1
|
Liang X, Yang S, Radosevich M, Wang Y, Duan N, Jia Y. Bacteriophage-driven microbial phenotypic heterogeneity: ecological and biogeochemical importance. NPJ Biofilms Microbiomes 2025; 11:82. [PMID: 40399330 PMCID: PMC12095545 DOI: 10.1038/s41522-025-00727-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 05/13/2025] [Indexed: 05/23/2025] Open
Abstract
Bacteriophages (phages) reprogram host metabolism and generate phenotypic heterogeneity, yet the mechanisms and ecological implications remain poorly understood representing a major knowledge gap in microbial ecology. This review explores how phage infection alters microbial physiology, contributes to single-cell variation, and influences population dynamics. We highlight the potential consequences of phage-driven heterogeneity for microbial community structure and biogeochemical cycling, underscoring the importance of integrating phage-host interactions into ecological and ecosystem models.
Collapse
Affiliation(s)
- Xiaolong Liang
- CAS Key Laboratory of Forest Ecology and Silviculture, Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, 110016, Shenyang, China.
| | - Shuo Yang
- School of Life Sciences, Fudan University, 200433, Shanghai, China
| | - Mark Radosevich
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Yongfeng Wang
- CAS Key Laboratory of Forest Ecology and Silviculture, Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, 110016, Shenyang, China
| | - Ning Duan
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Yongfeng Jia
- CAS Key Laboratory of Forest Ecology and Silviculture, Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, 110016, Shenyang, China.
| |
Collapse
|
2
|
Späth GF, Piel L, Pescher P. Leishmania genomic adaptation: more than just a 36-body problem. Trends Parasitol 2025:S1471-4922(25)00096-0. [PMID: 40316476 DOI: 10.1016/j.pt.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/03/2025] [Accepted: 04/03/2025] [Indexed: 05/04/2025]
Abstract
Genome instability has been identified as a major driver of adaptation in fast-growing, eukaryotic cells, including fungi, protists, or cancer. How these cells cope with the toxic effects caused by such copy number variations remains to be elucidated. In recent years, the protist parasites Leishmania spp. have emerged as interesting model pathogens to assess this open question and to study the role of its intrinsic genome instability in fitness gain in culture, experimental infection, and in the field. Here we summarize recent results on Leishmania genomic adaptation and propose thought-provoking evolutionary concepts new to the Leishmania field that need to be considered when mapping genotype-to-phenotype relationships in molecular and epidemiological studies.
Collapse
Affiliation(s)
- Gerald F Späth
- Institut Pasteur, Unité de Parasitologie moléculaire et Signalisation, Université Paris Cité, INSERM U1347, Paris, France.
| | - Laura Piel
- Institut Pasteur, Unité de Parasitologie moléculaire et Signalisation, Université Paris Cité, INSERM U1347, Paris, France
| | - Pascale Pescher
- Institut Pasteur, Unité de Parasitologie moléculaire et Signalisation, Université Paris Cité, INSERM U1347, Paris, France
| |
Collapse
|
3
|
Sagarin KA, Ouanemalay E, Asante-Nyame H, Hong V, De Palo C, Cohan FM. Phosphorelay changes and plasticity underlie the life history evolution of Bacillus subtilis sporulation and germination in serial batch culture. MICROBIOLOGY (READING, ENGLAND) 2025; 171:001540. [PMID: 40094782 PMCID: PMC11914059 DOI: 10.1099/mic.0.001540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/21/2025] [Indexed: 03/19/2025]
Abstract
Bacterial endospores facilitate survival in extreme and unpredictably fluctuating environments. However, under abundant nutrient conditions, the production of endospores is quickly reduced or lost. We hypothesized that endospore-forming bacteria exposed to frequent cycling of nutrient availability would evolve reduced sporulation efficiency. We employed replicated batch culture for 11 transfers to test the effects of rapid nutrient cycles on the evolution of the life history traits of sporulation, germination and growth in Bacillus subtilis. We periodically measured total cell and endospore densities during the period between transfers. Replicates evolved in parallel behaviourally and genetically. By the fourth transfer, we saw a reduction in endospore production, which continued to decline throughout the experiment. Our results support a decreased likelihood of sporulation being driven by frequent nutrient renewal. The proportion of endospores germinating after transfer increased significantly by the end of the experiment through the effects of plasticity alone. Every evolved replicate culture displayed colony dimorphism: the dominant morphology being translucent with reduced sporulation ability and the rarer being opaque with accelerated sporulation and highly efficient germination. Colony dimorphism was reflected in the genomes, with all isolates with reduced sporulation having mutations in elements of the sporulation phosphorelay, particularly kinA. Some opaque colonies had no mutations, indicating that those adaptive changes occurred through plasticity. These results suggest that our selection conditions of nutrient cycling resulted in the parallel evolution of communities of ecologically diverse strains, where most reduced sporulation while a smaller proportion accelerated it.
Collapse
Affiliation(s)
| | | | | | - Vera Hong
- Department of Biology, Wesleyan University, Middletown, CT, USA
| | - Chloe De Palo
- Department of Biology, Wesleyan University, Middletown, CT, USA
| | | |
Collapse
|
4
|
Vo L, Avgidis F, Mattingly HH, Edmonds K, Burger I, Balasubramanian R, Shimizu TS, Kazmierczak BI, Emonet T. Nongenetic adaptation by collective migration. Proc Natl Acad Sci U S A 2025; 122:e2423774122. [PMID: 39970001 PMCID: PMC11874451 DOI: 10.1073/pnas.2423774122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/17/2025] [Indexed: 02/21/2025] Open
Abstract
Cell populations must adjust their phenotypic composition to adapt to changing environments. One adaptation strategy is to maintain distinct phenotypic subsets within the population and to modulate their relative abundances via gene regulation. Another strategy involves genetic mutations, which can be augmented by stress-response pathways. Here, we studied how a migrating bacterial population regulates its phenotypic distribution to traverse diverse environments. We generated isogenic Escherichia coli populations with varying distributions of swimming behaviors and observed their phenotype distributions during migration in liquid and porous environments. We found that the migrating populations became enriched with high-performing swimming phenotypes in each environment, allowing the populations to adapt without requiring mutations or gene regulation. This adaptation is dynamic and rapid, reversing in a few doubling times when migration ceases. By measuring the chemoreceptor abundance distributions during migration toward different attractants, we demonstrated that adaptation acts on multiple chemotaxis-related traits simultaneously. These measurements are consistent with a general mechanism in which adaptation results from a balance between cell growth generating diversity and collective migration eliminating underperforming phenotypes. Thus, collective migration enables cell populations with continuous, multidimensional phenotypes to flexibly and rapidly adapt their phenotypic composition to diverse environmental conditions.
Collapse
Affiliation(s)
- Lam Vo
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT06511
- Quantitative Biology Institute, Yale University, New Haven, CT06511
| | - Fotios Avgidis
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT06511
- Quantitative Biology Institute, Yale University, New Haven, CT06511
- Center for Living Systems, AMOLF Institute, Amsterdam1098 XG, The Netherlands
| | - Henry H. Mattingly
- Center for Computational Biology, Flatiron Institute, New York City, NY10010
| | - Karah Edmonds
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT06511
- Quantitative Biology Institute, Yale University, New Haven, CT06511
| | - Isabel Burger
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT06511
- Quantitative Biology Institute, Yale University, New Haven, CT06511
| | - Ravi Balasubramanian
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT06511
- Quantitative Biology Institute, Yale University, New Haven, CT06511
| | - Thomas S. Shimizu
- Center for Living Systems, AMOLF Institute, Amsterdam1098 XG, The Netherlands
| | | | - Thierry Emonet
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT06511
- Quantitative Biology Institute, Yale University, New Haven, CT06511
- Department of Physics, Yale University, New Haven, CT06511
| |
Collapse
|
5
|
Alexandre A, Abbara A, Fruet C, Loverdo C, Bitbol AF. Bridging Wright-Fisher and Moran models. J Theor Biol 2025; 599:112030. [PMID: 39708957 DOI: 10.1016/j.jtbi.2024.112030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 12/06/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
The Wright-Fisher model and the Moran model are both widely used in population genetics. They describe the time evolution of the frequency of an allele in a well-mixed population with fixed size. We propose a simple and tractable model which bridges the Wright-Fisher and the Moran descriptions. We assume that a fixed fraction of the population is updated at each discrete time step. In this model, we determine the fixation probability of a mutant and its average fixation and extinction times, under the diffusion approximation. We further study the associated coalescent process, which converges to Kingman's coalescent, and we calculate effective population sizes. We generalize our model, first by taking into account fluctuating updated fractions or individual lifetimes, and then by incorporating selection on the lifetime as well as on the reproductive fitness.
