1
|
Wang J, Yin J, Peng D, Zhang X, Shi Z, Li W, Shi Y, Sun M, Jiang N, Cheng B, Meng X, Liu R. 4-Nitrophenol at environmentally relevant concentrations mediates reproductive toxicity in Caenorhabditis elegans via metabolic disorders-induced estrogen signaling pathway. J Environ Sci (China) 2025; 147:244-258. [PMID: 39003044 DOI: 10.1016/j.jes.2023.09.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/16/2023] [Accepted: 09/24/2023] [Indexed: 07/15/2024]
Abstract
4-Nitrophenol (4-NP), as a toxic and refractory pollutant, has generated significant concern due to its adverse effects. However, the potential toxic effects and mechanism remained unclear. In this study, the reproduction, development, locomotion and reactive oxygen species (ROS) production of Caenorhabditis elegans were investigated to evaluate the 4-NP toxicity. We used metabolomics to assess the potential damage mechanisms. The role of metabolites in mediating the relationship between 4-NP and phenotypes was examined by correlation and mediation analysis. 4-NP (8 ng/L and 8 µg/L) caused significant reduction of brood size, ovulation rate, total germ cells numbers, head thrashes and body bends, and an increase in ROS. However, the oosperm numbers in uterus, body length and body width were decreased in 8 µg/L. Moreover, 36 differential metabolites were enriched in the significant metabolic pathways, including lysine biosynthesis, β-alanine metabolism, tryptophan metabolism, pentose phosphate pathway, pentose and glucuronate interconversions, amino sugar and nucleotide sugar metabolism, starch and sucrose metabolism, galactose metabolism, propanoate metabolism, glycerolipid metabolism, and estrogen signaling pathway. The mechanism of 4-NP toxicity was that oxidative stress caused by the perturbation of amino acid, which had effects on energy metabolism through disturbing carbohydrate and lipid metabolism, and finally affected the estrogen signaling pathway to exert toxic effects. Moreover, correlation and mediation analysis showed glycerol-3P, glucosamine-6P, glucosamine-1P, UDP-galactose, L-aspartic acid, and uracil were potential markers for the reproduction and glucose-1,6P2 for developmental toxicity. The results provided insight into the pathways involved in the toxic effects caused by 4-NP and developed potential biomarkers to evaluate 4-NP toxicity.
Collapse
Affiliation(s)
- Jia Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Jiechen Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Danhong Peng
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xiaoqian Zhang
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215002, China
| | - Zhouhong Shi
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215002, China
| | - Weixi Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Yingchi Shi
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Mingjun Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Nan Jiang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Beijing Cheng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xingchen Meng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
2
|
Karousou E, Parnigoni A, Moretto P, Passi A, Viola M, Vigetti D. Hyaluronan in the Cancer Cells Microenvironment. Cancers (Basel) 2023; 15:cancers15030798. [PMID: 36765756 PMCID: PMC9913668 DOI: 10.3390/cancers15030798] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
The presence of the glycosaminoglycan hyaluronan in the extracellular matrix of tissues is the result of the cooperative synthesis of several resident cells, that is, macrophages and tumor and stromal cells. Any change in hyaluronan concentration or dimension leads to a modification in stiffness and cellular response through receptors on the plasma membrane. Hyaluronan has an effect on all cancer cell behaviors, such as evasion of apoptosis, limitless replicative potential, sustained angiogenesis, and metastasis. It is noteworthy that hyaluronan metabolism can be dramatically altered by growth factors and matrikines during inflammation, as well as by the metabolic homeostasis of cells. The regulation of HA deposition and its dimensions are pivotal for tumor progression and cancer patient prognosis. Nevertheless, because of all the factors involved, modulating hyaluronan metabolism could be tough. Several commercial drugs have already been described as potential or effective modulators; however, deeper investigations are needed to study their possible side effects. Moreover, other matrix molecules could be identified and targeted as upstream regulators of synthetic or degrading enzymes. Finally, co-cultures of cancer, fibroblasts, and immune cells could reveal potential new targets among secreted factors.
Collapse
|
3
|
Delivery of Nucleotide Sugars to the Mammalian Golgi: A Very Well (un)Explained Story. Int J Mol Sci 2022; 23:ijms23158648. [PMID: 35955785 PMCID: PMC9368800 DOI: 10.3390/ijms23158648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022] Open
Abstract
Nucleotide sugars (NSs) serve as substrates for glycosylation reactions. The majority of these compounds are synthesized in the cytoplasm, whereas glycosylation occurs in the endoplasmic reticulum (ER) and Golgi lumens, where catalytic domains of glycosyltransferases (GTs) are located. Therefore, translocation of NS across the organelle membranes is a prerequisite. This process is thought to be mediated by a group of multi-transmembrane proteins from the SLC35 family, i.e., nucleotide sugar transporters (NSTs). Despite many years of research, some uncertainties/inconsistencies related with the mechanisms of NS transport and the substrate specificities of NSTs remain. Here we present a comprehensive review of the NS import into the mammalian Golgi, which consists of three major parts. In the first part, we provide a historical view of the experimental approaches used to study NS transport and evaluate the most important achievements. The second part summarizes various aspects of knowledge concerning NSTs, ranging from subcellular localization up to the pathologies related with their defective function. In the third part, we present the outcomes of our research performed using mammalian cell-based models and discuss its relevance in relation to the general context.
Collapse
|
4
|
Karalis T, Skandalis SS. Hyaluronan network: a driving force in cancer progression. Am J Physiol Cell Physiol 2022; 323:C145-C158. [PMID: 35649255 DOI: 10.1152/ajpcell.00139.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hyaluronan is one of the most abundant macromolecules of the extracellular matrix and regulates several physiological cell and tissue properties. However, hyaluronan has been shown to accumulate together with its receptors in various cancers. In tumors, accumulation of hyaluronan system components (hyaluronan synthesizing/degrading enzymes and interacting proteins) associates with poor outcomes of the patients. In this article, we review the main roles of hyaluronan in normal physiology and cancer, and further discuss the targeting of hyaluronan system as an applicable therapeutic strategy.
Collapse
Affiliation(s)
- Theodoros Karalis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Spyros S Skandalis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| |
Collapse
|
5
|
Rautengarten C, Quarrell OW, Stals K, Caswell RC, De Franco E, Baple E, Burgess N, Jokhi R, Heazlewood JL, Offiah AC, Ebert B, Ellard S. A hypomorphic allele of SLC35D1 results in Schneckenbecken-like dysplasia. Hum Mol Genet 2020; 28:3543-3551. [PMID: 31423530 PMCID: PMC6927460 DOI: 10.1093/hmg/ddz200] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 12/13/2022] Open
Abstract
We report the case of a consanguineous couple who lost four pregnancies associated with skeletal dysplasia. Radiological examination of one fetus was inconclusive. Parental exome sequencing showed that both parents were heterozygous for a novel missense variant, p.(Pro133Leu), in the SLC35D1 gene encoding a nucleotide sugar transporter. The affected fetus was homozygous for the variant. The radiological features were reviewed, and being similar, but atypical, the phenotype was classified as a ‘Schneckenbecken-like dysplasia.’ The effect of the missense change was assessed using protein modelling techniques and indicated alterations in the mouth of the solute channel. A detailed biochemical investigation of SLC35D1 transport function and that of the missense variant p.(Pro133Leu) revealed that SLC35D1 acts as a general UDP-sugar transporter and that the p.(Pro133Leu) mutation resulted in a significant decrease in transport activity. The reduced transport activity observed for p.(Pro133Leu) was contrasted with in vitro activity for SLC35D1 p.(Thr65Pro), the loss-of-function mutation was associated with Schneckenbecken dysplasia. The functional classification of SLC35D1 as a general nucleotide sugar transporter of the endoplasmic reticulum suggests an expanded role for this transporter beyond chondroitin sulfate biosynthesis to a variety of important glycosylation reactions occurring in the endoplasmic reticulum.
Collapse
Affiliation(s)
| | - Oliver W Quarrell
- Department of Clinical Genetics, Sheffield Children's Hospital, Western Bank, Sheffield S10 2TH, UK
| | - Karen Stals
- Department of Molecular Genetics, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK
| | - Richard C Caswell
- University of Exeter School of Medicine, Barrack Road, Exeter EX2 5DW, UK
| | - Elisa De Franco
- Department of Molecular Genetics, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK
| | - Emma Baple
- Department of Molecular Genetics, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK.,University of Exeter School of Medicine, Barrack Road, Exeter EX2 5DW, UK
| | - Nadia Burgess
- Department of Histology, Sheffield Children's Hospital NHS Foundation Trust, Western Bank, Sheffield UK. S10 2TH, UK
| | - Roobin Jokhi
- Department of Obstetrics and Gynaecology, Sheffield Teaching Hospitals, Jessop Wing Tree Root Walk, Sheffield S10 2SF, UK
| | - Joshua L Heazlewood
- School of BioSciences, The University of Melbourne, Victoria 3010, Australia
| | - Amaka C Offiah
- University of Sheffield, Academic Unit of Child Health, Sheffield Children's Hospital NHS Foundation Trust, Western Bank, Sheffield S10 2TH, UK
| | - Berit Ebert
- School of BioSciences, The University of Melbourne, Victoria 3010, Australia
| | - Sian Ellard
- Department of Molecular Genetics, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK.,University of Exeter School of Medicine, Barrack Road, Exeter EX2 5DW, UK
| |
Collapse
|
6
|
Del Solar V, Gupta R, Zhou Y, Pawlowski G, Matta KL, Neelamegham S. Robustness in glycosylation systems: effect of modified monosaccharides, acceptor decoys and azido sugars on cellular nucleotide-sugar levels and pattern of N-linked glycosylation. Mol Omics 2020; 16:377-386. [PMID: 32352119 DOI: 10.1039/d0mo00023j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Small molecule monosaccharide analogs (e.g. 4F-GlcNAc, 4F-GalNAc) and acceptor decoys (e.g. ONAP, SNAP) are commonly used as metabolic glycoengineering tools to perturb molecular and cellular recognition processes. Azido-derivatized sugars (e.g. ManNAz, GlcNAz, GalNAz) are also used as bioorthogonal probes to assay the glycosylation status of cells and tissue. With the goal of obtaining a systems-level understanding of how these compounds work, we cultured cells with these molecules and systematically evaluated their impact on: (i) cellular nucleotide-sugar levels, and (ii) N-linked glycosylation. To this end, we developed a streamlined, simple workflow to quantify nucleotide-sugar levels using amide-based hydrophilic interaction liquid chromatography (HILIC) separation followed by negative-mode electrospray ionization mass spectrometry (ESI-MS/MS) using an Orbitrap detector. N-Glycans released from cells were also procainamide functionalized and quantified using positive-mode ESI-MS/MS. Results show that all tested compounds changed the baseline nucleotide-sugar levels, with the effect being most pronounced for the fluoro-HexNAc compounds. These molecules depressed UDP-HexNAc levels in cells by up to 80%, while concomitantly elevating UDP-4F-GalNAc and UDP-4F-GlcNAc. While the measured changes in nucleotide-sugar concentration were substantial in many cases, their impact on N-linked glycosylation was relatively small. This may be due to the high nucleotide-sugar concentrations in the Golgi, which far exceed the KM values of the glycosylating enzymes. Thus, the glycosylation system output exhibits 'robustness' even in the face of significant changes in cellular nucleotide-sugar concentrations.
