1
|
Huang K, Zhang Q, Wan H, Ban X, Chen X, Wan X, Lu R, He Y, Xiong K. TAK1 at the crossroads of multiple regulated cell death pathways: from molecular mechanisms to human diseases. FEBS J 2025. [DOI: 10.1111/febs.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 02/14/2025] [Indexed: 05/03/2025]
Abstract
Regulated cell death (RCD), the form of cell death that can be genetically controlled by multiple signaling pathways, plays an important role in organogenesis, tissue remodeling, and maintenance of organism homeostasis and is closely associated with various human diseases. Transforming growth factor‐beta‐activated kinase 1 (TAK1) is a member of the serine/threonine protein kinase family, which can respond to different internal and external stimuli and participate in inflammatory and immune responses. Emerging evidence suggests that TAK1 is an important regulator at the crossroad of multiple RCD pathways, including apoptosis, necroptosis, pyroptosis, and PANoptosis. The regulation of TAK1 affects disease progression through multiple signaling pathways, and therapeutic strategies targeting TAK1 have been proposed for inflammatory diseases, central nervous system diseases, and cancers. In this review, we provide an overview of the downstream signaling pathways regulated by TAK1 and its binding proteins. Their critical regulatory roles in different forms of cell death are also summarized. In addition, we discuss the potential of targeting TAK1 in the treatment of human diseases, with a specific focus on neurological disorders and cancer.
Collapse
Affiliation(s)
- Kun Huang
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science Central South University Changsha China
- Xiangya School of Medicine Central South University Changsha China
| | - Qi Zhang
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science Central South University Changsha China
- Department of Ophthalmology Stanford University School of Medicine Palo Alto CA USA
- Key Laboratory of Emergency and Trauma of Ministry of Education, College of Emergency and Trauma Hainan Medical University Haikou China
| | - Hao Wan
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science Central South University Changsha China
| | - Xiao‐Xia Ban
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science Central South University Changsha China
| | - Xin‐Yu Chen
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science Central South University Changsha China
| | - Xin‐Xing Wan
- Department of Endocrinology Third Xiangya Hospital, Central South University Changsha China
| | - Rui Lu
- Department of Molecular and Cellular Physiology Stanford University Stanford CA USA
| | - Ye He
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science Central South University Changsha China
- Changsha Aier Eye Hospital China
| | - Kun Xiong
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science Central South University Changsha China
- Key Laboratory of Emergency and Trauma of Ministry of Education, College of Emergency and Trauma Hainan Medical University Haikou China
- Hunan Key Laboratory of Ophthalmology Changsha China
| |
Collapse
|
2
|
Zhang B, Orning P, Lehman JW, Dinis A, Torres-Ulloa L, Elling R, Kelliher MA, Bertin J, Proulx MK, Goguen JD, Ryan L, Kandasamy RK, Espevik T, Pai AA, Fitzgerald KA, Lien E. Raver1 links Ripk1 RNA splicing to caspase-8-mediated pyroptotic cell death, inflammation, and pathogen resistance. Proc Natl Acad Sci U S A 2025; 122:e2420802122. [PMID: 39946533 PMCID: PMC11848402 DOI: 10.1073/pnas.2420802122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/08/2025] [Indexed: 02/19/2025] Open
Abstract
Multiple cell death and inflammatory signaling pathways converge on two critical factors: receptor-interacting serine/threonine kinase 1 (RIPK1) and caspase-8. Careful regulation of these molecules is critical to control apoptosis, pyroptosis, and inflammation. Here, we found a pivotal role of Raver1 as an essential regulator of Ripk1 pre-mRNA splicing, expression, and functionality and the subsequent caspase-8-dependent inflammatory cell death. We show that Raver1 influences mRNA diversity primarily by repressing alternative exon inclusion. Macrophages from Raver1-deficient mice exhibit altered splicing of Ripk1. As a result, Raver1-deficient primary macrophages display diminished cell death and decreased interleukin-18 and interleukin-1ß production, when infected with Yersinia bacteria, or by restraining TGF-ß-activated kinase 1 or IKKβ in the presence of lipopolysaccharide, tumor necrosis factor family members, or interferon-γ. These responses are accompanied by reduced activation of caspase-8, Gasdermin D and E, and caspase-1 in the absence of Raver1. Consequently, Raver1-deficient mice showed heightened susceptibility to Yersinia infection. Raver1 and RIPK1 also controlled the expression and function of the C-type lectin receptor Mincle. Our study underscores the critical regulatory role of Raver1 in modulating innate immune responses and highlights its significance in directing in vivo and in vitro inflammatory processes.
Collapse
Affiliation(s)
- Boyao Zhang
- Division of Infectious Diseases and Immunology, Department of Medicine, Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA01605
| | - Pontus Orning
- Division of Infectious Diseases and Immunology, Department of Medicine, Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA01605
- Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim7491, Norway
| | - Jesse W. Lehman
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Alexandre Dinis
- Division of Infectious Diseases and Immunology, Department of Medicine, Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA01605
| | - Leslie Torres-Ulloa
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Roland Elling
- Institute for Immunodeficiency, Center of Chronic Immunodeficiency, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg79106, Germany
- Institute for Immunodeficiency, Center for Pediatrics and Adolescent Medicine University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg79106, Germany
| | - Michelle A. Kelliher
- Department of Molecular Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA01605
| | - John Bertin
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA19426
- Sanofi, Immunology and Inflammation Research Therapeutic Area, Cambridge, MA02141
| | - Megan K. Proulx
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Jon D. Goguen
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Liv Ryan
- Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim7491, Norway
| | - Richard K. Kandasamy
- Division of Infectious Diseases and Immunology, Department of Medicine, Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA01605
- Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim7491, Norway
- Department of Laboratory Medicine and Pathology, Center for Individualized Medicine, Mayo Clinic, Rochester, MN55905
| | - Terje Espevik
- Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim7491, Norway
- Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim7006, Norway
| | - Athma A. Pai
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Katherine A. Fitzgerald
- Division of Infectious Diseases and Immunology, Department of Medicine, Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA01605
- Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim7491, Norway
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA01605
| | - Egil Lien
- Division of Infectious Diseases and Immunology, Department of Medicine, Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA01605
- Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim7491, Norway
| |
Collapse
|
3
|
Malik HS, Bliska JB. Guards and decoys: RIPoptosome and inflammasome pathway regulators of bacterial effector-triggered immunity. PLoS Pathog 2025; 21:e1012884. [PMID: 39883598 PMCID: PMC11781737 DOI: 10.1371/journal.ppat.1012884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025] Open
Abstract
Virulent microbes produce proteins that interact with host cell targets to promote pathogenesis. For example, virulent bacterial pathogens have proteins called effectors that are typically enzymes and are secreted into host cells. To detect and respond to the activities of effectors, diverse phyla of host organisms evolved effector-triggered immunity (ETI). In ETI, effectors are often sensed indirectly by detection of their virulence activities in host cells. ETI mechanisms can be complex and involve several classes of host proteins. Guards monitor the functional or physical integrity of another host protein, the guardee or decoy, and become activated to initiate an immune response when the guardee or decoy is modified or disrupted by an effector. A guardee typically has an intrinsic anti-pathogen function and is the intended target of an effector. A decoy structurally mimics a host protein that has intrinsic anti-pathogen activity and is unintentionally targeted by an effector. A decoy can be an individual protein, or a protein domain integrated into a guard. Here, we review the origins of ETI and focus on 5 mechanisms, in which the key steps of a pathway can include activation of a caspase by a RIPoptosome or inflammasome, formation of pores in the plasma membrane, release of cytokines and ending in cell death by pyroptosis. Survey of the 5 mechanisms, which have been shown to be host protective in mouse models of bacterial infection, reveal how distinct regulators of RIPoptosome or inflammasome pathways can act as guards or integrated decoys to trigger ETI. Common themes are highlighted and the limited mechanistic understanding of ETI bactericidal activity is discussed.
Collapse
Affiliation(s)
- Haleema Sadia Malik
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - James B. Bliska
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| |
Collapse
|
4
|
Zhang B, Orning P, Lehman JW, Dinis A, Torres-Ulloa L, Elling R, Kelliher MA, Bertin J, Proulx MK, Ryan L, Kandasamy R, Espevik T, Pai AA, Fitzgerald KA, Lien E. Raver1 links Ripk1 RNA splicing to caspase-8-mediated pyroptotic cell death, inflammation, and pathogen resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.27.625707. [PMID: 39651143 PMCID: PMC11623576 DOI: 10.1101/2024.11.27.625707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Multiple cell death and inflammatory signaling pathways converge on two critical factors: receptor interacting serine/threonine kinase 1 (RIPK1) and caspase-8. Careful regulation of these molecules is critical to control apoptosis, pyroptosis and inflammation. Here we discovered a pivotal role of Raver1 as an essential regulator of Ripk1 pre-mRNA splicing, expression, and functionality, and the subsequent caspase-8-dependent inflammatory cell death. Macrophages from Raver1 -deficient mice exhibit altered splicing of Ripk1 , accompanied by diminished cell death and reduced activation of caspase-8, Gasdermin D and E, caspase-1, as well as decreased interleukin-18 (IL-18) and IL-1ß production. These effects were triggered by Yersinia bacteria, or by restraining TAK1 or IKKβ in the presence of LPS, TNF family members, or IFNγ. Consequently, animals lacking Raver1 showed heightened susceptibility to Yersinia infection. Raver1 and RIPK1 also controlled the expression and function of the C-type lectin receptor Mincle. Our study underscores the critical regulatory role of Raver1 in modulating innate immune responses and highlights its significance in directing in vivo and in vitro inflammatory processes. Significance Caspase-8 and the kinase RIPK1 are at focal points of several inflammation and cell death pathways. Thus, a careful regulation of their actions is needed. Our work identifies the RNA splicing factor Raver1 as a critical factor directing the splicing of Ripk1 in order to modulate RIPK1/caspase-8-driven pyroptosis, apoptosis and inflammation. Raver1 is central for macrophage responses to Yersinia bacteria, initiated after blockade of kinases TAK1 and IKK, measured as activation of RIPK1, caspase-8, Gasdermin D, caspase-3, IL-1ß and IL-18. Importantly, Raver1 is necessary for host resistance to Yersinia infection in vivo . We propose that Raver1 is key for correct tuning of RIPK1-caspase-8 dependent processes.
Collapse
|
5
|
Osbron CA, Lawson C, Hanna N, Koehler HS, Goodman AG. Caspase-8 activity mediates TNFα production and restricts Coxiella burnetii replication during murine macrophage infection. Infect Immun 2024; 92:e0005324. [PMID: 38837340 PMCID: PMC11238558 DOI: 10.1128/iai.00053-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/14/2024] [Indexed: 06/07/2024] Open
Abstract
Coxiella burnetii is an obligate intracellular bacteria that causes the global zoonotic disease Q Fever. Treatment options for chronic infection are limited, and the development of novel therapeutic strategies requires a greater understanding of how C. burnetii interacts with immune signaling. Cell death responses are known to be manipulated by C. burnetii, but the role of caspase-8, a central regulator of multiple cell death pathways, has not been investigated. In this research, we studied bacterial manipulation of caspase-8 signaling and the significance of caspase-8 to C. burnetii infection, examining bacterial replication, cell death induction, and cytokine signaling. We measured caspase, RIPK, and MLKL activation in C. burnetii-infected tumor necrosis factor alpha (TNFα)/cycloheximide-treated THP-1 macrophage-like cells and TNFα/ZVAD-treated L929 cells to assess apoptosis and necroptosis signaling. Additionally, we measured C. burnetii replication, cell death, and TNFα induction over 12 days in RIPK1-kinase-dead, RIPK3-kinase-dead, or RIPK3-kinase-dead-caspase-8-/- bone marrow-derived macrophages (BMDMs) to understand the significance of caspase-8 and RIPK1/3 during infection. We found that caspase-8 is inhibited by C. burnetii, coinciding with inhibition of apoptosis and increased susceptibility to necroptosis. Furthermore, C. burnetii replication was increased in BMDMs lacking caspase-8, but not in those lacking RIPK1/3 kinase activity, corresponding with decreased TNFα production and reduced cell death. As TNFα is associated with the control of C. burnetii, this lack of a TNFα response may allow for the unchecked bacterial growth we saw in caspase-8-/- BMDMs. This research identifies and explores caspase-8 as a key regulator of C. burnetii infection, opening novel therapeutic doors.
Collapse
Affiliation(s)
- Chelsea A. Osbron
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Crystal Lawson
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Nolan Hanna
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Heather S. Koehler
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Alan G. Goodman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| |
Collapse
|
6
|
Li Y, Perez-Gil J, Lois LM, Varejão N, Reverter D. Broad-spectrum ubiquitin/ubiquitin-like deconjugation activity of the rhizobial effector NopD from Bradyrhizobium (sp. XS1150). Commun Biol 2024; 7:644. [PMID: 38802699 PMCID: PMC11130253 DOI: 10.1038/s42003-024-06344-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
The post-translational modification of proteins by ubiquitin-like modifiers (UbLs), such as SUMO, ubiquitin, and Nedd8, regulates a vast array of cellular processes. Dedicated UbL deconjugating proteases families reverse these modifications. During bacterial infection, effector proteins, including deconjugating proteases, are released to disrupt host cell defenses and promote bacterial survival. NopD, an effector protein from rhizobia involved in legume nodule symbiosis, exhibits deSUMOylation activity and, unexpectedly, also deubiquitination and deNeddylation activities. Here, we present two crystal structures of Bradyrhizobium (sp. XS1150) NopD complexed with either Arabidopsis SUMO2 or ubiquitin at 1.50 Å and 1.94 Å resolution, respectively. Despite their low sequence similarity, SUMO and ubiquitin bind to a similar NopD interface, employing a unique loop insertion in the NopD sequence. In vitro binding and activity assays reveal specific residues that distinguish between deubiquitination and deSUMOylation. These unique multifaceted deconjugating activities against SUMO, ubiquitin, and Nedd8 exemplify an optimized bacterial protease that disrupts distinct UbL post-translational modifications during host cell infection.