Collapse
Affiliation(s)
- Arthur Alexandre
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland; SIB Swiss Institute of Bioinformatics, Lausanne, CH-1015, Switzerland
| | - Alia Abbara
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland; SIB Swiss Institute of Bioinformatics, Lausanne, CH-1015, Switzerland
| | - Cecilia Fruet
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland; SIB Swiss Institute of Bioinformatics, Lausanne, CH-1015, Switzerland
| | - Claude Loverdo
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), Paris, France
| | - Anne-Florence Bitbol
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland; SIB Swiss Institute of Bioinformatics, Lausanne, CH-1015, Switzerland.
| |
Collapse
|
6
|
Takano S, Umetani M, Nakaoka H, Miyazaki R. Diversification of single-cell growth dynamics under starvation influences subsequent reproduction in a clonal bacterial population. THE ISME JOURNAL 2025; 19:wrae257. [PMID: 39714219 PMCID: PMC11773413 DOI: 10.1093/ismejo/wrae257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/14/2024] [Accepted: 12/20/2024] [Indexed: 12/24/2024]
Abstract
Most of the microbes in nature infrequently receive nutrients and are thus in slow- or non-growing states. How quickly they can resume their growth upon an influx of new resources is crucial to occupy environmental niches. Isogenic microbial populations are known to harbor only a fraction of cells with rapid growth resumption, yet little is known about the physiological characteristics of those cells and their emergence in the population. Here, we tracked growth of individual Escherichia coli cells in populations under fluctuating nutrient conditions. We found that shifting from high- to low-nutrient conditions caused stalling of cell growth with few cells continuing to divide extremely slowly, a process which was dependent on lipid turnover. Resuming high-nutrient inflow after low-nutrient conditions resulted in cells resuming growth and division, but with different lag times and leading to varying progeny. The history of cell growth during low-nutrient but not high-nutrient conditions was determinant for resumption of growth, which cellular genealogy analysis suggested to originate from inherited physiological differences. Our results demonstrate that cellular growth dynamics become diverse by nutrient limitations, under which a fraction of cells experienced a particular growth history can reproduce progeny with new resources in the future.
Collapse
Affiliation(s)
- Sotaro Takano
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566, Japan
- Integrated Bioresource Information Division, Bioresource Research, Center, RIKEN, Tsukuba, 305-0074, Japan
| | - Miki Umetani
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
- Research Center for Complex Systems Biology, The University of Tokyo, Tokyo, 153-8902, Japan
- Universal Biology Institute, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Hidenori Nakaoka
- Department of Optical Imaging, Advanced Research Promotion Center, Tokushima University, Tokushima, 770-8503, Japan
| | - Ryo Miyazaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-0006, Japan
- Computational Bio Big Data Open Innovation Laboratory (CBBD-OIL), AIST, Tokyo, 169-8555, Japan
| |
Collapse
|
7
|
Mulder OJ, Kostman MP, Almodaimegh A, Edge MD, Larkin JW. An Agent-Based Model of Metabolic Signaling Oscillations in Bacillus subtilis Biofilms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.20.629727. [PMID: 39763919 PMCID: PMC11702635 DOI: 10.1101/2024.12.20.629727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Microbes of nearly every species can form biofilms, communities of cells bound together by a self-produced matrix. It is not understood how variation at the cellular level impacts putatively beneficial, colony-level behaviors, such as cell-to-cell signaling. Here we investigate this problem with an agent-based computational model of metabolically driven electrochemical signaling in Bacillus subtilis biofilms. In this process, glutamate-starved interior cells release potassium, triggering a depolarizing wave that spreads to exterior cells and limits their glutamate uptake. More nutrients diffuse to the interior, temporarily reducing glutamate stress and leading to oscillations. In our model, each cell has a membrane potential coupled to metabolism. As a simulated biofilm grows, collective membrane potential oscillations arise spontaneously as cells deplete nutrients and trigger potassium release, reproducing experimental observations. We further validate our model by comparing spatial signaling patterns and cellular signaling rates with those observed experimentally. By oscillating external glutamate and potassium, we find that biofilms synchronize to external potassium more strongly than to glutamate, providing a potential mechanism for previously observed biofilm synchronization. By tracking cellular glutamate concentrations, we find that oscillations evenly distribute nutrients in space: non-oscillating biofilms have an external layer of well-fed cells surrounding a starved core, whereas oscillating biofilms exhibit a relatively uniform distribution of glutamate. Our work shows the potential of agent-based models to connect cellular properties to collective phenomena and facilitates studies of how inheritance of cellular traits can affect the evolution of group behaviors.
Collapse
Affiliation(s)
- Obadiah J. Mulder
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | | | | | - Michael D. Edge
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Joseph W. Larkin
- Departments of Biology and Physics, Boston University, Boston, MA, USA
| |
Collapse
|
8
|
Sieber A, Parr M, von Ehr J, Dhamotharan K, Kielkowski P, Brewer T, Schäpers A, Krafczyk R, Qi F, Schlundt A, Frishman D, Lassak J. EF-P and its paralog EfpL (YeiP) differentially control translation of proline-containing sequences. Nat Commun 2024; 15:10465. [PMID: 39622818 PMCID: PMC11611912 DOI: 10.1038/s41467-024-54556-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 11/13/2024] [Indexed: 12/06/2024] Open
Abstract
Polyproline sequences are deleterious to cells because they stall ribosomes. In bacteria, EF-P plays an important role in overcoming such polyproline sequence-induced ribosome stalling. Additionally, numerous bacteria possess an EF-P paralog called EfpL (also known as YeiP) of unknown function. Here, we functionally and structurally characterize EfpL from Escherichia coli and demonstrate its role in the translational stress response. Through ribosome profiling, we analyze the EfpL arrest motif spectrum and find additional sequences beyond the canonical polyproline motifs that both EF-P and EfpL can resolve. Notably, the two factors can also induce pauses. We further report that EfpL can sense the metabolic state of the cell via lysine acylation. Overall, our work characterizes the role of EfpL in ribosome rescue at proline-containing sequences, and provides evidence that co-occurrence of EF-P and EfpL is an evolutionary driver for higher bacterial growth rates.
Collapse
Affiliation(s)
- Alina Sieber
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Marina Parr
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Julian von Ehr
- Institute for Molecular Biosciences and Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Frankfurt, Germany
- IMPRS on Cellular Biophysics, Frankfurt, Germany
| | - Karthikeyan Dhamotharan
- Institute for Molecular Biosciences and Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Frankfurt, Germany
| | - Pavel Kielkowski
- Department of Chemistry, Institut für Chemische Epigenetik (ICEM), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tess Brewer
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Anna Schäpers
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Ralph Krafczyk
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Fei Qi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Andreas Schlundt
- Institute for Molecular Biosciences and Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Frankfurt, Germany
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Dmitrij Frishman
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Jürgen Lassak
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.
| |
Collapse
|
9
|
Updegrove TB, Delerue T, Anantharaman V, Cho H, Chan C, Nipper T, Choo-Wosoba H, Jenkins LM, Zhang L, Su Y, Shroff H, Chen J, Bewley CA, Aravind L, Ramamurthi KS. Altruistic feeding and cell-cell signaling during bacterial differentiation actively enhance phenotypic heterogeneity. SCIENCE ADVANCES 2024; 10:eadq0791. [PMID: 39423260 PMCID: PMC11488536 DOI: 10.1126/sciadv.adq0791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/12/2024] [Indexed: 10/21/2024]
Abstract
Starvation triggers bacterial spore formation, a committed differentiation program that transforms a vegetative cell into a dormant spore. Cells in a population enter sporulation nonuniformly to secure against the possibility that favorable growth conditions, which put sporulation-committed cells at a disadvantage, may resume. This heterogeneous behavior is initiated by a passive mechanism: stochastic activation of a master transcriptional regulator. Here, we identify a cell-cell communication pathway containing the proteins ShfA (YabQ) and ShfP (YvnB) that actively promotes phenotypic heterogeneity, wherein Bacillus subtilis cells that start sporulating early use a calcineurin-like phosphoesterase to release glycerol, which simultaneously acts as a signaling molecule and a nutrient to delay nonsporulating cells from entering sporulation. This produced a more diverse population that was better poised to exploit a sudden influx of nutrients compared to those generating heterogeneity via stochastic gene expression alone. Although conflict systems are prevalent among microbes, genetically encoded cooperative behavior in unicellular organisms can evidently also boost inclusive fitness.
