1
|
Suominen A, Saldo Rubio G, Ruohonen S, Szabó Z, Pohjolainen L, Ghimire B, Ruohonen ST, Saukkonen K, Ijas J, Skarp S, Kaikkonen L, Cai M, Wardlaw SL, Ruskoaho H, Talman V, Savontaus E, Kerkelä R, Rinne P. α-Melanocyte-stimulating hormone alleviates pathological cardiac remodeling via melanocortin 5 receptor. EMBO Rep 2024; 25:1987-2014. [PMID: 38454158 PMCID: PMC11014855 DOI: 10.1038/s44319-024-00109-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 01/23/2024] [Accepted: 02/16/2024] [Indexed: 03/09/2024] Open
Abstract
α-Melanocyte-stimulating hormone (α-MSH) regulates diverse physiological functions by activating melanocortin receptors (MC-R). However, the role of α-MSH and its possible target receptors in the heart remain completely unknown. Here we investigate whether α-MSH could be involved in pathological cardiac remodeling. We found that α-MSH was highly expressed in the mouse heart with reduced ventricular levels after transverse aortic constriction (TAC). Administration of a stable α-MSH analog protected mice against TAC-induced cardiac hypertrophy and systolic dysfunction. In vitro experiments revealed that MC5-R in cardiomyocytes mediates the anti-hypertrophic signaling of α-MSH. Silencing of MC5-R in cardiomyocytes induced hypertrophy and fibrosis markers in vitro and aggravated TAC-induced cardiac hypertrophy and fibrosis in vivo. Conversely, pharmacological activation of MC5-R improved systolic function and reduced cardiac fibrosis in TAC-operated mice. In conclusion, α-MSH is expressed in the heart and protects against pathological cardiac remodeling by activating MC5-R in cardiomyocytes. These results suggest that analogs of naturally occurring α-MSH, that have been recently approved for clinical use and have agonistic activity at MC5-R, may be of benefit in treating heart failure.
Collapse
Affiliation(s)
- Anni Suominen
- Research Centre for Integrative Physiology & Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- Drug Research Doctoral Programme (DRDP), University of Turku, Turku, Finland
| | - Guillem Saldo Rubio
- Research Centre for Integrative Physiology & Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Saku Ruohonen
- Research Centre for Integrative Physiology & Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Zoltán Szabó
- Research Unit of Biomedicine and Internal Medicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Lotta Pohjolainen
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Bishwa Ghimire
- Institute for Molecular Medicine Finland (FIMM), HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Faculty of Medicine, University of Turku, Turku, Finland
| | - Suvi T Ruohonen
- Research Centre for Integrative Physiology & Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Karla Saukkonen
- Research Centre for Integrative Physiology & Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jani Ijas
- Research Centre for Integrative Physiology & Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Sini Skarp
- Research Unit of Biomedicine and Internal Medicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Leena Kaikkonen
- Research Unit of Biomedicine and Internal Medicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Minying Cai
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | - Sharon L Wardlaw
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Heikki Ruskoaho
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Virpi Talman
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Eriika Savontaus
- Research Centre for Integrative Physiology & Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
- Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland
| | - Risto Kerkelä
- Research Unit of Biomedicine and Internal Medicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Petteri Rinne
- Research Centre for Integrative Physiology & Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.
- Turku Center for Disease Modeling, University of Turku, Turku, Finland.
| |
Collapse
|
2
|
Signaling cascades in the failing heart and emerging therapeutic strategies. Signal Transduct Target Ther 2022; 7:134. [PMID: 35461308 PMCID: PMC9035186 DOI: 10.1038/s41392-022-00972-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/13/2022] [Accepted: 03/20/2022] [Indexed: 12/11/2022] Open
Abstract
Chronic heart failure is the end stage of cardiac diseases. With a high prevalence and a high mortality rate worldwide, chronic heart failure is one of the heaviest health-related burdens. In addition to the standard neurohormonal blockade therapy, several medications have been developed for chronic heart failure treatment, but the population-wide improvement in chronic heart failure prognosis over time has been modest, and novel therapies are still needed. Mechanistic discovery and technical innovation are powerful driving forces for therapeutic development. On the one hand, the past decades have witnessed great progress in understanding the mechanism of chronic heart failure. It is now known that chronic heart failure is not only a matter involving cardiomyocytes. Instead, chronic heart failure involves numerous signaling pathways in noncardiomyocytes, including fibroblasts, immune cells, vascular cells, and lymphatic endothelial cells, and crosstalk among these cells. The complex regulatory network includes protein-protein, protein-RNA, and RNA-RNA interactions. These achievements in mechanistic studies provide novel insights for future therapeutic targets. On the other hand, with the development of modern biological techniques, targeting a protein pharmacologically is no longer the sole option for treating chronic heart failure. Gene therapy can directly manipulate the expression level of genes; gene editing techniques provide hope for curing hereditary cardiomyopathy; cell therapy aims to replace dysfunctional cardiomyocytes; and xenotransplantation may solve the problem of donor heart shortages. In this paper, we reviewed these two aspects in the field of failing heart signaling cascades and emerging therapeutic strategies based on modern biological techniques.
Collapse
|
3
|
Jayawardena E, Medzikovic L, Ruffenach G, Eghbali M. Role of miRNA-1 and miRNA-21 in Acute Myocardial Ischemia-Reperfusion Injury and Their Potential as Therapeutic Strategy. Int J Mol Sci 2022; 23:ijms23031512. [PMID: 35163436 PMCID: PMC8836257 DOI: 10.3390/ijms23031512] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
Coronary artery disease remains the leading cause of death. Acute myocardial infarction (MI) is characterized by decreased blood flow to the coronary arteries, resulting in cardiomyocytes death. The most effective strategy for treating an MI is early and rapid myocardial reperfusion, but restoring blood flow to the ischemic myocardium can induce further damage, known as ischemia-reperfusion (IR) injury. Novel therapeutic strategies are critical to limit myocardial IR injury and improve patient outcomes following reperfusion intervention. miRNAs are small non-coding RNA molecules that have been implicated in attenuating IR injury pathology in pre-clinical rodent models. In this review, we discuss the role of miR-1 and miR-21 in regulating myocardial apoptosis in ischemia-reperfusion injury in the whole heart as well as in different cardiac cell types with special emphasis on cardiomyocytes, fibroblasts, and immune cells. We also examine therapeutic potential of miR-1 and miR-21 in preclinical studies. More research is necessary to understand the cell-specific molecular principles of miRNAs in cardioprotection and application to acute myocardial IR injury.
Collapse
|
4
|
Bourque K, Hawey C, Jiang A, Mazarura GR, Hébert TE. Biosensor-based profiling to track cellular signalling in patient-derived models of dilated cardiomyopathy. Cell Signal 2022; 91:110239. [PMID: 34990783 DOI: 10.1016/j.cellsig.2021.110239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/06/2021] [Accepted: 12/29/2021] [Indexed: 12/18/2022]
Abstract
Dilated cardiomyopathies (DCM) represent a diverse group of cardiovascular diseases impacting the structure and function of the myocardium. To better treat these diseases, we need to understand the impact of such cardiomyopathies on critical signalling pathways that drive disease progression downstream of receptors we often target therapeutically. Our understanding of cellular signalling events has progressed substantially in the last few years, in large part due to the design, validation and use of biosensor-based approaches to studying such events in cells, tissues and in some cases, living animals. Another transformative development has been the use of human induced pluripotent stem cells (hiPSCs) to generate disease-relevant models from individual patients. We highlight the importance of going beyond monocellular cultures to incorporate the influence of paracrine signalling mediators. Finally, we discuss the recent coalition of these approaches in the context of DCM. We discuss recent work in generating patient-derived models of cardiomyopathies and the utility of using signalling biosensors to track disease progression and test potential therapeutic strategies that can be later used to inform treatment options in patients.
Collapse
Affiliation(s)
- Kyla Bourque
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Cara Hawey
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Alyson Jiang
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Grace R Mazarura
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada.
| |
Collapse
|
5
|
Major JL, Bagchi RA, Pires da Silva J. Application of microRNA Database Mining in Biomarker Discovery and Identification of Therapeutic Targets for Complex Disease. Methods Protoc 2020; 4:mps4010005. [PMID: 33396619 PMCID: PMC7838776 DOI: 10.3390/mps4010005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/21/2020] [Accepted: 12/26/2020] [Indexed: 12/24/2022] Open
Abstract
Over the past two decades, it has become increasingly evident that microRNAs (miRNA) play a major role in human diseases such as cancer and cardiovascular diseases. Moreover, their easy detection in circulation has made them a tantalizing target for biomarkers of disease. This surge in interest has led to the accumulation of a vast amount of miRNA expression data, prediction tools, and repositories. We used the Human microRNA Disease Database (HMDD) to discover miRNAs which shared expression patterns in the related diseases of ischemia/reperfusion injury, coronary artery disease, stroke, and obesity as a model to identify miRNA candidates for biomarker and/or therapeutic intervention in complex human diseases. Our analysis identified a single miRNA, hsa-miR-21, which was casually linked to all four pathologies, and numerous others which have been detected in the circulation in more than one of the diseases. Target analysis revealed that hsa-miR-21 can regulate a number of genes related to inflammation and cell growth/death which are major underlying mechanisms of these related diseases. Our study demonstrates a model for researchers to use HMDD in combination with gene analysis tools to identify miRNAs which could serve as biomarkers and/or therapeutic targets of complex human diseases.
Collapse
|
6
|
Identifying the key regulators that promote cell-cycle activity in the hearts of early neonatal pigs after myocardial injury. PLoS One 2020; 15:e0232963. [PMID: 32730272 PMCID: PMC7392272 DOI: 10.1371/journal.pone.0232963] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/24/2020] [Indexed: 12/25/2022] Open
Abstract
Mammalian cardiomyocytes exit the cell cycle shortly after birth. As a result, an occurrence of coronary occlusion-induced myocardial infarction often results in heart failure, postinfarction LV dilatation, or death, and represents one of the most significant public health morbidities worldwide. Interestingly however, the hearts of neonatal pigs have been shown to regenerate following an acute myocardial infarction (MI) occuring on postnatal day 1 (P1); a recovery period which is accompanied by an increased expression of markers for cell-cycle activity, and suggests that early postnatal myocardial regeneration may be driven in part by the MI-induced proliferation of pre-existing cardiomyocytes. In this study, we identified signaling pathways known to regulate the cell cycle, and determined of these, the pathways persistently upregulated in response to MI injury. We identified five pathways (mitogen associated protein kinase [MAPK], Hippo, cyclic [cAMP], Janus kinase/signal transducers and activators of transcription [JAK-STAT], and Ras) which were comprehensively upregulated in cardiac tissues collected on day 7 (P7) and/or P28 of the P1 injury hearts. Several of the initiating master regulators (e.g., CSF1/CSF1R, TGFB, and NPPA) and terminal effector molecules (e.g., ATF4, FOS, RELA/B, ITGB2, CCND1/2/3, PIM1, RAF1, MTOR, NKF1B) in these pathways were persistently upregulated at day 7 through day 28, suggesting there exists at least some degree of regenerative activity up to 4 weeks following MI at P1. Our observations provide a list of key regulators to be examined in future studies targeting cell-cycle activity as an avenue for myocardial regeneration.
