1
|
Federica G, Michela C, Giovanna D. Targeting the DNA damage response in cancer. MedComm (Beijing) 2024; 5:e788. [PMID: 39492835 PMCID: PMC11527828 DOI: 10.1002/mco2.788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 11/05/2024] Open
Abstract
DNA damage response (DDR) pathway is the coordinated cellular network dealing with the identification, signaling, and repair of DNA damage. It tightly regulates cell cycle progression and promotes DNA repair to minimize DNA damage to daughter cells. Key proteins involved in DDR are frequently mutated/inactivated in human cancers and promote genomic instability, a recognized hallmark of cancer. Besides being an intrinsic property of tumors, DDR also represents a unique therapeutic opportunity. Indeed, inhibition of DDR is expected to delay repair, causing persistent unrepaired breaks, to interfere with cell cycle progression, and to sensitize cancer cells to several DNA-damaging agents, such as radiotherapy and chemotherapy. In addition, DDR defects in cancer cells have been shown to render these cells more dependent on the remaining pathways, which could be targeted very specifically (synthetic lethal approach). Research over the past two decades has led to the synthesis and testing of hundreds of small inhibitors against key DDR proteins, some of which have shown antitumor activity in human cancers. In parallel, the search for synthetic lethality interaction is broadening the use of DDR inhibitors. In this review, we discuss the state-of-art of ataxia-telangiectasia mutated, ataxia-telangiectasia-and-Rad3-related protein, checkpoint kinase 1, Wee1 and Polθ inhibitors, highlighting the results obtained in the ongoing clinical trials both in monotherapy and in combination with chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Guffanti Federica
- Laboratory of Preclinical Gynecological OncologyDepartment of Experimental OncologyIstituto di Ricerche Farmacologiche Mario Negri IRCCSMilanItaly
| | - Chiappa Michela
- Laboratory of Preclinical Gynecological OncologyDepartment of Experimental OncologyIstituto di Ricerche Farmacologiche Mario Negri IRCCSMilanItaly
| | - Damia Giovanna
- Laboratory of Preclinical Gynecological OncologyDepartment of Experimental OncologyIstituto di Ricerche Farmacologiche Mario Negri IRCCSMilanItaly
| |
Collapse
|
2
|
Murray CE, Kornepati AVR, Ontiveros C, Liao Y, de la Peña Avalos B, Rogers CM, Liu Z, Deng Y, Bai H, Kari S, Padron AS, Boyd JT, Reyes R, Clark CA, Svatek RS, Li R, Hu Y, Wang M, Conejo-Garcia JR, Byers LA, Ramkumar K, Sood AK, Lee JM, Burd CE, Vadlamudi RK, Gupta HB, Zhao W, Dray E, Sung P, Curiel TJ. Tumour-intrinsic PDL1 signals regulate the Chk2 DNA damage response in cancer cells and mediate resistance to Chk1 inhibitors. Mol Cancer 2024; 23:242. [PMID: 39478560 PMCID: PMC11523829 DOI: 10.1186/s12943-024-02147-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 10/05/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Aside from the canonical role of PDL1 as a tumour surface-expressed immune checkpoint molecule, tumour-intrinsic PDL1 signals regulate non-canonical immunopathological pathways mediating treatment resistance whose significance, mechanisms, and therapeutic targeting remain incompletely understood. Recent reports implicate tumour-intrinsic PDL1 signals in the DNA damage response (DDR), including promoting homologous recombination DNA damage repair and mRNA stability of DDR proteins, but many mechanistic details remain undefined. METHODS We genetically depleted PDL1 from transplantable mouse and human cancer cell lines to understand consequences of tumour-intrinsic PDL1 signals in the DNA damage response. We complemented this work with studies of primary human tumours and inducible mouse tumours. We developed novel approaches to show tumour-intrinsic PDL1 signals in specific subcellular locations. We pharmacologically depleted tumour PDL1 in vivo in mouse models with repurposed FDA-approved drugs for proof-of-concept clinical translation studies. RESULTS We show that tumour-intrinsic PDL1 promotes the checkpoint kinase-2 (Chk2)-mediated DNA damage response. Intracellular but not surface-expressed PDL1 controlled Chk2 protein content post-translationally and independently of PD1 by antagonising PIRH2 E3 ligase-mediated Chk2 polyubiquitination and protein degradation. Genetic tumour PDL1 depletion specifically reduced tumour Chk2 content but not ATM, ATR, or Chk1 DDR proteins, enhanced Chk1 inhibitor (Chk1i) synthetic lethality in vitro in diverse human and murine tumour models, and improved Chk1i efficacy in vivo. Pharmacologic tumour PDL1 depletion with cefepime or ceftazidime replicated genetic tumour PDL1 depletion by reducing tumour Chk2, inducing Chk1i synthetic lethality in a tumour PDL1-dependent manner, and reducing in vivo tumour growth when combined with Chk1i. CONCLUSIONS Our data challenge the prevailing surface PDL1 paradigm, elucidate important and previously unappreciated roles for tumour-intrinsic PDL1 in regulating the ATM/Chk2 DNA damage response axis and E3 ligase-mediated protein degradation, suggest tumour PDL1 as a biomarker for Chk1i efficacy, and support the rapid clinical potential of pharmacologic tumour PDL1 depletion to treat selected cancers.
Collapse
Affiliation(s)
- Clare E Murray
- Graduate School of Biomedical Sciences and Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Anand V R Kornepati
- Graduate School of Biomedical Sciences and Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
- Present address: Department of Internal Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Carlos Ontiveros
- Graduate School of Biomedical Sciences and Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Yiji Liao
- Dartmouth Cancer Center and Dartmouth Health, Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Bárbara de la Peña Avalos
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Cody M Rogers
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Zexuan Liu
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Yilun Deng
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Haiyan Bai
- Dartmouth Cancer Center and Dartmouth Health, Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Suresh Kari
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Alvaro S Padron
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Jacob T Boyd
- Graduate School of Biomedical Sciences and Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Ryan Reyes
- Graduate School of Biomedical Sciences and Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Curtis A Clark
- Graduate School of Biomedical Sciences and Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
- Present address: Department of Radiation Oncology, School of Medicine, University of Alabama Birmingham, Birmingham, USA
| | - Robert S Svatek
- Department of Urology, University of Texas Health San Antonio, San Antonio, TX, USA
- UT Health Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Rong Li
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
- Present address: Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC, USA
| | - Yanfen Hu
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
- Present address: Department of Anatomy & Cell Biology, School of Medicine & Health Sciences, The George Washington University, Washington, DC, USA
| | - Meiling Wang
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
| | | | - Lauren A Byers
- Department of Thoracic/Head & Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kavya Ramkumar
- Department of Thoracic/Head & Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anil K Sood
- Department of Gynecologic Oncology & Reproductive Medicine, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Jung-Min Lee
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Christin E Burd
- Departments of Molecular Genetics, Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | - Ratna K Vadlamudi
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
- UT Health Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Harshita B Gupta
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Weixing Zhao
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Eloïse Dray
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
- UT Health Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Tyler J Curiel
- Graduate School of Biomedical Sciences and Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA.
- Dartmouth Cancer Center and Dartmouth Health, Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA.
- UT Southwestern, Dallas, TX, USA.
- Dartmouth Health and Dartmouth Cancer Center, Lebanon, NH, USA.
- The Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
- Department of Immunology, Dartmouth College, Hanover, NH, USA.
- Department of Integrative Immunobiology, Duke University, Durham, NC, USA.
| |
Collapse
|
3
|
Leibrandt RC, Tu MJ, Yu AM, Lara PN, Parikh M. ATR Inhibition in Advanced Urothelial Carcinoma. Clin Genitourin Cancer 2023; 21:203-207. [PMID: 36604210 PMCID: PMC10750798 DOI: 10.1016/j.clgc.2022.10.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
The ataxia telangiectasia and Rad3-related (ATR) checkpoint kinase 1 (CHK1) pathway is intricately involved in protecting the integrity of the human genome by suppressing replication stress and repairing DNA damage. ATR is a promising therapeutic target in cancer cells because its inhibition could lead to an accumulation of damaged DNA preventing further replication and division. ATR inhibition is being studied in multiple types of cancer, including advanced urothelial carcinoma where there remains an unmet need for novel therapies to improve outcomes. Herein, we review preclinical and clinical data evaluating 4 ATR inhibitors as monotherapy or in combination with chemotherapy. The scope of this review is focused on contemporary studies evaluating the application of this novel therapy in advanced urothelial carcinoma.
Collapse
Affiliation(s)
- Ryan C Leibrandt
- University of California at Davis School of Medicine, Department of Internal Medicine, Division of Hematology Oncology, Sacramento, California, United States of America
| | - Mei-Juan Tu
- University of California at Davis School of Medicine, Department of Biochemistry and Molecular Medicine, Sacramento, California, United States of America
| | - Ai-Ming Yu
- University of California at Davis School of Medicine, Department of Biochemistry and Molecular Medicine, Sacramento, California, United States of America
| | - Primo N Lara
- University of California at Davis Comprehensive Cancer Center, University of California at Davis School of Medicine, Department of Internal Medicine, Division of Hematology Oncology, Sacramento, California, United States of America
| | - Mamta Parikh
- University of California at Davis Comprehensive Cancer Center, University of California at Davis School of Medicine, Department of Internal Medicine, Division of Hematology Oncology, Sacramento, California, United States of America.
| |
Collapse
|
4
|
Kafer GR, Cesare AJ. A Survey of Essential Genome Stability Genes Reveals That Replication Stress Mitigation Is Critical for Peri-Implantation Embryogenesis. Front Cell Dev Biol 2020; 8:416. [PMID: 32548123 PMCID: PMC7274024 DOI: 10.3389/fcell.2020.00416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/05/2020] [Indexed: 12/16/2022] Open
Abstract
Murine development demands that pluripotent epiblast stem cells in the peri-implantation embryo increase from approximately 120 to 14,000 cells between embryonic days (E) 4.5 and E7.5. This is possible because epiblast stem cells can complete cell cycles in under 3 h in vivo. To ensure conceptus fitness, epiblast cells must undertake this proliferative feat while maintaining genome integrity. How epiblast cells maintain genome health under such an immense proliferation demand remains unclear. To illuminate the contribution of genome stability pathways to early mammalian development we systematically reviewed knockout mouse data from 347 DDR and repair associated genes. Cumulatively, the data indicate that while many DNA repair functions are dispensable in embryogenesis, genes encoding replication stress response and homology directed repair factors are essential specifically during the peri-implantation stage of early development. We discuss the significance of these findings in the context of the unique proliferative demands placed on pluripotent epiblast stem cells.