Collapse
Affiliation(s)
- Taylor B. Updegrove
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thomas Delerue
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vivek Anantharaman
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Hyomoon Cho
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Carissa Chan
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thomas Nipper
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hyoyoung Choo-Wosoba
- Office of Collaborative Biostatistics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lisa M. Jenkins
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lixia Zhang
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
| | - Yijun Su
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
- Janelia Farm Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Hari Shroff
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
- Janelia Farm Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Jiji Chen
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
| | - Carole A. Bewley
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - L. Aravind
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Kumaran S. Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
10
|
Ikeda H, Maeda S. Characterization of Escherichia coli Persisters from Biofilm Culture: Multiple Dormancy Levels and Multigenerational Memory in Formation. Microorganisms 2024; 12:1888. [PMID: 39338564 PMCID: PMC11434456 DOI: 10.3390/microorganisms12091888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Persister cells (PCs), a subpopulation occurring within normal cells, exhibit a transient tolerance to antibiotics because of their dormant state. PCs are categorized into two types: type I PCs, which emerge during the stationary phase, and type II PCs, which emerge during the logarithmic phase. Using the conventional colony-forming method, we previously demonstrated that type I PCs of Escherichia coli form more frequently in air-solid biofilm culture than in liquid culture. In the current study, we modified a cell filamentation method as a more efficient and rapid alternative for quantifying PCs. This modified method yielded results consistent with those of the conventional method with 103-104 times higher sensitivity and less detection time, within several hours, and further revealed the existence of multiple levels of type I PCs, including a substantial number of deeply dormant cells. This study also discovered a potential epigenetic memory mechanism, spanning several generations (four or six cell divisions), which influences type II PC formation based on prior biofilm experience in E. coli.
Collapse
Affiliation(s)
| | - Sumio Maeda
- Graduate School of Humanities and Sciences, Nara Women’s University, Kitauoya-nishimachi, Nara 630-8506, Japan
| |
Collapse
|
11
|
Gonçalves Pereira J, Fernandes J, Mendes T, Gonzalez FA, Fernandes SM. Artificial Intelligence to Close the Gap between Pharmacokinetic/Pharmacodynamic Targets and Clinical Outcomes in Critically Ill Patients: A Narrative Review on Beta Lactams. Antibiotics (Basel) 2024; 13:853. [PMID: 39335027 PMCID: PMC11428226 DOI: 10.3390/antibiotics13090853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Antimicrobial dosing can be a complex challenge. Although a solid rationale exists for a link between antibiotic exposure and outcome, conflicting data suggest a poor correlation between pharmacokinetic/pharmacodynamic targets and infection control. Different reasons may lead to this discrepancy: poor tissue penetration by β-lactams due to inflammation and inadequate tissue perfusion; different bacterial response to antibiotics and biofilms; heterogeneity of the host's immune response and drug metabolism; bacterial tolerance and acquisition of resistance during therapy. Consequently, either a fixed dose of antibiotics or a fixed target concentration may be doomed to fail. The role of biomarkers in understanding and monitoring host response to infection is also incompletely defined. Nowadays, with the ever-growing stream of data collected in hospitals, utilizing the most efficient analytical tools may lead to better personalization of therapy. The rise of artificial intelligence and machine learning has allowed large amounts of data to be rapidly accessed and analyzed. These unsupervised learning models can apprehend the data structure and identify homogeneous subgroups, facilitating the individualization of medical interventions. This review aims to discuss the challenges of β-lactam dosing, focusing on its pharmacodynamics and the new challenges and opportunities arising from integrating machine learning algorithms to personalize patient treatment.
Collapse
Affiliation(s)
- João Gonçalves Pereira
- Grupo de Investigação e Desenvolvimento em Infeção e Sépsis, Clínica Universitária de Medicina Intensiva, Faculdade de Medicina, Universidade de Lisboa, 1649-004 Lisbon, Portugal
- Serviço de Medicina Intensiva, Hospital Vila Franca de Xira, 2600-009 Vila Franca de Xira, Portugal
| | - Joana Fernandes
- Grupo de Investigação e Desenvolvimento em Infeção e Sépsis, Serviço de Medicina Intensiva, Centro Hospitalar de Trás-os-Montes e Alto Douro, 5000-508 Vila Real, Portugal
| | - Tânia Mendes
- Serviço de Medicina Interna, Hospital Vila Franca de Xira, 2600-009 Vila Franca de Xira, Portugal
| | - Filipe André Gonzalez
- Serviço de Medicina Intensiva, Hospital Garcia De Orta, Clínica Universitária de Medicina Intensiva, Faculdade de Medicina, Universidade de Lisboa, 1649-004 Lisbon, Portugal
| | - Susana M Fernandes
- Grupo de Investigação e Desenvolvimento em Infeção e Sépsis, Serviço de Medicina Intensiva, Hospital Santa Maria, Clínica Universitária de Medicina Intensiva, Faculdade de Medicina, Universidade de Lisboa, 1649-004 Lisbon, Portugal
| |
Collapse
|
12
|
Chong TN, Shapiro L. Bacterial cell differentiation enables population level survival strategies. mBio 2024; 15:e0075824. [PMID: 38771034 PMCID: PMC11237816 DOI: 10.1128/mbio.00758-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Clonal reproduction of unicellular organisms ensures the stable inheritance of genetic information. However, this means of reproduction lacks an intrinsic basis for genetic variation, other than spontaneous mutation and horizontal gene transfer. To make up for this lack of genetic variation, many unicellular organisms undergo the process of cell differentiation to achieve phenotypic heterogeneity within isogenic populations. Cell differentiation is either an inducible or obligate program. Induced cell differentiation can occur as a response to a stimulus, such as starvation or host cell invasion, or it can be a stochastic process. In contrast, obligate cell differentiation is hardwired into the organism's life cycle. Whether induced or obligate, bacterial cell differentiation requires the activation of a signal transduction pathway that initiates a global change in gene expression and ultimately results in a morphological change. While cell differentiation is considered a hallmark in the development of multicellular organisms, many unicellular bacteria utilize this process to implement survival strategies. In this review, we describe well-characterized cell differentiation programs to highlight three main survival strategies used by bacteria capable of differentiation: (i) environmental adaptation, (ii) division of labor, and (iii) bet-hedging.
Collapse
Affiliation(s)
- Trisha N Chong
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Lucy Shapiro
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
13
|
Zhu M, Dai X. Shaping of microbial phenotypes by trade-offs. Nat Commun 2024; 15:4238. [PMID: 38762599 PMCID: PMC11102524 DOI: 10.1038/s41467-024-48591-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024] Open
Abstract
Growth rate maximization is an important fitness strategy for microbes. However, the wide distribution of slow-growing oligotrophic microbes in ecosystems suggests that rapid growth is often not favored across ecological environments. In many circumstances, there exist trade-offs between growth and other important traits (e.g., adaptability and survival) due to physiological and proteome constraints. Investments on alternative traits could compromise growth rate and microbes need to adopt bet-hedging strategies to improve fitness in fluctuating environments. Here we review the mechanistic role of trade-offs in controlling bacterial growth and further highlight its ecological implications in driving the emergences of many important ecological phenomena such as co-existence, population heterogeneity and oligotrophic/copiotrophic lifestyles.
