1
|
Chen J, Liu T, Wang M, Lu B, Bai D, Shang J, Chen Y, Zhang J. Supramolecular oral delivery technologies for polypeptide-based drugs. J Control Release 2025; 381:113549. [PMID: 40058501 DOI: 10.1016/j.jconrel.2025.02.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/11/2025] [Accepted: 02/18/2025] [Indexed: 03/24/2025]
Abstract
Oral supramolecular drug delivery systems (SDDSs) have shown promising potential, along with a rapid increase in the development of polypeptide-based drugs. Biofriendly, biocompatible, and multistimulation-responsive SDDSs achieve their unique deliverability via noncovalent bonds, which can encapsulate drugs and release them at the target site along the oral tract. In this review, we analyze the oral tract from an anatomical perspective and explain the potential physical, microenvironmental, and systematic barriers, as well as the properties of drug delivery. After understanding the specific environment at different oral sites, the application of SDDSs to the mouth, stomach, small intestine, and cell targeting is summarized. Finally, this review summarizes the application of SDDSs for the successful delivery of drugs and describes how to overcome the barriers of SDDSs in drug delivery using a more biofriendly approach.
Collapse
Affiliation(s)
- Jiawen Chen
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, China; School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; State Key Laboratory of Advanced Welding and Joining and Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; Shenzhen Shinehigh Innovation Technology Co., LTD., Shenzhen 518055, China
| | - Tianqi Liu
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, China; School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; State Key Laboratory of Advanced Welding and Joining and Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; Shenzhen Shinehigh Innovation Technology Co., LTD., Shenzhen 518055, China
| | - Mi Wang
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, China; School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; State Key Laboratory of Advanced Welding and Joining and Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; Shenzhen Shinehigh Innovation Technology Co., LTD., Shenzhen 518055, China
| | - Beibei Lu
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, China; School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; State Key Laboratory of Advanced Welding and Joining and Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; Shenzhen Shinehigh Innovation Technology Co., LTD., Shenzhen 518055, China
| | - De Bai
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, China; School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; State Key Laboratory of Advanced Welding and Joining and Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; Shenzhen Shinehigh Innovation Technology Co., LTD., Shenzhen 518055, China
| | - Jiaqi Shang
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, China; School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; State Key Laboratory of Advanced Welding and Joining and Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; Shenzhen Shinehigh Innovation Technology Co., LTD., Shenzhen 518055, China
| | - Yingjun Chen
- Shenzhen JC innovation (Lazylab) Co., LTD., Shenzhen 518055, China
| | - Jiaheng Zhang
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, China; School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; State Key Laboratory of Advanced Welding and Joining and Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China; Shenzhen Shinehigh Innovation Technology Co., LTD., Shenzhen 518055, China.
| |
Collapse
|
2
|
Granata R, Leone S, Zhang X, Gesmundo I, Steenblock C, Cai R, Sha W, Ghigo E, Hare JM, Bornstein SR, Schally AV. Growth hormone-releasing hormone and its analogues in health and disease. Nat Rev Endocrinol 2025; 21:180-195. [PMID: 39537825 DOI: 10.1038/s41574-024-01052-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Growth hormone-releasing hormone (GHRH) and its ability to stimulate the production and release of growth hormone from the pituitary were discovered more than four decades ago. Since then, this hormone has been studied extensively and research into its functions is still ongoing. GHRH has multifaceted roles beyond the originally identified functions that encompass a variety of direct extrapituitary effects. In this Review, we illustrate the different biological activities of GHRH, covering the effects of GHRH agonists and antagonists in physiological and pathological contexts, along with the underlying mechanisms. GHRH and GHRH analogues have been implicated in cell growth, wound healing, cell death, inflammation, immune functions, mood disorders, feeding behaviour, neuroprotection, diabetes mellitus and obesity, as well as cardiovascular, lung and neurodegenerative diseases and some cancers. The positive effects observed in preclinical models in vitro and in vivo strongly support the potential use of GHRH agonists and antagonists as clinical therapeutics.
Collapse
Affiliation(s)
- Riccarda Granata
- Department of Medical Sciences, University of Turin, Turin, Italy.
| | - Sheila Leone
- Department of Pharmacy, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Xianyang Zhang
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Veterans Affairs Medical Center, Endocrine, Polypeptide and Cancer Institute, Miami, FL, USA
| | - Iacopo Gesmundo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Charlotte Steenblock
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Renzhi Cai
- Veterans Affairs Medical Center, Endocrine, Polypeptide and Cancer Institute, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Wei Sha
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Veterans Affairs Medical Center, Endocrine, Polypeptide and Cancer Institute, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Pathology, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center., Miami, FL, USA
| | - Ezio Ghigo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Stefan R Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Andrew V Schally
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Veterans Affairs Medical Center, Endocrine, Polypeptide and Cancer Institute, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Pathology, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center., Miami, FL, USA
| |
Collapse
|
3
|
Abstract
In the late 1960s and early 1970s, hypothalamic regulatory hormones were isolated, characterized and sequenced. Later, it was demonstrated hypothalamic and ectopic production of growth hormone-releasing hormone (GHRH) in normal and tumor tissues, of both humans and animals. Pituitary-type GHRH receptors (pGHRH-R) had been demonstrated to be expressed predominantly in the anterior pituitary gland but also found in other somatic cells, and significantly present in various human cancers; in addition, the expression of splice variants (SVs) of GHRH receptor (GHRH-R) has been found not only in the pituitary but in extrapituitary tissues, including human neoplasms. In relation to the prostate, besides the pGHRH-R, it has been detected the presence of truncated splice variants of GHRH-R (SV1-SV4) in normal human prostate and human prostate cancer (PCa) specimens; lastly, a novel SV of GHRH-R has been detected in human PCa. Signaling pathways activated by GHRH include AC/cAMP/PKA, Ras/Raf/ERK, PI3K/Akt/mTOR and JAK2/STAT3, which are involved in processes such as cell survival, proliferation and cytokine secretion. The neuropeptide GHRH can also transactivate the epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor (HER)-2. Thus, GHRH-Rs have become drug targets for several types of clinical conditions, including prostate-related conditions such as prostatitis, benign hyperplasia and cancer. Over the last fifty years, the development of GHRH-R receptor antagonists has been unstoppable, improving their potency, stability and affinity for the receptor. The last series of GHRH-R antagonists, AVR, exhibits superior anticancer and anti-inflammatory activities in both in vivo and in vitro assays.
Collapse
Affiliation(s)
- Laura Muñoz-Moreno
- Departamento de Biología de Sistemas. Unidad de Bioquímica y Biología Molecular (Research group "Cánceres de origen epitelial"), Universidad de Alcalá, Campus Científico-Tecnológico, 28871, Alcalá de Henares, Madrid, Spain
| | - Irene D Román
- Departamento de Biología de Sistemas. Unidad de Bioquímica y Biología Molecular (Research group "Cánceres de origen epitelial"), Universidad de Alcalá, Campus Científico-Tecnológico, 28871, Alcalá de Henares, Madrid, Spain
| | - Ana M Bajo
- Departamento de Biología de Sistemas. Unidad de Bioquímica y Biología Molecular (Research group "Cánceres de origen epitelial"), Universidad de Alcalá, Campus Científico-Tecnológico, 28871, Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
4
|
Gesmundo I, Pedrolli F, Cai R, Sha W, Schally AV, Granata R. Growth hormone-releasing hormone and cancer. Rev Endocr Metab Disord 2024:10.1007/s11154-024-09919-4. [PMID: 39422787 DOI: 10.1007/s11154-024-09919-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
The hypothalamic hormone growth hormone-releasing hormone (GHRH), in addition to promoting the synthesis and release of growth hormone (GH), stimulates the proliferation of human normal and malignant cells by binding to GHRH-receptor (GHRH-R) and its main splice variant, SV1. Both GHRH and GHRH-Rs are expressed in various cancers, forming a stimulatory pathway for cancer cell growth; additionally, SV1 possesses ligand independent proliferative effects. Therefore, targeting GHRH-Rs pharmacologically has been proposed for the treatment of cancer. Various classes of synthetic GHRH antagonists have been developed, endowed with strong anticancer activity in vitro and in vivo, in addition to displaying anti-inflammatory, antioxidant and immune-modulatory functions. GHRH antagonists exert indirect effects by blocking the pituitary GH/hepatic insulin-like growth factor I (IGF-I) axis, or directly inhibiting the binding of GHRH on tumor GHRH-Rs. Additionally, GHRH antagonists block the mitogenic functions of SV1 in tumor cells. This review illustrates the main findings on the antitumor effects of GHRH antagonists in experimental human cancers, along with their underlying mechanisms. The development of GHRH antagonists, with reduced toxicity and high stability, could lead to novel therapeutic agents for the treatment of cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Iacopo Gesmundo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Renzhi Cai
- Veterans Affairs Medical Center, Endocrine, Polypeptide and Cancer Institute, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Wei Sha
- Veterans Affairs Medical Center, Endocrine, Polypeptide and Cancer Institute, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Pathology, School of Medicine and Sylvester Comprehensive Cancer Center, University of Miami Miller, Miami, FL, USA
| | - Andrew V Schally
- Veterans Affairs Medical Center, Endocrine, Polypeptide and Cancer Institute, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Pathology, School of Medicine and Sylvester Comprehensive Cancer Center, University of Miami Miller, Miami, FL, USA
| | - Riccarda Granata
- Department of Medical Sciences, University of Turin, Turin, Italy.