Collapse
Affiliation(s)
| | - Anthony J. Cesare
- Genome Integrity Unit, Children’s Medical Research Institute, The University of Sydney, Westmead, NSW, Australia
| |
Collapse
|
5
|
Schuler F, Afreen S, Manzl C, Häcker G, Erlacher M, Villunger A. Checkpoint kinase 1 is essential for fetal and adult hematopoiesis. EMBO Rep 2019; 20:e47026. [PMID: 31379128 PMCID: PMC6680171 DOI: 10.15252/embr.201847026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 12/15/2022] Open
Abstract
Checkpoint kinase 1 (CHK1) is critical for S-phase fidelity and preventing premature mitotic entry in the presence of DNA damage. Tumor cells have developed a strong dependence on CHK1 for survival, and hence, this kinase has developed into a promising drug target. Chk1 deficiency in mice results in blastocyst death due to G2/M checkpoint failure showing that it is an essential gene and may be difficult to target therapeutically. Here, we show that chemical inhibition of CHK1 kills murine and human hematopoietic stem and progenitor cells (HSPCs) by the induction of BCL2-regulated apoptosis. Cell death in HSPCs is independent of p53 but requires the BH3-only proteins BIM, PUMA, and NOXA. Moreover, Chk1 is essential for definitive hematopoiesis in the embryo. Noteworthy, cell death inhibition in HSPCs cannot restore blood cell formation as HSPCs lacking CHK1 accumulate DNA damage and stop dividing. Moreover, conditional deletion of Chk1 in hematopoietic cells of adult mice selects for blood cells retaining CHK1, suggesting an essential role in maintaining functional hematopoiesis. Our findings establish a previously unrecognized role for CHK1 in establishing and maintaining hematopoiesis.
Collapse
Affiliation(s)
- Fabian Schuler
- Division of Developmental ImmunologyBiocenterMedical University of InnsbruckInnsbruckAustria
| | - Sehar Afreen
- Division of Pediatric Hematology and OncologyDepartment of Pediatrics and Adolescent MedicineFaculty of MedicineUniversity of FreiburgFreiburgGermany
- Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Claudia Manzl
- Institute of Pathology, Neuropathology and Molecular pathologyMedical University of InnsbruckInnsbruckAustria
| | - Georg Häcker
- Institute of Medical Microbiology and HygieneUniversity Medical Center FreiburgFreiburgGermany
| | - Miriam Erlacher
- Division of Pediatric Hematology and OncologyDepartment of Pediatrics and Adolescent MedicineFaculty of MedicineUniversity of FreiburgFreiburgGermany
- German Cancer Consortium (DKTK)FreiburgGermany
- German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Andreas Villunger
- Division of Developmental ImmunologyBiocenterMedical University of InnsbruckInnsbruckAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
| |
Collapse
|
6
|
Pandya P, Braiman A, Isakov N. PICOT (GLRX3) is a positive regulator of stress-induced DNA-damage response. Cell Signal 2019; 62:109340. [PMID: 31176019 DOI: 10.1016/j.cellsig.2019.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/15/2019] [Accepted: 06/04/2019] [Indexed: 12/14/2022]
Abstract
Protein kinase C (PKC)-interacting cousin of thioredoxin (PICOT; also termed glutaredoxin 3 (Glrx3)) is a ubiquitously expressed protein that possesses an N-terminal monothiol thioredoxin (Trx) domain and two C-terminal tandem copies of a monothiol Glrx domain. It has an overall highly conserved amino acid sequence and is encoded by a unique gene, both in humans and mice, without having other functional gene homologs in the entire genome. Despite being discovered almost two decades ago, the biological function of PICOT remains largely ill-defined and its ramifications are underestimated considering the fact that PICOT-deficiency in mice results in embryonic lethality. Since classical Glrxs are important regulators of the cellular redox homeostasis, we tested whether PICOT participate in the stress-induced DNA-damage response, focusing on nuclear proteins that function as integral components of the DNA repair machinery. Using wild type versus PICOT-deficient (PICOT-KD) Jurkat T cells we found that the anti-oxidant mechanism in PICOT-deficient cells is impaired, and that these cells respond to genotoxic drugs, such as etoposide and camptothecin, by increased caspase-3 activity, a reduced survival and a slower and diminished phosphorylation of the histone protein, H2AX. Nevertheless, the effect of PICOT on the drug-induced phosphorylation of H2AX was independent of the cellular levels of reactive oxygen species. PICOT-deficient cells also demonstrated reduced and slower γH2AX foci formation in response to radiation. Furthermore, immunofluorescence staining using PICOT- and γH2AX-specific Abs followed by confocal microscopy demonstrated partial localization of PICOT at the γH2AX-containing foci at the site of the DNA double strand breaks. In addition, PICOT knockdown resulted in inhibition of phosphorylation of ATR, Chk1 and Chk2 kinases, which play an essential role in the DNA-damage response and serve as upstream regulators of γH2AX. The present data suggest that PICOT protects cells from DNA damage-inducing agents by operating as an upstream positive regulator of ATR-dependent signaling pathways. By promoting the activity of ATR, PICOT indirectly regulates the phosphorylation and activation of Chk1, Chk2, and γH2AX, which are critical components of the DNA damage repair mechanism and thereby attenuate the stress- and replication-induced genome instability.
Collapse
Affiliation(s)
- Pinakin Pandya
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and the Cancer Research Center, Ben Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel
| | - Alex Braiman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and the Cancer Research Center, Ben Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel
| | - Noah Isakov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and the Cancer Research Center, Ben Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel..
| |
Collapse
|
7
|
Mei L, Zhang J, He K, Zhang J. Ataxia telangiectasia and Rad3-related inhibitors and cancer therapy: where we stand. J Hematol Oncol 2019; 12:43. [PMID: 31018854 PMCID: PMC6482552 DOI: 10.1186/s13045-019-0733-6] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/11/2019] [Indexed: 02/07/2023] Open
Abstract
Background The ataxia telangiectasia and Rad3-related (ATR) checkpoint kinase 1 (CHK1) pathway plays an essential role in suppressing replication stress from DNA damage and oncogene activation. Main body Preclinical studies have shown that cancer cells with defective DNA repair mechanisms or cell cycle checkpoints may be particularly sensitive to ATR inhibitors. Preclinical and clinical data from early-phase trials on three ATR inhibitors (M6620, AZD6738, and BAY1895344), either as monotherapy or in combination, were reviewed. Conclusion Data from ATR inhibitor-based combinational trials might lead to future expansion of this therapy to homologous recombination repair pathway-proficient cancers and potentially serve as a rescue therapy for patients who have progressed through poly ADP-ribose polymerase inhibitors.
Collapse
Affiliation(s)
- Lin Mei
- Hematology, Oncology and Palliative Care, Massey Cancer Center, Virginia Commonwealth University, 1250 East Marshall Street, Richmond, VA, 23298, USA
| | - Junran Zhang
- Department of Radiation Oncology, The Ohio State University, James Cancer Hospital and Solove Research Institute, 460 west 10th Avenue, Columbus, OH, 43210, USA
| | - Kai He
- The James Thoracic Oncology Center, The Ohio State University Comprehensive Cancer Center, 494 Biomedical Research Tower, Columbus, OH, 43210, USA
| | - Jingsong Zhang
- Department of Genitourinary Oncology, H Lee Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, USA.
| |
Collapse
|
8
|
Schuler F, Weiss JG, Lindner SE, Lohmüller M, Herzog S, Spiegl SF, Menke P, Geley S, Labi V, Villunger A. Checkpoint kinase 1 is essential for normal B cell development and lymphomagenesis. Nat Commun 2017; 8:1697. [PMID: 29167438 PMCID: PMC5700047 DOI: 10.1038/s41467-017-01850-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 10/20/2017] [Indexed: 12/20/2022] Open
Abstract
Checkpoint kinase 1 (CHK1) is critical for intrinsic cell cycle control and coordination of cell cycle progression in response to DNA damage. Despite its essential function, CHK1 has been identified as a target to kill cancer cells and studies using Chk1 haploinsufficient mice initially suggested a role as tumor suppressor. Here, we report on the key role of CHK1 in normal B-cell development, lymphomagenesis and cell survival. Chemical CHK1 inhibition induces BCL2-regulated apoptosis in primary as well as malignant B-cells and CHK1 expression levels control the timing of lymphomagenesis in mice. Moreover, total ablation of Chk1 in B-cells arrests their development at the pro-B cell stage, a block that, surprisingly, cannot be overcome by inhibition of mitochondrial apoptosis, as cell cycle arrest is initiated as an alternative fate to limit the spread of damaged DNA. Our findings define CHK1 as essential in B-cell development and potent target to treat blood cancer.
Collapse
Affiliation(s)
- Fabian Schuler
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innrain 80, A-6020, Innsbruck, Austria
| | - Johannes G Weiss
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innrain 80, A-6020, Innsbruck, Austria
| | - Silke E Lindner
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innrain 80, A-6020, Innsbruck, Austria
| | - Michael Lohmüller
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innrain 80, A-6020, Innsbruck, Austria
| | - Sebastian Herzog
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innrain 80, A-6020, Innsbruck, Austria
| | - Simon F Spiegl
- Division of Molecular Pathophysiology, Biocenter, Medical University of Innsbruck, Innrain 80, A-6020, Innsbruck, Austria
| | - Philipp Menke
- Division of Molecular Pathophysiology, Biocenter, Medical University of Innsbruck, Innrain 80, A-6020, Innsbruck, Austria
| | - Stephan Geley
- Division of Molecular Pathophysiology, Biocenter, Medical University of Innsbruck, Innrain 80, A-6020, Innsbruck, Austria
| | - Verena Labi
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innrain 80, A-6020, Innsbruck, Austria
| | - Andreas Villunger
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innrain 80, A-6020, Innsbruck, Austria. .,Tyrolean Cancer Research Institute, Innrain 66, A-6020, Innsbruck, Austria.
| |
Collapse
|
9
|
Qiu Z, Oleinick NL, Zhang J. ATR/CHK1 inhibitors and cancer therapy. Radiother Oncol 2017; 126:450-464. [PMID: 29054375 DOI: 10.1016/j.radonc.2017.09.043] [Citation(s) in RCA: 226] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 08/01/2017] [Accepted: 09/30/2017] [Indexed: 02/06/2023]
Abstract
The cell cycle checkpoint proteins ataxia-telangiectasia-mutated-and-Rad3-related kinase (ATR) and its major downstream effector checkpoint kinase 1 (CHK1) prevent the entry of cells with damaged or incompletely replicated DNA into mitosis when the cells are challenged by DNA damaging agents, such as radiation therapy (RT) or chemotherapeutic drugs, that are the major modalities to treat cancer. This regulation is particularly evident in cells with a defective G1 checkpoint, a common feature of cancer cells, due to p53 mutations. In addition, ATR and/or CHK1 suppress replication stress (RS) by inhibiting excess origin firing, particularly in cells with activated oncogenes. Those functions of ATR/CHK1 make them ideal therapeutic targets. ATR/CHK1 inhibitors have been developed and are currently used either as single agents or paired with radiotherapy or a variety of genotoxic chemotherapies in preclinical and clinical studies. Here, we review the status of the development of ATR and CHK1 inhibitors. We also discuss the potential mechanisms by which ATR and CHK1 inhibition induces cell killing in the presence or absence of exogenous DNA damaging agents, such as RT and chemotherapeutic agents. Lastly, we discuss synthetic lethality interactions between the inhibition of ATR/CHK1 and defects in other DNA damage response (DDR) pathways/genes.
