1
|
Ren F, Pang X, Liu N, Zhu L. Multiomics evaluation and machine learning optimize molecular classification, prediction of prognosis and immunotherapy response for ovarian cancer. Pathol Res Pract 2025; 269:155925. [PMID: 40168774 DOI: 10.1016/j.prp.2025.155925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/18/2025] [Accepted: 03/25/2025] [Indexed: 04/03/2025]
Abstract
BACKGROUND Ovarian cancer (OC), owing to its substantial heterogeneity and high invasiveness, has historically been devoid of precise, individualized treatment options. This study aimed to establish integrated consensus subtypes of OC using different multiomics integration methodologies. METHODS We integrated five distinct multiomics datasets from multicentric cohorts to identify high-resolution molecular subgroups using a combination of 10 and 101 clustering and machine learning algorithms, respectively, to develop a robust consensus multiomics-related machine learning signature (CMMS). RESULTS Two cancer subtypes with prognostic significance were identified using multiomics clustering analysis. 10 essential genes were identified in the CMMS. Patients in the high CMMS group exhibited a poorer prognosis, with a "cold tumor" phenotype and an immunosuppressive state with reduced immune cell infiltration. In contrast, patients in the low CMMS group exhibited a more favorable prognosis, with immune activation and a "hot tumor" phenotype characterized by increased tumor mutation burden, tumor neoantigen burden, PD-L1 expression, and enriched M1 macrophages. Eight independent immunotherapy datasets were validated to further corroborate our findings regarding patients in the low CMMS group who responded better to immunotherapy. CONCLUSIONS CMMS detection has significant utility in the prognosis of patients at an early stage and identification of potential candidates for immunotherapy.
Collapse
Affiliation(s)
- Fang Ren
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Xiaoao Pang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Ning Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Liancheng Zhu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| |
Collapse
|
2
|
Córdoba-Lanús E, García-Pérez O, Melgar-Vilaplana L, Domínguez-de-Barros A, Fernández-de-Misa R. Germline PDCDL1 Gene Variants Are Associated with Increased Primary Melanoma Thickness. Biomolecules 2025; 15:584. [PMID: 40305358 PMCID: PMC12024702 DOI: 10.3390/biom15040584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/05/2025] [Accepted: 04/10/2025] [Indexed: 05/02/2025] Open
Abstract
Background: The incidence of malignant melanoma (MM) continues to increase annually, and tumour invasiveness is a main prognostic factor. Single-nucleotide polymorphisms (SNPs) have become key tools in the study of cancer genetics, influencing susceptibility and prognosis. Methods: In the present study, we analysed the relationship between five SNPs on the PDCDL1 gene (rs822336, rs822337, rs822338, rs229736, rs4143815) with prognosis as well as primary tumour invasiveness characteristics in 377 whole blood samples from MM individuals. Results: Patients who presented the rs822336 CG or GG genotypes (OR = 3.01, 95% CI = 1.53-5.92; p = 0.0017), TA or TT in rs822337 (OR = 2.45, 95% CI = 1.22-4.93; p = 0.0098), and CT or CC of rs822338 (OR = 2.23, 95% CI = 1.05-4.73; p = 0.028) were at an increased risk of developing invasive melanomas. Cases with the AG or GG genotype in rs2297136 presented a lower risk (OR = 0.29, 95% CI = 0.11-0.75; p = 0.0038) of invasive MM. The genetic analysis at the haplotype level resulted in similar findings (OR: 2.95, 95% CI: 1.08-8.10), p = 0.036). Furthermore, patients carrying the homozygous AA genotype in rs2297136 had thicker tumours than those harbouring the AG or GG (1.4 mm vs. 1.0 and 0.8 mm; p = 0.030). No significant association was found between the studied SNPs and melanoma-specific survival (MSS) nor progression-free survival (PFS). Conclusions: Current results suggest that SNPs rs822336, rs822337, rs822338, and rs2297136 genotypes in the PDCDL1 gene are associated with the risk of tumour invasiveness and tumour thickness in MM. Further studies on SNPs considering genetic and epigenetic factors are needed for a better understanding of malignant melanoma susceptibility and its prognosis.
Collapse
Affiliation(s)
- Elizabeth Córdoba-Lanús
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna, Avda. Astrofísico Sánchez, s/n, 38296 San Cristóbal de La Laguna, Spain; (O.G.-P.)
- Consorcio Centro de Investigación Biomédica (CIBER) de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Omar García-Pérez
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna, Avda. Astrofísico Sánchez, s/n, 38296 San Cristóbal de La Laguna, Spain; (O.G.-P.)
- Consorcio Centro de Investigación Biomédica (CIBER) de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Leticia Melgar-Vilaplana
- Pathology Department, Hospital Universitario Nuestra Señora de Candelaria, Ctra. Gral. del Rosario, 145, 38010 Santa Cruz de Tenerife, Spain;
| | - Angélica Domínguez-de-Barros
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna, Avda. Astrofísico Sánchez, s/n, 38296 San Cristóbal de La Laguna, Spain; (O.G.-P.)
- Consorcio Centro de Investigación Biomédica (CIBER) de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ricardo Fernández-de-Misa
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Ctra. Gral. del Rosario, 145, 38010 Santa Cruz de Tenerife, Spain
- Dermatology Department, Hospital Universitario Nuestra Señora de Candelaria, Ctra. Gral. del Rosario, 145, 38010 Santa Cruz de Tenerife, Spain
- Department of Internal Medicine, Dermatology and Psychiatry, Universidad de La Laguna, 38071 San Cristóbal de La Laguna, Spain
| |
Collapse
|
3
|
de Amorim IFG, Melo CPDS, Pereira RDA, Cunha SM, Zózimo TRDS, Queiroz FR, Peixoto IDO, Lopes LMS, do Amaral LR, Gomes MDS, Oliveira JA, Cândido EB, Salles PGDO, Braga LDC. Association of a CHEK2 somatic variant with tumor microenvironment calprotectin expression predicts platinum resistance in a small cohort of ovarian carcinoma. PLoS One 2025; 20:e0315487. [PMID: 40146757 PMCID: PMC11949324 DOI: 10.1371/journal.pone.0315487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/27/2024] [Indexed: 03/29/2025] Open
Abstract
High-grade serous ovarian cancer (HGSOC) low overall survival rate is often attributed to platinum resistance. Recent studies suggest that the tumor associated-microenvironment (TME) is a determining factor in malignant tumor progression and DNA damage plays a crucial role in this process. Here, we sought to identify platinum resistance biomarkers associating the TME immune profile and the mutational landscape of the homologous repair pathway genes with the HGSOC patients prognosis and response to chemotherapy. Using a decision tree classifier approach, we found that platinum resistant (PR) patients were characterized by the presence of a novel deep intronic variant, the CHEK2 c.319+ 3943A > T, and higher L1 expression (p = 0.016), (100% accuracy). Chek2 protein is an important component of DNA repair and L1, also known as calprotectin, is one component of the neutrophil extracellular traps (NETs) during inflammation, previously suggested as a key contributor to the metastatic process in HGSOC. Also, PD-L2 levels were significantly higher in PR patients positive for this CHEK2 variant (p = 0.048), underscoring the need to explore its potential therapeutic role for this cancer. Our results suggest an interplay between TME and DNA repair variants that results in a multifactorial nature of HGSOC resistance to platinum chemotherapy.
Collapse
Affiliation(s)
- Izabela Ferreira Gontijo de Amorim
- Laboratório de Pesquisa Translacional em Oncologia, Núcleo de Ensino, Pesquisa e Inovação, Instituto Mário Penna, Belo Horizonte, Minas Gerais, Brazil
- Curso de Medicina, Faculdade de Minas-FAMINAS, Belo Horizonte, Minas Gerais, Brazil
| | - Carolina Pereira de Souza Melo
- Laboratório de Pesquisa Translacional em Oncologia, Núcleo de Ensino, Pesquisa e Inovação, Instituto Mário Penna, Belo Horizonte, Minas Gerais, Brazil
| | - Ramon de Alencar Pereira
- Laboratório de Pesquisa Translacional em Oncologia, Núcleo de Ensino, Pesquisa e Inovação, Instituto Mário Penna, Belo Horizonte, Minas Gerais, Brazil
| | - Sidnéa Macioci Cunha
- Hospital Luxemburgo, Instituto Mário Penna, Belo Horizonte, Minas Gerais, Brazil
- Programa de Pós-graduação em Saúde da Mulher, Departamento de Ginecologia e Obstetrícia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Thalía Rodrigues de Souza Zózimo
- Laboratório de Pesquisa Translacional em Oncologia, Núcleo de Ensino, Pesquisa e Inovação, Instituto Mário Penna, Belo Horizonte, Minas Gerais, Brazil
| | - Fábio Ribeiro Queiroz
- Laboratório de Pesquisa Translacional em Oncologia, Núcleo de Ensino, Pesquisa e Inovação, Instituto Mário Penna, Belo Horizonte, Minas Gerais, Brazil
| | - Iago de Oliveira Peixoto
- Laboratório de Pesquisa Translacional em Oncologia, Núcleo de Ensino, Pesquisa e Inovação, Instituto Mário Penna, Belo Horizonte, Minas Gerais, Brazil
- Programa de Pós-graduação em Biotecnologia, Fundação Ezequiel Dias-FUNED, Belo Horizonte, Minas Gerais, Brazil
| | - Luciana Maria Silva Lopes
- Programa de Pós-graduação em Biotecnologia, Fundação Ezequiel Dias-FUNED, Belo Horizonte, Minas Gerais, Brazil
| | - Laurence Rodrigues do Amaral
- Laboratório de Bioinformática e Análises Moleculares, Universidade Federal de Uberlândia, Campus Patos de Minas, Uberlândia, Minas Gerais, Brazil
| | - Matheus de Souza Gomes
- Laboratório de Bioinformática e Análises Moleculares, Universidade Federal de Uberlândia, Campus Patos de Minas, Uberlândia, Minas Gerais, Brazil
| | - Juliana Almeida Oliveira
- Curso de Medicina, Faculdade de Minas-FAMINAS, Belo Horizonte, Minas Gerais, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Cirurgia e à Oftalmologia, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Eduardo Batista Cândido
- Curso de Medicina, Faculdade de Minas-FAMINAS, Belo Horizonte, Minas Gerais, Brazil
- Programa de Pós-graduação em Saúde da Mulher, Departamento de Ginecologia e Obstetrícia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Paulo Guilherme de Oliveira Salles
- Laboratório de Pesquisa Translacional em Oncologia, Núcleo de Ensino, Pesquisa e Inovação, Instituto Mário Penna, Belo Horizonte, Minas Gerais, Brazil
- Hospital Luxemburgo, Instituto Mário Penna, Belo Horizonte, Minas Gerais, Brazil
| | - Letícia da Conceição Braga
- Laboratório de Pesquisa Translacional em Oncologia, Núcleo de Ensino, Pesquisa e Inovação, Instituto Mário Penna, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
4
|
Zhao S, Xuan C, Diao W, Bai R, Wu F, Yu W, Yang F, Wu J, Xu W, Jiang G, Gao Z, Li H. Study on the Construction and Anti-Tumor Effect of aPDL1/aMUC1 Double Antibody Modification of Doxorubicin Liposome. ACS OMEGA 2025; 10:10107-10121. [PMID: 40124041 PMCID: PMC11923672 DOI: 10.1021/acsomega.4c08564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/11/2025] [Accepted: 02/24/2025] [Indexed: 03/25/2025]
Abstract
In recent years, the primary treatments for cancer have included chemotherapy, radiotherapy, and surgery. However, challenges such as poor prognosis, high recurrence rates, low survival rates, and diminished quality of life persist in cancer management. Recently, immunotherapy has emerged as a potent therapeutic approach for treating tumors. To this end, we developed antibodies for mucin 1 (MUC1) and programmed cell death ligand 1 (PD-L1) to functionalize liposomes and incorporate doxorubicin (DOX) (DOX-aMUC1/aPDL1-Lip). This formulation is designed to enhance its targeting capability and antitumor activity against cancer cells. The DOX-aMUC1/aPDL1-Lip formulation demonstrated significant antitumor effects both in vivo and in vitro, effectively inhibiting tumor cell growth. Utilizing antibodies against PD-L1 and MUC1 to modify liposomes represents a novel strategy for cancer treatment.
Collapse
Affiliation(s)
- Shouzhen Zhao
- School
of Life Science and Technology, Shandong
Second Medical University, Weifang 261053, Shandong, China
| | - Cuiling Xuan
- School
of Life Science and Technology, Shandong
Second Medical University, Weifang 261053, Shandong, China
| | - Wenbin Diao
- Clinical
Laboratory, Second People’s Hospital
of Weifang, Weifang 261053, Shandong, China
| | - Ran Bai
- School
of Life Science and Technology, Shandong
Second Medical University, Weifang 261053, Shandong, China
| | - Fei Wu
- School
of Life Science and Technology, Shandong
Second Medical University, Weifang 261053, Shandong, China
| | - Wenjing Yu
- School
of Life Science and Technology, Shandong
Second Medical University, Weifang 261053, Shandong, China
| | - Fan Yang
- Shandong
Kanghua Biotechnology Co., Ltd., Weifang 261053, Shandong, China
| | - Jingliang Wu
- School
of Life Science and Technology, Shandong
Second Medical University, Weifang 261053, Shandong, China
| | - Wei Xu
- School
of Life Science and Technology, Shandong
Second Medical University, Weifang 261053, Shandong, China
| | - Guosheng Jiang
- School
of Life Science and Technology, Shandong
Second Medical University, Weifang 261053, Shandong, China
- Institute
of Immunology and Biotechnology Transformation, Binzhou Medical University, Yantai 264000, Shandong, China
| | - Zhiqin Gao
- School
of Life Science and Technology, Shandong
Second Medical University, Weifang 261053, Shandong, China
| | - Haimei Li
- School
of Life Science and Technology, Shandong
Second Medical University, Weifang 261053, Shandong, China
| |
Collapse
|
5
|
Lee SM, Hamid O, Jotte R, Zakharia Y, Medina T, Gillespie-Twardy A, Mehmi I, Chandra S, Watson G, Ward P, Chaney M, Lu H, Berndt J, O’Connor BP, Rathi K, Shaikh E, Cowey CL. Phase II Open-Label Trial of Brentuximab Vedotin with Pembrolizumab in PD-1-Pretreated Metastatic Non-Small Cell Lung Cancer and Metastatic Cutaneous Melanoma. Clin Cancer Res 2025; 31:848-859. [PMID: 39786430 PMCID: PMC11873802 DOI: 10.1158/1078-0432.ccr-24-1478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/09/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025]
Abstract
PURPOSE Brentuximab vedotin (BV) is hypothesized to selectively deplete T regulatory cells that express CD30 and resensitize tumors to anti-PD-1 therapy. This study evaluated responses to BV + pembrolizumab after PD-1 therapy and explored corresponding biomarkers. PATIENTS AND METHODS A total of 55 patients with metastatic non-small cell lung cancer and 58 patients with metastatic cutaneous melanoma received ≥1 dose of BV + pembrolizumab. Patients had received a median of 2.0 prior lines of systemic therapies (range, 1-7). The primary endpoint was confirmed objective response rate (ORR). Exploratory endpoints included overall survival (OS) and biomarker analysis in blood and tumor. RESULTS For the secondary refractory metastatic non-small cell lung cancer cohort (RECIST v1.1), the ORR was 14%, median progression-free survival (PFS) was 5.85 months, and median OS was 14.4 months. For the secondary refractory metastatic cutaneous melanoma cohort (immune RECIST), the ORR was 24%, median PFS was 4.44 months, and median OS was 21.9 months. Overall, the median duration of OS follow-up was 17.2 months (95% confidence interval, 14.62-22.87). No new safety signals were identified. No treatment-related grade 5 toxicity was seen. Longitudinal immune phenotyping in peripheral blood demonstrated a transient decrease in T regulatory cells. Paired tumor biopsies from baseline and cycle 3 day 1 showed a trend of increased CD8 T-cell infiltration, especially in responding patients. CONCLUSIONS BV + pembrolizumab in solid tumor malignancies resulted in clinically meaningful, durable responses with encouraging OS and PFS rates supportive of the immunomodulatory activity of this combination. Stronger antitumor activity was observed in secondary refractory cohorts. The safety profile of this combination was consistent with the individual drug risk profiles.