Collapse
Affiliation(s)
- Ying Li
- Institut de Biotecnologia i de Biomedicina and Dept. de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
- Qingdao University, 266071, Qingdao, China
| | - Jordi Perez-Gil
- Center for Research in Agricultural Genomics-CRAG, Edifici CRAG-Campus UAB, 08193, Bellaterra, Barcelona, Spain
- ARC Centre of Excellence in Synthetic Biology and Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - L Maria Lois
- Center for Research in Agricultural Genomics-CRAG, Edifici CRAG-Campus UAB, 08193, Bellaterra, Barcelona, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Nathalia Varejão
- Institut de Biotecnologia i de Biomedicina and Dept. de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.
| | - David Reverter
- Institut de Biotecnologia i de Biomedicina and Dept. de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
7
|
Fromm K, Ortelli M, Boegli A, Dehio C. Translocation of YopJ family effector proteins through the VirB/VirD4 T4SS of Bartonella. Proc Natl Acad Sci U S A 2024; 121:e2310348121. [PMID: 38709922 PMCID: PMC11098119 DOI: 10.1073/pnas.2310348121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 03/25/2024] [Indexed: 05/08/2024] Open
Abstract
The evolutionary conserved YopJ family comprises numerous type-III-secretion system (T3SS) effectors of diverse mammalian and plant pathogens that acetylate host proteins to dampen immune responses. Acetylation is mediated by a central acetyltransferase domain that is flanked by conserved regulatory sequences, while a nonconserved N-terminal extension encodes the T3SS-specific translocation signal. Bartonella spp. are facultative-intracellular pathogens causing intraerythrocytic bacteremia in their mammalian reservoirs and diverse disease manifestations in incidentally infected humans. Bartonellae do not encode a T3SS, but most species possess a type-IV-secretion system (T4SS) to translocate Bartonella effector proteins (Beps) into host cells. Here we report that the YopJ homologs present in Bartonellae species represent genuine T4SS effectors. Like YopJ family T3SS effectors of mammalian pathogens, the "Bartonella YopJ-like effector A" (ByeA) of Bartonella taylorii also targets MAP kinase signaling to dampen proinflammatory responses, however, translocation depends on a functional T4SS. A split NanoLuc luciferase-based translocation assay identified sequences required for T4SS-dependent translocation in conserved regulatory regions at the C-terminus and proximal to the N-terminus of ByeA. The T3SS effectors YopP from Yersinia enterocolitica and AvrA from Salmonella Typhimurium were also translocated via the Bartonella T4SS, while ByeA was not translocated via the Yersinia T3SS. Our data suggest that YopJ family T3SS effectors may have evolved from an ancestral T4SS effector, such as ByeA of Bartonella. In this evolutionary scenario, the signal for T4SS-dependent translocation encoded by N- and C-terminal sequences remained functional in the derived T3SS effectors due to the essential role these sequences coincidentally play in regulating acetyltransferase activity.
Collapse
Affiliation(s)
- Katja Fromm
- Biozentrum, University of Basel, Basel4056, Switzerland
| | | | | | | |
Collapse
|
8
|
Kappelhoff S, Margheritis EG, Cosentino K. New insights into Gasdermin D pore formation. Biochem Soc Trans 2024; 52:681-692. [PMID: 38497302 DOI: 10.1042/bst20230549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024]
Abstract
Gasdermin D (GSDMD) is a pore-forming protein that perforates the plasma membrane (PM) during pyroptosis, a pro-inflammatory form of cell death, to induce the unconventional secretion of inflammatory cytokines and, ultimately, cell lysis. GSDMD is activated by protease-mediated cleavage of its active N-terminal domain from the autoinhibitory C-terminal domain. Inflammatory caspase-1, -4/5 are the main activators of GSDMD via either the canonical or non-canonical pathways of inflammasome activation, but under certain stimuli, caspase-8 and other proteases can also activate GSDMD. Activated GSDMD can oligomerize and assemble into various nanostructures of different sizes and shapes that perforate cellular membranes, suggesting plasticity in pore formation. Although the exact mechanism of pore formation has not yet been deciphered, cysteine residues are emerging as crucial modulators of the oligomerization process. GSDMD pores and thus the outcome of pyroptosis can be modulated by various regulatory mechanisms. These include availability of activated GSDMD at the PM, control of the number of GSDMD pores by PM repair mechanisms, modulation of the lipid environment and post-translational modifications. Here, we review the latest findings on the mechanisms that induce GSDMD to form membrane pores and how they can be tightly regulated for cell content release and cell fate modulation.
Collapse
Affiliation(s)
- Shirin Kappelhoff
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics (CellNanOs), University of Osnabrück, Osnabrück, Germany
| | - Eleonora G Margheritis
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics (CellNanOs), University of Osnabrück, Osnabrück, Germany
| | - Katia Cosentino
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics (CellNanOs), University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
9
|
Bastidas RJ, Kędzior M, Davidson RK, Walsh SC, Dolat L, Sixt BS, Pruneda JN, Coers J, Valdivia RH. The acetylase activity of Cdu1 regulates bacterial exit from infected cells by protecting Chlamydia effectors from degradation. eLife 2024; 12:RP87386. [PMID: 38358795 PMCID: PMC10942603 DOI: 10.7554/elife.87386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Many cellular processes are regulated by ubiquitin-mediated proteasomal degradation. Pathogens can regulate eukaryotic proteolysis through the delivery of proteins with de-ubiquitinating (DUB) activities. The obligate intracellular pathogen Chlamydia trachomatis secretes Cdu1 (ChlaDUB1), a dual deubiquitinase and Lys-acetyltransferase, that promotes Golgi remodeling and survival of infected host cells presumably by regulating the ubiquitination of host and bacterial proteins. Here, we determined that Cdu1's acetylase but not its DUB activity is important to protect Cdu1 from ubiquitin-mediated degradation. We further identified three C. trachomatis proteins on the pathogen-containing vacuole (InaC, IpaM, and CTL0480) that required Cdu1's acetylase activity for protection from degradation and determined that Cdu1 and these Cdu1-protected proteins are required for optimal egress of Chlamydia from host cells. These findings highlight a non-canonical mechanism of pathogen-mediated protection of virulence factors from degradation after their delivery into host cells and the coordinated regulation of secreted effector proteins.
Collapse
Affiliation(s)
- Robert J Bastidas
- Department of Integrative Immunobiology, Duke UniversityDurhamUnited States
| | - Mateusz Kędzior
- Department of Integrative Immunobiology, Duke UniversityDurhamUnited States
| | - Robert K Davidson
- Department of Molecular Genetics and Microbiology, Duke UniversityDukeUnited States
| | - Stephen C Walsh
- Department of Molecular Genetics and Microbiology, Duke UniversityDukeUnited States
| | - Lee Dolat
- Department of Integrative Immunobiology, Duke UniversityDurhamUnited States
| | - Barbara S Sixt
- Deparment of Molecular Biology, Umeå UniversityUmeåSweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå UniversityUmeåSweden
- Umeå Centre for Microbial Research (UCMR), Umeå UniversityUmeåSweden
| | - Jonathan N Pruneda
- Department of Molecular Microbiology & Immunology, Oregon Health & Science UniversityPortlandUnited States
| | - Jorn Coers
- Department of Integrative Immunobiology, Duke UniversityDurhamUnited States
- Department of Molecular Genetics and Microbiology, Duke UniversityDukeUnited States
| | - Raphael H Valdivia
- Department of Integrative Immunobiology, Duke UniversityDurhamUnited States
- Department of Molecular Genetics and Microbiology, Duke UniversityDukeUnited States
| |
Collapse
|
10
|
Osbron CA, Lawson C, Hanna N, Koehler HS, Goodman AG. Caspase-8 activity mediates TNFα production and restricts Coxiella burnetii replication during murine macrophage infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578698. [PMID: 38352389 PMCID: PMC10862817 DOI: 10.1101/2024.02.02.578698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Coxiella burnetii is an obligate intracellular bacteria which causes the global zoonotic disease Q Fever. Treatment options for infection are limited, and development of novel therapeutic strategies requires a greater understanding of how C. burnetii interacts with immune signaling. Cell death responses are known to be manipulated by C. burnetii, but the role of caspase-8, a central regulator of multiple cell death pathways, has not been investigated. In this research, we studied bacterial manipulation of caspase-8 signaling and the significance of caspase-8 to C. burnetii infection, examining bacterial replication, cell death induction, and cytokine signaling. We measured caspase, RIPK, and MLKL activation in C. burnetii-infected TNFα/CHX-treated THP-1 macrophage-like cells and TNFα/ZVAD-treated L929 cells to assess apoptosis and necroptosis signaling. Additionally, we measured C. burnetii replication, cell death, and TNFα induction over 12 days in RIPK1-kinase-dead, RIPK3-kinase-dead, or RIPK3-kinase-dead-caspase-8-/- BMDMs to understand the significance of caspase-8 and RIPK1/3 during infection. We found that caspase-8 is inhibited by C. burnetii, coinciding with inhibition of apoptosis and increased susceptibility to necroptosis. Furthermore, C. burnetii replication was increased in BMDMs lacking caspase-8, but not in those lacking RIPK1/3 kinase activity, corresponding with decreased TNFα production and reduced cell death. As TNFα is associated with the control of C. burnetii, this lack of a TNFα response may allow for the unchecked bacterial growth we saw in caspase-8-/- BMDMs. This research identifies and explores caspase-8 as a key regulator of C. burnetii infection, opening novel therapeutic doors.
Collapse
Affiliation(s)
- Chelsea A. Osbron
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Crystal Lawson
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Nolan Hanna
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Heather S. Koehler
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Alan G. Goodman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| |
Collapse
|
11
|
Murthy MHS, Jasbi P, Lowe W, Kumar L, Olaosebikan M, Roger L, Yang J, Lewinski N, Daniels N, Cowen L, Klein-Seetharaman J. Insulin signaling and pharmacology in humans and in corals. PeerJ 2024; 12:e16804. [PMID: 38313028 PMCID: PMC10838073 DOI: 10.7717/peerj.16804] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/27/2023] [Indexed: 02/06/2024] Open
Abstract
Once thought to be a unique capability of the Langerhans islets in the pancreas of mammals, insulin (INS) signaling is now recognized as an evolutionarily ancient function going back to prokaryotes. INS is ubiquitously present not only in humans but also in unicellular eukaryotes, fungi, worms, and Drosophila. Remote homologue identification also supports the presence of INS and INS receptor in corals where the availability of glucose is largely dependent on the photosynthetic activity of the symbiotic algae. The cnidarian animal host of corals operates together with a 20,000-sized microbiome, in direct analogy to the human gut microbiome. In humans, aberrant INS signaling is the hallmark of metabolic disease, and is thought to play a major role in aging, and age-related diseases, such as Alzheimer's disease. We here would like to argue that a broader view of INS beyond its human homeostasis function may help us understand other organisms, and in turn, studying those non-model organisms may enable a novel view of the human INS signaling system. To this end, we here review INS signaling from a new angle, by drawing analogies between humans and corals at the molecular level.
Collapse
Affiliation(s)
| | - Paniz Jasbi
- School of Molecular Sciences, Arizona State University, Phoenix, AZ, USA
| | - Whitney Lowe
- Departments of Chemistry & Physics, Colorado School of Mines, Golden, CO, United States
| | - Lokender Kumar
- Departments of Chemistry & Physics, Colorado School of Mines, Golden, CO, United States
| | | | - Liza Roger
- School of Molecular Sciences, Arizona State University, Phoenix, AZ, USA
- School of Ocean Futures, Arizona State University, Tempe, AZ, United States of America
| | - Jinkyu Yang
- Department of Aeronautics & Astronautics, University of Washington, Seattle, WA, USA
| | - Nastassja Lewinski
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Noah Daniels
- Department of Computer Science, University of Rhode Island, Kingston, RI, USA
| | - Lenore Cowen
- Department of Computer Science, Tufts University, Medford, MA, USA
| | - Judith Klein-Seetharaman
- School of Molecular Sciences, Arizona State University, Phoenix, AZ, USA
- Departments of Chemistry & Physics, Colorado School of Mines, Golden, CO, United States
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
| |
Collapse
|
12
|
Koirala R, Fongsaran C, Poston T, Rogge M, Rogers B, Thune R, Dubytska L. Edwardsiella ictaluri T3SS effector EseN is a phosphothreonine lyase that inactivates ERK1/2, p38, JNK, and PDK1 and modulates cell death in infected macrophages. Microbiol Spectr 2023; 11:e0300323. [PMID: 37796003 PMCID: PMC10714789 DOI: 10.1128/spectrum.03003-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 08/22/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE This work has global significance in the catfish industry, which provides food for increasing global populations. E. ictaluri is a leading cause of disease loss, and EseN is an important player in E. ictaluri virulence. The E. ictaluri T3SS effector EseN plays an essential role in establishing infection, but the specific role EseN plays is not well characterized. EseN belongs to a family of phosphothreonine lyase effectors that specifically target host mitogen activated protein kinase (MAPK) pathways important in regulating host responses to infection. No phosphothreonine lyase equivalents are known in eukaryotes, making this family of effectors an attractive target for indirect narrow-spectrum antibiotics. Targeting of major vault protein and PDK1 kinase by EseN has not been reported in EseN homologs in other pathogens and may indicate unique functions of E. ictaluri EseN. EseN targeting of PDK1 is particularly interesting in that it is linked to an extraordinarily diverse group of cellular functions.