Collapse
Affiliation(s)
- Zhaojun Qiu
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, Cleveland, USA
| | - Nancy L Oleinick
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, Cleveland, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, USA
| | - Junran Zhang
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, Cleveland, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, USA.
| |
Collapse
|
10
|
Tu Y, Liu H, Zhu X, Shen H, Ma X, Wang F, Huang M, Gong J, Li X, Wang Y, Guo C, Tang TS. Ataxin-3 promotes genome integrity by stabilizing Chk1. Nucleic Acids Res 2017; 45:4532-4549. [PMID: 28180282 PMCID: PMC5416811 DOI: 10.1093/nar/gkx095] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/07/2017] [Indexed: 12/27/2022] Open
Abstract
The Chk1 protein is essential for genome integrity maintenance and cell survival in eukaryotic cells. After prolonged replication stress, Chk1 can be targeted for proteasomal degradation to terminate checkpoint signaling after DNA repair finishes. To ensure proper activation of DNA damage checkpoint and DNA repair signaling, a steady-state level of Chk1 needs to be retained under physiological conditions. Here, we report a dynamic signaling pathway that tightly regulates Chk1 stability. Under unperturbed conditions and upon DNA damage, ataxin-3 (ATX3) interacts with Chk1 and protects it from DDB1/CUL4A- and FBXO6/CUL1-mediated polyubiquitination and subsequent degradation, thereby promoting DNA repair and checkpoint signaling. Under prolonged replication stress, ATX3 dissociates from Chk1, concomitant with a stronger binding between Chk1 and its E3 ligase, which causes Chk1 proteasomal degradation. ATX3 deficiency results in pronounced reduction of Chk1 abundance, compromised DNA damage response, G2/M checkpoint defect and decreased cell survival after replication stress, which can all be rescued by ectopic expression of ATX3. Taken together, these findings reveal ATX3 to be a novel deubiquitinase of Chk1, providing a new mechanism of Chk1 stabilization in genome integrity maintenance.
Collapse
Affiliation(s)
- Yingfeng Tu
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
- These authors contributed equally to the work as first authors
| | - Hongmei Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
- These authors contributed equally to the work as first authors
| | - Xuefei Zhu
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
- These authors contributed equally to the work as first authors
| | - Hongyan Shen
- CAS Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaolu Ma
- CAS Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Fengli Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Min Huang
- CAS Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Juanjuan Gong
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoling Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Yun Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Caixia Guo
- CAS Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
- To whom correspondence should be addressed. Tel: +86 10 64807296; Fax: +86 10 64807313; . Correspondence may also be addressed to Caixia Guo. Tel: +86 10 84097646; Fax: +86 10 84097720;
| | - Tie-Shan Tang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
- To whom correspondence should be addressed. Tel: +86 10 64807296; Fax: +86 10 64807313; . Correspondence may also be addressed to Caixia Guo. Tel: +86 10 84097646; Fax: +86 10 84097720;
| |
Collapse
|
11
|
Carow B, Gao Y, Coquet J, Reilly M, Rottenberg ME. lck-Driven Cre Expression Alters T Cell Development in the Thymus and the Frequencies and Functions of Peripheral T Cell Subsets. THE JOURNAL OF IMMUNOLOGY 2016; 197:2261-8. [PMID: 27503210 DOI: 10.4049/jimmunol.1600827] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/05/2016] [Indexed: 11/19/2022]
Abstract
Conditional gene targeting using the bacteriophage-derived Cre recombinase is widely applied for functional gene studies in mice. Mice transgenic for Cre under the control of the lck gene promoter are used to study the role of loxP-targeted genes in T cell development and function. In this article, we show a striking 65% reduction in cellularity, preferential development of γδ versus αβ T cells, and increased expression of IL-7R in the thymus of mice expressing Cre under the proximal lck promoter (lck-cre(+) mice). The transition from CD4/CD8 double-negative to double-positive cells was blocked, and lck-cre(+) double-positive cells were more prone to apoptosis and showed higher levels of Cre expression. Importantly, numbers of naive T cells were reduced in spleens and lymph nodes of lck-cre(+) mice. In contrast, frequencies of γδ T cells, CD44(+)CD62L(-) effector T cells, and Foxp3(+) regulatory T cells were elevated, as was the frequency of IFN-γ-secreting CD4(+) and CD8(+) T cells. A literature survey of 332 articles that used lck-cre(+) mice for deletion of floxed genes indicated that results are statistically influenced by the control used (lck-cre(+) or lck-cre(-)), more frequently resembling the lck-cre(+) phenotype described in this article if lck-cre(-) controls were used. Altogether, care should be taken when interpreting published results and to properly control targeted gene deletions using the lck-cre(+) strain.
Collapse
Affiliation(s)
- Berit Carow
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, S 171 77 Stockholm, Sweden; and
| | - Yu Gao
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, S 171 77 Stockholm, Sweden; and
| | - Jonathan Coquet
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, S 171 77 Stockholm, Sweden; and
| | - Marie Reilly
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, S 171 77 Stockholm, Sweden
| | - Martin E Rottenberg
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, S 171 77 Stockholm, Sweden; and
| |
Collapse
|
12
|
Sarmento LM, Barata JT. CHK1 and replicative stress in T-cell leukemia: Can an irreverent tumor suppressor end up playing the oncogene? Adv Biol Regul 2016; 60:115-121. [PMID: 26527132 DOI: 10.1016/j.jbior.2015.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 10/19/2015] [Accepted: 10/20/2015] [Indexed: 06/05/2023]
Abstract
Replicative stress (RS) is a cell-intrinsic phenomenon enhanced by oncogenic transformation. Checkpoint kinase 1 (CHK1) is a key component of the ATR-dependent DNA damage response pathway that protects cells from RS by preventing replication fork collapse and activating homologous DNA repair. Taking this knowledge into account, one would predict CHK1 behaves strictly as a tumor suppressor. However, the reality seems far more complex. CHEK1 loss-of-function mutations have not been found in human tumors, and transgenic expression of Chek1 in mice promotes oncogene-induced transformation through RS inhibition. Moreover, CHK1 is overexpressed in various human cancers and CHK1 inhibitors have been developed as sensitizers to enhance the cytotoxicity of DNA damage-inducing chemotherapies. Here, we summarize the literature on the involvement of CHK1 in cancer progression, including our recent observation that CHK1 sustains T-cell acute lymphoblastic leukemia (T-ALL) cell viability. We also debate the importance of identifying patients that could benefit the most from treatment with CHK1 inhibitors, taking T-ALL as a model, and propose possible markers of therapeutic response.
Collapse
Affiliation(s)
- Leonor M Sarmento
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - João T Barata
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal.
| |
Collapse
|
13
|
Specks J, Nieto-Soler M, Lopez-Contreras AJ, Fernandez-Capetillo O. Modeling the study of DNA damage responses in mice. Methods Mol Biol 2015; 1267:413-37. [PMID: 25636482 DOI: 10.1007/978-1-4939-2297-0_21] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Damaged DNA has a profound impact on mammalian health and overall survival. In addition to being the source of mutations that initiate cancer, the accumulation of toxic amounts of DNA damage can cause severe developmental diseases and accelerate aging. Therefore, understanding how cells respond to DNA damage has become one of the most intense areas of biomedical research in the recent years. However, whereas most mechanistic studies derive from in vitro or in cellulo work, the impact of a given mutation on a living organism is largely unpredictable. For instance, why BRCA1 mutations preferentially lead to breast cancer whereas mutations compromising mismatch repair drive colon cancer is still not understood. In this context, evaluating the specific physiological impact of mutations that compromise genome integrity has become crucial for a better dimensioning of our knowledge. We here describe the various technologies that can be used for modeling mutations in mice and provide a review of the genes and pathways that have been modeled so far in the context of DNA damage responses.
Collapse
Affiliation(s)
- Julia Specks
- Genomic Instability Group, Spanish National Cancer Research Center (CNIO), C/Melchor Fernandez Almagro, 3, E-28029, Madrid, Spain
| | | | | | | |
Collapse
|
14
|
Checkpoint kinase1 (CHK1) is an important biomarker in breast cancer having a role in chemotherapy response. Br J Cancer 2015; 112:901-11. [PMID: 25688741 PMCID: PMC4453942 DOI: 10.1038/bjc.2014.576] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 09/18/2014] [Accepted: 09/23/2014] [Indexed: 01/16/2023] Open
Abstract
Background: Checkpoint kinase1 (CHK1), which is a key component of DNA-damage-activated checkpoint signalling response, may have a role in breast cancer (BC) pathogenesis and influence response to chemotherapy. This study investigated the clinicopathological significance of phosphorylated CHK1 (pCHK1) protein in BC. Method: pCHK1 protein expression was assessed using immunohistochemistry in a large, well-characterized annotated series of early-stage primary operable invasive BC prepared as tissue microarray (n=1200). Result: pCHK1 showed nuclear and/or cytoplasmic expression. Tumours with nuclear expression showed positive associations with favourable prognostic features such as lower grade, lower mitotic activity, expression of hormone receptor and lack of expression of KI67 and PI3K (P<0.001). On the other hand, cytoplasmic expression was associated with features of poor prognosis such as higher grade, triple-negative phenotype and expression of KI67, p53, AKT and PI3K. pCHK1 expression showed an association with DNA damage response (ATM, RAD51, BRCA1, KU70/KU80, DNA-PKCα and BARD1) and sumoylation (UBC9 and PIASγ) biomarkers. Subcellular localisation of pCHK1 was associated with the expression of the nuclear transport protein KPNA2. Positive nuclear expression predicted better survival outcome in patients who did not receive chemotherapy in the whole series and in ER-positive tumours. In ER-negative and triple-negative subgroups, nuclear pCHK1 predicted shorter survival in patients who received cyclophosphamide, methotrexate and 5-florouracil chemotherapy. Conclusions: Our data suggest that pCHK1 may have prognostic and predictive significance in BC. Subcellular localisation of pCHK1 protein is related to its function.
Collapse
|
15
|
Lunardi A, Varmeh S, Chen M, Taulli R, Guarnerio J, Ala U, Seitzer N, Ishikawa T, Carver BS, Hobbs RM, Quarantotti V, Ng C, Berger AH, Nardella C, Poliseno L, Montironi R, Castillo-Martin M, Cordon-Cardo C, Signoretti S, Pandolfi PP. Suppression of CHK1 by ETS Family Members Promotes DNA Damage Response Bypass and Tumorigenesis. Cancer Discov 2015; 5:550-63. [PMID: 25653093 DOI: 10.1158/2159-8290.cd-13-1050] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 01/27/2015] [Indexed: 01/11/2023]
Abstract
UNLABELLED The ETS family of transcription factors has been repeatedly implicated in tumorigenesis. In prostate cancer, ETS family members, such as ERG, ETV1, ETV4, and ETV5, are frequently overexpressed due to chromosomal translocations, but the molecular mechanisms by which they promote prostate tumorigenesis remain largely undefined. Here, we show that ETS family members, such as ERG and ETV1, directly repress the expression of the checkpoint kinase 1 (CHK1), a key DNA damage response cell-cycle regulator essential for the maintenance of genome integrity. Critically, we find that ERG expression correlates with CHK1 downregulation in human patients and demonstrate that Chk1 heterozygosity promotes the progression of high-grade prostatic intraepithelial neoplasia into prostatic invasive carcinoma in Pten(+) (/-) mice. Importantly, CHK1 downregulation sensitizes prostate tumor cells to etoposide but not to docetaxel treatment. Thus, we identify CHK1 as a key functional target of the ETS proto-oncogenic family with important therapeutic implications. SIGNIFICANCE Genetic translocation and aberrant expression of ETS family members is a common event in different types of human tumors. Here, we show that through the transcriptional repression of CHK1, ETS factors may favor DNA damage accumulation and consequent genetic instability in proliferating cells. Importantly, our findings provide a rationale for testing DNA replication inhibitor agents in ETS-positive TP53-proficient tumors.