Collapse
Affiliation(s)
- Manlu Zhu
- State Key Laboratory of Green Pesticide, School of Life Sciences, Central China Normal University, Wuhan, PR China
| | - Xiongfeng Dai
- State Key Laboratory of Green Pesticide, School of Life Sciences, Central China Normal University, Wuhan, PR China.
| |
Collapse
|
14
|
Vedel S, Košmrlj A, Nunns H, Trusina A. Synergistic and antagonistic effects of deterministic and stochastic cell-cell variations. Phys Rev E 2024; 109:054404. [PMID: 38907460 DOI: 10.1103/physreve.109.054404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/05/2024] [Indexed: 06/24/2024]
Abstract
By diversifying, cells in a clonal population can together overcome the limits of individuals. Diversity in single-cell growth rates allows the population to survive environmental stresses, such as antibiotics, and grow faster than the undiversified population. These functional cell-cell variations can arise stochastically, from noise in biochemical reactions, or deterministically, by asymmetrically distributing damaged components. While each of the mechanisms is well understood, the effect of the combined mechanisms is unclear. To evaluate the contribution of the deterministic component we developed a mathematical model by mapping the growing population to the Ising model. To analyze the combined effects of stochastic and deterministic contributions we introduced the analytical results of the Ising-mapping into an Euler-Lotka framework. Model results, confirmed by simulations and experimental data, show that deterministic cell-cell variations increase near-linearly with stress. As a consequence, we predict that the gain in population doubling time from cell-cell variations is primarily stochastic at low stress but may cross over to deterministic at higher stresses. Furthermore, we find that while the deterministic component minimizes population damage, stochastic variations antagonize this effect. Together our results may help identifying stress-tolerant pathogenic cells and thus inspire novel antibiotic strategies.
Collapse
Affiliation(s)
- Søren Vedel
- Niels Bohr International Academy, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen, Denmark
- Center for Models of Life, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen, Denmark
| | - Andrej Košmrlj
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA
- Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, USA
| | - Harry Nunns
- Center for Models of Life, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen, Denmark
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, USA
| | - Ala Trusina
- Center for Models of Life, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen, Denmark
| |
Collapse
|
15
|
Gericke GS. A Unifying Hypothesis for the Genome Dynamics Proposed to Underlie Neuropsychiatric Phenotypes. Genes (Basel) 2024; 15:471. [PMID: 38674405 PMCID: PMC11049865 DOI: 10.3390/genes15040471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
The sheer number of gene variants and the extent of the observed clinical and molecular heterogeneity recorded in neuropsychiatric disorders (NPDs) could be due to the magnified downstream effects initiated by a smaller group of genomic higher-order alterations in response to endogenous or environmental stress. Chromosomal common fragile sites (CFS) are functionally linked with microRNAs, gene copy number variants (CNVs), sub-microscopic deletions and duplications of DNA, rare single-nucleotide variants (SNVs/SNPs), and small insertions/deletions (indels), as well as chromosomal translocations, gene duplications, altered methylation, microRNA and L1 transposon activity, and 3-D chromosomal topology characteristics. These genomic structural features have been linked with various NPDs in mostly isolated reports and have usually only been viewed as areas harboring potential candidate genes of interest. The suggestion to use a higher level entry point (the 'fragilome' and associated features) activated by a central mechanism ('stress') for studying NPD genetics has the potential to unify the existing vast number of different observations in this field. This approach may explain the continuum of gene findings distributed between affected and unaffected individuals, the clustering of NPD phenotypes and overlapping comorbidities, the extensive clinical and molecular heterogeneity, and the association with certain other medical disorders.
Collapse
|
16
|
Updegrove TB, Delerue T, Anantharaman V, Cho H, Chan C, Nipper T, Choo-Wosoba H, Jenkins LM, Zhang L, Su Y, Shroff H, Chen J, Bewley CA, Aravind L, Ramamurthi KS. Altruistic feeding and cell-cell signaling during bacterial differentiation actively enhance phenotypic heterogeneity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.587046. [PMID: 38903092 PMCID: PMC11188070 DOI: 10.1101/2024.03.27.587046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Starvation triggers bacterial spore formation, a committed differentiation program that transforms a vegetative cell into a dormant spore. Cells in a population enter sporulation non-uniformly to secure against the possibility that favorable growth conditions, which puts sporulation-committed cells at a disadvantage, may resume. This heterogeneous behavior is initiated by a passive mechanism: stochastic activation of a master transcriptional regulator. Here, we identify a cell-cell communication pathway that actively promotes phenotypic heterogeneity, wherein Bacillus subtilis cells that start sporulating early utilize a calcineurin-like phosphoesterase to release glycerol, which simultaneously acts as a signaling molecule and a nutrient to delay non-sporulating cells from entering sporulation. This produced a more diverse population that was better poised to exploit a sudden influx of nutrients compared to those generating heterogeneity via stochastic gene expression alone. Although conflict systems are prevalent among microbes, genetically encoded cooperative behavior in unicellular organisms can evidently also boost inclusive fitness.
Collapse
Affiliation(s)
- Taylor B. Updegrove
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thomas Delerue
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Hyomoon Cho
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Carissa Chan
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thomas Nipper
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hyoyoung Choo-Wosoba
- Biostatistics and Data Management Support Section, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lisa M. Jenkins
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lixia Zhang
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
| | - Yijun Su
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
- Janelia Farm Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Hari Shroff
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
- Janelia Farm Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Jiji Chen
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
| | - Carole A. Bewley
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Kumaran S. Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
17
|
Tang S, Liu Y, Zhu J, Cheng X, Liu L, Hammerschmidt K, Zhou J, Cai Z. Bet hedging in a unicellular microalga. Nat Commun 2024; 15:2063. [PMID: 38453919 PMCID: PMC10920660 DOI: 10.1038/s41467-024-46297-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
Understanding how organisms have adapted to persist in unpredictable environments is a fundamental goal in biology. Bet hedging, an evolutionary adaptation observed from microbes to humans, facilitates reproduction and population persistence in randomly fluctuating environments. Despite its prevalence, empirical evidence in microalgae, crucial primary producers and carbon sinks, is lacking. Here, we report a bet-hedging strategy in the unicellular microalga Haematococcus pluvialis. We show that isogenic populations reversibly diversify into heterophenotypic mobile and non-mobile cells independently of environmental conditions, likely driven by stochastic gene expression. Mobile cells grow faster but are stress-sensitive, while non-mobile cells prioritise stress resistance over growth. This is due to shifts from growth-promoting activities (cell division, photosynthesis) to resilience-promoting processes (thickened cell wall, cell enlargement, aggregation, accumulation of antioxidant and energy-storing compounds). Our results provide empirical evidence for bet hedging in a microalga, indicating the potential for adaptation to current and future environmental conditions and consequently conservation of ecosystem functions.
Collapse
Affiliation(s)
- Si Tang
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, Guangdong Province, PR China
| | - Yaqing Liu
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, Guangdong Province, PR China
| | - Jianming Zhu
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, Guangdong Province, PR China
| | - Xueyu Cheng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, Guangdong Province, PR China
| | - Lu Liu
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, Guangdong Province, PR China
| | | | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, Guangdong Province, PR China.
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, Guangdong Province, PR China.