Collapse
|
7
|
Chen LC, Shibu MA, Liu CJ, Han CK, Ju DT, Chen PY, Viswanadha VP, Lai CH, Kuo WW, Huang CY. ERK1/2 mediates the lipopolysaccharide-induced upregulation of FGF-2, uPA, MMP-2, MMP-9 and cellular migration in cardiac fibroblasts. Chem Biol Interact 2019; 306:62-69. [PMID: 30980805 DOI: 10.1016/j.cbi.2019.04.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 03/08/2019] [Accepted: 04/08/2019] [Indexed: 12/31/2022]
Abstract
Myocardial fibrosis is a critical event during septic shock. Upregulation in the fibrosis signaling cascade proteins such as fibroblast growth factor (FGF), urokinase plasminogen activator (uPA), tissue plasminogen activator (tPA) and activation of matrix metalloproteinases (MMPs) are widely associated with the development of myocardial infarction, dilated cardiomyopathy, cardiac fibrosis and heart failure. However, evidences suggest that the common upstream mediators of fibrosis cascade play little role in cardiac fibrosis induced by LPS; further, it is unknown if LPS directly triggers the expressions and/or activity of FGF-2, uPA, tPA, MMP-2 and MMP-9 in cardiac fibroblasts. In the present study, we treated primary cultures of cardiac fibroblasts with LPS to explore whether LPS upregulates FGF-2, uPA, tPA, MMP-2, MMP-9 and enhance cellular migration. Further the precise molecular and cellular mechanisms behind these LPS induced responses were identified. Inhibition assays on MAPKs using U0126 (ERK1/2 inhibitor), SB203580 (p38 MAPK inhibitor), SP600125 (JNK1/2 inhibitor), CsA (calcineurin inhibitor) and QNZ (NFκB inhibitor) show that LPS-induced upregulation of FGF-2, uPA, MMP-2 and MMP-9 in cardiac fibroblasts was mediated through ERK1/2 signaling. Collectively, our results provide a link between LPS-induced cardiac dysfunction and ERK1/2 signaling pathway and thereby implies ERK1/2 as a possible target to regulate LPS induced upregulation of FGF-2, uPA, MMP-2, MMP-9 and cellular migration in cardiac fibroblasts.
Collapse
Affiliation(s)
- Liang-Chi Chen
- Department of Pathology, China Medical University Hospital, Taichung, Taiwan
| | - Marthandam Asokan Shibu
- Medical Research Center for Exosome and Mitochondria Related Diseases, China Medical University and Hospital, Taichung, Taiwan
| | - Chung-Jung Liu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chien-Kuo Han
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Da-Tong Ju
- Department of Neurological Surgery,Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Pei-Yu Chen
- Department of Pathology, China Medical University Hospital, Taichung, Taiwan
| | | | - Chao-Hung Lai
- Division of Cardiology, Department of Internal Medicine, Taichung Armed Force General Hospital, Taichung, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Department of Biotechnology, Asia University, Taichung, Taiwan; College of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan; Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.
| |
Collapse
|
8
|
Jain A, Anand-Srivastava MB. Natriuretic peptide receptor-C-mediated attenuation of vascular smooth muscle cell hypertrophy involves Gqα/PLCβ1 proteins and ROS-associated signaling. Pharmacol Res Perspect 2018; 6. [PMID: 29417757 PMCID: PMC5817836 DOI: 10.1002/prp2.375] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 10/04/2017] [Indexed: 11/23/2022] Open
Abstract
Hypertension is associated with vascular remodeling due to hyperproliferation and hypertrophy of vascular smooth muscle cells (VSMC). Recently, we showed the implication of enhanced expression of Gqα and PLCβ1 proteins in hypertrophy of VSMCs from 16‐week‐old spontaneously hypertensive rats (SHR). The aim of this study was to investigate whether C‐ANP4‐23, a natriuretic peptide receptor‐C (NPR‐C) ligand that was shown to inhibit vasoactive peptide‐induced enhanced protein synthesis in A10 VSMC could also attenuate hypertrophy of VSMC isolated from rat model of cardiac hypertrophy and to further explore the possible involvement of Gqα/PLCβ1 proteins and ROS‐mediated signaling in this effect. The protein synthesis and cell volume, markers of hypertrophy were significantly enhanced in VSMC from 16‐week‐old SHR compared with age‐matched WKY rats and C‐ANP4‐23 treatment attenuated both to WKY levels. In addition, C‐ANP4‐23 treatment also attenuated the enhanced expression of AT1 receptor, Gqα, PLCβ1, Nox4, and p47phox proteins, the enhanced activation of EGFR, PDGFR, IGF‐1R, enhanced phosphorylation of ERK1/2/AKT and c‐Src in VSMC from SHR. Furthermore, the enhanced levels of superoxide anion and NADPH oxidase activity exhibited by VSMC from SHR were also attenuated to control levels by C‐ANP4‐23 treatment. These results indicate that C‐ANP4‐23 via the activation of NPR‐C attenuates VSMC hypertrophy through decreasing the overexpression of Gqα/PLCβ1 proteins, enhanced oxidative stress, increased activation of growth factor receptors, and enhanced phosphorylation of MAPK/AKT signaling pathways. Thus, it can be suggested that C‐ANP4‐23 may be used as a therapeutic agent for the treatment of vascular complications associated with hypertension and atherosclerosis.
Collapse
Affiliation(s)
- Ashish Jain
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Québec, Canada
| | - Madhu B Anand-Srivastava
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Québec, Canada
| |
Collapse
|
9
|
Avivar-Valderas A, McEwen R, Taheri-Ghahfarokhi A, Carnevalli LS, Hardaker EL, Maresca M, Hudson K, Harrington EA, Cruzalegui F. Functional significance of co-occurring mutations in PIK3CA and MAP3K1 in breast cancer. Oncotarget 2018; 9:21444-21458. [PMID: 29765551 PMCID: PMC5940413 DOI: 10.18632/oncotarget.25118] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/22/2018] [Indexed: 12/30/2022] Open
Abstract
The PI3Kα signaling pathway is frequently hyper-activated in breast cancer (BrCa), as a result of mutations/amplifications in oncogenes (e.g. HER2), decreased function in tumor suppressors (e.g. PTEN) or activating mutations in key components of the pathway. In particular, activating mutations of PIK3CA (~45%) are frequently found in luminal A BrCa samples. Genomic studies have uncovered inactivating mutations in MAP3K1 (13-20%) and MAP2K4 (~8%), two upstream kinases of the JNK apoptotic pathway in luminal A BrCa samples. Further, simultaneous mutation of PIK3CA and MAP3K1 are found in ~11% of mutant PIK3CA tumors. How these two alterations may cooperate to elicit tumorigenesis and impact the sensitivity to PI3K and AKT inhibitors is currently unknown. Using CRISPR gene editing we have genetically disrupted MAP3K1 expression in mutant PIK3CA cell lines to specifically create in vitro models reflecting the mutational status of PIK3CA and MAP3K1 in BrCa patients. MAP3K1 deficient cell lines exhibited ~2.4-fold increased proliferation rate and decreased sensitivity to PI3Kα/δ(AZD8835) and AKT (AZD5363) inhibitors (~2.61 and ~5.23-fold IC50 increases, respectively) compared with parental control cell lines. In addition, mechanistic analysis revealed that MAP3K1 disruption enhances AKT phosphorylation and downstream signaling and reduces sensitivity to AZD5363-mediated pathway inhibition. This appears to be a consequence of deficient MAP3K1-JNK signaling increasing IRS1 stability and therefore promoting IRS1 binding to p85, resulting in enhanced PI3Kα activity. Using 3D-MCF10A-PI3KαH1047R models, we found that MAP3K1 depletion increased overall acinar volume and counteracted AZD5363-mediated reduction of acinar growth due to enhanced proliferation and reduced apoptosis. Furthermore, in vivo efficacy studies revealed that MAP3K1-deficient MCF7 tumors were less sensitive to AKT inhibitor treatment, compared with parental MCF7 tumors. Our study provides mechanistic and in vivo evidence indicating a role for MAP3K1 as a tumor suppressor gene at least in the context of PIK3CA-mutant backgrounds. Further, our work predicts that MAP3K1 mutational status may be considered as a predictive biomarker for efficacy in PI3K pathway inhibitor trials.
Collapse
Affiliation(s)
- Alvaro Avivar-Valderas
- Translational Science, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, UK.,Current address: TiGenix, Parque Tecnológico de Madrid, Tres Cantos, Madrid, Spain
| | - Robert McEwen
- Translational Science, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Amir Taheri-Ghahfarokhi
- Translational Genomics, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | | | | | - Marcello Maresca
- Translational Genomics, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Kevin Hudson
- Bioscience, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, UK.,Current address: 2TheNth, Adelphi Mill, Bollington, Macclesfield, UK
| | | | - Francisco Cruzalegui
- Translational Science, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, UK.,Current address: Pierre Fabre R&D Centre, Toulouse, France
| |
Collapse
|
10
|
Luckey SW, Haines CD, Konhilas JP, Luczak ED, Messmer-Kratzsch A, Leinwand LA. Cyclin D2 is a critical mediator of exercise-induced cardiac hypertrophy. Exp Biol Med (Maywood) 2017; 242:1820-1830. [PMID: 28901173 PMCID: PMC5714145 DOI: 10.1177/1535370217731503] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 08/23/2017] [Indexed: 01/19/2023] Open
Abstract
A number of signaling pathways underlying pathological cardiac hypertrophy have been identified. However, few studies have probed the functional significance of these signaling pathways in the context of exercise or physiological pathways. Exercise studies were performed on females from six different genetic mouse models that have been shown to exhibit alterations in pathological cardiac adaptation and hypertrophy. These include mice expressing constitutively active glycogen synthase kinase-3β (GSK-3βS9A), an inhibitor of CaMK II (AC3-I), both GSK-3βS9A and AC3-I (GSK-3βS9A/AC3-I), constitutively active Akt (myrAkt), mice deficient in MAPK/ERK kinase kinase-1 (MEKK1-/-), and mice deficient in cyclin D2 (cyclin D2-/-). Voluntary wheel running performance was similar to NTG littermates for five of the mouse lines. Exercise induced significant cardiac growth in all mouse models except the cyclin D2-/- mice. Cardiac function was not impacted in the cyclin D2-/- mice and studies using a phospho-antibody array identified six proteins with increased phosphorylation (greater than 150%) and nine proteins with decreased phosphorylation (greater than 33% decrease) in the hearts of exercised cyclin D2-/- mice compared to exercised NTG littermate controls. Our results demonstrate that unlike the other hypertrophic signaling molecules tested here, cyclin D2 is an important regulator of both pathologic and physiological hypertrophy. Impact statement This research is relevant as the hypertrophic signaling pathways tested here have only been characterized for their role in pathological hypertrophy, and not in the context of exercise or physiological hypertrophy. By using the same transgenic mouse lines utilized in previous studies, our findings provide a novel and important understanding for the role of these signaling pathways in physiological hypertrophy. We found that alterations in the signaling pathways tested here had no impact on exercise performance. Exercise induced cardiac growth in all of the transgenic mice except for the mice deficient in cyclin D2. In the cyclin D2 null mice, cardiac function was not impacted even though the hypertrophic response was blunted and a number of signaling pathways are differentially regulated by exercise. These data provide the field with an understanding that cyclin D2 is a key mediator of physiological hypertrophy.
Collapse
Affiliation(s)
- Stephen W Luckey
- Department of Molecular, Cellular and Developmental Biology and BioFrontiers Institute University of Colorado at Boulder, Boulder, CO 80309, USA
- Biology Department, Seattle University, Seattle, WA 98122, USA
| | - Chris D Haines
- Department of Molecular, Cellular and Developmental Biology and BioFrontiers Institute University of Colorado at Boulder, Boulder, CO 80309, USA
| | - John P Konhilas
- Department of Molecular, Cellular and Developmental Biology and BioFrontiers Institute University of Colorado at Boulder, Boulder, CO 80309, USA
- Sarver Molecular Cardiovascular Research Program, Department of Physiology, University of Arizona, Tucson, AZ 85724, USA
| | - Elizabeth D Luczak
- Department of Molecular, Cellular and Developmental Biology and BioFrontiers Institute University of Colorado at Boulder, Boulder, CO 80309, USA
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Antke Messmer-Kratzsch
- Department of Molecular, Cellular and Developmental Biology and BioFrontiers Institute University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Leslie A Leinwand
- Department of Molecular, Cellular and Developmental Biology and BioFrontiers Institute University of Colorado at Boulder, Boulder, CO 80309, USA
| |
Collapse
|
11
|
Wang Y, Wang S, Lei M, Boyett M, Tsui H, Liu W, Wang X. The p21-activated kinase 1 (Pak1) signalling pathway in cardiac disease: from mechanistic study to therapeutic exploration. Br J Pharmacol 2017; 175:1362-1374. [PMID: 28574147 DOI: 10.1111/bph.13872] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/12/2017] [Accepted: 05/17/2017] [Indexed: 01/01/2023] Open
Abstract
p21-activated kinase 1 (Pak1) is a member of the highly conserved family of serine/threonine protein kinases regulated by Ras-related small G-proteins, Cdc42/Rac1. It has been previously demonstrated to be involved in cardiac protection. Based on recent studies, this review provides an overview of the role of Pak1 in cardiac diseases including disrupted Ca2+ homoeostasis-related cardiac arrhythmias, adrenergic stress- and pressure overload-induced hypertrophy, and ischaemia/reperfusion injury. These findings demonstrate the important role of Pak1 mediated through the phosphorylation and transcriptional modification of hypertrophy and/or arrhythmia-related genes. This review also discusses the anti-arrhythmic and anti-hypertrophic, protective function of Pak1 and the beneficial effects of fingolimod (an FDA-approved sphingolipid drug), a Pak1 activator, and its ability to prevent arrhythmias and cardiac hypertrophy. These findings also highlight the therapeutic potential of Pak1 signalling in the treatment and prevention of cardiac diseases. LINKED ARTICLES This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc.