Collapse
Affiliation(s)
- Andrea Lunardi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Shohreh Varmeh
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Ming Chen
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Riccardo Taulli
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Jlenia Guarnerio
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Ugo Ala
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Nina Seitzer
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Tomoki Ishikawa
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Brett S Carver
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Division of Urology, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Robin M Hobbs
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Valentina Quarantotti
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Christopher Ng
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Alice H Berger
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Caterina Nardella
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Laura Poliseno
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Rodolfo Montironi
- Institute of Pathological Anatomy and Histopathology, Polytechnic University of the Marche Region (Ancona), United Hospitals, Ancona, Italy
| | | | | | - Sabina Signoretti
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts. Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Pier Paolo Pandolfi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
16
|
Sarmento LM, Póvoa V, Nascimento R, Real G, Antunes I, Martins LR, Moita C, Alves PM, Abecasis M, Moita LF, Parkhouse RME, Meijerink JPP, Barata JT. CHK1 overexpression in T-cell acute lymphoblastic leukemia is essential for proliferation and survival by preventing excessive replication stress. Oncogene 2014; 34:2978-90. [PMID: 25132270 DOI: 10.1038/onc.2014.248] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/05/2014] [Accepted: 06/26/2014] [Indexed: 12/22/2022]
Abstract
Checkpoint kinase 1 (CHK1) is a key component of the ATR (ataxia telangiectasia-mutated and Rad3-related)-dependent DNA damage response pathway that protect cells from replication stress, a cell intrinsic phenomenon enhanced by oncogenic transformation. Here, we show that CHK1 is overexpressed and hyperactivated in T-cell acute lymphoblastic leukemia (T-ALL). CHEK1 mRNA is highly abundant in patients of the proliferative T-ALL subgroup and leukemia cells exhibit constitutively elevated levels of the replication stress marker phospho-RPA32 and the DNA damage marker γH2AX. Importantly, pharmacologic inhibition of CHK1 using PF-004777736 or CHK1 short hairpin RNA-mediated silencing impairs T-ALL cell proliferation and viability. CHK1 inactivation results in the accumulation of cells with incompletely replicated DNA, ensuing DNA damage, ATM/CHK2 activation and subsequent ATM- and caspase-3-dependent apoptosis. In contrast to normal thymocytes, primary T-ALL cells are sensitive to therapeutic doses of PF-004777736, even in the presence of stromal or interleukin-7 survival signals. Moreover, CHK1 inhibition significantly delays in vivo growth of xenotransplanted T-ALL tumors. We conclude that CHK1 is critical for T-ALL proliferation and viability by downmodulating replication stress and preventing ATM/caspase-3-dependent cell death. Pharmacologic inhibition of CHK1 may be a promising therapeutic alternative for T-ALL treatment.
Collapse
Affiliation(s)
- L M Sarmento
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - V Póvoa
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - R Nascimento
- Infections and Immunity Laboratory, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - G Real
- 1] iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal [2] Instituto de Tecnologia Química e Biológica, Oeiras, Portugal
| | - I Antunes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - L R Martins
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - C Moita
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - P M Alves
- 1] iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal [2] Instituto de Tecnologia Química e Biológica, Oeiras, Portugal
| | - M Abecasis
- Cardiologia Pediátrica Medico-Cirúrgica, Hospital Sta. Cruz, Carnaxide, Lisbon, Portugal
| | - L F Moita
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - R M E Parkhouse
- Infections and Immunity Laboratory, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - J P P Meijerink
- Department of Pediatric Oncology/Hematology, Erasmus MC/Sophia Children's Hospital, Rotterdam, The Netherlands
| | - J T Barata
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
17
|
Greenow KR, Clarke AR, Williams GT, Jones R. Wnt-driven intestinal tumourigenesis is suppressed by Chk1 deficiency but enhanced by conditional haploinsufficiency. Oncogene 2014; 33:4089-96. [PMID: 24037525 DOI: 10.1038/onc.2013.371] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 05/17/2013] [Accepted: 06/07/2013] [Indexed: 12/11/2022]
Abstract
Chk1 is essential in maintaining genomic stability due to its role in cell cycle regulation. Several recent studies have indicated that the abrogation of checkpoints in tumourigenesis through the inhibition of Chk1 may be of therapeutic value. To further investigate the role of Chk1 in the mouse small intestine and its potential role as a therapy for colorectal cancer, we simultaneously deleted Chk1 and Apc in the mouse small intestine. We found that homozygous loss of Chk1 is not compatible with Wnt-driven proliferation and resulted in the suppression of Wnt-driven tumourigenesis in the mouse small intestine. In contrast, heterozygous loss of Chk1 in a Wnt-driven background resulted in an increase in DNA damage and apoptosis and accelerated both tumour development and progression.
Collapse
Affiliation(s)
- K R Greenow
- Cardiff School of Biosciences, Cardiff University, Cardiff, UK
| | - A R Clarke
- Cardiff School of Biosciences, Cardiff University, Cardiff, UK
| | - G T Williams
- School of Medicine, Cardiff University, Cardiff, UK
| | - R Jones
- Cardiff School of Biosciences, Cardiff University, Cardiff, UK
| |
Collapse
|
18
|
Co-abrogation of Chk1 and Chk2 by potent oncolytic adenovirus potentiates the antitumor efficacy of cisplatin or irradiation. Cancer Gene Ther 2014; 21:209-17. [PMID: 24853623 DOI: 10.1038/cgt.2014.20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 04/14/2014] [Accepted: 04/14/2014] [Indexed: 11/08/2022]
Abstract
Mammalian checkpoint kinases 1 and 2 (Chk1 and Chk2) are essential kinases that are involved in cell cycle checkpoint control, and the abrogation of either has been proposed as one way to sensitize cancer cells to DNA-damaging agents. However, it remains unclear which kinase is the most therapeutically relevant target, and whether multiple kinases might need to be targeted to achieve the best efficacy because of their overlapping substrate spectra and redundant functions. To clarify this issue, we established asynchronous cell cycle arrest models to investigate the therapeutic outcomes of silencing Chk1 and Chk2 in the presence of irradiation or cisplatin. Our results showed that Chk1- and Chk2-targeting small interference RNAs (siRNAs) demonstrated synergistic effects when both siRNAs were used simultaneously. Interestingly, Chk1 and Chk2 co-expression occurred in ∼90% of neoplastic tissues examined and showed no difference in neoplastic versus non-neoplastic tissues. Therefore, the selective targeting of Chk1 and Chk2 by oncolytic adenovirus mutants was chosen to treat resistant tumor xenograft mice, and the maximum antitumoral efficacy was achieved with the combined co-abrogation of Chk1 and Chk2 in the presence of low-dose cisplatin. This work deepens our understanding of novel strategies that target checkpoint pathways and contributes to the development of novel, potent and safe checkpoint abrogators.
Collapse
|
19
|
Cheung CT, Singh R, Kalra RS, Kaul SC, Wadhwa R. Collaborator of ARF (CARF) regulates proliferative fate of human cells by dose-dependent regulation of DNA damage signaling. J Biol Chem 2014; 289:18258-69. [PMID: 24825908 DOI: 10.1074/jbc.m114.547208] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Collaborator of ARF (CARF) has been shown to directly bind to and regulate p53, a central protein that controls tumor suppression via cellular senescence and apoptosis. However, the cellular functions of CARF and the mechanisms governing its effect on senescence, apoptosis, or proliferation are still unknown. Our previous studies have shown that (i) CARF is up-regulated during replicative and stress-induced senescence, and its exogenous overexpression caused senescence-like growth arrest of cells, and (ii) suppression of CARF induces aneuploidy, DNA damage, and mitotic catastrophe, resulting in apoptosis via the ATR/CHK1 pathway. In the present study, we dissected the cellular role of CARF by investigating the molecular pathways triggered by its overexpression in vitro and in vivo. We found that the dosage of CARF is a critical factor in determining the proliferation potential of cancer cells. Most surprisingly, although a moderate level of CARF overexpression induced senescence, a very high level of CARF resulted in increased cell proliferation. We demonstrate that the level of CARF is crucial for DNA damage and checkpoint response of cells through ATM/CHK1/CHK2, p53, and ERK pathways that in turn determine the proliferative fate of cancer cells toward growth arrest or proproliferative and malignant phenotypes. To the best of our knowledge, this is the first report that demonstrates the capability of a fundamental protein, CARF, in controlling cell proliferation in two opposite directions and hence may play a key role in tumor biology and cancer therapeutics.
Collapse
Affiliation(s)
| | | | - Rajkumar S Kalra
- From the Cell Proliferation Research Group and Department of Biotechnology (DBT, India)-National Institute of Advanced Industrial Science & Technology (AIST, Japan) International Laboratory for Advanced Biomedicine, Tsukuba, Ibaraki 305-8562, Japan
| | - Sunil C Kaul
- From the Cell Proliferation Research Group and Department of Biotechnology (DBT, India)-National Institute of Advanced Industrial Science & Technology (AIST, Japan) International Laboratory for Advanced Biomedicine, Tsukuba, Ibaraki 305-8562, Japan
| | - Renu Wadhwa
- From the Cell Proliferation Research Group and Department of Biotechnology (DBT, India)-National Institute of Advanced Industrial Science & Technology (AIST, Japan) International Laboratory for Advanced Biomedicine, Tsukuba, Ibaraki 305-8562, Japan
| |
Collapse
|
20
|
The Molecular Crosstalk between the MET Receptor Tyrosine Kinase and the DNA Damage Response-Biological and Clinical Aspects. Cancers (Basel) 2013; 6:1-27. [PMID: 24378750 PMCID: PMC3980615 DOI: 10.3390/cancers6010001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 12/06/2013] [Accepted: 12/06/2013] [Indexed: 02/07/2023] Open
Abstract
Radiation therapy remains an imperative treatment modality for numerous malignancies. Enduring significant technical achievements both on the levels of treatment planning and radiation delivery have led to improvements in local control of tumor growth and reduction in healthy tissue toxicity. Nevertheless, resistance mechanisms, which presumably also involve activation of DNA damage response signaling pathways that eventually may account for loco-regional relapse and consequent tumor progression, still remain a critical problem. Accumulating data suggest that signaling via growth factor receptor tyrosine kinases, which are aberrantly expressed in many tumors, may interfere with the cytotoxic impact of ionizing radiation via the direct activation of the DNA damage response, leading eventually to so-called tumor radioresistance. The aim of this review is to overview the current known data that support a molecular crosstalk between the hepatocyte growth factor receptor tyrosine kinase MET and the DNA damage response. Apart of extending well established concepts over MET biology beyond its function as a growth factor receptor, these observations directly relate to the role of its aberrant activity in resistance to DNA damaging agents, such as ionizing radiation, which are routinely used in cancer therapy and advocate tumor sensitization towards DNA damaging agents in combination with MET targeting.