- Technology Innovation Center for Marine Ecology and Human Factor Assessment of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, Guangdong Province, PR China.
| |
Collapse
|
18
|
Sato A, Mihirogi Y, Wood C, Suzuki Y, Truebano M, Bishop J. Heterogeneity in maternal mRNAs within clutches of eggs in response to thermal stress during the embryonic stage. BMC Ecol Evol 2024; 24:21. [PMID: 38347459 PMCID: PMC10860308 DOI: 10.1186/s12862-024-02203-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 01/11/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND The origin of variation is of central interest in evolutionary biology. Maternal mRNAs govern early embryogenesis in many animal species, and we investigated the possibility that heterogeneity in maternal mRNA provisioning of eggs can be modulated by environmental stimuli. RESULTS We employed two sibling species of the ascidian Ciona, called here types A and B, that are adapted to different temperature regimes and can be hybridized. Previous study showed that hybrids using type B eggs had higher susceptibility to thermal stress than hybrids using type A eggs. We conducted transcriptome analyses of multiple single eggs from crosses using eggs of the different species to compare the effects of maternal thermal stress on heterogeneity in egg provisioning, and followed the effects across generations. We found overall decreases of heterogeneity of egg maternal mRNAs associated with maternal thermal stress. When the eggs produced by the F1 AB generation were crossed with type B sperm and the progeny ('ABB' generation) reared unstressed until maturation, the overall heterogeneity of the eggs produced was greater in a clutch from an individual with a heat-stressed mother compared to one from a non-heat-stressed mother. By examining individual genes, we found no consistent overall effect of thermal stress on heterogeneity of expression in genes involved in developmental buffering. In contrast, heterogeneity of expression in signaling molecules was directly affected by thermal stress. CONCLUSIONS Due to the absence of batch replicates and variation in the number of reads obtained, our conclusions are very limited. However, contrary to the predictions of bet-hedging, the results suggest that maternal thermal stress at the embryo stage is associated with reduced heterogeneity of maternal mRNA provision in the eggs subsequently produced by the stressed individual, but there is then a large increase in heterogeneity in eggs of the next generation, although itself unstressed. Despite its limitations, our study presents a proof of concept, identifying a model system, experimental approach and analytical techniques capable of providing a significant advance in understanding the impact of maternal environment on developmental heterogeneity.
Collapse
Affiliation(s)
- Atsuko Sato
- Department of Biology, Ochanomizu University, Otsuka, Bunkyo-Ku, Tokyo, 112-8610, Japan.
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK.
- Human Life Innovation Center, Ochanomizu University, Otsuka, Bunkyo-Ku, Tokyo, 112-8610, Japan.
- Graduate School of Life Sciences, Tohoku University, 6-3, Aramaki Aza Aoba, Aoba-Ku, Sendai, 980-8578, Japan.
| | - Yukie Mihirogi
- Department of Biology, Ochanomizu University, Otsuka, Bunkyo-Ku, Tokyo, 112-8610, Japan
| | - Christine Wood
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
| | - Yutaka Suzuki
- Graduate School of Frontier Sciences, University of Tokyo, Kashiwano-Ha, Chiba, 277-8561, Japan
| | - Manuela Truebano
- Marine Biology and Ecology Research Center, School of Biological and Marine Sciences, Plymouth University, Drake Circus, Plymouth, PL4 8AA, UK
| | - John Bishop
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
| |
Collapse
|
19
|
Belcher LJ, Dewar AE, Hao C, Ghoul M, West SA. Signatures of kin selection in a natural population of the bacteria Bacillus subtilis. Evol Lett 2023; 7:315-330. [PMID: 37829498 PMCID: PMC10565896 DOI: 10.1093/evlett/qrad029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/14/2023] [Accepted: 07/07/2023] [Indexed: 10/14/2023] Open
Abstract
Laboratory experiments have suggested that bacteria perform a range of cooperative behaviors, which are favored because they are directed toward relatives (kin selection). However, there is a lack of evidence for cooperation and kin selection in natural bacterial populations. Molecular population genetics offers a promising method to study natural populations because the theory predicts that kin selection will lead to relaxed selection, which will result in increased polymorphism and divergence at cooperative genes. Examining a natural population of Bacillus subtilis, we found consistent evidence that putatively cooperative traits have higher polymorphism and greater divergence than putatively private traits expressed at the same rate. In addition, we were able to eliminate alternative explanations for these patterns and found more deleterious mutations in genes controlling putatively cooperative traits. Overall, our results suggest that cooperation is favored by kin selection, with an average relatedness of r = .79 between interacting individuals.
Collapse
Affiliation(s)
| | - Anna E Dewar
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Chunhui Hao
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Melanie Ghoul
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Stuart A West
- Department of Biology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
20
|
Mortier J, Cambré A, Schack S, Christie G, Aertsen A. Impact of Protein Aggregates on Sporulation and Germination of Bacillus subtilis. Microorganisms 2023; 11:2365. [PMID: 37764209 PMCID: PMC10536567 DOI: 10.3390/microorganisms11092365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
In order to improve our general understanding of protein aggregate (PA) management and impact in bacteria, different model systems and processes need to be investigated. As such, we developed an inducible synthetic PA model system to investigate PA dynamics in the Gram-positive model organism Bacillus subtilis. This confirmed previous observations that PA segregation in this organism seems to follow the Escherichia coli paradigm of nucleoid occlusion governing polar localization and asymmetric segregation during vegetative growth. However, our findings also revealed that PAs can readily persist throughout the entire sporulation process after encapsulation in the forespore during sporulation. Moreover, no deleterious effects of PA presence on sporulation, germination and spore survival against heat or UV stress could be observed. Our findings therefore indicate that the sporulation process is remarkably robust against perturbations by PAs and misfolded proteins.
Collapse
Affiliation(s)
- Julien Mortier
- Department of Microbial and Molecular Systems, KU Leuven, B-3000 Leuven, Belgium; (J.M.); (A.C.)
| | - Alexander Cambré
- Department of Microbial and Molecular Systems, KU Leuven, B-3000 Leuven, Belgium; (J.M.); (A.C.)
| | - Sina Schack
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK; (S.S.); (G.C.)
| | - Graham Christie
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK; (S.S.); (G.C.)
| | - Abram Aertsen
- Department of Microbial and Molecular Systems, KU Leuven, B-3000 Leuven, Belgium; (J.M.); (A.C.)
| |
Collapse
|
21
|
Yannarell SM, Beaudoin ES, Talley HS, Schoenborn AA, Orr G, Anderton CR, Chrisler WB, Shank EA. Extensive cellular multi-tasking within Bacillus subtilis biofilms. mSystems 2023; 8:e0089122. [PMID: 37527273 PMCID: PMC10469600 DOI: 10.1128/msystems.00891-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/08/2023] [Indexed: 08/03/2023] Open
Abstract
Bacillus subtilis is a soil-dwelling bacterium that can form biofilms, or communities of cells surrounded by a self-produced extracellular matrix. In biofilms, genetically identical cells often exhibit heterogeneous transcriptional phenotypes, so that subpopulations of cells carry out essential yet costly cellular processes that allow the entire population to thrive. Surprisingly, the extent of phenotypic heterogeneity and the relationships between subpopulations of cells within biofilms of even in well-studied bacterial systems like B. subtilis remains largely unknown. To determine relationships between these subpopulations of cells, we created 182 strains containing pairwise combinations of fluorescent transcriptional reporters for the expression state of 14 different genes associated with potential cellular subpopulations. We determined the spatial organization of the expression of these genes within biofilms using confocal microscopy, which revealed that many reporters localized to distinct areas of the biofilm, some of which were co-localized. We used flow cytometry to quantify reporter co-expression, which revealed that many cells "multi-task," simultaneously expressing two reporters. These data indicate that prior models describing B. subtilis cells as differentiating into specific cell types, each with a specific task or function, were oversimplified. Only a few subpopulations of cells, including surfactin and plipastatin producers, as well as sporulating and competent cells, appear to have distinct roles based on the set of genes examined here. These data will provide us with a framework with which to further study and make predictions about the roles of diverse cellular phenotypes in B. subtilis biofilms. IMPORTANCE Many microbes differentiate, expressing diverse phenotypes to ensure their survival in various environments. However, studies on phenotypic differentiation have typically examined only a few phenotypes at one time, thus limiting our knowledge about the extent of differentiation and phenotypic overlap in the population. We investigated the spatial organization and gene expression relationships for genes important in B. subtilis biofilms. In doing so, we mapped spatial gene expression patterns and expanded the number of cell populations described in the B. subtilis literature. It is likely that other bacteria also display complex differentiation patterns within their biofilms. Studying the extent of cellular differentiation in other microbes may be important when designing therapies for disease-causing bacteria, where studying only a single phenotype may be masking underlying phenotypic differentiation relevant to infection outcomes.