Collapse
Affiliation(s)
- Yanwen Wang
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Shunyao Wang
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Ming Lei
- Department of Pharmacology, The University of Oxford, Oxford, UK
| | - Mark Boyett
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Hoyee Tsui
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Wei Liu
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Xin Wang
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
12
|
Bashamboo A, McElreavey K. Mechanism of Sex Determination in Humans: Insights from Disorders of Sex Development. Sex Dev 2016; 10:313-325. [DOI: 10.1159/000452637] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2016] [Indexed: 12/13/2022] Open
|
13
|
Dual-specificity phosphatase 14 protects the heart from aortic banding-induced cardiac hypertrophy and dysfunction through inactivation of TAK1-P38MAPK/-JNK1/2 signaling pathway. Basic Res Cardiol 2016; 111:19. [PMID: 26891723 DOI: 10.1007/s00395-016-0536-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 02/02/2016] [Indexed: 10/22/2022]
Abstract
Dual-specificity phosphatase 14 (Dusp14), an important negative modulator of mitogen-activated protein kinase (MAPK) signaling pathways, has been implicated in inflammatory immune response, cancers, cell differentiation and proliferation. The role of Dusp14 in chronic pressure overload-induced cardiac hypertrophy has not been explored. Here we have shown that Dusp14-/- knockout mice and cardiac-specific Dusp14 transgenic mice were generated and subjected to aortic banding (AB) for 4 weeks. Our results demonstrated that genetic loss of Dusp14 significantly aggravated cardiac hypertrophy, fibrosis, ventricular dilation and dysfunction, whereas transgenic cardiac-specific Dusp14 overexpression significantly attenuated AB-induced cardiac dysfunction and remodeling. In vitro, adenoviral overexpression of constitutive Dusp14 blocked angiotensin II-induced hypertrophic growth of cardiomyocytes, while Dusp14 knockdown led to opposite effects. Mechanistically, excessive phosphorylation of TAK1, P38MAPK and JNK1/2 was evidenced in Dusp14-/- knockout mice post-AB and inactivation of TAK1-P38MAPK and -JNK1/2 signaling using TAK1 inhibitor 5Z-7-ox shares similar antihypertrophic effect as Dusp14 overexpression. Moreover, we show that Dusp14 directly interacted with TAK1. Results from present experiments indicate that Dusp14 protects the heart from AB-induced cardiac hypertrophy and dysfunction possibly through inactivation of TAK1-P38MAPK/-JNK1/2 signaling pathway. Future studies are warranted to test the feasibility of overexpressing Dusp14 as a therapeutic strategy to attenuate cardiac hypertrophy and failure.
Collapse
|
14
|
Yousaf R, Meng Q, Hufnagel RB, Xia Y, Puligilla C, Ahmed ZM, Riazuddin S. MAP3K1 function is essential for cytoarchitecture of the mouse organ of Corti and survival of auditory hair cells. Dis Model Mech 2015; 8:1543-53. [PMID: 26496772 PMCID: PMC4728323 DOI: 10.1242/dmm.023077] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/16/2015] [Indexed: 12/11/2022] Open
Abstract
MAP3K1 is a serine/threonine kinase that is activated by a diverse set of stimuli and exerts its effect through various downstream effecter molecules, including JNK, ERK1/2 and p38. In humans, mutant alleles of MAP3K1 are associated with 46,XY sex reversal. Until recently, the only phenotype observed in Map3k1tm1Yxia mutant mice was open eyelids at birth. Here, we report that homozygous Map3k1tm1Yxia mice have early-onset profound hearing loss accompanied by the progressive degeneration of cochlear outer hair cells. In the mouse inner ear, MAP3K1 has punctate localization at the apical surface of the supporting cells in close proximity to basal bodies. Although the cytoarchitecture, neuronal wiring and synaptic junctions in the organ of Corti are grossly preserved, Map3k1tm1Yxia mutant mice have supernumerary functional outer hair cells (OHCs) and Deiters' cells. Loss of MAP3K1 function resulted in the downregulation of Fgfr3, Fgf8, Fgf10 and Atf3 expression in the inner ear. Fgfr3, Fgf8 and Fgf10 have a role in induction of the otic placode or in otic epithelium development in mice, and their functional deficits cause defects in cochlear morphogenesis and hearing loss. Our studies suggest that MAP3K1 has an essential role in the regulation of these key cochlear morphogenesis genes. Collectively, our data highlight the crucial role of MAP3K1 in the development and function of the mouse inner ear and hearing. Summary:Map3k1 mutant mice exhibit early-onset profound hearing loss and supernumerary outer hair cells, along with dysregulation of the FGF signaling pathway, accentuating its function in otic epithelium development and morphogenesis.
Collapse
Affiliation(s)
- Rizwan Yousaf
- Department of Otorhinolaryngology Head & Neck Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Qinghang Meng
- Department of Environmental Health, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA
| | - Robert B Hufnagel
- Divisions of Pediatric Ophthalmology and Human Genetics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Ying Xia
- Department of Environmental Health, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA
| | - Chandrakala Puligilla
- Department of Pathology & Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Zubair M Ahmed
- Department of Otorhinolaryngology Head & Neck Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Saima Riazuddin
- Department of Otorhinolaryngology Head & Neck Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| |
Collapse
|
15
|
Suddason T, Gallagher E. A RING to rule them all? Insights into the Map3k1 PHD motif provide a new mechanistic understanding into the diverse roles of Map3k1. Cell Death Differ 2015; 22:540-8. [PMID: 25613373 PMCID: PMC4356348 DOI: 10.1038/cdd.2014.239] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 12/15/2014] [Accepted: 12/17/2014] [Indexed: 12/26/2022] Open
Abstract
Despite the sizable number of components that comprise Mapk cascades, Map3k1 is the only element that contains both a kinase domain and a plant homeodomain (PHD) motif, allowing Map3k1 to regulate the protein phosphorylation and ubiquitin proteasome systems. As such, Map3k1 has complex roles in the regulation of cell death, survival, migration and differentiation. Numerous mouse and human genetic analyses have demonstrated that Map3k1 is of critical importance for the immune system, cardiac tissue, testis, wound healing, tumorigenesis and cancer. Recent gene knockin of Map3k1 to mutate the E2 binding site within the Map3k1 PHD motif and high throughput ubiquitin protein array screening for Map3k1 PHD motif substrates provide critical novel insights into Map3k1 PHD motif signal transduction and bring a brand-new understanding to Map3k1 signaling in mammalian biology.
Collapse
Affiliation(s)
- T Suddason
- Department of Medicine, Imperial College London, Du Cane Road, London, UK
| | - E Gallagher
- Department of Medicine, Imperial College London, Du Cane Road, London, UK
| |
Collapse
|
16
|
Liu Y, Huang H, Zhang Y, Zhu XY, Zhang R, Guan LH, Tang Q, Jiang H, Huang C. Regulator of G protein signaling 3 protects against cardiac hypertrophy in mice. J Cell Biochem 2014; 115:977-86. [PMID: 24375609 DOI: 10.1002/jcb.24741] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 12/06/2013] [Indexed: 11/10/2022]
Abstract
Regulator of G protein signaling 3 (RGS3) is a negative regulator of G protein-mediated signaling. RGS3 has previously been shown to be expressed among various cell types within the mature heart. Basic and clinical studies have reported abnormal expressions of RGS3 in hypertrophic hearts and in the failing myocardium. However, the role of RGS3 in cardiac remodeling remains unclear. In this study, we investigated the effect of cardiac overexpression of human RGS3 on cardiac hypertrophy induced by aortic banding (AB) in RGS3 transgenic mice and wild-type littermates. The extent of cardiac hypertrophy was evaluated by echocardiography as well as pathological and molecular analyses of heart samples. RGS3 overexpression in the heart markedly reduced the extent of cardiac hypertrophy, fibrosis, and left ventricular dysfunction in response to AB. These beneficial effects were associated with the inhibition of MEK-ERK1/2 signaling. In vitro studies performed in cultured neonatal rat cardiomyocytes confirmed that RGS3 overexpression inhibits hypertrophic growth induced by angiotensin II, which was associated with the attenuation of MEK-ERK1/2 signaling. Therefore, cardiac overexpression of RGS3 inhibits maladaptive hypertrophy and fibrosis and improves cardiac function by blocking MEK-ERK1/2 signaling.
Collapse
Affiliation(s)
- Yu Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Charlaftis N, Suddason T, Wu X, Anwar S, Karin M, Gallagher E. The MEKK1 PHD ubiquitinates TAB1 to activate MAPKs in response to cytokines. EMBO J 2014; 33:2581-96. [PMID: 25260751 PMCID: PMC4282369 DOI: 10.15252/embj.201488351] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Unlike the other MAP3Ks, MEKK1 (encoded by Map3k1) contains a PHD motif. To understand the role of this motif, we have created a knockin mutant of mouse Map3k1 (Map3k1mPHD) with an inactive PHD motif. Map3k1mPHD ES cells demonstrate that the MEKK1 PHD controls p38 and JNK activation during TGF-β, EGF and microtubule disruption signalling, but does not affect MAPK responses to hyperosmotic stress. Protein microarray profiling identified the adaptor TAB1 as a PHD substrate, and TGF-β- or EGF-stimulated Map3k1mPHD ES cells exhibit defective non-canonical ubiquitination of MEKK1 and TAB1. The MEKK1 PHD binds and mediates the transfer of Lys63-linked poly-Ub, using the conjugating enzyme UBE2N, onto TAB1 to regulate TAK1 and MAPK activation by TGF-β and EGF. Both the MEKK1 PHD and TAB1 are critical for ES-cell differentiation and tumourigenesis. Map3k1mPHD/+ mice exhibit aberrant cardiac tissue, B-cell development, testis and T-cell signalling.
Collapse
Affiliation(s)
| | - Tesha Suddason
- Department of Medicine, Imperial College London, London, UK
| | - Xuefeng Wu
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego School of Medicine, San Diego, CA, USA
| | - Saba Anwar
- Department of Medicine, Imperial College London, London, UK
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego School of Medicine, San Diego, CA, USA
| | - Ewen Gallagher
- Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
18
|
Li L, Chen W, Zhu Y, Wang X, Jiang DS, Huang F, Wang L, Xiang F, Qin W, Wang Q, Zhang R, Zhu X, Li H, Chen X. Caspase recruitment domain 6 protects against cardiac hypertrophy in response to pressure overload. Hypertension 2014; 64:94-102. [PMID: 24777975 DOI: 10.1161/hypertensionaha.113.03021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/30/2014] [Indexed: 01/24/2023]
Abstract
Caspase recruitment domain 6 (CARD6), a crucial member of the CARD family, was initially shown to be involved in the immune system and oncogenesis. However, the role of CARD6 in chronic pressure overload-induced cardiac hypertrophy remains unexplored. To evaluate the impact of CARD6 on pathological cardiac hypertrophy, cardiac-specific CARD6 knockout mice and transgenic mice with cardiac-specific CARD6 overexpression were generated and subjected to aortic banding for 4 weeks. Our results demonstrated that CARD6-deficient mice aggravated aortic banding-triggered cardiac hypertrophy, ventricular dilation, fibrosis, and dysfunction, as measured by echocardiography, immunostaining, and molecular/biochemical analyses. Conversely, CARD6-overexpressing mice exhibited an attenuated hypertrophic response to chronic pressure overload. Similarly, using cultured neonatal rat cardiomyocytes, we found that adenovirus vector-driven overexpression of CARD6 dramatically limited angiotensin II-induced myocyte hypertrophy, whereas knockdown of CARD6 by AdshCARD6 (adenoviral short hairpin CARD6) exhibited the opposite phenotypes. Furthermore, analysis of the signaling events in vitro and in vivo revealed that CARD6-mediated protection against cardiac hypertrophy was attributed to the interruption of mitogen-activated protein kinase kinase (MEK) kinase-1-dependent MEK-extracellular signal-regulated protein kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase 1/2 (JNK1/2) activation. Altogether, these data indicated that CARD6 serves as a novel cardioprotective factor via negative regulation of MEK kinase-1-dependent MEK-ERK1/2 and JNK1/2 signaling. Thus, our study suggests that CARD6 may be a novel target for the treatment of pathological cardiac hypertrophy and failure.
