therapy Center, Umass Chan Medical School, Worcester, MA 01655, USA; Viral Vector Core, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Guangping Gao
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA 01655, USA; Horae Gene Therapy Center, Umass Chan Medical School, Worcester, MA 01655, USA; Viral Vector Core, UMass Chan Medical School, Worcester, MA 01655, USA; Li Weibo Institute for Rare Diseases Research, UMass Chan Medical School, Worcester, MA 01655, USA.
| | - Jae-Hyuck Shim
- Department of Medicine/Division of Rheumatology, UMass Chan Medical School, Worcester, MA 01655, USA; Horae Gene Therapy Center, Umass Chan Medical School, Worcester, MA 01655, USA; Li Weibo Institute for Rare Diseases Research, UMass Chan Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
12
|
Gasecka A, Błażejowska E, Pluta K, Gajewska M, Rogula S, Filipiak KJ, Kochman J, Siller-Matula JM, Postuła M, Eyileten C. Ticagrelor downregulates the expression of proatherogenic and proinflammatory miR125-b compared to clopidogrel: A randomized, controlled trial. Int J Cardiol 2024; 406:132073. [PMID: 38643804 DOI: 10.1016/j.ijcard.2024.132073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 04/23/2024]
Abstract
BACKGROUND Platelet P2Y12 antagonist ticagrelor reduces cardiovascular mortality after acute myocardial infarction (AMI) compared to clopidogrel, but the underlying mechanism is unknown. Because activated platelets release proatherogenic and proinflammatory microRNAs, including miR-125a, miR-125b and miR-223, we hypothesized that the expression of these miRNAs is lower on ticagrelor, compared to clopidogrel. OBJECTIVES We compared miR-125a, miR-125b and miR-223 expression in plasma of patients after AMI treated with ticagrelor or clopidogrel. METHODS After percutaneous coronary intervention on acetylsalicylic acid and clopidogrel, 60 patients with first AMI were randomized to switch to ticagrelor or to continue with clopidogrel. Plasma expression of miR-223, miR-125a-5p, miR-125b was measured using quantitative polymerase chain reaction at baseline and after 72 h and 6 months of treatment with ticagrelor or clopidogrel in patients and one in 30 healthy volunteers. Multiple electrode aggregometry using ADP test was used to determine platelet reactivity in response to P2Y12 inhibitors. RESULTS Expression of miR-125b was higher in patients with AMI 72 h and 6 months, compared to healthy volunteers (p = 0.001), whereas expression of miR-125a-5p and miR-223 were comparable. In patients randomized to ticagrelor, expression of miR-125b decreased at 72 h (p = 0.007) and increased back to baseline at 6 months (p = 0.005). Expression of miR-125a-5p and miR-223 was not affected by the switch from clopidogrel to ticagrelor. CONCLUSIONS Ticagrelor treatment leads to lower plasma expression of miR-125b after AMI, compared to clopidogrel. Higher expression of miR-125b might explain recurrent thrombotic events and worse clinical outcomes in patients treated with clopidogrel, compared to ticagrelor.
Collapse
Affiliation(s)
- Aleksandra Gasecka
- 1(st) Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland.
| | - Ewelina Błażejowska
- 1(st) Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Kinga Pluta
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| | - Magdalena Gajewska
- 1(st) Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Sylwester Rogula
- 1(st) Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Krzysztof J Filipiak
- Maria Sklodowska-Curie Medical Academy in Warsaw, Warsaw, Poland; Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Janusz Kochman
- 1(st) Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | | | - Marek Postuła
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
13
|
Iacobescu L, Ciobanu AO, Corlatescu AD, Simionescu M, Iacobescu GL, Dragomir E, Vinereanu D. The Role of Circulating MicroRNAs in Cardiovascular Diseases: A Novel Biomarker for Diagnosis and Potential Therapeutic Targets? Cureus 2024; 16:e64100. [PMID: 39114238 PMCID: PMC11305655 DOI: 10.7759/cureus.64100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
MicroRNAs, involved in a large variety of pathological conditions, tend to be potential specific biomarkers in cardiovascular diseases. Moreover, these short, non-coding RNAs, regulate post-transcriptional gene expression and protein synthesis, making them ideal for therapeutic targets. Down-regulation and up-regulation of specific microRNAs are currently studied as a novel approach to the diagnosis and treatment of cardiovascular diseases, such as chronic and acute coronary syndromes, atherosclerosis, heart failure, and arrhythmia. MicroRNAs are interesting and attractive targets for cardiovascular-associated therapeutics because of their stability, tissue-specific expression pattern, and secretion of body fluids. Extended research on their isolation, detection, and function will provide the standardization needed for using microRNAs as biomarkers and potential therapeutic targets. This review will summarize recent data on the implication of microRNAs in cardiovascular diseases, their potential role as biomarkers for diagnosis, and also the challenges of using microRNAs as future therapeutic targets.
Collapse
Affiliation(s)
- Loredana Iacobescu
- Cardiology, University of Medicine and Pharmacy "Carol Davila", Bucharest, ROU
- Cardiology, University Emergency Hospital, University of Medicine and Pharmacy "Carol Davila", Bucharest, ROU
| | - Andreea-Olivia Ciobanu
- Cardiology, University of Medicine and Pharmacy "Carol Davila", Bucharest, ROU
- Cardiology, University Emergency Hospital, University of Medicine and Pharmacy "Carol Davila", Bucharest, ROU
| | | | - Maya Simionescu
- Biology, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, ROU
| | - Georgian L Iacobescu
- Orthopedics and Traumatology, University Emergency Hospital, University of Medicine and Pharmacy "Carol Davila", Bucharest, ROU
| | - Elena Dragomir
- Cellular Biology, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, ROU
| | - Dragos Vinereanu
- Cardiology, University of Medicine and Pharmacy "Carol Davila", Bucharest, ROU
- Cardiology, University Emergency Hospital, University of Medicine and Pharmacy "Carol Davila", Bucharest, ROU
| |
Collapse
|
14
|
Podgórska D, Cieśla M, Płonka A, Bajorek W, Czarny W, Król P, Podgórski R. Changes in Circulating MicroRNA Levels as Potential Indicators of Training Adaptation in Professional Volleyball Players. Int J Mol Sci 2024; 25:6107. [PMID: 38892295 PMCID: PMC11173131 DOI: 10.3390/ijms25116107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The increasing demand placed on professional athletes to enhance their fitness and performance has prompted the search for new, more sensitive biomarkers of physiological ability. One such potential biomarker includes microRNA (miRNA) small regulatory RNA sequences. The study investigated the levels of the selected circulating miRNAs before and after a 10-week training cycle in 12 professional female volleyball players, as well as their association with cortisol, creatine kinase (CK), and interleukin 6 (IL-6), using the qPCR technique. Significant decreases in the miR-22 (0.40 ± 0.1 vs. 0.28 ± 0.12, p = 0.009), miR-17 (0.35 ± 0.13 vs. 0.23 ± 0.08; p = 0.039), miR-24 (0.09 ± 0.04 vs. 0.05 ± 0.02; p = 0.001), and miR-26a (0.11 ± 0.06 vs. 0.06 ± 0.04; p = 0.003) levels were observed after training, alongside reduced levels of cortisol and IL-6. The correlation analysis revealed associations between the miRNAs' relative quantity and the CK concentrations, highlighting their potential role in the muscle repair processes. The linear regression analysis indicated that miR-24 and miR-26a had the greatest impact on the CK levels. The study provides insights into the dynamic changes in the miRNA levels during training, suggesting their potential as biomarkers for monitoring the adaptive responses to exercise. Overall, the findings contribute to a better understanding of the physiological effects of exercise and the potential use of miRNAs, especially miR-24 and miR-26a, as biomarkers in sports science and medicine.
Collapse
Affiliation(s)
- Dominika Podgórska
- Department of Internal Diseases, Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-310 Rzeszow, Poland
| | - Marek Cieśla
- Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-310 Rzeszow, Poland;
| | - Artur Płonka
- Institute of Physical Culture Studies, College of Medical Sciences, University of Rzeszow, 35-310 Rzeszow, Poland; (A.P.); (W.B.); (W.C.); (P.K.)
| | - Wojciech Bajorek
- Institute of Physical Culture Studies, College of Medical Sciences, University of Rzeszow, 35-310 Rzeszow, Poland; (A.P.); (W.B.); (W.C.); (P.K.)
| | - Wojciech Czarny
- Institute of Physical Culture Studies, College of Medical Sciences, University of Rzeszow, 35-310 Rzeszow, Poland; (A.P.); (W.B.); (W.C.); (P.K.)
| | - Paweł Król
- Institute of Physical Culture Studies, College of Medical Sciences, University of Rzeszow, 35-310 Rzeszow, Poland; (A.P.); (W.B.); (W.C.); (P.K.)
| | - Rafał Podgórski
- Department of Biochemistry, Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-310 Rzeszow, Poland;
| |
Collapse
|
15
|
Vancheri C, Quatrana A, Morini E, Mariotti C, Mongelli A, Fichera M, Rufini A, Condò I, Testi R, Novelli G, Malisan F, Amati F. An RNA-seq study in Friedreich ataxia patients identified hsa-miR-148a-3p as a putative prognostic biomarker of the disease. Hum Genomics 2024; 18:50. [PMID: 38778374 PMCID: PMC11110315 DOI: 10.1186/s40246-024-00602-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/26/2024] [Indexed: 05/25/2024] Open
Abstract
Friedreich ataxia (FRDA) is a life-threatening hereditary ataxia; its incidence is 1:50,000 individuals in the Caucasian population. A unique therapeutic drug for FRDA, the antioxidant Omaveloxolone, has been recently approved by the US Food and Drug Administration (FDA). FRDA is a multi-systemic neurodegenerative disease; in addition to a progressive neurodegeneration, FRDA is characterized by hypertrophic cardiomyopathy, diabetes mellitus and musculoskeletal deformities. Cardiomyopathy is the predominant cause of premature death. The onset of FRDA typically occurs between the ages of 5 and 15. Given the complexity and heterogeneity of clinical features and the variability of their onset, the identification of biomarkers capable of assessing disease progression and monitoring the efficacy of treatments is essential to facilitate decision making in clinical practice. We conducted an RNA-seq analysis in peripheral blood mononuclear cells from FRDA patients and healthy donors, identifying a signature of small non-coding RNAs (sncRNAs) capable of distinguishing healthy individuals from the majority of FRDA patients. Among the differentially expressed sncRNAs, microRNAs are a class of small non-coding endogenous RNAs that regulate posttranscriptional silencing of target genes. In FRDA plasma samples, hsa-miR-148a-3p resulted significantly upregulated. The analysis of the Receiver Operating Characteristic (ROC) curve, combining the circulating expression levels of hsa-miR-148a-3p and hsa-miR-223-3p (previously identified by our group), revealed an Area Under the Curve (AUC) of 0.86 (95%, Confidence Interval 0.77-0.95; p-value < 0.0001). An in silico prediction analysis indicated that the IL6ST gene, an interesting marker of neuroinflammation in FRDA, is a common target gene of both miRNAs. Our findings support the evaluation of combined expression levels of different circulating miRNAs as potent epi-biomarkers in FRDA. Moreover, we found hsa-miR-148a-3p significantly over-expressed in Intermediate and Late-Onset Friedreich Ataxia patients' group (IOG and LOG, respectively) compared to healthy individuals, indicating it as a putative prognostic biomarker in this pathology.