Collapse
Affiliation(s)
- Ranjan Koirala
- Department of Biological Sciences and Chemistry, Southern University and A & M College, Baton Rouge, Louisiana, USA
| | - Chanida Fongsaran
- Department of Biological Sciences and Chemistry, Southern University and A & M College, Baton Rouge, Louisiana, USA
| | - Tanisha Poston
- Department of Biological Sciences and Chemistry, Southern University and A & M College, Baton Rouge, Louisiana, USA
| | - Matthew Rogge
- Department of Biology, University of Wisconsin-Stevens Point, Stevens Point, Wisconsin, USA
| | - Bryan Rogers
- Department of Biological Sciences and Chemistry, Southern University and A & M College, Baton Rouge, Louisiana, USA
| | - Ronald Thune
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| | - Lidiya Dubytska
- Department of Biological Sciences and Chemistry, Southern University and A & M College, Baton Rouge, Louisiana, USA
| |
Collapse
|
13
|
Clucas J, Meier P. Roles of RIPK1 as a stress sentinel coordinating cell survival and immunogenic cell death. Nat Rev Mol Cell Biol 2023; 24:835-852. [PMID: 37568036 DOI: 10.1038/s41580-023-00623-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 08/13/2023]
Abstract
Cell death and inflammation are closely linked arms of the innate immune response to combat infection and tissue malfunction. Recent advancements in our understanding of the intricate signals originating from dying cells have revealed that cell death serves as more than just an end point. It facilitates the exchange of information between the dying cell and cells of the tissue microenvironment, particularly immune cells, alerting and recruiting them to the site of disturbance. Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) is emerging as a critical stress sentinel that functions as a molecular switch, governing cellular survival, inflammatory responses and immunogenic cell death signalling. Its tight regulation involves multiple layers of post-translational modifications. In this Review, we discuss the molecular mechanisms that regulate RIPK1 to maintain homeostasis and cellular survival in healthy cells, yet drive cell death in a context-dependent manner. We address how RIPK1 mutations or aberrant regulation is associated with inflammatory and autoimmune disorders and cancer. Moreover, we tease apart what is known about catalytic and non-catalytic roles of RIPK1 and discuss the successes and pitfalls of current strategies that aim to target RIPK1 in the clinic.
Collapse
Affiliation(s)
- Jarama Clucas
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, UK
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, UK.
| |
Collapse
|
14
|
Bastidas RJ, Kędzior M, Davidson RK, Walsh SC, Dolat L, Sixt BS, Pruneda JN, Coers J, Valdivia RH. The acetylase activity of Cdu1 regulates bacterial exit from infected cells by protecting Chlamydia effectors from degradation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.28.530337. [PMID: 36909574 PMCID: PMC10002621 DOI: 10.1101/2023.02.28.530337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Many cellular processes are regulated by ubiquitin-mediated proteasomal degradation. Pathogens can regulate eukaryotic proteolysis through the delivery of proteins with de-ubiquitinating (DUB) activities. The obligate intracellular pathogen Chlamydia trachomatis secretes Cdu1 (ChlaDUB1), a dual deubiquitinase and Lys-acetyltransferase, that promotes Golgi remodeling and survival of infected host cells presumably by regulating the ubiquitination of host and bacterial proteins. Here we determined that Cdu1's acetylase but not its DUB activity is important to protect Cdu1 from ubiquitin-mediated degradation. We further identified three C. trachomatis proteins on the pathogen-containing vacuole (InaC, IpaM, and CTL0480) that required Cdu1's acetylase activity for protection from degradation and determined that Cdu1 and these Cdu1-protected proteins are required for optimal egress of Chlamydia from host cells. These findings highlight a non-canonical mechanism of pathogen-mediated protection of virulence factors from degradation after their delivery into host cells and the coordinated regulation of secreted effector proteins.
Collapse
Affiliation(s)
- Robert J. Bastidas
- Department of Integrative Immunobiology, Duke University, Durham, N.C 27708, USA
| | - Mateusz Kędzior
- Department of Integrative Immunobiology, Duke University, Durham, N.C 27708, USA
| | - Robert K. Davidson
- Department of Molecular Genetics and Microbiology, Duke University, Durham, N.C 27708, USA
| | - Stephen C. Walsh
- Department of Molecular Genetics and Microbiology, Duke University, Durham, N.C 27708, USA
| | - Lee Dolat
- Department of Integrative Immunobiology, Duke University, Durham, N.C 27708, USA
| | - Barbara S. Sixt
- Deparment of Molecular Biology, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Jonathan N. Pruneda
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jörn Coers
- Department of Integrative Immunobiology, Duke University, Durham, N.C 27708, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, N.C 27708, USA
| | - Raphael H. Valdivia
- Department of Integrative Immunobiology, Duke University, Durham, N.C 27708, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, N.C 27708, USA
| |
Collapse
|
15
|
Roberts CG, Franklin TG, Pruneda JN. Ubiquitin-targeted bacterial effectors: rule breakers of the ubiquitin system. EMBO J 2023; 42:e114318. [PMID: 37555693 PMCID: PMC10505922 DOI: 10.15252/embj.2023114318] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023] Open
Abstract
Regulation through post-translational ubiquitin signaling underlies a large portion of eukaryotic biology. This has not gone unnoticed by invading pathogens, many of which have evolved mechanisms to manipulate or subvert the host ubiquitin system. Bacteria are particularly adept at this and rely heavily upon ubiquitin-targeted virulence factors for invasion and replication. Despite lacking a conventional ubiquitin system of their own, many bacterial ubiquitin regulators loosely follow the structural and mechanistic rules established by eukaryotic ubiquitin machinery. Others completely break these rules and have evolved novel structural folds, exhibit distinct mechanisms of regulation, or catalyze foreign ubiquitin modifications. Studying these interactions can not only reveal important aspects of bacterial pathogenesis but also shed light on unexplored areas of ubiquitin signaling and regulation. In this review, we discuss the methods by which bacteria manipulate host ubiquitin and highlight aspects that follow or break the rules of ubiquitination.
Collapse
Affiliation(s)
- Cameron G Roberts
- Department of Molecular Microbiology & ImmunologyOregon Health & Science UniversityPortlandORUSA
| | - Tyler G Franklin
- Department of Molecular Microbiology & ImmunologyOregon Health & Science UniversityPortlandORUSA
| | - Jonathan N Pruneda
- Department of Molecular Microbiology & ImmunologyOregon Health & Science UniversityPortlandORUSA
| |
Collapse
|
16
|
Nandi I, Aroeti B. Mitogen-Activated Protein Kinases (MAPKs) and Enteric Bacterial Pathogens: A Complex Interplay. Int J Mol Sci 2023; 24:11905. [PMID: 37569283 PMCID: PMC10419152 DOI: 10.3390/ijms241511905] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
Diverse extracellular and intracellular cues activate mammalian mitogen-activated protein kinases (MAPKs). Canonically, the activation starts at cell surface receptors and continues via intracellular MAPK components, acting in the host cell nucleus as activators of transcriptional programs to regulate various cellular activities, including proinflammatory responses against bacterial pathogens. For instance, binding host pattern recognition receptors (PRRs) on the surface of intestinal epithelial cells to bacterial pathogen external components trigger the MAPK/NF-κB signaling cascade, eliciting cytokine production. This results in an innate immune response that can eliminate the bacterial pathogen. However, enteric bacterial pathogens evolved sophisticated mechanisms that interfere with such a response by delivering virulent proteins, termed effectors, and toxins into the host cells. These proteins act in numerous ways to inactivate or activate critical components of the MAPK signaling cascades and innate immunity. The consequence of such activities could lead to successful bacterial colonization, dissemination, and pathogenicity. This article will review enteric bacterial pathogens' strategies to modulate MAPKs and host responses. It will also discuss findings attempting to develop anti-microbial treatments by targeting MAPKs.
Collapse
Affiliation(s)
| | - Benjamin Aroeti
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190410, Israel;
| |
Collapse
|
17
|
Ozhelvaci F, Steczkiewicz K. Identification and Classification of Papain-like Cysteine Proteinases. J Biol Chem 2023:104801. [PMID: 37164157 DOI: 10.1016/j.jbc.2023.104801] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/11/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023] Open
Abstract
Papain-like cysteine peptidases form a big and highly diverse superfamily of proteins involved in many important biological functions, such as protein turnover, deubiquitination, tissue remodeling, blood clotting, virulence, defense, and cell wall remodeling. High sequence and structure diversity observed within these proteins hinders their comprehensive classification as well as the identification of new representatives. Moreover, in general protein databases, many families already classified as papain-like lack details regarding their mechanism of action or biological function. Here, we use transitive remote homology searches and 3D modeling to newly classify 21 families to the papain-like cysteine peptidase superfamily. We attempt to predict their biological function, and provide structural chacterization of 89 protein clusters defined based on sequence similarity altogether spanning 106 papain-like families. Moreover, we systematically discuss observed diversity in sequences, structures, and catalytic sites. Eventually, we expand the list of human papain-related proteins by seven representatives, including dopamine receptor-interacting protein (DRIP1) as potential deubiquitinase, and centriole duplication regulating CEP76 as retaining catalytically active peptidase-like domain. The presented results not only provide structure-based rationales to already existing peptidase databases but also may inspire further experimental research focused on peptidase-related biological processes.
Collapse
Affiliation(s)
- Fatih Ozhelvaci
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Kamil Steczkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
18
|
Chen KW, Brodsky IE. Yersinia interactions with regulated cell death pathways. Curr Opin Microbiol 2023; 71:102256. [PMID: 36584489 DOI: 10.1016/j.mib.2022.102256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/18/2022] [Accepted: 11/30/2022] [Indexed: 12/29/2022]
Abstract
Cell death in response to infection is conserved across all kingdoms of life. In metazoans, cell death upon bacterial infection is primarily carried out by the cysteine and aspartate protease and receptor-interacting serine/threonine protein kinase families. The Gram-negative bacterial genus Yersinia includes pathogens that cause disease in humans and other animals ranging from plague to gastrointestinal infections. Pathogenic Yersiniae express a type-III secretion system (T3SS), which translocates effectors that disrupt phagocytosis and innate immune signaling to evade immune defenses and replicate extracellularly in infected tissues. Blockade of innate immune signaling, disruption of the actin cytoskeleton, and the membrane-disrupting activity of the T3SS translocon pore, are all sensed by innate immune cells. Here, we discuss recent advances in understanding the pathways that regulate Yersinia-induced cell death, and how manipulation of these cell death pathways over the course of infection promotes bacterial dissemination or host defense.
Collapse
Affiliation(s)
- Kaiwen W Chen
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Igor E Brodsky
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, United States; Department of Microbiology, University of Pennsylvania Perelman School of Medicine, United States.
| |
Collapse
|
19
|
RIPK1 and RIPK3 in antibacterial defence. Biochem Soc Trans 2022; 50:1583-1594. [DOI: 10.1042/bst20211242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022]
Abstract
Upon sensing pathogenic bacterial infection, host cells activate a multitude of inflammatory and immunogenic responses to promote bacterial clearance and restore tissue homeostasis. RIPK1 and RIPK3 are two key players in antimicrobial defence, by either driving inflammatory signalling or inducing programmed cell death activation, ranging from apoptosis, pyroptosis to necroptosis. In this review, we first discuss the mechanisms by which RIPK1 and RIPK3 promote the assembly of death-inducing complexes and how these cell death pathways are activated as host responses to counteract pathogenic bacteria. We further outline the immunological importance of cell death in antibacterial defence and highlight outstanding questions in the field.
Collapse
|
20
|
Abstract
Tumour necrosis factor (TNF) is a central cytokine in inflammatory reactions, and biologics that neutralize TNF are among the most successful drugs for the treatment of chronic inflammatory and autoimmune pathologies. In recent years, it became clear that TNF drives inflammatory responses not only directly by inducing inflammatory gene expression but also indirectly by inducing cell death, instigating inflammatory immune reactions and disease development. Hence, inhibitors of cell death are being considered as a new therapy for TNF-dependent inflammatory diseases.
Collapse
|
21
|
Yang J, Song C, Zhan X. The role of protein acetylation in carcinogenesis and targeted drug discovery. Front Endocrinol (Lausanne) 2022; 13:972312. [PMID: 36171897 PMCID: PMC9510633 DOI: 10.3389/fendo.2022.972312] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/23/2022] [Indexed: 12/01/2022] Open
Abstract
Protein acetylation is a reversible post-translational modification, and is involved in many biological processes in cells, such as transcriptional regulation, DNA damage repair, and energy metabolism, which is an important molecular event and is associated with a wide range of diseases such as cancers. Protein acetylation is dynamically regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs) in homeostasis. The abnormal acetylation level might lead to the occurrence and deterioration of a cancer, and is closely related to various pathophysiological characteristics of a cancer, such as malignant phenotypes, and promotes cancer cells to adapt to tumor microenvironment. Therapeutic modalities targeting protein acetylation are a potential therapeutic strategy. This article discussed the roles of protein acetylation in tumor pathology and therapeutic drugs targeting protein acetylation, which offers the contributions of protein acetylation in clarification of carcinogenesis, and discovery of therapeutic drugs for cancers, and lays the foundation for precision medicine in oncology.