| |
Collapse
|
5
|
Wu HM, Chen LH, Schally AV, Huang HY, Soong YK, Leung PCK, Wang HS. Impact of growth hormone-releasing hormone (GHRH) antagonist on Decidual stromal cell growth and apoptosis in vitro. Biol Reprod 2021; 106:145-154. [PMID: 34792103 DOI: 10.1093/biolre/ioab214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/22/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
Endometrial stromal cells remodeling is critical during human pregnancy. GHRH and its functional receptor have been shown to be expressed in gynecological cancer cells and eutopic endometrial stromal cells. Recent studies have demonstrated the potential clinical uses of antagonists of GHRH as effective antitumor agents because of its directly antagonistic effect on the locally produced GHRH in gynecological tumors. However, the impact of GHRH antagonists on normal endometrial stromal cell growth remained to be elucidated. The aim of this study was to investigate the effect of a GHRH antagonist (JMR-132) on cell proliferation and apoptosis of human decidual stromal cells and the underlying molecular mechanisms. Our results showed that GHRH and the splice variant 1 (SV1) of GHRH receptor (GHRH-R SV1) are expressed in human decidual stromal cells isolated from the decidual tissues of early pregnant women receiving surgical abortion. In addition, treatment of stroma cells with JMR-132 induced cell apoptosis with increasing cleaved caspase-3 and caspase-9 activities, and decrease cell viability in a time- and dose-dependent manner. Using a dual inhibition approach (pharmacological inhibitors and siRNA-mediated knockdown), we showed that JMR-132-induced activation of apoptotic signals are mediated by the activation of ERK1/2 and JNK signaling pathways and the subsequent upregulation of GADD45α. Taken together, JMR-132 suppresses cell survival of decidual stromal cells by inducing apoptosis through the activation of ERK1/2- and JNK-mediated upregulation of GADD45α in human endometrial stromal cells. Our findings provide new insights into the potential impact of GHRH antagonist on the decidual programming in humans.
Collapse
Affiliation(s)
- Hsien-Ming Wu
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University School of Medicine, Taoyuan, Taiwan R.O.C. 333
| | - Liang-Hsuan Chen
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University School of Medicine, Taoyuan, Taiwan R.O.C. 333
| | - Andrew V Schally
- Veterans Affairs Medical Center and Departments of Pathology and Medicine, Division of Hematology/Oncology, University of Miami Miller School of Medicine, Miami, FL 33125, USA
| | - Hong-Yuan Huang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University School of Medicine, Taoyuan, Taiwan R.O.C. 333
| | - Yung-Kuei Soong
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University School of Medicine, Taoyuan, Taiwan R.O.C. 333
| | - Peter C K Leung
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, British Columbia, Canada V6H3V5
| | - Hsin-Shih Wang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University School of Medicine, Taoyuan, Taiwan R.O.C. 333
| |
Collapse
|
6
|
Constitutive signal bias mediated by the human GHRHR splice variant 1. Proc Natl Acad Sci U S A 2021; 118:2106606118. [PMID: 34599099 PMCID: PMC8501799 DOI: 10.1073/pnas.2106606118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2021] [Indexed: 11/18/2022] Open
Abstract
The mechanism of functional changes induced by alternative splicing of GHRHR is largely unknown. Here, we demonstrate that GHRH-elicited signal bias toward β-arrestin recruitment is constitutively mediated by SV1. The cryogenic electron microscopy structures of SV1 and molecular dynamics simulations reveal the different functionalities between GHRHR and SV1 at the near-atomic level (i.e., the N termini of GHRHR and SV1 differentiate the downstream signaling pathways, Gs versus β-arrestins). Our findings provide valuable insights into the functional diversity of class B1 GPCRs that may aid in the design of better therapeutic agents against certain cancers. Alternative splicing of G protein–coupled receptors has been observed, but their functions are largely unknown. Here, we report that a splice variant (SV1) of the human growth hormone–releasing hormone receptor (GHRHR) is capable of transducing biased signal. Differing only at the receptor N terminus, GHRHR predominantly activates Gs while SV1 selectively couples to β-arrestins. Based on the cryogenic electron microscopy structures of SV1 in the apo state or GHRH-bound state in complex with the Gs protein, molecular dynamics simulations reveal that the N termini of GHRHR and SV1 differentiate the downstream signaling pathways, Gs versus β-arrestins. As suggested by mutagenesis and functional studies, it appears that GHRH-elicited signal bias toward β-arrestin recruitment is constitutively mediated by SV1. The level of SV1 expression in prostate cancer cells is also positively correlated with ERK1/2 phosphorylation but negatively correlated with cAMP response. Our findings imply that constitutive signal bias may be a mechanism that ensures cancer cell proliferation.
Collapse
|
7
|
Zheng Y, Karnoub AE. Endocrine regulation of cancer stem cell compartments in breast tumors. Mol Cell Endocrinol 2021; 535:111374. [PMID: 34242715 DOI: 10.1016/j.mce.2021.111374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 10/20/2022]
Abstract
Cancer cells within breast tumors exist within a hierarchy in which only a small and rare subset of cells is able to regenerate growths with the heterogeneity of the original tumor. These highly malignant cancer cells, which behave like stem cells for new cancers and are called "cancer stem cells" or CSCs, have also been shown to possess increased resistance to therapeutics, and represent the root cause underlying therapy failures, persistence of residual disease, and relapse. As >90% of cancer deaths are due to refractory tumors, identification of critical molecular drivers of the CSC-state would reveal vulnerabilities that can be leveraged in designing therapeutics that eradicate advanced disease and improve patient survival outcomes. An expanding and complex body of work has now described the exquisite susceptibility of CSC pools to the regulatory influences of local and systemic hormones. Indeed, breast CSCs express a plethora of hormonal receptors, which funnel hormonal influences over every aspect of breast neoplasia - be it tumor onset, growth, survival, invasion, metastasis, or therapy resistance - via directly impacting CSC behavior. This article is intended to shed light on this active area of investigation by attempting to provide a systematic and comprehensive overview of the available evidence directly linking hormones to breast CSC biology.