Collapse
Affiliation(s)
| | - Omid Hamid
- The Angeles Clinic and Research Institute, A Cedars-Sinai Affiliate, Los Angeles, California
| | - Robert Jotte
- Rocky Mountain Cancer Centers, Lone Tree, Colorado
- US Oncology Network, The Woodlands, Texas
| | | | | | | | - Inderjit Mehmi
- The Angeles Clinic and Research Institute, A Cedars-Sinai Affiliate, Los Angeles, California
| | | | - Graham Watson
- US Oncology Network, The Woodlands, Texas
- Virginia Oncology Associates, Norfolk, Virginia
| | - Patrick Ward
- US Oncology Network, The Woodlands, Texas
- Oncology Hematology Care, Cincinnati, Ohio
| | | | | | | | | | | | | | - Charles Lance Cowey
- US Oncology Network, The Woodlands, Texas
- Texas Oncology – Baylor University, Dallas, Texas
| |
Collapse
|
6
|
Sharafi Monfared M, Nazmi S, Parhizkar F, Jafari D. Soluble B7 and TNF family in colorectal cancer: Serum level, prognostic and treatment value. Hum Immunol 2025; 86:111232. [PMID: 39793378 DOI: 10.1016/j.humimm.2025.111232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/25/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025]
Abstract
Soluble immune checkpoints (sIC) are crucial factors in the immune system. They regulate immune responses by transforming intercellular signals via binding to their membrane-bound receptor or ligand. Moreover, soluble ICs are vital in immune regulation, cancer development, and prognosis. They can be identified and measured in various tumor microenvironments. Recently, sICs have become increasingly important in clinically assessing malignancies like colorectal cancer (CRC) patients. This review explores the evolving role of the soluble B7 family and soluble tumor necrosis factor (TNF) superfamily members in predicting disease progression, treatment response, and overall patient outcomes in CRC. We comprehensively analyze the diagnostic and prognostic potential of soluble immune checkpoints in CRC. Understanding the role of these soluble immune checkpoints in CRC management and their potential as targets for precision medicine approaches can be critical for improving outcomes for patients with colorectal cancer.
Collapse
Affiliation(s)
- Mohanna Sharafi Monfared
- Student's Research Committee, Zanjan University of Medical Sciences, Zanjan, Iran; School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Sina Nazmi
- Student's Research Committee, Zanjan University of Medical Sciences, Zanjan, Iran; School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Forough Parhizkar
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Davood Jafari
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
7
|
Silwal AP, Thennakoon SKS, Jahan R, Arya SP, Postema RM, Timilsina HP, Reynolds AM, Kokensparger KB, Tan X. Aptamer-Assisted DNA SELEX: Dual-Site Targeting of a Single Protein. ACS Biomater Sci Eng 2025. [PMID: 40016918 DOI: 10.1021/acsbiomaterials.4c02053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Heterobivalent fusion aptamers that target a single protein show significant promise for studying protein-protein interactions. However, a major challenge is finding two distinct aptamers that can simultaneously recognize the same protein. In this study, we used a novel technique called Aptamer-Assisted DNA SELEX (AADS) to isolate two distinct aptamers capable of recognizing different sites on the programmed death-ligand 1 (PD-L1) protein. Initially, Aptamer 1 (P1C2) was identified by using conventional DNA SELEX targeting the PD-L1 protein. Subsequently, Aptamer 2 (P1CSC) was obtained via AADS, which was designed to bind to the PD-L1/P1C2 complex. After confirming that both aptamers could simultaneously recognize the PD-L1 protein, we engineered fusion aptamers by optimizing their orientation and linker sequences, resulting in the creation of the optimized fusion aptamer, P1CSC-T7-P1C1. Our fusion aptamer targeting PD-L1 demonstrated remarkable specificity and affinity, effectively inhibiting PD-1/PD-L1 interactions at both the protein and cellular levels. These findings highlight the potential of fusion aptamers via AADS as powerful tools for targeting the PD-L1 protein and cancer cells (A549 cells). This represents a significant advancement in aptamer-based molecular recognition and has the potential to drive innovation as a versatile method for targeting a wide range of proteins.
Collapse
Affiliation(s)
- Achut Prasad Silwal
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | | | - Raunak Jahan
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Satya Prakash Arya
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Rick Mason Postema
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Hari Prasad Timilsina
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Andrew Michael Reynolds
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Kaytelee Brooke Kokensparger
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Xiaohong Tan
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| |
Collapse
|
8
|
Harada H, Hachisuga T, Harada Y, Shibahara M, Murakami M, Nuratdinova F, Higami S, Tohyama A, Kinjo Y, Ueda T, Kurita T, Matsuura Y, Nakayama T, Yoshino K. Intra-Tumoral Lymphocytic Infiltration Is Associated with Favorable Prognosis in Suboptimal Surgery in High-Grade Serous Ovarian Carcinoma. Diagnostics (Basel) 2025; 15:422. [PMID: 40002574 PMCID: PMC11854212 DOI: 10.3390/diagnostics15040422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/26/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Background: The immunoreactive (IR) subtype is one of the subtypes of high-grade serous ovarian carcinoma (HGSOC) with intra-tumoral lymphocytic infiltration. A positive prognostic correlation between IR subtype and R0 + optimal surgery has been reported. This study investigates the prognostic significance of tumor-infiltrating lymphocytes (TILs) in the suboptimal surgery group of HGSOCs. Methods: After reviewing 318 malignant ovarian tumors detected in our database between 2000 and 2017, 74 HGSOCs with supplemental p53 immunostaining were selected. Differences in progression-free survival (PFS) and overall survival (OS) between the two groups of the IR subtype and the other subtypes were investigated. Based on pathological findings, HGSOCs were divided into two groups: those with or without abundant TILs. Results: Abundant TILs were detected in 17 cases of HGSOC (22.9%). Clinicopathological characteristics including age, CA125, FIGO stage, and residual disease did not show significant differences between the two groups. Lymph node metastasis was more common in the IR subtype group (p = 0.04). In the suboptimal surgery group, the 5-year PFS and OS (Kaplan-Meier estimates) in cases with (n = 10) or without (n = 21) abundant TILs were 10% and 0% (p = 0.097) and 70% and 28.5% (p = 0.012), respectively. The median time (range) to OS in cases with or without abundant TILs were 58 (34-81) months and 39 (22-55) months, respectively. Multivariate analysis in OS showed significant differences in TILs. Conclusions: Abundant intra-tumoral lymphocytic infiltration is an independent and favorable prognostic indicator for the suboptimal surgery group in HGSOCs and is associated with treatment response via cancer immunity.
Collapse
Affiliation(s)
- Hiroshi Harada
- Department of Obstetrics and Gynecology, School of Medicine, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan; (T.H.); (M.S.); (M.M.); (S.H.); (A.T.); (Y.K.); (T.U.); (T.K.); (K.Y.)
| | - Toru Hachisuga
- Department of Obstetrics and Gynecology, School of Medicine, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan; (T.H.); (M.S.); (M.M.); (S.H.); (A.T.); (Y.K.); (T.U.); (T.K.); (K.Y.)
| | - Yoshikazu Harada
- Department of Pathology, School of Medicine, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan; (Y.H.); (F.N.); (T.N.)
| | - Mami Shibahara
- Department of Obstetrics and Gynecology, School of Medicine, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan; (T.H.); (M.S.); (M.M.); (S.H.); (A.T.); (Y.K.); (T.U.); (T.K.); (K.Y.)
| | - Midori Murakami
- Department of Obstetrics and Gynecology, School of Medicine, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan; (T.H.); (M.S.); (M.M.); (S.H.); (A.T.); (Y.K.); (T.U.); (T.K.); (K.Y.)
| | - Fariza Nuratdinova
- Department of Pathology, School of Medicine, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan; (Y.H.); (F.N.); (T.N.)
| | - Shota Higami
- Department of Obstetrics and Gynecology, School of Medicine, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan; (T.H.); (M.S.); (M.M.); (S.H.); (A.T.); (Y.K.); (T.U.); (T.K.); (K.Y.)
| | - Atsushi Tohyama
- Department of Obstetrics and Gynecology, School of Medicine, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan; (T.H.); (M.S.); (M.M.); (S.H.); (A.T.); (Y.K.); (T.U.); (T.K.); (K.Y.)
| | - Yasuyuki Kinjo
- Department of Obstetrics and Gynecology, School of Medicine, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan; (T.H.); (M.S.); (M.M.); (S.H.); (A.T.); (Y.K.); (T.U.); (T.K.); (K.Y.)
| | - Taeko Ueda
- Department of Obstetrics and Gynecology, School of Medicine, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan; (T.H.); (M.S.); (M.M.); (S.H.); (A.T.); (Y.K.); (T.U.); (T.K.); (K.Y.)
| | - Tomoko Kurita
- Department of Obstetrics and Gynecology, School of Medicine, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan; (T.H.); (M.S.); (M.M.); (S.H.); (A.T.); (Y.K.); (T.U.); (T.K.); (K.Y.)
| | - Yusuke Matsuura
- Department of Nursing of Human Broad Development, School of Health Sciences, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan;
| | - Toshiyuki Nakayama
- Department of Pathology, School of Medicine, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan; (Y.H.); (F.N.); (T.N.)
| | - Kiyoshi Yoshino
- Department of Obstetrics and Gynecology, School of Medicine, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan; (T.H.); (M.S.); (M.M.); (S.H.); (A.T.); (Y.K.); (T.U.); (T.K.); (K.Y.)
| |
Collapse
|
9
|
Fu M, Zhou H, Yang J, Cao D, Yuan Z. Infiltration of CD8 + cytotoxic T-cells and expression of PD-1 and PD-L1 in ovarian clear cell carcinoma. Sci Rep 2025; 15:4716. [PMID: 39922892 PMCID: PMC11807128 DOI: 10.1038/s41598-025-89270-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 02/04/2025] [Indexed: 02/10/2025] Open
Abstract
Ovarian clear cell carcinoma (OCCC) is resistant to chemotherapy, with limited treatment options for advanced and recurrent disease. The prevalence of OCCC differs by region. Assessing the expression of programmed cell death ligand 1 (PD-L1), PD-1, and CD8+T cell infiltration in OCCC is crucial, as their correlation with patient survival may provide valuable prognostic insights. We collected data from 36 samples from 18 OCCC patients, including 18 pairs of tumors and adjacent nonneoplastic samples. The optimized multiplex immunofluorescence technique was used to stain paraffin sections for immune factors related to the immune microenvironment of OCCC and clinical prognosis. The expression of PDL1 and PD1 in the tumor cells and tumor stromal cells was not significantly correlated with prognosis. Professional quantitative pathological analysis software was used to count the CD8+ cytotoxic T-cells in tumor regions and adjacent nonneoplastic regions in postoperative specimens. There were more CD8+ cytotoxic T-cells in the adjacent nonneoplastic areas than in the tumor tissue samples (p < 0.001). Further analysis revealed that a difference in cell density between CD8+ non-tumor-infiltrating lymphocytes (NTILs) and CD8+ tumor-infiltrating lymphocytes (TILs) exceeding 70 cells/mm2 was associated with poorer progression-free survival (PFS) (p = 0.042). In adjacent nonneoplastic regions, worse PFS was significantly observed in patients with high CD8+ T-cell expression in both total and stromal cells than those with low expression (p = 0.012 vs p = 0.007). The presence of CD8+ T-cells had significant potential for predicting the prognosis of patients with OCCC, which lays a foundation for the development of biomarkers for immune checkpoint blockade treatment response in OCCC patients.
Collapse
Affiliation(s)
- Mengdi Fu
- Department of Obstetrics and Gynecology, National Clinical Research Centre for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Huimei Zhou
- Department of Obstetrics and Gynecology, National Clinical Research Centre for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China.
| | - Jiaxin Yang
- Department of Obstetrics and Gynecology, National Clinical Research Centre for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China.
| | - Dongyan Cao
- Department of Obstetrics and Gynecology, National Clinical Research Centre for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China.
| | - Zhen Yuan
- Department of Obstetrics and Gynecology, National Clinical Research Centre for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| |
Collapse
|
10
|
Gupta R, Kumar R, Penn CA, Wajapeyee N. Immune evasion in ovarian cancer: implications for immunotherapy and emerging treatments. Trends Immunol 2025; 46:166-181. [PMID: 39855990 PMCID: PMC11835538 DOI: 10.1016/j.it.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/15/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025]
Abstract
Ovarian cancer (OC) is the most lethal gynecologic malignancy, characterized by multiple histological subtypes, each with distinct pathological and clinical features. Current treatment approaches include cytotoxic chemotherapies, poly(ADP-ribose) polymerase (PARP) inhibitors, bevacizumab, hormonal therapy, immunotherapy, and antibody-drug conjugates (ADCs). In this review we discuss immune evasion mechanisms in OC and the role of genetics, the tumor microenvironment, and tumor heterogeneity in influencing these processes. We also discuss the use of immunotherapies for OC treatment, either alone or in combination with other anticancer agents, with a focus on their clinical outcomes. Finally, we highlight emerging immunotherapies that have either succeeded or are on the verge of significantly impacting cancer treatment, and we discuss their potential utility in the effective treatment of OC.
Collapse
Affiliation(s)
- Romi Gupta
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, AL 35233, USA.
| | - Raj Kumar
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Courtney A Penn
- Division of Gynecological Oncology, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Narendra Wajapeyee
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, AL 35233, USA.
| |
Collapse
|
11
|
Lakhani NJ, Stewart D, Richardson DL, Dockery LE, Van Le L, Call J, Rangwala F, Wang G, Ma B, Metenou S, Huguet J, Offman E, Pandite L, Hamilton E. First-in-human phase I trial of the bispecific CD47 inhibitor and CD40 agonist Fc-fusion protein, SL-172154 in patients with platinum-resistant ovarian cancer. J Immunother Cancer 2025; 13:e010565. [PMID: 39800375 PMCID: PMC11749819 DOI: 10.1136/jitc-2024-010565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/18/2024] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND SL-172154 is a hexameric fusion protein adjoining the extracellular domain of SIRPα to the extracellular domain of CD40L via an inert IgG4-derived Fc domain. In preclinical studies, a murine equivalent SIRPα-Fc-CD40L fusion protein provided superior antitumor immunity in comparison to CD47- and CD40-targeted antibodies. A first-in-human phase I trial of SL-172154 was conducted in patients with platinum-resistant ovarian cancer. METHODS SL-172154 was administered intravenously at 0.1, 0.3, 1.0, 3.0, and 10.0 mg/kg. Dose escalation followed a modified toxicity probability interval-2 design. Objectives included evaluation of safety, dose-limiting toxicity, recommended phase II dose, pharmacokinetic (PK) and pharmacodynamic (PD) parameters, and antitumor activity. RESULTS 27 patients (median age 66 years (range, 33-85); median of 4 prior systemic therapies (range, 2-9)) with ovarian (70%), fallopian tube (15%), or primary peritoneal (15%) cancer received SL-172154. Treatment-emergent adverse events (TEAEs) were reported for 27 patients (100%), with 24 (88.9%) having a drug-related TEAE and infusion-related reactions being the most common. 12 patients (44.4%) had grade 3/4 TEAEs, and half of these patients (22.2%) had a drug-related grade 3/4 TEAE. There were no fatal adverse events, and no TEAEs led to drug discontinuation. SL-172154 Cmax and area under the curve increased with dose with greater than proportional exposure noted at 3.0 and 10.0 mg/kg. CD47 and CD40 target engagement on CD4+ T cells and B cells, respectively, approached 100% by 3.0 mg/kg. Dose-dependent responses in multiple cytokines (eg, interleukin 12 (IL-12), IP-10) approached a plateau at ≥3.0 mg/kg. Paired tumor biopsies demonstrated a shift in macrophages from an M2- to an M1-dominant phenotype and increased infiltration of CD8 T cells. PK/PD modeling showed near maximal margination of B cells and a dose-dependent production of IL-12 nearing a plateau at >3.0 mg/kg. The best response was stable disease in 6/27 (22%) patients. CONCLUSIONS SL-172154 was tolerable as monotherapy and induced, dose-dependent, and cyclical immune cell activation, increases in multiple serum cytokines, and trafficking of CD40-positive B cells and monocytes following each infusion. The safety, PK, and PD activity support 3.0 mg/kg as a safe and pharmacologically active dose. TRIAL REGISTRATION NUMBER NCT04406623.