Collapse
Affiliation(s)
- Chiara Vancheri
- Department of Biomedicine and Prevention, Genetics Unit, Tor Vergata University of Rome, Via Montpellier 1, Rome, 00133, Italy
| | - Andrea Quatrana
- Department of Biomedicine and Prevention, Laboratory of Signal Transduction, Tor Vergata University of Rome, Via Montpellier 1, Rome, 00133, Italy
- Muscular and Neurodegenerative Diseases Laboratory, Bambino Gesù, Children's Hospital, IRCCS, Rome, Italy
| | - Elena Morini
- Department of Biomedicine and Prevention, Genetics Unit, Tor Vergata University of Rome, Via Montpellier 1, Rome, 00133, Italy
| | - Caterina Mariotti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, 20133, Italy
| | - Alessia Mongelli
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, 20133, Italy
| | - Mario Fichera
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, 20133, Italy
| | - Alessandra Rufini
- Department of Biomedicine and Prevention, Laboratory of Signal Transduction, Tor Vergata University of Rome, Via Montpellier 1, Rome, 00133, Italy
- Saint Camillus International University of Health and Medical Sciences, Rome, 00131, Italy
| | - Ivano Condò
- Department of Biomedicine and Prevention, Laboratory of Signal Transduction, Tor Vergata University of Rome, Via Montpellier 1, Rome, 00133, Italy
| | - Roberto Testi
- Department of Biomedicine and Prevention, Laboratory of Signal Transduction, Tor Vergata University of Rome, Via Montpellier 1, Rome, 00133, Italy
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Genetics Unit, Tor Vergata University of Rome, Via Montpellier 1, Rome, 00133, Italy
- Neuromed Institute, IRCCS, Pozzilli, 86077, Italy
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, NV, 89557, USA
| | - Florence Malisan
- Department of Biomedicine and Prevention, Laboratory of Signal Transduction, Tor Vergata University of Rome, Via Montpellier 1, Rome, 00133, Italy.
| | - Francesca Amati
- Department of Biomedicine and Prevention, Genetics Unit, Tor Vergata University of Rome, Via Montpellier 1, Rome, 00133, Italy.
| |
Collapse
|
16
|
Nappi F. Non-Coding RNA-Targeted Therapy: A State-of-the-Art Review. Int J Mol Sci 2024; 25:3630. [PMID: 38612441 PMCID: PMC11011542 DOI: 10.3390/ijms25073630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
The use of non-coding RNAs (ncRNAs) as drug targets is being researched due to their discovery and their role in disease. Targeting ncRNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), is an attractive approach for treating various diseases, such as cardiovascular disease and cancer. This seminar discusses the current status of ncRNAs as therapeutic targets in different pathological conditions. Regarding miRNA-based drugs, this approach has made significant progress in preclinical and clinical testing for cardiovascular diseases, where the limitations of conventional pharmacotherapy are evident. The challenges of miRNA-based drugs, including specificity, delivery, and tolerability, will be discussed. New approaches to improve their success will be explored. Furthermore, it extensively discusses the potential development of targeted therapies for cardiovascular disease. Finally, this document reports on the recent advances in identifying and characterizing microRNAs, manipulating them, and translating them into clinical applications. It also addresses the challenges and perspectives towards clinical application.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France
| |
Collapse
|
17
|
Clouthier KL, Taylor AC, Xuhuai J, Liu Y, Parker S, Van Eyk J, Reddy S. A Noninvasive Circulating Signature of Combined Right Ventricular Pressure and Volume Overload in Tetralogy of Fallot/Pulmonary Atresia/Major Aortopulmonary Collateral Arteries. World J Pediatr Congenit Heart Surg 2024; 15:162-173. [PMID: 38128927 PMCID: PMC11991743 DOI: 10.1177/21501351231213626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Background: Despite surgical advances, children with tetralogy of Fallot/pulmonary atresia/major aortopulmonary collaterals (TOF/PA/MAPCAs) are subject to chronic right ventricular (RV) pressure and volume overload. Current diagnostic tools do not identify adverse myocardial remodeling and cannot predict progression to RV failure. We sought to identify a noninvasive, circulating signature of the systemic response to right heart stress to follow disease progression. Methods: Longitudinal data were collected from patients with TOF/PA/MAPCAs (N = 5) at the time of (1) early RV pressure overload and (2) late RV pressure and volume overload. Plasma protein and microRNA expression were evaluated using high-throughput data-independent mass spectroscopy and Agilent miR Microarray, respectively. Results: At the time of early RV pressure overload, median patient age was 0.34 years (0.02-9.37), with systemic RV pressures, moderate-severe hypertrophy, and preserved systolic function. Late RV pressure and volume overload occurred at a median age of 4.08 years (1.51-10.83), with moderate RV hypertrophy and dilation, and low normal RV function; 277 proteins were significantly dysregulated (log2FC ≥0.6/≤-0.6, FDR≤0.05), predicting downregulation in lipid transport (apolipoproteins), fibrinolytic system, and extracellular matrix structural proteins (talin 1, profilin 1); and upregulation in the respiratory burst. Increasing RV size and decreasing RV function correlated with decreasing structural protein expression. Similarly, miR expression predicted downregulation of extracellular matrix-receptor interactions and upregulation in collagen synthesis. Conclusion: To our knowledge, we show for the first time a noninvasive protein and miR signature reflecting the systemic response to adverse RV myocardial remodeling in TOF/PA/MAPCAs which could be used to follow disease progression.
Collapse
Affiliation(s)
- Katie L. Clouthier
- Department of Pediatrics (Cardiology), Stanford University, Palo Alto, CA, USA
| | - Anne C. Taylor
- Department of Pediatrics (Cardiology), Stanford University, Palo Alto, CA, USA
| | - Ji Xuhuai
- Human Immune Monitoring Center and Functional Genomics Facility, Stanford University, Palo Alto, CA, USA
| | - Yuhan Liu
- Department of Medicine (Quantitative Science Unit), Stanford University, Palo Alto, CA, USA
| | - Sarah Parker
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jennifer Van Eyk
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sushma Reddy
- Department of Pediatrics (Cardiology), Stanford University, Palo Alto, CA, USA
- Cardiovascular Institute, Stanford University, Los Angeles, CA, USA
| |
Collapse
|
18
|
Wang G, Lu W, Shen WB, Karbowski M, Kaushal S, Yang P. Small Molecule Activators of Mitochondrial Fusion Prevent Congenital Heart Defects Induced by Maternal Diabetes. JACC Basic Transl Sci 2024; 9:303-318. [PMID: 38559623 PMCID: PMC10978414 DOI: 10.1016/j.jacbts.2023.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 04/04/2024]
Abstract
Most congenital heart defect (CHD) cases are attributed to nongenetic factors; however, the mechanisms underlying nongenetic factor-induced CHDs are elusive. Maternal diabetes is one of the nongenetic factors, and this study aimed to determine whether impaired mitochondrial fusion contributes to maternal diabetes-induced CHDs and if mitochondrial fusion activators, teriflunomide and echinacoside, could reduce CHD incidence in diabetic pregnancy. We demonstrated maternal diabetes-activated FoxO3a increases miR-140 and miR-195, which in turn represses Mfn1 and Mfn2, leading to mitochondrial fusion defects and CHDs. Two mitochondrial fusion activators are effective in preventing CHDs in diabetic pregnancy.
Collapse
Affiliation(s)
- Guanglei Wang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Wenhui Lu
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Wei-Bin Shen
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mariusz Karbowski
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sunjay Kaushal
- Division of Cardiac Surgery, Department of Surgery, Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Peixin Yang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
19
|
Pantaleão LC, Loche E, Fernandez-Twinn DS, Dearden L, Córdova-Casanova A, Osmond C, Salonen MK, Kajantie E, Niu Y, de Almeida-Faria J, Thackray BD, Mikkola TM, Giussani DA, Murray AJ, Bushell M, Eriksson JG, Ozanne SE. Programming of cardiac metabolism by miR-15b-5p, a miRNA released in cardiac extracellular vesicles following ischemia-reperfusion injury. Mol Metab 2024; 80:101875. [PMID: 38218535 PMCID: PMC10832484 DOI: 10.1016/j.molmet.2024.101875] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024] Open
Abstract
OBJECTIVE We investigated the potential involvement of miRNAs in the developmental programming of cardiovascular diseases (CVD) by maternal obesity. METHODS Serum miRNAs were measured in individuals from the Helsinki Birth Cohort (with known maternal body mass index), and a mouse model was used to determine causative effects of maternal obesity during pregnancy and ischemia-reperfusion on offspring cardiac miRNA expression and release. RESULTS miR-15b-5p levels were increased in the sera of males born to mothers with higher BMI and in the hearts of adult mice born to obese dams. In an ex-vivo model of perfused mouse hearts, we demonstrated that cardiac tissue releases miR-15b-5p, and that some of the released miR-15b-5p was contained within small extracellular vesicles (EVs). We also demonstrated that release was higher from hearts exposed to maternal obesity following ischaemia/reperfusion. Over-expression of miR-15b-5p in vitro led to loss of outer mitochondrial membrane stability and to repressed fatty acid oxidation in cardiomyocytes. CONCLUSIONS These findings suggest that miR-15-b could play a mechanistic role in the dysregulation of cardiac metabolism following exposure to an in utero obesogenic environment and that its release in cardiac EVs following ischaemic damage may be a novel factor contributing to inter-organ communication between the programmed heart and peripheral tissues.