Collapse
Affiliation(s)
- Virginia Del Solar
- Department of Chemical & Biological Engineering, Biomedical Engineering and Medicine, University at Buffalo, State University of New York, Buffalo, NY 14260, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Characterization of C. elegans Chondroitin Proteoglycans and Their Large Functional and Structural Heterogeneity; Evolutionary Aspects on Structural Differences Between Humans and the Nematode. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 21:155-170. [PMID: 32185697 DOI: 10.1007/5584_2020_485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Proteoglycans regulate important cellular pathways in essentially all metazoan organisms. While considerable effort has been devoted to study structural and functional aspects of proteoglycans in vertebrates, the knowledge of the core proteins and proteoglycan-related functions in invertebrates is relatively scarce, even for C.elegans. This nematode produces a large amount of non-sulfated chondroitin in addition to small amount of low-sulfated chondroitin chains (Chn and CS chains, respectively). Until recently, 9 chondroitin core proteins (CPGs) had been identified in C.elegans, none of which showed any homology to vertebrate counterparts or to other invertebrate core proteins. By using a glycoproteomic approach, we recently characterized the chondroitin glycoproteome of C.elegans, resulting in the identification of 15 novel CPG core proteins in addition to the 9 previously established. Three of the novel core proteins displayed homology to human proteins, indicating that CPG and CSPG core proteins may be more conserved throughout evolution than previously perceived. Bioinformatic analysis of the primary amino acid sequences revealed that the core proteins contained a broad range of functional domains, indicating that specialization of proteoglycan-mediated functions may have evolved early in metazoan evolution. This review specifically discusses our recent data in relation to previous knowledge of core proteins and GAG-attachment sites in Chn and CS proteoglycans of C.elegans and humans, and point out both converging and diverging aspects of proteoglycan evolution.
Collapse
|
8
|
Structural basis for the delivery of activated sialic acid into Golgi for sialyation. Nat Struct Mol Biol 2019; 26:415-423. [PMID: 31133698 DOI: 10.1038/s41594-019-0225-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/09/2019] [Indexed: 01/08/2023]
Abstract
The decoration of secretory glycoproteins and glycolipids with sialic acid is critical to many physiological and pathological processes. Sialyation is dependent on a continuous supply of sialic acid into Golgi organelles in the form of CMP-sialic acid. Translocation of CMP-sialic acid into Golgi is carried out by the CMP-sialic acid transporter (CST). Mutations in human CST are linked to glycosylation disorders, and CST is important for glycopathway engineering, as it is critical for sialyation efficiency of therapeutic glycoproteins. The mechanism of how CMP-sialic acid is recognized and translocated across Golgi membranes in exchange for CMP is poorly understood. Here we have determined the crystal structure of a Zea mays CST in complex with CMP. We conclude that the specificity of CST for CMP-sialic acid is established by the recognition of the nucleotide CMP to such an extent that they are mechanistically capable of both passive and coupled antiporter activity.
Collapse
|
9
|
Nagy N, Gurevich I, Kuipers HF, Ruppert SM, Marshall PL, Xie BJ, Sun W, Malkovskiy AV, Rajadas J, Grandoch M, Fischer JW, Frymoyer AR, Kaber G, Bollyky PL. 4-Methylumbelliferyl glucuronide contributes to hyaluronan synthesis inhibition. J Biol Chem 2019; 294:7864-7877. [PMID: 30914479 DOI: 10.1074/jbc.ra118.006166] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 03/06/2019] [Indexed: 12/14/2022] Open
Abstract
4-Methylumbelliferone (4-MU) inhibits hyaluronan (HA) synthesis and is an approved drug used for managing biliary spasm. However, rapid and efficient glucuronidation is thought to limit its utility for systemically inhibiting HA synthesis. In particular, 4-MU in mice has a short half-life, causing most of the drug to be present as the metabolite 4-methylumbelliferyl glucuronide (4-MUG), which makes it remarkable that 4-MU is effective at all. We report here that 4-MUG contributes to HA synthesis inhibition. We observed that oral administration of 4-MUG to mice inhibits HA synthesis, promotes FoxP3+ regulatory T-cell expansion, and prevents autoimmune diabetes. Mice fed either 4-MUG or 4-MU had equivalent 4-MU:4-MUG ratios in serum, liver, and pancreas, indicating that 4-MU and 4-MUG reach an equilibrium in these tissues. LC-tandem MS experiments revealed that 4-MUG is hydrolyzed to 4-MU in serum, thereby greatly increasing the effective bioavailability of 4-MU. Moreover, using intravital 2-photon microscopy, we found that 4-MUG (a nonfluorescent molecule) undergoes conversion into 4-MU (a fluorescent molecule) and that 4-MU is extensively tissue bound in the liver, fat, muscle, and pancreas of treated mice. 4-MUG also suppressed HA synthesis independently of its conversion into 4-MU and without depletion of the HA precursor UDP-glucuronic acid (GlcUA). Together, these results indicate that 4-MUG both directly and indirectly inhibits HA synthesis and that the effective bioavailability of 4-MU is higher than previously thought. These findings greatly alter the experimental and therapeutic possibilities for HA synthesis inhibition.
Collapse
Affiliation(s)
- Nadine Nagy
- From the Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California 94305,
| | - Irina Gurevich
- Department of Dermatology, Stanford University School of Medicine, Stanford, California 94305
| | - Hedwich F Kuipers
- From the Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California 94305
| | - Shannon M Ruppert
- From the Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California 94305
| | - Payton L Marshall
- From the Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California 94305
| | - Bryan J Xie
- From the Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California 94305
| | - Wenchao Sun
- Biomaterials and Advanced Drug Delivery (BioADD) Laboratory, Stanford University School of Medicine, Palo Alto, California 94304
| | - Andrey V Malkovskiy
- Biomaterials and Advanced Drug Delivery (BioADD) Laboratory, Stanford University School of Medicine, Palo Alto, California 94304
| | - Jayakumar Rajadas
- Biomaterials and Advanced Drug Delivery (BioADD) Laboratory, Stanford University School of Medicine, Palo Alto, California 94304
| | - Maria Grandoch
- Pharmacology and Clinical Pharmacology, University Clinics Düsseldorf, Universitaetsstrasse 1, 40225 Düsseldorf, Germany, and
| | - Jens W Fischer
- Pharmacology and Clinical Pharmacology, University Clinics Düsseldorf, Universitaetsstrasse 1, 40225 Düsseldorf, Germany, and
| | - Adam R Frymoyer
- Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California 94304
| | - Gernot Kaber
- From the Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California 94305
| | - Paul L Bollyky
- From the Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
10
|
Paschinger K, Yan S, Wilson IBH. N-glycomic Complexity in Anatomical Simplicity: Caenorhabditis elegans as a Non-model Nematode? Front Mol Biosci 2019; 6:9. [PMID: 30915340 PMCID: PMC6422873 DOI: 10.3389/fmolb.2019.00009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/12/2019] [Indexed: 12/28/2022] Open
Abstract
Caenorhabditis elegans is a genetically well-studied model nematode or "worm"; however, its N-glycomic complexity is actually baffling and still not completely unraveled. Some features of its N-glycans are, to date, unique and include bisecting galactose and up to five fucose residues associated with the asparagine-linked Man2-3GlcNAc2 core; the substitutions include galactosylation of fucose, fucosylation of galactose and methylation of mannose or fucose residues as well as phosphorylcholine on antennal (non-reducing) N-acetylglucosamine. Only some of these modifications are shared with various other nematodes, while others have yet to be detected in any other species. Thus, C. elegans can be used as a model for some aspects of N-glycan function, but its glycome is far from identical to those of other organisms and is actually far from simple. Possibly the challenges of its native environment, which differ from those of parasitic or necromenic species, led to an anatomically simple worm possessing a complex glycome.
Collapse
Affiliation(s)
| | - Shi Yan
- Institut für Parasitologie, Veterinärmedizinische Universität, Wien, Austria
| | | |
Collapse
|
11
|
Hirschberg CB. My journey in the discovery of nucleotide sugar transporters of the Golgi apparatus. J Biol Chem 2019; 293:12653-12662. [PMID: 30120148 DOI: 10.1074/jbc.x118.004819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Defects in protein glycosylation can have a dramatic impact on eukaryotic cells and is associated with mental and developmental pathologies in humans. The studies outlined below illustrate how a basic biochemical problem in the mechanisms of protein glycosylation, specifically substrate transporters of nucleotide sugars, including ATP and 3'-phosphoadenyl-5'-phosphosulfate (PAPS), in the membrane of the Golgi apparatus and endoplasmic reticulum, expanded into diverse biological systems from mammals, including humans, to yeast, roundworms, and protozoa. Using these diverse model systems allowed my colleagues and me to answer fundamental biological questions that enabled us to formulate far-reaching hypotheses and expanded our knowledge of human diseases caused by malfunctions in the metabolic processes involved.
Collapse
Affiliation(s)
- Carlos B Hirschberg
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts 02118; Department of Biological Sciences, Universidad Andres Bello, Santiago, Chile.
| |
Collapse
|
12
|
Abstract
In all animals, oocytes are surrounded by an extracellular matrix upon fertilization. This matrix serves similar purposes in each animal. It functions to mediate sperm binding, to prevent polyspermy, to control the chemical environment of the embryo, and to provide physical protection to the embryo as it developes. The synthesis of the C. elegans matrix, or eggshell, begins when the oocyte enters the spermatheca and is fertilized by a single sperm. The process of eggshell synthesis is thought to take place during the completion of the maternal meiotic divisions such that the multi-layered eggshell is completed by anaphase II. The synthesis of the eggshell occurs in a hierarchical pattern in which the outermost layers are synthesized first in order to capture and retain the innermost layers as they form. Recent studies have revealed that the lipid-rich permeability barrier is distinct from the outer trilaminar eggshell. These new findings alter our previous understanding of the eggshell. This chapter aims to define each of the eggshell layers and the molecules that are known to play significant roles in their formation.
Collapse
Affiliation(s)
- Kathryn K Stein
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Andy Golden
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
13
|
Abstract
Glycans play diverse biological roles, ranging from structural and regulatory functions to mediating cellular interactions. For pathogens, they are also often required for virulence and survival in the host. In Cryptococcus neoformans, an opportunistic pathogen of humans, the acidic monosaccharide glucuronic acid (GlcA) is a critical component of multiple essential glycoconjugates. One of these glycoconjugates is the polysaccharide capsule, a major virulence factor that enables this yeast to modulate the host immune response and resist antimicrobial defenses. This allows cryptococci to colonize the lung and brain, leading to hundreds of thousands of deaths each year worldwide. Synthesis of most glycans, including capsule polysaccharides, occurs in the secretory pathway. However, the activated precursors for this process, nucleotide sugars, are made primarily in the cytosol. This topological problem is resolved by the action of nucleotide sugar transporters (NSTs). We discovered that Uut1 is the sole UDP-GlcA transporter in C. neoformans and is unique among NSTs for its narrow substrate range and high affinity for UDP-GlcA. Mutant cells with UUT1 deleted lack capsule polysaccharides and are highly sensitive to environmental stress. As a result, the deletion mutant is internalized and cleared by phagocytes more readily than wild-type cells are and is completely avirulent in mice. These findings expand our understanding of the requirements for capsule synthesis and cryptococcal virulence and elucidate a critical protein family.IMPORTANCECryptococcus neoformans causes lethal meningitis in almost two hundred thousand immunocompromised patients each year. Much of this fungal pathogen's ability to resist host defenses and cause disease is mediated by carbohydrate structures, including a complex polysaccharide capsule around the cell. Like most eukaryotic glycoconjugates, capsule polysaccharides are made within the secretory pathway, although their precursors are generated in the cytosol. Specific transporters are therefore required to convey these raw materials to the site of synthesis. One precursor of particular interest is UDP-glucuronic acid, which donates glucuronic acid to growing capsule polysaccharides. We discovered a highly specific, high-affinity transporter for this molecule. Deletion of the gene encoding this unusual protein abolishes capsule synthesis, alters stress resistance, and eliminates fungal virulence. In this work, we have identified a novel transporter, elucidated capsule synthesis and thereby aspects of fungal pathogenesis, and opened directions for potential antifungal therapy.