Collapse
Affiliation(s)
- Nehal J Lakhani
- Clinical Research, START Midwest, Grand Rapids, Michigan, USA
| | - Daphne Stewart
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Debra L Richardson
- Division of Gynecologic Oncology, Stephenson Cancer Center and Sarah Cannon Research Institute/University of Oklahoma, Oklahoma City, Oklahoma, USA
| | - Lauren E Dockery
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Linda Van Le
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Justin Call
- Medical Oncology, START Mountain Region, West Valley City, Utah, USA
| | - Fatima Rangwala
- Clinical Research, Shattuck Labs R&D Office, Durham, North Carolina, USA
| | - Guanfang Wang
- Biometrics, Shattuck Labs R&D Office, Durham, North Carolina, USA
| | - Bo Ma
- Biometrics, Shattuck Labs R&D Office, Durham, North Carolina, USA
| | - Simon Metenou
- Translational Medicine, Shattuck Labs R&D Office, Durham, North Carolina, USA
| | - Jade Huguet
- Translational and Clinical Pharmacology, Certara, Toronto, Ontario, Canada
| | - Elliot Offman
- Translational and Clinical Pharmacology, Certara, Toronto, Ontario, Canada
| | - Lini Pandite
- Clinical Research, Shattuck Labs R&D Office, Durham, North Carolina, USA
| | - Erika Hamilton
- Medical Oncology, Sarah Cannon Research Institute, Nashville, Tennessee, USA
| |
Collapse
|
12
|
Nasso C, Puglisi S, Rebuzzi SE, Errigo V, Rosa F, Chiola I, Lazzari C, Musizzano Y, Venturino E, Gastaldo A, Siccardi C, Volpi EO, Mammoliti S, Benasso M. Immune checkpoint inhibitors in gynecological cancers: a narrative review on the practice-changing trials. Immunotherapy 2025; 17:57-66. [PMID: 39893504 PMCID: PMC11834418 DOI: 10.1080/1750743x.2025.2460964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 01/28/2025] [Indexed: 02/04/2025] Open
Abstract
During the last decades, the introduction of immune checkpoint inhibitors has radically changed the treatment landscape of several cancer types, improving the prognosis and the quality of life of cancer patients. Even for gynecological cancers, where the prognosis has historically been poor despite advancements in surgery, radiotherapy and oncological treatment, immunotherapy has represented a significant leap forward. In cervical and endometrial cancer, the introduction of immunotherapy has radically changed the treatment algorithm, especially for advanced disease. However, the scenario remains less promising for ovarian cancer, where, despite extensive research efforts, no consistent positive results have been achieved with immune checkpoint inhibitors, except for a few cases in rarer histological subtypes Here, we present a narrative review summarizing the most important practice-changing studies involving immune checkpoint inhibitors in gynecological cancers, particularly in cervical, endometrial, ovarian and vulvar cancer.
Collapse
Affiliation(s)
- Cecilia Nasso
- Medical Oncology Unit, Ospedale Santa Corona, Pietra Ligure, Italy
| | - Silvia Puglisi
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico, San Martino, Italy
| | | | - Veronica Errigo
- Anatomical Pathology Unit, Ospedale San Paolo, Savona, Italy
| | - Francesca Rosa
- Diagnostic Imaging Department, Ospedale San Paolo, Savona, Italy
| | - Ilaria Chiola
- Radiotherapy Unit, Ospedale San Paolo, Savona, Italy
| | - Caterina Lazzari
- Obstetrics and Gynecology Unit, Ospedale San Paolo, Savona, Italy
| | - Yuri Musizzano
- Anatomical Pathology Unit, Ospedale San Paolo, Savona, Italy
| | - Ezio Venturino
- Anatomical Pathology Unit, Ospedale San Paolo, Savona, Italy
| | | | | | | | | | - Marco Benasso
- Medical Oncology Unit, Ospedale Santa Corona, Pietra Ligure, Italy
- Medical Oncology Unit, Ospedale San Paolo, Savona, Italy
| |
Collapse
|
13
|
Zhao C, Jiang X, Wang M, Gui S, Yan X, Dong Y, Liu D. Constructing protein-functionalized DNA origami nanodevices for biological applications. NANOSCALE 2024; 17:142-157. [PMID: 39564893 DOI: 10.1039/d4nr03599b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
In living systems, proteins participate in various physiological processes and the clustering of multiple proteins is essential for efficient signaling. Therefore, understanding the effects of the number, distance and orientation of proteins is of great significance. With programmability and addressability, DNA origami technology has enabled fabrication of sophisticated nanostructures with precise arrangement and orientation control of proteins to investigate the effects of these parameters on protein-involved cellular processes. Herein, we highlight the construction and applications of protein-functionalized DNA origami nanodevices. After the introduction of the structural design principles of DNA origami and the strategies of protein-DNA conjugation, the emerging applications of protein-functionalized DNA origami nanodevices with controlled key parameters are mainly discussed, including the regulation of enzyme cascade reactions, modulation of cellular behaviours, drug delivery therapy and protein structural analysis. Finally, the current challenges and potential directions of protein-functionalized DNA origami nanodevices are also presented, advancing their applications in biomedicine, cell biology and structural biology.
Collapse
Affiliation(s)
- Chuangyuan Zhao
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xinran Jiang
- School of Life Sciences Fudan University, Shanghai, 200433, China
| | - Miao Wang
- Chemistry and chemical biology, Cornell university, 122 Baker Laboratory, Ithaca, NY 14853, USA
| | - Songbai Gui
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 100071, Beijing, China.
| | - Xin Yan
- Department of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191, China.
| | - Yuanchen Dong
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Dongsheng Liu
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
14
|
Kurnit KC, Odunsi K. Harnessing Antitumor Immunity in Ovarian Cancer. Cold Spring Harb Perspect Med 2024; 14:a041336. [PMID: 38621830 PMCID: PMC11610759 DOI: 10.1101/cshperspect.a041336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Despite progress in other tumor types, immunotherapy is not yet part of the standard of care treatment for high-grade serous ovarian cancer patients. Although tumor infiltration by T cells is frequently observed in patients with ovarian cancer, clinical responses to immunotherapy remain low. Mechanisms for immune resistance in ovarian cancer have been explored and may provide insight into future approaches to improve response to immunotherapy agents. In this review, we discuss what is known about the immune landscape in ovarian cancer, review the available data for immunotherapy-based strategies in these patients, and provide possible future directions.
Collapse
Affiliation(s)
- Katherine C Kurnit
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, Illinois 60637, USA
| | - Kunle Odunsi
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, Illinois 60637, USA
- University of Chicago Medicine Comprehensive Cancer Center, Chicago, Illinois 60637, USA
| |
Collapse
|
15
|
Dey Bhowmik A, Shaw P, Gopinatha Pillai MS, Rao G, Dwivedi SKD. Evolving landscape of detection and targeting miRNA/epigenetics for therapeutic strategies in ovarian cancer. Cancer Lett 2024; 611:217357. [PMID: 39615646 DOI: 10.1016/j.canlet.2024.217357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/14/2024]
Abstract
Ovarian cancer (OC) accounts for the highest mortality rates among all gynecologic malignancies. The high mortality of OC is often associated with delayed detection, prolonged latency, enhanced metastatic potential, acquired drug resistance, and frequent recurrence. This review comprehensively explores key aspects of OC, including cancer diagnosis, mechanisms of disease resistance, and the pivotal role of epigenetic regulation, particularly by microRNAs (miRs) in cancer progression. We highlight the intricate regulatory mechanisms governing miR expression within the context of OC and the current status of epigenetic advancement in the therapeutic development and clinical trial progression. Through network analysis we elucidate the regulatory interactions between dysregulated miRs in OC and their targets which are involved in different signaling pathways. By exploring these interconnected facets and critical analysis, we endeavor to provide a nuanced understanding of the molecular dynamics underlying OC, its detection and shedding light on potential avenues for miRs and epigenetics-based therapeutic intervention and management strategies.
Collapse
Affiliation(s)
- Arpan Dey Bhowmik
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Pallab Shaw
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Mohan Shankar Gopinatha Pillai
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Geeta Rao
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Shailendra Kumar Dhar Dwivedi
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
16
|
Aliyeva T, Aktas BY, Gundogdu F, Chalabiyev E, Arik Z, Usubutun A. The predictive role of PD-L1 expression and CD8 + TIL levels in determining the neoadjuvant chemotherapy response in advanced ovarian cancer. J Ovarian Res 2024; 17:234. [PMID: 39580458 PMCID: PMC11585239 DOI: 10.1186/s13048-024-01533-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 10/08/2024] [Indexed: 11/25/2024] Open
Abstract
OBJECTIVE To analyze how the PD-L1 expression and CD8 + tumor infiltrating lymphocyte (TIL) levels in biopsy samples before neoadjuvant chemotherapy (NACT) can predict chemotherapy response score and survival for advanced high-grade serous ovarian cancer (HGSC). METHODS We retrospectively analyzed 45 patients with advanced epithelial ovarian cancer between 2010 and 2018, who had received at least three cycles of NACT. PD-L1 expression and CD8 + TIL levels were evaluated by immunohistochemical staining in the pre-NAC tumor samples from which the patients had been diagnosed. The post-NACT tissue samples taken during interval debulking surgery (IDS) were used to evaluate the chemotherapy response score (CRS). RESULTS Among all the patients, CRS 1 (no response) was found in 8 patients, CRS 2 (partial response) in 28 patients, and CRS 3 (complete response) in 9 patients. A total of 20 (44.4%) patients had high intratumoral CD8 + TILs (iCD8 + TILs) levels, and 35 (77.8%) patients had high expression stromal CD8 + TILs (sCD8 + TILs). No statistically significant relationship was found between high and low expression of i/s CD8 + TILs levels with PFS and CRS. The study found that 33 (73.3%) patients had high levels of stromal PD-L1 (sPD-L1) expression and 28 (62.2%) patients had high levels of intratumoral PD-L1 (iPD-L1) expression. In the iPD-L1 group, patients with low expression had a PFS of 28 months, whereas those with high expression had a PFS of 17 months (p = 0.028). Among the patients with high iPD-L1 expression, 23 (82.1%) patients showed CRS2, 4 (14.3%) showed CRS3, and only 1 (3.6%) showed CRS1 (p < 0.001). However, high or low expression sPD-L1 did not significantly affect PFS and CRS (p = 0.928 and p = 0.305; respectively). CONCLUSIONS We found that iPD-L1 expression levels in diagnostic biopsy in ovarian cancer can predict the chemotherapy response score in interval debulking surgery.
Collapse
Affiliation(s)
- T Aliyeva
- Department of Internal Medicine, Hacettepe University School of Medicine, Ankara, Turkey.
| | - B Y Aktas
- Division of Medical Oncology, Hacettepe University School of Medicine, Ankara, Turkey
| | - F Gundogdu
- Department of Pathology, Hacettepe University School of Medicine, Ankara, Turkey
| | - E Chalabiyev
- Division of Medical Oncology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Z Arik
- Division of Medical Oncology, Hacettepe University School of Medicine, Ankara, Turkey
| | - A Usubutun
- Department of Pathology, Hacettepe University School of Medicine, Ankara, Turkey
| |
Collapse
|
17
|
Huang Y, Gui Z, Wu M, Zhang M, Jiang Y, Ding Q, Yang J, Ye Y, Zhang M. Tumor-infiltrating B cell-related lncRNA crosstalk reveals clinical outcomes and tumor immune microenvironment in ovarian cancer based on single-cell and bulk RNA-sequencing. Heliyon 2024; 10:e39496. [PMID: 39559246 PMCID: PMC11570495 DOI: 10.1016/j.heliyon.2024.e39496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 11/20/2024] Open
Abstract
Background The tumor immune microenvironment (TIME) plays a pivotal role in determining ovarian cancer (OC) prognosis. Long non-coding RNAs (lncRNAs) are key regulators of immune response and tumor progression in OC. Among these, tumor-infiltrating B cells represent an emerging target in immune response pathways. However, the specific involvement of B cell-related lncRNAs (BCRLs) in OC remains unclarified. Methods Leveraging single-cell and bulk RNA-sequencing data, correlation analysis identified BCRLs in ovarian serous cystadenocarcinoma (OV) from the TCGA database. Subsequently, BCRLIs were filtered through COX survival analysis and the LASSO algorithm, leading to the development of a B cell-related lncRNA scoring system (BCRLss). The predictive accuracy of BCRLss for prognosis in TCGA-OV was assessed and externally validated in an independent cohort. Functional enrichment analyses were conducted to elucidate biological pathways associated with risk subgroups. Additionally, the relationship between BCRLss and TIME was investigated through multiple algorithms and consensus clustering, uncovering potential immune response targets. Drug sensitivity analyses further identified potential therapeutic options tailored to risk subgroups. The highest risk score lncRNA was selected for in vitro validation. Results The BCRLss was constructed using six BCRLIs. Survival analysis revealed an improved prognosis in the low-risk group, with results corroborated by external validation in the ICGC-OV cohort. ROC analysis and nomogram construction confirmed the strong prognostic accuracy of BCRLss. Enrichment analysis highlighted associations between risk subgroups and tumor immune pathways, with the low-risk group demonstrating a more robust immune response and elevated expression of immune checkpoint-related genes. Drug sensitivity tests revealed notable differences across risk subgroups. In vitro experiments confirmed elevated LINC01150 expression in OC cells, and LINC01150 knockdown significantly inhibited the proliferation, invasion, and migration of SKOV3 cells. Conclusions In conclusion, BCRLss provides a reliable prognostic tool for predicting clinical outcomes and the immune landscape of patients with OC, offering valuable guidance for immunotherapy target selection and personalized treatment strategies.
Collapse
Affiliation(s)
- Yi Huang
- Wuhu Hospital of Traditional Chinese Medicine, Wuhu, 241000, China
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Zhongxuan Gui
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- The Traditnional and Western Medicine (TCM)-Integrated Cancer Center of Anhui Medical University, Hefei, 230022, China
| | - Muyun Wu
- Internal Medicine Department of Oncology, Anhui Wannan Rehabilitation Hospital (The Fifth People's Hospital of Wuhu), Wuhu, 241000, China
| | - Mengmeng Zhang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- The Traditnional and Western Medicine (TCM)-Integrated Cancer Center of Anhui Medical University, Hefei, 230022, China
| | - Yue Jiang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- The Traditnional and Western Medicine (TCM)-Integrated Cancer Center of Anhui Medical University, Hefei, 230022, China
| | - Qiaoqiao Ding
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Graduate School of Anhui University of Chinese Medicine, Hefei, 230022, China
| | - Jinping Yang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- The Traditnional and Western Medicine (TCM)-Integrated Cancer Center of Anhui Medical University, Hefei, 230022, China
| | - Yingquan Ye
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- The Traditnional and Western Medicine (TCM)-Integrated Cancer Center of Anhui Medical University, Hefei, 230022, China
| | - Mei Zhang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Graduate School of Anhui University of Chinese Medicine, Hefei, 230022, China
- The Traditnional and Western Medicine (TCM)-Integrated Cancer Center of Anhui Medical University, Hefei, 230022, China
| |
Collapse
|
18
|
Zeng Q, Zeng S, Dai X, Ding Y, Huang C, Ruan R, Xiong J, Tang X, Deng J. MDM2 inhibitors in cancer immunotherapy: Current status and perspective. Genes Dis 2024; 11:101279. [PMID: 39263534 PMCID: PMC11388719 DOI: 10.1016/j.gendis.2024.101279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/13/2024] [Accepted: 02/21/2024] [Indexed: 09/13/2024] Open
Abstract
Murine double minute 2 (MDM2) plays an essential role in the cell cycle, apoptosis, DNA repair, and oncogene activation through p53-dependent and p53-independent signaling pathways. Several preclinical studies have shown that MDM2 is involved in tumor immune evasion. Therefore, MDM2-based regulation of tumor cell-intrinsic immunoregulation and the immune microenvironment has attracted increasing research attention. In recent years, immune checkpoint inhibitors targeting PD-1/PD-L1 have been widely used in the clinic. However, the effectiveness of a single agent is only approximately 20%-40%, which may be related to primary and secondary drug resistance caused by the dysregulation of oncoproteins. Here, we reviewed the role of MDM2 in regulating the immune microenvironment, tumor immune evasion, and hyperprogression during immunotherapy. In addition, we summarized preclinical and clinical findings on the use of MDM2 inhibitors in combination with immunotherapy in tumors with MDM2 overexpression or amplification. The results reveal that the inhibition of MDM2 could be a promising strategy for enhancing immunotherapy.