Collapse
Affiliation(s)
- Sarah M. Yannarell
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Eric S. Beaudoin
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Hunter S. Talley
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Alexi A. Schoenborn
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Galya Orr
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Christopher R. Anderton
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - William B. Chrisler
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Elizabeth A. Shank
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
22
|
Biondo M, Singh A, Caselle M, Osella M. Out-of-equilibrium gene expression fluctuations in the presence of extrinsic noise. Phys Biol 2023; 20:10.1088/1478-3975/acea4e. [PMID: 37489881 PMCID: PMC10680095 DOI: 10.1088/1478-3975/acea4e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/25/2023] [Indexed: 07/26/2023]
Abstract
Cell-to-cell variability in protein concentrations is strongly affected by extrinsic noise, especially for highly expressed genes. Extrinsic noise can be due to fluctuations of several possible cellular factors connected to cell physiology and to the level of key enzymes in the expression process. However, how to identify the predominant sources of extrinsic noise in a biological system is still an open question. This work considers a general stochastic model of gene expression with extrinsic noise represented as fluctuations of the different model rates, and focuses on the out-of-equilibrium expression dynamics. Combining analytical calculations with stochastic simulations, we characterize how extrinsic noise shapes the protein variability during gene activation or inactivation, depending on the prevailing source of extrinsic variability, on its intensity and timescale. In particular, we show that qualitatively different noise profiles can be identified depending on which are the fluctuating parameters. This indicates an experimentally accessible way to pinpoint the dominant sources of extrinsic noise using time-coarse experiments.
Collapse
Affiliation(s)
- Marta Biondo
- Department of Physics, University of Turin and INFN, via P. Giuria 1, I-10125 Turin, Italy
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, Department of Biomedical Engineering, Department of Mathematical Sciences, Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19716, United States of America
| | - Michele Caselle
- Department of Physics, University of Turin and INFN, via P. Giuria 1, I-10125 Turin, Italy
| | - Matteo Osella
- Department of Physics, University of Turin and INFN, via P. Giuria 1, I-10125 Turin, Italy
| |
Collapse
|
23
|
Endres K, Friedland K. Talk to Me-Interplay between Mitochondria and Microbiota in Aging. Int J Mol Sci 2023; 24:10818. [PMID: 37445995 DOI: 10.3390/ijms241310818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
The existence of mitochondria in eukaryotic host cells as a remnant of former microbial organisms has been widely accepted, as has their fundamental role in several diseases and physiological aging. In recent years, it has become clear that the health, aging, and life span of multicellular hosts are also highly dependent on the still-residing microbiota, e.g., those within the intestinal system. Due to the common evolutionary origin of mitochondria and these microbial commensals, it is intriguing to investigate if there might be a crosstalk based on preserved common properties. In the light of rising knowledge on the gut-brain axis, such crosstalk might severely affect brain homeostasis in aging, as neuronal tissue has a high energy demand and low tolerance for according functional decline. In this review, we summarize what is known about the impact of both mitochondria and the microbiome on the host's aging process and what is known about the aging of both entities. For a long time, bacteria were assumed to be immortal; however, recent evidence indicates their aging and similar observations have been made for mitochondria. Finally, we present pathways by which mitochondria are affected by microbiota and give information about therapeutic anti-aging approaches that are based on current knowledge.
Collapse
Affiliation(s)
- Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany
| | - Kristina Friedland
- Department of Pharmacology and Toxicology, Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, 55128 Mainz, Germany
| |
Collapse
|
24
|
Guerrero M. GG. Sporulation, Structure Assembly, and Germination in the Soil Bacterium Bacillus thuringiensis: Survival and Success in the Environment and the Insect Host. MICROBIOLOGY RESEARCH 2023. [DOI: 10.3390/microbiolres14020035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
Bacillus thuringiensis (Bt) is a rod-shaped, Gram-positive soil bacterium that belongs to the phylum Firmicutes and the genus Bacillus. It is a spore-forming bacterium. During sporulation, it produces a wide range of crystalline proteins that are toxic to different orders of insects. Sporulation, structure assembly, and germination are essential stages in the cell cycle of B. thuringiensis. The majority of studies on these issues have focused on the model organism Bacillus subtilis, followed by Bacillus cereus and Bacillus anthracis. The machinery for sporulation and germination extrapolated to B. thuringiensis. However, in the light of recent findings concerning the role of the sporulation proteins (SPoVS), the germination receptors (Gr), and the cortical enzymes in Bt, the theory strengthened that conservation in sporulation, structure assembly, and germination programs drive the survival and success of B. thuringiensis in the environment and the insect host. In the present minireview, the latter pinpointed and reviewed.
Collapse
Affiliation(s)
- Gloria G. Guerrero M.
- Unidad Académica de Ciencias Biológicas, Laboratorio de Immunobiología, Universidad Autónoma de Zacatecas, Av. Preparatoria S/N, Col. Agronomicas, Zacatecas 98066, Mexico
| |
Collapse
|
25
|
Choudhary D, Lagage V, Foster KR, Uphoff S. Phenotypic heterogeneity in the bacterial oxidative stress response is driven by cell-cell interactions. Cell Rep 2023; 42:112168. [PMID: 36848288 PMCID: PMC10935545 DOI: 10.1016/j.celrep.2023.112168] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/14/2022] [Accepted: 02/09/2023] [Indexed: 02/27/2023] Open
Abstract
Genetically identical bacterial cells commonly display different phenotypes. This phenotypic heterogeneity is well known for stress responses, where it is often explained as bet hedging against unpredictable environmental threats. Here, we explore phenotypic heterogeneity in a major stress response of Escherichia coli and find it has a fundamentally different basis. We characterize the response of cells exposed to hydrogen peroxide (H2O2) stress in a microfluidic device under constant growth conditions. A machine-learning model reveals that phenotypic heterogeneity arises from a precise and rapid feedback between each cell and its immediate environment. Moreover, we find that the heterogeneity rests upon cell-cell interaction, whereby cells shield each other from H2O2 via their individual stress responses. Our work shows how phenotypic heterogeneity in bacterial stress responses can emerge from short-range cell-cell interactions and result in a collective phenotype that protects a large proportion of the population.
Collapse
Affiliation(s)
- Divya Choudhary
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - Kevin R Foster
- Department of Biochemistry, University of Oxford, Oxford, UK; Department of Biology, University of Oxford, Oxford, UK
| | - Stephan Uphoff
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
26
|
Molinero N, Antón-Fernández A, Hernández F, Ávila J, Bartolomé B, Moreno-Arribas MV. Gut Microbiota, an Additional Hallmark of Human Aging and Neurodegeneration. Neuroscience 2023; 518:141-161. [PMID: 36893982 DOI: 10.1016/j.neuroscience.2023.02.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 02/10/2023] [Accepted: 02/19/2023] [Indexed: 03/09/2023]
Abstract
Gut microbiota represents a diverse and dynamic population of microorganisms harbouring the gastrointestinal tract, which influences host health and disease. Bacterial colonization of the gastrointestinal tract begins at birth and changes throughout life, with age being one of the conditioning factors for its vitality. Aging is also a primary risk factor for most neurodegenerative diseases. Among them, Alzheimeŕs disease (AD) is probably the one where its association with a state of dysbiosis of the gut microbiota has been most studied. In particular, intestinal microbial-derived metabolites have been associated with β-amyloid formation and brain amyloid deposition, tau phosphorylation, as well as neuroinflammation in AD patients. Moreover, it has been suggested that some oral bacteria increase the risk of developing AD. However, the causal connections among microbiome, amyloid-tau interaction, and neurodegeneration need to be addressed. This paper summarizes the emerging evidence in the literature regarding the link between the oral and gut microbiome and neurodegeneration with a focus on AD. Taxonomic features of bacteria as well as microbial functional alterations associated with AD biomarkers are the main points reviewed. Data from clinical studies as well as the link between microbiome and clinical determinants of AD are particularly emphasized. Further, relationships between gut microbiota and age-dependent epigenetic changes and other neurological disorders are also described. Together, all this evidence suggests that, in some sense, gut microbiota can be seen as an additional hallmark of human aging and neurodegeneration.