Collapse
Affiliation(s)
- Jingru Yang
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Cong Song
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Xianquan Zhan
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| |
Collapse
|
22
|
Hu F, Zhang Y, Liu Q, Wang Z. PurA facilitates Edwardsiella piscicida to escape NF-κB signaling activation. FISH & SHELLFISH IMMUNOLOGY 2022; 124:254-260. [PMID: 35395412 DOI: 10.1016/j.fsi.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/01/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
The host NF-κB signaling pathway plays critical role in defensing against bacterial infection. However, bacteria also evolve strategies to escape from host clearance. Edwardsiella piscicida is a threatening pathogen in aquaculture, while the molecular mechanism of E. piscicida in inhibiting NF-κB signaling remains largely unknown. Herein, using E. piscicida transposon insertion mutant library combined with a NF-κB luciferase reporter system, we identified forty-six genes of E. piscicida, which were involved in inhibiting the NF-κB signaling activation in vitro. Moreover, we further explored the top 10 significantly changed mutants through zebrafish larvae infection model and validated that six genes were involved in inhibiting NF-κB activation in vivo. Specifically, we identified the adenylosuccinate synthase mutated strain (ΔpurA) infection exhibited a robust activation of NF-κB signaling, along with higher expression of cxcl8a and cxcl8b to mediate the recruitment of neutrophils in vivo. Taken together, these results identified the key factors of E. piscicida in inhibiting NF-κB activation, which will contribute to better understanding the pathogenesis of this important pathogen.
Collapse
Affiliation(s)
- Feizi Hu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuanxing Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Zhuang Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
23
|
Woida PJ, Satchell KJF. Bacterial Toxin and Effector Regulation of Intestinal Immune Signaling. Front Cell Dev Biol 2022; 10:837691. [PMID: 35252199 PMCID: PMC8888934 DOI: 10.3389/fcell.2022.837691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
The host immune response is highly effective to detect and clear infecting bacterial pathogens. Given the elaborate surveillance systems of the host, it is evident that in order to productively infect a host, the bacteria often coordinate virulence factors to fine-tune the host response during infection. These coordinated events can include either suppressing or activating the signaling pathways that control the immune response and thereby promote bacterial colonization and infection. This review will cover the surveillance and signaling systems for detection of bacteria in the intestine and a sample of the toxins and effectors that have been characterized that cirumvent these signaling pathways. These factors that promote infection and disease progression have also been redirected as tools or therapeutics. Thus, these toxins are enemies deployed to enhance infection, but can also be redeployed as allies to enable research and protect against infection.
Collapse
Affiliation(s)
| | - Karla J. F. Satchell
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
24
|
Marín-Hernández Á, Rodríguez-Zavala JS, Jasso-Chávez R, Saavedra E, Moreno-Sánchez R. Protein acetylation effects on enzyme activity and metabolic pathway fluxes. J Cell Biochem 2021; 123:701-718. [PMID: 34931340 DOI: 10.1002/jcb.30197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 11/11/2022]
Abstract
Acetylation of proteins seems a widespread process found in the three domains of life. Several studies have shown that besides histones, acetylation of lysine residues also occurs in non-nuclear proteins. Hence, it has been suggested that this covalent modification is a mechanism that might regulate diverse metabolic pathways by modulating enzyme activity, stability, and/or subcellular localization or interaction with other proteins. However, protein acetylation levels seem to have low correlation with modification of enzyme activity and pathway fluxes. In addition, the results obtained with mutant enzymes that presumably mimic acetylation have frequently been over-interpreted. Moreover, there is a generalized lack of rigorous enzyme kinetic analysis in parallel to acetylation level determinations. The purpose of this review is to analyze the current findings on the impact of acetylation on metabolic enzymes and its repercussion on metabolic pathways function/regulation.
Collapse
Affiliation(s)
| | | | - Ricardo Jasso-Chávez
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Mexico City, Mexico
| | - Emma Saavedra
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Mexico City, Mexico
| | | |
Collapse
|
25
|
Fang C, Wang L, Qiao J, Chang L, He Q, Zhang X, Liu M. Differential regulation of lipopolysaccharide-induced IL-1β and TNF-α production in macrophages by palmitate via modulating TLR4 downstream signaling. Int Immunopharmacol 2021; 103:108456. [PMID: 34923420 DOI: 10.1016/j.intimp.2021.108456] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 11/25/2022]
Abstract
Diabetic patients are susceptible to infectious diseases. Bacterial invasion activates immune cells such as macrophages through interaction between LPS and TLR4, and induces the expression of inflammatory mediators, including IL-1β and TNF-α, which play key roles in the elimination of infections. Unregulated overproduction or underproduction of these cytokines has been reported as a major factor in the development of septic shock, immune deficiency, and autoimmunity. Recent studies found that metabolic abnormalities of diabetes, such as hyperglycemia and dyslipidemia, played a major role in modulating the immune response. In this study, we studied the effects of palmitic acid (PA) pretreatment on LPS-induced IL-1β and TNF-α production and LPS-TLR4 signaling in macrophages. Compared with control, PA pretreatment significantly increased LPS-induced TNF-α production and secretion in macrophages. In contrast, LPS-induced IL-1β production and secretion was significantly suppressed by PA pretreatment. PA pretreatment did not affect the expression levels of TLR4 or Myd88, or the endocytosis of TLR4 in macrophages. However, PA pretreatment significantly suppressed the phosphorylation level and nuclear translocation of NF-κB, and the phosphorylation level of ERK1/2, whereas increased the phosphorylation levels of p38 and JNK. The activation of IKK which was upstream of NF-κB and ERK1/2 was attenuated, while the activation of TAK1 which was upstream of JNK and p38 was augmented by PA pretreatment. Inhibitors of NF-κB, MEK1/2, and p38 significantly decreased IL-1β expression, while JNK and p38 pathway inhibitors significantly inhibited TNF-α expression. The differential regulation of LPS-induced TNF-α and IL-1β production by PA was associated with cellular metabolism of PA, because inhibiting metabolism of PA with etomoxir or pretreatment with Br-PA which cannot be metabolized reversed these effects. We also showed that PA treatment increased acetylated IKK level which might contribute to the suppressed activation of IKK. The present study showed that LPS-induced production of TNF-α and IL-1β was regulated by different TLR4 downstream pathways in macrophages. PA differentially affected LPS-induced production of TNF-α and IL-1β in macrophages through differentially modulating these pathways. Further experiments will be needed to determine how these phenomena lead to the impaired immune response in patients with diabetes.
Collapse
Affiliation(s)
- Chunyun Fang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Lixia Wang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Jingting Qiao
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Lina Chang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Qing He
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China.
| | - Xiaona Zhang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China.
| | - Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
26
|
Abstract
Despite the maintenance of YopP/J alleles throughout the human-pathogenic Yersinia lineage, the benefit of YopP/J-induced phagocyte death for Yersinia pathogenesis in animals is not obvious. To determine how the sequence divergence of YopP/J has impacted Yersinia virulence, we examined protein polymorphisms in this type III secreted effector protein across 17 Yersinia species and tested the consequences of polymorphism in a murine model of subacute systemic yersiniosis. Our evolutionary analysis revealed that codon 177 has been subjected to positive selection; the Yersinia enterocolitica residue had been altered from a leucine to a phenylalanine in nearly all Yersinia pseudotuberculosis and Yersinia pestis strains examined. Despite this change being minor, as both leucine and phenylalanine have hydrophobic side chains, reversion of YopJF177 to the ancestral YopJL177 variant yielded a Y. pseudotuberculosis strain with enhanced cytotoxicity toward macrophages, consistent with previous findings. Surprisingly, expression of YopJF177L in the mildly attenuated ksgA- background rendered the strain completely avirulent in mice. Consistent with this hypothesis that YopJ activity relates indirectly to Yersinia pathogenesis in vivo, ksgA- strains lacking functional YopJ failed to kill macrophages but actually regained virulence in animals. Also, treatment with the antiapoptosis drug suramin prevented YopJ-mediated macrophage cytotoxicity and enhanced Y. pseudotuberculosis virulence in vivo. Our results demonstrate that Yersinia-induced cell death is detrimental for bacterial pathogenesis in this animal model of illness and indicate that positive selection has driven YopJ/P and Yersinia evolution toward diminished cytotoxicity and increased virulence, respectively.
Collapse
|
27
|
Categorizing sequences of concern by function to better assess mechanisms of microbial pathogenesis. Infect Immun 2021; 90:e0033421. [PMID: 34780277 PMCID: PMC9119117 DOI: 10.1128/iai.00334-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
To identify sequences with a role in microbial pathogenesis, we assessed the adequacy of their annotation by existing controlled vocabularies and sequence databases. Our goal was to regularize descriptions of microbial pathogenesis for improved integration with bioinformatic applications. Here, we review the challenges of annotating sequences for pathogenic activity. We relate the categorization of more than 2,750 sequences of pathogenic microbes through a controlled vocabulary called Functions of Sequences of Concern (FunSoCs). These allow for an ease of description by both humans and machines. We provide a subset of 220 fully annotated sequences in the supplemental material as examples. The use of this compact (∼30 terms), controlled vocabulary has potential benefits for research in microbial genomics, public health, biosecurity, biosurveillance, and the characterization of new and emerging pathogens.
Collapse
|
28
|
Jofre BL, Eliçabe RJ, Silva JE, Pérez Sáez JM, Paez MD, Callegari E, Mariño KV, Di Genaro MS, Rabinovich GA, Davicino RC. Galectin-1 Cooperates with Yersinia Outer Protein (Yop) P to Thwart Protective Immunity by Repressing Nitric Oxide Production. Biomolecules 2021; 11:1636. [PMID: 34827634 PMCID: PMC8615707 DOI: 10.3390/biom11111636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 11/18/2022] Open
Abstract
Yersinia enterocolitica (Ye) inserts outer proteins (Yops) into cytoplasm to infect host cells. However, in spite of considerable progress, the mechanisms implicated in this process, including the association of Yops with host proteins, remain unclear. Here, we evaluated the functional role of Galectin-1 (Gal1), an endogenous β-galactoside-binding protein, in modulating Yop interactions with host cells. Our results showed that Gal1 binds to Yops in a carbohydrate-dependent manner. Interestingly, Gal1 binding to Yops protects these virulence factors from trypsin digestion. Given that early control of Ye infection involves activation of macrophages, we evaluated the role of Gal1 and YopP in the modulation of macrophage function. Although Gal1 and YopP did not influence production of superoxide anion and/or TNF by Ye-infected macrophages, they coordinately inhibited nitric oxide (NO) production. Notably, recombinant Gal1 (rGal1) did not rescue NO increase observed in Lgals1-/- macrophages infected with the YopP mutant Ye ∆yopP. Whereas NO induced apoptosis in macrophages, no significant differences in cell death were detected between Gal1-deficient macrophages infected with Ye ∆yopP, and WT macrophages infected with Ye wt. Strikingly, increased NO production was found in WT macrophages treated with MAPK inhibitors and infected with Ye wt. Finally, rGal1 administration did not reverse the protective effect in Peyer Patches (PPs) of Lgals1-/- mice infected with Ye ∆yopP. Our study reveals a cooperative role of YopP and endogenous Gal1 during Ye infection.
Collapse
Affiliation(s)
- Brenda Lucila Jofre
- División de Inmunología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis CP5700, Argentina; (B.L.J.); (R.J.E.); (J.E.S.); (M.S.D.G.)
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Luis C5700, Argentina
| | - Ricardo Javier Eliçabe
- División de Inmunología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis CP5700, Argentina; (B.L.J.); (R.J.E.); (J.E.S.); (M.S.D.G.)
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Luis C5700, Argentina
| | - Juan Eduardo Silva
- División de Inmunología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis CP5700, Argentina; (B.L.J.); (R.J.E.); (J.E.S.); (M.S.D.G.)
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Luis C5700, Argentina
| | - Juan Manuel Pérez Sáez
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME-CONICET), Buenos Aires C1428ADN, Argentina; (J.M.P.S.); (G.A.R.)
| | - Maria Daniela Paez
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 66544, USA; (M.D.P.); (E.C.)
| | - Eduardo Callegari
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 66544, USA; (M.D.P.); (E.C.)
| | - Karina Valeria Mariño
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME-CONICET), Buenos Aires C1428ADN, Argentina;
| | - María Silvia Di Genaro
- División de Inmunología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis CP5700, Argentina; (B.L.J.); (R.J.E.); (J.E.S.); (M.S.D.G.)
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Luis C5700, Argentina
| | - Gabriel Adrián Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME-CONICET), Buenos Aires C1428ADN, Argentina; (J.M.P.S.); (G.A.R.)
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428, Argentina
| | - Roberto Carlos Davicino
- División de Inmunología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis CP5700, Argentina; (B.L.J.); (R.J.E.); (J.E.S.); (M.S.D.G.)