Collapse
Affiliation(s)
- Qinru Zeng
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Shaocheng Zeng
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Xiaofeng Dai
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Yun Ding
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Chunye Huang
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Ruiwen Ruan
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Xiaomei Tang
- Department of Oncology, Jiangxi Chest Hospital, Nanchang, Jiangxi 330006, China
| | - Jun Deng
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
- Postdoctoral Innovation Practice Base, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| |
Collapse
|
19
|
Lu Y, Chen W, Xuan Y, Li X, Wu S, Wang H, Guo T, Wang C, Tian S, Li H, Lai D, Zhao W, Huang X, Zhao X, Wang B, Zhang X, Li H, Huang Y, Ma X. ATF4/NUPR1 axis promotes cancer cell survival and mediates immunosuppression in clear cell renal cell carcinoma. Discov Oncol 2024; 15:607. [PMID: 39480570 PMCID: PMC11528094 DOI: 10.1007/s12672-024-01485-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024] Open
Abstract
Cancer cells encounter unavoidable stress during tumor growth. The stress-induced transcription factor, activating transcription factor 4 (ATF4), has been reported to upregulate various adaptive genes involved in salvage pathways to alleviate stress and promote tumor progression. However, this effect is unknown in clear cell renal cell carcinoma (ccRCC). In this study, we found that ATF4 expression was remarkably upregulated in tumor tissues and associated with poor ccRCC outcomes. ATF4 depletion significantly impaired ccRCC cell proliferation, migration, and invasion in vitro and in vivo by inhibiting the AKT/mTOR and epithelial-mesenchymal transition (EMT)-related signaling pathway. RNA sequencing and functional studies identified nuclear protein 1 (NUPR1) as a key downstream target of ATF4 for repressing ferroptosis and promoting ccRCC cell survival. In addition, targeting ATF4 or pharmacological inhibition using NUPR1 inhibitor ZZW115 promoted antitumor immunity in syngeneic graft mouse models, represented by increased infiltration of CD4+ and CD8+ T cells. Furthermore, ZZW115 could improve the response to the PD-1 immune checkpoint blockade. The results demonstrate that the ATF4/NUPR1 signaling axis promotes ccRCC survival and facilitates tumor-mediated immunosuppression, providing a set of potential targets and prognostic indicators for ccRCC patients.
Collapse
Affiliation(s)
- Yongliang Lu
- People's Liberation Army Postgraduate Medical School, Fuxing Road 28, Haidian District, Beijing, 100853, China
- State Key Laboratory of Kidney Diseases, Senior Department of Urology, The Third Medical Center of Chinese PLA General Hospital, Yongding Road 69, Haidian District, Beijing, 100039, China
| | - Weihao Chen
- People's Liberation Army Postgraduate Medical School, Fuxing Road 28, Haidian District, Beijing, 100853, China
- State Key Laboratory of Kidney Diseases, Senior Department of Urology, The Third Medical Center of Chinese PLA General Hospital, Yongding Road 69, Haidian District, Beijing, 100039, China
| | - Yundong Xuan
- People's Liberation Army Postgraduate Medical School, Fuxing Road 28, Haidian District, Beijing, 100853, China
- State Key Laboratory of Kidney Diseases, Senior Department of Urology, The Third Medical Center of Chinese PLA General Hospital, Yongding Road 69, Haidian District, Beijing, 100039, China
| | - Xiubin Li
- State Key Laboratory of Kidney Diseases, Senior Department of Urology, The Third Medical Center of Chinese PLA General Hospital, Yongding Road 69, Haidian District, Beijing, 100039, China
| | - Shengpan Wu
- People's Liberation Army Postgraduate Medical School, Fuxing Road 28, Haidian District, Beijing, 100853, China
- State Key Laboratory of Kidney Diseases, Senior Department of Urology, The Third Medical Center of Chinese PLA General Hospital, Yongding Road 69, Haidian District, Beijing, 100039, China
| | - Hanfeng Wang
- People's Liberation Army Postgraduate Medical School, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Tao Guo
- People's Liberation Army Postgraduate Medical School, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Chenfeng Wang
- People's Liberation Army Postgraduate Medical School, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Shuo Tian
- People's Liberation Army Postgraduate Medical School, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Huaikang Li
- People's Liberation Army Postgraduate Medical School, Fuxing Road 28, Haidian District, Beijing, 100853, China
- State Key Laboratory of Kidney Diseases, Senior Department of Urology, The Third Medical Center of Chinese PLA General Hospital, Yongding Road 69, Haidian District, Beijing, 100039, China
| | - Dong Lai
- People's Liberation Army Postgraduate Medical School, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Wenlei Zhao
- People's Liberation Army Postgraduate Medical School, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Xing Huang
- People's Liberation Army Postgraduate Medical School, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Xupeng Zhao
- School of Medicine, Nankai University, Weijin Road 94, Tianjin, 300071, China
| | - Baojun Wang
- State Key Laboratory of Kidney Diseases, Senior Department of Urology, The Third Medical Center of Chinese PLA General Hospital, Yongding Road 69, Haidian District, Beijing, 100039, China
| | - Xu Zhang
- State Key Laboratory of Kidney Diseases, Senior Department of Urology, The Third Medical Center of Chinese PLA General Hospital, Yongding Road 69, Haidian District, Beijing, 100039, China
| | - Hongzhao Li
- State Key Laboratory of Kidney Diseases, Senior Department of Urology, The Third Medical Center of Chinese PLA General Hospital, Yongding Road 69, Haidian District, Beijing, 100039, China.
| | - Yan Huang
- State Key Laboratory of Kidney Diseases, Senior Department of Urology, The Third Medical Center of Chinese PLA General Hospital, Yongding Road 69, Haidian District, Beijing, 100039, China.
| | - Xin Ma
- State Key Laboratory of Kidney Diseases, Senior Department of Urology, The Third Medical Center of Chinese PLA General Hospital, Yongding Road 69, Haidian District, Beijing, 100039, China.
| |
Collapse
|
20
|
Connor A, Lyons P, Kilgallon A, Simpson J, Perry A, Lysaght J. Examining the evidence for immune checkpoint therapy in high-grade serous ovarian cancer. Heliyon 2024; 10:e38888. [PMID: 39640610 PMCID: PMC11620064 DOI: 10.1016/j.heliyon.2024.e38888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 12/07/2024] Open
Abstract
The 5-year survival rate for ovarian cancer has remained relatively static over the past number of years, which can be attributed in part to the lack of new therapeutic strategies to target this disease. Although numerous other cancer types have benefited from the success of immune checkpoint inhibitors, their use in clinical trials targeting ovarian cancer has shown limited efficacy. Most clinical trials have focused on PD-1/PD-L1 immune checkpoint blockade, either as a monotherapy or in combination with chemotherapies, however inhibiting other pathways may potentially be more efficacious in treating ovarian cancer. For example, drugs targeting some emerging immune checkpoints (such as LAG-3, TIM-3, TIGIT and PVRIG), are entering into clinical trials, which could show improved success for ovarian cancer patients. Similarly, predictive biomarkers that have been approved for use with immune checkpoint inhibitors, such as PD-L1 expression, are limited, as only the presence or absence of PD-L1 is assessed. However, the development of next generation predictive biomarkers, which assesses density and location of tumour infiltrating lymphocytes, could be more beneficial for this heterogenous cancer. In this review we discuss the use of immune checkpoint inhibitors in ovarian cancer, with a focus on high-grade serous disease, and delve into what the future may hold for immunotherapy in this cancer type.
Collapse
Affiliation(s)
- A.E. Connor
- UCD School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- Cell Screening Laboratory, University College Dublin, Dublin, Ireland
| | - P.M. Lyons
- Cancer Immunology and Immunotherapy Group, Department of Surgery, School of Medicine, Trinity Translational Medicine Institute and Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland
| | - A.M. Kilgallon
- Cancer Immunology and Immunotherapy Group, Department of Surgery, School of Medicine, Trinity Translational Medicine Institute and Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland
| | - J.C. Simpson
- UCD School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- Cell Screening Laboratory, University College Dublin, Dublin, Ireland
| | - A.S. Perry
- UCD School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - J. Lysaght
- Cancer Immunology and Immunotherapy Group, Department of Surgery, School of Medicine, Trinity Translational Medicine Institute and Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
21
|
Kefas J, Flynn M. Unlocking the potential of immunotherapy in platinum-resistant ovarian cancer: rationale, challenges, and novel strategies. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:39. [PMID: 39534871 PMCID: PMC11555186 DOI: 10.20517/cdr.2024.67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
Ovarian cancer is a significant global health challenge, with cytoreductive surgery and platinum-based chemotherapy serving as established primary treatments. Unfortunately, most patients relapse and ultimately become platinum-resistant, at which point there are limited effective treatment options. Given the success of immunotherapy in inducing durable treatment responses in several other cancers, its potential in platinum-resistant ovarian cancer (PROC) is currently being investigated. However, in unselected advanced ovarian cancer populations, researchers have reported low response rates to immune checkpoint inhibition, and thus far, no validated biomarkers are predictive of response. Understanding the intricate interplay between platinum resistance, immune recognition, and the tumour microenvironment (TME) is crucial. In this review, we examine the research challenges encountered thus far, the biological rationale for immunotherapy, the underlying mechanisms of immune resistance, and new strategies to overcome resistance.
Collapse
Affiliation(s)
| | - Michael Flynn
- Medical Oncology, University College London Hospitals NHS Foundation Trust, London NW1 2PG, UK
| |
Collapse
|
22
|
Xu H, Zhang Y, Xie Z, Xie XF, Qiao WL, Wang M, Zhao BB, Hua T. Investigating PPT2's role in ovarian cancer prognosis and immunotherapy outcomes. J Ovarian Res 2024; 17:198. [PMID: 39394143 PMCID: PMC11468411 DOI: 10.1186/s13048-024-01527-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/01/2024] [Indexed: 10/13/2024] Open
Abstract
Ovarian cancer (OC) remains the primary cause of mortality among gynecological malignancies, and the identification of reliable molecular biomarkers to prognosticate OC outcomes is yet to be achieved. The gene palmitoyl protein thioesterase 2 (PPT2), which has been sparsely studied in OC, was closely associated with metabolism. This study aimed to determine the association between PPT2 expression, prognosis, immune infiltration, and potential molecular mechanisms in OC. We obtained the RNA-seq and clinical data from The Cancer Genome Atlas (TCGA), The Genotype-Tissue Expression (GTEx) and Gene Expression Omnibus (GEO) databases, then Kaplan-Meier analysis, univariate Cox regression, multivariate Cox regression, nomogram, and calibration were conducted to assess and verify the role of PPT2. Gene set enrichment analysis (GSEA) was used to figure out the closely correlated pathways with PPT2. Overexpression experiment was performed to explore the function of PPT2. Our findings showed that PPT2 mRNA expression was apparent down-regulation in OC tissue compared to normal ovarian tissues in TCGA, GTEx datasets, and GEO datasets. This differential expression was also confirmed in our in-house datasets at both the mRNA and protein levels. Decreased PPT2 expression correlated with lower survival rates in TCGA, several GEO datasets, and our in-house datasets. Multivariate analysis revealed that PPT2 was an independent factor in predicting better outcomes for OC patients in TCGA and GEO. A negative correlation was revealed between immune infiltration and PPT2 expression through Single-sample GSEA (ssGSEA). Additionally, PPT2 was negatively correlated with an up-regulated immune score, stromal score, and estimate score, suggesting that patients with low PPT2 expression might benefit more from immunotherapy. Numerous chemical agents showed lower IC50 in patients with high PPT2 expression. In single-cell RNA sequencing (scRNA-seq) analysis of several OC datasets, we found PPT2 was mainly expressed in endothelial cells. Furthermore, we found that PPT2 inhibited OC cell proliferation in vitro. Our results demonstrated that PPT2 was considered a favorable prognostic biomarker for OC and may be vital in predicting response to immunotherapy and chemotherapy. Further research was needed to fully understand the relationship between PPT2 and immunotherapy efficacy in OC patients.
Collapse
Affiliation(s)
- Hui Xu
- Department of Gynecology, Affiliated Xingtai People Hospital of Hebei Medical University, 16 Hongxing Road, Xingtai, Hebei, 054001, China
| | - Yan Zhang
- Department of Gynecology, Affiliated Xingtai People Hospital of Hebei Medical University, 16 Hongxing Road, Xingtai, Hebei, 054001, China
| | - Zhen Xie
- Department of Gynecology, Affiliated Xingtai People Hospital of Hebei Medical University, 16 Hongxing Road, Xingtai, Hebei, 054001, China
| | - Xiao-Feng Xie
- Department of Gynecology, Affiliated Xingtai People Hospital of Hebei Medical University, 16 Hongxing Road, Xingtai, Hebei, 054001, China
| | - Wen-Lan Qiao
- Department of Gynecology, Affiliated Xingtai People Hospital of Hebei Medical University, 16 Hongxing Road, Xingtai, Hebei, 054001, China
| | - Miao Wang
- Department of Gynecology, Affiliated Xingtai People Hospital of Hebei Medical University, 16 Hongxing Road, Xingtai, Hebei, 054001, China
| | - Bei-Bei Zhao
- Department of Gynecology, Affiliated Xingtai People Hospital of Hebei Medical University, 16 Hongxing Road, Xingtai, Hebei, 054001, China
| | - Tian Hua
- Department of Gynecology, Affiliated Xingtai People Hospital of Hebei Medical University, 16 Hongxing Road, Xingtai, Hebei, 054001, China.
| |
Collapse
|
23
|
Shin E, Kim HM, Koo JS. Expression of PD-L1 in breast invasive lobular carcinoma. PLoS One 2024; 19:e0309170. [PMID: 39388456 PMCID: PMC11466385 DOI: 10.1371/journal.pone.0309170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/06/2024] [Indexed: 10/12/2024] Open
Abstract
PURPOSE The purpose of this study was to investigate the expression of PD-L1 in invasive lobular carcinoma (ILC) and to determine its implications. METHODS Tissue microarrays were constructed for 101 cases of ILC, and immunohistochemical staining for PD-L1 (using 22C3, SP142, and SP263 antibodies) was performed to examine the correlation between staining results and clinicopathologic parameters. RESULTS The positive cut-off values were defined as tumor cell (TC)≥1%, immune cell (IC)>0%, and IC≥1%. The range of PD-L1 TC positivity was 0.0-2.0%, with PD-L1 SP263 TC showing the highest positivity of 2.0%. The range of PD-L1 IC positivity was 0-21.8% for IC ≥ 1%, with PD-L1 22C3 IC showing the highest positivity. When PD-L1 IC was positive (IC≥1%), the highest antibody agreement was observed between SP263 and SP142 (OA = 93.1%), while the lowest agreement was observed between 22C3 and SP263 (OA = 73.3%, κ = 0.040). PD-L1 22C3 IC positivity (≥1%) was associated with high nuclear grade (p = 0.002), HER-2 positivity (p = 0.019), and pleomorphic type (p = 0.002). CONCLUSION PD-L1 expression in ILC shows a low TC positivity rate (0-2%) with various antibody clones and a variable IC positivity rate (0-21.8%). Pleomorphic type ILC exhibits higher PD-L1 IC positivity.
Collapse
Affiliation(s)
- Eunah Shin
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| | - Hye Min Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| | - Ja Seung Koo
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
24
|
Yamanaka K, Koma YI, Urakami S, Takahashi R, Nagamata S, Omori M, Torigoe R, Yokoo H, Nakanishi T, Ishihara N, Tsukamoto S, Kodama T, Nishio M, Shigeoka M, Yokozaki H, Terai Y. YKL40/Integrin β4 Axis Induced by the Interaction between Cancer Cells and Tumor-Associated Macrophages Is Involved in the Progression of High-Grade Serous Ovarian Carcinoma. Int J Mol Sci 2024; 25:10598. [PMID: 39408927 PMCID: PMC11477481 DOI: 10.3390/ijms251910598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/24/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
Macrophages in the tumor microenvironment, termed tumor-associated macrophages (TAMs), promote the progression of various cancer types. However, many mechanisms related to tumor-stromal interactions in epithelial ovarian cancer (EOC) progression remain unclear. High-grade serous ovarian carcinoma (HGSOC) is the most malignant EOC subtype. Herein, immunohistochemistry was performed on 65 HGSOC tissue samples, revealing that patients with a higher infiltration of CD68+, CD163+, and CD204+ macrophages had a poorer prognosis. We subsequently established an indirect co-culture system between macrophages and EOC cells, including HGSOC cells. The co-cultured macrophages showed increased expression of the TAM markers CD163 and CD204, and the co-cultured EOC cells exhibited enhanced proliferation, migration, and invasion. Cytokine array analysis revealed higher YKL40 secretion in the indirect co-culture system. The addition of YKL40 increased proliferation, migration, and invasion via extracellular signal-regulated kinase (Erk) signaling in EOC cells. The knockdown of integrin β4, one of the YKL40 receptors, suppressed YKL40-induced proliferation, migration, and invasion, as well as Erk phosphorylation in some EOC cells. Database analysis showed that high-level expression of YKL40 and integrin β4 correlated with a poor prognosis in patients with serous ovarian carcinoma. Therefore, the YKL40/integrin β4 axis may play a role in ovarian cancer progression.