Collapse
Affiliation(s)
- Liangpeng Li
- From the Department of Thoracic and Cardiovascular Surgery, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, China (L.L., W.C., Y.Z., X.W., F.H., L.W., F.X., W.Q., X.C.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., Q.W., R.Z., X.Z., H.L.); and Cardiovascular Research Institute, Wuhan University, Wuhan, China (D.-S.J., Q.W., R.Z., X.Z., H.L.)
| | - Wen Chen
- From the Department of Thoracic and Cardiovascular Surgery, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, China (L.L., W.C., Y.Z., X.W., F.H., L.W., F.X., W.Q., X.C.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., Q.W., R.Z., X.Z., H.L.); and Cardiovascular Research Institute, Wuhan University, Wuhan, China (D.-S.J., Q.W., R.Z., X.Z., H.L.)
| | - Yifan Zhu
- From the Department of Thoracic and Cardiovascular Surgery, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, China (L.L., W.C., Y.Z., X.W., F.H., L.W., F.X., W.Q., X.C.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., Q.W., R.Z., X.Z., H.L.); and Cardiovascular Research Institute, Wuhan University, Wuhan, China (D.-S.J., Q.W., R.Z., X.Z., H.L.)
| | - Xiaodi Wang
- From the Department of Thoracic and Cardiovascular Surgery, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, China (L.L., W.C., Y.Z., X.W., F.H., L.W., F.X., W.Q., X.C.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., Q.W., R.Z., X.Z., H.L.); and Cardiovascular Research Institute, Wuhan University, Wuhan, China (D.-S.J., Q.W., R.Z., X.Z., H.L.)
| | - Ding-Sheng Jiang
- From the Department of Thoracic and Cardiovascular Surgery, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, China (L.L., W.C., Y.Z., X.W., F.H., L.W., F.X., W.Q., X.C.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., Q.W., R.Z., X.Z., H.L.); and Cardiovascular Research Institute, Wuhan University, Wuhan, China (D.-S.J., Q.W., R.Z., X.Z., H.L.)
| | - Fuhua Huang
- From the Department of Thoracic and Cardiovascular Surgery, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, China (L.L., W.C., Y.Z., X.W., F.H., L.W., F.X., W.Q., X.C.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., Q.W., R.Z., X.Z., H.L.); and Cardiovascular Research Institute, Wuhan University, Wuhan, China (D.-S.J., Q.W., R.Z., X.Z., H.L.)
| | - Liming Wang
- From the Department of Thoracic and Cardiovascular Surgery, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, China (L.L., W.C., Y.Z., X.W., F.H., L.W., F.X., W.Q., X.C.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., Q.W., R.Z., X.Z., H.L.); and Cardiovascular Research Institute, Wuhan University, Wuhan, China (D.-S.J., Q.W., R.Z., X.Z., H.L.)
| | - Fei Xiang
- From the Department of Thoracic and Cardiovascular Surgery, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, China (L.L., W.C., Y.Z., X.W., F.H., L.W., F.X., W.Q., X.C.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., Q.W., R.Z., X.Z., H.L.); and Cardiovascular Research Institute, Wuhan University, Wuhan, China (D.-S.J., Q.W., R.Z., X.Z., H.L.)
| | - Wei Qin
- From the Department of Thoracic and Cardiovascular Surgery, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, China (L.L., W.C., Y.Z., X.W., F.H., L.W., F.X., W.Q., X.C.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., Q.W., R.Z., X.Z., H.L.); and Cardiovascular Research Institute, Wuhan University, Wuhan, China (D.-S.J., Q.W., R.Z., X.Z., H.L.)
| | - Qiang Wang
- From the Department of Thoracic and Cardiovascular Surgery, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, China (L.L., W.C., Y.Z., X.W., F.H., L.W., F.X., W.Q., X.C.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., Q.W., R.Z., X.Z., H.L.); and Cardiovascular Research Institute, Wuhan University, Wuhan, China (D.-S.J., Q.W., R.Z., X.Z., H.L.)
| | - Rui Zhang
- From the Department of Thoracic and Cardiovascular Surgery, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, China (L.L., W.C., Y.Z., X.W., F.H., L.W., F.X., W.Q., X.C.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., Q.W., R.Z., X.Z., H.L.); and Cardiovascular Research Institute, Wuhan University, Wuhan, China (D.-S.J., Q.W., R.Z., X.Z., H.L.)
| | - Xueyong Zhu
- From the Department of Thoracic and Cardiovascular Surgery, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, China (L.L., W.C., Y.Z., X.W., F.H., L.W., F.X., W.Q., X.C.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., Q.W., R.Z., X.Z., H.L.); and Cardiovascular Research Institute, Wuhan University, Wuhan, China (D.-S.J., Q.W., R.Z., X.Z., H.L.)
| | - Hongliang Li
- From the Department of Thoracic and Cardiovascular Surgery, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, China (L.L., W.C., Y.Z., X.W., F.H., L.W., F.X., W.Q., X.C.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., Q.W., R.Z., X.Z., H.L.); and Cardiovascular Research Institute, Wuhan University, Wuhan, China (D.-S.J., Q.W., R.Z., X.Z., H.L.)
| | - Xin Chen
- From the Department of Thoracic and Cardiovascular Surgery, Nanjing Hospital Affiliated to Nanjing Medical University, Nanjing, China (L.L., W.C., Y.Z., X.W., F.H., L.W., F.X., W.Q., X.C.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., Q.W., R.Z., X.Z., H.L.); and Cardiovascular Research Institute, Wuhan University, Wuhan, China (D.-S.J., Q.W., R.Z., X.Z., H.L.).
| |
Collapse
|
19
|
Sánchez-Fernández G, Cabezudo S, García-Hoz C, Benincá C, Aragay AM, Mayor F, Ribas C. Gαq signalling: the new and the old. Cell Signal 2014; 26:833-48. [PMID: 24440667 DOI: 10.1016/j.cellsig.2014.01.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/09/2014] [Indexed: 01/25/2023]
Abstract
In the last few years the interactome of Gαq has expanded considerably, contributing to improve our understanding of the cellular and physiological events controlled by this G alpha subunit. The availability of high-resolution crystal structures has led the identification of an effector-binding region within the surface of Gαq that is able to recognise a variety of effector proteins. Consequently, it has been possible to ascribe different Gαq functions to specific cellular players and to identify important processes that are triggered independently of the canonical activation of phospholipase Cβ (PLCβ), the first identified Gαq effector. Novel effectors include p63RhoGEF, that provides a link between G protein-coupled receptors and RhoA activation, phosphatidylinositol 3-kinase (PI3K), implicated in the regulation of the Akt pathway, or the cold-activated TRPM8 channel, which is directly inhibited upon Gαq binding. Recently, the activation of ERK5 MAPK by Gq-coupled receptors has also been described as a novel PLCβ-independent signalling axis that relies upon the interaction between this G protein and two novel effectors (PKCζ and MEK5). Additionally, the association of Gαq with different regulatory proteins can modulate its effector coupling ability and, therefore, its signalling potential. Regulators include accessory proteins that facilitate effector activation or, alternatively, inhibitory proteins that downregulate effector binding or promote signal termination. Moreover, Gαq is known to interact with several components of the cytoskeleton as well as with important organisers of membrane microdomains, which suggests that efficient signalling complexes might be confined to specific subcellular environments. Overall, the complex interaction network of Gαq underlies an ever-expanding functional diversity that puts forward this G alpha subunit as a major player in the control of physiological functions and in the development of different pathological situations.
Collapse
Affiliation(s)
- Guzmán Sánchez-Fernández
- Departamento de Biología Molecular and Centro de Biologia Molecular "Severo Ochoa", CSIC-UAM, Universidad Autónoma de Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Sofía Cabezudo
- Departamento de Biología Molecular and Centro de Biologia Molecular "Severo Ochoa", CSIC-UAM, Universidad Autónoma de Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Carlota García-Hoz
- Departamento de Biología Molecular and Centro de Biologia Molecular "Severo Ochoa", CSIC-UAM, Universidad Autónoma de Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | | | - Anna M Aragay
- Department of Cell Biology, Molecular Biology Institute of Barcelona, Spain
| | - Federico Mayor
- Departamento de Biología Molecular and Centro de Biologia Molecular "Severo Ochoa", CSIC-UAM, Universidad Autónoma de Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Catalina Ribas
- Departamento de Biología Molecular and Centro de Biologia Molecular "Severo Ochoa", CSIC-UAM, Universidad Autónoma de Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, Madrid, Spain.
| |
Collapse
|
20
|
van Berlo JH, Maillet M, Molkentin JD. Signaling effectors underlying pathologic growth and remodeling of the heart. J Clin Invest 2013; 123:37-45. [PMID: 23281408 DOI: 10.1172/jci62839] [Citation(s) in RCA: 345] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cardiovascular disease is the number one cause of mortality in the Western world. The heart responds to many cardiopathological conditions with hypertrophic growth by enlarging individual myocytes to augment cardiac pump function and decrease ventricular wall tension. Initially, such cardiac hypertrophic growth is often compensatory, but as time progresses these changes become maladaptive. Cardiac hypertrophy is the strongest predictor for the development of heart failure, arrhythmia, and sudden death. Here we discuss therapeutic avenues emerging from molecular and genetic studies of cardiovascular disease in animal models. The majority of these are based on intracellular signaling pathways considered central to pathologic cardiac remodeling and hypertrophy, which then leads to heart failure. We focus our discussion on selected therapeutic targets that have more recently emerged and have a tangible translational potential given the available pharmacologic agents that could be readily evaluated in human clinical trials.
Collapse
Affiliation(s)
- Jop H van Berlo
- Department of Pediatrics, University of Cincinnati, Cincinnati Children’s Hospital Medical Center, Howard Hughes Medical Institute, Cincinnati, Ohio 45229-3039, USA
| | | | | |
Collapse
|
21
|
Jin C, Chen J, Meng Q, Carreira V, Tam NNC, Geh E, Karyala S, Ho SM, Zhou X, Medvedovic M, Xia Y. Deciphering gene expression program of MAP3K1 in mouse eyelid morphogenesis. Dev Biol 2012. [PMID: 23201579 DOI: 10.1016/j.ydbio.2012.11.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Embryonic eyelid closure involves forward movement and ultimate fusion of the upper and lower eyelids, an essential step of mammalian ocular surface development. Although its underlying mechanism of action is not fully understood, a functional mitogen-activated protein kinase kinase kinase 1 (MAP3K1) is required for eyelid closure. Here we investigate the molecular signatures of MAP3K1 in eyelid morphogenesis. At mouse gestational day E15.5, the developmental stage immediately prior to eyelid closure, MAP3K1 expression is predominant in the eyelid leading edge (LE) and the inner eyelid (IE) epithelium. We used laser capture microdissection (LCM) to obtain highly enriched LE and IE cells from wild type and MAP3K1-deficient fetuses and analyzed genome-wide expression profiles. The gene expression data led to the identification of three distinct developmental features of MAP3K1. First, MAP3K1 modulated Wnt and Sonic hedgehog signals, actin reorganization, and proliferation only in LE but not in IE epithelium, illustrating the temporal-spatial specificity of MAP3K1 in embryogenesis. Second, MAP3K1 potentiated AP-2α expression and SRF and AP-1 activity, but its target genes were enriched for binding motifs of AP-2α and SRF, and not AP-1, suggesting the existence of novel MAP3K1-AP-2α/SRF modules in gene regulation. Third, MAP3K1 displayed variable effects on expression of lineage specific genes in the LE and IE epithelium, revealing potential roles of MAP3K1 in differentiation and lineage specification. Using LCM and expression array, our studies have uncovered novel molecular signatures of MAP3K1 in embryonic eyelid closure.