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Luis C5700, Argentina
- Roberto Davicino, División de Inmunología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejercito de los Andes 950, San Luis CP5700, Argentina
| |
Collapse
|
29
|
Lammers M. Post-translational Lysine Ac(et)ylation in Bacteria: A Biochemical, Structural, and Synthetic Biological Perspective. Front Microbiol 2021; 12:757179. [PMID: 34721364 PMCID: PMC8556138 DOI: 10.3389/fmicb.2021.757179] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/10/2021] [Indexed: 12/21/2022] Open
Abstract
Ac(et)ylation is a post-translational modification present in all domains of life. First identified in mammals in histones to regulate RNA synthesis, today it is known that is regulates fundamental cellular processes also in bacteria: transcription, translation, metabolism, cell motility. Ac(et)ylation can occur at the ε-amino group of lysine side chains or at the α-amino group of a protein. Furthermore small molecules such as polyamines and antibiotics can be acetylated and deacetylated enzymatically at amino groups. While much research focused on N-(ε)-ac(et)ylation of lysine side chains, much less is known about the occurrence, the regulation and the physiological roles on N-(α)-ac(et)ylation of protein amino termini in bacteria. Lysine ac(et)ylation was shown to affect protein function by various mechanisms ranging from quenching of the positive charge, increasing the lysine side chains’ size affecting the protein surface complementarity, increasing the hydrophobicity and by interfering with other post-translational modifications. While N-(ε)-lysine ac(et)ylation was shown to be reversible, dynamically regulated by lysine acetyltransferases and lysine deacetylases, for N-(α)-ac(et)ylation only N-terminal acetyltransferases were identified and so far no deacetylases were discovered neither in bacteria nor in mammals. To this end, N-terminal ac(et)ylation is regarded as being irreversible. Besides enzymatic ac(et)ylation, recent data showed that ac(et)ylation of lysine side chains and of the proteins N-termini can also occur non-enzymatically by the high-energy molecules acetyl-coenzyme A and acetyl-phosphate. Acetyl-phosphate is supposed to be the key molecule that drives non-enzymatic ac(et)ylation in bacteria. Non-enzymatic ac(et)ylation can occur site-specifically with both, the protein primary sequence and the three dimensional structure affecting its efficiency. Ac(et)ylation is tightly controlled by the cellular metabolic state as acetyltransferases use ac(et)yl-CoA as donor molecule for the ac(et)ylation and sirtuin deacetylases use NAD+ as co-substrate for the deac(et)ylation. Moreover, the accumulation of ac(et)yl-CoA and acetyl-phosphate is dependent on the cellular metabolic state. This constitutes a feedback control mechanism as activities of many metabolic enzymes were shown to be regulated by lysine ac(et)ylation. Our knowledge on lysine ac(et)ylation significantly increased in the last decade predominantly due to the huge methodological advances that were made in fields such as mass-spectrometry, structural biology and synthetic biology. This also includes the identification of additional acylations occurring on lysine side chains with supposedly different regulatory potential. This review highlights recent advances in the research field. Our knowledge on enzymatic regulation of lysine ac(et)ylation will be summarized with a special focus on structural and mechanistic characterization of the enzymes, the mechanisms underlying non-enzymatic/chemical ac(et)ylation are explained, recent technological progress in the field are presented and selected examples highlighting the important physiological roles of lysine ac(et)ylation are summarized.
Collapse
Affiliation(s)
- Michael Lammers
- Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Greifswald, Germany
| |
Collapse
|
30
|
Neumann-Staubitz P, Lammers M, Neumann H. Genetic Code Expansion Tools to Study Lysine Acylation. Adv Biol (Weinh) 2021; 5:e2100926. [PMID: 34713630 DOI: 10.1002/adbi.202100926] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 12/17/2022]
Abstract
Lysine acylation is a ubiquitous protein modification that controls various aspects of protein function, such as the activity, localization, and stability of enzymes. Mass spectrometric identification of lysine acylations has witnessed tremendous improvements in sensitivity over the last decade, facilitating the discovery of thousands of lysine acylation sites in proteins involved in all essential cellular functions across organisms of all domains of life. However, the vast majority of currently known acylation sites are of unknown function. Semi-synthetic methods for installing lysine derivatives are ideally suited for in vitro experiments, while genetic code expansion (GCE) allows the installation and study of such lysine modifications, especially their dynamic properties, in vivo. An overview of the current state of the art is provided, and its potential is illustrated with case studies from recent literature. These include the application of engineered enzymes and GCE to install lysine modifications or photoactivatable crosslinker amino acids. Their use in the context of central metabolism, bacterial and viral pathogenicity, the cytoskeleton and chromatin dynamics, is investigated.
Collapse
Affiliation(s)
- Petra Neumann-Staubitz
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Stephanstrasse 7, 64295, Darmstadt, Germany
| | - Michael Lammers
- Institute for Biochemistry, Department Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Heinz Neumann
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Stephanstrasse 7, 64295, Darmstadt, Germany
| |
Collapse
|
31
|
Xia Y, Zou R, Escouboué M, Zhong L, Zhu C, Pouzet C, Wu X, Wang Y, Lv G, Zhou H, Sun P, Ding K, Deslandes L, Yuan S, Zhang ZM. Secondary-structure switch regulates the substrate binding of a YopJ family acetyltransferase. Nat Commun 2021; 12:5969. [PMID: 34645811 PMCID: PMC8514532 DOI: 10.1038/s41467-021-26183-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 09/21/2021] [Indexed: 11/11/2022] Open
Abstract
The Yersinia outer protein J (YopJ) family effectors are widely deployed through the type III secretion system by both plant and animal pathogens. As non-canonical acetyltransferases, the enzymatic activities of YopJ family effectors are allosterically activated by the eukaryote-specific ligand inositol hexaphosphate (InsP6). However, the underpinning molecular mechanism remains undefined. Here we present the crystal structure of apo-PopP2, a YopJ family member secreted by the plant pathogen Ralstonia solanacearum. Structural comparison of apo-PopP2 with the InsP6-bound PopP2 reveals a substantial conformational readjustment centered in the substrate-binding site. Combining biochemical and computational analyses, we further identify a mechanism by which the association of InsP6 with PopP2 induces an α-helix-to-β-strand transition in the catalytic core, resulting in stabilization of the substrate recognition helix in the target protein binding site. Together, our study uncovers the molecular basis governing InsP6-mediated allosteric regulation of YopJ family acetyltransferases and further expands the paradigm of fold-switching proteins.
Collapse
Affiliation(s)
- Yao Xia
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 510632, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, 510632, Guangzhou, China
| | - Rongfeng Zou
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518005, Shenzhen, China
| | - Maxime Escouboué
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), INRAE, CNRS, Université de Toulouse, 31326, Castanet-Tolosan, France
| | - Liang Zhong
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 510632, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, 510632, Guangzhou, China
| | - Chengjun Zhu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 510632, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, 510632, Guangzhou, China
| | - Cécile Pouzet
- FRAIB-TRI Imaging Platform Facilities, FR AIB, Université de Toulouse, CNRS, 31320, Castanet-Tolosan, France
| | - Xueqiang Wu
- Institute for Pharmaceutical Analysis, College of Pharmacy, Jinan University, 510632, Guangzhou, China
| | - Yongjin Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 510632, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, 510632, Guangzhou, China
| | - Guohua Lv
- Division of Histology & Embryology, Medical College, Jinan University, 510632, Guangzhou, China
| | - Haibo Zhou
- Institute for Pharmaceutical Analysis, College of Pharmacy, Jinan University, 510632, Guangzhou, China
| | - Pinghua Sun
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 510632, Guangzhou, China.
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, 510632, Guangzhou, China.
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 510632, Guangzhou, China.
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, 510632, Guangzhou, China.
| | - Laurent Deslandes
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), INRAE, CNRS, Université de Toulouse, 31326, Castanet-Tolosan, France.
| | - Shuguang Yuan
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518005, Shenzhen, China.
| | - Zhi-Min Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 510632, Guangzhou, China.
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, 510632, Guangzhou, China.
| |
Collapse
|
32
|
Rufián JS, Rueda-Blanco J, López-Márquez D, Macho AP, Beuzón CR, Ruiz-Albert J. The bacterial effector HopZ1a acetylates MKK7 to suppress plant immunity. THE NEW PHYTOLOGIST 2021; 231:1138-1156. [PMID: 33960430 DOI: 10.1111/nph.17442] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
The Pseudomonas syringae type III secretion system translocates effector proteins into the host cell cytosol to suppress plant basal immunity. Effector HopZ1a suppresses local and systemic immunity triggered by pathogen-associated molecular patterns (PAMPs) and effectors, through target acetylation. HopZ1a has been shown to target several plant proteins, but none fully substantiates HopZ1a-associated immune suppression. Here, we investigate Arabidopsis thaliana mitogen-activated protein kinase kinases (MKKs) as potential targets, focusing on AtMKK7, a positive regulator of local and systemic immunity. We analyse HopZ1a interference with AtMKK7 by translocation of HopZ1a from bacteria inoculated into Arabidopsis expressing MKK7 from an inducible promoter. Reciprocal phenotypes are analysed on plants expressing a construct quenching MKK7 native expression. We analyse HopZ1a-MKK7 interaction by three independent methods, and the relevance of acetylation by in vitro kinase and in planta functional assays. We demonstrate the AtMKK7 contribution to immune signalling showing MKK7-dependent flg22-induced reactive oxygen species (ROS) burst, MAP kinas (MAPK) activation and callose deposition, plus AvrRpt2-triggered MKK7-dependent signalling. Furthermore, we demonstrate HopZ1a suppression of all MKK7-dependent responses, HopZ1a-MKK7 interaction in planta and HopZ1a acetylation of MKK7 with a lysine required for full kinase activity. We demonstrate that HopZ1a targets AtMKK7 to suppress local and systemic plant immunity.
Collapse
Affiliation(s)
- José S Rufián
- Departamento Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Campus de Teatinos, Málaga, E-29071, Spain
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Javier Rueda-Blanco
- Departamento Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Campus de Teatinos, Málaga, E-29071, Spain
| | - Diego López-Márquez
- Departamento Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Campus de Teatinos, Málaga, E-29071, Spain
| | - Alberto P Macho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Carmen R Beuzón
- Departamento Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Campus de Teatinos, Málaga, E-29071, Spain
| | - Javier Ruiz-Albert
- Departamento Biología Celular, Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Campus de Teatinos, Málaga, E-29071, Spain
| |
Collapse
|
33
|
Karelia DN, Kim S, K. Pandey M, Plano D, Amin S, Lu J, Sharma AK. Novel Seleno-Aspirinyl Compound AS-10 Induces Apoptosis, G1 Arrest of Pancreatic Ductal Adenocarcinoma Cells, Inhibits Their NF-κB Signaling, and Synergizes with Gemcitabine Cytotoxicity. Int J Mol Sci 2021; 22:4966. [PMID: 34067020 PMCID: PMC8124556 DOI: 10.3390/ijms22094966] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 02/06/2023] Open
Abstract
Current available therapies for pancreatic ductal adenocarcinoma (PDAC) provide minimal overall survival benefits and cause severe adverse effects. We have identified a novel molecule AS-10, a selenazolidine-bis-aspirinyl derivative, that was two to three orders of magnitude more potent than aspirin and at least one to two orders of magnitude more potent than gemcitabine in inhibiting PDAC cancer cell growth/viability against three PDAC cell lines while sparing mouse embryonic fibroblasts in the same exposure range. In Panc-1 cells, AS-10 induced apoptosis without necrosis, principally through caspase-3/7 cascade and reactive oxygen species, in addition to an induction of G1 cell cycle block. Transcriptomic profiling with RNA-seq indicated the top responses to AS-10 exposure as CDKN1A (P21Cip1), CCND1, and nuclear transcription factor-kappa B (NF-κB) complex and the top functions as cell cycle, cell death, and survival without inducing the DNA damage gene signature. AS-10 pretreatment (6 h) decreased cytokine tumor necrosis factor-alpha (TNF-α)-stimulated NF-κB nuclear translocation, DNA binding activity, and degradation of cytosolic inhibitor of κB (IκB) protein. As NF-κB activation in PDAC cells confers resistance to gemcitabine, the AS-10 combination with gemcitabine increased the in vitro cytotoxicity more than the additivity of both compounds. Overall, our results suggest AS-10 may be a promising drug lead for PDAC, both as a single agent and in combination therapy.
Collapse
Affiliation(s)
- Deepkamal N. Karelia
- Department of Pharmacology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA; (D.N.K.); (S.K.); (M.K.P.); (D.P.); (S.A.)
| | - Sangyub Kim
- Department of Pharmacology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA; (D.N.K.); (S.K.); (M.K.P.); (D.P.); (S.A.)
| | - Manoj K. Pandey
- Department of Pharmacology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA; (D.N.K.); (S.K.); (M.K.P.); (D.P.); (S.A.)
| | - Daniel Plano
- Department of Pharmacology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA; (D.N.K.); (S.K.); (M.K.P.); (D.P.); (S.A.)
| | - Shantu Amin
- Department of Pharmacology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA; (D.N.K.); (S.K.); (M.K.P.); (D.P.); (S.A.)
- Penn State Cancer Institute, 500 University Drive, Hershey, PA 17033, USA
| | - Junxuan Lu
- Department of Pharmacology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA; (D.N.K.); (S.K.); (M.K.P.); (D.P.); (S.A.)
- Penn State Cancer Institute, 500 University Drive, Hershey, PA 17033, USA
| | - Arun K. Sharma
- Department of Pharmacology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA; (D.N.K.); (S.K.); (M.K.P.); (D.P.); (S.A.)