Collapse
Affiliation(s)
- Lucas C Pantaleão
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Elena Loche
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Denise S Fernandez-Twinn
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Laura Dearden
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Adriana Córdova-Casanova
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Clive Osmond
- MRC Lifecourse Epidemiology Unit, University of Southampton, UK
| | - Minna K Salonen
- Finnish Institute for Health and Welfare, Public Health Unit, Finland
| | - Eero Kajantie
- Finnish Institute for Health and Welfare, Public Health Unit, Finland; Clinical Medicine Research Unit, MRC Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Youguo Niu
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, UK
| | - Juliana de Almeida-Faria
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Benjamin D Thackray
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK; Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, UK
| | - Tuija M Mikkola
- Finnish Institute for Health and Welfare, Public Health Unit, Finland; Folkhalsan Research Center, Helsinki, Finland; Faculty of Medicine, University of Helsinki, Finland
| | - Dino A Giussani
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, UK
| | - Andrew J Murray
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, UK
| | - Martin Bushell
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
| | - Johan G Eriksson
- Folkhalsan Research Center, Helsinki, Finland; Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, Finland; Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore, Singapore; Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Susan E Ozanne
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
20
|
Carvalho RA. The glycolytic pathway to heart failure. GLYCOLYSIS 2024:235-266. [DOI: 10.1016/b978-0-323-91704-9.00010-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
21
|
Aranega AE, Franco D. Posttranscriptional Regulation by Proteins and Noncoding RNAs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:313-339. [PMID: 38884719 DOI: 10.1007/978-3-031-44087-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Posttranscriptional regulation comprises those mechanisms occurring after the initial copy of the DNA sequence is transcribed into an intermediate RNA molecule (i.e., messenger RNA) until such a molecule is used as a template to generate a protein. A subset of these posttranscriptional regulatory mechanisms essentially are destined to process the immature mRNA toward its mature form, conferring the adequate mRNA stability, providing the means for pertinent introns excision, and controlling mRNA turnover rate and quality control check. An additional layer of complexity is added in certain cases, since discrete nucleotide modifications in the mature RNA molecule are added by RNA editing, a process that provides large mature mRNA diversity. Moreover, a number of posttranscriptional regulatory mechanisms occur in a cell- and tissue-specific manner, such as alternative splicing and noncoding RNA-mediated regulation. In this chapter, we will briefly summarize current state-of-the-art knowledge of general posttranscriptional mechanisms, while major emphases will be devoted to those tissue-specific posttranscriptional modifications that impact on cardiac development and congenital heart disease.
Collapse
Affiliation(s)
- Amelia E Aranega
- Cardiovascular Research Group, Department of Experimental Biology, University of Jaén, Jaén, Spain
| | - Diego Franco
- Cardiovascular Research Group, Department of Experimental Biology, University of Jaén, Jaén, Spain.
| |
Collapse
|
22
|
Zalivina I, Barwari T, Yin X, Langley SR, Barallobre-Barreiro J, Wakimoto H, Zampetaki A, Mayr M, Avkiran M, Eminaga S. Inhibition of miR-199a-3p in a murine hypertrophic cardiomyopathy (HCM) model attenuates fibrotic remodeling. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2023; 6:100056. [PMID: 38143961 PMCID: PMC10739604 DOI: 10.1016/j.jmccpl.2023.100056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023]
Abstract
Background Hypertrophic cardiomyopathy (HCM) is an autosomal dominant genetic disorder, characterized by cardiomyocyte hypertrophy, cardiomyocyte disarray and fibrosis, which has a prevalence of ∼1: 200-500 and predisposes individuals to heart failure and sudden death. The mechanisms through which diverse HCM-causing mutations cause cardiac dysfunction remain mostly unknown and their identification may reveal new therapeutic avenues. MicroRNAs (miRNAs) have emerged as critical regulators of gene expression and disease phenotype in various pathologies. We explored whether miRNAs could play a role in HCM pathogenesis and offer potential therapeutic targets. Methods and results Using high-throughput miRNA expression profiling and qPCR analysis in two distinct mouse models of HCM, we found that miR-199a-3p expression levels are upregulated in mutant mice compared to age- and treatment-matched wild-type mice. We also found that miR-199a-3p expression is enriched in cardiac non-myocytes compared to cardiomyocytes. When we expressed miR-199a-3p mimic in cultured murine primary cardiac fibroblasts and analyzed the conditioned media by proteomics, we found that several extracellular matrix (ECM) proteins (e.g., TSP2, FBLN3, COL11A1, LYOX) were differentially secreted (data are available via ProteomeXchange with identifier PXD042904). We confirmed our proteomics findings by qPCR analysis of selected mRNAs and demonstrated that miR-199a-3p mimic expression in cardiac fibroblasts drives upregulation of ECM gene expression, including Tsp2, Fbln3, Pcoc1, Col1a1 and Col3a1. To examine the role of miR-199a-3p in vivo, we inhibited its function using lock-nucleic acid (LNA)-based inhibitors (antimiR-199a-3p) in an HCM mouse model. Our results revealed that progression of cardiac fibrosis is attenuated when miR-199a-3p function is inhibited in mild-to-moderate HCM. Finally, guided by computational target prediction algorithms, we identified mRNAs Cd151 and Itga3 as direct targets of miR-199a-3p and have shown that miR-199a-3p mimic expression negatively regulates AKT activation in cardiac fibroblasts. Conclusions Altogether, our results suggest that miR-199a-3p may contribute to cardiac fibrosis in HCM through its actions in cardiac fibroblasts. Thus, inhibition of miR-199a-3p in mild-to-moderate HCM may offer therapeutic benefit in combination with complementary approaches that target the primary defect in cardiac myocytes.
Collapse
Affiliation(s)
- Irina Zalivina
- King's College London, British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Temo Barwari
- King's College London, British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Xiaoke Yin
- King's College London, British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Sarah R. Langley
- King's College London, British Heart Foundation Centre of Research Excellence, London, United Kingdom
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | | | - Hiroko Wakimoto
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Anna Zampetaki
- King's College London, British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Manuel Mayr
- King's College London, British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Metin Avkiran
- King's College London, British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Seda Eminaga
- King's College London, British Heart Foundation Centre of Research Excellence, London, United Kingdom
| |
Collapse
|
23
|
Jeyabal P, Bhagat A, Wang F, Roth M, Livingston JA, Gilchrist SC, Banchs J, Hildebrandt MA, Chandra J, Deswal A, Koutroumpakis E, Wang J, Daw NC, Honey TA, Kleinerman ES. Circulating microRNAs and Cytokines as Prognostic Biomarkers for Doxorubicin-Induced Cardiac Injury and for Evaluating the Effectiveness of an Exercise Intervention. Clin Cancer Res 2023; 29:4430-4440. [PMID: 37651264 PMCID: PMC11370763 DOI: 10.1158/1078-0432.ccr-23-1055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/26/2023] [Accepted: 08/29/2023] [Indexed: 09/02/2023]
Abstract
PURPOSE To define a set of biomarkers that can be used to identify patients at high risk of developing late doxorubicin (DOX)-induced cardiac morbidity with the goal of focused monitoring and early interventions. EXPERIMENTAL DESIGN Mice received phosphate buffered saline or DOX 2.5 mg/kg 2x/week for 2 weeks. Blood samples were obtained before and after therapy for quantification of miRNAs (6 and 24 hours), cytokines (24 hours), and troponin (24 hours, 4 and 6 weeks). Cardiac function was evaluated using echocardiography before and 24 hours after therapy. To assess the effectiveness of exercise intervention in preventing DOX-induced cardiotoxicity blood samples were collected from mice treated with DOX or DOX + exercise. Plasma samples from 13 DOX-treated patients with sarcoma were also evaluated before and 24 hours after therapy. RESULTS Elevations in plasma miRNA-1, miRNA-499 and IL1α, IL1β, and IL6 were seen in DOX-treated mice with decreased ejection fraction and fractional shortening 24 hours after DOX therapy. Troponin levels were not elevated until 4 weeks after therapy. In mice treated with exercise during DOX, there was no elevation in these biomarkers and no change in cardiac function. Elevations in these biomarkers were seen in 12 of 13 patients with sarcoma treated with DOX. CONCLUSIONS These findings define a potential set of biomarkers to identify and predict patients at risk for developing acute and late cardiovascular diseases with the goal of focused monitoring and early intervention. Further studies are needed to confirm the predictive value of these biomarkers in late cardiotoxicity.
Collapse
Affiliation(s)
- Prince Jeyabal
- Department of Pediatric Research, Division of Pediatrics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Anchit Bhagat
- Department of Pediatric Research, Division of Pediatrics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Fei Wang
- Department of Pediatric Research, Division of Pediatrics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Michael Roth
- Department of Pediatric Research, Division of Pediatrics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - J. Andrew Livingston
- Department of Sarcoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Susan C. Gilchrist
- Department of Cardiology, Division of Internal Medicine – Clinical, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Jose Banchs
- Department of Medicine, Division of Cardiology, Director of Echocardiography, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michelle A.T. Hildebrandt
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Joya Chandra
- Department of Pediatric Research, Division of Pediatrics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Anita Deswal
- Department of Cardiology, Division of Internal Medicine – Clinical, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Efstratios Koutroumpakis
- Department of Cardiology, Division of Internal Medicine – Clinical, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Jian Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030 USA
| | - Najat C. Daw
- Department of Pediatric Research, Division of Pediatrics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Theresa A. Honey
- Department of Pediatric Research, Division of Pediatrics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Eugenie S. Kleinerman
- Department of Pediatric Research, Division of Pediatrics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| |
Collapse
|
24
|
Zare N, Dana N, Mosayebi A, Vaseghi G, Javanmard SH. Evaluation of Expression Level of miR-3135b-5p in Blood Samples of Breast Cancer Patients Experiencing Chemotherapy-Induced Cardiotoxicity. Indian J Clin Biochem 2023; 38:536-540. [PMID: 37746544 PMCID: PMC10516830 DOI: 10.1007/s12291-022-01075-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/12/2022] [Indexed: 11/26/2022]
Abstract
The efficacy of chemotherapeutics in the treatment of breast cancer is limited by cardiotoxicity, which could lead to irreversible heart failure. The evaluation of miRNA levels as a vital biomarker could predict cardiotoxicity induced by chemotherapy. According to our previous meta-analysis study on patients with heart failure, we found that miR-3135b had a significant increase in patients with heart failure. Therefore, the present study aimed to evaluate the expression level of miR-3135b in the blood sample of patients experiencing chemotherapy-induced cardiotoxicity. Blood samples were collected from breast cancer patients or breast cancer patients who had received chemotherapy and had not experienced any chemotherapy-induced cardiotoxicity (N = 37, control group) and breast cancer patients experiencing chemotherapy-induced cardiotoxicity after chemotherapy (N = 33). The expression level of miR-3135b was evaluated using real-time polymerase chain reaction (RT-PCR). The 2-ΔCt values of miR-3135b were compared between two groups. We observed a significant increase in the expression level of miR-3135b between patients experiencing chemotherapy-induced cardiotoxicity and the control group (P = 0.0001). Besides, the ejection fraction parameter was correlated with the expression level of miR-3135b (r = 0.5 and P = 0.0001). To sum up, miR-3135b might be useful as a promising circulating biomarker in predicting cardiotoxicity induced by chemotherapy. However, more studies are needed to validate miR-3135b as a biomarker for the diagnosis of chemotherapy-induced cardiotoxicity. Supplementary Information The online version contains supplementary material available at 10.1007/s12291-022-01075-3.