Collapse
Affiliation(s)
- Chang Jin
- Department of Environmental Health, University of Cincinnati College of Medicine, 3223 Eden Avenue, Kettering Laboratory, Suite 410, P.O. Box 670056, Cincinnati, OH 45267-0056, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Benign and malignant fibroproliferative disorders (FPDs) include idiopathic pulmonary fibrosis, hepatic cirrhosis, myelofibrosis, systemic sclerosis, Dupuytren's contracture, hypertrophic scars, and keloids. They are characterized by excessive connective tissue accumulation and slow but continuous tissue contraction that lead to progressive deterioration in the normal structure and function of affected organs. In recent years, research in diverse fields has increasingly highlighted the potential role of mechanobiology in the molecular mechanisms of fibroproliferation. Mechanobiology, the heart of which is mechanotransduction, is the process whereby cells sense mechanical forces and transduce them, thereby changing the intracellular biochemistry and gene expression. Understanding mechanosignaling may provide new insights into the convergent roles played by interrelated molecules and overlapping signaling pathways during the inflammatory, proliferative, and fibrotic cellular activities that are the hallmarks of fibroproliferation. The main cellular players in FPDs are fibroblasts and myofibroblasts. Consequently, this article discusses integrins and the roles they play in cellular-extracellular matrix interactions. Also described are the signaling pathways that are known to participate in mechanosignaling: these include the transforming growth factor-β/Smad, mitogen-activated protein kinase, RhoA/ROCK, Wnt/β-catenin, and tumor necrosis factor-α/nuclear factor kappa-light-chain-enhancer of activated B cells pathways. Also outlined is the progress in our understanding of the cellular-extracellular matrix interactions that are associated with fibroproliferative mechanosignaling through matricellular proteins. The tensegrity and tensional homeostasis models are also discussed. A better understanding of the mechanosignaling pathways in the FPD microenvironment will almost certainly lead to the development of novel interventions that can prevent, reduce, or even reverse FPD formation and/or progression.
Collapse
Affiliation(s)
- Chenyu Huang
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo, Japan
| | | |
Collapse
|
23
|
Vainio L, Perjes A, Ryti N, Magga J, Alakoski T, Serpi R, Kaikkonen L, Piuhola J, Szokodi I, Ruskoaho H, Kerkelä R. Neuronostatin, a novel peptide encoded by somatostatin gene, regulates cardiac contractile function and cardiomyocyte survival. J Biol Chem 2011; 287:4572-80. [PMID: 22170057 DOI: 10.1074/jbc.m111.289215] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuronostatin, a recently discovered peptide encoded by somatostatin gene, is involved in regulation of neuronal function, blood pressure, food intake, and drinking behavior. However, the biological effects of neuronostatin on cardiac myocytes are not known, and the intracellular signaling mechanisms induced by neuronostatin remain unidentified. We analyzed the effect of neuronostatin in isolated perfused rat hearts and in cultured primary cardiomyocytes. Neuronostatin infusion alone had no effect on left ventricular (LV) contractile function or on isoprenaline- or preload-induced increase in cardiac contractility. However, infusion of neuronostatin significantly decreased the positive inotropic response to endothelin-1 (ET-1). This was associated with an increase in phosphorylation of p38 mitogen-activated protein kinase and c-Jun N-terminal kinase (JNK). Treatment of both neonatal and adult cardiomyocytes with neuronostatin resulted in reduced cardiomyocyte viability. Inhibition of JNK further increased the neuronostatin-induced cell death. We conclude that neuronostatin regulates cardiac contractile function and cardiomyocyte survival. Receptors for neuronostatin need to be identified to further characterize the biological functions of the peptide.
Collapse
Affiliation(s)
- Laura Vainio
- Dept. of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, P.O. Box 5000, FIN-90014 Oulu, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Gürgen D, Hegner B, Kusch A, Catar R, Chaykovska L, Hoff U, Gross V, Slowinski T, da Costa Goncalves AC, Kintscher U, Gustafsson JÅ, Luft FC, Dragun D. Estrogen receptor-beta signals left ventricular hypertrophy sex differences in normotensive deoxycorticosterone acetate-salt mice. Hypertension 2011; 57:648-54. [PMID: 21300662 DOI: 10.1161/hypertensionaha.110.166157] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We found earlier that deoxycorticosterone acetate-salt treatment causes blood pressure-independent left ventricular hypertrophy, but only in male mice. To test the hypothesis that the estrogen receptor-β (ERβ) protects the females from left ventricular hypertrophy, we treated male and female ERβ-deficient (ERβ(-/-)) mice and their male and female littermates (wild-type [WT]) with deoxycorticosterone acetate-salt and made them telemetrically normotensive with hydralazine. WT males had increased (+16%) heart weight/tibia length ratios compared with WT females (+7%) at 6 weeks. In ERβ(-/-) mice, this situation was reversed. Female WT mice had the greatest heart weight/tibia length ratio increases of all of the groups (+23%), even greater than ERβ(-/-) males (+10%). Echocardiography revealed concentric left ventricular hypertrophy in male WT mice, whereas ERβ(-/-) females developed dilative left ventricular hypertrophy. The hypertrophic response in female ERβ(-/-) mice was accompanied by the highest degree of collagen deposition, indicating maladaptive remodeling. ERβ(+/+) females showed robust protective p38 and extracellular signal-regulated kinase 1/2 signaling relationships compared with other groups. Calcineurin Aβ expression and its positive regulator myocyte-enriched calcineurin-interacting protein 1 were increased in deoxycorticosterone acetate-salt female ERβ(-/-) mice, yet lower than in WT males. Endothelin increased murine cardiomyocyte hypertrophy in vitro, which could be blocked by estradiol and an ERβ agonist. We conclude that a functional ERβ is essential for inducing adaptive p38 and extracellular signal-regulated kinase signaling, while reducing maladaptive calcineurin signaling in normotensive deoxycorticosterone acetate female mice. Our findings address the possibility of sex-specific cardiovascular therapies.
Collapse
Affiliation(s)
- Dennis Gürgen
- Department of Nephrology and Intensive Care Medicine Campus Virchow-Klinikum, Center forCardiovascular Research Medical Faculty, Charite´ Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Rose BA, Force T, Wang Y. Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale. Physiol Rev 2010; 90:1507-46. [PMID: 20959622 PMCID: PMC3808831 DOI: 10.1152/physrev.00054.2009] [Citation(s) in RCA: 574] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Among the myriad of intracellular signaling networks that govern the cardiac development and pathogenesis, mitogen-activated protein kinases (MAPKs) are prominent players that have been the focus of extensive investigations in the past decades. The four best characterized MAPK subfamilies, ERK1/2, JNK, p38, and ERK5, are the targets of pharmacological and genetic manipulations to uncover their roles in cardiac development, function, and diseases. However, information reported in the literature from these efforts has not yet resulted in a clear view about the roles of specific MAPK pathways in heart. Rather, controversies from contradictive results have led to a perception that MAPKs are ambiguous characters in heart with both protective and detrimental effects. The primary object of this review is to provide a comprehensive overview of the current progress, in an effort to highlight the areas where consensus is established verses the ones where controversy remains. MAPKs in cardiac development, cardiac hypertrophy, ischemia/reperfusion injury, and pathological remodeling are the main focuses of this review as these represent the most critical issues for evaluating MAPKs as viable targets of therapeutic development. The studies presented in this review will help to reveal the major challenges in the field and the limitations of current approaches and point to a critical need in future studies to gain better understanding of the fundamental mechanisms of MAPK function and regulation in the heart.
Collapse
Affiliation(s)
- Beth A Rose
- Departments of Anesthesiology, Physiology, and Medicine, David Geffen School of Medicine, Molecular Biology, Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
26
|
Fu HY, Okada KI, Liao Y, Tsukamoto O, Isomura T, Asai M, Sawada T, Okuda K, Asano Y, Sanada S, Asanuma H, Asakura M, Takashima S, Komuro I, Kitakaze M, Minamino T. Ablation of C/EBP homologous protein attenuates endoplasmic reticulum-mediated apoptosis and cardiac dysfunction induced by pressure overload. Circulation 2010; 122:361-9. [PMID: 20625112 DOI: 10.1161/circulationaha.109.917914] [Citation(s) in RCA: 227] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Apoptosis may contribute to the development of heart failure, but the role of apoptotic signaling initiated by the endoplasmic reticulum in this condition has not been well clarified. METHODS AND RESULTS In myocardial samples from patients with heart failure, quantitative real-time polymerase chain reaction revealed an increase in messenger RNA for C/EBP homologous protein (CHOP), a transcriptional factor that mediates endoplasmic reticulum-initiated apoptotic cell death. We performed transverse aortic constriction or sham operation on wild-type (WT) and CHOP-deficient mice. The CHOP-deficient mice showed less cardiac hypertrophy, fibrosis, and cardiac dysfunction compared with WT mice at 4 weeks after transverse aortic constriction, although the contractility of isolated cardiomyocytes from CHOP-deficient mice was not significantly different from that in the WT mice. In the hearts of CHOP-deficient mice, phosphorylation of eukaryotic translation initiation factor 2alpha, which may reduce protein translation, was enhanced compared with WT mice. In the hearts of WT mice, CHOP-increased apoptotic cell death with activation of caspase-3 was observed at 4 weeks after transverse aortic constriction. In contrast, CHOP-deficient mice had less apoptotic cell death and lower caspase-3 activation at 4 weeks after transverse aortic constriction. Furthermore, the Bcl2/Bax ratio was decreased in WT mice, whereas this change was significantly blunted in CHOP-deficient mice. Real-time polymerase chain reaction microarray analysis revealed that CHOP could regulate several Bcl2 family members in failing hearts. CONCLUSIONS We propose the novel concept that CHOP, which may modify protein translation and mediate endoplasmic reticulum-initiated apoptotic cell death, contributes to development of cardiac hypertrophy and failure induced by pressure overload.
Collapse
Affiliation(s)
- Hai Ying Fu
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
MEKK1 is a ubiquitously expressed mitogen activated protein kinase that is involved in tissue remodeling in a variety of settings including carotid artery blood flow cessation, wound healing, and breast adenocarcinoma intravasation. Here, we have tested the function of MEKK1 in genetic hypertrophic cardiomyopathy (HCM). MEKK1 was genetically deleted in C57Bl6/J mice expressing a mutant alpha-myosin heavy chain (HCM-MEKK1(-/-)). The absence of MEKK1 in HCM resulted in a more pronounced hypertrophy when compared to HCM mice with the MEKK1 gene intact without further increases in atrial natriuretic factor and beta-myosin heavy chain (MyHC) expression and fibrosis. Since MEKK1 is required for the induction of several tissue proteases, we tested the hypothesis that cardiac enlargement of HCM- MEKK1(-/-) mice was due to altered expression of urokinase-type plasminogen activator (uPA), JunB, matrix-metalloproteinase (MMP), and tissue inhibitors of MMPs (TIMPs). Because of its role in preventing apoptosis, we also tested the loss of MEKK1 on apoptotic mediators Bcl-2, cytochrome C, caspase-9, and caspase-3. uPA expression was decreased while JunB, MMP-9, caspase-9, and caspase-3 activities were elevated in HCM- MEKK1(-/-) hearts when compared to MEKK1(-/-), wild-type (WT), and HCM mice. Bcl-2 and Cyt C expression was elevated only in HCM mice. We conclude that the absence of MEKK1 induces a more pronounced cardiac hypertrophy to HCM through altered expression of proteases implicated in cardiac remodeling and increased apoptosis.