Collapse
Affiliation(s)
- Keitaro Yamanaka
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (K.Y.); (S.U.); (M.O.); (R.T.); (H.Y.); (T.N.); (N.I.); (S.T.); (T.K.); (M.N.); (M.S.); (H.Y.)
- Division of Obstetrics and Gynecology, Department of Surgery Related, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (R.T.); (S.N.); (Y.T.)
| | - Yu-ichiro Koma
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (K.Y.); (S.U.); (M.O.); (R.T.); (H.Y.); (T.N.); (N.I.); (S.T.); (T.K.); (M.N.); (M.S.); (H.Y.)
| | - Satoshi Urakami
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (K.Y.); (S.U.); (M.O.); (R.T.); (H.Y.); (T.N.); (N.I.); (S.T.); (T.K.); (M.N.); (M.S.); (H.Y.)
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Ryosuke Takahashi
- Division of Obstetrics and Gynecology, Department of Surgery Related, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (R.T.); (S.N.); (Y.T.)
| | - Satoshi Nagamata
- Division of Obstetrics and Gynecology, Department of Surgery Related, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (R.T.); (S.N.); (Y.T.)
| | - Masaki Omori
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (K.Y.); (S.U.); (M.O.); (R.T.); (H.Y.); (T.N.); (N.I.); (S.T.); (T.K.); (M.N.); (M.S.); (H.Y.)
- Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Rikuya Torigoe
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (K.Y.); (S.U.); (M.O.); (R.T.); (H.Y.); (T.N.); (N.I.); (S.T.); (T.K.); (M.N.); (M.S.); (H.Y.)
- Division of Gastrointestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Hiroki Yokoo
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (K.Y.); (S.U.); (M.O.); (R.T.); (H.Y.); (T.N.); (N.I.); (S.T.); (T.K.); (M.N.); (M.S.); (H.Y.)
- Division of Gastrointestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Takashi Nakanishi
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (K.Y.); (S.U.); (M.O.); (R.T.); (H.Y.); (T.N.); (N.I.); (S.T.); (T.K.); (M.N.); (M.S.); (H.Y.)
- Division of Gastrointestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Nobuaki Ishihara
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (K.Y.); (S.U.); (M.O.); (R.T.); (H.Y.); (T.N.); (N.I.); (S.T.); (T.K.); (M.N.); (M.S.); (H.Y.)
- Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Shuichi Tsukamoto
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (K.Y.); (S.U.); (M.O.); (R.T.); (H.Y.); (T.N.); (N.I.); (S.T.); (T.K.); (M.N.); (M.S.); (H.Y.)
| | - Takayuki Kodama
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (K.Y.); (S.U.); (M.O.); (R.T.); (H.Y.); (T.N.); (N.I.); (S.T.); (T.K.); (M.N.); (M.S.); (H.Y.)
| | - Mari Nishio
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (K.Y.); (S.U.); (M.O.); (R.T.); (H.Y.); (T.N.); (N.I.); (S.T.); (T.K.); (M.N.); (M.S.); (H.Y.)
| | - Manabu Shigeoka
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (K.Y.); (S.U.); (M.O.); (R.T.); (H.Y.); (T.N.); (N.I.); (S.T.); (T.K.); (M.N.); (M.S.); (H.Y.)
| | - Hiroshi Yokozaki
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (K.Y.); (S.U.); (M.O.); (R.T.); (H.Y.); (T.N.); (N.I.); (S.T.); (T.K.); (M.N.); (M.S.); (H.Y.)
| | - Yoshito Terai
- Division of Obstetrics and Gynecology, Department of Surgery Related, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (R.T.); (S.N.); (Y.T.)
| |
Collapse
|
25
|
Tsai CL, Tang YH, Yang LY, Chao A, Wang CJ, Lin CY, Lai CH. Inhibition of nucleophosmin/B23 sensitizes ovarian cancer cells to immune check-point blockade via PD-L1 in ovarian cancer. J Formos Med Assoc 2024; 123:1045-1056. [PMID: 38821736 DOI: 10.1016/j.jfma.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 03/05/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) that against programmed cell death protein-1 (PD-1) and its ligand PD-L1 have been approved as a promising treatment of many human cancers. However, the responses to these ICIs were limited in patients with ovarian cancer. Studies have indicated that the response to PD-1/PD-L1 blockade might be correlated with the PD-L1 expression level in cancer cells. Nucleophosmin (NPM/B23) was found to be a potential target for immunotherapy. Whether NPM/B23 plays a role in cancer-associated immunity, such as PD-1/PD-L1 axis, and its underlying mechanisms remain largely unknown in ovarian cancer. METHODS We applied ovarian cancer cell lines as research models. The effect of modulating PD-L1 by NPM/B23 was subsequently confirmed via Western blot, flow cytometry, qRT-PCR, luciferase reporter assays, and immunoprecipitation. Protein stability and ubiquitin assay assays were used to analyze the interplay between NPM/B23 and NF-ĸB/p65 in PD-L1 regulation. The MOSEC/Luc xenograft mouse model was used to validate the role of NPM/B23-PD-L1 through tumor growth in vivo. RESULTS Our results revealed that NPM/B23 negatively regulates PD-L1 expression via a protein complex with NF-κB/p65 and through an IFN-γ pathway. Moreover, NPM/B23 inhibitor/modulator sensitized ovarian cancer cells to the anti-PD-1 antibody by regulating PD-L1 expression in the immunocompetent mouse model. Compared to anti-PD-1 antibody alone, a combination of anti-PD-1 antibody and NPM/B23 inhibitor/modulator showed reduced tumorigenesis and increased CD8+ T-cell expansion, thus contributing to prolonged survival on MOSEC/Luc-bearing mouse model. CONCLUSION Targeting NPM/B23 is a novel and potential therapeutic approach to sensitize ovarian cancer cells to immunotherapy.
Collapse
Affiliation(s)
- Chia-Lung Tsai
- Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan
| | - Yun-Hsin Tang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Branch, and Chang Gung University, College of Medicine, Taoyuan, Taiwan; Gynecologic Cancer Research Center, Chang Gung Memorial Hospital, Linkou Branch, Taiwan
| | - Lan-Yan Yang
- Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan; Biostatics Unit, and Clinical Trial Center, Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Taoyuan, Taiwan; Clinical Informatics and Medical Statistics Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Angel Chao
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Branch, and Chang Gung University, College of Medicine, Taoyuan, Taiwan; Gynecologic Cancer Research Center, Chang Gung Memorial Hospital, Linkou Branch, Taiwan
| | - Chin-Jung Wang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Branch, and Chang Gung University, College of Medicine, Taoyuan, Taiwan; Gynecologic Cancer Research Center, Chang Gung Memorial Hospital, Linkou Branch, Taiwan
| | - Chiao-Yun Lin
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Branch, and Chang Gung University, College of Medicine, Taoyuan, Taiwan; Gynecologic Cancer Research Center, Chang Gung Memorial Hospital, Linkou Branch, Taiwan.
| | - Chyong-Huey Lai
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Branch, and Chang Gung University, College of Medicine, Taoyuan, Taiwan; Gynecologic Cancer Research Center, Chang Gung Memorial Hospital, Linkou Branch, Taiwan.
| |
Collapse
|
26
|
Mastrogeorgiou M, Chatzikalil E, Theocharis S, Papoudou-Bai A, Péoc'h M, Mobarki M, Karpathiou G. The immune microenvironment of cancer of the uterine cervix. Histol Histopathol 2024; 39:1245-1271. [PMID: 38483012 DOI: 10.14670/hh-18-727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
While several treatment choices exist for cervical cancer, such as surgical therapy, chemotherapy, and radiotherapy, some patients will still show poor prognosis. HPV infection is a principal factor for cervical cancer development, from early inflammation to proliferation, angiogenesis, and neoplastic growth. While HPV T-cell responses exist, the tumor seems to evade the immune system upon its tolerance. The latter suggests the existence of a confluent tumor microenvironment responsible for the evasion tactics employed by the neoplasm. Therefore, novel biomarkers governing prognosis and treatment planning must be developed, with several studies tackling the significance of the tumor microenvironment in the genesis, development, proliferation, and overall response of cervical cancer during neoplastic processes. This review aims to analyze and contemplate the characteristics of the tumor microenvironment and its role in prognosis, progression, evasion, and invasion, including therapeutic outcome and overall survival.
Collapse
Affiliation(s)
- Michail Mastrogeorgiou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Elena Chatzikalil
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Michel Péoc'h
- Department of Pathology, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Mousa Mobarki
- Department of Pathology, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | - Georgia Karpathiou
- Department of Pathology, University Hospital of Saint-Etienne, Saint-Etienne, France.
| |
Collapse
|
27
|
Chen SF, Wang LY, Lin YS, Chen CY. Novel protein-based prognostic signature linked to immunotherapeutic efficiency in ovarian cancer. J Ovarian Res 2024; 17:190. [PMID: 39342345 PMCID: PMC11437962 DOI: 10.1186/s13048-024-01518-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Personalized medicine remains an unmet need in ovarian cancer due to its heterogeneous nature and complex immune microenvironments, which has gained increasing attention in the era of immunotherapy. A key obstacle is the lack of reliable biomarkers to identify patients who would benefit significantly from the therapy. While conventional clinicopathological factors have exhibited limited efficacy as prognostic indicators in ovarian cancer, multi-omics profiling presents a promising avenue for comprehending the interplay between the tumor and immune components. Here we aimed to leverage the individual proteomic and transcriptomic profiles of ovarian cancer patients to develop an effective protein-based signature capable of prognostication and distinguishing responses to immunotherapy. METHODS The workflow was demonstrated based on the Reverse Phase Protein Array (RPPA) and RNA-sequencing profiles of ovarian cancer patients from The Cancer Genome Atlas (TCGA). The algorithm began by clustering patients using immune-related gene sets, which allowed us to identify immune-related proteins of interest. Next, a multi-stage process involving LASSO and Cox regression was employed to distill a prognostic signature encompassing five immune-related proteins. Based on the signature, we subsequently calculated the risk score for each patient and evaluated its prognostic performance by comparing this model with conventional clinicopathological characteristics. RESULTS We developed and validated a protein-based prognostic signature in a cohort of 377 ovarian cancer patients. The risk signature outperformed conventional clinicopathological factors, such as age, grade, stage, microsatellite instability (MSI), and homologous recombination deficiency (HRD) status, in terms of prognoses. Patients in the high-risk group had significantly unfavorable overall survival (p < 0.001). Moreover, our signature effectively stratified patients into subgroups with distinct immune landscapes. The high-risk group exhibited higher levels of CD8 T-cell infiltration and a potentially greater proportion of immunotherapy responders. The co-activation of the TGF-β pathway and cancer-associated fibroblasts could impair the ability of cytotoxic T cells to eliminate cancer cells, leading to poor outcomes in the high-risk group. CONCLUSIONS The protein-based signature not only aids in evaluating the prognosis but also provides valuable insights into the tumor immune microenvironments in ovarian cancer. Together our findings highlight the importance of a thorough understanding of the immunosuppressive tumor microenvironment in ovarian cancer to guide the development of more effective immunotherapies.
Collapse
Affiliation(s)
- Shuo-Fu Chen
- Department of Heavy Particles & Radiation Oncology, Taipei Veterans General Hospital, Taipei, 112, Taiwan
| | - Liang-Yun Wang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Yi-Sian Lin
- Program in Genetics and Genomics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Cho-Yi Chen
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| |
Collapse
|
28
|
Park SH, Lee J, Yun HJ, Kim SH, Lee JH. Metformin Suppresses Both PD-L1 Expression in Cancer Cells and Cancer-Induced PD-1 Expression in Immune Cells to Promote Antitumor Immunity. Ann Lab Med 2024; 44:426-436. [PMID: 38529546 PMCID: PMC11169777 DOI: 10.3343/alm.2023.0443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/03/2024] [Accepted: 03/04/2024] [Indexed: 03/27/2024] Open
Abstract
Background Metformin, a drug prescribed for patients with type 2 diabetes, has potential efficacy in enhancing antitumor immunity; however, the detailed underlying mechanisms remain to be elucidated. Therefore, we aimed to identify the inhibitory molecular mechanisms of metformin on programmed death ligand 1 (PD-L1) expression in cancer cells and programmed death 1 (PD-1) expression in immune cells. Methods We employed a luciferase reporter assay, quantitative real-time PCR, immunoblotting analysis, immunoprecipitation and ubiquitylation assays, and a natural killer (NK) cell-mediated tumor cell cytotoxicity assay. A mouse xenograft tumor model was used to evaluate the effect of metformin on tumor growth, followed by flow-cytometric analysis using tumor-derived single-cell suspensions. Results Metformin decreased AKT-mediated β-catenin S552 phosphorylation and subsequent β-catenin transactivation in an adenosine monophosphate-activated protein kinase (AMPK) activation-dependent manner, resulting in reduced CD274 (encoding PD-L1) transcription in cancer cells. Tumor-derived soluble factors enhanced PD-1 protein stability in NK and T cells via dissociation of PD-1 from ubiquitin E3 ligases and reducing PD-1 polyubiquitylation. Metformin inhibited the tumor-derived soluble factor-reduced binding of PD-1 to E3 ligases and PD-1 polyubiquitylation, resulting in PD-1 protein downregulation in an AMPK activation-dependent manner. These inhibitory effects of metformin on both PD-L1 and PD-1 expression ameliorated cancer-reduced cytotoxic activity of immune cells in vitro and decreased tumor immune evasion and growth in vivo. Conclusions Metformin blocks both PD-L1 and PD-1 within the tumor microenvironment. This study provided a mechanistic insight into the efficacy of metformin in improving immunotherapy in human cancer.