Collapse
Affiliation(s)
- Yurong Zheng
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Antoine E Karnoub
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA; Harvard Stem Cell Institute, Cambridge, MA, 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| |
Collapse
|
8
|
Muñoz-Moreno L, Schally AV, Prieto JC, Carmena MJ, Bajo AM. Growth hormone-releasing hormone receptor antagonists modify molecular machinery in the progression of prostate cancer. Prostate 2018; 78:915-926. [PMID: 29748961 DOI: 10.1002/pros.23648] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 04/12/2018] [Indexed: 01/31/2023]
Abstract
BACKGROUND Therapeutic strategies should be designed to transform aggressive prostate cancer phenotypes to a chronic situation. To evaluate the effects of the new growth hormone-releasing hormone receptor (GHRH-R) antagonists: MIA-602, MIA-606, and MIA-690 on processes associated with cancer progression as cell proliferation, adhesion, migration, and angiogenesis. METHODS We used three human prostate cell lines (RWPE-1, LNCaP, and PC3). We analyzed several molecules such as E-cadherin, β-catenin, Bcl2, Bax, p53, MMP2, MMP9, PCNA, and VEGF and signaling mechanisms that are involved on effects exerted by GHRH-R antagonists. RESULTS GHRH-R antagonists decreased cell viability and provoked a reduction in proliferation in LNCaP and PC3 cells. Moreover, GHRH-R antagonists caused a time-dependent increase of cell adhesion in all three cell lines and retarded the wound closure with the highest value with MIA-690 in PC3 cells. GHRH-R antagonists also provoked a large number of cells in SubG0 phase revealing an increase in apoptotic cells in PC3 cell line. CONCLUSIONS Taken all together, GHRH-R antagonists of the MIAMI series appear to be inhibitors of tumor progression in prostate cancer and should be considered for use in future therapeutic strategies on this malignancy.
Collapse
Affiliation(s)
- Laura Muñoz-Moreno
- Department of Systems Biology, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Andrew V Schally
- Veterans Affairs Medical Center, Miami, Florida
- Departments of Pathology and Medicine, Divisions of Hematology/Oncology, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida
| | - Juan C Prieto
- Department of Systems Biology, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - M José Carmena
- Department of Systems Biology, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Ana M Bajo
- Department of Systems Biology, University of Alcalá, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
9
|
Wu HM, Huang HY, Schally AV, Chao A, Chou HH, Leung PCK, Wang HS. Growth hormone-releasing hormone antagonist inhibits the invasiveness of human endometrial cancer cells by down-regulating twist and N-cadherin expression. Oncotarget 2018; 8:4410-4421. [PMID: 28032599 PMCID: PMC5354842 DOI: 10.18632/oncotarget.13877] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/01/2016] [Indexed: 11/25/2022] Open
Abstract
More than 25% of patients diagnosed with endometrial carcinoma have invasive primary cancer accompanied by metastases. Growth hormone-releasing hormone (GHRH) plays an important role in reproduction. Here, we examined the effect of a GHRH antagonist on the motility of endometrial cancer cells and the mechanisms of action of the antagonist in endometrial cancer. Western blotting and immunohistochemistry (IHC) were used to determine the expression of the GHRH receptor protein. The activity of Twist and N-cadherin was determined by Western blotting. Cell motility was assessed by an invasion and migration assay. GHRH receptor siRNA was applied to knockdown the GHRH receptor in endometrial cancer cells. The GHRH antagonist inhibited cell motility in a dose-dependent manner. The GHRH antagonist inhibited cell motility and suppressed the expression of Twist and N-cadherin, and the suppression was abolished by GHRH receptor siRNA pretreatment. Moreover, the inhibition of Twist and N-cadherin with Twist siRNA and N-cadherin siRNA, respectively, suppressed cell motility. Our study indicates that the GHRH antagonist inhibited the cell motility of endometrial cancer cells through the GHRH receptor via the suppression of Twist and N-cadherin. Our findings represent a new concept in the mechanism of GHRH antagonist-suppressed cell motility in endometrial cancer cells and suggest the possibility of exploring GHRH antagonists as potential therapeutics for the treatment of human endometrial cancer.
Collapse
Affiliation(s)
- Hsien-Ming Wu
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University School of Medicine, Taoyuan 333, Taiwan R.O.C
| | - Hong-Yuan Huang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University School of Medicine, Taoyuan 333, Taiwan R.O.C
| | - Andrew V Schally
- Veterans Affairs Medical Center and Departments of Pathology and Medicine, Division of Hematology/Oncology, University of Miami Miller School of Medicine, Miami, FL 33125, USA
| | - Angel Chao
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University School of Medicine, Taoyuan 333, Taiwan R.O.C
| | - Hung-Hsueh Chou
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University School of Medicine, Taoyuan 333, Taiwan R.O.C
| | - Peter C K Leung
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, British Columbia V6H3V5, Canada
| | - Hsin-Shih Wang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University School of Medicine, Taoyuan 333, Taiwan R.O.C
| |
Collapse
|
10
|
Anti-proliferative and pro-apoptotic effects of GHRH antagonists in prostate cancer. Oncotarget 2018; 7:52195-52206. [PMID: 27448980 PMCID: PMC5239544 DOI: 10.18632/oncotarget.10710] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 06/16/2016] [Indexed: 12/17/2022] Open
Abstract
Growth hormone-releasing hormone (GHRH) and its receptors have been implicated in the progression of various tumors. In vitro and in vivo studies have demonstrated that GHRH antagonists inhibit the growth of several cancers. GHRH antagonists, JMR-132 and JV-1-38 inhibit the growth of androgen-independent prostate tumors. Here we investigated the involvement of GHRH antagonists in proliferative and apoptotic processes. We used non-tumoral RWPE-1 and tumoral LNCaP and PC3 human prostatic epithelial cells, as well as an experimental model of human tumor PC3 cells. We evaluated the effects of JMR-132 and JV-1-38 antagonists on cell viability and proliferation in the three cell lines by means of MTT and BrdU assays, respectively, as well as on cell cycle and apoptotic process in PC3 cells. The expression levels of PCNA, p53, p21, CD44, Cyclin D1, c-myc, Bax and Bcl2 were determined in both in vivo and in vitro models by means of Western-blot and RT-PCR. GHRH antagonists suppressed cell proliferation and decreased the levels of the proliferation marker, PCNA, in the three cell lines and in PC3 tumor. GHRH antagonists led to an increase of cells in S-phase and a decrease in G1 and G2/M phases, and induced S-phase arrest and increase of apoptotic cells. The effects of GHRH-antagonists on cell cycle could be due to the changes observed in the expression of p21, p53, Bax, Bcl2, CD44, Cyclin D1, c-myc and caspase 3. Present results confirm and extend the role of GHRH antagonists as anti-proliferative and pro-apoptotic molecules in prostate cancer.
Collapse
|
11
|
Zarandi M, Cai R, Kovacs M, Popovics P, Szalontay L, Cui T, Sha W, Jaszberenyi M, Varga J, Zhang X, Block NL, Rick FG, Halmos G, Schally AV. Synthesis and structure-activity studies on novel analogs of human growth hormone releasing hormone (GHRH) with enhanced inhibitory activities on tumor growth. Peptides 2017; 89:60-70. [PMID: 28130121 DOI: 10.1016/j.peptides.2017.01.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/10/2017] [Accepted: 01/23/2017] [Indexed: 12/21/2022]
Abstract
The syntheses and biological evaluations of new GHRH analogs of Miami (MIA) series with greatly increased anticancer activity are described. In the design and synthesis of these analogs, the following previous substitutions were conserved: D-Arg2, Har9, Abu15, and Nle27. Most new analogs had Ala at position 8. Since replacements of both Lys12 and Lys21 with Orn increased resistance against enzymatic degradation, these modifications were kept. The substitutions of Arg at both positions 11 and 20 by His were also conserved. We kept D-Arg28, Har29 -NH2 at the C-terminus or inserted Agm or 12-amino dodecanoic acid amide at position 30. We incorporated pentafluoro-Phe (Fpa5), instead of Cpa, at position 6 and Tyr(Me) at position 10 and ω-amino acids at N-terminus of some analogs. These GHRH analogs were prepared by solid-phase methodology and purified by HPLC. The evaluation of the activity of the analogs on GH release was carried out in vitro on rat pituitaries and in vivo in male rats. Receptor binding affinities were measured in vitro by the competitive binding analysis. The inhibitory activity of the analogs on tumor proliferation in vitro was tested in several human cancer cell lines such as HEC-1A endometrial adenocarcinoma, HCT-15 colorectal adenocarcinoma, and LNCaP prostatic carcinoma. For in vivo tests, various cell lines including PC-3 prostate cancer, HEC-1A endometrial adenocarcinoma, HT diffuse mixed β cell lymphoma, and ACHN renal cell carcinoma cell lines were xenografted into nude mice and treated subcutaneously with GHRH antagonists at doses of 1-5μg/day. Analogs MIA-602, MIA-604, MIA-610, and MIA-640 showed the highest binding affinities, 30, 58, 48, and 73 times higher respectively, than GHRH (1-29) NH2. Treatment of LNCaP and HCT-15 cells with 5μM MIA-602 or MIA-690 decreased proliferation by 40%-80%. In accord with previous tests in various human cancer lines, analog MIA-602 showed high inhibitory activity in vivo on growth of PC-3 prostate cancer, HT-mixed β cell lymphoma, HEC-1A endometrial adenocarcinoma and ACHN renal cell carcinoma. Thus, GHRH analogs of the Miami series powerfully suppress tumor growth, but have only a weak endocrine GH inhibitory activity. The suppression of tumor growth could be induced in part by the downregulation of GHRH receptors levels.