Collapse
Affiliation(s)
- John P Konhilas
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA
| | | | | | | | | |
Collapse
|
28
|
Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacol Ther 2010; 128:191-227. [PMID: 20438756 DOI: 10.1016/j.pharmthera.2010.04.005] [Citation(s) in RCA: 642] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cardiac hypertrophy can be defined as an increase in heart mass. Pathological cardiac hypertrophy (heart growth that occurs in settings of disease, e.g. hypertension) is a key risk factor for heart failure. Pathological hypertrophy is associated with increased interstitial fibrosis, cell death and cardiac dysfunction. In contrast, physiological cardiac hypertrophy (heart growth that occurs in response to chronic exercise training, i.e. the 'athlete's heart') is reversible and is characterized by normal cardiac morphology (i.e. no fibrosis or apoptosis) and normal or enhanced cardiac function. Given that there are clear functional, structural, metabolic and molecular differences between pathological and physiological hypertrophy, a key question in cardiovascular medicine is whether mechanisms responsible for enhancing function of the athlete's heart can be exploited to benefit patients with pathological hypertrophy and heart failure. This review summarizes key experimental findings that have contributed to our understanding of pathological and physiological heart growth. In particular, we focus on signaling pathways that play a causal role in the development of pathological and physiological hypertrophy. We discuss molecular mechanisms associated with features of cardiac hypertrophy, including protein synthesis, sarcomeric organization, fibrosis, cell death and energy metabolism and provide a summary of profiling studies that have examined genes, microRNAs and proteins that are differentially expressed in models of pathological and physiological hypertrophy. How gender and sex hormones affect cardiac hypertrophy is also discussed. Finally, we explore how knowledge of molecular mechanisms underlying pathological and physiological hypertrophy may influence therapeutic strategies for the treatment of cardiovascular disease and heart failure.
Collapse
|
29
|
Barreto F, Rezende D, Scaramello C, Silva C, Cunha V, Caricati-Neto A, Jurkiewicz A, Noël F, Quintas L. Lack of evidence for regulation of cardiac P-type ATPases and MAP kinases in transgenic mice with cardiac-specific overexpression of constitutively active α1B-adrenoceptors. Braz J Med Biol Res 2010; 43:500-5. [DOI: 10.1590/s0100-879x2010007500028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 04/01/2010] [Indexed: 11/21/2022] Open
Affiliation(s)
- F. Barreto
- Universidade Federal do Rio de Janeiro, Brasil
| | | | | | | | | | | | | | - F. Noël
- Universidade Federal do Rio de Janeiro, Brasil
| | | |
Collapse
|
30
|
RGS2 inhibits beta-adrenergic receptor-induced cardiomyocyte hypertrophy. Cell Signal 2010; 22:1231-9. [PMID: 20362664 DOI: 10.1016/j.cellsig.2010.03.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 02/26/2010] [Accepted: 03/25/2010] [Indexed: 11/21/2022]
Abstract
The chronic stimulation of certain G protein-coupled receptors promotes cardiomyocyte hypertrophy and thus plays a pivotal role in the development of human heart failure. The beta-adrenergic receptors (beta-AR) are unique among these in that they signal via Gs, whereas others, such as the alpha1-adrenergic (alpha1-AR) and endothelin-1 (ET-1) receptors, predominantly act through Gq. In this study, we investigated the potential role of regulator of G protein signalling 2 (RGS2) in modulating the hypertrophic effects of the beta-AR agonist isoproterenol (ISO) in rat neonatal ventricular cardiomyocytes. We found that ISO-induced hypertrophy in rat neonatal ventricular myocytes was accompanied by the selective upregulation of RGS2 mRNA, with little or no change in RGS1, RGS3, RGS4 or RGS5. The adenylyl cyclase activator forskolin had a similar effect suggesting that it was mediated through cAMP production. To study the role of RGS2 upregulation in beta-AR-dependent hypertrophy, cardiomyocytes were infected with adenovirus encoding RGS2 and assayed for cell growth, markers of hypertrophy, and beta-AR signalling. ISO-induced increases in cell surface area were virtually eliminated by the overexpression of RGS2, as were increases in alpha-skeletal actin and atrial natriuretic peptide. RGS2 overexpression also significantly attenuated ISO-induced extracellular signal-regulated kinases 1 and 2 (ERK1/2) and Akt activation, which may account for, or contribute to, its observed antihypertrophic effects. In contrast, RGS2 overexpression significantly activated JNK MAP kinase, while decreasing the potency but not the maximal effect of ISO on cAMP accumulation. In conclusion, the present results suggest that RGS2 negatively regulates hypertrophy induced by beta-AR activation and thus may play a protective role in cardiac hypertrophy.
Collapse
|
31
|
|
32
|
Maillet M, Lynch JM, Sanna B, York AJ, Zheng Y, Molkentin JD. Cdc42 is an antihypertrophic molecular switch in the mouse heart. J Clin Invest 2009; 119:3079-88. [PMID: 19741299 DOI: 10.1172/jci37694] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 07/08/2009] [Indexed: 01/19/2023] Open
Abstract
To improve contractile function, the myocardium undergoes hypertrophic growth without myocyte proliferation in response to both pathologic and physiologic stimulation. Various membrane-bound receptors and intermediate signal transduction pathways regulate the induction of cardiac hypertrophy, but the cardioprotective regulatory pathways or effectors that antagonize cardiac hypertrophy remain poorly understood. Here we identify the small GTPase Cdc42 as a signaling intermediate that restrained the cardiac growth response to physiologic and pathologic stimuli. Cdc42 was specifically activated in the heart after pressure overload and in cultured cardiomyocytes by multiple agonists. Mice with a heart-specific deletion of Cdc42 developed greater cardiac hypertrophy at 2 and 8 weeks of stimulation and transitioned more quickly into heart failure than did wild-type controls. These mice also displayed greater cardiac hypertrophy in response to neuroendocrine agonist infusion for 2 weeks and, more remarkably, enhanced exercise-induced hypertrophy and sudden death. These pathologies were associated with an inability to activate JNK following stimulation through a MEKK1/MKK4/MKK7 pathway, resulting in greater cardiac nuclear factor of activated T cells (NFAT) activity. Restoration of cardiac JNK signaling with an Mkk7 heart-specific transgene reversed the enhanced growth effect. These results identify what we believe to be a novel antihypertrophic and protective cardiac signaling pathway, whereby Cdc42-dependent JNK activation antagonizes calcineurin-NFAT activity to reduce hypertrophy and prevent transition to heart failure.
Collapse
Affiliation(s)
- Marjorie Maillet
- Department of Pediatrics, Division of Molecular Cardiovascular Biology, University of Cincinnati, and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | | | | | | | | | | |
Collapse
|
33
|
Craig EA, Stevens MV, Vaillancourt RR, Camenisch TD. MAP3Ks as central regulators of cell fate during development. Dev Dyn 2009; 237:3102-14. [PMID: 18855897 DOI: 10.1002/dvdy.21750] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The cytoplasmic serine/threonine kinases transduce extracellular signals into regulatory events that impact cellular responses. The induction of one kinase triggers the activation of several downstream kinases, leading to the regulation of transcription factors to affect gene function. This arrangement allows for the kinase cascade to be amplified, and integrated according to the cellular context. An upstream mitogen or growth factor signal initiates a module of three kinases: a mitogen-activated protein (MAP) kinase kinase kinase (MAPKKK; e.g., Raf) that phosphorylates and activates a MAP kinase kinase (MAPKK; e.g., MEK) and finally activation of MAP kinase (MAPK; e.g., ERK). Thus, this MAP3K-MAP2K-MAPK module represents critical effectors that regulate extracellular stimuli into cellular responses, such as differentiation, proliferation, and apoptosis all of which function during development. There are 21 characterized MAP3Ks that activate known MAP2Ks, and they function in many aspects of developmental biology. This review summarizes known transduction routes linked to each MAP3K and highlights mouse models that provide clues to their physiological functions. This perspective reveals that some of these MAP3K effectors may have redundant functions, and also serve as unique nexus depending on the context of the signaling pathway.
Collapse
Affiliation(s)
- Evisabel A Craig
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
| | | | | | | |
Collapse
|
34
|
Cheng YC, Chen LM, Chang MH, Chen WK, Tsai FJ, Tsai CH, Lai TY, Kuo WW, Huang CY, Liu CJ. Lipopolysaccharide upregulates uPA, MMP-2 and MMP-9 via ERK1/2 signaling in H9c2 cardiomyoblast cells. Mol Cell Biochem 2009; 325:15-23. [PMID: 19184369 DOI: 10.1007/s11010-008-0016-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Accepted: 12/30/2008] [Indexed: 11/24/2022]
Abstract
Upregulation of urokinase plasminogen activator (uPA), tissue plasminogen activator (tPA), and matrix metallopeptidases (MMPs) is associated with the development of myocardial infarction (MI), dilated cardiomyopathy, cardiac fibrosis, and heart failure (HF). Evidences suggest that lipopolysaccharide (LPS) participates in the inflammatory response in the cardiovascular system; however, it is unknown if LPS is sufficient to upregulate expressions and/or activity of uPA, tPA, MMP-2, and MMP-9 in myocardial cells. In this study, we treated H9c2 cardiomyoblasts with LPS to explore whether LPS upregulates uPA, tPA, MMP-2, and MMP-9, and further to identify the precise molecular and cellular mechanisms behind this upregulatory responses. Here, we show that LPS challenge increased the protein levels of uPA, MMP-2 and MMP-9, and induced the activity of MMP-2 and MMP-9 in H9c2 cardiomyoblasts. However, LPS showed no effects on the expression of tissue inhibitor of metalloproteinase-1, -2, -3, and -4 (TIMP-1, -2, -3, and -4). After administration of inhibitors including U0126 (ERK1/2 inhibitor), SB203580 (p38 MAPK inhibitor), SP600125 (JNK1/2 inhibitor), CsA (calcineurin inhibitor), and QNZ (NFkappaB inhibitor), the LPS-upregulated expression and/or activity of uPA, MMP-2, and MMP-9 in H9c2 cardiomyoblasts are markedly inhibited only by ERK1/2 inhibitors, U0126. Collectively, these results suggest that LPS upregulates the expression and/or activity of uPA, MMP-2, and MMP-9 through ERK1/2 signaling pathway in H9c2 cardiomyoblasts. Our findings further provide a link between the LPS-induced cardiac dysfunction and the ERK1/2 signaling pathway that mediates the upregulation of uPA, MMP-2 and MMP-9.
Collapse
Affiliation(s)
- Yi-Chang Cheng
- Emergency Department, Taichung Veterans General Hospital, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Shi J, Zhang YW, Summers LJ, Dorn GW, Wei L. Disruption of ROCK1 gene attenuates cardiac dilation and improves contractile function in pathological cardiac hypertrophy. J Mol Cell Cardiol 2008; 44:551-60. [PMID: 18178218 PMCID: PMC2728597 DOI: 10.1016/j.yjmcc.2007.11.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 10/19/2007] [Accepted: 11/29/2007] [Indexed: 12/30/2022]
Abstract
The development of left ventricular cardiomyocyte hypertrophy in response to increased hemodynamic load and neurohormonal stress is initially a compensatory response. However, persistent stress eventually leads to dilated heart failure, which is a common cause of heart failure in human hypertensive and valvular heart disease. We have recently reported that Rho-associated coiled-coil containing protein kinase 1 (ROCK1) homozygous knockout mice exhibited reduced cardiac fibrosis and cardiomyocyte apoptosis, while displaying a preserved compensatory hypertrophic response to pressure overload. In this study, we have tested the effects of ROCK1 deficiency on cardiac hypertrophy, dilation, and dysfunction. We have shown that ROCK1 deletion attenuated left ventricular dilation and contractile dysfunction, but not hypertrophy, in a transgenic model of Galphaq overexpression-induced hypertrophy which represents a well-characterized and highly relevant genetic mouse model of pathological hypertrophy. Although the development of cardiomyocyte hypertrophy was not affected, ROCK1 deletion in Galphaq mice resulted in a concentric hypertrophic phenotype associated with reduced induction of hypertrophic markers indicating that ROCK1 deletion could favorably modify hypertrophy without inhibiting it. Furthermore, ROCK1 deletion also improved contractile response to beta-adrenergic stimulation in Galphaq transgenic mice. Consistent with this observation, ROCK1 deletion prevented down-regulation of type V/VI adenylyl cyclase expression, which is associated with the impaired beta-adrenergic signaling in Galphaq mice. The present study establishes for the first time a role for ROCK1 in cardiac dilation and contractile dysfunction.