Collapse
|
21
|
Manzl C, Fava LL, Krumschnabel G, Peintner L, Tanzer MC, Soratroi C, Bock FJ, Schuler F, Luef B, Geley S, Villunger A. Death of p53-defective cells triggered by forced mitotic entry in the presence of DNA damage is not uniquely dependent on Caspase-2 or the PIDDosome. Cell Death Dis 2013; 4:e942. [PMID: 24309929 PMCID: PMC3877543 DOI: 10.1038/cddis.2013.470] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 10/28/2013] [Accepted: 10/31/2013] [Indexed: 12/11/2022]
Abstract
Much effort has been put in the discovery of ways to selectively kill p53-deficient tumor cells and targeting cell cycle checkpoint pathways has revealed promising candidates. Studies in zebrafish and human cell lines suggested that the DNA damage response kinase, checkpoint kinase 1 (Chk1), not only regulates onset of mitosis but also cell death in response to DNA damage in the absence of p53. This effect reportedly relies on ataxia telangiectasia mutated (ATM)-dependent and PIDDosome-mediated activation of Caspase-2. However, we show that genetic ablation of PIDDosome components in mice does not affect cell death in response to γ-irradiation. Furthermore, Chk1 inhibition largely failed to sensitize normal and malignant cells from p53−/− mice toward DNA damaging agents, and p53 status did not affect the death-inducing activity of DNA damage after Chk1 inhibition in human cancer cells. These observations argue against cross-species conservation of a Chk1-controlled cell survival pathway demanding further investigation of the molecular machinery responsible for cell death elicited by forced mitotic entry in the presence of DNA damage in different cell types and model organisms.
Collapse
Affiliation(s)
- C Manzl
- Division of Developmental Immunology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhang Y, Hunter T. Roles of Chk1 in cell biology and cancer therapy. Int J Cancer 2013; 134:1013-23. [PMID: 23613359 DOI: 10.1002/ijc.28226] [Citation(s) in RCA: 327] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 04/11/2013] [Indexed: 01/05/2023]
Abstract
The evolutionally conserved DNA damage response (DDR) and cell cycle checkpoints preserve genome integrity. Central to these genome surveillance pathways is a protein kinase, Chk1. DNA damage induces activation of Chk1, which then transduces the checkpoint signal and facilitates cell cycle arrest and DNA damage repair. Significant progress has been made recently toward our understanding of Chk1 regulation and its implications in cancer etiology and therapy. Specifically, a model that involves both spatiotemporal and conformational changes of proteins has been proposed for Chk1 activation. Further, emerging evidence suggests that Chk1 does not appear to be a tumor suppressor; instead, it promotes tumor growth and may contribute to anticancer therapy resistance. Recent data from our laboratory suggest that activating, but not inhibiting, Chk1 in the absence of chemotherapy might represent an innovative approach to suppress tumor growth. These findings suggest unique regulation of Chk1 in cell biology and cancer etiology, pointing to novel strategies for targeting Chk1 in cancer therapy.
Collapse
Affiliation(s)
- Youwei Zhang
- Department of Pharmacology, Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH
| | | |
Collapse
|
23
|
Smith J, Larue L, Gillespie DA. Chk1 is essential for the development of murine epidermal melanocytes. Pigment Cell Melanoma Res 2013; 26:580-5. [PMID: 23557358 DOI: 10.1111/pcmr.12100] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 03/18/2013] [Indexed: 02/07/2023]
Abstract
Embryonic deletion of mouse Chk1 is lethal; however, whether Chk1 is essential in all individual tissues is unknown. By breeding C57Bl/ 6 mice homozygous for a conditional allele of Chk1 (Chk1fl/fl) and bearing melanocyte-specific Tyr::Cre and DCT:: LacZ transgenes, we investigated the consequences of Chk1 deletion in the melanocytic lineage. We show that adult Tyr::Cre; Chk1fl/fl mice lack coat pigmentation and epidermal melanocytes in the hair follicles, but retain eye pigmentation in the retinal pigmented epithelium (RPE). Melanoblasts formed normally during embryogenesis in Tyr::Cre; Chk1fl/fl mice at early times (embryonic day 10.5; E10.5) but were completely absent by stage E13.5, most probably as a consequence of spontaneous DNA damage and apoptosis. By contrast, melanoblast numbers were only slightly reduced in heterozygous Tyr::Cre; Chk1fl/ + embryos, and these mice exhibited normal coat pigmentation as adults. Thus, Chk1 is essential for the developmental formation of murine epidermal melanocytes but hemizygosity has little, if any, permanent developmental consequence in this cell type.
Collapse
Affiliation(s)
- Joanne Smith
- Beatson Institute for Cancer Research, Glasgow, UK
| | | | | |
Collapse
|
24
|
Collazo MM, Paraiso KHT, Park MY, Hazen AL, Kerr WG. Lineage extrinsic and intrinsic control of immunoregulatory cell numbers by SHIP. Eur J Immunol 2012; 42:1785-95. [PMID: 22535653 DOI: 10.1002/eji.201142092] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We previously showed that germline or induced SHIP deficiency expands immuno-regulatory cell numbers in T lymphoid and myeloid lineages. We postulated these increases could be interrelated. Here, we show that myeloid-specific ablation of SHIP leads to the expansion of both myeloid-derived suppressor cell (MDSC) and regulatory T (Treg) cell numbers, indicating SHIP-dependent control of Treg-cell numbers by a myeloid cell type. Conversely, T-lineage specific ablation of SHIP leads to expansion of Treg-cell numbers, but not expansion of the MDSC compartment, indicating SHIP also has a lineage intrinsic role in limiting Treg-cell numbers. However, the SHIP-deficient myeloid cell that promotes MDSC and Treg-cell expansion is not an MDSC as they lack SHIP protein expression. Thus, regulation of MDSC numbers in vivo must be controlled in a cell-extrinsic fashion by another myeloid cell type. We had previously shown that G-CSF levels are profoundly increased in SHIP(-/-) mice, suggesting this myelopoietic growth factor could promote MDSC expansion in a cell-extrinsic fashion. Consistent with this hypothesis, we find that G-CSF is required for expansion of the MDSC splenic compartment in mice rendered SHIP-deficient as adults. Thus, SHIP controls MDSC numbers, in part, by limiting production of the myelopoietic growth factor G-CSF.
Collapse
Affiliation(s)
- Michelle M Collazo
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA
| | | | | | | | | |
Collapse
|
25
|
Abstract
CDT2 targets proteins involved in replication licensing (CDT1), cell cycle control (p21), and chromatin modification (SET8) for destruction by the CUL4-based E3 ligase (CRL4). CRL4(CDT2) recruits these substrates through interactions with chromatin-bound PCNA and ubiquitinates them exclusively on chromatin. Rereplication and G(2) cell cycle arrest are observed in CDT2-depleted cells. The rereplication phenotype has been attributed to an inability to destroy CDT1, but the molecular target important for G(2) cell cycle arrest in CDT2-depleted cells has not been identified. Here we identify CHK1 as a novel CRL4(CDT2) substrate and demonstrate that CHK1 activity is required for maintaining G(2) arrest in CDT2-depleted cells. We demonstrate that CRL4(CDT2) targets the activated form of CHK1 for destruction in the nucleoplasm rather than on chromatin and that this occurs in a PCNA-independent manner. Although both CRL1 and CRL4 ubiquitinate CHK1, we report that they bind CHK1 in distinct cellular compartments. Our study provides insight into how elevated CDT2 expression levels may provide tumors with a proliferative advantage.
Collapse
|
26
|
Tho LM, Libertini S, Rampling R, Sansom O, Gillespie DA. Chk1 is essential for chemical carcinogen-induced mouse skin tumorigenesis. Oncogene 2012; 31:1366-75. [PMID: 21804609 DOI: 10.1038/onc.2011.326] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 06/26/2011] [Accepted: 06/26/2011] [Indexed: 01/17/2023]
Abstract
Chk1 is a key regulator of DNA damage checkpoint responses and genome stability in eukaryotes. To better understand how checkpoint proficiency relates to cancer development, we investigated the effects of genetic ablation of Chk1 in the mouse skin on tumors induced by chemical carcinogens. We found that homozygous deletion of Chk1 immediately before carcinogen exposure strongly suppressed benign tumor (papilloma) formation, and that the few, small lesions that formed in the ablated skin always retained Chk1 expression. Remarkably, Chk1 deletion rapidly triggered spontaneous cell proliferation, γ-H2AX staining and apoptosis within the hair follicle, a principal site of origin for carcinogen-induced tumors. At later times, the ablated skin was progressively repopulated by non-recombined Chk1-expressing cells and ultimately normal sensitivity to tumor induction was restored when carcinogen treatment was delayed. In marked contrast, papillomas formed normally in Chk1 hemizygous skin but showed an increased propensity to progress to carcinoma. Thus, complete loss of Chk1 is incompatible with epithelial tumorigenesis, whereas partial loss of function (haploinsufficiency) fosters benign malignant tumor progression.
Collapse
Affiliation(s)
- L M Tho
- Beatson Institute for Cancer Research, Bearsden, Glasgow, UK
| | | | | | | | | |
Collapse
|
27
|
Nguyen TNT, Saleem RSZ, Luderer MJ, Hovde S, Henry RW, Tepe JJ. Radioprotection by hymenialdisine-derived checkpoint kinase 2 inhibitors. ACS Chem Biol 2012; 7:172-84. [PMID: 22004065 DOI: 10.1021/cb200320c] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
DNA damage induced by ionizing radiation activates the ataxia telangiectasia mutated pathway, resulting in apoptosis or DNA repair. The serine/threonine checkpoint kinase (Chk2) is an important transducer of this DNA damage signaling pathway and mediates the ultimate fate of the cell. Chk2 is an advantageous target for the development of adjuvant drugs for cancer therapy, because inhibition of Chk2 allows normal cells to enter cell cycle arrest and DNA repair, whereas many tumors bypass cell cycle checkpoints. Chk2 inhibitors may thus have a radioprotective effect on normal cells. We report herein a class of natural product derived Chk2 inhibitors, exemplified by indoloazepine 1, that elicit a strong ATM-dependent Chk2-mediated radioprotection effect in normal cells and p53 wt cells, but not p53 mutant cells (>50% of all cancers). This study represents the first example of a radioprotective effect in human cells other than T-cells and implicates a functional ATM pathway as a requirement for IR-induced radioprotection by this class of Chk2 inhibitors. Several of the hymenialdisine-derived analogues inhibit Chk2 at nanomolar concentrations, inhibit autophosphorylation of Chk2 at Ser516 in cells, and increase the survival of normal cells following ionizing radiation.