Collapse
Affiliation(s)
- Nasrin Zare
- School of Medicine, Najafabad Branch, Islamic Azad University, Najafabad, Iran
- Clinical Research Development Centre, Najafabad branch, Islamic Azad university, Najafabad, Iran
| | - Nasim Dana
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azam Mosayebi
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Golnaz Vaseghi
- Interventional Cardiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Department of Physiology, Applied Physiology Research Center, Cardiovascular Research Institute , Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Physiology, Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Hezar jerib Avenue, Isfahan, Iran
| |
Collapse
|
25
|
Dahiya N, Kaur M, Singh V. Potential roles of circulatory microRNAs in the onset and progression of renal and cardiac diseases: a focussed review for clinicians. Acta Cardiol 2023; 78:863-877. [PMID: 37318070 DOI: 10.1080/00015385.2023.2221150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 05/14/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023]
Abstract
The signalling mechanisms involving the kidney and heart are a niche of networks causing pathological conditions inducing inflammation, reactive oxidative species, cell apoptosis, and organ dysfunction during the onset of clinical complications. The clinical manifestation of the kidney and heart depends on various biochemical processes that influence organ dysfunction coexistence through circulatory networks, which hold utmost importance. The cells of both organs also influence remote communication, and evidence states that it may be explicitly by circulatory small noncoding RNAs, i.e. microRNAs (miRNAs). Recent developments target miRNAs as marker panels for disease diagnosis and prognosis. Circulatory miRNAs expressed in renal and cardiac disease can reveal relevant information about the niche of networks and gene transcription and regulated networks. In this review, we discuss the pertinent roles of identified circulatory miRNAs regulating signal transduction pathways critical in the onset of renal and cardiac disease, which can hold promising future targets for clinical diagnostic and prognostic purposes.
Collapse
Affiliation(s)
- Neha Dahiya
- Centre for Life Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab, India
| | - Manpreet Kaur
- Centre for Life Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab, India
| | - Varsha Singh
- Centre for Life Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab, India
| |
Collapse
|
26
|
Nappi F, Avtaar Singh SS, Jitendra V, Alzamil A, Schoell T. The Roles of microRNAs in the Cardiovascular System. Int J Mol Sci 2023; 24:14277. [PMID: 37762578 PMCID: PMC10531750 DOI: 10.3390/ijms241814277] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
The discovery of miRNAs and their role in disease represent a significant breakthrough that has stimulated and propelled research on miRNAs as targets for diagnosis and therapy. Cardiovascular disease is an area where the restrictions of early diagnosis and conventional pharmacotherapy are evident and deserve attention. Therefore, miRNA-based drugs have significant potential for development. Research and its application can make considerable progress, as seen in preclinical and clinical trials. The use of miRNAs is still experimental but has a promising role in diagnosing and predicting a variety of acute coronary syndrome presentations. Its use, either alone or in combination with currently available biomarkers, might be adopted soon, particularly if there is diagnostic ambiguity. In this review, we examine the current understanding of miRNAs as possible targets for diagnosis and treatment in the cardiovascular system. We report on recent advances in recognising and characterising miRNAs with a focus on clinical translation. The latest challenges and perspectives towards clinical application are discussed.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France; (A.A.); (T.S.)
| | | | - Vikram Jitendra
- Department of Cardiothoracic Surgery, Aberdeen Royal Infirmary, Aberdeen AB25 2ZN, UK;
| | - Almothana Alzamil
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France; (A.A.); (T.S.)
| | - Thibaut Schoell
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France; (A.A.); (T.S.)
| |
Collapse
|
27
|
Carvalho A, Ji Z, Zhang R, Zuo W, Qu Y, Chen X, Tao Z, Ji J, Yao Y, Ma G. Inhibition of miR-195-3p protects against cardiac dysfunction and fibrosis after myocardial infarction. Int J Cardiol 2023; 387:131128. [PMID: 37356730 DOI: 10.1016/j.ijcard.2023.131128] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
Cardiac fibrosis following myocardial infarction is a major risk factor for heart failure. Recent evidence suggests that miR-195-3p is up-regulated in fibrotic diseases, including kidney and liver fibrosis. However, its function and underlying mechanisms in cardiac fibrosis after MI remain unknown. To investigate the role of miR-195-3p in MI-induced cardiac fibrosis, we established acute MI models by ligating adult C57B/L6 mice LAD coronary artery while sham-operated mice were used as controls. In vivo inhibition of miR-195-3p was conducted by intramyocardial injection of AAV9-anti-miR-195-3p. In vitro overexpression and inhibition of miR-195-3p were performed by transfecting cultured Cardiac Fibroblasts (CFs) with synthetic miRNA mimic and inhibitor. Our results showed that MI induced the expression of miR-195-3p and that inhibition of miR-195-3p reduced myofibroblast differentiation and collagen deposition and protected cardiac function. In vitro stimulation of CFs with TGF-β1 resulted in a significant increase in miR-195-3p expression. Inhibition of miR-195-3p attenuated the TGF-β1-induced expression of ECM proteins, migration, and proliferation. PTEN expression was significantly reduced in the hearts of MI mice, in activated CFs, and in CFs transfected with miR-195-3p mimic. Inhibition of miR-195-3p markedly restored PTEN expression in MI mice and TGF-β1-treated CFs. In conclusion, this study highlights the crucial role of miR-195-3p in promoting cardiac fibrosis and dysfunction after MI. Inhibiting miR-195-3p could be a promising therapeutic strategy for preventing cardiac fibrosis and preserving cardiac function after MI. Additionally, the study sheds light on the mechanisms underlying the effects of miR-195-3p on fibrosis, including its regulation of PTEN/AKT pathway.
Collapse
Affiliation(s)
- Abdlay Carvalho
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Dingjiaqiao No. 87, Nanjing 210009, Jiangsu, China
| | - Zhenjun Ji
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Dingjiaqiao No. 87, Nanjing 210009, Jiangsu, China
| | - Rui Zhang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Dingjiaqiao No. 87, Nanjing 210009, Jiangsu, China
| | - Wenjie Zuo
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Dingjiaqiao No. 87, Nanjing 210009, Jiangsu, China
| | - Yangyang Qu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Dingjiaqiao No. 87, Nanjing 210009, Jiangsu, China
| | - Xi Chen
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Dingjiaqiao No. 87, Nanjing 210009, Jiangsu, China
| | - Zaixiao Tao
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Dingjiaqiao No. 87, Nanjing 210009, Jiangsu, China
| | - Jingjing Ji
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Dingjiaqiao No. 87, Nanjing 210009, Jiangsu, China
| | - Yuyu Yao
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Dingjiaqiao No. 87, Nanjing 210009, Jiangsu, China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Dingjiaqiao No. 87, Nanjing 210009, Jiangsu, China.
| |
Collapse
|
28
|
Alcalde M, Toro R, Bonet F, Córdoba-Caballero J, Martínez-Barrios E, Ranea JA, Vallverdú-Prats M, Brugada R, Meraviglia V, Bellin M, Sarquella-Brugada G, Campuzano O. Role of microRNAs in arrhythmogenic cardiomyopathy: translation as biomarkers into clinical practice. Transl Res 2023; 259:72-82. [PMID: 37105319 DOI: 10.1016/j.trsl.2023.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/11/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023]
Abstract
Arrhythmogenic cardiomyopathy is a rare inherited entity, characterized by a progressive fibro-fatty replacement of the myocardium. It leads to malignant arrhythmias and a high risk of sudden cardiac death. Incomplete penetrance and variable expressivity are hallmarks of this arrhythmogenic cardiac disease, where the first manifestation may be syncope and sudden cardiac death, often triggered by physical exercise. Early identification of individuals at risk is crucial to adopt protective and ideally personalized measures to prevent lethal episodes. The genetic analysis identifies deleterious rare variants in nearly 70% of cases, mostly in genes encoding proteins of the desmosome. However, other factors may modulate the phenotype onset and outcome of disease, such as microRNAs. These small noncoding RNAs play a key role in gene expression regulation and the network of cellular processes. In recent years, data focused on the role of microRNAs as potential biomarkers in arrhythmogenic cardiomyopathy have progressively increased. A better understanding of the functions and interactions of microRNAs will likely have clinical implications. Herein, we propose an exhaustive review of the literature regarding these noncoding RNAs, their versatile mechanisms of gene regulation and present novel targets in arrhythmogenic cardiomyopathy.