Collapse
Affiliation(s)
- Su Hwan Park
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, Korea
| | - Juheon Lee
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, Korea
| | - Hye Jin Yun
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, Korea
| | - Seok-Ho Kim
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, Korea
- Department of Medicinal Biotechnology, College of Health Science, Dong-A University, Busan, Korea
| | - Jong-Ho Lee
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, Korea
- Department of Biomedical Sciences, Dong-A University, Busan, Korea
| |
Collapse
|
29
|
Zhou Y, Wei R, Wang L, Li J, Wang W, Jiang G, Tan S, Li F, Wang X, Ma X, Xi L. Tumor targeting peptide TMTP1 modified Antigen capture Nano-vaccine combined with chemotherapy and PD-L1 blockade effectively inhibits growth of ovarian cancer. J Nanobiotechnology 2024; 22:483. [PMID: 39138475 PMCID: PMC11320875 DOI: 10.1186/s12951-024-02744-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
The mortality of ovarian cancer (OC) has long been the highest among gynecological malignancies. Although OC is considered to be an immunogenic tumor, the effect of immunotherapy is not satisfactory. The immunosuppressive microenvironment is one reason for this, and the absence of recognized effective antigens for vaccines is another. Chemotherapy, as one of the most commonly used treatment for OC, can produce chemotherapy-associated antigens (CAAs) during treatment and show the effect of in situ vaccine. Herein, we designed an antigen capture nano-vaccine NP-TP1@M-M with tumor targeting peptide TMTP1 and dendritic cell (DC) receptor mannose assembled on the surface and adjuvant monophosphoryl lipid A (MPLA) encapsulated in the core of poly (D, L-lactide-co-glycolide) (PLGA) nanoparticles. PLGA itself possessed the ability of antigen capture. TMTP1 was a tumor-homing peptide screened by our research team, which held extensive and excellent tumor targeting ability. After these modifications, NP-TP1@M-M could capture and enrich more tumor-specific antigens after chemotherapy, stimulate DC maturation, activate the adaptive immunity and combined with immune checkpoint blockade to maximize the release of the body's immune potential, providing an eutherapeutic strategy for the treatment of OC.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Wei
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jie Li
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guiying Jiang
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, China
| | - Songwei Tan
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Li
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xueqian Wang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyi Ma
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ling Xi
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
30
|
Reddy SU, Sadia FZ, Vancura A, Vancurova I. IFNγ-Induced Bcl3, PD-L1 and IL-8 Signaling in Ovarian Cancer: Mechanisms and Clinical Significance. Cancers (Basel) 2024; 16:2676. [PMID: 39123403 PMCID: PMC11311860 DOI: 10.3390/cancers16152676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
IFNγ, a pleiotropic cytokine produced not only by activated lymphocytes but also in response to cancer immunotherapies, has both antitumor and tumor-promoting functions. In ovarian cancer (OC) cells, the tumor-promoting functions of IFNγ are mediated by IFNγ-induced expression of Bcl3, PD-L1 and IL-8/CXCL8, which have long been known to have critical cellular functions as a proto-oncogene, an immune checkpoint ligand and a chemoattractant, respectively. However, overwhelming evidence has demonstrated that these three genes have tumor-promoting roles far beyond their originally identified functions. These tumor-promoting mechanisms include increased cancer cell proliferation, invasion, angiogenesis, metastasis, resistance to chemotherapy and immune escape. Recent studies have shown that IFNγ-induced Bcl3, PD-L1 and IL-8 expression is regulated by the same JAK1/STAT1 signaling pathway: IFNγ induces the expression of Bcl3, which then promotes the expression of PD-L1 and IL-8 in OC cells, resulting in their increased proliferation and migration. In this review, we summarize the recent findings on how IFNγ affects the tumor microenvironment and promotes tumor progression, with a special focus on ovarian cancer and on Bcl3, PD-L1 and IL-8/CXCL8 signaling. We also discuss promising novel combinatorial strategies in clinical trials targeting Bcl3, PD-L1 and IL-8 to increase the effectiveness of cancer immunotherapies.
Collapse
Affiliation(s)
| | | | | | - Ivana Vancurova
- Department of Biological Sciences, St. John’s University, New York, NY 11439, USA; (S.U.R.); (F.Z.S.); (A.V.)
| |
Collapse
|
31
|
Tudor F, Marijić B, Babarović E, Hadžisejdić I. Significance of PD-L1 and Tumor Microenvironment in Laryngeal Squamous Cell Cancer. Cancers (Basel) 2024; 16:2645. [PMID: 39123373 PMCID: PMC11311265 DOI: 10.3390/cancers16152645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Despite the considerable advancement in the field of medicine over recent decades, laryngeal cancer continues to be a challenge. The field of immune oncology has generated promising immunomodulation therapies and opened up new ways of treatment. METHODS Our retrospective study included 102 patients diagnosed with laryngeal squamous cell cancer (LSCC). Immunohistochemistry was used to evaluate the expression of PD-L1 and tumor microenvironment cells (CD4, CD8, CD68 and CD163). RESULTS PD-L1 expression showed statistically significant positive correlations with all examined tumor microenvironment cells. Patients with high CD68 and CD163 expression intratumorally (p = 0.0005 and p = 0.006, respectively) had statistically significant shorter disease-specific survival. Moreover, a statistically shorter time to recurrence was found in patients with high CD68 intratumoral and CD8 overall counts (p = 0.049 and p = 0.019, respectively). Also, high CD8 overall (>23%) and CD68 intratumoral (>2.7%) expression were statistically significant predictors of recurrence (p = 0.028, OR = 3.11 and p = 0.019, OR = 3.13, respectively). CONCLUSIONS Higher CD68 and CD163 expression represented significantly worse prognosticators for clinical outcomes in patients with LSCC. In order to determine which LSCC patients will benefit from anti-PD-1/PD-L1 inhibitors, it is crucial to elucidate the relationship between PD-L1 expression, immune cell distribution and prognosis in LSCC patients.
Collapse
Affiliation(s)
- Filip Tudor
- Department of Otorhinolaryngology, Head and Neck Surgery, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia; (F.T.); (B.M.)
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
| | - Blažen Marijić
- Department of Otorhinolaryngology, Head and Neck Surgery, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia; (F.T.); (B.M.)
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
| | - Emina Babarović
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
- Clinical Department of Pathology and Cytology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia
| | - Ita Hadžisejdić
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
- Clinical Department of Pathology and Cytology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
32
|
Arya SP, Thennakoon SKS, Phuoc CMT, Silwal AP, Jahan R, Postema RM, Timilsina H, Reynolds AM, Tan X. Aptamer-assisted phage display: enhancing checkpoint inhibition with a peptide and an aptamer targeting distinct sites on a single PD-L1 protein. Chem Commun (Camb) 2024; 60:7570-7573. [PMID: 38940673 DOI: 10.1039/d4cc02132k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Utilizing a novel approach known as aptamer-assisted phage display (APD), we identified an anti-PD-L1 peptide, NV Pep, capable of simultaneous binding to PD-L1 alongside the DNA aptamer MJ5C. Combined inhibition using NV Pep and MJ5C demonstrated significant enhancement compared to individual ligands against the PD-1/PD-L1 interaction.
Collapse
Affiliation(s)
- Satya Prakash Arya
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, USA.
| | | | - Chien Minh Tran Phuoc
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, USA.
| | - Achut Prasad Silwal
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, USA.
| | - Raunak Jahan
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, USA.
| | - Rick Mason Postema
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, USA.
| | - Hari Timilsina
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, USA.
| | - Andrew Michael Reynolds
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, USA.
| | - Xiaohong Tan
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, USA.
| |
Collapse
|
33
|
Hamada K, Murakami R, Ueda A, Kashima Y, Miyagawa C, Taki M, Yamanoi K, Yamaguchi K, Hamanishi J, Minamiguchi S, Matsumura N, Mandai M. A Deep Learning-Based Assessment Pipeline for Intraepithelial and Stromal Tumor-Infiltrating Lymphocytes in High-Grade Serous Ovarian Carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1272-1284. [PMID: 38537936 DOI: 10.1016/j.ajpath.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/22/2024] [Accepted: 02/21/2024] [Indexed: 04/07/2024]
Abstract
Tumor-infiltrating lymphocytes (TILs) are associated with improved survival in patients with epithelial ovarian cancer. However, TIL evaluation has not been used in routine clinical practice because of reproducibility issues. The current study developed two convolutional neural network models to detect TILs and to determine their spatial location in whole slide images, and established a spatial assessment pipeline to objectively quantify intraepithelial and stromal TILs in patients with high-grade serous ovarian carcinoma. The predictions of the established models showed a significant positive correlation with the number of CD8+ T cells and immune gene expressions. Patients with a higher density of intraepithelial TILs had a significantly prolonged overall survival and progression-free survival in multiple cohorts. On the basis of the density of intraepithelial and stromal TILs, patients were classified into three immunophenotypes: immune inflamed, excluded, and desert. The immune-desert subgroup showed the worst prognosis. Gene expression analysis showed that the immune-desert subgroup had lower immune cytolytic activity and T-cell-inflamed gene-expression profile scores, whereas the immune-excluded subgroup had higher expression of interferon-γ and programmed death 1 receptor signaling pathway. The established evaluation method provided detailed and comprehensive quantification of intraepithelial and stromal TILs throughout hematoxylin and eosin-stained slides. It has potential for clinical application for personalized treatment of patients with ovarian cancer.
Collapse
Affiliation(s)
- Kohei Hamada
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryusuke Murakami
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Akihiko Ueda
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoko Kashima
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Chiho Miyagawa
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Mana Taki
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Koji Yamanoi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ken Yamaguchi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Junzo Hamanishi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Sachiko Minamiguchi
- Department of Diagnostic Pathology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Noriomi Matsumura
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
34
|
Mhawech-Fauceglia P, McCarthy D, Tonooka A, Scambia G, Garcia Y, Dundr P, Mills AM, Moore K, Sanada S, Bradford L, Stella GC, Bookman M, Sharma SK, Selle F, Molinero L, He Y, Khor V, Landen C, Lin YG. The association of histopathologic features after neoadjuvant chemo-immunotherapy with clinical outcome: Sub-analyses from the randomized double-blinded, placebo-controlled, Phase III IMagyn050/GOG3015/ENGOT-ov39 study. Gynecol Oncol 2024; 186:17-25. [PMID: 38554625 DOI: 10.1016/j.ygyno.2024.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
OBJECTIVE Histopathologic characteristics after neoadjuvant chemotherapy (NACT) may correlate with outcome. This study evaluates histopathologic features after immunotherapy and NACT/bevacizumab, and associated clinical outcomes. METHODS Evaluable tissue from IMagyn050/GOG3015/ENGOT-ov39 patients from prespecified anatomic sites from interval cytoreductive surgery (ICS) after NACT/bevacizumab plus atezolizumab/placebo underwent central histopathologic scoring and analyzed with clinical outcomes. RESULTS The predefined population had 243 evaluable NACT patients, with 48.1% tumors being PD-L1-positive. No statistically significant differences in PFS (16.9 months vs. 19.2 months, p = 0.21) or OS (41.5 months vs. 45.1 months, p = 0.67) between treatment arms were seen. Substantial residual tumor (RT) (3+) was identified in 26% atezolizumab vs. 24% placebo arms (p = 0.94). Most showed no (1+) necrosis (82% vs. 96%, respectively, p = 0.69), moderate (2+) to severe (3+) fibrosis (71% vs. 75%, respectively, p = 0.82), and extensive (2+) inflammation (53% vs. 47% respectively, p = 0.48). No significant histopathologic differences were identified by tissue site or by arm. Multivariate analyses showed increased risk for progression with moderate and substantial RT (13.6 mon vs. 21.1 mon, hazard ratio 2.0, p < 0.01; 13.6 mon vs. 21.1 mon, HR 1.9, p < 0.01, respectively); but decreased risk for death with extensive inflammation (46.9 mon vs. 36.3 mon, HR 0.65, p = 0.02). Inflammation also correlated with greater likelihood of response to NACT/bevacizumab plus immunotherapy (odds ratio 2.9, p < 0.01). Modeling showed inflammation as a consistent but modest predictor for OS. CONCLUSIONS Detailed histologic assessment of ICS specimens appear to identify characteristics, such as inflammation and residual tumor, that may provide insight to certain clinical outcomes. Future work potentially leveraging emerging tools may provide further insight into outcomes.
Collapse
Affiliation(s)
| | - Denis McCarthy
- Pathology Consultants (PC), Springfield, OR, United States
| | - Akiko Tonooka
- Division of Pathology at the Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Giovanni Scambia
- Fondazione Policlinico Universitario A. Gemelli IRCCS Università Cattolica del S. Cuore, Rome, Italy
| | - Yolanda Garcia
- Parc Tauli Hospital Universitari, Institut d'Investigació I Innovació Parc Taulí (I3PT), Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Pavel Dundr
- First Medical Faculty Charles University, General University Hospital in Prague, Prague, Czech Republic
| | - Anne M Mills
- University of Virginia, Charlottesville, VA, United States
| | - Kathleen Moore
- Stephenson Cancer Center at the University of Oklahoma, Oklahoma City, OK, United States
| | | | | | | | | | - Sudarshan K Sharma
- University of Chicago Medicine Advent Health, Hinsdale, IL, United States
| | - Frederic Selle
- Groupe Hospitalier Diaconesses Croix Saint-Simon, Paris, France
| | | | | | - Victor Khor
- Genentech, Inc., South San Francisco, CA, United States
| | - Charles Landen
- University of Virginia, Charlottesville, VA, United States
| | - Yvonne G Lin
- Genentech, Inc., South San Francisco, CA, United States.
| |
Collapse
|
35
|
Piemonti L, Vettor L, Contro E. A Case Report of Metastatic Gastric Cancer Treated with Pembrolizumab during Pregnancy. Fetal Diagn Ther 2024; 51:493-499. [PMID: 38934141 PMCID: PMC11446398 DOI: 10.1159/000540000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
INTRODUCTION Immune checkpoint inhibitors are extensively used in present-day clinical practice for treating many types of cancers at different stages. To date, there are scarce data on the use of immunotherapy in pregnancy. Immune-related adverse events are a typical consequence of this therapy miming autoimmune diseases. CASE PRESENTATION A 35-year-old woman (G1P0) diagnosed with gastric carcinoma underwent neoadjuvant chemotherapy followed by surgery. During follow-up, axillary metastasis was discovered, radiotherapy failed, and consequently immunotherapy was started. Concurrently, pregnancy ensued. Despite potential risks, the patient opted to continue immunotherapy and the pregnancy. At 31 weeks, fetal bowel dilation was noted. Subsequently, the fetus also developed fetal growth restriction. A cesarean section was performed at 35 weeks. The newborn required repeated bowel resections for necrotizing enterocolitis, necessitating extensive medical intervention. The mother continues pembrolizumab treatment with a positive response. CONCLUSION To the best of our knowledge, this might constitute a possible case of a fetal immune-related adverse event after immunotherapy in utero exposure.
Collapse
Affiliation(s)
- Linda Piemonti
- Obstetric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy,
| | - Laura Vettor
- Department of Women's and Children's Health Gynecologic and Obstetrics Clinic, University of Padua, Padua, Italy
| | - Elena Contro
- Obstetric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
36
|
Pu Y, Yang G, Zhou Y, Pan X, Guo T, Chai X. The Macrophage migration inhibitory factor is a vital player in Pan-Cancer by functioning as a M0 Macrophage biomarker. Int Immunopharmacol 2024; 134:112198. [PMID: 38733827 DOI: 10.1016/j.intimp.2024.112198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/17/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND The role of the macrophage migration inhibitory factor (MIF) has recently attracted considerable attention in cancer research; nonetheless, the insights provided by current investigations remain constrained. Our main objective was to investigate its role and the latent mechanisms within the pan-cancer realm. METHODS We used comprehensive pan-cancer bulk sequencing data and online network tools to investigate the association between MIF expression and patient prognosis, genomic instability, cancer cell stemness, DNA damage repair, and immune infiltration. Furthermore, we validated the relationship between MIF expression and M0 macrophages using single-cell datasets, the SpatialDB database, and fluorescence staining. Additionally, we assessed the therapeutic response using the ROC plotter tool. RESULTS We observed the upregulation of MIF expression across numerous cancer types. Notably, elevated MIF levels were associated with a decline in genomic stability. We found a significant correlation between increased MIF expression and increased expression of mismatch repair genes, stemness features, and homologous recombination genes across diverse malignancies. Subsequently, through an analysis using ESTIMATE and cytokine results, we revealed the involvement of MIF in immune suppression. Then, we validated MIF as a hallmark of the M0 macrophages involved in tumor immunity. Our study suggests an association with other immune-inhibitory cellular populations and restraint of CD8 + T cells. In addition, we conducted a comparative analysis of MIF expression before and after treatment in three distinct sets of therapy responders and non-responders. Intriguingly, we identified notable disparities in MIF expression patterns in bladder urothelial carcinoma and ovarian cancer following particular therapeutic interventions. CONCLUSION Comprehensive pan-cancer analysis revealed notable enrichment of MIF within M0 macrophages, exerting a profound influence on tumor-associated immunosuppression and the intricate machinery of DNA repair.