- Penn State Cancer Institute, 500 University Drive, Hershey, PA 17033, USA
| |
Collapse
|
34
|
Chakraborty J. In-silico structural analysis of Pseudomonas syringae effector HopZ3 reveals ligand binding activity and virulence function. JOURNAL OF PLANT RESEARCH 2021; 134:599-611. [PMID: 33730245 DOI: 10.1007/s10265-021-01274-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Bacterial acetyltransferase effectors belonging to the Yersinia outer protein J (YopJ) group inhibit multiple immune signaling pathways in human and plants. The present study determines in-silico acetyl-coenzyme A (AcCoA) binding and Arabidopsis immune regulator RPM1-interacting protein4 (RIN4) peptide interactions to YopJ effector hypersensitivity and pathogenesis-dependent outer proteinZ3 (HopZ3) from Pseudomonas syringae. Phylogenetic analysis revealed that HopZ3 was clustered by acetyltransferase effectors from plant bacterial pathogens. Structural juxtaposition shows HopZ3 comprises topology matched closer with HopZ1a than PopP2 effectors, respectively. AcCoA binds HopZ3 at two sites i.e., substrate binding pocket and catalytic site. AcCoA interactions to substrate binding pocket was transient and dissipated upon in-silico mutation of Ser 279 residue whereas, attachment to catalytic site was found to be stable in the presence of inositol hexaphosphate (IP6) as a co-factor. Interface atoms used for measuring hydrogen bond distances, bound or accessible surface area, and root-mean-square fluctuation (RMSF) values, suggests that the HopZ3 complex stabilizes after binding to AcCoA ligand and RIN4 peptide. The few non-conserved polymorphic residues that have been displayed on HopZ3 surface presumably confer intracellular recognitions within hosts. Collectively, homology modeling and interactive docking experiments were used to substantiate Arabidopsis immune 'guardee' interactions to HopZ3.
Collapse
|
35
|
Xu YR, Lei CQ. TAK1-TABs Complex: A Central Signalosome in Inflammatory Responses. Front Immunol 2021; 11:608976. [PMID: 33469458 PMCID: PMC7813674 DOI: 10.3389/fimmu.2020.608976] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022] Open
Abstract
Transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1) is a member of the MAPK kinase kinase (MAPKKK) family and has been implicated in the regulation of a wide range of physiological and pathological processes. TAK1 functions through assembling with its binding partners TAK1-binding proteins (TAB1, TAB2, and TAB3) and can be activated by a variety of stimuli such as tumor necrosis factor α (TNFα), interleukin-1β (IL-1β), and toll-like receptor ligands, and they play essential roles in the activation of NF-κB and MAPKs. Numerous studies have demonstrated that post-translational modifications play important roles in properly controlling the activity, stability, and assembly of TAK1-TABs complex according to the indicated cellular environment. This review focuses on the recent advances in TAK1-TABs-mediated signaling and the regulations of TAK1-TABs complex by post-translational modifications.
Collapse
Affiliation(s)
- Yan-Ran Xu
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Cao-Qi Lei
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
36
|
Yu JS, Huang T, Zhang Y, Mao XT, Huang LJ, Li YN, Wu TT, Zhong JY, Cao Q, Li YY, Jin J. Substrate-specific recognition of IKKs mediated by USP16 facilitates autoimmune inflammation. SCIENCE ADVANCES 2021; 7:7/3/eabc4009. [PMID: 33523871 PMCID: PMC7806237 DOI: 10.1126/sciadv.abc4009] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/22/2020] [Indexed: 05/11/2023]
Abstract
The classic NF-κB pathway plays crucial roles in various immune responses and inflammatory diseases. Its key kinase, IKKβ, participates in a variety of pathological and physiological processes by selectively recognizing its downstream substrates, including p105, p65, and IκBα, but the specific mechanisms of these substrates are unclear. Hyperactivation of one of the substrates, p105, is closely related to the onset of inflammatory bowel disease (IBD) in Nfkb1-deficient mice. In this study, we found that IKKβ ubiquitination on lysine-238 was substantially increased during inflammation. Using mass spectrometry, we identified USP16 as an essential regulator of the IKKβ ubiquitination level that selectively affected p105 phosphorylation without directly affecting p65 or IκBα phosphorylation. Furthermore, USP16 was highly expressed in colon macrophages in patients with IBD, and myeloid-conditional USP16-knockout mice exhibited reduced IBD severity. Our study provides a new theoretical basis for IBD pathogenesis and targeted precision intervention therapy.
Collapse
Affiliation(s)
- Jian-Shuai Yu
- MOE Laboratory of Biosystem Homeostasis and Protection and Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Tao Huang
- MOE Laboratory of Biosystem Homeostasis and Protection and Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yu Zhang
- Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Xin-Tao Mao
- MOE Laboratory of Biosystem Homeostasis and Protection and Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Ling-Jie Huang
- Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Yi-Ning Li
- MOE Laboratory of Biosystem Homeostasis and Protection and Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Ting-Ting Wu
- Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Jiang-Yan Zhong
- MOE Laboratory of Biosystem Homeostasis and Protection and Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Qian Cao
- Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Yi-Yuan Li
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China.
| | - Jin Jin
- MOE Laboratory of Biosystem Homeostasis and Protection and Life Sciences Institute, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
37
|
Chen X, Su L, Yang Y, Qv J, Wei T, Cui X, Shao J, Liu S, Xu Z, Zhao B, Miao J. A new activator of esterase D decreases blood cholesterol level through ESD/JAB1/ABCA1 pathway. J Cell Physiol 2020; 236:4750-4763. [PMID: 33615471 DOI: 10.1002/jcp.30196] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/27/2020] [Accepted: 11/23/2020] [Indexed: 12/31/2022]
Abstract
Excessively high cholesterol content in the blood leads to nonalcohol fatty liver disease (NAFLD) and arteriosclerosis. Although there are increasing publications and patent applications to lower blood cholesterol with small chemical molecules, limited effective drugs can be available in clinic. It is necessary to uncover new targets and drugs to alleviate high cholesterol. Esterase D (ESD) is abundant in liver and it remains unknown about its role in cholesterol metabolism. Here we reported that small chemical molecule fluorescigenic pyrazoline derivative 5 (FPD5), a new ESD activator, could effectively reverse high blood cholesterol level and prevent fatty liver and arteriosclerosis in apoE-/- mice fed the high-fat diet. We also observed that FPD5 could reduce oxidized low density lipoprotein (oxLDL)-induced formation of foam cells. To further investigate the mechanism of FPD5 action on blood cholesterol modulation, we found that ESD trigged by FPD5 was aggregated in lysosome and interacted with Jun activation domain binding protein 1 (JAB1). ESD served as a deacetylase to remove Thr89 acetylation of JAB1 and increased its activity; thus, promoting the ATP-binding cassette transporters A1 (ABCA1) to accelerate cholesterol efflux. Our findings demonstrate that FPD5 decreases blood cholesterol level to ameliorate NAFLD and arteriosclerosis through ESD/JAB1/ABCA1 pathway, and ESD functions as a novel nonclassical deacetylase that hydrolyzes serine/threonine acetyl group. Our findings not only highlight that FPD5 may be a pioneer drug for alleviating blood cholesterol but also indicate that ESD is a potential drug target that promotes cholesterol metabolism.
Collapse
Affiliation(s)
- Xinpeng Chen
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, P.R. China.,Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, National Demonstration Center for Experimental Biology Education, School of Life Science, Hubei Normal University, Huangshi, P.R. China
| | - Le Su
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, P.R. China.,State Key Laboratory of Biobased Material and Green Papermaking, School of bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, P.R. China
| | - Yuejun Yang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, P.R. China
| | - Jingyao Qv
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P.R. China
| | - Tiandi Wei
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P.R. China
| | - Xiaoling Cui
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, P.R. China
| | - Jing Shao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, P.R. China
| | - Shuyan Liu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, P.R. China
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, P.R. China
| | - Baoxiang Zhao
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, P.R. China
| | - Junying Miao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, P.R. China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, P.R. China
| |
Collapse
|
38
|
Bacterial virulence mediated by orthogonal post-translational modification. Nat Chem Biol 2020; 16:1043-1051. [PMID: 32943788 DOI: 10.1038/s41589-020-0638-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 07/30/2020] [Indexed: 12/28/2022]
Abstract
Many bacterial pathogens secrete virulence factors, also known as effector proteins, directly into host cells. These effectors suppress pro-inflammatory host signaling while promoting bacterial infection. A particularly interesting subset of effectors post-translationally modify host proteins using novel chemistry that is not otherwise found in the mammalian proteome, which we refer to as 'orthogonal post-translational modification' (oPTM). In this Review, we profile oPTM chemistry for effectors that catalyze serine/threonine acetylation, phosphate β-elimination, phosphoribosyl-linked ubiquitination, glutamine deamidation, phosphocholination, cysteine methylation, arginine N-acetylglucosaminylation, and glutamine ADP-ribosylation on host proteins. AMPylation, a PTM that could be considered orthogonal until only recently, is also discussed. We further highlight known cellular targets of oPTMs and their resulting biological consequences. Developing a complete understanding of oPTMs and the host cell processes they hijack will illuminate critical steps in the infection process, which can be harnessed for a variety of therapeutic, diagnostic, and synthetic applications.
Collapse
|
39
|
Schubert KA, Xu Y, Shao F, Auerbuch V. The Yersinia Type III Secretion System as a Tool for Studying Cytosolic Innate Immune Surveillance. Annu Rev Microbiol 2020; 74:221-245. [PMID: 32660389 DOI: 10.1146/annurev-micro-020518-120221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microbial pathogens have evolved complex mechanisms to interface with host cells in order to evade host defenses and replicate. However, mammalian innate immune receptors detect the presence of molecules unique to the microbial world or sense the activity of virulence factors, activating antimicrobial and inflammatory pathways. We focus on how studies of the major virulence factor of one group of microbial pathogens, the type III secretion system (T3SS) of human pathogenic Yersinia, have shed light on these important innate immune responses. Yersinia are largely extracellular pathogens, yet they insert T3SS cargo into target host cells that modulate the activity of cytosolic innate immune receptors. This review covers both the host pathways that detect the Yersinia T3SS and the effector proteins used by Yersinia to manipulate innate immune signaling.
Collapse
Affiliation(s)
- Katherine Andrea Schubert
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California 95064, USA;
| | - Yue Xu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Feng Shao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Victoria Auerbuch
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California 95064, USA;
| |
Collapse
|
40
|
Asare Y, Campbell-James TA, Bokov Y, Yu LL, Prestel M, El Bounkari O, Roth S, Megens RTA, Straub T, Thomas K, Yan G, Schneider M, Ziesch N, Tiedt S, Silvestre-Roig C, Braster Q, Huang Y, Schneider M, Malik R, Haffner C, Liesz A, Soehnlein O, Bernhagen J, Dichgans M. Histone Deacetylase 9 Activates IKK to Regulate Atherosclerotic Plaque Vulnerability. Circ Res 2020; 127:811-823. [PMID: 32546048 DOI: 10.1161/circresaha.120.316743] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
RATIONALE Arterial inflammation manifested as atherosclerosis is the leading cause of mortality worldwide. Genome-wide association studies have identified a prominent role of HDAC (histone deacetylase)-9 in atherosclerosis and its clinical complications including stroke and myocardial infarction. OBJECTIVE To determine the mechanisms linking HDAC9 to these vascular pathologies and explore its therapeutic potential for atheroprotection. METHODS AND RESULTS We studied the effects of Hdac9 on features of plaque vulnerability using bone marrow reconstitution experiments and pharmacological targeting with a small molecule inhibitor in hyperlipidemic mice. We further used 2-photon and intravital microscopy to study endothelial activation and leukocyte-endothelial interactions. We show that hematopoietic Hdac9 deficiency reduces lesional macrophage content while increasing fibrous cap thickness thus conferring plaque stability. We demonstrate that HDAC9 binds to IKK (inhibitory kappa B kinase)-α and β, resulting in their deacetylation and subsequent activation, which drives inflammatory responses in both macrophages and endothelial cells. Pharmacological inhibition of HDAC9 with the class IIa HDAC inhibitor TMP195 attenuates lesion formation by reducing endothelial activation and leukocyte recruitment along with limiting proinflammatory responses in macrophages. Transcriptional profiling using RNA sequencing revealed that TMP195 downregulates key inflammatory pathways consistent with inhibitory effects on IKKβ. TMP195 mitigates the progression of established lesions and inhibits the infiltration of inflammatory cells. Moreover, TMP195 diminishes features of plaque vulnerability and thereby enhances plaque stability in advanced lesions. Ex vivo treatment of monocytes from patients with established atherosclerosis reduced the production of inflammatory cytokines including IL (interleukin)-1β and IL-6. CONCLUSIONS Our findings identify HDAC9 as a regulator of atherosclerotic plaque stability and IKK activation thus providing a mechanistic explanation for the prominence of HDAC9 as a vascular risk locus in genome-wide association studies. Its therapeutic inhibition may provide a potent lever to alleviate vascular inflammation. Graphical Abstract: A graphical abstract is available for this article.