Collapse
Affiliation(s)
- Marta Zarandi
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, Miami, FL, United States; South Florida VA Foundation for Research and Education, Miami, FL, United States; Department of Pathology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Renzhi Cai
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, Miami, FL, United States; South Florida VA Foundation for Research and Education, Miami, FL, United States; Department of Pathology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States; Division of Endocrinology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Magdolna Kovacs
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, Miami, FL, United States; South Florida VA Foundation for Research and Education, Miami, FL, United States; Department of Pathology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Petra Popovics
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, Miami, FL, United States; South Florida VA Foundation for Research and Education, Miami, FL, United States; Division of Endocrinology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Luca Szalontay
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, Miami, FL, United States; South Florida VA Foundation for Research and Education, Miami, FL, United States; Department of Pathology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Tengjiao Cui
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, Miami, FL, United States; South Florida VA Foundation for Research and Education, Miami, FL, United States; Department of Pathology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States; Division of Endocrinology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Wei Sha
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, Miami, FL, United States; Division of Endocrinology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States; Division of Hematology/Oncology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States; Sylvester Comprehensive Cancer Center, Miami, FL, United States
| | - Miklos Jaszberenyi
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, Miami, FL, United States; South Florida VA Foundation for Research and Education, Miami, FL, United States; Department of Pathology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Jozsef Varga
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, Miami, FL, United States
| | - XianYang Zhang
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, Miami, FL, United States; South Florida VA Foundation for Research and Education, Miami, FL, United States; Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Norman L Block
- South Florida VA Foundation for Research and Education, Miami, FL, United States; Department of Pathology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States; Sylvester Comprehensive Cancer Center, Miami, FL, United States; Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Ferenc G Rick
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, Miami, FL, United States; South Florida VA Foundation for Research and Education, Miami, FL, United States; Department of Urology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, United States
| | - Gabor Halmos
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, Miami, FL, United States; South Florida VA Foundation for Research and Education, Miami, FL, United States
| | - Andrew V Schally
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, Miami, FL, United States; South Florida VA Foundation for Research and Education, Miami, FL, United States; Department of Pathology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States; Division of Endocrinology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States; Division of Hematology/Oncology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States; Sylvester Comprehensive Cancer Center, Miami, FL, United States.
| |
Collapse
|
12
|
Schally AV, Perez R, Block NL, Rick FG. Potentiating effects of GHRH analogs on the response to chemotherapy. Cell Cycle 2015; 14:699-704. [PMID: 25648497 DOI: 10.1080/15384101.2015.1010893] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Growth hormone releasing hormone (GHRH) from hypothalamus nominatively stimulates growth hormone release from adenohypophysis. GHRH is also produced by cancers, acting as an autocrine/paracrine growth factor. This growth factor function is seen in lymphoma, melanoma, colorectal, liver, lung, breast, prostate, kidney, bladder cancers. Pituitary type GHRH receptors and their splice variants are also expressed in these malignancies. Synthetic antagonists of the GHRH receptor inhibit proliferation of cancers. Besides direct inhibitory effects on tumors, GHRH antagonists also enhance cytotoxic chemotherapy. GHRH antagonists potentiate docetaxel effects on growth of H460 non-small cell lung cancer (NSCLC) and MX-1 breast cancer plus suppressive action of doxorubicin on MX-1 and HCC1806 breast cancer. We investigated mechanisms of antagonists on tumor growth, inflammatory signaling, doxorubicin response, expression of drug resistance genes, and efflux pump function. Triple negative breast cancer cell xenografted into nude mice were treated with GHRH antagonist, doxorubicin, or their combination. The combination reduced tumor growth, inflammatory gene expression, drug-resistance gene expression, cancer stem-cell marker expression, and efflux-pump function. Thus, antagonists increased the efficacy of doxorubicin in HCC1806 and MX-1 tumors. Growth inhibition of H460 NSCLC by GHRH antagonists induced marked downregulation in expression of prosurvival proteins K-Ras, COX-2, and pAKT. In HT-29, HCT-116 and HCT-15 colorectal cancer lines, GHRH antagonist treatment caused cellular arrest in S-phase of cell cycle, potentiated inhibition of in vitro proliferation and in vivo growth produced by S-phase specific cytotoxic agents, 5-FU, irinotecan and cisplatin. This enhancement of cytotoxic therapy by GHRH antagonists should have clinical applications.
Collapse
Affiliation(s)
- Andrew V Schally
- a Veterans Affairs Medical Center and South Florida VA Foundation for Research and Education ; Miami , FL USA
| | | | | | | |
Collapse
|
13
|
Growth hormone-releasing hormone antagonists abolish the transactivation of human epidermal growth factor receptors in advanced prostate cancer models. Invest New Drugs 2014; 32:871-82. [DOI: 10.1007/s10637-014-0131-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 06/23/2014] [Indexed: 02/04/2023]
|
14
|
Potentiation of cytotoxic chemotherapy by growth hormone-releasing hormone agonists. Proc Natl Acad Sci U S A 2013; 111:781-6. [PMID: 24379381 DOI: 10.1073/pnas.1322622111] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The dismal prognosis of malignant brain tumors drives the development of new treatment modalities. In view of the multiple activities of growth hormone-releasing hormone (GHRH), we hypothesized that pretreatment with a GHRH agonist, JI-34, might increase the susceptibility of U-87 MG glioblastoma multiforme (GBM) cells to subsequent treatment with the cytotoxic drug, doxorubicin (DOX). This concept was corroborated by our findings, in vivo, showing that the combination of the GHRH agonist, JI-34, and DOX inhibited the growth of GBM tumors, transplanted into nude mice, more than DOX alone. In vitro, the pretreatment of GBM cells with JI-34 potentiated inhibitory effects of DOX on cell proliferation, diminished cell size and viability, and promoted apoptotic processes, as shown by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide proliferation assay, ApoLive-Glo multiplex assay, and cell volumetric assay. Proteomic studies further revealed that the pretreatment with GHRH agonist evoked differentiation decreasing the expression of the neuroectodermal stem cell antigen, nestin, and up-regulating the glial maturation marker, GFAP. The GHRH agonist also reduced the release of humoral regulators of glial growth, such as FGF basic and TGFβ. Proteomic and gene-expression (RT-PCR) studies confirmed the strong proapoptotic activity (increase in p53, decrease in v-myc and Bcl-2) and anti-invasive potential (decrease in integrin α3) of the combination of GHRH agonist and DOX. These findings indicate that the GHRH agonists can potentiate the anticancer activity of the traditional chemotherapeutic drug, DOX, by multiple mechanisms including the induction of differentiation of cancer cells.