Collapse
Affiliation(s)
- Mireia Alcalde
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain; Centro de Investigación Biomédica en Red. Enfermedades Cardiovasculares, Madrid, Spain
| | - Rocío Toro
- Medicine Department, School of Medicine, Cadiz, Spain; Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, Cádiz, Spain.
| | - Fernando Bonet
- Medicine Department, School of Medicine, Cadiz, Spain; Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, Cádiz, Spain
| | - José Córdoba-Caballero
- Medicine Department, School of Medicine, Cadiz, Spain; Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, Cádiz, Spain
| | - Estefanía Martínez-Barrios
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Cardiology Department, Sant Joan de Déu Hospital, Barcelona, Spain; European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Amsterdam, the Netherlands; Arrítmies Pediàtriques, Cardiologia Genètica i Mort Sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Juan Antonio Ranea
- Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Málaga, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain; Centro de Investigación Biomedica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Marta Vallverdú-Prats
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain; Centro de Investigación Biomédica en Red. Enfermedades Cardiovasculares, Madrid, Spain
| | - Ramon Brugada
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain; Centro de Investigación Biomédica en Red. Enfermedades Cardiovasculares, Madrid, Spain; Medical Science Department, School of Medicine, University of Girona, Girona, Spain; Cardiology Department, Hospital Josep Trueta, Girona, Spain
| | - Viviana Meraviglia
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
| | - Milena Bellin
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands; Department of Biology, University of Padua, Padua, Italy; Veneto Institute of Molecular Medicine, Padua, Italy
| | - Georgia Sarquella-Brugada
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Cardiology Department, Sant Joan de Déu Hospital, Barcelona, Spain; European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Amsterdam, the Netherlands; Arrítmies Pediàtriques, Cardiologia Genètica i Mort Sobtada, Malalties Cardiovasculars en el Desenvolupament, Institut de Recerca Sant Joan de Déu, Barcelona, Spain; Medical Science Department, School of Medicine, University of Girona, Girona, Spain
| | - Oscar Campuzano
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain; Centro de Investigación Biomédica en Red. Enfermedades Cardiovasculares, Madrid, Spain; Medical Science Department, School of Medicine, University of Girona, Girona, Spain.
| |
Collapse
|
29
|
Tian C, Ziegler JN, Zucker IH. Extracellular Vesicle MicroRNAs in Heart Failure: Pathophysiological Mediators and Therapeutic Targets. Cells 2023; 12:2145. [PMID: 37681877 PMCID: PMC10486980 DOI: 10.3390/cells12172145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/09/2023] Open
Abstract
Extracellular vesicles (EVs) are emerging mediators of intracellular and inter-organ communications in cardiovascular diseases (CVDs), especially in the pathogenesis of heart failure through the transference of EV-containing bioactive substances. microRNAs (miRNAs) are contained in EV cargo and are involved in the progression of heart failure. Over the past several years, a growing body of evidence has suggested that the biogenesis of miRNAs and EVs is tightly regulated, and the sorting of miRNAs into EVs is highly selective and tightly controlled. Extracellular miRNAs, particularly circulating EV-miRNAs, have shown promising potential as prognostic and diagnostic biomarkers for heart failure and as therapeutic targets. In this review, we summarize the latest progress concerning the role of EV-miRNAs in HF and their application in a therapeutic strategy development for heart failure.
Collapse
Affiliation(s)
- Changhai Tian
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA;
| | - Jessica N. Ziegler
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA;
| | - Irving H. Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| |
Collapse
|
30
|
Kho C. Targeting calcium regulators as therapy for heart failure: focus on the sarcoplasmic reticulum Ca-ATPase pump. Front Cardiovasc Med 2023; 10:1185261. [PMID: 37534277 PMCID: PMC10392702 DOI: 10.3389/fcvm.2023.1185261] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/06/2023] [Indexed: 08/04/2023] Open
Abstract
Impaired myocardial Ca2+ cycling is a critical contributor to the development of heart failure (HF), causing changes in the contractile function and structure remodeling of the heart. Within cardiomyocytes, the regulation of sarcoplasmic reticulum (SR) Ca2+ storage and release is largely dependent on Ca2+ handling proteins, such as the SR Ca2+ ATPase (SERCA2a) pump. During the relaxation phase of the cardiac cycle (diastole), SERCA2a plays a critical role in transporting cytosolic Ca2+ back to the SR, which helps to restore both cytosolic Ca2+ levels to their resting state and SR Ca2+ content for the next contraction. However, decreased SERCA2a expression and/or pump activity are key features in HF. As a result, there is a growing interest in developing therapeutic approaches to target SERCA2a. This review provides an overview of the regulatory mechanisms of the SERCA2a pump and explores potential strategies for SERCA2a-targeted therapy, which are being investigated in both preclinical and clinical studies.
Collapse
Affiliation(s)
- Changwon Kho
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
31
|
Reinal I, Ontoria-Oviedo I, Selva M, Casini M, Peiró-Molina E, Fambuena-Santos C, Climent AM, Balaguer J, Cañete A, Mora J, Raya Á, Sepúlveda P. Modeling Cardiotoxicity in Pediatric Oncology Patients Using Patient-Specific iPSC-Derived Cardiomyocytes Reveals Downregulation of Cardioprotective microRNAs. Antioxidants (Basel) 2023; 12:1378. [PMID: 37507917 PMCID: PMC10376252 DOI: 10.3390/antiox12071378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Anthracyclines are widely used in the treatment of many solid cancers, but their efficacy is limited by cardiotoxicity. As the number of pediatric cancer survivors continues to rise, there has been a concomitant increase in people living with anthracycline-induced cardiotoxicity. Accordingly, there is an ongoing need for new models to better understand the pathophysiological mechanisms of anthracycline-induced cardiac damage. Here we generated induced pluripotent stem cells (iPSCs) from two pediatric oncology patients with acute cardiotoxicity induced by anthracyclines and differentiated them to ventricular cardiomyocytes (hiPSC-CMs). Comparative analysis of these cells (CTX hiPSC-CMs) and control hiPSC-CMs revealed that the former were significantly more sensitive to cell injury and death from the anthracycline doxorubicin (DOX), as measured by viability analysis, cleaved caspase 3 expression, oxidative stress, genomic and mitochondrial damage and sarcomeric disorganization. The expression of several mRNAs involved in structural integrity and inflammatory response were also differentially affected by DOX. Functionally, optical mapping analysis revealed higher arrythmia complexity after DOX treatment in CTX iPSC-CMs. Finally, using a panel of previously identified microRNAs associated with cardioprotection, we identified lower levels of miR-22-3p, miR-30b-5p, miR-90b-3p and miR-4732-3p in CTX iPSC-CMs under basal conditions. Our study provides valuable phenotype information for cellular models of cardiotoxicity and highlights the significance of using patient-derived cardiomyocytes for studying the associated pathogenic mechanisms.
Collapse
Affiliation(s)
- Ignacio Reinal
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital la Fe, 46026 Valencia, Spain
| | - Imelda Ontoria-Oviedo
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital la Fe, 46026 Valencia, Spain
| | - Marta Selva
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital la Fe, 46026 Valencia, Spain
| | - Marilù Casini
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital la Fe, 46026 Valencia, Spain
| | - Esteban Peiró-Molina
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital la Fe, 46026 Valencia, Spain
- Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain
| | | | - Andreu M Climent
- ITACA Institute, Universitat Politècnica de València, 46026 Valencia, Spain
| | - Julia Balaguer
- Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain
- Transtational Research in Cancer Unit-Pediatric Oncology, Health Research Institute Hospital La Fe, 46026 Valencia, Spain
| | - Adela Cañete
- Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain
- Transtational Research in Cancer Unit-Pediatric Oncology, Health Research Institute Hospital La Fe, 46026 Valencia, Spain
- Department of Pediatrics, University of Valencia, 46010 Valencia, Spain
| | - Jaume Mora
- Oncology Service, Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
| | - Ángel Raya
- Regenerative Medicine Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain
- Program for Clinical Translation of Regenerative Medicine in Catalonia-P-[CMRC], L'Hospitalet de Llobregat, 08908 Barcelona, Spain
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Carlos III Institute of Health, 28029 Madrid, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Pilar Sepúlveda
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital la Fe, 46026 Valencia, Spain
- Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Carlos III Institute of Health, 28029 Madrid, Spain
- Department of Pathology, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
32
|
Chan SF, Cheng H, Goh KKR, Zou R. Preanalytic Methodological Considerations and Sample Quality Control of Circulating miRNAs. J Mol Diagn 2023; 25:438-453. [PMID: 37030398 DOI: 10.1016/j.jmoldx.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/24/2023] [Accepted: 03/22/2023] [Indexed: 04/10/2023] Open
Abstract
As miRNAs emerge as potential circulating biomarkers for the diagnosis or prognosis of a wide variety of diseases, the quantification of miRNA necessitates careful preanalytic considerations and sample quality control becomes crucial. This study comprehensively analyzed the profiles of 356 miRNAs by quantitative RT-PCR in various blood sample types, with various processing protocols. The comprehensive analysis investigated the correlations of individual miRNAs with certain confounding factors. On the basis of these profiles, a panel of 7 miRNAs was established for the quality control of samples corresponding to hemolysis and platelet contamination. The panel was used to investigate the confounding impacts based on the size of the blood collection tube, the centrifugation protocol, post-freeze-thaw spinning, and whole blood storage. A standard dual-spin workflow for the processing of blood had been established for optimal sample quality. The real-time stability of 356 miRNAs was also investigated with demonstration of the temperature and time-induced miRNA degradation profile. Stability-related miRNAs were identified from real-time stability study and further incorporated into the quality control panel. This quality control panel enables the assessment of sample quality for more robust and reliable detection of circulating miRNAs.
Collapse
Affiliation(s)
- Suit-Fong Chan
- Research and Development Lab, MiRXES Lab Pte. Ltd., Singapore.
| | - He Cheng
- Research and Development Lab, MiRXES Lab Pte. Ltd., Singapore
| | | | - Ruiyang Zou
- Research and Development Lab, MiRXES Lab Pte. Ltd., Singapore
| |
Collapse
|
33
|
Lu P, Zhang D, Ding F, Ma J, Xiang YK, Zhao M. Silencing of circCacna1c Inhibits ISO-Induced Cardiac Hypertrophy through miR-29b-2-5p/NFATc1 Axis. Cells 2023; 12:1667. [PMID: 37371137 DOI: 10.3390/cells12121667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/04/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Pathological cardiac hypertrophy is one of the notable causes of heart failure. Circular RNAs (circRNAs) have been studied in association with cardiac hypertrophy; however, the mechanisms by which circRNAs regulate cardiac hypertrophy remain unclear. In this study, we identified a new circRNA, named circCacna1c, in cardiac hypertrophy. Adult male C57BL/6 mice and H9c2 cells were treated with isoprenaline hydrochloride (ISO) to establish a hypertrophy model. We found that circCacna1c was upregulated in ISO-induced hypertrophic heart tissue and H9c2 cells. Western blot and quantitative real-time polymerase chain reaction showed that silencing circCacna1c inhibited hypertrophic gene expression in ISO-induced H9c2 cells. Mechanistically, circCacna1c competitively bound to miR-29b-2-5p in a dual-luciferase reporter assay, which was downregulated in ISO-induced hypertrophic heart tissue and H9c2 cells. MiR-29b-2-5p inhibited the nuclear factor of activated T cells, cytoplasmic, calcineurin-dependent 1 (NFATc1) to control hypertrophic gene expression. After silencing circCacna1c, the expression of miR-29b-2-5p increased, which reduced hypertrophic gene expression by inhibiting NFATc1 expression. Together, these experiments indicate that circCacna1c promotes ISO-induced pathological hypertrophy through the miR-29b-2-5p/NFATc1 axis.