Collapse
Affiliation(s)
- Yuting Pu
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Emergency Medicine and Difficult Disease Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guifang Yang
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Emergency Medicine and Difficult Disease Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Yang Zhou
- Department of Intensive Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaogao Pan
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Emergency Medicine and Difficult Disease Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tuo Guo
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Emergency Medicine and Difficult Disease Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiangping Chai
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Emergency Medicine and Difficult Disease Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
37
|
Kim HM, Koo JS. Programmed death-ligand 1 expression in carcinoma of unknown primary. BMC Cancer 2024; 24:689. [PMID: 38844907 PMCID: PMC11155179 DOI: 10.1186/s12885-024-12437-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024] Open
Abstract
We examined the expression of programmed death-ligand 1 (PD-L1) in carcinoma of unknown primary (CUP) and its potential implications. Tissue microarrays were constructed for 72 CUP cases (histologic subtypes: 22 adenocarcinoma, 15 poorly differentiated carcinoma, 19 squamous cell carcinoma, and 14 undifferentiated carcinoma; clinical subtype: favorable type 17 [23.6%], unfavorable type 55 [76.4%]), with immunohistochemical staining performed for PD-L1 (22C3, SP142, SP263, and 28 - 8), CK7, and CK20 to determine the association between staining results and clinicopathological parameters. In CUP, the PD-L1 positivity rate was 5.6-48.6% (tumor cells [TC] or tumor proportion score [TPS]: 5.6-36.1%, immune cell score [IC]: 8.3-48.6%, combined positive score [CPS]: 16.7%) using different cutoff values for 22C3 (TPS ≥ 1%, CPS ≥ 10), SP142 (TC ≥ 50%, IC ≥ 10%), SP263, and 28 - 8 (TC and IC ≥ 1%). PD-L1 SP142 TC and PD-L1 SP263 IC showed the lowest (5.6%) and highest (48.6%) positivity rates, respectively. The PD-L1 positivity rate did not significantly differ based on the histologic subtype, clinical subtype, or CK7/CK20 across clones. Considering TC κ ≥ 1%, TC κ ≥ 50%, IC κ ≥ 1%, and IC κ ≥ 10%, the PD-L1 positivity rate was TC = 4.2-36.1% and IC = 9.7-48.6%; the overall agreement between antibodies ranged from 69.4 to 93.1%, showing fair or better agreement (κ ≥ 0.21). In CUP, PD-L1 positivity varied depending on antibodies and scoring systems, with no difference observed according to histologic or clinical subtypes.
Collapse
Affiliation(s)
- Hye Min Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| | - Ja Seung Koo
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
38
|
Dai T, Sun H, Liban T, Vicente-Suarez I, Zhang B, Song Y, Jiang Z, Yu J, Sheng J, Lv B. A novel anti-LAG-3/TIGIT bispecific antibody exhibits potent anti-tumor efficacy in mouse models as monotherapy or in combination with PD-1 antibody. Sci Rep 2024; 14:10661. [PMID: 38724599 PMCID: PMC11082181 DOI: 10.1038/s41598-024-61477-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
We report the generation of a novel anti-LAG-3/TIGIT bispecific IgG4 antibody, ZGGS15, and evaluated its anti-tumor efficacy in mouse models as monotherapy or in combination with a PD-1 antibody. ZGGS15 exhibited strong affinities for human LAG-3 and TIGIT, with KDs of 3.05 nM and 2.65 nM, respectively. ZGGS15 has EC50s of 0.69 nM and 1.87 nM for binding to human LAG-3 and TIGIT on CHO-K1 cells, respectively. ZGGS15 competitively inhibited the binding of LAG-3 to MHC-II (IC50 = 0.77 nM) and the binding of TIGIT to CD155 (IC50 = 0.24 nM). ZGGS15 does not induce ADCC, CDC, or obvious cytokine production. In vivo results showed that ZGGS15 had better anti-tumor inhibition than single anti-LAG-3 or anti-TIGIT agents and demonstrated a synergistic effect when combined with nivolumab, with a significantly higher tumor growth inhibition of 95.80% (p = 0.001). The tumor volume inhibition rate for ZGGS15 at 2 mg/kg was 69.70%, and for ZGGS15 at 5 mg/kg plus nivolumab at 1 mg/kg, it was 94.03% (p < 0.001). Our data reveal that ZGGS15 exhibits potent anti-tumor efficacy without eliciting ADCC or CDC or causing cytokine production, therefore having a safe profile.
Collapse
Affiliation(s)
- Tongcheng Dai
- Suzhou Zelgen Biopharmaceuticals Co., Ltd, Kunshan, China
| | - Hao Sun
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Tyler Liban
- Gensun Biopharma Inc., Thousand Oaks, CA, USA
| | | | - Bin Zhang
- Suzhou Zelgen Biopharmaceuticals Co., Ltd, Kunshan, China
| | - Yongping Song
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhongxing Jiang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jifeng Yu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | | | - Binhua Lv
- Suzhou Zelgen Biopharmaceuticals Co., Ltd, Kunshan, China.
| |
Collapse
|
39
|
Abd El Rahiem RA, Ibrahim SA, Effat H, El-Houseini ME, Osman RA, Abdelraouf A, Elzayat EM. Curcumin, Piperine and Taurine Combination Enhances the Efficacy of Transarterial Chemoembolization Therapy in patients with Intermediate Stage Hepatocellular Carcinoma: A Pilot Study. Asian Pac J Cancer Prev 2024; 25:1589-1598. [PMID: 38809630 PMCID: PMC11318834 DOI: 10.31557/apjcp.2024.25.5.1589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2024] Open
Abstract
INTRODUCTION Diagnosis of the majority of hepatocellular carcinoma (HCC) patients occurs at intermediate to advanced stages, with a few curative therapeutic options being available. It is therefore strongly urgent to discover additional adjuvant therapy for this lethal malignancy. This study aimed to assess the effectiveness of curcumin (C), piperine (P) and taurine (T) combination as adjuvant agents on serum levels of IFN-γ, immunophenotypic and molecular characterization of mononuclear leukocytes (MNLs) in HCC patients treated with Transarterial chemoembolization (TACE). PATIENTS AND METHODS Serum and MNLs were collected from 20 TACE-treated HCC patients before (baseline-control samples) and after treatment with 5 g curcumin capsules , 10 mg piperine and 0.5 mg taurine taken daily for three consecutive months. Immunophenotypic and molecular characterization of MNLs were determined by flow cytometry and quantitative real time PCR, respectively. In addition, serum IFN-γ level was quantified by ELISA. RESULTS After receiving treatment with CPT combination, there was a highly significant increase in IFN- γ levels in the sera of patients when compared to basal line control samples. Additionally, the group receiving combined therapy demonstrated a downregulation in the expression levels of PD-1, in MNLs as compared to controls. MNLs' immunophenotyping revealed a significant decline in CD4+CD25+cells (regulatory T lymphocytes). Furthermore, clinicopathological characteristics revealed a highly significant impact of CPT combination on aspartate aminotransferase (AST), lactate dehydrogenase (LDH) and alpha feto protein (AFP) levels. CONCLUSION This study introduces a promising adjuvant CPT combined treatment as natural agents to enhance the management of HCC patients who are candidates to TACE treatment.
Collapse
Affiliation(s)
| | | | - Heba Effat
- Medical Biochemistry and Molecular Biology Unit, Department of Cancer Biology, National Cancer Institute, Cairo University, 11796 Cairo, Egypt.
| | - Motawa E. El-Houseini
- Medical Biochemistry and Molecular Biology Unit, Department of Cancer Biology, National Cancer Institute, Cairo University, 11796 Cairo, Egypt.
| | - Randa A. Osman
- Department of Clinical Pathology, National Cancer Institute, Cairo University, 11796 Cairo, Egypt.
| | - Amr Abdelraouf
- Department of Surgery,National Hepatology and Tropical Medicine Research Institute, Cairo, Egypt.
| | - Emad M. Elzayat
- Department of Biotechnology, Faculty of science, Cairo University, 12613 Giza, Egypt.
| |
Collapse
|
40
|
Xu AM, Haro M, Walts AE, Hu Y, John J, Karlan BY, Merchant A, Orsulic S. Spatiotemporal architecture of immune cells and cancer-associated fibroblasts in high-grade serous ovarian carcinoma. SCIENCE ADVANCES 2024; 10:eadk8805. [PMID: 38630822 PMCID: PMC11023532 DOI: 10.1126/sciadv.adk8805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 03/15/2024] [Indexed: 04/19/2024]
Abstract
High-grade serous ovarian carcinoma (HGSOC), the deadliest form of ovarian cancer, is typically diagnosed after it has metastasized and often relapses after standard-of-care platinum-based chemotherapy, likely due to advanced tumor stage, heterogeneity, and immune evasion and tumor-promoting signaling from the tumor microenvironment. To understand how spatial heterogeneity contributes to HGSOC progression and early relapse, we profiled an HGSOC tissue microarray of patient-matched longitudinal samples from 42 patients. We found spatial patterns associated with early relapse, including changes in T cell localization, malformed tertiary lymphoid structure (TLS)-like aggregates, and increased podoplanin-positive cancer-associated fibroblasts (CAFs). Using spatial features to compartmentalize the tissue, we found that plasma cells distribute in two different compartments associated with TLS-like aggregates and CAFs, and these distinct microenvironments may account for the conflicting reports about the role of plasma cells in HGSOC prognosis.
Collapse
Affiliation(s)
- Alexander M. Xu
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Division of Hematology and Cellular Therapy, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Marcela Haro
- Department of Obstetrics and Gynecology and Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ann E. Walts
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ye Hu
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Joshi John
- Department of Veterans Affairs, Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
- Department of Medicine, Division of Geriatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Beth Y. Karlan
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Akil Merchant
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Division of Hematology and Cellular Therapy, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sandra Orsulic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Veterans Affairs, Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
41
|
Sharma S, Singh N, Turk AA, Wan I, Guttikonda A, Dong JL, Zhang X, Opyrchal M. Molecular insights into clinical trials for immune checkpoint inhibitors in colorectal cancer: Unravelling challenges and future directions. World J Gastroenterol 2024; 30:1815-1835. [PMID: 38659481 PMCID: PMC11036501 DOI: 10.3748/wjg.v30.i13.1815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/22/2024] [Accepted: 03/13/2024] [Indexed: 04/03/2024] Open
Abstract
Colorectal cancer (CRC) is a complex disease with diverse etiologies and clinical outcomes. Despite considerable progress in development of CRC therapeutics, challenges remain regarding the diagnosis and management of advanced stage metastatic CRC (mCRC). In particular, the five-year survival rate is very low since mCRC is currently rarely curable. Over the past decade, cancer treatment has significantly improved with the introduction of cancer immunotherapies, specifically immune checkpoint inhibitors. Therapies aimed at blocking immune checkpoints such as PD-1, PD-L1, and CTLA-4 target inhibitory pathways of the immune system, and thereby enhance anti-tumor immunity. These therapies thus have shown promising results in many clinical trials alone or in combination. The efficacy and safety of immunotherapy, either alone or in combination with CRC, have been investigated in several clinical trials. Clinical trials, including KEYNOTE-164 and CheckMate 142, have led to Food and Drug Administration approval of the PD-1 inhibitors pembrolizumab and nivolumab, respectively, for the treatment of patients with unresectable or metastatic microsatellite instability-high or deficient mismatch repair CRC. Unfortunately, these drugs benefit only a small percentage of patients, with the benefits of immunotherapy remaining elusive for the vast majority of CRC patients. To this end, primary and secondary resistance to immunotherapy remains a significant issue, and further research is necessary to optimize the use of immunotherapy in CRC and identify biomarkers to predict the response. This review provides a comprehensive overview of the clinical trials involving immune checkpoint inhibitors in CRC. The underlying rationale, challenges faced, and potential future steps to improve the prognosis and enhance the likelihood of successful trials in this field are discussed.
Collapse
Affiliation(s)
- Samantha Sharma
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Naresh Singh
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Anita Ahmed Turk
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Isabella Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Akshay Guttikonda
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Julia Lily Dong
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Xinna Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Mateusz Opyrchal
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| |
Collapse
|
42
|
Liu R, Li HF, Li S. PD-1-mediated inhibition of T cell activation: Mechanisms and strategies for cancer combination immunotherapy. CELL INSIGHT 2024; 3:100146. [PMID: 38425643 PMCID: PMC10901852 DOI: 10.1016/j.cellin.2024.100146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
The programmed cell death 1 (PD-1) immune checkpoint of co-inhibitory signaling plays crucial roles in controlling the magnitude and duration of T cell activation to limit tissue damage and maintain self-tolerance. Cancer cells hijack the co-inhibitory pathway and escape immune surveillance by overexpressing the PD-1 ligand PD-L1. Immune checkpoint inhibitors, such as PD-1 blocking antibody have been approved for tumor immunotherapy. However, not all patients can benefit from PD-1 monotherapy. Combination immunotherapy based on PD-1 axis blockade substantially improves clinical anti-tumor efficacy. In this review, we briefly summarize the current progress on the mechanisms of PD-1-mediated inhibition of T cell activation and strategies for cancer combination immunotherapy.
Collapse
Affiliation(s)
- Rui Liu
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan, 430071, China
- Medical Research Institute, Wuhan, 430071, China
- Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan, 430071, China
- Wuhan University, Wuhan, 430071, China
| | - Hui-Fang Li
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan, 430071, China
- Medical Research Institute, Wuhan, 430071, China
- Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan, 430071, China
- Wuhan University, Wuhan, 430071, China
| | - Shu Li
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan, 430071, China
- Medical Research Institute, Wuhan, 430071, China
- Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan, 430071, China
- Wuhan University, Wuhan, 430071, China
| |
Collapse
|
43
|
Dillen A, Bui I, Jung M, Agioti S, Zaravinos A, Bonavida B. Regulation of PD-L1 Expression by YY1 in Cancer: Therapeutic Efficacy of Targeting YY1. Cancers (Basel) 2024; 16:1237. [PMID: 38539569 PMCID: PMC10968822 DOI: 10.3390/cancers16061237] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/23/2024] [Accepted: 03/11/2024] [Indexed: 05/14/2025] Open
Abstract
During the last decade, we have witnessed several milestones in the treatment of various resistant cancers including immunotherapeutic strategies that have proven to be superior to conventional treatment options, such as chemotherapy and radiation. This approach utilizes the host's immune response, which is triggered by cancer cells expressing tumor-associated antigens or neoantigens. The responsive immune cytotoxic CD8+ T cells specifically target and kill tumor cells, leading to tumor regression and prolongation of survival in some cancers; however, some cancers may exhibit resistance due to the inactivation of anti-tumor CD8+ T cells. One mechanism by which the anti-tumor CD8+ T cells become dysfunctional is through the activation of the inhibitory receptor programmed death-1 (PD-1) by the corresponding tumor cells (or other cells in the tumor microenvironment (TME)) that express the programmed death ligand-1 (PD-L1). Hence, blocking the PD-1/PD-L1 interaction via specific monoclonal antibodies (mAbs) restores the CD8+ T cells' functions, leading to tumor regression. Accordingly, the Food and Drug Administration (FDA) has approved several checkpoint antibodies which act as immune checkpoint inhibitors. Their clinical use in various resistant cancers, such as metastatic melanoma and non-small-cell lung cancer (NSCLC), has shown significant clinical responses. We have investigated an alternative approach to prevent the expression of PD-L1 on tumor cells, through targeting the oncogenic transcription factor Yin Yang 1 (YY1), a known factor overexpressed in many cancers. We report the regulation of PD-L1 by YY1 at the transcriptional, post-transcriptional, and post-translational levels, resulting in the restoration of CD8+ T cells' anti-tumor functions. We have performed bioinformatic analyses to further explore the relationship between both YY1 and PD-L1 in cancer and to corroborate these findings. In addition to its regulation of PD-L1, YY1 has several other anti-cancer activities, such as the regulation of proliferation and cell viability, invasion, epithelial-mesenchymal transition (EMT), metastasis, and chemo-immuno-resistance. Thus, targeting YY1 will have a multitude of anti-tumor activities resulting in a significant obliteration of cancer oncogenic activities. Various strategies are proposed to selectively target YY1 in human cancers and present a promising novel therapeutic approach for treating unresponsive cancer phenotypes. These findings underscore the distinct regulatory roles of YY1 and PD-L1 (CD274) in cancer progression and therapeutic response.
Collapse
Affiliation(s)
- Ana Dillen
- Department of Microbiology, Immunology & Molecular Genetics, Jonsson Comprehensive Cancer, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (A.D.); (I.B.)
| | - Indy Bui
- Department of Microbiology, Immunology & Molecular Genetics, Jonsson Comprehensive Cancer, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (A.D.); (I.B.)
| | - Megan Jung
- Department of Microbiology, Immunology & Molecular Genetics, Jonsson Comprehensive Cancer, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (A.D.); (I.B.)
| | - Stephanie Agioti
- Cancer Genetics, Genomic and Systems Biology Group, Basic and Translational Cancer Research Center (BTCRC), 1516 Nicosia, Cyprus (A.Z.)
| | - Apostolos Zaravinos
- Cancer Genetics, Genomic and Systems Biology Group, Basic and Translational Cancer Research Center (BTCRC), 1516 Nicosia, Cyprus (A.Z.)