Collapse
|
14
|
Li LX, Rautengarten C, Heazlewood JL, Doering TL. Xylose donor transport is critical for fungal virulence. PLoS Pathog 2018; 14:e1006765. [PMID: 29346417 PMCID: PMC5773217 DOI: 10.1371/journal.ppat.1006765] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/22/2017] [Indexed: 12/22/2022] Open
Abstract
Cryptococcus neoformans, an AIDS-defining opportunistic pathogen, is the leading cause of fungal meningitis worldwide and is responsible for hundreds of thousands of deaths annually. Cryptococcal glycans are required for fungal survival in the host and for pathogenesis. Most glycans are made in the secretory pathway, although the activated precursors for their synthesis, nucleotide sugars, are made primarily in the cytosol. Nucleotide sugar transporters are membrane proteins that solve this topological problem, by exchanging nucleotide sugars for the corresponding nucleoside phosphates. The major virulence factor of C. neoformans is an anti-phagocytic polysaccharide capsule that is displayed on the cell surface; capsule polysaccharides are also shed from the cell and impede the host immune response. Xylose, a neutral monosaccharide that is absent from model yeast, is a significant capsule component. Here we show that Uxt1 and Uxt2 are both transporters specific for the xylose donor, UDP-xylose, although they exhibit distinct subcellular localization, expression patterns, and kinetic parameters. Both proteins also transport the galactofuranose donor, UDP-galactofuranose. We further show that Uxt1 and Uxt2 are required for xylose incorporation into capsule and protein; they are also necessary for C. neoformans to cause disease in mice, although surprisingly not for fungal viability in the context of infection. These findings provide a starting point for deciphering the substrate specificity of an important class of transporters, elucidate a synthetic pathway that may be productively targeted for therapy, and contribute to our understanding of fundamental glycobiology.
Collapse
Affiliation(s)
- Lucy X. Li
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | | | | | - Tamara L. Doering
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
15
|
Viola M, Brüggemann K, Karousou E, Caon I, Caravà E, Vigetti D, Greve B, Stock C, De Luca G, Passi A, Götte M. MDA-MB-231 breast cancer cell viability, motility and matrix adhesion are regulated by a complex interplay of heparan sulfate, chondroitin-/dermatan sulfate and hyaluronan biosynthesis. Glycoconj J 2016; 34:411-420. [PMID: 27744520 DOI: 10.1007/s10719-016-9735-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/23/2016] [Accepted: 09/28/2016] [Indexed: 10/20/2022]
Abstract
Proteoglycans and glycosaminoglycans modulate numerous cellular processes relevant to tumour progression, including cell proliferation, cell-matrix interactions, cell motility and invasive growth. Among the glycosaminoglycans with a well-documented role in tumour progression are heparan sulphate, chondroitin/dermatan sulphate and hyaluronic acid/hyaluronan. While the mode of biosynthesis differs for sulphated glycosaminoglycans, which are synthesised in the ER and Golgi compartments, and hyaluronan, which is synthesized at the plasma membrane, these polysaccharides partially compete for common substrates. In this study, we employed a siRNA knockdown approach for heparan sulphate (EXT1) and heparan/chondroitin/dermatan sulphate-biosynthetic enzymes (β4GalT7) in the aggressive human breast cancer cell line MDA-MB-231 to study the impact on cell behaviour and hyaluronan biosynthesis. Knockdown of β4GalT7 expression resulted in a decrease in cell viability, motility and adhesion to fibronectin, while these parameters were unchanged in EXT1-silenced cells. Importantly, these changes were associated with a decreased expression of syndecan-1, decreased signalling response to HGF and an increase in the synthesis of hyaluronan, due to an upregulation of the hyaluronan synthases HAS2 and HAS3. Interestingly, EXT1-depleted cells showed a downregulation of the UDP-sugar transporter SLC35D1, whereas SLC35D2 was downregulated in β4GalT7-depleted cells, indicating an intricate regulatory network that connects all glycosaminoglycans synthesis. The results of our in vitro study suggest that a modulation of breast cancer cell behaviour via interference with heparan sulphate biosynthesis may result in a compensatory upregulation of hyaluronan biosynthesis. These findings have important implications for the development of glycosaminoglycan-targeted therapeutic approaches for malignant diseases.
Collapse
Affiliation(s)
- Manuela Viola
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy.
| | - Kathrin Brüggemann
- Department of Gynaecology and Obstetrics, Muenster University Hospital, Muenster, Germany
| | - Evgenia Karousou
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy
| | - Ilaria Caon
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy
| | - Elena Caravà
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy
| | - Davide Vigetti
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy
| | - Burkhard Greve
- Department of Radiotherapy-Radiooncology, University Hospital Muenster, Muenster, Germany
| | - Christian Stock
- Institute of Physiology II, University of Muenster, Muenster, Germany.,Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Giancarlo De Luca
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy
| | - Alberto Passi
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy.
| | - Martin Götte
- Department of Gynaecology and Obstetrics, Muenster University Hospital, Muenster, Germany
| |
Collapse
|
16
|
Bredeston LM, Marino-Buslje C, Mattera VS, Buzzi LI, Parodi AJ, D'Alessio C. The conundrum of UDP-Glc entrance into the yeast ER lumen. Glycobiology 2016; 27:64-79. [PMID: 27587357 DOI: 10.1093/glycob/cww092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 08/23/2016] [Accepted: 08/26/2016] [Indexed: 11/14/2022] Open
Abstract
UDP-Glc entrance into the endoplasmic reticulum (ER) of eukaryotic cells is a key step in the quality control of glycoprotein folding, a mechanism requiring transfer of a Glc residue from the nucleotide sugar (NS) to glycoprotein folding intermediates by the UDP-Glc:glycoprotein glucosyltransferase (UGGT). According to a bioinformatics search there are only eight genes in the Schizosaccharomyces pombe genome belonging to the three Pfam families to which all known nucleotide-sugar transporters (NSTs) of the secretory pathway belong. The protein products of two of them (hut1+ and yea4+) localize to the ER, those of genes gms1+, vrg4+, pet1+, pet2+ and pet3+ to the Golgi, whereas that of gms2+ has an unknown location. Here we demonstrate that (1) Δhut1 and Δgpt1 (UGGT null) mutants share several phenotypic features; (2) Δhut1 mutants show a 50% reduction in UDP-Glc transport into ER-derived membranes; (3) in vivo UDP-Glc ER entrance occurred in Δhut1Δyea4Δgms2 mutants and in cells in which Δhut1 disruption was combined with that of each of four of the genes encoding Golgi-located proteins. Therefore, disruption of all genes whose products localize to the ER or have an unknown location did not obliterate UDP-Glc ER entrance. We conclude that the hut1+ gene product is involved in UDP-Glc entrance into the ER, but that at least another as yet unknown NST displaying an unconventional sequence operates in the yeast secretory pathway. This conclusion agrees with our previous results showing that UDP-Glc entrance into the yeast ER does not follow the classical NST antiport mechanism.
Collapse
Affiliation(s)
- Luis M Bredeston
- Department of Biological Chemistry and IQUIFIB (CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires C1113AAD, Argentine
| | - Cristina Marino-Buslje
- Fundación Instituto Leloir and IIBBA, CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentine
| | - Vanesa S Mattera
- Fundación Instituto Leloir. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentine
| | - Lucila I Buzzi
- Fundación Instituto Leloir. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentine
| | - Armando J Parodi
- Fundación Instituto Leloir and IIBBA, CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentine
| | - Cecilia D'Alessio
- Fundación Instituto Leloir and IIBBA, CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentine .,School of Sciences, University of Buenos Aires, Av Intendente Guiraldes 2160, Buenos Aires C1428EHA, Argentine
| |
Collapse
|
17
|
Li LX, Ashikov A, Liu H, Griffith CL, Bakker H, Doering TL. Cryptococcus neoformans UGT1 encodes a UDP-Galactose/UDP-GalNAc transporter. Glycobiology 2016; 27:87-98. [PMID: 27496760 DOI: 10.1093/glycob/cww078] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/22/2016] [Accepted: 07/27/2016] [Indexed: 12/30/2022] Open
Abstract
Cryptococcus neoformans, an opportunistic fungal pathogen, produces a glycan capsule to evade the immune system during infection. This definitive virulence factor is composed mainly of complex polysaccharides, which are made in the secretory pathway by reactions that utilize activated nucleotide sugar precursors. Although the pathways that synthesize these precursors are known, the identity and the regulation of the nucleotide sugar transporters (NSTs) responsible for importing them into luminal organelles remain elusive. The UDP-galactose transporter, Ugt1, was initially identified by homology to known UGTs and glycan composition analysis of ugt1Δ mutants. However, sequence is an unreliable predictor of NST substrate specificity, cells may express multiple NSTs with overlapping specificities, and NSTs may transport multiple substrates. Determining NST activity thus requires biochemical demonstration of function. We showed that Ugt1 transports both UDP-galactose and UDP-N-acetylgalactosamine in vitro. Deletion of UGT1 resulted in growth and mating defects along with altered capsule and cellular morphology. The mutant was also phagocytosed more readily by macrophages than wild-type cells and cleared more quickly in vivo and in vitro, suggesting a mechanism for the lack of virulence observed in mouse models of infection.
Collapse
Affiliation(s)
- Lucy X Li
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Angel Ashikov
- Department of Cellular Chemistry, Hannover Medical School, D-30625 Hannover, Germany
| | - Hong Liu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Cara L Griffith
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Hans Bakker
- Department of Cellular Chemistry, Hannover Medical School, D-30625 Hannover, Germany
| | - Tamara L Doering
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
18
|
de Oliveira JD, Carvalho LS, Gomes AMV, Queiroz LR, Magalhães BS, Parachin NS. Genetic basis for hyper production of hyaluronic acid in natural and engineered microorganisms. Microb Cell Fact 2016; 15:119. [PMID: 27370777 PMCID: PMC4930576 DOI: 10.1186/s12934-016-0517-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/22/2016] [Indexed: 11/10/2022] Open
Abstract
Hyaluronic acid, or HA, is a rigid and linear biopolymer belonging to the class of the glycosaminoglycans, and composed of repeating units of the monosaccharides glucuronic acid and N-acetylglucosamine. HA has multiple important functions in the human body, due to its properties such as bio-compatibility, lubricity and hydrophilicity, it is widely applied in the biomedical, food, health and cosmetic fields. The growing interest in this molecule has motivated the discovery of new ways of obtaining it. Traditionally, HA has been extracted from rooster comb-like animal tissues. However, due to legislation laws HA is now being produced by bacterial fermentation using Streptococcus zooepidemicus, a natural producer of HA, despite it being a pathogenic microorganism. With the expansion of new genetic engineering technologies, the use of organisms that are non-natural producers of HA has also made it possible to obtain such a polymer. Most of the published reviews have focused on HA formulation and its effects on different body tissues, whereas very few of them describe the microbial basis of HA production. Therefore, for the first time this review has compiled the molecular and genetic bases for natural HA production in microorganisms together with the main strategies employed for heterologous production of HA.