Collapse
|
15
|
Seitz S, Rick FG, Schally AV, Treszl A, Hohla F, Szalontay L, Zarandi M, Ortmann O, Engel JB, Buchholz S. Combination of GHRH antagonists and docetaxel shows experimental effectiveness for the treatment of triple-negative breast cancers. Oncol Rep 2013; 30:413-8. [PMID: 23624870 DOI: 10.3892/or.2013.2435] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 04/09/2013] [Indexed: 12/31/2022] Open
Abstract
In preclinical studies, antagonists of growth hormone-releasing hormone (GHRH) have demonstrated inhibitory effects on the growth of various types of cancers expressing the pituitary type of GHRH receptors (pGHRH-R) and/or its active splice variant 1 (SV1). In this study, we investigated the effectiveness of the treatment of MDA-MB-231 human triple-negative breast cancer (TNBC) with GHRH antagonist JMR-132 alone or in combination with docetaxel. Receptor expression in the MDA-MB-231 human breast cancer cell line was evaluated by reverse transcription-polymerase chain reaction (RT-PCR). Cell viability assays were performed on MDA-MB-231 cells treated with JMR-132, docetaxel or in combination. For studies in vivo, a subcutaneous nude mouse xenograft model was used. JMR-132 was administered s.c. at a dose of 10 µg/day and docetaxel at a dose of 10 mg/kg i.p. given on day 1 and 5. Similar regimens were used for the combination of both substances. At the end of the experiment, an mRNA-based human cancer pathway array including 84 major genes was performed on the tumor tissue of mice treated with JMR-132 to elucidate the mechanism of action of GHRH antagonists in vivo. The in vitro proliferation studies revealed that JMR-132 and docetaxel decreased the cell viability in a dose-dependent manner. The combination of both treatments produced a significantly greater inhibition of cell viability compared to the single agents. Treatment of nude mice bearing MDA-MB-231 xenografts with JMR-132 and docetaxel significantly (p<0.05) inhibited tumor growth by 46 and 50%, respectively. Treatment with the combination of JMR-132 and docetaxel led to an inhibition of tumor volume by 71.6% (p<0.001). Polymerase chain reaction array analysis revealed that JMR-132 interacts with signal transduction pathways involved in proliferation, apoptosis and angiogenesis. Our results suggest that GHRH antagonists in combination with taxanes may enhance the efficacy of treatment for patients with TNBC expressing the SV1 and/or the pGHRH receptor.
Collapse
Affiliation(s)
- S Seitz
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Jaszberenyi M, Schally AV, Block NL, Zarandi M, Cai RZ, Vidaurre I, Szalontay L, Jayakumar AR, Rick FG. Suppression of the proliferation of human U-87 MG glioblastoma cells by new antagonists of growth hormone-releasing hormone in vivo and in vitro. Target Oncol 2013; 8:281-90. [PMID: 23371031 DOI: 10.1007/s11523-013-0264-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 01/21/2013] [Indexed: 02/06/2023]
Abstract
Five-year survival of patients afflicted with glioblastoma multiforme (GBM) is rare, making this cancer one of the most feared malignancies. Previously, we reported that growth hormone-releasing hormone (GHRH) is a potent growth factor in cancers. The present work evaluated the effects of two antagonistic analogs of GHRH (MIA-604 and MIA-690) on the proliferation of U-87 MG GBM tumors, in vivo as well as in vitro. Both analogs were administered subcutaneously and dose-dependently inhibited the growth of tumors transplanted into nude mice (127 animals in seven groups). The analogs also inhibited cell proliferation in vitro, decreased cell size, and promoted apoptotic and autophagic processes. Both antagonists stimulated contact inhibition, as indicated by the expression of the E-cadherin-β-catenin complex and integrins, and decreased the release of humoral regulators of glial growth such as FGF, PDGFβ, and TGFβ, as revealed by genomic or proteomic detection methods. The GHRH analogs downregulated other tumor markers (Jun-proto-oncogene, mitogen-activated protein kinase-1, and melanoma cell adhesion molecule), upregulated tumor suppressors (p53, metastasis suppressor-1, nexin, TNF receptor 1A, BCL-2-associated agonist of cell death, and ifκBα), and inhibited the expression of the regulators of angiogenesis and invasion (angiopoetin-1, VEGF, matrix metallopeptidase-1, S100 calcium binding protein A4, and synuclein-γ). Our findings indicate that GHRH antagonists inhibit growth of GBMs by multiple mechanisms and decrease both tumor cell size and number.
Collapse
|
17
|
Muñoz-Moreno L, Arenas MI, Schally AV, Fernández-Martínez AB, Zarka E, González-Santander M, Carmena MJ, Vacas E, Prieto JC, Bajo AM. Inhibitory effects of antagonists of growth hormone-releasing hormone on growth and invasiveness of PC3 human prostate cancer. Int J Cancer 2012; 132:755-65. [PMID: 22777643 DOI: 10.1002/ijc.27716] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 06/11/2012] [Accepted: 06/22/2012] [Indexed: 01/28/2023]
Abstract
New approaches are needed to the therapy of advanced prostate cancer. This study determined the effect of growth hormone-releasing hormone (GHRH) antagonists, JMR-132 and JV-1-38 on growth of PC3 tumors as well as on angiogenesis and metastasis through the evaluation of various factors that contribute largely to the progression of prostate cancer. Human PC3 androgen-independent prostate cancer cells were injected subcutaneously into nude mice. The treatment with JMR-132 (10 μg/day) or JV-1-38 (20 μg/day) lasted 41 days. We also evaluated the effects of JMR-132 and JV-1-38 on proliferation, cell adhesion and migration in PC-3 cells in vitro. Several techniques (Western blot, reverse transcription polymerase chain reaction, immunohistochemistry, ELISA and zymography) were used to evaluate the expression levels of GHRH receptors and its splice variants, GHRH, vascular endothelial growth factor (VEGF), hypoxia inducible factor (HIF)-1α, metalloproteinases (MMPs) -2 and -9, β-catenin and E-cadherin. GHRH antagonists suppressed the proliferation of PC-3 cells in vitro and significantly inhibited growth of PC3 tumors. After treatment with these analogues, we found an increase in expression of GHRH receptor accompanied by a decrease of GHRH levels, a reduction in both VEGF and HIF-1α expression and in active forms of MMP-2 and MMP-9, a significant increase in levels of membrane-associated β-catenin and a significant decline in E-cadherin. These results support that the blockade of GHRH receptors can modulate elements involved in angiogenesis and metastasis. Consequently, GHRH antagonists could be considered as suitable candidates for therapeutic trials in the management of androgen-independent prostate cancer.
Collapse
Affiliation(s)
- Laura Muñoz-Moreno
- Molecular Neuroendocrinology Unit, Department of Biochemistry and Molecular Biology, University of Alcalá, Alcalá de Henares, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Stangelberger A, Schally AV, Rick FG, Varga JL, Baker B, Zarandi M, Halmos G. Inhibitory effects of antagonists of growth hormone releasing hormone on experimental prostate cancers are associated with upregulation of wild-type p53 and decrease in p21 and mutant p53 proteins. Prostate 2012; 72:555-65. [PMID: 21796649 DOI: 10.1002/pros.21458] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 06/22/2011] [Indexed: 01/18/2023]
Abstract
BACKGROUND The tumor suppressor gene p53 is implicated in cell cycle control and apoptosis. Antagonists of growth hormone-releasing hormone (GHRH) have been shown to inhibit human experimental prostate cancers. METHODS We investigated the involvement of p53 apoptotic pathways in this effect. Nude mice bearing xenografted PC-3, DU-145, and MDA-PCa-2b human prostate cancer lines were treated with a new potent GHRH antagonist MZ-J-7-138. To determine whether tumor inhibition by MZ-J-7-138 involves apoptotic mechanisms such as p53 and p21, we evaluated by Western Blot the expression of mutant mt-p53 in PC-3 and DU-145 and of wild type (wt-p53) in MDA-PCa-2b prostate cancers as well as p21. RESULTS MZ-J-7-138 significantly inhibited the growth of PC-3, DU-145, and MDA-PCa-2b xenografts in nude mice. Androgen deprivation with the LHRH antagonist Cetrorelix enhanced the anti-proliferative effect of GHRH antagonist MZ-J-7-138 on MDA-PCa-2b tumors. The expression of mutant (mt-p53) and p21 protein in PC-3 and DU-145 tumors was significantly decreased by treatment with MZ-J-7-138, whereas wild type wt-p53 expression in MDA-PCA-2b tumors was up regulated by treatment with Cetrorelix. All three models investigated expressed specific, high affinity GHRH receptors. CONCLUSIONS Our findings indicate that the anti-proliferative effects of GHRH antagonist MZ-J-7-138 and LHRH antagonist Cetrorelix on prostate cancers involve p53 and p21 signaling.