Collapse
Affiliation(s)
- Peilei Lu
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Danyu Zhang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Fan Ding
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Jialu Ma
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yang K Xiang
- Department of Pharmacology, University of California at Davis, Davis, CA 95616, USA
| | - Meimi Zhao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China
| |
Collapse
|
34
|
Nossent AY, Binder CJ. Noncoding RNAs in atherosclerosis. Atherosclerosis 2023; 374:21-23. [PMID: 37169701 DOI: 10.1016/j.atherosclerosis.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Affiliation(s)
- Anne Yaël Nossent
- Department of Surgery and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| | - Christoph J Binder
- Department for Laboratory Medicine, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
35
|
Gholipour A, Zahedmehr A, Shakerian F, Irani S, Oveisee M, Mowla SJ, Malakootian M. Significance of microRNA-targeted ErbB signaling pathway genes in cardiomyocyte differentiation. Mol Cell Probes 2023; 69:101912. [PMID: 37019292 DOI: 10.1016/j.mcp.2023.101912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023]
Abstract
OBJECTIVE(S) Cardiomyocyte differentiation is a complex process that follows the progression of gene expression alterations. The ErbB signaling pathway is necessary for various stages of cardiac development. We aimed to identify potential microRNAs targeting the ErbB signaling pathway genes by in silico approaches. METHODS Small RNA-sequencing data were obtained from GSE108021 for cardiomyocyte differentiation. Differentially expressed miRNAs were acquired via the DESeq2 package. Signaling pathways and gene ontology processes for the identified miRNAs were determined and the targeted genes of those miRNAs affecting the ErbB signaling pathway were determined. RESULTS Results revealed highly differentially expressed miRNAs were common between the differentiation stages and they targeted the genes involved in the ErbB signaling pathway as follows: let-7g-5p targets both CDKN1A and NRAS, while let-7c-5p and let-7d-5p hit CDKN1A and NRAS exclusively. let-7 family members targeted MAPK8 and ABL2. GSK3B was targeted by miR-199a-5p and miR-214-3p, and ERBB4 was targeted by miR-199b-3p and miR-653-5p. miR-214-3p, miR-199b-3p, miR-1277-5p, miR-21-5p, and miR-21-3p targeted CBL, mTOR, Jun, JNKK, and GRB1, respectively. MAPK8 was targeted by miR-214-3p, and ABL2 was targeted by miR-125b-5p and miR-1277-5p, too. CONCLUSION We determined miRNAs and their target genes in the ErbB signaling pathway in cardiomyocyte development and consequently heart pathophysiology progression.
Collapse
Affiliation(s)
- Akram Gholipour
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran; Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Zahedmehr
- Cardiovascular Intervention Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Farshad Shakerian
- Cardiovascular Intervention Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran; Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Seyed Javad Mowla
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahshid Malakootian
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
36
|
Reiss AB, Ahmed S, Johnson M, Saeedullah U, De Leon J. Exosomes in Cardiovascular Disease: From Mechanism to Therapeutic Target. Metabolites 2023; 13:479. [PMID: 37110138 PMCID: PMC10142472 DOI: 10.3390/metabo13040479] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality globally. In recent decades, clinical research has made significant advances, resulting in improved survival and recovery rates for patients with CVD. Despite this progress, there is substantial residual CVD risk and an unmet need for better treatment. The complex and multifaceted pathophysiological mechanisms underlying the development of CVD pose a challenge for researchers seeking effective therapeutic interventions. Consequently, exosomes have emerged as a new focus for CVD research because their role as intercellular communicators gives them the potential to act as noninvasive diagnostic biomarkers and therapeutic nanocarriers. In the heart and vasculature, cell types such as cardiomyocytes, endothelial cells, vascular smooth muscle, cardiac fibroblasts, inflammatory cells, and resident stem cells are involved in cardiac homeostasis via the release of exosomes. Exosomes encapsulate cell-type specific miRNAs, and this miRNA content fluctuates in response to the pathophysiological setting of the heart, indicating that the pathways affected by these differentially expressed miRNAs may be targets for new treatments. This review discusses a number of miRNAs and the evidence that supports their clinical relevance in CVD. The latest technologies in applying exosomal vesicles as cargo delivery vehicles for gene therapy, tissue regeneration, and cell repair are described.
Collapse
Affiliation(s)
- Allison B. Reiss
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA
| | | | | | | | | |
Collapse
|
37
|
Dou J, Thangaraj SV, Puttabyatappa M, Elangovan VR, Bakulski K, Padmanabhan V. Developmental programming: Adipose depot-specific regulation of non-coding RNAs and their relation to coding RNA expression in prenatal testosterone and prenatal bisphenol-A -treated female sheep. Mol Cell Endocrinol 2023; 564:111868. [PMID: 36708980 PMCID: PMC10069610 DOI: 10.1016/j.mce.2023.111868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023]
Abstract
Inappropriate developmental exposure to steroids is linked to metabolic disorders. Prenatal testosterone excess or bisphenol A (BPA, an environmental estrogen mimic) leads to insulin resistance and adipocyte disruptions in female lambs. Adipocytes are key regulators of insulin sensitivity. Metabolic tissue-specific differences in insulin sensitivity coupled with adipose depot-specific changes in key mRNAs, were previously observed with prenatal steroid exposure. We hypothesized that depot-specific changes in the non-coding RNA (ncRNA) - regulators of gene expression would account for the direction of changes seen in mRNAs. Non-coding RNA (lncRNA, miRNA, snoRNA, snRNA) from various adipose depots of prenatal testosterone and BPA-treated animals were sequenced. Adipose depot-specific changes in the ncRNA that are consistent with the depot-specific mRNA expression in terms of directionality of changes and functional implications in insulin resistance, adipocyte differentiation and cardiac hypertrophy were found. Importantly, the adipose depot-specific ncRNA changes were model-specific and mutually exclusive, suggestive of different regulatory entry points in this regulation.
Collapse
Affiliation(s)
- John Dou
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | - Kelly Bakulski
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA.
| | | |
Collapse
|
38
|
Desantis V, Potenza MA, Sgarra L, Nacci C, Scaringella A, Cicco S, Solimando AG, Vacca A, Montagnani M. microRNAs as Biomarkers of Endothelial Dysfunction and Therapeutic Target in the Pathogenesis of Atrial Fibrillation. Int J Mol Sci 2023; 24:5307. [PMID: 36982382 PMCID: PMC10049145 DOI: 10.3390/ijms24065307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
The pathophysiology of atrial fibrillation (AF) may involve atrial fibrosis/remodeling and dysfunctional endothelial activities. Despite the currently available treatment approaches, the progression of AF, its recurrence rate, and the high mortality risk of related complications underlay the need for more advanced prognostic and therapeutic strategies. There is increasing attention on the molecular mechanisms controlling AF onset and progression points to the complex cell to cell interplay that triggers fibroblasts, immune cells and myofibroblasts, enhancing atrial fibrosis. In this scenario, endothelial cell dysfunction (ED) might play an unexpected but significant role. microRNAs (miRNAs) regulate gene expression at the post-transcriptional level. In the cardiovascular compartment, both free circulating and exosomal miRNAs entail the control of plaque formation, lipid metabolism, inflammation and angiogenesis, cardiomyocyte growth and contractility, and even the maintenance of cardiac rhythm. Abnormal miRNAs levels may indicate the activation state of circulating cells, and thus represent a specific read-out of cardiac tissue changes. Although several unresolved questions still limit their clinical use, the ease of accessibility in biofluids and their prognostic and diagnostic properties make them novel and attractive biomarker candidates in AF. This article summarizes the most recent features of AF associated with miRNAs and relates them to potentially underlying mechanisms.
Collapse
Affiliation(s)
- Vanessa Desantis
- Department of Precision and Regenerative Medicine and Ionian Area, Pharmacology Section, University of Bari Aldo Moro Medical School, 70124 Bari, Italy
| | - Maria Assunta Potenza
- Department of Precision and Regenerative Medicine and Ionian Area, Pharmacology Section, University of Bari Aldo Moro Medical School, 70124 Bari, Italy
| | - Luca Sgarra
- General Hospital “F. Miulli” Acquaviva delle Fonti, 70021 Bari, Italy
| | - Carmela Nacci
- Department of Precision and Regenerative Medicine and Ionian Area, Pharmacology Section, University of Bari Aldo Moro Medical School, 70124 Bari, Italy
| | - Antonietta Scaringella
- Department of Precision and Regenerative Medicine and Ionian Area, Pharmacology Section, University of Bari Aldo Moro Medical School, 70124 Bari, Italy
| | - Sebastiano Cicco
- Department of Precision and Regenerative Medicine and Ionian Area, Unit of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro Medical School, 70124 Bari, Italy
| | - Antonio Giovanni Solimando
- Department of Precision and Regenerative Medicine and Ionian Area, Unit of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro Medical School, 70124 Bari, Italy
| | - Angelo Vacca
- Department of Precision and Regenerative Medicine and Ionian Area, Unit of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro Medical School, 70124 Bari, Italy
| | - Monica Montagnani
- Department of Precision and Regenerative Medicine and Ionian Area, Pharmacology Section, University of Bari Aldo Moro Medical School, 70124 Bari, Italy
| |
Collapse
|
39
|
Hao S, Zhao H, Hao DH, Ferreri NR. MicroRNA-195a-5p Regulates Blood Pressure by Inhibiting NKCC2A. Hypertension 2023; 80:426-439. [PMID: 36448465 PMCID: PMC9852070 DOI: 10.1161/hypertensionaha.122.19794] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND Previous studies showed that miR-195a-5p was among the most abundant microRNAs (miRNAs) expressed in the kidney. METHODS Lentivirus silencing of tumor necrosis factor-α (TNF) was performed in vivo and in vitro. Luciferase reporter assays confirmed that bumetanide-sensitive Na+-K+-2Cl- cotransporter isoform A (NKCC2A) mRNA is targeted and repressed by miR-195a-5p. Radiotelemetry was used to measure mean arterial pressure. RESULTS TNF upregulates mmu-miR-195a-5p, and -203 and downregulates mmu-miR-30c and -100 in the medullary thick ascending limb of male mice. miR-195a-5p was >3-fold higher in the renal outer medulla of mice given an intrarenal injection of murine recombinant TNF, whereas silencing TNF inhibited miR-195a-5p expression by ≈51%. Transient transfection of a miR-195a-5p mimic into medullary thick ascending limb cells suppressed NKCC2A mRNA by ≈83%, whereas transfection with Anti-miR-195a-5p increased NKCC2A mRNA. Silencing TNF in medullary thick ascending limb cells prevented increases in miR-195 induced by 400 mosmol/kg H2O medium, an effect reversed by transfection with a miR-195a-5p mimic. Expression of phosphorylated NKCC2 increased 1.5-fold in medullary thick ascending limb cells transfected with Anti-miR-195a-5p and a miR-195a-5p mimic prevented the increase, which was induced by silencing TNF in cells exposed to 400 mosmol/kg H2O medium after osmolality was increased by adding NaCl. Intrarenal injection of TNF suppressed NKCC2A mRNA, whereas injection of miR-195a-5p prevented the increase of NKCC2A mRNA abundance and phosphorylated NKCC2 expression when TNF was silenced. Intrarenal injection with miR-195a-5p markedly attenuated MAP after renal silencing of TNF in mice given 1% NaCl. CONCLUSIONS The study identifies miR-195a-5p as a salt-sensitive and TNF-inducible miRNA that attenuates NaCl-mediated increases in blood pressure by inhibiting NKCC2A.