Collapse
Affiliation(s)
- Juliana Davies de Oliveira
- Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, CEP 70.790-160, Brazil
| | - Lucas Silva Carvalho
- Integra Bioprocessos e Análises, Campus Universitário Darcy Ribeiro, Edifício CDT, Sala AT-36/37, Brasília, DF, CEP 70.904-970, Brazil
| | - Antônio Milton Vieira Gomes
- Grupo de Engenharia Metabólica Aplicada a Bioprocessos, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, CEP 70.790-900, Brazil
| | - Lúcio Rezende Queiroz
- Grupo de Engenharia Metabólica Aplicada a Bioprocessos, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, CEP 70.790-900, Brazil
| | - Beatriz Simas Magalhães
- Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, CEP 70.790-160, Brazil.,Integra Bioprocessos e Análises, Campus Universitário Darcy Ribeiro, Edifício CDT, Sala AT-36/37, Brasília, DF, CEP 70.904-970, Brazil
| | - Nádia Skorupa Parachin
- Grupo de Engenharia Metabólica Aplicada a Bioprocessos, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, CEP 70.790-900, Brazil.
| |
Collapse
|
19
|
Orellana A, Moraga C, Araya M, Moreno A. Overview of Nucleotide Sugar Transporter Gene Family Functions Across Multiple Species. J Mol Biol 2016; 428:3150-3165. [PMID: 27261257 DOI: 10.1016/j.jmb.2016.05.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/19/2016] [Accepted: 05/23/2016] [Indexed: 11/16/2022]
Abstract
Glycoproteins and glycolipids are crucial in a number of cellular processes, such as growth, development, and responses to external cues, among others. Polysaccharides, another class of sugar-containing molecules, also play important structural and signaling roles in the extracellular matrix. The additions of glycans to proteins and lipids, as well as polysaccharide synthesis, are processes that primarily occur in the Golgi apparatus, and the substrates used in this biosynthetic process are nucleotide sugars. These proteins, lipids, and polysaccharides are also modified by the addition of sulfate groups in the Golgi apparatus in a series of reactions where nucleotide sulfate is needed. The required nucleotide sugar substrates are mainly synthesized in the cytosol and transported into the Golgi apparatus by nucleotide sugar transporters (NSTs), which can additionally transport nucleotide sulfate. Due to the critical role of NSTs in eukaryotic organisms, any malfunction of these could change glycan and polysaccharide structures, thus affecting function and altering organism physiology. For example, mutations or deletion on NST genes lead to pathological conditions in humans or alter cell walls in plants. In recent years, many NSTs have been identified and functionally characterized, but several remain unanalyzed. This study examined existing information on functionally characterized NSTs and conducted a phylogenetic analysis of 257 NSTs predicted from nine animal and plant model species, as well as from protists and fungi. From this analysis, relationships between substrate specificity and the primary NST structure can be inferred, thereby advancing understandings of nucleotide sugar gene family functions across multiple species.
Collapse
Affiliation(s)
- Ariel Orellana
- Centro de Biotecnología Vegetal, Universidad Andres Bello, Av. República 217, Santiago, RM 837-0146, Chile; FONDAP Center for Genome Regulation, Santiago, RM,Chile.
| | - Carol Moraga
- Centro de Biotecnología Vegetal, Universidad Andres Bello, Av. República 217, Santiago, RM 837-0146, Chile.
| | - Macarena Araya
- Centro de Biotecnología Vegetal, Universidad Andres Bello, Av. República 217, Santiago, RM 837-0146, Chile.
| | - Adrian Moreno
- Centro de Biotecnología Vegetal, Universidad Andres Bello, Av. República 217, Santiago, RM 837-0146, Chile; FONDAP Center for Genome Regulation, Santiago, RM,Chile.
| |
Collapse
|
20
|
Brokate-Llanos AM, Monje JM, Murdoch PDS, Muñoz MJ. Developmental defects in a Caenorhabditis elegans model for type III galactosemia. Genetics 2014; 198:1559-69. [PMID: 25298520 PMCID: PMC4256771 DOI: 10.1534/genetics.114.170084] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 10/01/2014] [Indexed: 12/21/2022] Open
Abstract
Type III galactosemia is a metabolic disorder caused by reduced activity of UDP-galactose-4-epimerase, which participates in galactose metabolism and the generation of various UDP-sugar species. We characterized gale-1 in Caenorhabditis elegans and found that a complete loss-of-function mutation is lethal, as has been hypothesized for humans, whereas a nonlethal partial loss-of-function allele causes a variety of developmental abnormalities, likely resulting from the impairment of the glycosylation process. We also observed that gale-1 mutants are hypersensitive to galactose as well as to infections. Interestingly, we found interactions between gale-1 and the unfolded protein response.
Collapse
Affiliation(s)
- Ana M Brokate-Llanos
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, 41013 Seville, Spain
| | - José M Monje
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, 41013 Seville, Spain
| | - Piedad Del Socorro Murdoch
- Departamento de Bioquímica y Biología Molecular, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Manuel J Muñoz
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, 41013 Seville, Spain
| |
Collapse
|
21
|
Cagdas D, Yilmaz M, Kandemir N, Tezcan I, Etzioni A, Sanal Ö. A novel mutation in leukocyte adhesion deficiency type II/CDGIIc. J Clin Immunol 2014; 34:1009-14. [PMID: 25239688 DOI: 10.1007/s10875-014-0091-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 08/26/2014] [Indexed: 11/30/2022]
Abstract
Leukocyte adhesion deficiencies (LAD) are autosomal recessive immunodeficiency syndromes characterized by severe and recurrent bacterial infections, impaired wound healing and leukocytosis. Block in different steps in the leukocyte adhesion cascade causes different types of leukocyte adhesion deficiencies, LAD type I, II and III. In LAD type II, the rolling phase of the leukocyte adhesion cascade is affected due to mutations in the specific fucose transporter GFTP (GDP fucose transporter), causing defect in the biosynthesis of selectin ligands on leukocytes. Thus this syndrome is also called congenital disorder of glycosylation IIc (CGDIIc). LAD II/CGDIIc is very rare and has been diagnosed in nine children to date. Fever, leukocytosis, typical dysmorphic features, growth, psychomotor retardation and the Bombay blood group, are characteristic findings in patients. Here, we describe two Turkish siblings with a novel mutation in GFTP. They both have the characteristic features of the syndrome. The older sibling died of severe bacterial pneumonia at the age of 3 years. The younger sibling, diagnosed at the age of 3 months, responded to high dose oral fucose supplementation. Secundum atrial septal defect which was not described in previously reported patients, but present in both of our patients, may primarily related to the defect in fucosylation.
Collapse
Affiliation(s)
- Deniz Cagdas
- Section of Pediatric Immunology, Hacettepe University, İhsan Doğramacı Children's Hospital , Ankara, Turkey,
| | | | | | | | | | | |
Collapse
|
22
|
Pedersen ME, Snieckute G, Kagias K, Nehammer C, Multhaupt HAB, Couchman JR, Pocock R. An epidermal microRNA regulates neuronal migration through control of the cellular glycosylation state. Science 2013; 341:1404-8. [PMID: 24052309 DOI: 10.1126/science.1242528] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
An appropriate balance in glycosylation of proteoglycans is crucial for their ability to regulate animal development. Here, we report that the Caenorhabditis elegans microRNA mir-79, an ortholog of mammalian miR-9, controls sugar-chain homeostasis by targeting two proteins in the proteoglycan biosynthetic pathway: a chondroitin synthase (SQV-5; squashed vulva-5) and a uridine 5'-diphosphate-sugar transporter (SQV-7). Loss of mir-79 causes neurodevelopmental defects through SQV-5 and SQV-7 dysregulation in the epidermis. This results in a partial shutdown of heparan sulfate biosynthesis that impinges on a LON-2/glypican pathway and disrupts neuronal migration. Our results identify a regulatory axis controlled by a conserved microRNA that maintains proteoglycan homeostasis in cells.
Collapse
Affiliation(s)
- Mikael Egebjerg Pedersen
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
23
|
Vigetti D, Viola M, Karousou E, De Luca G, Passi A. Metabolic control of hyaluronan synthases. Matrix Biol 2013; 35:8-13. [PMID: 24134926 DOI: 10.1016/j.matbio.2013.10.002] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 10/07/2013] [Accepted: 10/07/2013] [Indexed: 12/16/2022]
Abstract
Hyaluronan (HA) is a glycosaminoglycan composed by repeating units of D-glucuronic acid (GlcUA) and N-acetylglucosamine (GlcNAc) that is ubiquitously present in the extracellular matrix (ECM) where it has a critical role in the physiology and pathology of several mammalian tissues. HA represents a perfect environment in which cells can migrate and proliferate. Moreover, several receptors can interact with HA at cellular level triggering multiple signal transduction responses. The control of the HA synthesis is therefore critical in ECM assembly and cell biology; in this review we address the metabolic regulation of HA synthesis. In contrast with other glycosaminoglycans, which are synthesized in the Golgi apparatus, HA is produced at the plasma membrane by HA synthases (HAS1-3), which use cytoplasmic UDP-glucuronic acid and UDP-N-acetylglucosamine as substrates. UDP-GlcUA and UDP-hexosamine availability is critical for the synthesis of GAGs, which is an energy consuming process. AMP activated protein kinase (AMPK), which is considered a sensor of the energy status of the cell and is activated by low ATP:AMP ratio, leads to the inhibition of HA secretion by HAS2 phosphorylation at threonine 110. However, the most general sensor of cellular nutritional status is the hexosamine biosynthetic pathway that brings to the formation of UDP-GlcNAc and intracellular protein glycosylation by O-linked attachment of the monosaccharide β-N-acetylglucosamine (O-GlcNAcylation) to specific aminoacid residues. Such highly dynamic and ubiquitous protein modification affects serine 221 residue of HAS2 that lead to a dramatic stabilization of the enzyme in the membranes.