Collapse
|
19
|
Dioufa N, Farmaki E, Schally AV, Kiaris H, Vlahodimitropoulos D, Papavassiliou AG, Kittas C, Block NL, Chatzistamou I. Growth hormone-releasing hormone receptor splice variant 1 is frequently expressed in oral squamous cell carcinomas. Discov Oncol 2012; 3:172-80. [PMID: 22441816 DOI: 10.1007/s12672-012-0108-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Accepted: 03/12/2012] [Indexed: 01/03/2023] Open
Abstract
The expression of growth hormone-releasing hormone (GHRH) splice variant 1 (SV1) receptor in neoplastic lesions of the oral cavity was assessed. The sensitivity of HaCaT keratinocytes to GHRH analogs was also evaluated. Thirty-three benign precancerous oral lesions and 27 squamous cell carcinomas of the oral cavity were evaluated by immunohistochemistry for SV1 expression. SV1 expression in HaCaT keratinocytes was assessed by western blot. HaCaT proliferation was evaluated by cell counting. Anti-SV1 immunoreactivity was detected in only 9% (three of 33) precancerous lesions (one hyperplasia and two dysplasias), while 44% (12 of 27) carcinomas were positive for SV1 (p<0.002). GHRH(1-29)NH(2) and GHRH agonist JI-38 stimulated HaCaT proliferation in vitro, and this effect was blocked by GHRH antagonists. These results indicate that SV1 expression may be associated with the transition of precancerous lesions to carcinomas of the oral epithelium. GHRH antagonists may be useful for the management of the disease.
Collapse
Affiliation(s)
- Nikolina Dioufa
- Department of Biological Chemistry, University of Athens Medical School, M. Asias 75, 115 27 Athens, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Novosyadlyy R, Leroith D. Insulin-like growth factors and insulin: at the crossroad between tumor development and longevity. J Gerontol A Biol Sci Med Sci 2012; 67:640-51. [PMID: 22421704 DOI: 10.1093/gerona/gls065] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Numerous lines of evidence indicate that insulin-like growth factor signaling plays an important role in the regulation of life span and tumor development. In the present paper, the role of individual components of insulin-like growth factor signaling in aging and tumor development has been extensively analyzed. The molecular mechanisms underlying aging and tumor development are frequently overlapping. Although the link between reduced insulin-like growth factor signaling and suppressed tumor growth and development is well established, it remains unclear whether extended life span results from direct suppression of insulin-like growth factor signaling or this effect is caused by indirect mechanisms such as improved insulin sensitivity.
Collapse
Affiliation(s)
- Ruslan Novosyadlyy
- Department of Cell Biology, Imclone Systems, a wholly owned subsidiary of Eli Lilly & Co, New York, USA
| | | |
Collapse
|
21
|
Klukovits A, Schally AV, Szalontay L, Vidaurre I, Papadia A, Zarandi M, Varga JL, Block NL, Halmos G. Novel antagonists of growth hormone-releasing hormone inhibit growth and vascularization of human experimental ovarian cancers. Cancer 2011; 118:670-80. [PMID: 21751186 DOI: 10.1002/cncr.26291] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 04/08/2011] [Accepted: 04/25/2011] [Indexed: 11/11/2022]
Abstract
BACKGROUND Antagonists of growth hormone-releasing hormone (GHRH) inhibit the proliferation of various human cancer cell lines and experimental tumors by mechanisms that include direct action on GHRH receptors in cancer cells. METHODS In this study, the effects of newly synthesized GHRH antagonists, MIA-313, MIA-602, MIA-604, and MIA-610, were investigated in 2 human ovarian epithelial adenocarcinoma cell lines, OVCAR-3 and SKOV-3, in vitro and in vivo. The expression of receptors for GHRH was demonstrated by Western blot analysis and ligand competition methods in the OVCAR-3 and SKOV-3 cell lines and in tumors from those cells grown in athymic nude mice. The effects of GHRH antagonists on the secretion of vascular endothelial growth factor (VEGF) by OVCAR-3 cells and on the vascularization of OVCAR-3 xenografts also were evaluated. RESULTS Both the pituitary and the splice variant type 1 (SV1) GHRH receptors were detected in the 2 cell lines and in tumor xenografts, and SV1 was expressed at higher levels. Cell viability assays revealed the antiproliferative effect of all GHRH antagonists that were. Maximal tumor growth inhibition was approximately 75% in both models. MIA-313 and MIA-602 decreased VEGF secretion of OVCAR-3 cells, as measured by enzyme-linked immunosorbent assay, and reduced tumor vascularization in a Matrigel plug assay, but caused no change in the expression of VEGF or VEGF receptor in the terminal ileum of mice with OVCAR-3 tumors. CONCLUSIONS Results from the current study indicated that a he novel approach based on GHRH antagonists may offer more effective therapeutic alternatives for patients with advanced ovarian cancer and who do not tolerate conventional anti-VEGF therapy.
Collapse
Affiliation(s)
- Anna Klukovits
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center and South Florida Veterans Affairs Foundation for Research and Education, Miami, Florida, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Antagonists of growth hormone-releasing hormone (GHRH) reduce prostate size in experimental benign prostatic hyperplasia. Proc Natl Acad Sci U S A 2011; 108:3755-60. [PMID: 21321192 DOI: 10.1073/pnas.1018086108] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Growth hormone-releasing hormone (GHRH), a hypothalamic polypeptide, acts as a potent autocrine/paracrine growth factor in many cancers. Benign prostatic hyperplasia (BPH) is a pathologic proliferation of prostatic glandular and stromal tissues; a variety of growth factors and inflammatory processes are inculpated in its pathogenesis. Previously we showed that potent synthetic antagonists of GHRH strongly inhibit the growth of diverse experimental human tumors including prostate cancer by suppressing various tumoral growth factors. The influence of GHRH antagonists on animal models of BPH has not been investigated. We evaluated the effects of the GHRH antagonists JMR-132 given at doses of 40 μg/d, MIA-313 at 20 μg/d, and MIA-459 at 20 μg/d in testosterone-induced BPH in Wistar rats. Reduction of prostate weights was observed after 6 wk of treatment with GHRH antagonists: a 17.8% decrease with JMR-132 treatment; a 17.0% decline with MIA-313 treatment; and a 21.4% reduction with MIA-459 treatment (P < 0.05 for all). We quantified transcript levels of genes related to growth factors, inflammatory cytokines, and signal transduction and identified significant changes in the expression of more than 80 genes (P < 0.05). Significant reductions in protein levels of IL-1β, NF-κβ/p65, and cyclooxygenase-2 (COX-2) also were observed after treatment with a GHRH antagonist. We conclude that GHRH antagonists can lower prostate weight in experimental BPH. This reduction is caused by the direct inhibitory effects of GHRH antagonists exerted through prostatic GHRH receptors. This study sheds light on the mechanism of action of GHRH antagonists in BPH and suggests that GHRH antagonists should be considered for further development as therapy for BPH.
Collapse
|
23
|
Pozsgai E, Schally AV, Zarandi M, Varga JL, Vidaurre I, Bellyei S. The effect of GHRH antagonists on human glioblastomas and their mechanism of action. Int J Cancer 2010; 127:2313-22. [PMID: 20162575 DOI: 10.1002/ijc.25259] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The effects of new growth hormone-releasing hormone (GHRH) antagonists JMR-132 and MIA-602 and their mechanism of action were investigated on 2 human glioblastoma cell lines, DBTRG-05 and U-87MG, in vitro and in vivo. GHRH receptors and their main splice variant, SV1 were found on both cell lines. After treatment with JMR-132 or MIA-602, the cell viability decreased significantly. A major decrease in the levels of phospho-Akt, phospho-GSK3β and phosho-ERK 1/2 was detected at 5 and 10 min following treatment with the GHRH antagonists, whereas elevated levels of phospho-p38 were observed at 24 hr. The expression of caspase-3 and poly(ADP-ribose) (PARP), as the downstream executioners of apoptosis were found to be significantly elevated after treatment. Following treatment of the glioblastoma cells with GHRH antagonists, nuclear translocation of apoptosis inducing factor (AIF) and Endonuclease G (Endo G) and the mitochondrial release of cytochrome c (cyt c) were detected, indicating that the cells were undergoing apoptosis. In cells treated with GHRH antagonists, the collapse of the mitochondrial membrane potential was shown with fluorescence microscopy and JC-1 membrane potential sensitive dye. There were no significant differences between results obtained in DBTRG-05 or U-87MG cell lines. After treatment with MIA-602 and JMR-132, the reduction rate in the growth of DBTRG-05 glioblastoma, xenografted into nude mice, was significant and tumor doubling time was also significantly extended when compared with controls. Our study demonstrates that GHRH antagonists induce apoptosis through key proapoptotic pathways and shows the efficacy of MIA-602 for experimental treatment of glioblastoma.