Collapse
Affiliation(s)
- Thu N. T. Nguyen
- Department of Chemistry and ‡Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Rahman S. Z. Saleem
- Department of Chemistry and ‡Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Micah J. Luderer
- Department of Chemistry and ‡Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Stacy Hovde
- Department of Chemistry and ‡Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - R. William Henry
- Department of Chemistry and ‡Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jetze J. Tepe
- Department of Chemistry and ‡Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
28
|
Checkpoint kinase 1 (Chk1)-short is a splice variant and endogenous inhibitor of Chk1 that regulates cell cycle and DNA damage checkpoints. Proc Natl Acad Sci U S A 2011; 109:197-202. [PMID: 22184239 DOI: 10.1073/pnas.1104767109] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Checkpoint kinase 1 (Chk1) is a key regulator of checkpoint signaling in both the unperturbed cell cycle and DNA damage response. Under these conditions, Chk1 becomes active to prevent premature CDK1 activation and mitotic entry until DNA is properly replicated or repaired. It is unclear how Chk1 activity is controlled in the unperturbed cell cycle. During DNA damage, Chk1 is activated by ataxia telangiectasia and Rad3 related (ATR)-mediated phosphorylation; however, it is not entirely clear how this phosphorylation results in Chk1 activation. Here we report an N-terminally truncated alternative splice variant of Chk1, Chk1-S. Importantly, we show that Chk1-S is an endogenous repressor and regulator of Chk1. In the unperturbed cell cycle, Chk1-S interacts with and antagonizes Chk1 to promote the S-to-G2/M phase transition. During DNA damage, Chk1 is phosphorylated, which disrupts the Chk1-Chk1-S interaction, resulting in free, active Chk1 to arrest the cell cycle and facilitate DNA repair. Higher levels of Chk1-S are expressed, along with Chk1, in fetal and cancer tissues than in normal tissues. However, forced overexpression of Chk1-S in cultured cells and tumor xenografts induces premature mitotic entry, mitotic catastrophe, and reduction of tumor growth. The identification of Chk1-S as a unique splice variant and key regulator of Chk1 provides insights into cell cycle regulation and DNA damage response.
Collapse
|
29
|
Transient knock down of checkpoint kinase 1 in hematopoietic progenitors is linked to bone marrow toxicity. Toxicol Lett 2011; 204:141-7. [PMID: 21557990 DOI: 10.1016/j.toxlet.2011.04.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 04/21/2011] [Accepted: 04/22/2011] [Indexed: 11/21/2022]
Abstract
Checkpoint kinase 1 (Chk1) is required for both intra-S phase and G2/M checkpoints in cell cycle, and plays critical roles in maintaining genomic stability and transducing DNA damage response. Chk1 deficiency has been shown to inhibit T-cell differentiation and resulted in severe anemia in a Chk1 heterozygous mouse model. To date, there has been a good correlation between Chk1 inhibition and in vitro bone marrow toxicity among small molecule inhibitors. To better understand the role of Chk1 in hematopoiesis, we conducted transient Chk1 gene silencing in human bone marrow progenitor cells using siRNA and electroporation. At 48h post electroporation, approximately 70% inhibition of Chk1 was confirmed using real-time RT-PCR and immunoblotting, which resulted in more than 60% reduction in cell count when compared to the non-specific siRNA control on day 6 post-electroporation. This result was confirmed using a colony forming unit assay, where reduced number in both erythroid and granulocyte colonies was observed with Chk1 siRNA treatment. The Chk1 gene inhibition in bone marrow progenitor cells resulted in significant induction of apoptosis, but not cell cycle arrest, as assessed using flow cytometry. In this study an effective method to knock down a gene of interest was established in hard-to-transfect hematopoietic stem cells. Furthermore, our results support a direct role of Chk1 in maintaining normal hematopoiesis in the bone marrow.
Collapse
|
30
|
Acidic nuclear phosphoprotein 32kDa (ANP32)B-deficient mouse reveals a hierarchy of ANP32 importance in mammalian development. Proc Natl Acad Sci U S A 2011; 108:10243-8. [PMID: 21636789 DOI: 10.1073/pnas.1106211108] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The highly conserved ANP32 proteins are proposed to function in a broad array of physiological activities through molecular mechanisms as diverse as phosphatase inhibition, chromatin regulation, caspase activation, and intracellular transport. On the basis of previous analyses of mice bearing targeted mutations of Anp32a or Anp32e, there has been speculation that all ANP32 proteins play redundant roles and are dispensable for normal development. However, more recent work has suggested that ANP32B may in fact have functions that are not shared by other ANP32 family members. Here we report that ANP32B expression is associated with a poor prognosis in human breast cancer, consistent with the increased levels of Anp32b mRNA present in proliferating wild-type (WT) murine embryonic fibroblasts and stimulated WT B and T lymphocytes. Moreover, we show that, contrary to previous assumptions, Anp32b is very important for murine embryogenesis. In a mixed genetic background, ANP32B-deficient mice displayed a partially penetrant perinatal lethality that became fully penetrant in a pure C57BL/6 background. Surviving ANP32B-deficient mice showed reduced viability due to variable defects in various organ systems. Study of compound mutants lacking ANP32A, ANP32B, and/or ANP32E revealed previously hidden roles for ANP32A in mouse development that became apparent only in the complete absence of ANP32B. Our data demonstrate a hierarchy of importance for the mammalian Anp32 genes, with Anp32b being the most critical for normal development.
Collapse
|
31
|
Koh W, Jeong SJ, Lee HJ, Ryu HG, Lee EO, Ahn KS, Bae H, Kim SH. Melatonin promotes puromycin-induced apoptosis with activation of caspase-3 and 5'-adenosine monophosphate-activated kinase-alpha in human leukemia HL-60 cells. J Pineal Res 2011; 50:367-73. [PMID: 21244482 DOI: 10.1111/j.1600-079x.2010.00852.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Melatonin, a naturally occurring molecule, is produced by the pineal gland in a circadian manner to regulate biologic rhythms in humans. Recent studies report that melatonin may be an attractive candidate as an anticancer agent or for combined therapy because of its antioxidant, oncostatic and immunoregulatory activities. In this study, the potentiating effect of melatonin was evaluated on the apoptosis induced by puromycin as an anticancer drug in acute promyelocytic leukemia HL-60 cells. Melatonin did not show significant cytotoxicity against HL-60 cells compared to puromycin. However, melatonin significantly augmented the cytotoxicity of puromycin. Consistently, combined treatment of melatonin and puromycin reduced the expression of anti-apoptotic proteins, such as bcl-2 and bcl-x(L) , and also induced caspase-3 activation and poly (ADP-ribose) polymerase (PARP) cleavage compared to puromycin treatment alone. Furthermore, cell cycle analysis revealed that melatonin promoted puromycin-induced apoptosis by increasing the sub-G1 population, but suppressing G2/M arrest in HL-60 cells. Interestingly, melatonin activated the phosphorylation of 5'-adenosine monophosphate-activated kinase (AMPK) in combination with puromycin. Taken together, our results suggest that melatonin potentiates puromycin-induced apoptosis with caspase-3 and AMPK activation in HL-60 cells, and thus, melatonin treatment can be effectively applied to leukemia treatment as a potential sensitizer for chemotherapeutic agents.
Collapse
Affiliation(s)
- Wonil Koh
- College of Oriental Medicine, Kyung Hee University, Dongdaemun-gu, Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Smith J, Tho LM, Xu N, Gillespie DA. The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer. Adv Cancer Res 2011; 108:73-112. [PMID: 21034966 DOI: 10.1016/b978-0-12-380888-2.00003-0] [Citation(s) in RCA: 916] [Impact Index Per Article: 65.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
DNA damage is a key factor both in the evolution and treatment of cancer. Genomic instability is a common feature of cancer cells, fuelling accumulation of oncogenic mutations, while radiation and diverse genotoxic agents remain important, if imperfect, therapeutic modalities. Cellular responses to DNA damage are coordinated primarily by two distinct kinase signaling cascades, the ATM-Chk2 and ATR-Chk1 pathways, which are activated by DNA double-strand breaks (DSBs) and single-stranded DNA respectively. Historically, these pathways were thought to act in parallel with overlapping functions; however, more recently it has become apparent that their relationship is more complex. In response to DSBs, ATM is required both for ATR-Chk1 activation and to initiate DNA repair via homologous recombination (HRR) by promoting formation of single-stranded DNA at sites of damage through nucleolytic resection. Interestingly, cells and organisms survive with mutations in ATM or other components required for HRR, such as BRCA1 and BRCA2, but at the cost of genomic instability and cancer predisposition. By contrast, the ATR-Chk1 pathway is the principal direct effector of the DNA damage and replication checkpoints and, as such, is essential for the survival of many, although not all, cell types. Remarkably, deficiency for HRR in BRCA1- and BRCA2-deficient tumors confers sensitivity to cisplatin and inhibitors of poly(ADP-ribose) polymerase (PARP), an enzyme required for repair of endogenous DNA damage. In addition, suppressing DNA damage and replication checkpoint responses by inhibiting Chk1 can enhance tumor cell killing by diverse genotoxic agents. Here, we review current understanding of the organization and functions of the ATM-Chk2 and ATR-Chk1 pathways and the prospects for targeting DNA damage signaling processes for therapeutic purposes.
Collapse
Affiliation(s)
- Joanne Smith
- Beatson Institute for Cancer Research, Garscube Estate, Glasgow, UK
| | | | | | | |
Collapse
|
33
|
Peddibhotla S, Wei Z, Papineni R, Lam MH, Rosen JM, Zhang P. The DNA damage effector Chk1 kinase regulates Cdc14B nucleolar shuttling during cell cycle progression. Cell Cycle 2011; 10:671-9. [PMID: 21301228 DOI: 10.4161/cc.10.4.14901] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Chk1 is a critical effector of DNA damage checkpoints necessary for the maintenance of chromosome integrity during cell cycle progression. Here we report, that Chk1 co-localized with the nucleolar marker, fibrillarin in response to radiation-induced DNA damage in human cells. Interestingly, in vitro studies using GST pull down assays identified the dual-specificity serine/threonine nucleolar phosphatase Cdc14B as a Chk1 substrate. Furthermore, Chk1, but not a kinase-dead Chk1 control, was shown to phosphorylate Cdc14B using an in vitro kinase assay. Co-immunoprecipitation experiments using exogenous Cdc14B transfected into human cells confirmed the interaction of Cdc14B and Chk1 during cell cycle. In addition, reduction of Chk1 levels via siRNA or UCN-01 treatment demonstrated that Chk1 activation following DNA damage was required for Cdc14B export from the nucleolus. These studies have revealed a novel interplay between Chk1 kinase and Cdc14B phosphatase involving radiation-induced nucleolar shuttling to facilitate error-free cell cycle progression and prevent genomic instability.