Collapse
Affiliation(s)
- Davide Vigetti
- Dipartimento di Scienze Chirurgiche e Morfologiche, Università degli Studi dell'Insubria, via J.H. Dunant 5, 21100 Varese, Italy
| | - Manuela Viola
- Dipartimento di Scienze Chirurgiche e Morfologiche, Università degli Studi dell'Insubria, via J.H. Dunant 5, 21100 Varese, Italy
| | - Evgenia Karousou
- Dipartimento di Scienze Chirurgiche e Morfologiche, Università degli Studi dell'Insubria, via J.H. Dunant 5, 21100 Varese, Italy
| | - Giancarlo De Luca
- Dipartimento di Scienze Chirurgiche e Morfologiche, Università degli Studi dell'Insubria, via J.H. Dunant 5, 21100 Varese, Italy
| | - Alberto Passi
- Dipartimento di Scienze Chirurgiche e Morfologiche, Università degli Studi dell'Insubria, via J.H. Dunant 5, 21100 Varese, Italy.
| |
Collapse
|
24
|
Mikami T, Kitagawa H. Biosynthesis and function of chondroitin sulfate. Biochim Biophys Acta Gen Subj 2013; 1830:4719-33. [DOI: 10.1016/j.bbagen.2013.06.006] [Citation(s) in RCA: 234] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/03/2013] [Accepted: 06/06/2013] [Indexed: 10/26/2022]
|
25
|
Song Z. Roles of the nucleotide sugar transporters (SLC35 family) in health and disease. Mol Aspects Med 2013; 34:590-600. [PMID: 23506892 DOI: 10.1016/j.mam.2012.12.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 12/10/2012] [Indexed: 12/29/2022]
Abstract
Nucleotide sugars and adenosine 3'-phospho 5'-phosphosulfate (PAPS) are transported from the cytosol to the endoplasmic reticulum (ER) and the Golgi apparatus where they serve as substrates for the glycosylation and sulfation of proteins, lipids and proteoglycans. The translocation is accomplished by the nucleotide sugar transporters (NSTs), a family of highly conserved hydrophobic proteins with multiple transmembrane domains that are part of the solute carrier family 35 (SLC35). NSTs are antiporters responsible not only for transporting nucleotide sugars and PAPS into the Golgi, but also for the transport of the reaction products back to the cytosol. The initial reaction products - the nucleoside diphosphates - must be first converted to nucleoside monophosphates by a group of enzymes called ectonucleoside triphosphate diphosphohydrolases (ENTPDs) before they can exit the Golgi. The transport role of NSTs is essential to glycosylation and development. Mutations in two NST genes, SLC35A1 and SLC35C1, have been related to congenital disorder of glycosylation II (CDG II).
Collapse
Affiliation(s)
- Zhiwei Song
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A∗STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore.
| |
Collapse
|
26
|
Peterson NA, Anderson TK, Wu XJ, Yoshino TP. In silico analysis of the fucosylation-associated genome of the human blood fluke Schistosoma mansoni: cloning and characterization of the enzymes involved in GDP-L-fucose synthesis and Golgi import. Parasit Vectors 2013; 6:201. [PMID: 23835114 PMCID: PMC3718619 DOI: 10.1186/1756-3305-6-201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 06/15/2013] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Carbohydrate structures of surface-expressed and secreted/excreted glycoconjugates of the human blood fluke Schistosoma mansoni are key determinants that mediate host-parasite interactions in both snail and mammalian hosts. Fucose is a major constituent of these immunologically important glycans, and recent studies have sought to characterize fucosylation-associated enzymes, including the Golgi-localized fucosyltransferases that catalyze the transfer of L-fucose from a GDP-L-fucose donor to an oligosaccharide acceptor. Importantly, GDP-L-fucose is the only nucleotide-sugar donor used by fucosyltransferases and its availability represents a bottleneck in fucosyl-glycotope expression. METHODS A homology-based genome-wide bioinformatics approach was used to identify and molecularly characterize the enzymes that contribute to GDP-L-fucose synthesis and Golgi import in S. mansoni. Putative functions were further investigated through molecular phylogenetic and immunocytochemical analyses. RESULTS We identified homologs of GDP-D-mannose-4,6-dehydratase (GMD) and GDP-4-keto-6-deoxy-D-mannose-3,5-epimerase-4-reductase (GMER), which constitute a de novo pathway for GDP-L-fucose synthesis, in addition to a GDP-L-fucose transporter (GFT) that putatively imports cytosolic GDP-L-fucose into the Golgi. In silico primary sequence analyses identified characteristic Rossman loop and short-chain dehydrogenase/reductase motifs in GMD and GMER as well as 10 transmembrane domains in GFT. All genes are alternatively spliced, generating variants of unknown function. Observed quantitative differences in steady-state transcript levels between miracidia and primary sporocysts may contribute to differential glycotope expression in early larval development. Additionally, analyses of protein expression suggest the occurrence of cytosolic GMD and GMER in the ciliated epidermal plates and tegument of miracidia and primary sporocysts, respectively, which is consistent with previous localization of highly fucosylated glycotopes. CONCLUSIONS This study is the first to identify and characterize three key genes that are putatively involved in the synthesis and Golgi import of GDP-L-fucose in S. mansoni and provides fundamental information regarding their genomic organization, genetic variation, molecular phylogenetics, and developmental expression in intramolluscan larval stages.
Collapse
Affiliation(s)
- Nathan A Peterson
- Current address: Department of Entomology, College of Agricultural and Life Sciences, University of Wisconsin, 1630 Linden Drive, Madison, WI 53706, USA
| | - Tavis K Anderson
- Current address: Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, 1920 Dayton Ave, Ames, IA 50010, USA
| | - Xiao-Jun Wu
- Current address: Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, 2115 Observatory Drive, Madison, WI 53706, USA
| | - Timothy P Yoshino
- Current address: Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, 2115 Observatory Drive, Madison, WI 53706, USA
| |
Collapse
|
27
|
Molecular cloning, phylogenetic analysis, and expression profiling of a grape CMP-sialic acid transporter-like gene induced by phytohormone and abiotic stress. Genes Genomics 2013. [DOI: 10.1007/s13258-013-0074-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Handford M, Rodríguez-Furlán C, Marchant L, Segura M, Gómez D, Alvarez-Buylla E, Xiong GY, Pauly M, Orellana A. Arabidopsis thaliana AtUTr7 encodes a golgi-localized UDP-glucose/UDP-galactose transporter that affects lateral root emergence. MOLECULAR PLANT 2012; 5:1263-80. [PMID: 22933714 DOI: 10.1093/mp/sss074] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nucleotide sugar transporters (NSTs) are antiporters comprising a gene family that plays a fundamental role in the biosynthesis of complex cell wall polysaccharides and glycoproteins in plants. However, due to the limited number of related mutants that have observable phenotypes, the biological function(s) of most NSTs in cell wall biosynthesis and assembly have remained elusive. Here, we report the characterization of AtUTr7 from Arabidopsis (Arabidopsis thaliana (L.) Heynh.), which is homologous to multi-specific UDP-sugar transporters from Drosophila melanogaster, humans, and Caenorhabditis elegans. We show that AtUTr7 possesses the common structural characteristics conserved among NSTs. Using a green fluorescent protein (GFP) tagged version, we demonstrate that AtUTr7 is localized in the Golgi apparatus. We also show that AtUTr7 is widely expressed, especially in the roots and in specific floral organs. Additionally, the results of an in vitro nucleotide sugar transport assay carried out with a tobacco and a yeast expression system suggest that AtUTr7 is capable of transferring UDP-Gal and UDP-Glc, but not a range of other UDP- and GDP-sugars, into the Golgi lumen. Mutants lacking expression of AtUTr7 exhibited an early proliferation of lateral roots as well as distorted root hairs when cultivated at high sucrose concentrations. Furthermore, the distribution of homogalacturonan with a low degree of methyl esterification differed in lateral root tips of the mutant compared to wild-type plants, although additional analytical procedures revealed no further differences in the composition of the root cell walls. This evidence suggests that the transport of UDP-Gal and UDP-Glc into the Golgi under conditions of high root biomass production plays a role in lateral root and root hair development.
Collapse
|
29
|
Geisler C, Kotu V, Sharrow M, Rendić D, Pöltl G, Tiemeyer M, Wilson IBH, Jarvis DL. The Drosophila neurally altered carbohydrate mutant has a defective Golgi GDP-fucose transporter. J Biol Chem 2012; 287:29599-609. [PMID: 22745127 DOI: 10.1074/jbc.m112.379313] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Studying genetic disorders in model organisms can provide insights into heritable human diseases. The Drosophila neurally altered carbohydrate (nac) mutant is deficient for neural expression of the HRP epitope, which consists of N-glycans with core α1,3-linked fucose residues. Here, we show that a conserved serine residue in the Golgi GDP-fucose transporter (GFR) is substituted by leucine in nac(1) flies, which abolishes GDP-fucose transport in vivo and in vitro. This loss of function is due to a biochemical defect, not to destabilization or mistargeting of the mutant GFR protein. Mass spectrometry and HPLC analysis showed that nac(1) mutants lack not only core α1,3-linked, but also core α1,6-linked fucose residues on their N-glycans. Thus, the nac(1) Gfr mutation produces a previously unrecognized general defect in N-glycan core fucosylation. Transgenic expression of a wild-type Gfr gene restored the HRP epitope in neural tissues, directly demonstrating that the Gfr mutation is solely responsible for the neural HRP epitope deficiency in the nac(1) mutant. These results validate the Drosophila nac(1) mutant as a model for the human congenital disorder of glycosylation, CDG-IIc (also known as LAD-II), which is also the result of a GFR deficiency.
Collapse
Affiliation(s)
- Christoph Geisler
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Liu L, Hirschberg CB. Developmental diseases caused by impaired nucleotide sugar transporters. Glycoconj J 2012; 30:5-10. [PMID: 22527830 DOI: 10.1007/s10719-012-9375-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 03/28/2012] [Indexed: 01/24/2023]
Abstract
Nucleotide sugar transporters play critical roles in glycosylation of proteins, lipids and proteoglycans, which are essential for organogenesis, development, mammalian cellular immunity and pathogenicity of human pathogenic agents. Functional deficiencies of these transporters result in global defects of glycoconjugates, which in turn lead to a diversity of biochemical, physiological and pathological phenotypes. In this short review, we will highlight human and bovine diseases caused by mutations of these transporters.
Collapse
Affiliation(s)
- Li Liu
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Evans-E438, 72 East Concord Street, Boston, MA 02118, USA
| | | |
Collapse
|
31
|
Maszczak-Seneczko D, Olczak T, Wunderlich L, Olczak M. Comparative analysis of involvement of UGT1 and UGT2 splice variants of UDP-galactose transporter in glycosylation of macromolecules in MDCK and CHO cell lines. Glycoconj J 2011; 28:481-92. [PMID: 21894462 PMCID: PMC3180625 DOI: 10.1007/s10719-011-9348-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 08/18/2011] [Accepted: 08/19/2011] [Indexed: 12/02/2022]
Abstract
Nucleotide sugar transporters deliver nucleotide sugars into the Golgi apparatus and endoplasmic reticulum. This study aimed to further characterize mammalian UDP-galactose transporter (UGT) in MDCK and CHO cell lines. MDCK-RCAr and CHO-Lec8 mutant cell lines are defective in UGT transporter, although they exhibit some level of galactosylation. Previously, only single forms of UGT were identified in both cell lines, UGT1 in MDCK cells and UGT2 in CHO cells. We have identified the second UGT splice variants in CHO (UGT1) and MDCK (UGT2) cells. Compared to UGT1, UGT2 is more abundant in nearly all examined mammalian tissues and cell lines, but MDCK cells exhibit different relative distribution of both splice variants. Complementation analysis demonstrated that both UGT splice variants are necessary for N- and O-glycosylation of proteins. Both mutant cell lines produce chondroitin-4-sulfate at only a slightly lower level compared to wild-type cells. This defect is corrected by overexpression of both UGT splice variants. MDCK-RCAr mutant cells do not produce keratan sulfate and this effect is not corrected by either UGT splice variant, overexpressed either singly or in combination. Here we demonstrate that both UGT splice variants are important for glycosylation of proteins. In contrast to MDCK cells, MDCK-RCAr mutant cells may possess an additional defect within the keratan sulfate biosynthesis pathway.