Collapse
Affiliation(s)
- Shoujin Hao
- Department of Pharmacology, New York Medical College, Valhalla
| | - Hong Zhao
- Department of Pharmacology, New York Medical College, Valhalla
| | - David H Hao
- Department of Pharmacology, New York Medical College, Valhalla
| | | |
Collapse
|
40
|
van Nieuwenhoven FA, Schroen B, Barile L, van Middendorp L, Prinzen FW, Auricchio A. Plasma Extracellular Vesicles as Liquid Biopsy to Unravel the Molecular Mechanisms of Cardiac Reverse Remodeling Following Resynchronization Therapy? J Clin Med 2023; 12:jcm12020665. [PMID: 36675594 PMCID: PMC9862724 DOI: 10.3390/jcm12020665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Cardiac resynchronization therapy (CRT) has become a valuable addition to the treatment options for heart failure, in particular for patients with disturbances in electrical conduction that lead to regionally different contraction patterns (dyssynchrony). Dyssynchronous hearts show extensive molecular and cellular remodeling, which has primarily been investigated in experimental animals. Evidence showing that at least several miRNAs play a role in this remodeling is increasing. A comparison of results from measurements in plasma and myocardial tissue suggests that plasma levels of miRNAs may reflect the expression of these miRNAs in the heart. Because many miRNAs released in the plasma are included in extracellular vesicles (EVs), which protect them from degradation, measurement of myocardium-derived miRNAs in peripheral blood EVs may open new avenues to investigate and monitor (reverse) remodeling in dyssynchronous and resynchronized hearts of patients.
Collapse
Affiliation(s)
- Frans A. van Nieuwenhoven
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Blanche Schroen
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Lucio Barile
- Laboratory for Cardiovascular Theranostics, Istituto Cardiocentro Ticino, 6900 Lugano, Switzerland
| | - Lars van Middendorp
- Department of Cardiothoracic Surgery, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands
| | - Frits W. Prinzen
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, 6200 MD Maastricht, The Netherlands
- Correspondence:
| | - Angelo Auricchio
- Department of Cardiology, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland
| |
Collapse
|
41
|
Ageing at Molecular Level: Role of MicroRNAs. Subcell Biochem 2023; 102:195-248. [PMID: 36600135 DOI: 10.1007/978-3-031-21410-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The progression of age triggers a vast number of diseases including cardiovascular, cancer, and neurodegenerative disorders. Regardless of our plentiful knowledge about age-related diseases, little is understood about molecular pathways that associate the ageing process with various diseases. Several cellular events like senescence, telomere dysfunction, alterations in protein processing, and regulation of gene expression are common between ageing and associated diseases. Accumulating information on the role of microRNAs (miRNAs) suggests targeting miRNAs can aid our understanding of the interplay between ageing and associated diseases. In the present chapter, we have attempted to explore the information available on the role of miRNAs in ageing of various tissues/organs and diseases and understand the molecular mechanism of ageing.
Collapse
|
42
|
Wronska A. The Role of microRNA in the Development, Diagnosis, and Treatment of Cardiovascular Disease: Recent Developments. J Pharmacol Exp Ther 2023; 384:123-132. [PMID: 35779862 DOI: 10.1124/jpet.121.001152] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 01/13/2023] Open
Abstract
Since their discovery in 1993, microRNAs (miRNAs) have emerged as important regulators of many crucial cellular processes, and their dysregulation have been shown to contribute to multiple pathologic conditions, including cardiovascular disease (CVD). miRNAs have been found to regulate the expression of various genes involved in cardiac development and function and in the development and progression of CVD. Many miRNAs are master regulators fine-tuning the expression of multiple, often interrelated, genes involved in inflammation, apoptosis, fibrosis, senescence, and other processes crucial for the development of different forms of CVD. This article presents a review of recent developments in our understanding of the role of miRNAs in the development of CVD and surveys their potential applicability as therapeutic targets and biomarkers to facilitate CVD diagnosis, prognosis, and treatment. There are currently multiple potential miRNA-based therapeutic agents in different stages of development, which can be grouped into two classes: miRNA mimics (replicating the sequence and activity of their corresponding miRNAs) and antagomiRs (antisense inhibitors of specific miRNAs). However, in spite of promising preliminary data and our ever-increasing knowledge about the mechanisms of action of specific miRNAs, miRNA-based therapeutics and biomarkers have yet to be approved for clinical applications. SIGNIFICANCE STATEMENT: Over the last few years microRNAs have emerged as crucial, specific regulators of the cardiovascular system and in the development of cardiovascular disease, by posttranscriptional regulation of their target genes. The minireview presents the most recent developments in this area of research, including the progress in diagnostic and therapeutic applications of microRNAs. microRNAs seem very promising candidates for biomarkers and therapeutic agents, although some challenges, such as efficient delivery and unwanted effects, need to be resolved.
Collapse
Affiliation(s)
- Anetta Wronska
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York
| |
Collapse
|
43
|
Zhang W, Liu B, Wang Y, Sun PHD L, Liu C, Zhang H, Qin W, Liu J, Han L, Shan W. miR-195-3p/BDNF axis regulates hypoxic injury by targeting P-ERK1/2 expression. Medicine (Baltimore) 2022; 101:e31586. [PMID: 36401373 PMCID: PMC9678563 DOI: 10.1097/md.0000000000031586] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVES Coronary heart disease (CHD) is the most common heart disease and the leading cause of cardiovascular deaths worldwide. Decreased endothelial cell (EC) proliferation, increased apoptosis, inflammation, and vascular dysfunction are considered vital factors in CHD. In this study, we aimed to determine the expression and role of microRNA-195-3p and brain-derived neurotrophic factor (BDNF) in hypoxic-treated human umbilical vein endothelial cells (HUVECs). MEASURES We induced hypoxia in HUVECs using the "anaerobic tank method." RESULTS We found that the levels of microRNA-195-3p and BDNF were upregulated and apoptosis was increased. Furthermore, we found that BDNF/P-ERK1/2 regulated the expression of the mitochondrial apoptosis pathway proteins Bcl-2/BAX, which was downregulated under hypoxic conditions. Finally, the microRNA-195-3p inhibitor downregulated BDNF and P-ERK1/2, upregulated the Bcl-2/BAX axis, and partially reversed the effects of hypoxic-induced injury in HUVECs. CONCLUSIONS Therapeutic intervention using the microRNA-195-3p/BDNF/P-ERK1/2/Bcl-2/BAX axis could maintain EC function under hypoxic conditions, improve cell activity, and serve as a new treatment strategy for CHDs.
Collapse
Affiliation(s)
- Wenjing Zhang
- Department of Cardiology, Affiliated Hospital of Chengde Medical University, Chengde, China
- Department of Cardiology, Pingquan City Hospital, Chengde, China
| | - Bingshi Liu
- Department of Cardiology, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Yanfang Wang
- Department of Cardiology, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Lixian Sun PHD
- Department of Cardiology, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Chao Liu
- Department of Cardiology, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Haoran Zhang
- Department of Cardiology, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Wei Qin
- Department of Cardiology, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Jingyi Liu
- Department of Cardiology, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Leng Han
- Department of Cardiology, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Weichao Shan
- Department of Cardiology, Affiliated Hospital of Chengde Medical University, Chengde, China
- *Correspondence: Weichao Shan, Department of Cardiology, The Affiliated Hospital of Chengde Medical University, Shuangqiao District, 36 Nanyingzi Street, Chengde, Hebei 067000, China (e-mail: )
| |
Collapse
|
44
|
Mohan IK, Baba KSSS, Iyyapu R, Thirumalasetty S, Satish OS. Advances in congestive heart failure biomarkers. Adv Clin Chem 2022; 112:205-248. [PMID: 36642484 DOI: 10.1016/bs.acc.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Congestive heart failure (CHF) is the leading cause of morbidity and mortality in the elderly worldwide. Although many biomarkers associated with in heart failure, these are generally prognostic and identify patients with moderate and severe disease. Unfortunately, the role of biomarkers in decision making for early and advanced heart failure remains largely unexplored. Previous studies suggest the natriuretic peptides have the potential to improve the diagnosis of heart failure, but they still have significant limitations related to cut-off values. Although some promising cardiac biomarkers have emerged, comprehensive data from large cohort studies is lacking. The utility of multiple biomarkers that reflect various pathophysiologic pathways are increasingly being explored in heart failure risk stratification and to diagnose disease conditions promptly and accurately. MicroRNAs serve as mediators and/or regulators of renin-angiotensin-induced cardiac remodeling by directly targeting enzymes, receptors and signaling molecules. The role of miRNA in HF diagnosis is a promising area of research and further exploration may offer both diagnostic and prognostic applications and phenotype-specific targets. In this review, we provide insight into the classification of different biochemical and molecular markers associated with CHF, examine clinical usefulness in CHF and highlight the most clinically relevant.
Collapse
Affiliation(s)
| | - K S S Sai Baba
- Nizam's Institute of Medical Sciences, Panjagutta, Hyderabad, Telangana, India
| | - Rohit Iyyapu
- Katuri Medical College & Hospital, Guntur, Andhra Pradesh, India
| | | | - O Sai Satish
- Nizam's Institute of Medical Sciences, Panjagutta, Hyderabad, Telangana, India
| |
Collapse
|
45
|
The Overexpression of miR-377 Aggravates Sepsis-Induced Myocardial Hypertrophy by Binding to Rcan2 and Mediating CaN Activity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6659183. [PMID: 36267816 PMCID: PMC9578796 DOI: 10.1155/2022/6659183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/28/2022] [Indexed: 11/17/2022]
Abstract
Sepsis remains a complicated and incompletely understood syndrome, and myocardial dysfunction is one of the main complications contributing to poor clinical outcomes. Accumulating evidence has revealed the critical involvement of the deregulated expression of specific microRNAs (miRNAs) in cardiac pathologies caused by sepsis. Intriguingly, miR-377 has been correlated with cardiomyocyte apoptosis, whereas its effect on myocardial hypertrophy remains to be illustrated. Thus, the current study sets out to explore the impact and underlying mechanism of miR-377 on myocardial hypertrophy induced by sepsis. The expression pattern of miR-377 was detected in myocardial tissues of septic mice induced by cecal ligation-perforation (CLP). We found that miR-377 was highly expressed in myocardial tissues of CLP-induced septic mice with cardiomyocyte hypertrophy. Besides, miR-377 inhibition could relieve cardiomyocyte hypertrophy and reduce inflammation in septic mice. Further, mechanistic studies found that miR-377 could target Rcan2 and then regulate calcineurin (CaN) activity via Ca2+/CaN signaling pathway. Collectively, our findings illuminate that miR-377 enhances myocardial hypertrophy caused by sepsis, by targeting Rcan2 and further regulating the Ca2+/CaN signaling pathway. This work highlights downregulation of miR-377 as a novel target for the management of sepsis-induced myocardial hypertrophy.