Collapse
Affiliation(s)
- Sirisha Peddibhotla
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX USA
| | | | | | | | | | | |
Collapse
|
34
|
Niida H, Murata K, Shimada M, Ogawa K, Ohta K, Suzuki K, Fujigaki H, Khaw AK, Banerjee B, Hande MP, Miyamoto T, Miyoshi I, Shirai T, Motoyama N, Delhase M, Appella E, Nakanishi M. Cooperative functions of Chk1 and Chk2 reduce tumour susceptibility in vivo. EMBO J 2010; 29:3558-70. [PMID: 20834228 DOI: 10.1038/emboj.2010.218] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 08/10/2010] [Indexed: 11/09/2022] Open
Abstract
Although the linkage of Chk1 and Chk2 to important cancer signalling suggests that these kinases have functions as tumour suppressors, neither Chk1+/- nor Chk2-/- mice show a predisposition to cancer under unperturbed conditions. We show here that Chk1+/-Chk2-/- and Chk1+/-Chk2+/- mice have a progressive cancer-prone phenotype. Deletion of a single Chk1 allele compromises G2/M checkpoint function that is not further affected by Chk2 depletion, whereas Chk1 and Chk2 cooperatively affect G1/S and intra-S phase checkpoints. Either or both of the kinases are required for DNA repair depending on the type of DNA damage. Mouse embryonic fibroblasts from the double-mutant mice showed a higher level of p53 with spontaneous DNA damage under unperturbed conditions, but failed to phosphorylate p53 at S23 and further induce p53 expression upon additional DNA damage. Neither Chk1 nor Chk2 is apparently essential for p53- or Rb-dependent oncogene-induced senescence. Our results suggest that the double Chk mutation leads to a high level of spontaneous DNA damage, but fails to eliminate cells with damaged DNA, which may ultimately increase cancer susceptibility independently of senescence.
Collapse
Affiliation(s)
- Hiroyuki Niida
- Department of Cell Biology, Nagoya City University, Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lee SY, Lau ATY, Jeong CH, Shim JH, Kim HG, Kim J, Bode AM, Dong Z. Histone XH2AX is required for Xenopus anterior neural development: critical role of threonine 16 phosphorylation. J Biol Chem 2010; 285:29525-34. [PMID: 20639511 DOI: 10.1074/jbc.m110.127233] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A role for histone H2AX, one of the variants of the nucleosome core histone H2A, has been demonstrated in DNA repair, tumor suppression, apoptosis, and cell cycle checkpoint function. However, the physiological function and post-translational modification of histone H2AX during vertebrate development have not been elucidated. Here, we provide evidence showing that Xenopus histone H2AX (XH2AX) has a role in the anterior neural plate for eye field formation during Xenopus embryogenesis. A loss-of-function study clearly demonstrated a critical role of XH2AX in anterior neural specification. Through a differentiation assay with Xenopus animal cap embryonic stem cells, we confirmed that XH2AX is required for the activin-induced anterior neural specification of the ectoderm. Furthermore, we found that Chk1 is an essential kinase to phosphorylate histone XH2AX at Thr(16), which is involved in the biological function of this histone. Taken together, our findings reveal that XH2AX has a specific role in anterior neural formation of Xenopus, which is mediated through phosphorylation of XH2AX at Thr(16) by Chk1.
Collapse
Affiliation(s)
- Sung-Young Lee
- Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Steady-state hematopoiesis is sustained through differentiation balanced with proliferation and self-renewal of hematopoietic stem cells (HSCs). Disruption of this balance can lead to hematopoietic failure, as hematopoietic differentiation without self-renewal leads to loss of the HSC pool. We find that conditional knockout mice that delete the transcriptional repressor NKAP in HSCs and all hematopoietic lineages during embryonic development exhibit perinatal lethality and abrogation of hematopoiesis as demonstrated by multilineage defects in lymphocyte, granulocyte, erythrocyte and megakaryocyte development. Inducible deletion of NKAP in adult mice leads to lethality within 2 weeks, at which point hematopoiesis in the bone marrow has halted and HSCs have disappeared. This hematopoietic failure and lethality is cell intrinsic, as radiation chimeras reconstituted with inducible Mx1-cre NKAP conditional knockout bone marrow also succumb with a similar time course. Even in the context of a completely normal bone marrow environment using mixed radiation chimeras, NKAP deletion results in HSC failure. NKAP deletion leads to decreased proliferation and increased apoptosis of HSCs, which is likely due to increased expression of the cyclin-dependent kinase inhibitors p21Cip1/Waf1 and p19Ink4d. These data establish NKAP as one of a very small number of transcriptional regulators that is absolutely required for adult HSC maintenance and survival.
Collapse
|
37
|
DNA-PK promotes the survival of young neurons in the embryonic mouse retina. Cell Death Differ 2010; 17:1697-706. [PMID: 20448641 DOI: 10.1038/cdd.2010.46] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Programmed cell death is a crucial process in neural development that affects mature neurons and glial cells, as well as proliferating precursors and recently born neurons at earlier stages. However, the regulation of the early phase of neural cell death and its function remain relatively poorly understood. In mouse models defective in homologous recombination or nonhomologous end-joining (NHEJ), which are both DNA double-strand break (DSB) repair pathways, there is massive cell death during neural development, even leading to embryonic lethality. These observations suggest that natural DSBs occur frequently in the developing nervous system. In this study, we have found that several components of DSB repair pathways are activated in the developing mouse retina at stages that coincide with the onset of neurogenesis. In short-term organotypic retinal cultures, we confirmed that the repair pathways can be modulated pharmacologically. Indeed, inhibiting the DNA-dependent protein kinase (DNA-PK) catalytic subunit, which is involved in NHEJ, with NU7026 increased caspase-dependent cell death and selectively reduced the neuron population. This observation concurs with an increase in the number of apoptotic neurons found after NU7026 treatment, as also observed in the embryonic scid mouse retina, a mutant that lacks DNA-PK catalytic subunit activity. Therefore, our results implicate the generation of DSB and DNA-PK-mediated repair in neurogenesis in the developing retina.
Collapse
|
38
|
Carrassa L, Montelatici E, Lazzari L, Zangrossi S, Simone M, Broggini M, Damia G. Role of Chk1 in the differentiation program of hematopoietic stem cells. Cell Mol Life Sci 2010; 67:1713-22. [PMID: 20146081 PMCID: PMC11115872 DOI: 10.1007/s00018-010-0274-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 12/23/2009] [Accepted: 01/15/2010] [Indexed: 02/05/2023]
Abstract
Hematopoietic stem cells (HSC) isolated from umbilical cord blood (UCB) were treated with ionizing radiation (IR) and sensitivity and IR induced checkpoints activation were investigated. No difference in the sensitivity and in the activation of DNA damage pathways was observed between CD133+ HSC and cells derived from them after ex vivo expansion. Chk1 protein was very low in freshly isolated CD133+ cells, and undetectable in ex vivo expanded UCB CD133+ cells. Chk1 was expressed only on day 3 of the ex vivo expansion. This pattern of Chk1 expression was corroborated in CD133+ cells isolated from peripheral blood apheresis collected from an healthy donor. Treatment with a specific Chk1 inhibitor resulted in a strong reduction in the percentage of myeloid precursors (CD33+) and an increase in the percentage of lymphoid precursors (CD38+) compared to untreated cells, suggesting a possible role for Chk1 in the differentiation program of UCB CD133+ HSC.
Collapse
Affiliation(s)
- Laura Carrassa
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri, via La Masa 19, 20156, Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
39
|
Pires IM, Ward TH, Dive C. Oxaliplatin responses in colorectal cancer cells are modulated by CHK2 kinase inhibitors. Br J Pharmacol 2010; 159:1326-38. [PMID: 20128802 DOI: 10.1111/j.1476-5381.2009.00607.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Checkpoint kinase 2 (CHK2) is activated by DNA damage and can contribute to p53 stabilization, modulating growth arrest and/or apoptosis. We investigated the contribution of CHK2 to oxaliplatin-mediated toxicity in a colorectal cancer model. EXPERIMENTAL APPROACH We evaluated the ability of CHK2 small molecule inhibitors to potentiate oxaliplatin-induced toxicity. The role of CHK2 in oxaliplatin-induced apoptosis was investigated in HCT116 cells that were wild-type (WT) or KO for CHK2. Small molecule inhibitors of CHK2 were used in combination studies with oxaliplatin in this cell model. KEY RESULTS In oxaliplatin-treated CHK2 KO cells, accelerated apoptosis was accompanied by attenuated p53 stabilization and p21(WAF-1) up-regulation correlating with increased Bax expression, cytochrome c release and elevated caspase activity. The higher levels of apoptosis in CHK2 KO cells were restored to control (WT) levels when CHK2 was re-introduced. This 'uncoupling' of p53 stabilization and Bax up-regulation in CHK2 KO cells suggested oxaliplatin-induced apoptosis was due to a p53-independent response. Combination studies revealed that CHK2 inhibitor II or debromohymenialdisine antagonized the responses to oxaliplatin. This inhibitory effect correlated with decreases in apoptosis, p53 stabilization and DNA inter-strand cross-link formation, and was dependent on the presence (but not activity) of CHK2. CONCLUSIONS AND IMPLICATIONS Combinations of CHK2 inhibitors with oxaliplatin should further sensitize cells to oxaliplatin treatment. However, these inhibitors produced an antagonistic effect on the response to oxaliplatin, which was reversed on the re-introduction of CHK2. These observations may have implications for the use of oxaliplatin in colorectal cancer therapy in combination with therapies targeting CHK2.
Collapse
Affiliation(s)
- I M Pires
- Clinical and Experimental Pharmacology Group, Paterson Institute for Cancer Research, University of Manchester, Manchester, UK
| | | | | |
Collapse
|
40
|
Boles NC, Peddibhotla S, Chen AJ, Goodell MA, Rosen JM. Chk1 haploinsufficiency results in anemia and defective erythropoiesis. PLoS One 2010; 5:e8581. [PMID: 20052416 PMCID: PMC2798715 DOI: 10.1371/journal.pone.0008581] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 12/12/2009] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Erythropoiesis is a highly regulated and well-characterized developmental process responsible for providing the oxygen transport system of the body. However, few of the mechanisms involved in this process have been elucidated. Checkpoint Kinase 1 (Chk1) is best known for its role in the cell cycle and DNA damage pathways, and it has been shown to play a part in several pathways which when disrupted can lead to anemia. METHODOLOGY/PRINCIPAL FINDINGS Here, we show that haploinsufficiency of Chk1 results in 30% of mice developing anemia within the first year of life. The anemic Chk1+/- mice exhibit distorted spleen and bone marrow architecture, and abnormal erythroid progenitors. Furthermore, Chk1+/- erythroid progenitors exhibit an increase in spontaneous DNA damage foci and improper contractile actin ring formation resulting in aberrant enucleation during erythropoiesis. A decrease in Chk1 RNA has also been observed in patients with refractory anemia with excess blasts, further supporting a role for Chk1 in clinical anemia. CONCLUSIONS/SIGNIFICANCE Clinical trials of Chk1 inhibitors are currently underway to treat cancer, and thus it will be important to track the effects of these drugs on red blood cell development over an extended period. Our results support a role for Chk1 in maintaining the balance between erythroid progenitors and enucleated erythroid cells during differentiation. We show disruptions in Chk1 levels can lead to anemia.