Collapse
Affiliation(s)
- Yaw Asare
- From the Institute for Stroke and Dementia Research, University Hospital (Y.A., T.A.C.-J., Y.B., L.L.Y., M.P., O.E.B., S.R., K.T., G.Y., M.S., N.Z., S.T., Y.H., M.S., R.M., C.H., A.L., J.B., M.D.), Ludwig-Maximilians-University, Munich, Germany
| | - Thomas A Campbell-James
- From the Institute for Stroke and Dementia Research, University Hospital (Y.A., T.A.C.-J., Y.B., L.L.Y., M.P., O.E.B., S.R., K.T., G.Y., M.S., N.Z., S.T., Y.H., M.S., R.M., C.H., A.L., J.B., M.D.), Ludwig-Maximilians-University, Munich, Germany
| | - Yury Bokov
- From the Institute for Stroke and Dementia Research, University Hospital (Y.A., T.A.C.-J., Y.B., L.L.Y., M.P., O.E.B., S.R., K.T., G.Y., M.S., N.Z., S.T., Y.H., M.S., R.M., C.H., A.L., J.B., M.D.), Ludwig-Maximilians-University, Munich, Germany
| | - Lydia Luya Yu
- From the Institute for Stroke and Dementia Research, University Hospital (Y.A., T.A.C.-J., Y.B., L.L.Y., M.P., O.E.B., S.R., K.T., G.Y., M.S., N.Z., S.T., Y.H., M.S., R.M., C.H., A.L., J.B., M.D.), Ludwig-Maximilians-University, Munich, Germany
| | - Matthias Prestel
- From the Institute for Stroke and Dementia Research, University Hospital (Y.A., T.A.C.-J., Y.B., L.L.Y., M.P., O.E.B., S.R., K.T., G.Y., M.S., N.Z., S.T., Y.H., M.S., R.M., C.H., A.L., J.B., M.D.), Ludwig-Maximilians-University, Munich, Germany
| | - Omar El Bounkari
- From the Institute for Stroke and Dementia Research, University Hospital (Y.A., T.A.C.-J., Y.B., L.L.Y., M.P., O.E.B., S.R., K.T., G.Y., M.S., N.Z., S.T., Y.H., M.S., R.M., C.H., A.L., J.B., M.D.), Ludwig-Maximilians-University, Munich, Germany
| | - Stefan Roth
- From the Institute for Stroke and Dementia Research, University Hospital (Y.A., T.A.C.-J., Y.B., L.L.Y., M.P., O.E.B., S.R., K.T., G.Y., M.S., N.Z., S.T., Y.H., M.S., R.M., C.H., A.L., J.B., M.D.), Ludwig-Maximilians-University, Munich, Germany
| | - Remco T A Megens
- Institute for Cardiovascular Prevention (R.T.A.M., C.S.-R., Q.B., O.S.), Ludwig-Maximilians-University, Munich, Germany.,Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands (R.T.A.M.)
| | - Tobias Straub
- BMC, Core Facility Bioinformatics Munich, Germany (T.S.)
| | - Kyra Thomas
- From the Institute for Stroke and Dementia Research, University Hospital (Y.A., T.A.C.-J., Y.B., L.L.Y., M.P., O.E.B., S.R., K.T., G.Y., M.S., N.Z., S.T., Y.H., M.S., R.M., C.H., A.L., J.B., M.D.), Ludwig-Maximilians-University, Munich, Germany
| | - Guangyao Yan
- From the Institute for Stroke and Dementia Research, University Hospital (Y.A., T.A.C.-J., Y.B., L.L.Y., M.P., O.E.B., S.R., K.T., G.Y., M.S., N.Z., S.T., Y.H., M.S., R.M., C.H., A.L., J.B., M.D.), Ludwig-Maximilians-University, Munich, Germany
| | - Melanie Schneider
- From the Institute for Stroke and Dementia Research, University Hospital (Y.A., T.A.C.-J., Y.B., L.L.Y., M.P., O.E.B., S.R., K.T., G.Y., M.S., N.Z., S.T., Y.H., M.S., R.M., C.H., A.L., J.B., M.D.), Ludwig-Maximilians-University, Munich, Germany
| | - Natalie Ziesch
- From the Institute for Stroke and Dementia Research, University Hospital (Y.A., T.A.C.-J., Y.B., L.L.Y., M.P., O.E.B., S.R., K.T., G.Y., M.S., N.Z., S.T., Y.H., M.S., R.M., C.H., A.L., J.B., M.D.), Ludwig-Maximilians-University, Munich, Germany
| | - Steffen Tiedt
- From the Institute for Stroke and Dementia Research, University Hospital (Y.A., T.A.C.-J., Y.B., L.L.Y., M.P., O.E.B., S.R., K.T., G.Y., M.S., N.Z., S.T., Y.H., M.S., R.M., C.H., A.L., J.B., M.D.), Ludwig-Maximilians-University, Munich, Germany
| | - Carlos Silvestre-Roig
- Institute for Cardiovascular Prevention (R.T.A.M., C.S.-R., Q.B., O.S.), Ludwig-Maximilians-University, Munich, Germany
| | - Quinte Braster
- Institute for Cardiovascular Prevention (R.T.A.M., C.S.-R., Q.B., O.S.), Ludwig-Maximilians-University, Munich, Germany
| | - Yishu Huang
- From the Institute for Stroke and Dementia Research, University Hospital (Y.A., T.A.C.-J., Y.B., L.L.Y., M.P., O.E.B., S.R., K.T., G.Y., M.S., N.Z., S.T., Y.H., M.S., R.M., C.H., A.L., J.B., M.D.), Ludwig-Maximilians-University, Munich, Germany
| | - Manuela Schneider
- From the Institute for Stroke and Dementia Research, University Hospital (Y.A., T.A.C.-J., Y.B., L.L.Y., M.P., O.E.B., S.R., K.T., G.Y., M.S., N.Z., S.T., Y.H., M.S., R.M., C.H., A.L., J.B., M.D.), Ludwig-Maximilians-University, Munich, Germany
| | - Rainer Malik
- From the Institute for Stroke and Dementia Research, University Hospital (Y.A., T.A.C.-J., Y.B., L.L.Y., M.P., O.E.B., S.R., K.T., G.Y., M.S., N.Z., S.T., Y.H., M.S., R.M., C.H., A.L., J.B., M.D.), Ludwig-Maximilians-University, Munich, Germany
| | - Christof Haffner
- From the Institute for Stroke and Dementia Research, University Hospital (Y.A., T.A.C.-J., Y.B., L.L.Y., M.P., O.E.B., S.R., K.T., G.Y., M.S., N.Z., S.T., Y.H., M.S., R.M., C.H., A.L., J.B., M.D.), Ludwig-Maximilians-University, Munich, Germany
| | - Arthur Liesz
- From the Institute for Stroke and Dementia Research, University Hospital (Y.A., T.A.C.-J., Y.B., L.L.Y., M.P., O.E.B., S.R., K.T., G.Y., M.S., N.Z., S.T., Y.H., M.S., R.M., C.H., A.L., J.B., M.D.), Ludwig-Maximilians-University, Munich, Germany.,Munich Cluster for Systems Neurology, Germany (A.L., J.B., M.D.)
| | - Oliver Soehnlein
- Institute for Cardiovascular Prevention (R.T.A.M., C.S.-R., Q.B., O.S.), Ludwig-Maximilians-University, Munich, Germany.,German Center for Cardiovascular Research, Partner Site Munich Heart Alliance (O.S., J.B.).,Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden (O.S.)
| | - Jürgen Bernhagen
- From the Institute for Stroke and Dementia Research, University Hospital (Y.A., T.A.C.-J., Y.B., L.L.Y., M.P., O.E.B., S.R., K.T., G.Y., M.S., N.Z., S.T., Y.H., M.S., R.M., C.H., A.L., J.B., M.D.), Ludwig-Maximilians-University, Munich, Germany.,Munich Cluster for Systems Neurology, Germany (A.L., J.B., M.D.).,German Center for Cardiovascular Research, Partner Site Munich Heart Alliance (O.S., J.B.)
| | - Martin Dichgans
- From the Institute for Stroke and Dementia Research, University Hospital (Y.A., T.A.C.-J., Y.B., L.L.Y., M.P., O.E.B., S.R., K.T., G.Y., M.S., N.Z., S.T., Y.H., M.S., R.M., C.H., A.L., J.B., M.D.), Ludwig-Maximilians-University, Munich, Germany.,Munich Cluster for Systems Neurology, Germany (A.L., J.B., M.D.)
| |
Collapse
|
41
|
Guo H, Ahn HK, Sklenar J, Huang J, Ma Y, Ding P, Menke FLH, Jones JDG. Phosphorylation-Regulated Activation of the Arabidopsis RRS1-R/RPS4 Immune Receptor Complex Reveals Two Distinct Effector Recognition Mechanisms. Cell Host Microbe 2020; 27:769-781.e6. [PMID: 32234500 DOI: 10.1016/j.chom.2020.03.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/20/2019] [Accepted: 03/12/2020] [Indexed: 12/26/2022]
Abstract
The Arabidopsis immune receptors RPS4 and RRS1 interact to co-confer responsiveness to bacterial effectors. The RRS1-R allele, with RPS4, responds to AvrRps4 and PopP2, whereas RRS1-S responds only to AvrRps4. Here, we show that the C terminus of RRS1-R but not RRS1-S is phosphorylated. Phosphorylation at Thr1214 in the WRKY domain maintains RRS1-R in its inactive state and also inhibits acetylation of RRS1-R by PopP2. PopP2 in turn catalyzes O-acetylation at the same site, thereby preventing its phosphorylation. Phosphorylation at other sites is required for PopP2 but not AvrRps4 responsiveness and facilitates the interaction of RRS1's C terminus with its TIR domain. Derepression of RRS1-R or RRS1-S involves effector-triggered proximity between their TIR domain and C termini. This effector-promoted interaction between these domains relieves inhibition of TIRRPS4 by TIRRRS1. Our data reveal effector-triggered and phosphorylation-regulated conformational changes within RRS1 that results in distinct modes of derepression of the complex by PopP2 and AvrRps4.
Collapse
Affiliation(s)
- Hailong Guo
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Hee-Kyung Ahn
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jan Sklenar
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jianhua Huang
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Yan Ma
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Pingtao Ding
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Frank L H Menke
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jonathan D G Jones
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
42
|
Gur-Arie L, Eitan-Wexler M, Weinberger N, Rosenshine I, Livnah O. The bacterial metalloprotease NleD selectively cleaves mitogen-activated protein kinases that have high flexibility in their activation loop. J Biol Chem 2020; 295:9409-9420. [PMID: 32404367 DOI: 10.1074/jbc.ra120.013590] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/07/2020] [Indexed: 01/07/2023] Open
Abstract
Microbial pathogens often target the host mitogen-activated protein kinase (MAPK) network to suppress host immune responses. We previously identified a bacterial type III secretion system effector, termed NleD, a metalloprotease that inactivates MAPKs by specifically cleaving their activation loop. Here, we show that NleDs form a growing family of virulence factors harbored by human and plant pathogens as well as insect symbionts. These NleDs disable specifically Jun N-terminal kinases (JNKs) and p38s that are required for host immune response, whereas extracellular signal-regulated kinase (ERK), which is essential for host cell viability, remains intact. We investigated the mechanism that makes ERK resistant to NleD cleavage. Biochemical and structural analyses revealed that NleD exclusively targets activation loops with high conformational flexibility. Accordingly, NleD cleaved the flexible loops of JNK and p38 but not the rigid loop of ERK. Our findings elucidate a compelling mechanism of native substrate proteolysis that is promoted by entropy-driven specificity. We propose that such entropy-based selectivity is a general attribute of proteolytic enzymes.
Collapse
Affiliation(s)
- Lihi Gur-Arie
- Department Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maayan Eitan-Wexler
- Department of Biological Chemistry, Alexander Silverman Institute of Life Sciences, The Wolfson Centre for Applied Structural Biology, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nina Weinberger
- Department of Biological Chemistry, Alexander Silverman Institute of Life Sciences, The Wolfson Centre for Applied Structural Biology, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ilan Rosenshine
- Department Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Oded Livnah
- Department of Biological Chemistry, Alexander Silverman Institute of Life Sciences, The Wolfson Centre for Applied Structural Biology, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
43
|
Berglund J, Gjondrekaj R, Verney E, Maupin-Furlow JA, Edelmann MJ. Modification of the host ubiquitome by bacterial enzymes. Microbiol Res 2020; 235:126429. [PMID: 32109687 PMCID: PMC7369425 DOI: 10.1016/j.micres.2020.126429] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/03/2020] [Accepted: 02/09/2020] [Indexed: 12/14/2022]
Abstract
Attachment of ubiquitin molecules to protein substrates is a reversible post-translational modification (PTM), which occurs ubiquitously in eukaryotic cells and controls most cellular processes. As a consequence, ubiquitination is an attractive target of pathogen-encoded virulence factors. Pathogenic bacteria have evolved multiple mechanisms to hijack the host's ubiquitin system to their advantage. In this review, we discuss the bacteria-encoded E3 ligases and deubiquitinases translocated to the host for an addition or removal of eukaryotic ubiquitin modification, effectively hijacking the host's ubiquitination processes. We review bacterial enzymes homologous to host proteins in sequence and functions, as well as enzymes with novel mechanisms in ubiquitination, which have significant structural differences in comparison to the mammalian E3 ligases. Finally, we will also discuss examples of molecular "counter-weapons" - eukaryotic proteins, which counteract pathogen-encoded E3 ligases. The many examples of the pathogen effector molecules that catalyze eukaryotic ubiquitin modification bring to light the intricate pathways involved in the pathogenesis of some of the most virulent bacterial infections with human pathogens. The role of these effector molecules remains an essential determinant of bacterial virulence in terms of infection, invasion, and replication. A comprehensive understanding of the mechanisms dictating the mimicry employed by bacterial pathogens is of vital importance in developing new strategies for therapeutic approaches.