- Department of Life Sciences, School of Sciences, European University Cyprus, 2404 Nicosia, Cyprus
| | - Benjamin Bonavida
- Department of Microbiology, Immunology & Molecular Genetics, Jonsson Comprehensive Cancer, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (A.D.); (I.B.)
| |
Collapse
|
44
|
Dai X, Wu Z, Ruan R, Chen J, Huang C, Lei W, Yao Y, Li L, Tang X, Xiong J, Feng M, Deng J. TMEM160 promotes tumor immune evasion and radiotherapy resistance via PD-L1 binding in colorectal cancer. Cell Commun Signal 2024; 22:168. [PMID: 38454413 PMCID: PMC10921666 DOI: 10.1186/s12964-024-01541-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/24/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND The effectiveness of anti-programmed cell death protein 1(PD-1)/programmed cell death 1 ligand 1(PD-L1) therapy in treating certain types of cancer is associated with the level of PD-L1. However, this relationship has not been observed in colorectal cancer (CRC), and the underlying regulatory mechanism of PD-L1 in CRC remains unclear. METHODS Binding of TMEM160 to PD-L1 was determined by co-immunoprecipitation (Co-IP) and GST pull-down assay.The ubiquitination levels of PD-L1 were verified using the ubiquitination assay. Phenotypic experiments were conducted to assess the role of TMEM160 in CRC cells. Animal models were employed to investigate how TMEM160 contributes to tumor growth.The expression and clinical significance of TMEM160 and PD-L1 in CRC tissues were evaluated by immunohistochemistry(IHC). RESULTS In our study, we made a discovery that TMEM160 interacts with PD-L1 and plays a role in stabilizing its expression within a CRC model. Furthermore, we demonstrated that TMEM160 hinders the ubiquitination-dependent degradation of PD-L1 by competing with SPOP for binding to PD-L1 in CRC cells. Regarding functionality, the absence of TMEM160 significantly inhibited the proliferation, invasion, metastasis, clonogenicity, and radioresistance of CRC cells, while simultaneously enhancing the cytotoxic effect of CD8 + T cells on tumor cells. Conversely, the upregulation of TMEM160 substantially increased these capabilities. In severely immunodeficient mice, tumor growth derived from lentiviral vector shTMEM160 cells was lower compared with that derived from shNC control cells. Furthermore, the downregulation of TMEM160 significantly restricted tumor growth in immune-competent BALB/c mice. In clinical samples from patients with CRC, we observed a strong positive correlation between TMEM160 expression and PD-L1 expression, as well as a negative correlation with CD8A expression. Importantly, patients with high TMEM160 expression exhibited a worse prognosis compared with those with low or no TMEM160 expression. CONCLUSIONS Our study reveals that TMEM160 inhibits the ubiquitination-dependent degradation of PD-L1 that is mediated by SPOP, thereby stabilizing PD-L1 expression to foster the malignant progress, radioresistance, and immune evasion of CRC cells. These findings suggest that TMEM160 holds potential as a target for the treatment of patients with CRC.
Collapse
Affiliation(s)
- Xiaofeng Dai
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, 17 Yongwai Street, Nanchang, Jiangxi Province, 330006, China
| | - Zhipeng Wu
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, 17 Yongwai Street, Nanchang, Jiangxi Province, 330006, China
| | - Ruiwen Ruan
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, 17 Yongwai Street, Nanchang, Jiangxi Province, 330006, China
| | - Jingyi Chen
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, 17 Yongwai Street, Nanchang, Jiangxi Province, 330006, China
| | - Chunye Huang
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, 17 Yongwai Street, Nanchang, Jiangxi Province, 330006, China
| | - Wan Lei
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Yangyang Yao
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Li Li
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Xiaomei Tang
- Department of Oncology, Jiangxi Provincial Chest Hospital, Nanchang, Jiangxi Province, 330006, China.
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China.
| | - Miao Feng
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China.
| | - Jun Deng
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China.
- Postdoctoral Innovation Practice Base, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
45
|
Wang Y, Shtylla B, Chou T. Order-of-Mutation Effects on Cancer Progression: Models for Myeloproliferative Neoplasm. Bull Math Biol 2024; 86:32. [PMID: 38363386 PMCID: PMC10873249 DOI: 10.1007/s11538-024-01257-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024]
Abstract
In some patients with myeloproliferative neoplasms (MPN), two genetic mutations are often found: JAK2 V617F and one in the TET2 gene. Whether one mutation is present influences how the other subsequent mutation will affect the regulation of gene expression. In other words, when a patient carries both mutations, the order of when they first arose has been shown to influence disease progression and prognosis. We propose a nonlinear ordinary differential equation, the Moran process, and Markov chain models to explain the non-additive and non-commutative mutation effects on recent clinical observations of gene expression patterns, proportions of cells with different mutations, and ages at diagnosis of MPN. Combined, these observations are used to shape our modeling framework. Our key proposal is that bistability in gene expression provides a natural explanation for many observed order-of-mutation effects. We also propose potential experimental measurements that can be used to confirm or refute predictions of our models.
Collapse
Affiliation(s)
- Yue Wang
- Department of Computational Medicine, UCLA, Los Angeles, CA, 90095, USA
- Department of Statistics, Irving Institute for Cancer Dynamics, Columbia University, New York, NY, 10027, USA
| | - Blerta Shtylla
- Mathematics Department, Pomona College, Claremont, CA, 91711, USA
- Pharmacometrics and Systems Pharmacology, Pfizer Research and Development, San Diego, CA, 92121, USA
| | - Tom Chou
- Department of Computational Medicine, UCLA, Los Angeles, CA, 90095, USA.
- Department of Mathematics, UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
46
|
Cui Y, Zhang W, Lu W, Feng Y, Wu X, Zhuo Z, Zhang D, Zhang Y. An exosome-derived lncRNA signature identified by machine learning associated with prognosis and biomarkers for immunotherapy in ovarian cancer. Front Immunol 2024; 15:1228235. [PMID: 38404588 PMCID: PMC10884316 DOI: 10.3389/fimmu.2024.1228235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
Background Ovarian cancer (OC) has the highest mortality rate among gynecological malignancies. Current treatment options are limited and ineffective, prompting the discovery of reliable biomarkers. Exosome lncRNAs, carrying genetic information, are promising new markers. Previous studies only focused on exosome-related genes and employed the Lasso algorithm to construct prediction models, which are not robust. Methods 420 OC patients from the TCGA datasets were divided into training and validation datasets. The GSE102037 dataset was used for external validation. LncRNAs associated with exosome-related genes were selected using Pearson analysis. Univariate COX regression analysis was used to filter prognosis-related lncRNAs. The overlapping lncRNAs were identified as candidate lncRNAs for machine learning. Based on 10 machine learning algorithms and 117 algorithm combinations, the optimal predictor combinations were selected according to the C index. The exosome-related LncRNA Signature (ERLS) model was constructed using multivariate COX regression. Based on the median risk score of the training datasets, the patients were divided into high- and low-risk groups. Kaplan-Meier survival analysis, the time-dependent ROC, immune cell infiltration, immunotherapy response, and immune checkpoints were analyzed. Results 64 lncRNAs were subjected to a machine-learning process. Based on the stepCox (forward) combined Ridge algorithm, 20 lncRNA were selected to construct the ERLS model. Kaplan-Meier survival analysis showed that the high-risk group had a lower survival rate. The area under the curve (AUC) in predicting OS at 1, 3, and 5 years were 0.758, 0.816, and 0.827 in the entire TCGA cohort. xCell and ssGSEA analysis showed that the low-risk group had higher immune cell infiltration, which may contribute to the activation of cytolytic activity, inflammation promotion, and T-cell co-stimulation pathways. The low-risk group had higher expression levels of PDL1, CTLA4, and higher TMB. The ERLS model can predict response to anti-PD1 and anti-CTLA4 therapy. Patients with low expression of PDL1 or high expression of CTLA4 and low ERLS exhibited significantly better survival prospects, whereas patients with high ERLS and low levels of PDL1 or CTLA4 exhibited the poorest outcomes. Conclusion Our study constructed an ERLS model that can predict prognostic risk and immunotherapy response, optimizing clinical management for OC patients.
Collapse
Affiliation(s)
- Yongjia Cui
- Guang Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Weixuan Zhang
- Guang Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenping Lu
- Guang Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yaogong Feng
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China
| | - Xiaoqing Wu
- Guang Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhili Zhuo
- Guang Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dongni Zhang
- Guang Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yichi Zhang
- Guang Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
47
|
Tavares V, Marques IS, Melo IGD, Assis J, Pereira D, Medeiros R. Paradigm Shift: A Comprehensive Review of Ovarian Cancer Management in an Era of Advancements. Int J Mol Sci 2024; 25:1845. [PMID: 38339123 PMCID: PMC10856127 DOI: 10.3390/ijms25031845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Ovarian cancer (OC) is the female genital malignancy with the highest lethality. Patients present a poor prognosis mainly due to the late clinical presentation allied with the common acquisition of chemoresistance and a high rate of tumour recurrence. Effective screening, accurate diagnosis, and personalised multidisciplinary treatments are crucial for improving patients' survival and quality of life. This comprehensive narrative review aims to describe the current knowledge on the aetiology, prevention, diagnosis, and treatment of OC, highlighting the latest significant advancements and future directions. Traditionally, OC treatment involves the combination of cytoreductive surgery and platinum-based chemotherapy. Although more therapeutical approaches have been developed, the lack of established predictive biomarkers to guide disease management has led to only marginal improvements in progression-free survival (PFS) while patients face an increasing level of toxicity. Fortunately, because of a better overall understanding of ovarian tumourigenesis and advancements in the disease's (epi)genetic and molecular profiling, a paradigm shift has emerged with the identification of new disease biomarkers and the proposal of targeted therapeutic approaches to postpone disease recurrence and decrease side effects, while increasing patients' survival. Despite this progress, several challenges in disease management, including disease heterogeneity and drug resistance, still need to be overcome.
Collapse
Affiliation(s)
- Valéria Tavares
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP), Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-072 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Inês Soares Marques
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP), Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal
- Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Inês Guerra de Melo
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP), Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-072 Porto, Portugal
| | - Joana Assis
- Clinical Research Unit, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
| | - Deolinda Pereira
- Oncology Department, Portuguese Institute of Oncology of Porto (IPOP), 4200-072 Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP), Pathology and Laboratory Medicine Department, Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-072 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- Faculty of Health Sciences, Fernando Pessoa University, 4200-150 Porto, Portugal
- Research Department, Portuguese League Against Cancer (NRNorte), 4200-172 Porto, Portugal
| |
Collapse
|
48
|
Wada F, Kamijo K, Shimomura Y, Yamashita D, Hara S, Ishikawa T. PD-1 expression on tumour-infiltrating cells is a prognostic factor for relapsed or refractory diffuse large B-cell lymphoma. Immunology 2024; 171:224-234. [PMID: 37904615 DOI: 10.1111/imm.13711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 10/09/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND The tumour microenvironment (TME), which is modulated after immune-chemotherapy, is involved in tumour growth and metastasis. Programmed cell death 1 (PD-1) expressed on tumour-infiltrating non-malignant cells plays an important role in the TME through the PD-1/programmed cell death ligand 1 (PD-L1) signalling pathway. However, its impact in patients with relapsed or refractory (R/R) diffuse large B-cell lymphoma (DLBCL) remains unclear. METHODS We conducted a retrospective study using tissue samples at relapse for patients with R/R DLBCL (n = 45) and evaluated the clinical impact of PD-1 expression on tumour-infiltrating non-malignant cells (microenvironmental PD-1, mPD-1). In addition, corresponding 27 samples at diagnosis were analysed to evaluate the changes in PD-1/PD-L1 expression in the TME after chemotherapy. RESULTS Patients with mPD-1+ DLBCL showed significantly better overall survival compared with patients with mPD-1- DLBCL (hazard ratio, 0.30, p = 0.03). Among patients with mPD-1- DLBCL, those positive for neoplastic or microenvironmental PD-L1 (nPD-L1+ or mPD-L1+ ) showed significantly worse outcomes. Microenvironmental PD-1 and PD-L1 expression has high correlation at relapse, although none was found at diagnosis. CONCLUSION We determined the clinical impact of microenvironmental PD-1 expression and its relationship with neoplastic or microenvironmental expression of PD-L1 in patients with R/R DLBCL. The expression of PD-1 and PD-L1 in the TME dramatically changes during the chemotherapy. Therefore, evaluating TME at relapse, not at diagnosis is useful to predict the outcomes of R/R DLBCL patients.
Collapse
Affiliation(s)
- Fumiya Wada
- Department of Hematology, Kobe City Medical Center General Hospital, Kobe, Japan
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kimimori Kamijo
- Department of Hematology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Yoshimitsu Shimomura
- Department of Hematology, Kobe City Medical Center General Hospital, Kobe, Japan
- Department of Environmental Medicine and Population Science, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Daisuke Yamashita
- Department of Pathology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Shigeo Hara
- Department of Pathology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Takayuki Ishikawa
- Department of Hematology, Kobe City Medical Center General Hospital, Kobe, Japan
| |
Collapse
|
49
|
Uprety D, Remon J, Peters S. First-Line Dual Immunotherapy, a Treatment Option in First-Line Metastatic Non-Small-Cell Lung Cancer: Are We Ready to Use It? J Clin Oncol 2024; 42:378-382. [PMID: 38033277 DOI: 10.1200/jco.23.01524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/20/2023] [Accepted: 10/06/2023] [Indexed: 12/02/2023] Open
Abstract
This article provides valuable insights into the use of dual immunotherapy for patients with metastatic NSCLC.
Collapse
Affiliation(s)
- Dipesh Uprety
- Department of Medical Oncology, Barbara Ann Karmanos Cancer Institute, Detroit, MI
| | - Jordi Remon
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France
| | - Solange Peters
- Oncology Department, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
50
|
Lotfalizadeh N, Sadr S, Morovati S, Lotfalizadeh M, Hajjafari A, Borji H. A potential cure for tumor-associated immunosuppression by Toxoplasma gondii. Cancer Rep (Hoboken) 2024; 7:e1963. [PMID: 38109851 PMCID: PMC10850000 DOI: 10.1002/cnr2.1963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/06/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Recently, immunotherapy has become very hopeful for cancer therapy. Cancer treatment through immunotherapy has excellent specificity and less toxicity than conventional chemoradiotherapy. Pathogens have been used in cancer immunotherapy for a long time. The current study aims to evaluate the possibility of Toxoplasma gondii (T. gondii) as a probable treatment for cancers such as melanoma, breast, ovarian, lung, and pancreatic cancer. RECENT FINDINGS Nonreplicating type I uracil auxotrophic mutants of T. gondii can stimulate immune responses against tumors by reverse immunosuppression at the cellular level. T. gondii can be utilized to research T helper 1 (Th1) cell immunity in intracellular infections. Avirulent T. gondii uracil auxotroph vaccine can change the tumor's immunosuppression and improve the production of type 1 helper cell cytokines, i.e., Interferon-gamma (IFN-γ) and Interleukin-12 (IL-12) and activate tumor-related Cluster of Differentiation 8 (CD8+) T cells to identify and destroy cancer cells. The T. gondii profilin protein, along with T. gondii secreted proteins, have been found to exhibit promising properties in the treatment of various cancers. These proteins are being studied for their potential to inhibit tumor growth and enhance the effectiveness of cancer therapies. Their unique mechanisms of action make them valuable candidates for targeted interventions in ovarian cancer, breast cancer, pancreatic cancer, melanoma, and lung cancer treatments. CONCLUSION In summary, the study underscores the significant potential of harnessing T. gondii, including its diverse array of proteins and antigens, particularly in its avirulent form, as a groundbreaking approach in cancer immunotherapy.
Collapse
Affiliation(s)
- Narges Lotfalizadeh
- Department of Pathobiology, Faculty of Veterinary MedicineFerdowsi University of MashhadMashhadIran
| | - Soheil Sadr
- Department of Pathobiology, Faculty of Veterinary MedicineFerdowsi University of MashhadMashhadIran
| | - Solmaz Morovati
- Division of Biotechnology, Department of Pathobiology, School of Veterinary MedicineShiraz UniversityShirazIran
| | - Mohammadhassan Lotfalizadeh
- Board Certificate Oral and Maxillofacial RadiologistNorth Khorasan University of Medical Sciences (NKUMS)BojnurdIran
| | - Ashkan Hajjafari
- Department of Pathobiology, Faculty of Veterinary MedicineIslamic Azad University, Science and Research BranchTehranIran
| | - Hassan Borji
- Department of Pathobiology, Faculty of Veterinary MedicineFerdowsi University of MashhadMashhadIran
| |
Collapse
|