Collapse
Affiliation(s)
- Natalia Molinero
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM. c/ Nicolás Cabrera, 9. 28049 Madrid, Spain
| | - Alejandro Antón-Fernández
- Centro de Biología Molecular Severo Ochoa (CBMSO), CSIC-UAM. c/ Nicolás Cabrera, 1. 28049 Madrid, Spain
| | - Félix Hernández
- Centro de Biología Molecular Severo Ochoa (CBMSO), CSIC-UAM. c/ Nicolás Cabrera, 1. 28049 Madrid, Spain
| | - Jesús Ávila
- Centro de Biología Molecular Severo Ochoa (CBMSO), CSIC-UAM. c/ Nicolás Cabrera, 1. 28049 Madrid, Spain
| | - Begoña Bartolomé
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM. c/ Nicolás Cabrera, 9. 28049 Madrid, Spain
| | - M Victoria Moreno-Arribas
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM. c/ Nicolás Cabrera, 9. 28049 Madrid, Spain.
| |
Collapse
|
27
|
The Slowdown of Growth Rate Controls the Single-Cell Distribution of Biofilm Matrix Production via an SinI-SinR-SlrR Network. mSystems 2023; 8:e0062222. [PMID: 36786593 PMCID: PMC10134886 DOI: 10.1128/msystems.00622-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
In Bacillus subtilis, master regulator Spo0A controls several cell-differentiation pathways. Under moderate starvation, phosphorylated Spo0A (Spo0A~P) induces biofilm formation by indirectly activating genes controlling matrix production in a subpopulation of cells via an SinI-SinR-SlrR network. Under severe starvation, Spo0A~P induces sporulation by directly and indirectly regulating sporulation gene expression. However, what determines the heterogeneity of individual cell fates is not fully understood. In particular, it is still unclear why, despite being controlled by a single master regulator, biofilm matrix production and sporulation seem mutually exclusive on a single-cell level. In this work, with mathematical modeling, we showed that the fluctuations in the growth rate and the intrinsic noise amplified by the bistability in the SinI-SinR-SlrR network could explain the single-cell distribution of matrix production. Moreover, we predicted an incoherent feed-forward loop; the decrease in the cellular growth rate first activates matrix production by increasing in Spo0A phosphorylation level but then represses it via changing the relative concentrations of SinR and SlrR. Experimental data provide evidence to support model predictions. In particular, we demonstrate how the degree to which matrix production and sporulation appear mutually exclusive is affected by genetic perturbations. IMPORTANCE The mechanisms of cell-fate decisions are fundamental to our understanding of multicellular organisms and bacterial communities. However, even for the best-studied model systems we still lack a complete picture of how phenotypic heterogeneity of genetically identical cells is controlled. Here, using B. subtilis as a model system, we employ a combination of mathematical modeling and experiments to explain the population-level dynamics and single-cell level heterogeneity of matrix gene expression. The results demonstrate how the two cell fates, biofilm matrix production and sporulation, can appear mutually exclusive without explicitly inhibiting one another. Such a mechanism could be used in a wide range of other biological systems.
Collapse
|
28
|
Singh A, Saint-Antoine M. Probing transient memory of cellular states using single-cell lineages. Front Microbiol 2023; 13:1050516. [PMID: 36824587 PMCID: PMC9942930 DOI: 10.3389/fmicb.2022.1050516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/22/2022] [Indexed: 02/10/2023] Open
Abstract
The inherent stochasticity in the gene product levels can drive single cells within an isoclonal population to different phenotypic states. The dynamic nature of this intercellular variation, where individual cells can transition between different states over time, makes it a particularly hard phenomenon to characterize. We reviewed recent progress in leveraging the classical Luria-Delbrück experiment to infer the transient heritability of the cellular states. Similar to the original experiment, individual cells were first grown into cell colonies, and then, the fraction of cells residing in different states was assayed for each colony. We discuss modeling approaches for capturing dynamic state transitions in a growing cell population and highlight formulas that identify the kinetics of state switching from the extent of colony-to-colony fluctuations. The utility of this method in identifying multi-generational memory of the both expression and phenotypic states is illustrated across diverse biological systems from cancer drug resistance, reactivation of human viruses, and cellular immune responses. In summary, this fluctuation-based methodology provides a powerful approach for elucidating cell-state transitions from a single time point measurement, which is particularly relevant in situations where measurements lead to cell death (as in single-cell RNA-seq or drug treatment) or cause an irreversible change in cell physiology.
Collapse
Affiliation(s)
- Abhyudai Singh
- Departments of Electrical and Computer Engineering, Biomedical Engineering, Mathematical Sciences University of Delaware, Newark, DE, United States
| | | |
Collapse
|
29
|
Diez S, Hydorn M, Whalen A, Dworkin J. Crosstalk between guanosine nucleotides regulates cellular heterogeneity in protein synthesis during nutrient limitation. PLoS Genet 2022; 18:e1009957. [PMID: 35594298 PMCID: PMC9173625 DOI: 10.1371/journal.pgen.1009957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 06/07/2022] [Accepted: 04/24/2022] [Indexed: 11/26/2022] Open
Abstract
Phenotypic heterogeneity of microbial populations can facilitate survival in dynamic environments by generating sub-populations of cells that may have differential fitness in a future environment. Bacillus subtilis cultures experiencing nutrient limitation contain distinct sub-populations of cells exhibiting either comparatively high or low protein synthesis activity. This heterogeneity requires the production of phosphorylated guanosine nucleotides (pp)pGpp by three synthases: SasA, SasB, and RelA. Here we show that these enzymes differentially affect this bimodality: RelA and SasB are necessary to generate the sub-population of cells exhibiting low protein synthesis whereas SasA is necessary to generate cells exhibiting comparatively higher protein synthesis. Previously, it was reported that a RelA product allosterically activates SasB and we find that a SasA product competitively inhibits this activation. Finally, we provide in vivo evidence that this antagonistic interaction mediates the observed heterogeneity in protein synthesis. This work therefore identifies the mechanism underlying phenotypic heterogeneity in protein synthesis. Upon encountering conditions unfavorable to growth such as nutrient limitation, bacteria enter a quiescent phenotype that is mediated by group of guanosine nucleotides collectively known as (pp)pGpp. These nucleotides direct the down-regulation of energy intensive processes and are essential for a striking heterogeneity in protein synthesis observed during exit from rapid growth. Here, we show that a network of (pp)pGpp synthases is responsible for this heterogeneity and describe a mechanism that allows for the integration of multiple signals into the decision to down regulate the most energy intensive process in a cell.
Collapse
Affiliation(s)
- Simon Diez
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Molly Hydorn
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Abigail Whalen
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Jonathan Dworkin
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
30
|
Possible stochastic sex determination in Bursaphelenchus nematodes. Nat Commun 2022; 13:2574. [PMID: 35546147 PMCID: PMC9095866 DOI: 10.1038/s41467-022-30173-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 04/19/2022] [Indexed: 12/13/2022] Open
Abstract
Sex determination mechanisms evolve surprisingly rapidly, yet little is known in the large nematode phylum other than for Caenorhabditis elegans, which relies on chromosomal XX-XO sex determination and a dosage compensation mechanism. Here we analyze by sex-specific genome sequencing and genetic analysis sex determination in two fungal feeding/plant-parasitic Bursaphelenchus nematodes and find that their sex differentiation is more likely triggered by random, epigenetic regulation than by more well-known mechanisms of chromosomal or environmental sex determination. There is no detectable difference in male and female chromosomes, nor any linkage to sexual phenotype. Moreover, the protein sets of these nematodes lack genes involved in X chromosome dosage counting or compensation. By contrast, our genetic screen for sex differentiation mutants identifies a Bursaphelenchus ortholog of tra-1, the major output of the C. elegans sex determination cascade. Nematode sex determination pathways might have evolved by “bottom-up” accretion from the most downstream regulator, tra-1. In most species, sex is determined by genetic or environmental factors. Here, the authors present evidence that sex determination in Bursaphelenchus nematodes is instead likely to be regulated by a random, epigenetic mechanism.