Collapse
Affiliation(s)
- Jennifer Berglund
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, 1355 Museum Drive, Gainesville, 32611-0700, FL USA
| | - Rafaela Gjondrekaj
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, 1355 Museum Drive, Gainesville, 32611-0700, FL USA
| | - Ellen Verney
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, 1355 Museum Drive, Gainesville, 32611-0700, FL USA
| | - Julie A Maupin-Furlow
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, 1355 Museum Drive, Gainesville, 32611-0700, FL USA
| | - Mariola J Edelmann
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, 1355 Museum Drive, Gainesville, 32611-0700, FL USA.
| |
Collapse
|
44
|
Krukonis ES, Thomson JJ. Complement evasion mechanisms of the systemic pathogens Yersiniae and Salmonellae. FEBS Lett 2020; 594:2598-2620. [DOI: 10.1002/1873-3468.13771] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 01/12/2023]
Affiliation(s)
- Eric S. Krukonis
- Division of Integrated Biomedical Sciences University of Detroit Mercy School of Dentistry Detroit MI USA
| | - Joshua J. Thomson
- Division of Integrated Biomedical Sciences University of Detroit Mercy School of Dentistry Detroit MI USA
| |
Collapse
|
45
|
To catch a thief: regulated RIPK1 post-translational modifications as a fail-safe system to detect and overcome pathogen subversion of immune signaling. Curr Opin Microbiol 2020; 54:111-118. [PMID: 32092691 DOI: 10.1016/j.mib.2020.01.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/29/2022]
Abstract
Any pathogen worth its salt has mechanisms to evade, subvert, or antagonize host innate immune responses induced by pattern recognition receptors. Resistance against such pathogens therefore requires alternative means to activate protective immune responses. Intriguingly, the receptors that regulate antimicrobial gene expression are coupled to cell death pathways that are activated by blockade of NF-κB and MAPK signaling. In this review, we discuss the regulation of apoptosis in response to pathogen disruption of immune signaling and the role of this cell death response in protection against such pathogens. Stanley often observed that bacterial pathogens are excellent cell biologists and immunologists, and he noted that studying pathogen-host interactions could pave the way to new insights about host biology. Indeed, how Yersinia and other pathogens disrupt innate immune signaling has provided new insight into these pathways and revealed new ways to think about immunogenic properties of apoptosis during bacterial infection.
Collapse
|
46
|
Redundant and Cooperative Roles for Yersinia pestis Yop Effectors in the Inhibition of Human Neutrophil Exocytic Responses Revealed by Gain-of-Function Approach. Infect Immun 2020; 88:IAI.00909-19. [PMID: 31871100 DOI: 10.1128/iai.00909-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
Yersinia pestis causes a rapid, lethal disease referred to as plague. Y. pestis actively inhibits the innate immune system to generate a noninflammatory environment during early stages of infection to promote colonization. The ability of Y. pestis to create this early noninflammatory environment is in part due to the action of seven Yop effector proteins that are directly injected into host cells via a type 3 secretion system (T3SS). While each Yop effector interacts with specific host proteins to inhibit their function, several Yop effectors either target the same host protein or inhibit converging signaling pathways, leading to functional redundancy. Previous work established that Y. pestis uses the T3SS to inhibit neutrophil respiratory burst, phagocytosis, and release of inflammatory cytokines. Here, we show that Y. pestis also inhibits release of granules in a T3SS-dependent manner. Moreover, using a gain-of-function approach, we discovered previously hidden contributions of YpkA and YopJ to inhibition and that cooperative actions by multiple Yop effectors are required to effectively inhibit degranulation. Independent from degranulation, we also show that multiple Yop effectors can inhibit synthesis of leukotriene B4 (LTB4), a potent lipid mediator released by neutrophils early during infection to promote inflammation. Together, inhibition of these two arms of the neutrophil response likely contributes to the noninflammatory environment needed for Y. pestis colonization and proliferation.
Collapse
|
47
|
Bastedo DP, Khan M, Martel A, Seto D, Kireeva I, Zhang J, Masud W, Millar D, Lee JY, Lee AHY, Gong Y, Santos-Severino A, Guttman DS, Desveaux D. Perturbations of the ZED1 pseudokinase activate plant immunity. PLoS Pathog 2019; 15:e1007900. [PMID: 31269090 PMCID: PMC6634424 DOI: 10.1371/journal.ppat.1007900] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/16/2019] [Accepted: 06/08/2019] [Indexed: 11/19/2022] Open
Abstract
The Pseudomonas syringae acetyltransferase HopZ1a is delivered into host cells by the type III secretion system to promote bacterial growth. However, in the model plant host Arabidopsis thaliana, HopZ1a activity results in an effector-triggered immune response (ETI) that limits bacterial proliferation. HopZ1a-triggered immunity requires the nucleotide-binding, leucine-rich repeat domain (NLR) protein, ZAR1, and the pseudokinase, ZED1. Here we demonstrate that HopZ1a can acetylate members of a family of ‘receptor-like cytoplasmic kinases’ (RLCK family VII; also known as PBS1-like kinases, or PBLs) and promote their interaction with ZED1 and ZAR1 to form a ZAR1-ZED1-PBL ternary complex. Interactions between ZED1 and PBL kinases are determined by the pseudokinase features of ZED1, and mutants designed to restore ZED1 kinase motifs can (1) bind to PBLs, (2) recruit ZAR1, and (3) trigger ZAR1-dependent immunity in planta, all independently of HopZ1a. A ZED1 mutant that mimics acetylation by HopZ1a also triggers immunity in planta, providing evidence that effector-induced perturbations of ZED1 also activate ZAR1. Overall, our results suggest that interactions between these two RLCK families are promoted by perturbations of structural features that distinguish active from inactive kinase domain conformations. We propose that effector-induced interactions between ZED1/ZRK pseudokinases (RLCK family XII) and PBL kinases (RLCK family VII) provide a sensitive mechanism for detecting perturbations of either kinase family to activate ZAR1-mediated ETI. All plants must ward off potentially infectious microbes, and those grown in large-scale crop operations are especially vulnerable to the rapid spread of disease by successful pathogens. Although many bacteria and fungi can supress plant immune responses by producing specialized virulence proteins called ‘effectors’, these effectors can also trigger immune responses that render plants resistant to infection. We studied the molecular mechanisms underlying one such effector-triggered immune response elicited by the bacterial effector HopZ1a in the model plant host Arabidopsis thaliana. We have shown that HopZ1a promotes binding between a ZED1, a ‘pseudokinase’ required for HopZ1a-triggered immunity, and several ‘true kinases’ (known as PBLs) that are likely targets of HopZ1a activity in planta. HopZ1a-induced ZED1-PBL interactions also recruit ZAR1, an Arabidopsis ‘resistance protein’ previously implicated in HopZ1a-triggered immunity. Importantly, ZED1 mutants that restore degenerate kinase motifs can bridge interactions between PBLs and ZAR1 (independently of HopZ1a) and trigger immunity in planta. Our results suggest that equilibria between active and inactive kinase domain conformations regulate ZED1-PBL interactions and formation of ternary complexes with ZAR1. Improved models describing molecular interactions between immunity determinants, effectors and effector targets will inform efforts to exploit natural diversity for development of crops with enhanced disease resistance.
Collapse
Affiliation(s)
- D. Patrick Bastedo
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Madiha Khan
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Alexandre Martel
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Derek Seto
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Inga Kireeva
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
| | - Jianfeng Zhang
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Wardah Masud
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - David Millar
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Jee Yeon Lee
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
| | - Amy Huei-Yi Lee
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yunchen Gong
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
| | - André Santos-Severino
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
| | - David S. Guttman
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (DSG); (DD)
| | - Darrell Desveaux
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (DSG); (DD)
| |
Collapse
|
48
|
Serine 25 phosphorylation inhibits RIPK1 kinase-dependent cell death in models of infection and inflammation. Nat Commun 2019; 10:1729. [PMID: 30988283 PMCID: PMC6465317 DOI: 10.1038/s41467-019-09690-0] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 03/25/2019] [Indexed: 01/01/2023] Open
Abstract
RIPK1 regulates cell death and inflammation through kinase-dependent and -independent mechanisms. As a scaffold, RIPK1 inhibits caspase-8-dependent apoptosis and RIPK3/MLKL-dependent necroptosis. As a kinase, RIPK1 paradoxically induces these cell death modalities. The molecular switch between RIPK1 pro-survival and pro-death functions remains poorly understood. We identify phosphorylation of RIPK1 on Ser25 by IKKs as a key mechanism directly inhibiting RIPK1 kinase activity and preventing TNF-mediated RIPK1-dependent cell death. Mimicking Ser25 phosphorylation (S > D mutation) protects cells and mice from the cytotoxic effect of TNF in conditions of IKK inhibition. In line with their roles in IKK activation, TNF-induced Ser25 phosphorylation of RIPK1 is defective in TAK1- or SHARPIN-deficient cells and restoring phosphorylation protects these cells from TNF-induced death. Importantly, mimicking Ser25 phosphorylation compromises the in vivo cell death-dependent immune control of Yersinia infection, a physiological model of TAK1/IKK inhibition, and rescues the cell death-induced multi-organ inflammatory phenotype of the SHARPIN-deficient mice.
Collapse
|
49
|
Christensen DG, Baumgartner JT, Xie X, Jew KM, Basisty N, Schilling B, Kuhn ML, Wolfe AJ. Mechanisms, Detection, and Relevance of Protein Acetylation in Prokaryotes. mBio 2019; 10:e02708-18. [PMID: 30967470 PMCID: PMC6456759 DOI: 10.1128/mbio.02708-18] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Posttranslational modification of a protein, either alone or in combination with other modifications, can control properties of that protein, such as enzymatic activity, localization, stability, or interactions with other molecules. N-ε-Lysine acetylation is one such modification that has gained attention in recent years, with a prevalence and significance that rival those of phosphorylation. This review will discuss the current state of the field in bacteria and some of the work in archaea, focusing on both mechanisms of N-ε-lysine acetylation and methods to identify, quantify, and characterize specific acetyllysines. Bacterial N-ε-lysine acetylation depends on both enzymatic and nonenzymatic mechanisms of acetylation, and recent work has shed light into the regulation of both mechanisms. Technological advances in mass spectrometry have allowed researchers to gain insight with greater biological context by both (i) analyzing samples either with stable isotope labeling workflows or using label-free protocols and (ii) determining the true extent of acetylation on a protein population through stoichiometry measurements. Identification of acetylated lysines through these methods has led to studies that probe the biological significance of acetylation. General and diverse approaches used to determine the effect of acetylation on a specific lysine will be covered.
Collapse
Affiliation(s)
- D G Christensen
- Department of Microbiology and Immunology, Loyola University Chicago, Health Sciences Division, Stritch School of Medicine, Maywood, Illinois, USA
| | - J T Baumgartner
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California, USA
| | - X Xie
- Buck Institute for Research on Aging, Novato, California, USA
| | - K M Jew
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California, USA
| | - N Basisty
- Buck Institute for Research on Aging, Novato, California, USA
| | - B Schilling
- Buck Institute for Research on Aging, Novato, California, USA
| | - M L Kuhn
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California, USA
| | - A J Wolfe
- Department of Microbiology and Immunology, Loyola University Chicago, Health Sciences Division, Stritch School of Medicine, Maywood, Illinois, USA
| |
Collapse
|
50
|
Chung S, Kim S, Son M, Kim M, Koh ES, Shin SJ, Park CW, Kim HS. Inhibition of p300/CBP-Associated Factor Attenuates Renal Tubulointerstitial Fibrosis through Modulation of NF-kB and Nrf2. Int J Mol Sci 2019; 20:ijms20071554. [PMID: 30925687 PMCID: PMC6479343 DOI: 10.3390/ijms20071554] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 03/24/2019] [Indexed: 12/17/2022] Open
Abstract
p300/CBP-associated factor (PCAF), a histone acetyltransferase, is involved in many cellular processes such as differentiation, proliferation, apoptosis, and reaction to cell damage by modulating the activities of several genes and proteins through the acetylation of either the histones or transcription factors. Here, we examined a pathogenic role of PCAF and its potential as a novel therapeutic target in the progression of renal tubulointerstitial fibrosis induced by non-diabetic unilateral ureteral obstruction (UUO) in male C57BL/6 mice. Administration of garcinol, a PCAF inhibitor, reversed a UUO-induced increase in the renal expression of total PCAF and histone 3 lysine 9 acetylation and reduced positive areas of trichrome and α-smooth muscle actin and collagen content. Treatment with garcinol also decreased mRNA levels of transforming growth factor-β, matrix metalloproteinase (MMP)-2, MMP-9, and fibronectin. Furthermore, garcinol suppressed nuclear factor-κB (NF-κB) and pro-inflammatory cytokines such as tumor necrosis factor-α and IL-6, whereas it preserved the nuclear expression of nuclear factor erythroid-derived 2-like factor 2 (Nrf2) and levels of Nrf2-dependent antioxidants including heme oxygense-1, catalase, superoxide dismutase 1, and NAD(P)H:quinone oxidoreductase 1. These results suggest that the inhibition of inordinately enhanced PCAF could mitigate renal fibrosis by redressing aberrant balance between inflammatory signaling and antioxidant response through the modulation of NF-κB and Nrf2.
Collapse
Affiliation(s)
- Sungjin Chung
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea.
| | - Soojeong Kim
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea.
| | - Mina Son
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea.
| | - Minyoung Kim
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea.
| | - Eun Sil Koh
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea.
| | - Seok Joon Shin
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea.
| | - Cheol Whee Park
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea.
| | - Ho-Shik Kim
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea.
| |
Collapse
|