Collapse
|
46
|
MicroRNA-4732-3p Is Dysregulated in Breast Cancer Patients with Cardiotoxicity, and Its Therapeutic Delivery Protects the Heart from Doxorubicin-Induced Oxidative Stress in Rats. Antioxidants (Basel) 2022; 11:antiox11101955. [PMID: 36290678 PMCID: PMC9599023 DOI: 10.3390/antiox11101955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Anthracycline-induced cardiotoxicity is the most severe collateral effect of chemotherapy originated by an excess of oxidative stress in cardiomyocytes that leads to cardiac dysfunction. We assessed clinical data from patients with breast cancer receiving anthracyclines and searched for discriminating microRNAs between patients that developed cardiotoxicity (cases) and those that did not (controls), using RNA sequencing and regression analysis. Serum levels of 25 microRNAs were differentially expressed in cases versus controls within the first year after anthracycline treatment, as assessed by three different regression models (elastic net, Robinson and Smyth exact negative binomial test and random forest). MiR-4732-3p was the only microRNA identified in all regression models and was downregulated in patients that experienced cardiotoxicity. MiR-4732-3p was also present in neonatal rat cardiomyocytes and cardiac fibroblasts and was modulated by anthracycline treatment. A miR-4732-3p mimic was cardioprotective in cardiac and fibroblast cultures, following doxorubicin challenge, in terms of cell viability and ROS levels. Notably, administration of the miR-4732-3p mimic in doxorubicin-treated rats preserved cardiac function, normalized weight loss, induced angiogenesis, and decreased apoptosis, interstitial fibrosis and cardiac myofibroblasts. At the molecular level, miR-4732-3p regulated genes of TGFβ and Hippo signaling pathways. Overall, the results indicate that miR-4732-3p is a novel biomarker of cardiotoxicity that has therapeutic potential against anthracycline-induced heart damage.
Collapse
|
47
|
Liang Z, He Y, Hu X. Cardio-Oncology: Mechanisms, Drug Combinations, and Reverse Cardio-Oncology. Int J Mol Sci 2022; 23:10617. [PMID: 36142538 PMCID: PMC9501315 DOI: 10.3390/ijms231810617] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Chemotherapy, radiotherapy, targeted therapy, and immunotherapy have brought hope to cancer patients. With the prolongation of survival of cancer patients and increased clinical experience, cancer-therapy-induced cardiovascular toxicity has attracted attention. The adverse effects of cancer therapy that can lead to life-threatening or induce long-term morbidity require rational approaches to prevention and treatment, which requires deeper understanding of the molecular biology underpinning the disease. In addition to the drugs used widely for cardio-protection, traditional Chinese medicine (TCM) formulations are also efficacious and can be expected to achieve "personalized treatment" from multiple perspectives. Moreover, the increased prevalence of cancer in patients with cardiovascular disease has spurred the development of "reverse cardio-oncology", which underscores the urgency of collaboration between cardiologists and oncologists. This review summarizes the mechanisms by which cancer therapy induces cardiovascular toxicity, the combination of antineoplastic and cardioprotective drugs, and recent advances in reverse cardio-oncology.
Collapse
Affiliation(s)
| | | | - Xin Hu
- China–Japan Union Hospital of Jilin University, Jilin University, Changchun 130033, China
| |
Collapse
|
48
|
Cardiovascular Disease-Associated MicroRNAs as Novel Biomarkers of First-Trimester Screening for Gestational Diabetes Mellitus in the Absence of Other Pregnancy-Related Complications. Int J Mol Sci 2022; 23:ijms231810635. [PMID: 36142536 PMCID: PMC9501303 DOI: 10.3390/ijms231810635] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/25/2022] Open
Abstract
We assessed the diagnostic potential of cardiovascular disease-associated microRNAs for the early prediction of gestational diabetes mellitus (GDM) in singleton pregnancies of Caucasian descent in the absence of other pregnancy-related complications. Whole peripheral venous blood samples were collected within 10 to 13 weeks of gestation. This retrospective study involved all pregnancies diagnosed with only GDM (n = 121) and 80 normal term pregnancies selected with regard to equality of sample storage time. Gene expression of 29 microRNAs was assessed using real-time RT-PCR. Upregulation of 11 microRNAs (miR-1-3p, miR-20a-5p, miR-20b-5p, miR-23a-3p, miR-100-5p, miR-125b-5p, miR-126-3p, miR-181a-5p, miR-195-5p, miR-499a-5p, and miR-574-3p) was observed in pregnancies destinated to develop GDM. Combined screening of all 11 dysregulated microRNAs showed the highest accuracy for the early identification of pregnancies destinated to develop GDM. This screening identified 47.93% of GDM pregnancies at a 10.0% false positive rate (FPR). The predictive model for GDM based on aberrant microRNA expression profile was further improved via the implementation of clinical characteristics (maternal age and BMI at early stages of gestation and an infertility treatment by assisted reproductive technology). Following this, 69.17% of GDM pregnancies were identified at a 10.0% FPR. The effective prediction model specifically for severe GDM requiring administration of therapy involved using a combination of these three clinical characteristics and three microRNA biomarkers (miR-20a-5p, miR-20b-5p, and miR-195-5p). This model identified 78.95% of cases at a 10.0% FPR. The effective prediction model for GDM managed by diet only required the involvement of these three clinical characteristics and eight microRNA biomarkers (miR-1-3p, miR-20a-5p, miR-20b-5p, miR-100-5p, miR-125b-5p, miR-195-5p, miR-499a-5p, and miR-574-3p). With this, the model identified 50.50% of GDM pregnancies managed by diet only at a 10.0% FPR. When other clinical variables such as history of miscarriage, the presence of trombophilic gene mutations, positive first-trimester screening for preeclampsia and/or fetal growth restriction by the Fetal Medicine Foundation algorithm, and family history of diabetes mellitus in first-degree relatives were included in the GDM prediction model, the predictive power was further increased at a 10.0% FPR (72.50% GDM in total, 89.47% GDM requiring therapy, and 56.44% GDM managed by diet only). Cardiovascular disease-associated microRNAs represent promising early biomarkers to be implemented into routine first-trimester screening programs with a very good predictive potential for GDM.
Collapse
|
49
|
The Role of miR-29 Family in TGF-β Driven Fibrosis in Glaucomatous Optic Neuropathy. Int J Mol Sci 2022; 23:ijms231810216. [PMID: 36142127 PMCID: PMC9499597 DOI: 10.3390/ijms231810216] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Primary open angle glaucoma (POAG), a chronic optic neuropathy, remains the leading cause of irreversible blindness worldwide. It is driven in part by the pro-fibrotic cytokine transforming growth factor beta (TGF-β) and leads to extracellular matrix remodelling at the lamina cribrosa of the optic nerve head. Despite an array of medical and surgical treatments targeting the only known modifiable risk factor, raised intraocular pressure, many patients still progress and develop significant visual field loss and eventual blindness. The search for alternative treatment strategies targeting the underlying fibrotic transformation in the optic nerve head and trabecular meshwork in glaucoma is ongoing. MicroRNAs are small non-coding RNAs known to regulate post-transcriptional gene expression. Extensive research has been undertaken to uncover the complex role of miRNAs in gene expression and miRNA dysregulation in fibrotic disease. MiR-29 is a family of miRNAs which are strongly anti-fibrotic in their effects on the TGF-β signalling pathway and the regulation of extracellular matrix production and deposition. In this review, we discuss the anti-fibrotic effects of miR-29 and the role of miR-29 in ocular pathology and in the development of glaucomatous optic neuropathy. A better understanding of the role of miR-29 in POAG may aid in developing diagnostic and therapeutic strategies in glaucoma.
Collapse
|
50
|
Myosins and MyomiR Network in Patients with Obstructive Hypertrophic Cardiomyopathy. Biomedicines 2022; 10:biomedicines10092180. [PMID: 36140281 PMCID: PMC9496008 DOI: 10.3390/biomedicines10092180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common genetic cardiomyopathy. The molecular mechanisms determining HCM phenotypes are incompletely understood. Myocardial biopsies were obtained from a group of patients with obstructive HCM (n = 23) selected for surgical myectomy and from 9 unused donor hearts (controls). A subset of tissue-abundant myectomy samples from HCM (n = 10) and controls (n = 6) was submitted to laser-capture microdissection to isolate cardiomyocytes. We investigated the relationship among clinical phenotype, cardiac myosin proteins (MyHC6, MyHC7, and MyHC7b) measured by optimized label-free mass spectrometry, the relative genes (MYH7, MYH7B and MYLC2), and the MyomiR network (myosin-encoded microRNA (miRs) and long-noncoding RNAs (Mhrt)) measured using RNA sequencing and RT-qPCR. MyHC6 was lower in HCM vs. controls, whilst MyHC7, MyHC7b, and MyLC2 were comparable. MYH7, MYH7B, and MYLC2 were higher in HCM whilst MYH6, miR-208a, miR-208b, miR-499 were comparable in HCM and controls. These results are compatible with defective transcription by active genes in HCM. Mhrt and two miR-499-target genes, SOX6 and PTBP3, were upregulated in HCM. The presence of HCM-associated mutations correlated with PTBP3 in myectomies and with SOX6 in cardiomyocytes. Additionally, iPSC-derived cardiomyocytes, transiently transfected with either miR-208a or miR-499, demonstrated a time-dependent relationship between MyomiRs and myosin genes. The transfection end-stage pattern was at least in part similar to findings in HCM myectomies. These data support uncoupling between myosin protein/genes and a modulatory role for the myosin/MyomiR network in the HCM myocardium, possibly contributing to phenotypic diversity and providing putative therapeutic targets.
Collapse
|