Collapse
Affiliation(s)
- Dorota Maszczak-Seneczko
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Tamka 2, 50-137 Wroclaw, Poland
| | - Teresa Olczak
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Tamka 2, 50-137 Wroclaw, Poland
| | - Livius Wunderlich
- Laboratory of Biochemistry and Molecular Biology, Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, 1521 Budapest, P.O. Box 91, Hungary
| | - Mariusz Olczak
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Tamka 2, 50-137 Wroclaw, Poland
| |
Collapse
|
32
|
Gravato-Nobre MJ, Stroud D, O'Rourke D, Darby C, Hodgkin J. Glycosylation genes expressed in seam cells determine complex surface properties and bacterial adhesion to the cuticle of Caenorhabditis elegans. Genetics 2011; 187:141-55. [PMID: 20980242 PMCID: PMC3018313 DOI: 10.1534/genetics.110.122002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 10/19/2010] [Indexed: 11/18/2022] Open
Abstract
The surface of the nematode Caenorhabditis elegans is poorly understood but critical for its interactions with the environment and with pathogens. We show here that six genes (bus-2, bus-4, and bus-12, together with the previously cloned srf-3, bus-8, and bus-17) encode proteins predicted to act in surface glycosylation, thereby affecting disease susceptibility, locomotory competence, and sexual recognition. Mutations in all six genes cause resistance to the bacterial pathogen Microbacterium nematophilum, and most of these mutations also affect bacterial adhesion and biofilm formation by Yersinia species, demonstrating that both infection and biofilm formation depend on interaction with complex surface carbohydrates. A new bacterial interaction, involving locomotory inhibition by a strain of Bacillus pumilus, reveals diversity in the surface properties of these mutants. Another biological property--contact recognition of hermaphrodites by males during mating--was also found to be impaired in mutants of all six genes. An important common feature is that all are expressed most strongly in seam cells, rather than in the main hypodermal syncytium, indicating that seam cells play the major role in secreting surface coat and consequently in determining environmental interactions. To test for possible redundancies in gene action, the 15 double mutants for this set of genes were constructed and examined, but no synthetic phenotypes were observed. Comparison of the six genes shows that each has distinctive properties, suggesting that they do not act in a linear pathway.
Collapse
Affiliation(s)
- Maria J. Gravato-Nobre
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom and Department of Cell and Tissue Biology, University of California, San Francisco, California 94143
| | - Dave Stroud
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom and Department of Cell and Tissue Biology, University of California, San Francisco, California 94143
| | - Delia O'Rourke
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom and Department of Cell and Tissue Biology, University of California, San Francisco, California 94143
| | - Creg Darby
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom and Department of Cell and Tissue Biology, University of California, San Francisco, California 94143
| | - Jonathan Hodgkin
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom and Department of Cell and Tissue Biology, University of California, San Francisco, California 94143
| |
Collapse
|
33
|
Colleoni C, Linka M, Deschamps P, Handford MG, Dupree P, Weber APM, Ball SG. Phylogenetic and biochemical evidence supports the recruitment of an ADP-glucose translocator for the export of photosynthate during plastid endosymbiosis. Mol Biol Evol 2010; 27:2691-701. [PMID: 20576760 DOI: 10.1093/molbev/msq158] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The acquisition of photosynthesis by eukaryotic cells through enslavement of a cyanobacterium represents one of the most remarkable turning points in the history of life on Earth. In addition to endosymbiotic gene transfer, the acquisition of a protein import apparatus and the coordination of gene expression between host and endosymbiont genomes, the establishment of a metabolic connection was crucial for a functional endosymbiosis. It was previously hypothesized that the first metabolic connection between both partners of endosymbiosis was achieved through insertion of a host-derived metabolite transporter into the cyanobacterial plasma membrane. Reconstruction of starch metabolism in the common ancestor of photosynthetic eukaryotes suggested that adenosine diphosphoglucose (ADP-Glc), a bacterial-specific metabolite, was likely to be the photosynthate, which was exported from the early cyanobiont. However, extant plastid transporters that have evolved from host-derived endomembrane transporters do not transport ADP-Glc but simple phosphorylated sugars in exchange for orthophosphate. We now show that those eukaryotic nucleotide sugar transporters, which define the closest relatives to the common ancestor of extant plastid envelope carbon translocators, possess an innate ability for transporting ADP-Glc. Such an unexpected ability would have been required to establish plastid endosymbiosis.
Collapse
Affiliation(s)
- Christophe Colleoni
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS-USTL, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq Cedex, France
| | | | | | | | | | | | | |
Collapse
|
34
|
Chatel A, Hemming R, Hobert J, Natowicz MR, Triggs-Raine B, Merz DC. The C. elegans hyaluronidase: a developmentally significant enzyme with chondroitin-degrading activity at both acidic and neutral pH. Matrix Biol 2010; 29:494-502. [PMID: 20576486 DOI: 10.1016/j.matbio.2010.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 05/20/2010] [Accepted: 05/21/2010] [Indexed: 12/16/2022]
Abstract
Mammalian hyaluronidases degrade hyaluronan and some structurally related glycosaminoglycans. We generated a deletion mutant in the Caenorhabditis elegans orthologue of mammalian hyaluronidase, hya-1. Mutant animals are viable and grossly normal, but exhibit defects in vulval morphogenesis and egg-laying and showed increased staining with alcian blue, consistent with an accumulation of glycosaminoglycan. A hya-1::GFP reporter was expressed in a restricted pattern in somatic tissues of the animal with strongest expression in the intestine, the PLM sensory neurons and the vulva. Total protein extracts from wild-type animals exhibited chondroitin-degrading but not hyaluronan-degrading activity. Chondroitinase activities were observed at both neutral and acidic pH conditions while both neutral and acidic activities were absent in extracts from hya-1 mutant strains. We also evaluated the function of oga-1, which encodes the C. elegans orthologue of MGEA-5, a protein with hyaluronan-degrading activity in vitro. oga-1 is expressed in muscles, vulval cells and the scavenger-like coelomocytes. An oga-1 mutant strain exhibited egg-laying and vulval defects similar to those of hya-1; chondroitinase activity was unaffected in this mutant.
Collapse
Affiliation(s)
- Allison Chatel
- Department of Biochemistry and Medical Genetics, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | | | |
Collapse
|
35
|
The role of nucleotide sugar transporters in development of eukaryotes. Semin Cell Dev Biol 2010; 21:600-8. [PMID: 20144721 DOI: 10.1016/j.semcdb.2010.02.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 01/25/2010] [Accepted: 02/01/2010] [Indexed: 01/23/2023]
Abstract
The Golgi apparatus membrane of all eukaryotes has nucleotide sugar transporters which play essential roles in the glycosylation of glycoproteins, proteoglycans and glycolipids. Mutations of these transporters have broad developmental phenotypes across many species including diseases in humans and cattle.
Collapse
|
36
|
Novelli JF, Chaudhary K, Canovas J, Benner JS, Madinger CL, Kelly P, Hodgkin J, Carlow CKS. Characterization of the Caenorhabditis elegans UDP-galactopyranose mutase homolog glf-1 reveals an essential role for galactofuranose metabolism in nematode surface coat synthesis. Dev Biol 2009; 335:340-55. [PMID: 19751718 DOI: 10.1016/j.ydbio.2009.09.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 08/15/2009] [Accepted: 09/07/2009] [Indexed: 01/08/2023]
Abstract
Galactofuranose (Gal(f)), the furanoic form of d-galactose produced by UDP-galactopyranose mutases (UGMs), is present in surface glycans of some prokaryotes and lower eukaryotes. Absence of the Gal(f) biosynthetic pathway in vertebrates and its importance in several pathogens make UGMs attractive drug targets. Since the existence of Gal(f) in nematodes has not been established, we investigated the role of the Caenorhabditis elegans UGM homolog glf-1 in worm development. glf-1 mutants display significant late embryonic and larval lethality, and other phenotypes indicative of defective surface coat synthesis, the glycan-rich outermost layer of the nematode cuticle. The glf homolog from the protozoan Leishmania major partially complements C. elegans glf-1. glf-1 mutants rescued by L. major glf, which behave as glf-1 hypomorphs, display resistance to infection by Microbacterium nematophilum, a pathogen of rhabditid nematodes thought to bind to surface coat glycans. To confirm the presence of Gal(f) in C. elegans, we analyzed C. elegans nucleotide sugar pools using online electrospray ionization-mass spectrometry (ESI-MS). UDP-Gal(f) was detected in wild-type animals while absent in glf-1 deletion mutants. Our data indicate that Gal(f) likely has a pivotal role in maintenance of surface integrity in nematodes, supporting investigation of UGM as a drug target in parasitic species.
Collapse
|
37
|
Appleford PJ, Griffiths M, Yao SYM, Ng AML, Chomey EG, Isaac RE, Coates D, Hope IA, Cass CE, Young JD, Baldwin SA. Functional redundancy of two nucleoside transporters of the ENT family (CeENT1, CeENT2) required for development ofCaenorhabditis elegans. Mol Membr Biol 2009; 21:247-59. [PMID: 15371014 DOI: 10.1080/09687680410001712550] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The genome of Caenorhabditis elegans encodes multiple homologues of the two major families of mammalian equilibrative and concentrative nucleoside transporters. As part of a programme aimed at understanding the biological rationale underlying the multiplicity of eukaryote nucleoside transporters, we have now demonstrated that the nematode genes ZK809.4 (ent-1) and K09A9.3 (ent-2) encode equilibrative transporters, which we designate CeENT1 and CeENT2 respectively. These transporters resemble their human counterparts hENT1 and hENT2 in exhibiting similar broad permeant specificities for nucleosides, while differing in their permeant selectivities for nucleobases. They are insensitive to the classic inhibitors of mammalian nucleoside transport, nitrobenzylthioinosine, dilazep and draflazine, but are inhibited by the vasoactive drug dipyridamole. Use of green fluorescent protein reporter constructs indicated that the transporters are present in a limited number of locations in the adult, including intestine and pharynx. Their potential roles in these tissues were explored by using RNA interference to disrupt gene expression. Although disruption of ent-1 or ent-2 expression alone had no effect, simultaneous disruption of both genes yielded pronounced developmental defects involving the intestine and vulva.