Collapse
Affiliation(s)
- Eva Pozsgai
- Veterans Affairs Medical Center and South Florida Veterans Affairs Foundation for Research and Education, Miami, FL 33125, USA
| | | | | | | | | | | |
Collapse
|
24
|
Wu HM, Schally AV, Cheng JC, Zarandi M, Varga J, Leung PCK. Growth hormone-releasing hormone antagonist induces apoptosis of human endometrial cancer cells through PKCδ-mediated activation of p53/p21. Cancer Lett 2010; 298:16-25. [PMID: 20630651 DOI: 10.1016/j.canlet.2010.05.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 05/31/2010] [Indexed: 11/19/2022]
Abstract
The growth hormone-releasing hormone (GHRH) antagonists have been shown to inhibit growth of human cancer cells, but the underlying molecular mechanisms and their actions have not been fully investigated. In this study, we first showed that GHRH-R splice variant 1 (SV1) was expressed in two human endometrial cancer cell lines, Ishikawa and ECC-1. By using MTT assay, immunoblotting for cleaved caspase-3 and TUNEL assays, we found that cell growth inhibition and apoptosis were induced in GHRH antagonist, JMR-132-treated cells by activating PKCδ and could be inhibited by treatment with PKC inhibitor, GF109203X. In addition, activation and protein expression of p53 as well as the expression of its downstream effector, p21, were increased by JMR-132 treatment. Moreover, JMR-132-induced p53 and p21 expression were diminished by treatment with PKC inhibitor. Knockdown of endogenous p53 and p21 by siRNAs abolished the JMR-132-induced cell growth inhibition and apoptosis. This study demonstrates a novel mechanism in which GHRH antagonist-induced cell growth inhibition and apoptosis through PKCδ-mediated activation of p53/p21 in human endometrial cancer cells. These findings may suggest the feasibility of GHRH antagonists as a therapeutic approach for human cancer.
Collapse
Affiliation(s)
- Hsien-Ming Wu
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, British Columbia, Canada V6H3V5
| | | | | | | | | | | |
Collapse
|
25
|
Guo J, Schally AV, Zarandi M, Varga J, Leung PCK. Antiproliferative effect of growth hormone-releasing hormone (GHRH) antagonist on ovarian cancer cells through the EGFR-Akt pathway. Reprod Biol Endocrinol 2010; 8:54. [PMID: 20509930 PMCID: PMC2891788 DOI: 10.1186/1477-7827-8-54] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 05/28/2010] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Antagonists of growth hormone-releasing hormone (GHRH) are being developed for the treatment of various human cancers. METHODS MTT assay was used to test the proliferation of SKOV3 and CaOV3. The splice variant expression of GHRH receptors was examined by RT-PCR. The expression of protein in signal pathway was examined by Western blotting. siRNA was used to block the effect of EGFR. RESULTS In this study, we investigated the effects of a new GHRH antagonist JMR-132, in ovarian cancer cell lines SKOV3 and CaOV3 expressing splice variant (SV)1 of GHRH receptors. MTT assay showed that JMR-132 had strong antiproliferative effects on SKOV3 and CaOV3 cells in both a time-dependent and dose-dependent fashion. JMR-132 also induced the activation and increased cleaved caspase3 in a time- and dose-dependent manner in both cell lines. In addition, JMR-132 treatments decreased significantly the epidermal growth factor receptor (EGFR) level and the phosphorylation of Akt (p-Akt), suggesting that JMR-132 inhibits the EGFR-Akt pathway in ovarian cancer cells. More importantly, treatment of SKOV3 and CaOV3 cells with 100 nM JMR-132 attenuated proliferation and the antiapoptotic effect induced by EGF in both cell lines. After the knockdown of the expression of EGFR by siRNA, the antiproliferative effect of JMR-132 was abolished in SKOV3 and CaOV3 cells. CONCLUSIONS The present study demonstrates that the inhibitory effect of the GHRH antagonist JMR-132 on proliferation is due, in part, to an interference with the EGFR-Akt pathway in ovarian cancer cells.
Collapse
Affiliation(s)
- Jian Guo
- Department of Obstetrics & Gynaecology, Child and Family Research Institute, UBC, Vancouver, Canada
- School of Preclinical Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Andrew V Schally
- Veterans Affairs Medical Center and Departments of Pathology and Medicine, Division of Hematology/Oncology, University of Miami Miller School of Medicine, Miami, FL 33125, USA
| | - Marta Zarandi
- Veterans Affairs Medical Center and Departments of Pathology and Medicine, Division of Hematology/Oncology, University of Miami Miller School of Medicine, Miami, FL 33125, USA
| | - Jozsef Varga
- Veterans Affairs Medical Center and Departments of Pathology and Medicine, Division of Hematology/Oncology, University of Miami Miller School of Medicine, Miami, FL 33125, USA
| | - Peter CK Leung
- Department of Obstetrics & Gynaecology, Child and Family Research Institute, UBC, Vancouver, Canada
| |
Collapse
|
26
|
Hohla F, Buchholz S, Schally AV, Krishan A, Rick FG, Szalontay L, Papadia A, Halmos G, Koster F, Aigner E, Datz C, Seitz S. Targeted cytotoxic somatostatin analog AN-162 inhibits growth of human colon carcinomas and increases sensitivity of doxorubicin resistant murine leukemia cells. Cancer Lett 2010; 294:35-42. [PMID: 20156671 DOI: 10.1016/j.canlet.2010.01.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 01/17/2010] [Accepted: 01/18/2010] [Indexed: 12/28/2022]
Abstract
The effect of the targeted cytotoxic somatostatin (SST) analog AN-162, consisting of doxorubicin (DOX) conjugated to SST carrier RC-121, was investigated on the growth of human colorectal cancer (CRC) cell lines HT-29, HCT-15, and HCT-116 and a DOX-resistant mouse leukemia cell line P388/R84. mRNA for SST-receptors and high affinity binding sites for SST were detected in all CRC cell lines and in P388/R84 cells. In contrast to DOX alone, AN-162 blocked HCT-116 cells and P388/R84 cells in S/G2 phase and increased the number of apoptotic cells. In vivo, AN-162 reduced the volume of CRC xenografts more effectively than its unconjugated components. Our results suggest that AN-162 inhibits growth of experimental CRC more effectively than DOX and increases sensitivity of DOX resistant human leukemia cells.
Collapse
Affiliation(s)
- Florian Hohla
- Department of Internal Medicine, General Hospital Oberndorf, Teaching Hospital of the Paracelsus Private Medical University of Salzburg, Paracelsusstrasse 37, Oberndorf, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Endokrine Therapie der Zukunft. GYNAKOLOGISCHE ENDOKRINOLOGIE 2010. [DOI: 10.1007/s10304-009-0327-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
GHRH antagonists reduce the invasive and metastatic potential of human cancer cell lines in vitro. Cancer Lett 2010; 293:31-40. [PMID: 20064686 DOI: 10.1016/j.canlet.2009.12.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2009] [Revised: 12/13/2009] [Accepted: 12/17/2009] [Indexed: 12/21/2022]
Abstract
We investigated the effect of a GHRH antagonist, MIA-602on the metastatic cascade in vitro of three human cancers, DBTRG-05 glioblastoma, MDA-MB-468 estrogen-independent breast, and ES-2 clear cell ovarian cancer. GHRH receptors and their main splice variant, SV1 were detected on all three cell lines. After treatment with MIA-602, the cell viability decreased significantly, significant inhibition of cell invasion was observed and the release of MMPs was significantly decreased. The attachment of cancer cells to fibronectin and matrigel was severely hindered. Wound-healing experiments demonstrated a reduced cellular motility in all three cell lines. The upregulation of caveolin-1 and E-cadherin,and thepowerful downregulation of NF-kappaB and beta-catenin was detected. Our study suggests that the clinical application of highly potent GHRH antagonists in cancer therapy would be desirable since they inhibit proliferation and metastasis development as well.