Collapse
MESH Headings
- Adenylyl Cyclases/metabolism
- Animals
- Blotting, Western
- Cardiomegaly/genetics
- Cardiomegaly/pathology
- Cardiomegaly/physiopathology
- Dilatation, Pathologic
- Echocardiography
- GTP-Binding Protein alpha Subunits, Gq-G11/genetics
- GTP-Binding Protein alpha Subunits, Gq-G11/physiology
- Hypertrophy, Left Ventricular/genetics
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/physiopathology
- Isoenzymes/metabolism
- Mice
- Mice, Knockout
- Mice, Transgenic
- Models, Biological
- Models, Genetic
- Muscle Contraction/genetics
- Muscle Contraction/physiology
- rho-Associated Kinases/genetics
- rho-Associated Kinases/physiology
Collapse
Affiliation(s)
- Jianjian Shi
- Herman B Wells Center for Pediatric Research, Division of Pediatric Cardiology, Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, Indiana, USA
| | - Yi-Wei Zhang
- Herman B Wells Center for Pediatric Research, Division of Pediatric Cardiology, Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, Indiana, USA
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, P.R. China
| | - Lelia J. Summers
- Herman B Wells Center for Pediatric Research, Division of Pediatric Cardiology, Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, Indiana, USA
| | - Gerald W. Dorn
- Center for Molecular Cardiovascular Research, University of Cincinnati, Cincinnati, Ohio
| | - Lei Wei
- Herman B Wells Center for Pediatric Research, Division of Pediatric Cardiology, Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, Indiana, USA
- Department of Cellular and Integrative Physiology, Indiana University, School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
36
|
Abstract
Mitogen-activated protein (MAP) kinases belong to a highly conserved family of Ser-Thr protein kinases in the human kinome and have diverse roles in broad physiological functions. The 4 best-characterized MAP kinase pathways, ERK1/2, JNK, p38, and ERK5, have been implicated in different aspects of cardiac regulation, from development to pathological remodeling. Recent advancements in the development of kinase-specific inhibitors and genetically engineered animal models have revealed significant new insights about MAP kinase pathways in the heart. However, this explosive body of new information also has yielded many controversies about the functional role of specific MAP kinases as either detrimental promoters or critical protectors of the heart during cardiac pathological processes. These uncertainties have raised questions on whether/how MAP kinases can be targeted to develop effective therapies against heart diseases. In this review, recent studies examining the role of MAP kinase subfamilies in cardiac development, hypertrophy, and survival are summarized.
Collapse
Affiliation(s)
- Yibin Wang
- Department of Anesthesiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
37
|
Wang X, Destrument A, Tournier C. Physiological roles of MKK4 and MKK7: insights from animal models. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1773:1349-57. [PMID: 17157936 DOI: 10.1016/j.bbamcr.2006.10.016] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 10/20/2006] [Accepted: 10/24/2006] [Indexed: 10/23/2022]
Abstract
c-Jun NH2-terminal protein kinase (JNK) is a mitogen-activated protein kinase (MAPK) involved in the regulation of numerous physiological processes during development and in response to stress. Its activity is increased upon phosphorylation by the MAPK kinases, MKK4 and MKK7. Similar to the early embryonic death of mice caused by the targeted deletion of the jnk genes, mice lacking mkk4 or mkk7 die before birth. The inability of MKK4 and MKK7 to compensate for each other's functions in vivo is consistent with their synergistic effect in mediating JNK activation. However, the phenotypic analysis of the mutant mouse embryos indicates that MKK4 and MKK7 have specific roles that may be due to their selective regulation by extracellular stimuli and their distinct tissue distribution. MKK4 and MKK7 also have different biochemical properties. For example, whereas MKK4 can activate p38 MAPK, MKK7 functions as a specific activator of JNK. Here we summarize the studies that have shed light on the mechanism of activation of MKK4 and MKK7 and on their physiological functions.
Collapse
Affiliation(s)
- Xin Wang
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | | | | |
Collapse
|
38
|
McMullen JR, Jennings GL. Differences between pathological and physiological cardiac hypertrophy: novel therapeutic strategies to treat heart failure. Clin Exp Pharmacol Physiol 2007; 34:255-62. [PMID: 17324134 DOI: 10.1111/j.1440-1681.2007.04585.x] [Citation(s) in RCA: 251] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
1. In general, cardiac hypertrophy (an increase in heart mass) is a poor prognostic sign. Cardiac enlargement is a characteristic of most forms of heart failure. Cardiac hypertrophy that occurs in athletes (physiological hypertrophy) is a notable exception. 2. Physiological cardiac hypertrophy in response to exercise training differs in its structural and molecular profile to pathological hypertrophy associated with pressure or volume overload in disease. Physiological hypertrophy is characterized by normal organization of cardiac structure and normal or enhanced cardiac function, whereas pathological hypertrophy is commonly associated with upregulation of fetal genes, fibrosis, cardiac dysfunction and increased mortality. 3. It is now clear that several signalling molecules play unique roles in the regulation of pathological and physiological cardiac hypertrophy. 4. The present review discusses the possibility of targeting cardioprotective signalling pathways and genes activated in the athlete's heart to treat or prevent heart failure.
Collapse
Affiliation(s)
- Julie R McMullen
- Baker Heart Research Institute, Melbourne, Victoria 8008, Australia.
| | | |
Collapse
|
39
|
Abstract
G proteins provide signal-coupling mechanisms to heptahelical cell surface receptors and are critically involved in the regulation of different mitogen-activated protein kinase (MAPK) networks. The four classes of G proteins, defined by the G(s), G(i), G(q) and G(12) families, regulate ERK1/2, JNK, p38MAPK, ERK5 and ERK6 modules by different mechanisms. The alpha- as well as betagamma-subunits are involved in the regulation of these MAPK modules in a context-specific manner. While the alpha- and betagamma-subunits primarily regulate the MAPK pathways via their respective effector-mediated signaling pathways, recent studies have unraveled several novel signaling intermediates including receptor tyrosine kinases and small GTPases through which these G-protein subunits positively as well as negatively regulate specific MAPK modules. Multiple mechanisms together with specific scaffold proteins that can link G-protein-coupled receptors or G proteins to distinct MAPK modules contribute to the context-specific and spatio-temporal regulation of mitogen-activated protein signaling networks by G proteins.
Collapse
Affiliation(s)
- Z G Goldsmith
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | |
Collapse
|
40
|
|
41
|
Baurand A, Zelarayan L, Betney R, Gehrke C, Dunger S, Noack C, Busjahn A, Huelsken J, Taketo MM, Birchmeier W, Dietz R, Bergmann MW. Beta-catenin downregulation is required for adaptive cardiac remodeling. Circ Res 2007; 100:1353-62. [PMID: 17413044 DOI: 10.1161/01.res.0000266605.63681.5a] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The armadillo-related protein beta-catenin has multiple functions in cardiac tissue homeostasis: stabilization of beta-catenin has been implicated in adult cardiac hypertrophy, and downregulation initiates heart formation in embryogenesis. The protein is also part of the cadherin/catenin complex at the cell membrane, where depletion might result in disturbed cell-cell interaction similar to N-cadherin knockout models. Here, we analyzed the in vivo role of beta-catenin in adult cardiac hypertrophy initiated by angiotensin II (Ang II). The cardiac-specific mifepristone-inducible alphaMHC-CrePR1 transgene was used to induce beta-catenin depletion (loxP-flanked exons 3 to 6, beta-cat(Deltaex3-6) mice) or stabilization (loxP-flanked exon 3, beta-cat(Deltaex3) mice). Levels of beta-catenin were altered both in membrane and nuclear extracts. Analysis of the beta-catenin target genes Axin2 and Tcf-4 confirmed increased beta-catenin-dependent transcription in beta-catenin stabilized mice. In both models, transgenic mice were viable and healthy at age 6 months. beta-Catenin appeared dispensable for cell membrane function. Ang II infusion induced cardiac hypertrophy both in wild-type mice and in mice with beta-catenin depletion. In contrast, mice with stabilized beta-catenin had decreased cross-sectional area at baseline and an abrogated hypertrophic response to Ang II infusion. Stabilizing beta-catenin led to impaired fractional shortening compared with control littermates after Ang II stimulation. This functional deterioration was associated with altered expression of the T-box proteins Tbx5 and Tbx20 at baseline and after Ang II stimulation. In addition, atrophy-related protein IGFBP5 was upregulated in beta-catenin-stabilized mice. These data suggest that beta-catenin downregulation is required for adaptive cardiac hypertrophy.
Collapse
|
42
|
Gerits N, Kostenko S, Moens U. In vivo functions of mitogen-activated protein kinases: conclusions from knock-in and knock-out mice. Transgenic Res 2007; 16:281-314. [PMID: 17219248 DOI: 10.1007/s11248-006-9052-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Accepted: 10/24/2006] [Indexed: 01/09/2023]
Abstract
Multicellular organisms achieve intercellular communication by means of signalling molecules whose effect on the target cell is mediated by signal transduction pathways. Such pathways relay, amplify and integrate signals to elicit appropriate biological responses. Protein kinases form crucial intermediate components of numerous signalling pathways. One group of protein kinases, the mitogen-activated protein kinases (MAP kinases) are kinases involved in signalling pathways that respond primarily to mitogens and stress stimuli. In vitro studies revealed that the MAP kinases are implicated in several cellular processes, including cell division, differentiation, cell survival/apoptosis, gene expression, motility and metabolism. As such, dysfunction of specific MAP kinases is associated with diseases such as cancer and immunological disorders. However, the genuine in vivo functions of many MAP kinases remain elusive. Genetically modified mouse models deficient in a specific MAP kinase or expressing a constitutive active or a dominant negative variant of a particular MAP kinase offer valuable tools for elucidating the biological role of these protein kinases. In this review, we focus on the current status of MAP kinase knock-in and knock-out mouse models and their phenotypes. Moreover, examples of the application of MAP kinase transgenic mice for validating therapeutic properties of specific MAP kinase inhibitors, and for investigating the role of MAP kinase in pathogen-host interactions will be discussed.
Collapse
Affiliation(s)
- Nancy Gerits
- Department of Microbiology and Virology, Institute of Medical Biology, University of Tromsø, Tromsø, Norway.
| | | | | |
Collapse
|
43
|
DiMichele LA, Doherty JT, Rojas M, Beggs HE, Reichardt LF, Mack CP, Taylor JM. Myocyte-restricted focal adhesion kinase deletion attenuates pressure overload-induced hypertrophy. Circ Res 2006; 99:636-45. [PMID: 16902179 PMCID: PMC2693055 DOI: 10.1161/01.res.0000240498.44752.d6] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Focal adhesion kinase (FAK) is a ubiquitously expressed cytoplasmic tyrosine kinase strongly activated by integrins and neurohumoral factors. Previous studies have shown that cardiac FAK activity is enhanced by hypertrophic stimuli before the onset of overt hypertrophy. Herein, we report that conditional deletion of FAK from the myocardium of adult mice did not affect basal cardiac performance, myocyte viability, or myofibrillar architecture. However, deletion of FAK abolished the increase in left ventricular posterior wall thickness, myocyte cross-sectional area, and hypertrophy-associated atrial natriuretic factor induction following pressure overload. Myocyte-restricted deletion of FAK attenuated the initial wave of extracellular signal-regulated kinase activation and cFos expression induced by adrenergic agonists and biomechanical stress. In addition, we found that persistent challenge of mice with myocyte-restricted FAK inactivation leads to enhanced cardiac fibrosis and cardiac dysfunction in comparison to challenged genetic controls. These studies show that loss of FAK impairs normal compensatory hypertrophic remodeling without a concomitant increase in apoptosis in response to cardiac pressure overload and highlight the possibility that FAK activation may be a common requirement for the initiation of this compensatory response.