Collapse
Affiliation(s)
- Peter J Appleford
- School of Biochemistry & Microbiology, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Dejima K, Murata D, Mizuguchi S, Nomura KH, Gengyo-Ando K, Mitani S, Kamiyama S, Nishihara S, Nomura K. The ortholog of human solute carrier family 35 member B1 (UDP-galactose transporter-related protein 1) is involved in maintenance of ER homeostasis and essential for larval development in Caenorhabditis elegans. FASEB J 2009; 23:2215-25. [PMID: 19270184 DOI: 10.1096/fj.08-123737] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Although the solute carrier 35B1 (SLC35B1) is evolutionarily conserved, its functions in metazoans remain unknown. To elucidate its function, we examined developmental roles of an SLC35B1 family gene (HUT-1: homolog of UDP-Gal transporter) in Caenorhabditis elegans. We isolated a deletion mutant of the gene and characterized phenotypes of the mutant and hut-1 RNAi-treated worms. GFP-HUT-1 reporter analysis was performed to examine gene expression patterns. We also tested whether several nucleotide sugar transporters can compensate for hut-1 deficiency. The hut-1 deletion mutant and RNAi worms showed larval growth defect and lethality with disrupted intestinal morphology. Inactivation of hut-1 induced chronic endoplasmic reticulum (ER) stress, and hut-1 showed genetic interactions with the atf-6, pek-1, and ire-1 genes involved in unfolded protein response signaling. ER ultrastructure and ER marker distribution in hut-1-deficient animals showed that HUT-1 is required for maintenance of ER structure. Reporter analysis revealed that HUT-1 is an ER protein ubiquitously expressed in tissues, including the intestine. Lethality and the ER stress phenotype of the mutant were rescued with the human hut-1 ortholog UGTrel1. These results indicate important roles for hut-1 in development and maintenance of ER homeostasis in C. elegans.
Collapse
Affiliation(s)
- Katsufumi Dejima
- Department of Biology, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Molecular profiling of striatonigral and striatopallidal medium spiny neurons past, present, and future. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 89:1-35. [PMID: 19900613 DOI: 10.1016/s0074-7742(09)89001-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Defining distinct molecular properties of the two striatal medium spiny neurons (MSNs) has been a challenging task for basal ganglia (BG) neuroscientists. Identifying differential molecular components in each MSN subtype is crucial for BG researchers to understand functional properties of these two neurons. The two MSN populations are morphologically identical except in their projections through the direct verses indirect BG pathways and they are heterogeneously dispersed throughout the dorsal striatum (dStr) and nucleus accumbens (NAc). These characteristics have made it difficult for researchers to distinguish and isolate these two neuronal populations thereby hindering progress toward a more comprehensive understanding of their differential molecular properties. Researchers began to investigate molecular differences in the striatonigral and striatopallidal neurons using in situ hybridization (ISH) techniques and single cell reverse transcription-polymerase chain reaction (scRT-PCR). Currently the field is utilizing more advanced techniques for large-scale gene expression studies including fluorescence activated cell sorting (FACS) of MSNs, from which RNA is purified, from fluorescent reporter transgenic mice or use of transgenic mice in which ribosomes from each MSN are tagged and can be immunoprecipitated followed by RNA isolation, a technique termed translating ribosomal affinity purification (TRAP). Additionally, the availability of fluorescent reporter mice for each MSN subtype is allowing, scientists to perform more accurate histology studies evaluating differential protein expression and signaling changes in each cell subtype. Finally, researchers are able to evaluate the role of specific genes in vivo by utilizing cell type-specific mouse models including Cre driver lines that can be crossed with conditional overexpression or knockout systems. This is a very exciting time in the BG field because researchers are well equipped with the most progressive tools to comprehensively evaluate molecular components in the two MSNs and their consequence on BG functional output in the normal, diseased, and developing brain.
Collapse
|
40
|
Caffaro CE, Luhn K, Bakker H, Vestweber D, Samuelson J, Berninsone P, Hirschberg CB. A single Caenorhabditis elegans Golgi apparatus-type transporter of UDP-glucose, UDP-galactose, UDP-N-acetylglucosamine, and UDP-N-acetylgalactosamine. Biochemistry 2008; 47:4337-44. [PMID: 18341292 DOI: 10.1021/bi702468g] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The genome of Caenorhabditis elegans encodes for 18 putative nucleotide sugar transporters even though its glycome only contains 7 different monosaccharides. To understand the biological significance of this phenomenon, we have begun a systematic substrate characterization of the above putative transporters and have determined that the gene ZK896.9 encodes a Golgi apparatus transporter for UDP-glucose, UDP-galactose, UDP- N-acetylglucosamine, and UDP- N-acetylgalactosamine. This is the first tetrasubstrate nucleotide sugar transporter characterized for any organism and is also the first nonplant transporter for UDP-glucose. Evidence for the above substrate specificity and substrate transport saturation kinetics was obtained by expression of ZK896.9 in Saccharomyces cerevisiae followed by Golgi enriched vesicle isolation and assays in vitro. Further evidence for UDP-glucose transport was obtained by expression of ZK 896.9 in Giardia lamblia, an organism recently characterized as having endogenous transport activity for only UDP- N-acetylglucosamine. Expression of ZK896.9 was also able to correct the phenotype of a mutant Chinese ovary cell line specifically defective in the transport of UDP-galactose into the Golgi apparatus and of a mutant of the yeast Kluyveromyces lactis specifically defective in the transport of UDP- N-acetylglucosamine into its Golgi apparatus. Because up to now all three other characterized nucleotide sugar transporters of C. elegans have been found to transport two or three substrates, the substrate specificity of ZK896.9 raises questions as to the evolutionary ancestry of this group of proteins in this nematode.
Collapse
Affiliation(s)
- Carolina E Caffaro
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Zhao W, Colley KJ. Nucleotide sugar transporters of the Golgi apparatus. THE GOLGI APPARATUS 2008. [PMCID: PMC7119966 DOI: 10.1007/978-3-211-76310-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The Golgi apparatus is the major site of protein, lipid and proteoglycan glycosylation. The glycosylation enzymes, as well as kinases and sulfatases that catalyze phosphorylation and sulfation, are localized within the Golgi cisternae in characteristic distributions that frequently reflect their order in a particular pathway (Kornfeld and Kornfeld 1985; Colley 1997). The glycosyl-transferases, sulfotransferases and kinases are “transferases” that require activated donor molecules for the reactions they catalyze. For eukaryotic, fungal and protozoan glycosyltransferases these are the nucleotide sugars UDP-N-acetylglucosamine (UDP-GlcNAc), UDP-galactose (UDP-Gal), GDP-fucose (GDP-Fuc), CMP-sialicacid (CMP-Sia), UDP-glucuronicacid (UDP-GlcA), GDP-mannose (GDP-Man), and UDP-xylose (UDP-Xyl) (Hirschberg et al. 1998). For the kinases, ATP functions as the donor, while for the sulfotransferases, adenosine 3′-phosphate 5′-phosphate (PAPS) acts as the donor (Hirschberg et al. 1998). The active sites of all these enzymes are oriented towards the lumen of the Golgi cisternae. This necessitates the translocation of their donors from the cytosol into the lumenal Golgi compartments. In this chapter we will focus on the structure, function and localization of the Golgi nucleotide sugar transporters (NSTs), and highlight the diseases and developmental defects associated with defective transporters. We direct the reader to several excellent reviews on Golgi transporters for additional details and references (Hirschberg et al. 1998; Berninsone and Hirschberg 2000; Gerardy-Schahn et al. 2001; Handford et al. 2006; Caffaro and Hirschberg 2006).
Collapse
|
42
|
Caffaro CE, Hirschberg CB, Berninsone PM. Functional redundancy between two Caenorhabditis elegans nucleotide sugar transporters with a novel transport mechanism. J Biol Chem 2007; 282:27970-5. [PMID: 17652078 DOI: 10.1074/jbc.m704485200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transporters of nucleotide sugars regulate the availability of these substrates required for glycosylation reactions in the lumen of the Golgi apparatus and play an important role in the development of multicellular organisms. Caenorhabditis elegans has seven different sugars in its glycoconjugates, although 18 putative nucleotide sugar transporters are encoded in the genome. Among these, SQV-7, SRF-3, and CO3H5.2 exhibit partially overlapping substrate specificity and expression patterns. We now report evidence of functional redundancy between transporters CO3H5.2 and SRF-3. Reducing the activity of the CO3H5.2 gene product by RNA interference (RNAi) in SRF-3 mutants results in oocyte accumulation and abnormal gonad morphology, whereas comparable RNAi treatment of wild type or RNAi hypersensitive C. elegans strains does not cause detectable defects. We hypothesize this genetic enhancement to be a mechanism to ensure adequate glycoconjugate biosynthesis required for normal tissue development in multicellular organisms. Furthermore, we show that transporters SRF-3 and CO3H5.2, which are closely related in the phylogenetic tree, share a simultaneous and independent substrate transport mechanism that is different from the competitive one previously demonstrated for transporter SQV-7, which shares a lower amino acid sequence identity with CO3H5.2 and SRF-3. Therefore, different mechanisms for transporting multiple nucleotide sugars may have evolved parallel to transporter amino acid divergence.
Collapse
Affiliation(s)
- Carolina E Caffaro
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
43
|
Muraoka M, Miki T, Ishida N, Hara T, Kawakita M. Variety of nucleotide sugar transporters with respect to the interaction with nucleoside mono- and diphosphates. J Biol Chem 2007; 282:24615-22. [PMID: 17599910 DOI: 10.1074/jbc.m611358200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nucleotide sugar transporters have long been assumed to be antiporters that exclusively use nucleoside monophosphates as antiport substrates. Here we present evidence indicating that two other types of nucleotide sugar transporters exist that differ in their antiport substrate specificity. Biochemical studies using microsomes derived from Saccharomyces cerevisiae cells expressing either human (h) UGTrel7 or the Drosophila (d) FRC (Fringe connection) transporter revealed that (i) efflux of preloaded UDP-glucuronic acid from the yeast microsomes expressing hUGTrel7 was strongly enhanced by UDP-GlcNAc added in the external medium, but not by UMP or UDP, suggesting that hUGTrel7 may be described as a UDP-sugar/UDP-sugar antiporter, and (ii) addition of UDP-sugars, UDP, or UMP in the external medium stimulated the efflux of preloaded UDP-GlcNAc from the yeast microsomes expressing dFRC to a comparable extent, suggesting that UDP, as well as UMP, may serve as an antiport substrate of dFRC. Antiport of UDP-sugars with these specific substrates was reproduced and definitively confirmed using proteoliposomes reconstituted from solubilized and purified transporters. Possible physiological implications of these observations are discussed.
Collapse
Affiliation(s)
- Masatoshi Muraoka
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 113-8613, Japan.
| | | | | | | | | |
Collapse
|
44
|
Handford M, Rodriguez-Furlán C, Orellana A. Nucleotide-sugar transporters: structure, function and roles in vivo. Braz J Med Biol Res 2007; 39:1149-58. [PMID: 16981043 DOI: 10.1590/s0100-879x2006000900002] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Accepted: 06/06/2006] [Indexed: 11/21/2022] Open
Abstract
The glycosylation of glycoconjugates and the biosynthesis of polysaccharides depend on nucleotide-sugars which are the substrates for glycosyltransferases. A large proportion of these enzymes are located within the lumen of the Golgi apparatus as well as the endoplasmic reticulum, while many of the nucleotide-sugars are synthesized in the cytosol. Thus, nucleotide-sugars are translocated from the cytosol to the lumen of the Golgi apparatus and endoplasmic reticulum by multiple spanning domain proteins known as nucleotide-sugar transporters (NSTs). These proteins were first identified biochemically and some of them were cloned by complementation of mutants. Genome and expressed sequence tag sequencing allowed the identification of a number of sequences that may encode for NSTs in different organisms. The functional characterization of some of these genes has shown that some of them can be highly specific in their substrate specificity while others can utilize up to three different nucleotide-sugars containing the same nucleotide. Mutations in genes encoding for NSTs can lead to changes in development in Drosophila melanogaster or Caenorhabditis elegans, as well as alterations in the infectivity of Leishmania donovani. In humans, the mutation of a GDP-fucose transporter is responsible for an impaired immune response as well as retarded growth. These results suggest that, even though there appear to be a fair number of genes encoding for NSTs, they are not functionally redundant and seem to play specific roles in glycosylation.