Collapse
Affiliation(s)
- Nathan C. Boles
- Interdepartmental Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Sirisha Peddibhotla
- Interdepartmental Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Alice J. Chen
- Department of Pathology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Margaret A. Goodell
- Department of Pediatrics and Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jeffrey M. Rosen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
41
|
Dual inactivation of Hus1 and p53 in the mouse mammary gland results in accumulation of damaged cells and impaired tissue regeneration. Proc Natl Acad Sci U S A 2009; 106:21282-7. [PMID: 19918068 DOI: 10.1073/pnas.0904965106] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In response to DNA damage, checkpoint proteins halt cell cycle progression and promote repair or apoptosis, thereby preventing mutation accumulation and suppressing tumor development. The DNA damage checkpoint protein Hus1 associates with Rad9 and Rad1 to form the 9-1-1 complex, which localizes to DNA lesions and promotes DNA damage signaling and repair. Because complete inactivation of mouse Hus1 results in embryonic lethality, we developed a system for regulated Hus1 inactivation in the mammary gland to examine roles for Hus1 in tissue homeostasis and tumor suppression. Hus1 inactivation in the mammary epithelium resulted in genome damage that induced apoptosis and led to depletion of Hus1-null cells from the mammary gland. Conditional Hus1 knockout females retained grossly normal mammary gland morphology, suggesting compensation by cells that failed to undergo Cre-mediated Hus1 deletion. p53-deficiency delayed the clearance of Hus1-null cells from conditional Hus1 knockout mice and caused the accumulation of damaged, dying cells in the mammary gland. Notably, compensatory responses were impaired following combined Hus1 and p53 loss, resulting in aberrant mammary gland morphology and lactation defects. Overall, these results establish a requirement for Hus1 in the survival and proliferation of mammary epithelium and identify a role for p53 in mammary gland tissue regeneration and homeostasis.
Collapse
|
42
|
Liu J, Cao L, Chen J, Song S, Lee IH, Quijano C, Liu H, Keyvanfar K, Chen H, Cao LY, Ahn BH, Kumar NG, Rovira II, Xu XL, van Lohuizen M, Motoyama N, Deng CX, Finkel T. Bmi1 regulates mitochondrial function and the DNA damage response pathway. Nature 2009; 459:387-392. [PMID: 19404261 PMCID: PMC4721521 DOI: 10.1038/nature08040] [Citation(s) in RCA: 386] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 04/08/2009] [Indexed: 12/13/2022]
Abstract
Mice deficient in the Polycomb repressor Bmi1 develop numerous abnormalities including a severe defect in stem cell self-renewal, alterations in thymocyte maturation and a shortened lifespan. Previous work has implicated de-repression of the Ink4a/Arf (also known as Cdkn2a) locus as mediating many of the aspects of the Bmi1(-/-) phenotype. Here we demonstrate that cells derived from Bmi1(-/-) mice also have impaired mitochondrial function, a marked increase in the intracellular levels of reactive oxygen species and subsequent engagement of the DNA damage response pathway. Furthermore, many of the deficiencies normally observed in Bmi1(-/-) mice improve after either pharmacological treatment with the antioxidant N-acetylcysteine or genetic disruption of the DNA damage response pathway by Chk2 (also known as Chek2) deletion. These results demonstrate that Bmi1 has an unexpected role in maintaining mitochondrial function and redox homeostasis and indicate that the Polycomb family of proteins can coordinately regulate cellular metabolism with stem and progenitor cell function.
Collapse
Affiliation(s)
- Jie Liu
- Translational Medicine Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Liu Cao
- Translational Medicine Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jichun Chen
- Hematology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Shiwei Song
- Translational Medicine Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - In Hye Lee
- Translational Medicine Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Celia Quijano
- Translational Medicine Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Hongjun Liu
- Translational Medicine Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Keyvan Keyvanfar
- Hematology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Haoqian Chen
- Translational Medicine Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Long-Yue Cao
- Translational Medicine Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Bong-Hyun Ahn
- Translational Medicine Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Neil G Kumar
- Translational Medicine Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
- Howard Hughes Medical Institute, NIH Research Scholar Program, Bethesda, Maryland 20892, USA
| | - Ilsa I Rovira
- Translational Medicine Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Xiao-Ling Xu
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Maarten van Lohuizen
- Division of Molecular Genetics, Netherlands Cancer Institute and Centre for Biomedical Genetics, 1066 CX Amsterdam, The Netherlands
| | - Noboru Motoyama
- Department of Geriatric Medicine, National Institute for Longevity Sciences National Center for Geriatrics and Gerontology 36-3, Gengo, Morioka, Obu, Aichi 474-8522, Japan
| | - Chu-Xia Deng
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Toren Finkel
- Translational Medicine Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
43
|
Greenow KR, Clarke AR, Jones RH. Chk1 deficiency in the mouse small intestine results in p53-independent crypt death and subsequent intestinal compensation. Oncogene 2009; 28:1443-53. [PMID: 19169280 PMCID: PMC2659326 DOI: 10.1038/onc.2008.482] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 11/19/2008] [Accepted: 12/11/2008] [Indexed: 01/21/2023]
Abstract
Chk1 is a serine/threonine protein kinase that is activated by a wide range of DNA-damaging agents to slow the cell cycle during S phase and G2/M. Abrogation of these cell-cycle checkpoints using Chk1 inhibitors results in hypersensitivity to DNA-damaging agents in vitro and may provide a potential therapeutic tool to sensitize tumour cells in vivo. We have generated a Cre-Lox-based mouse model in which Chkl can be inducibly deleted from somatic epithelial cells in the adult mouse small intestine and liver. Loss of Chk1 in the liver is tolerated with no apparent phenotype. In contrast, the loss of Chk1 within the small intestine results in immediate DNA damage and high levels of p53-independent apoptosis leading to crypt death. However, the intestine is able to compensate for this death by undergoing complete re-population with Chk1-proficient cells. These data therefore show that Chk1 deficiency is cell lethal, but the intestine can tolerate such lethality at the organ level.
Collapse
Affiliation(s)
- Kirsty R. Greenow
- Cardiff School of Biosciences, Cardiff University, Cardiff, CF10 3US
| | - Alan R. Clarke
- Cardiff School of Biosciences, Cardiff University, Cardiff, CF10 3US
| | - Robert H. Jones
- Cardiff School of Biosciences, Cardiff University, Cardiff, CF10 3US
- Dept Cellular and Molecular Medicine, Bristol University, Bristol, BS8 1TD
| |
Collapse
|
44
|
Ashwell S, Janetka JW, Zabludoff S. Keeping checkpoint kinases in line: new selective inhibitors in clinical trials. Expert Opin Investig Drugs 2008; 17:1331-40. [PMID: 18694366 DOI: 10.1517/13543784.17.9.1331] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Checkpoint kinase 1 (Chk1), a serine/threonine kinase, functions as a regulatory kinase in cell cycle progression and is a critical effector of the DNA-damage response. Inhibitors of Chk1 are known to sensitise tumours to a variety of DNA-damaging agents and increase efficacy in preclinical models. OBJECTIVE The most advanced agents are now in Phase I clinical trials; the preclinical profiles of these drugs are compared and contrasted, together with a discussion of some of the opportunities and challenges facing this potentially revolutionary approach to cancer therapy. METHODS A review of the publications and presentations on XL-844, AZD7762 and PF-477736. RESULTS/CONCLUSIONS Chk kinases are part of the DNA damage recognition and response pathways and as such represent attractive targets. Agents that target checkpoint kinases have demonstrated impressive evidence preclinically that this approach will provide tumour-specific potentiating agents and may have broad therapeutic utility.
Collapse
Affiliation(s)
- Susan Ashwell
- AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, MA 02451, USA.
| | | | | |
Collapse
|
45
|
Huang M, Miao ZH, Zhu H, Cai YJ, Lu W, Ding J. Chk1 and Chk2 are differentially involved in homologous recombination repair and cell cycle arrest in response to DNA double-strand breaks induced by camptothecins. Mol Cancer Ther 2008; 7:1440-9. [PMID: 18566216 DOI: 10.1158/1535-7163.mct-07-2116] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Camptothecins (CPT) activate S or G(2)-M arrest and the homologous recombination (HR) repair pathway in tumor cells. In this process, both checkpoint kinases 1 and 2 (Chk1 and Chk2, respectively) are activated, but their differential roles, especially in the coordination of checkpoint and repair control, and potential clinic relevance remain to be fully elucidated. In this study, the repairable double-strand breaks were induced in human colon cancer HCT116 cells by 1-h exposure to 25 or 100 nmol/L CPT and its novel derivative chimmitecan. The cellular disposal of double-strand breaks was reflected as the progressive dispersal of gamma-H2AX foci, reduction of "comet" tails, dynamic activation of RAD51-mediated HR repair, and reversible G(2)-M arrest. In this model, the differential kinetics of Chk1 and Chk2 activation was characterized by the progressively increased phosphorylation of Chk2 until 72 h, the degradation of Chk1, and the disappearance of phosphorylated Chk1 48 h after drug removal. Using RNA interference, we further showed that Chk2 was essential to G(2)-M arrest, whereas Chk1 was mainly required for HR repair in CPT-treated HCT116 cells. Moreover, Chk2, rather than Chk1, predominated over the control of cell survival in this model. The differential roles of Chk1 and Chk2 in regulating HR repair and G(2)-M phase arrest were also confirmed in HT-29 colon cancer cells. Together, these findings systematically dissect the differential roles of Chk1 and Chk2 in a favorable model pursuing CPT-driven DNA damage responses, providing critical evidence to further explore checkpoint modulation, especially Chk2 inhibition as a therapeutic strategy in combination with CPT.
Collapse
Affiliation(s)
- Min Huang
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, Peoples' Republic of China
| | | | | | | | | | | |
Collapse
|
46
|
Ashwell S, Zabludoff S. DNA damage detection and repair pathways--recent advances with inhibitors of checkpoint kinases in cancer therapy. Clin Cancer Res 2008; 14:4032-7. [PMID: 18593978 DOI: 10.1158/1078-0432.ccr-07-5138] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Insights from cell cycle research have led to the hypothesis that tumors may be selectivity sensitized to DNA-damaging agents, resulting in improved antitumor activity and a wider therapeutic margin. The theory relies primarily on the observation that the majority of tumors are deficient in the G(1)-DNA damage checkpoint pathway, resulting in reliance on S and G(2) phase checkpoints for DNA repair and cell survival. The S and G(2) phase checkpoints are predominantly regulated by checkpoint kinase 1; thus, inhibition of checkpoint kinase 1 signaling impairs DNA repair and increases tumor cell death. Normal tissues, however, have a functioning G(1) checkpoint signaling pathway that allows for DNA repair and cell survival. There is now a large body of preclinical evidence showing that checkpoint kinase inhibitors do indeed enhance the efficacy of both conventional chemotherapy and radiotherapy, and several agents have recently entered clinical trials. Excitingly, additional therapeutic opportunities for checkpoint kinase inhibitors continue to emerge as biology outside their pivotal role in cell cycle arrest is further elucidated.
Collapse
Affiliation(s)
- Susan Ashwell
- AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham MA 02451, USA.
| | | |
Collapse
|