Collapse
Affiliation(s)
- Laura A DiMichele
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
van Oort RJ, van Rooij E, Bourajjaj M, Schimmel J, Jansen MA, van der Nagel R, Doevendans PA, Schneider MD, van Echteld CJA, De Windt LJ. MEF2 activates a genetic program promoting chamber dilation and contractile dysfunction in calcineurin-induced heart failure. Circulation 2006; 114:298-308. [PMID: 16847152 DOI: 10.1161/circulationaha.105.608968] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Hypertrophic growth, a risk factor for mortality in heart disease, is driven by reprogramming of cardiac gene expression. Although the transcription factor myocyte enhancer factor-2 (MEF2) is a common end point for several hypertrophic pathways, its precise cardiac gene targets and function in cardiac remodeling remain to be elucidated. METHODS AND RESULTS We report the existence of synergistic interactions between the nuclear factor of activated T cells and MEF2 transcription factors triggered by calcineurin signaling. To circumvent the embryonic lethality and mitochondrial deficiency associated with germ-line null mutations for MEF2C and MEF2A respectively, we used conditional transgenesis to express a dominant-negative form of MEF2 in the murine postnatal heart and combined this with magnetic resonance imaging to assess MEF2 transcriptional function in Ca2+/calcineurin-induced cardiac remodeling. Surprisingly, end-diastolic and end-systolic ventricular dimensions and contractility were normalized in the presence of severely hypertrophied left ventricular walls on MEF2 inhibition in calcineurin transgenic mice. In line, we generated lines of transgenic mice expressing MEF2A in the heart, which displayed primarily chamber dilation. Microarray profiling indicated that MEF2 promotes a gene profile functioning primarily to or at the nucleus, cytoskeletal and microtubular networks, and mitochondria. CONCLUSIONS These findings assign a novel function to MEF2 transcription factors in the postnatal heart, where they activate a genetic program that minimally affects cardiac growth yet promotes chamber dilation, mechanical dysfunction, and dilated cardiomyopathy.
Collapse
Affiliation(s)
- Ralph J van Oort
- Hubrecht Laboratory, and Interuniversity Cardiology Institute Netherlands, Royal Netherlands Academy of Sciences, Utrecht, Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Dorn GW. Physiologic growth and pathologic genes in cardiac development and cardiomyopathy. Trends Cardiovasc Med 2006; 15:185-9. [PMID: 16165015 DOI: 10.1016/j.tcm.2005.05.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Revised: 05/25/2005] [Accepted: 05/31/2005] [Indexed: 01/19/2023]
Abstract
The influence of genetics in acquired adult heart disease remains incompletely defined. Genetic manipulation in mice has been widely used in combination with physiologic modeling to address this deficiency and has provided insights into the pathophysiology of myocardial signaling. However, conventional techniques of directed gene expression or ablation confound adult heart phenotypes with genetic perturbation of embryonic or postnatal cardiac development. Here, studies of Galphaq and Nix, powerful signaling factors for pathologic hypertrophy and cardiomyocyte apoptosis, respectively, are reviewed in terms of their comparative effects on cardiac development and adult cardiac pathology.
Collapse
Affiliation(s)
- Gerald W Dorn
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, 231 Albert Sabin Lane, Cincinnati, OH 45267-0542, USA.
| |
Collapse
|
46
|
Kawano S, Kubota T, Monden Y, Tsutsumi T, Inoue T, Kawamura N, Tsutsui H, Sunagawa K. Blockade of NF-kappaB improves cardiac function and survival after myocardial infarction. Am J Physiol Heart Circ Physiol 2006; 291:H1337-44. [PMID: 16632551 DOI: 10.1152/ajpheart.01175.2005] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
NF-kappaB is a key transcription factor that regulates inflammatory processes. In the present study, we tested the hypothesis that blockade of NF-kappaB ameliorates cardiac remodeling and failure after myocardial infarction (MI). Knockout mice with targeted disruption of the p50 subunit of NF-kappaB (KO) were used to block the activation of NF-kappaB. MI was induced by ligation of the left coronary artery in male KO and age-matched wild-type (WT) mice. NF-kappaB was activated in noninfarct as well as infarct myocardium in WT+MI mice, while the activity was completely abolished in KO mice. Blockade of NF-kappaB significantly reduced early ventricular rupture after MI and improved survival by ameliorating congestive heart failure. Echocardiographic and pressure measurements revealed that left ventricular fractional shortening and maximum rate of rise of left ventricular pressure were significantly increased and end-diastolic pressure was significantly decreased in KO+MI mice compared with WT+MI mice. Histological analysis demonstrated significant suppression of myocyte hypertrophy as well as interstitial fibrosis in the noninfarct myocardium of KO+MI mice. Blockade of NF-kappaB did not ameliorate expression of proinflammatory cytokines in infarct or noninfarct myocardium. In contrast, phosphorylation of c-Jun NH2-terminal kinase was almost completely abolished in KO+MI mice. The present study demonstrates that targeted disruption of the p50 subunit of NF-kappaB reduces ventricular rupture as well as improves cardiac function and survival after MI. Blockade of NF-kappaB might be a new therapeutic strategy to attenuate cardiac remodeling and failure after MI.
Collapse
Affiliation(s)
- Shunichi Kawano
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
In broad terms, there are 3 types of cardiac hypertrophy: normal growth, growth induced by physical conditioning (i.e., physiologic hypertrophy), and growth induced by pathologic stimuli. Recent evidence suggests that normal and exercise-induced cardiac growth are regulated in large part by the growth hormone/IGF axis via signaling through the PI3K/Akt pathway. In contrast, pathological or reactive cardiac growth is triggered by autocrine and paracrine neurohormonal factors released during biomechanical stress that signal through the Gq/phospholipase C pathway, leading to an increase in cytosolic calcium and activation of PKC. Here we review recent developments in the area of these cardiotrophic kinases, highlighting the utility of animal models that are helping to identify molecular targets in the human condition.
Collapse
Affiliation(s)
- Gerald W Dorn
- Heart and Vascular Center, Medical Center, University of Cincinnati, Cincinnati, Ohio 45267-0542, USA.
| | | |
Collapse
|
48
|
Li Y, Minamino T, Tsukamoto O, Yujiri T, Shintani Y, Okada KI, Nagamachi Y, Fujita M, Hirata A, Sanada S, Asanuma H, Takashima S, Hori M, Johnson GL, Kitakaze M. Ablation of MEK Kinase 1 Suppresses Intimal Hyperplasia by Impairing Smooth Muscle Cell Migration and Urokinase Plasminogen Activator Expression in a Mouse Blood-Flow Cessation Model. Circulation 2005; 111:1672-8. [PMID: 15795331 DOI: 10.1161/01.cir.0000160350.20810.0f] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
Migration, proliferation, and matrix-degrading protease expression of smooth muscle cells (SMCs) are major features of intimal hyperplasia after vascular injury. Although MEK kinase 1 (MEKK1) has been shown to regulate cell migration and urokinase plasminogen activator (uPA) expression, the precise role of MEKK1 in this process remains unknown.
Methods and Results—
We triggered a vascular remodeling model by complete ligation of the right common carotid artery in wild-type (WT) and MEKK1-null (MEKK1
−/−
) mice. The intimal areas 28 days after ligation were significantly decreased in the ligated MEKK1
−/−
arteries compared with WT arteries (28±8 versus 65±17 μm
2
,
P
<0.05). There were no differences in the ratios of proliferating cell nuclear antigen (PCNA)–positive cells to total cells within the arterial wall between WT and MEKK1
−/−
arteries. Proliferation capacity also did not differ between WT and MEKK1
−/−
cultured aortic smooth muscle cells (AoSMCs). In contrast, the number of intimal PCNA-positive cells 7 days after ligation was significantly smaller in MEKK1
−/−
arteries. Three different migration assays revealed that migration and invasion of MEKK1
−/−
AoSMCs were markedly impaired. Addition of full-length MEKK1 restored the migration capacity of MEKK1
−/−
AoSMCs. The number of MEKK1
−/−
AoSMCs showing lamellipodia formation by epithelial growth factor was significantly smaller compared with those of WT SMCs. Furthermore, uPA expression after ligation was markedly decreased in MEKK1
−/−
arteries.
Conclusions—
MEKK1 is implicated in vascular remodeling after blood-flow cessation by regulating the migration and uPA expression of SMCs. MEKK1 is a potential target for drug development to prevent vascular remodeling.
Collapse
Affiliation(s)
- Yan Li
- Department of Internal Medicine and Therapeutics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Jeong MY, Kinugawa K, Vinson C, Long CS. AFos dissociates cardiac myocyte hypertrophy and expression of the pathological gene program. Circulation 2005; 111:1645-51. [PMID: 15795322 PMCID: PMC1201436 DOI: 10.1161/01.cir.0000160367.99928.87] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Although induction of activator protein-1 (AP-1) transcription factor activity has been observed in cardiac hypertrophy, a direct role for AP-1 in myocardial growth and gene expression remains obscure. METHODS AND RESULTS Hypertrophy was induced in cultured neonatal rat cardiomyocytes with phenylephrine or overexpression of a constitutively active MAP3K, MKK6. In both treatment groups, induction of the pathological gene profile was observed, ie, expression of beta-myosin heavy chain (betaMHC), atrial/brain natriuretic peptides (ANP/BNP), and skeletal alpha-actin (sACT) was increased, whereas expression for alpha-myosin heavy chain (alphaMHC) and the sarcoplasmic reticulum Ca2+-ATPase (SERCA) genes was repressed. The role of AP-1 in the hypertrophic phenotype was evaluated with the use of an adenoviral construct expressing a dominant negative mutant of the c-Fos proto-oncogene (AdAFos). Although AFos did not change the myocyte growth response, it abrogated the gene profile to both agonists, including the upregulation of both alphaMHC and SERCA expression. CONCLUSIONS Although c-Fos/AP-1 is necessary for induction of the pathological/fetal gene program, it does not appear to be critical for cardiomyocyte hypertrophy.
Collapse
Affiliation(s)
| | | | | | - Carlin S. Long
- Correspondence to Carlin S. Long, MD, Cardiology Section, Denver Health Medical Center, 777 Bannock St, Mailstop 0960, Denver, CO 80204. E-mail
| |
Collapse
|
50
|
Takimoto E, Champion HC, Li M, Belardi D, Ren S, Rodriguez ER, Bedja D, Gabrielson KL, Wang Y, Kass DA. Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nat Med 2005; 11:214-22. [PMID: 15665834 DOI: 10.1038/nm1175] [Citation(s) in RCA: 717] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2004] [Accepted: 12/07/2004] [Indexed: 11/09/2022]
Abstract
Sustained cardiac pressure overload induces hypertrophy and pathological remodeling, frequently leading to heart failure. Genetically engineered hyperstimulation of guanosine 3',5'-cyclic monophosphate (cGMP) synthesis counters this response. Here, we show that blocking the intrinsic catabolism of cGMP with an oral phosphodiesterase-5A (PDE5A) inhibitor (sildenafil) suppresses chamber and myocyte hypertrophy, and improves in vivo heart function in mice exposed to chronic pressure overload induced by transverse aortic constriction. Sildenafil also reverses pre-established hypertrophy induced by pressure load while restoring chamber function to normal. cGMP catabolism by PDE5A increases in pressure-loaded hearts, leading to activation of cGMP-dependent protein kinase with inhibition of PDE5A. PDE5A inhibition deactivates multiple hypertrophy signaling pathways triggered by pressure load (the calcineurin/NFAT, phosphoinositide-3 kinase (PI3K)/Akt, and ERK1/2 signaling pathways). But it does not suppress hypertrophy induced by overexpression of calcineurin in vitro or Akt in vivo, suggesting upstream targeting of these pathways. PDE5A inhibition may provide a new treatment strategy for cardiac hypertrophy and remodeling.
Collapse
Affiliation(s)
- Eiki Takimoto
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Ross 835, 720 Rutland Avenue, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|