Collapse
|
29
|
Growth hormone-releasing hormone as an agonist of the ghrelin receptor GHS-R1a. Proc Natl Acad Sci U S A 2008; 105:20452-7. [PMID: 19088192 DOI: 10.1073/pnas.0811680106] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ghrelin synergizes with growth hormone-releasing hormone (GHRH) to potentiate growth hormone (GH) response through a mechanism not yet fully characterized. This study was conducted to analyze the role of GHRH as a potential ligand of the ghrelin receptor, GHS-R1a. The results show that hGHRH(1-29)NH(2) (GHRH) induces a dose-dependent calcium mobilization in HEK 293 cells stably transfected with GHS-R1a an effect not observed in wild-type HEK 293 cells. This calcium rise is also observed using the GHRH receptor agonists JI-34 and JI-36. Radioligand binding and cross-linking studies revealed that calcium response to GHRH is mediated by the ghrelin receptor GHS-R1a. GHRH activates the signaling route of inositol phosphate and potentiates the maximal response to ghrelin measured in inositol phosphate turnover. The presence of GHRH increases the binding capacity of (125)I-ghrelin in a dose dependent-fashion showing a positive binding cooperativity. In addition, confocal microscopy in CHO cells transfected with GHS-R1a tagged with enhanced green fluorescent protein shows that GHRH activates the GHS-R1a endocytosis. Furthermore, the selective GHRH-R antagonists, JV-1-42 and JMR-132, act also as antagonists of the ghrelin receptor GHS-R1a. Our findings suggest that GHRH interacts with ghrelin receptor GHS-R1a, and, in consequence, modifies the ghrelin-associated intracellular signaling pathway. This interaction may represent a form of regulation, which could play a putative role in the physiology of GH regulation and appetite control.
Collapse
|
30
|
Köster F, Engel JB, Schally AV, Hönig A, Schröer A, Seitz S, Hohla F, Ortmann O, Diedrich K, Buchholz S. Triple-negative breast cancers express receptors for growth hormone-releasing hormone (GHRH) and respond to GHRH antagonists with growth inhibition. Breast Cancer Res Treat 2008; 116:273-9. [DOI: 10.1007/s10549-008-0120-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Accepted: 07/01/2008] [Indexed: 11/24/2022]
|
31
|
Knocking down gene expression for growth hormone-releasing hormone inhibits proliferation of human cancer cell lines. Br J Cancer 2008; 98:1790-6. [PMID: 18506184 PMCID: PMC2410108 DOI: 10.1038/sj.bjc.6604386] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Splice Variant 1 (SV-1) of growth hormone-releasing hormone (GHRH) receptor, found in a wide range of human cancers and established human cancer cell lines, is a functional receptor with ligand-dependent and independent activity. In the present study, we demonstrated by western blots the presence of the SV1 of GHRH receptor and the production of GHRH in MDA-MB-468, MDA-MB-435S and T47D human breast cancer cell lines, LNCaP prostate cancer cell line as well as in NCI H838 non-small cell lung carcinoma. We have also shown that GHRH produced in the conditioned media of these cell lines is biologically active. We then inhibited the intrinsic production of GHRH in these cancer cell lines using si-RNA, specially designed for human GHRH. The knocking down of the GHRH gene expression suppressed the proliferation of T47D, MDA-MB-435S, MDA-MB-468 breast cancer, LNCaP prostate cancer and NCI H838 non-SCLC cell lines in vitro. However, the replacement of the knocked down GHRH expression by exogenous GHRH (1–29)NH2 re-established the proliferation of the silenced cancer cell lines. Furthermore, the proliferation rate of untransfected cancer cell lines could be stimulated by GHRH (1–29)NH2 and inhibited by GHRH antagonists MZ-5-156, MZ-4-71 and JMR-132. These results extend previous findings on the critical function of GHRH in tumorigenesis and support the role of GHRH as a tumour growth factor.
Collapse
|
32
|
Perry JK, Mohankumar KM, Emerald BS, Mertani HC, Lobie PE. The contribution of growth hormone to mammary neoplasia. J Mammary Gland Biol Neoplasia 2008; 13:131-45. [PMID: 18253708 PMCID: PMC2665193 DOI: 10.1007/s10911-008-9070-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Accepted: 01/02/2008] [Indexed: 12/13/2022] Open
Abstract
While the effects of growth hormone (GH) on longitudinal growth are well established, the observation that GH contributes to neoplastic progression is more recent. Accumulating literature implicates GH-mediated signal transduction in the development and progression of a wide range malignancies including breast cancer. Recently autocrine human GH been demonstrated to be an orthotopically expressed oncogene for the human mammary gland. This review will highlight recent evidence linking GH and mammary carcinoma and discuss GH-antagonism as a potential therapeutic approach for treatment of breast cancer.
Collapse
Affiliation(s)
- Jo K Perry
- The Liggins Institute and the National Research Centre for Growth and Development
University of Auckland2-6 Park Avenue, Grafton, Private Bag 92019, Auckland 1023,NZ
| | - Kumarasamypet M Mohankumar
- The Liggins Institute and the National Research Centre for Growth and Development
University of Auckland2-6 Park Avenue, Grafton, Private Bag 92019, Auckland 1023,NZ
| | - B Starling Emerald
- The Liggins Institute and the National Research Centre for Growth and Development
University of Auckland2-6 Park Avenue, Grafton, Private Bag 92019, Auckland 1023,NZ
| | - Hichem C Mertani
- PICM, Physiologie intégrative, cellulaire et moléculaire
CNRS : UMR5123Université Claude Bernard - Lyon IBât. R. Dubois
43, Bvd du 11 Novembre 1918
69622 VILLEURBANNE CEDEX,FR
| | - Peter E Lobie
- The Liggins Institute and the National Research Centre for Growth and Development
University of Auckland2-6 Park Avenue, Grafton, Private Bag 92019, Auckland 1023,NZ
- Department of Molecular Medicine and Pathology
University of AucklandFaculty of Medical and Health Sciences, Private Bag 92019, Auckland, New Zealand,NZ
- * Correspondence should be adressed to: Peter E Lobie
| |
Collapse
|
33
|
Bibliography. Current world literature. Growth and development. Curr Opin Endocrinol Diabetes Obes 2008; 15:79-101. [PMID: 18185067 DOI: 10.1097/med.0b013e3282f4f084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Schally AV, Varga JL, Engel JB. Antagonists of growth-hormone-releasing hormone: an emerging new therapy for cancer. ACTA ACUST UNITED AC 2008; 4:33-43. [PMID: 18084344 DOI: 10.1038/ncpendmet0677] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Accepted: 10/01/2007] [Indexed: 12/28/2022]
Abstract
This article reviews the potential clinical uses of antagonists of growth-hormone-releasing hormone (GHRH) for tumor therapy. GHRH antagonists suppress the growth of various human cancer lines xenografted into nude mice; such tumors include breast, ovarian, endometrial and prostate cancers, lung cancers (small-cell lung carcinomas and non-small-cell lung carcinomas), renal, pancreatic, gastric and colorectal carcinomas, brain tumors (malignant gliomas), osteogenic sarcomas and non-Hodgkin's lymphomas. The antitumor effects of GHRH antagonists are exerted in part indirectly through the inhibition of the secretion of GH from the pituitary and the resulting reduction in the levels of hepatic insulin-like growth factor I (IGF-I). The main effects of the GHRH antagonists are, however, exerted directly on tumors. GHRH ligand is present in various human cancers and might function as an autocrine and/or paracrine growth factor. Pituitary-type GHRH receptors and their splice variants are also found in many human cancers. The inhibitory effects of GHRH antagonists seem to be due to the blockade of action of tumoral GHRH. Antagonists of GHRH can also suppress cancer growth by blocking production of IGF-I and/or IGF-II by the tumor. Further development of GHRH antagonists that are still-more potent should lead to potential therapeutic agents for various cancers.
Collapse
|