Collapse
Affiliation(s)
- M Handford
- Department of Biology, Faculty of Science, University of Chile, Santiago, Chile
| | | | | |
Collapse
|
45
|
Nguyen K, van Die I, Grundahl KM, Kawar ZS, Cummings RD. Molecular cloning and characterization of the Caenorhabditis elegans alpha1,3-fucosyltransferase family. Glycobiology 2007; 17:586-99. [PMID: 17369288 DOI: 10.1093/glycob/cwm023] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The genome of Caenorhabditis elegans encodes five genes with homology to known alpha1,3 fucosyltransferases (alpha1,3FTs), but their expression and functions are poorly understood. Here we report the molecular cloning and characterization of these C. elegans alpha1,3FTs (CEFT-1 through -5). The open-reading frame for each enzyme predicts a type II transmembrane protein and multiple potential N-glycosylation sites. We prepared recombinant epitope-tagged forms of each CEFT and found that they had unusual acceptor specificity, cation requirements, and temperature sensitivity. CEFT-1 acted on the N-glycan pentasaccharide core acceptor to generate Manalpha1-3(Manalpha1-6)Manbeta1-4GlcNAcbeta1-4(Fucalpha1-3)GlcNAcbeta1-Asn. In contrast, CEFT-2 did not act on the pentasaccharide acceptor, but instead utilized a LacdiNAc acceptor to generate GalNAcbeta1-4(Fucalpha1-3)GlcNAcbeta1-3Galbeta1-4Glc, which is a novel activity. CEFT-3 utilized a LacNAc acceptor to generate Galbeta1-4(Fucalpha1-3)GlcNAcbeta1-3Galbeta1-4Glc without requiring cations. CEFT-4 was similar to CEFT-3, but its activity was enhanced by some divalent cations. Recombinant CEFT-5 was well expressed, but did not act on available acceptors. Each CEFT was optimally active at room temperature and rapidly lost activity at 37 degrees C. Promoter analysis showed that CEFT-1 is expressed in C. elegans eggs and adults, but its expression was restricted to a few neuronal cells at the head and tail. We prepared deletion mutants for each enzyme for phenotypic analysis. While loss of CEFT-1 correlated with loss of pentasaccharide core activity and core alpha1,3-fucosylated glycans in worms, loss of other enzymes did not correlate with any phenotypic changes. These results suggest that each of the alpha1,3FTs in C. elegans has unique specificity and expression patterns.
Collapse
Affiliation(s)
- Kiem Nguyen
- Department of Biochemistry and Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | | | |
Collapse
|
46
|
Cottrell TR, Griffith CL, Liu H, Nenninger AA, Doering TL. The pathogenic fungus Cryptococcus neoformans expresses two functional GDP-mannose transporters with distinct expression patterns and roles in capsule synthesis. EUKARYOTIC CELL 2007; 6:776-85. [PMID: 17351078 PMCID: PMC1899245 DOI: 10.1128/ec.00015-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cryptococcus neoformans is a fungal pathogen that is responsible for life-threatening disease, particularly in the context of compromised immunity. This organism makes extensive use of mannose in constructing its cell wall, glycoproteins, and glycolipids. Mannose also comprises up to two-thirds of the main cryptococcal virulence factor, a polysaccharide capsule that surrounds the cell. The glycosyltransfer reactions that generate cellular carbohydrate structures usually require activated donors such as nucleotide sugars. GDP-mannose, the mannose donor, is produced in the cytosol by the sequential actions of phosphomannose isomerase, phosphomannomutase, and GDP-mannose pyrophosphorylase. However, most mannose-containing glycoconjugates are synthesized within intracellular organelles. This topological separation necessitates a specific transport mechanism to move this key precursor across biological membranes to the appropriate site for biosynthetic reactions. We have discovered two GDP-mannose transporters in C. neoformans, in contrast to the single such protein reported previously for other fungi. Biochemical studies of each protein expressed in Saccharomyces cerevisiae show that both are functional, with similar kinetics and substrate specificities. Microarray experiments indicate that the two proteins Gmt1 and Gmt2 are transcribed with distinct patterns of expression in response to variations in growth conditions. Additionally, deletion of the GMT1 gene yields cells with small capsules and a defect in capsule induction, while deletion of GMT2 does not alter the capsule. We suggest that C. neoformans produces two GDP-mannose transporters to satisfy its enormous need for mannose utilization in glycan synthesis. Furthermore, we propose that the two proteins have distinct biological roles. This is supported by the different expression patterns of GMT1 and GMT2 in response to environmental stimuli and the dissimilar phenotypes that result when each gene is deleted.
Collapse
Affiliation(s)
- Tricia R Cottrell
- Department of Molecular Microbiology, Washington University School of Medicine, Campus Box 8230, 600 South Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
47
|
Suzuki N, Toyoda H, Sano M, Nishiwaki K. Chondroitin acts in the guidance of gonadal distal tip cells in C. elegans. Dev Biol 2006; 300:635-46. [PMID: 16982046 DOI: 10.1016/j.ydbio.2006.08.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Revised: 08/08/2006] [Accepted: 08/17/2006] [Indexed: 10/24/2022]
Abstract
In Caenorhabditis elegans hermaphrodites, the U-shaped gonad arms are formed by directed migration of the gonadal distal tip cells (DTCs). The stereotyped pattern of DTC migration is carefully controlled by extracellular and cell surface molecules during larval development. Here we report that two proteins, SQV-5 (chondroitin synthase) and its cofactor MIG-22 (chondroitin polymerizing factor), are required for chondroitin biosynthesis and are essential for the dorsally guided migration of DTCs. We found that MIG-22 is expressed in migrating DTCs, hypodermal seam cells, developing vulva and oocytes. The expression of SQV-5 or MIG-22 in both DTCs and hypodermis rescued the DTC migration defects of the relevant mutants more efficiently than when they were expressed in either single tissue. Furthermore, the expression of SQV-5 by the mig-22 promoter significantly rescued sqv-5 mutants, implying that these two proteins act in the same tissues and that chondroitin proteoglycans produced in both of these tissues are required for DTC migration. The DTC migration defects caused by sqv-5 or mig-22 mutations were partially suppressed in the anterior and enhanced in the posterior DTCs in unc-6, unc-5 or unc-40 mutant backgrounds, suggesting that chondroitin proteoglycans play roles in the UNC-6/netrin-dependent guidance of DTCs.
Collapse
Affiliation(s)
- Norio Suzuki
- RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | | | | | | |
Collapse
|
48
|
Caffaro CE, Hirschberg CB. Nucleotide sugar transporters of the Golgi apparatus: from basic science to diseases. Acc Chem Res 2006; 39:805-12. [PMID: 17115720 DOI: 10.1021/ar0400239] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Approximately 80% of secreted and membrane proteins (40% of all proteins) of eukaryotes become covalently linked to sugars in the lumen of the Golgi apparatus, a cellular organelle that is part of the secretory system of all eukaryotes. The sugar donors are mostly nucleoside diphosphate sugars (nucleotide sugars) and must be translocated from the cytosol, their site of synthesis, across the Golgi apparatus membrane and into the lumen by specific transporters. These are hydrophobic, homodimeric proteins that span the membrane multiple times. Mutants of these proteins have developmental phenotypes including diseases in humans and cattle.
Collapse
Affiliation(s)
- Carolina E Caffaro
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts 02118, USA
| | | |
Collapse
|
49
|
Caffaro CE, Hirschberg CB, Berninsone PM. Independent and simultaneous translocation of two substrates by a nucleotide sugar transporter. Proc Natl Acad Sci U S A 2006; 103:16176-81. [PMID: 17060606 PMCID: PMC1621047 DOI: 10.1073/pnas.0608159103] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nucleotide sugar transporters play an essential role in protein and lipid glycosylation, and mutations can result in developmental phenotypes. We have characterized a transporter of UDP-N-acetylglucosamine and UDP-N-acetylgalactosamine encoded by the Caenorhabditis elegans gene C03H5.2. Surprisingly, translocation of these substrates occurs in an independent and simultaneous manner that is neither a competitive nor a symport transport. Incubations of Golgi apparatus vesicles of Saccharomyces cerevisiae expressing C03H5.2 protein with these nucleotide sugars labeled with (3)H and (14)C in their sugars showed that both substrates enter the lumen to the same extent, whether or not they are incubated alone or in the presence of a 10-fold excess of the other nucleotide sugar. Vesicles containing a deletion mutant of the C03H5.2 protein transport UDP-N-acetylglucosamine at rates comparable with that of wild-type transporter, whereas transport of UDP-N-acetylgalactosamine was decreased by 85-90%, resulting in an asymmetrical loss of substrate transport.
Collapse
Affiliation(s)
- Carolina E Caffaro
- Department of Molecular and Cell Biology, Goldman School of Dental Medicine, Boston University, Boston, MA 02118, USA
| | | | | |
Collapse
|
50
|
Rollwitz I, Santaella M, Hille D, Flügge UI, Fischer K. Characterization of AtNST-KT1, a novel UDP-galactose transporter from Arabidopsis thaliana. FEBS Lett 2006; 580:4246-51. [PMID: 16831428 DOI: 10.1016/j.febslet.2006.06.082] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Revised: 06/21/2006] [Accepted: 06/23/2006] [Indexed: 10/24/2022]
Abstract
Nucleotide sugar transporters (NST) mediate the transfer of nucleotide sugars from the cytosol into the lumen of the endoplasmatic reticulum and the Golgi apparatus. Because the NSTs show similarities with the plastidic phosphate translocators (pPTs), these proteins were grouped into the TPT/NST superfamily. In this study, a member of the NST-KT family, AtNST-KT1, was functionally characterized by expression of the corresponding cDNA in yeast cells and subsequent transport experiments. The histidine-tagged protein was purified by affinity chromatography and reconstituted into proteoliposomes. The substrate specificity of AtNST-KT1 was determined by measuring the import of radiolabelled nucleotide mono phosphates into liposomes preloaded with various unlabelled nucleotide sugars. This approach has the advantage that only one substrate has to be used in a radioactively labelled form while all the nucleotide sugars can be provided unlabelled. It turned out that AtNST-KT1 represents a monospecific NST transporting UMP in counterexchange with UDP-Gal but did not transport other nucleotide sugars. The AtNST-KT1 gene is ubiquitously expressed in all tissues. AtNST-KT1 is localized to Golgi membranes. Thus, AtNST-KT1 is most probably involved in the synthesis of galactose-containing glyco-conjugates in plants.
Collapse
Affiliation(s)
- Inga Rollwitz
- Botanisches Institut, Universität zu Köln, Gyrhofstrasse 15, 50931 Köln, Germany
| | | | | | | | | |
Collapse
|