Collapse
|
31
|
Cancer: More than a geneticist’s Pandora’s box. J Biosci 2022. [DOI: 10.1007/s12038-022-00254-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
The possible modes of microbial reproduction are fundamentally restricted by distribution of mass between parent and offspring. Proc Natl Acad Sci U S A 2022; 119:e2122197119. [PMID: 35294281 PMCID: PMC8944278 DOI: 10.1073/pnas.2122197119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cells and simple cell colonies reproduce by fragmenting their bodies into pieces. Produced newborns need to grow before they can reproduce again. How big a cell or a cell colony should grow? How many offspring should be produced? Should they be of equal size or diverse? We show that the simple fact that the immediate mass of offspring cannot exceed the mass of parents restricts possible answers to these questions. For example, our theory states that, when mass is conserved in the course of fragmentation, the evolutionarily optimal reproduction mode is fragmentation into exactly two, typically equal, parts. Our theory also shows conditions which promote evolution of asymmetric division or fragmentation into multiple pieces. Multiple modes of asexual reproduction are observed among microbial organisms in natural populations. These modes are not only subject to evolution, but may drive evolutionary competition directly through their impact on population growth rates. The most prominent transition between two such modes is the one from unicellularity to multicellularity. We present a model of the evolution of reproduction modes, where a parent organism fragments into smaller parts. While the size of an organism at fragmentation, the number of offspring, and their sizes may vary a lot, the combined mass of fragments is limited by the mass of the parent organism. We found that mass conservation can fundamentally limit the number of possible reproduction modes. This has important direct implications for microbial life: For unicellular species, the interplay between cell shape and kinetics of the cell growth implies that the largest and the smallest possible cells should be rod shaped rather than spherical. For primitive multicellular species, these considerations can explain why rosette cell colonies evolved a mechanistically complex binary split reproduction. Finally, we show that the loss of organism mass during sporulation can explain the macroscopic sizes of the formally unicellular microorganism Myxomycetes plasmodium. Our findings demonstrate that a number of seemingly unconnected phenomena observed in unrelated species may be different manifestations of the same underlying process.
Collapse
|
33
|
High-Throughput Time-Lapse Fluorescence Microscopy Screening for Heterogeneously Expressed Genes in Bacillus subtilis. Microbiol Spectr 2022; 10:e0204521. [PMID: 35171018 PMCID: PMC8849057 DOI: 10.1128/spectrum.02045-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Elucidating phenotypic heterogeneity in clonal bacterial populations is important for both the fundamental understanding of bacterial behavior and the synthetic engineering of bacteria in biotechnology. In this study, we present and validate a high-throughput and high-resolution time-lapse fluorescence microscopy-based strategy to easily and systematically screen for heterogeneously expressed genes in the Bacillus subtilis model bacterium. This screen allows detection of expression patterns at high spatial and temporal resolution, which often escape detection by other approaches, and can readily be extrapolated to other bacteria. A proof-of-concept screening in B. subtilis revealed both recognized and yet unrecognized heterogeneously expressed genes, thereby validating the approach. IMPORTANCE Differential gene expression among isogenic siblings often leads to phenotypic heterogeneity and the emergence of complex social behavior and functional capacities within clonal bacterial populations. Despite the importance of such features for both the fundamental understanding and synthetic engineering of bacterial behavior, approaches to systematically map such population heterogeneity are scarce. In this context, we have elaborated a new time-lapse fluorescence microscopy-based strategy to easily and systematically screen for such heterogeneously expressed genes in bacteria with high resolution and throughput. A proof-of-concept screening in the Bacillus subtilis model bacterium revealed both recognized and yet unrecognized heterogeneously expressed genes, thereby validating our approach.
Collapse
|
34
|
Vasilchenko NG, Prazdnova EV, Lewitin E. Epigenetic Mechanisms of Gene Expression Regulation in Bacteria of the Genus Bacillus. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Huddling together to survive: Population density as a survival strategy of non-spore forming bacteria under nutrient starvation and desiccation at solid-air interfaces. Microbiol Res 2022; 258:126997. [DOI: 10.1016/j.micres.2022.126997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 01/16/2022] [Accepted: 02/24/2022] [Indexed: 11/19/2022]
|
36
|
Identification and Functional Characterization of Two Homologous SpoVS Proteins Involved in Sporulation of Bacillus thuringiensis. Microbiol Spectr 2021; 9:e0088121. [PMID: 34612699 PMCID: PMC8510167 DOI: 10.1128/spectrum.00881-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Sporulation is an important part of the life cycle of Bacillus thuringiensis and the basis for the production of parasporal crystals. This study identifies and characterizes two homologous spoVS genes (spoVS1 and spoVS2) in B. thuringiensis, both of whose expression is dependent on the σH factor. The disruption of spoVS1 and spoVS2 resulted in defective B. thuringiensis sporulation. Similar to Bacillus subtilis, B. thuringiensis strain HD(ΔspoVS1) mutants showed delayed formation of the polar septa, decreased sporulation efficiency, and blocked spore release. Different from B. subtilis, B. thuringiensis HD(ΔspoVS1) mutants had disporic septa and failed to complete engulfment in some cells. Moreover, HD(ΔspoVS2) mutants had delayed spore release. The effect of spoVS1 deletion on polar septum delay and sporulation efficiency could be compensated by spoVS2. β-Galactosidase activity analysis showed that the expression of pro-sigE and spoIIE decreased to different degrees in the HD(ΔspoVS1) and HD(ΔspoVS2) mutants. The different effects of the two mutations on the expression of sporulation genes led to decreases in Cry1Ac production of different levels. IMPORTANCE There is only one spoVS gene in B. subtilis, and its effects on sporulation have been reported. In this study, two homologous spoVS genes were found and identified in B. thuringiensis. The different effects on sporulation and parasporal crystal protein production in B. thuringiensis and their relationship were investigated. We found that these two homologous spoVS genes are highly conserved in the Bacillus cereus group, and therefore, the functional characterization of SpoVS is helpful to better understand the sporulation processes of members of the Bacillus cereus group.
Collapse
|
37
|
Coe A, Biller SJ, Thomas E, Boulias K, Bliem C, Arellano A, Dooley K, Rasmussen AN, LeGault K, O'Keefe TJ, Stover S, Greer EL, Chisholm SW. Coping with darkness: The adaptive response of marine picocyanobacteria to repeated light energy deprivation. LIMNOLOGY AND OCEANOGRAPHY 2021; 66:3300-3312. [PMID: 34690365 PMCID: PMC8518828 DOI: 10.1002/lno.11880] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/22/2021] [Accepted: 05/29/2021] [Indexed: 06/13/2023]
Abstract
The picocyanobacteria Prochlorococcus and Synechococcus are found throughout the ocean's euphotic zone, where the daily light:dark cycle drives their physiology. Periodic deep mixing events can, however, move cells below this region, depriving them of light for extended periods of time. Here, we demonstrate that members of these genera can adapt to tolerate repeated periods of light energy deprivation. Strains kept in the dark for 3 d and then returned to the light initially required 18-26 d to resume growth, but after multiple rounds of dark exposure they began to regrow after only 1-2 d. This dark-tolerant phenotype was stable and heritable; some cultures retained the trait for over 132 generations even when grown in a standard 13:11 light:dark cycle. We found no genetic differences between the dark-tolerant and parental strains of Prochlorococcus NATL2A, indicating that an epigenetic change is likely responsible for the adaptation. To begin to explore this possibility, we asked whether DNA methylation-one potential mechanism mediating epigenetic inheritance in bacteria-occurs in Prochlorococcus. LC-MS/MS analysis showed that while DNA methylations, including 6 mA and 5 mC, are found in some other Prochlorococcus strains, there were no methylations detected in either the parental or dark-tolerant NATL2A strains. These findings suggest that Prochlorococcus utilizes a yet-to-be-determined epigenetic mechanism to adapt to the stress of extended light energy deprivation, and highlights phenotypic heterogeneity as an additional dimension of Prochlorococcus diversity.
Collapse
Affiliation(s)
- Allison Coe
- Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Steven J. Biller
- Department of Biological SciencesWellesley CollegeWellesleyMassachusettsUSA
| | - Elaina Thomas
- Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Konstantinos Boulias
- Division of Newborn MedicineBoston Children's HospitalBostonMassachusettsUSA
- Department of PediatricsHarvard Medical SchoolBostonMassachusettsUSA
| | - Christina Bliem
- Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Aldo Arellano
- Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Keven Dooley
- Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Anna N. Rasmussen
- Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Kristen LeGault
- Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Tyler J. O'Keefe
- Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Sarah Stover
- Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Eric L. Greer
- Division of Newborn MedicineBoston Children's HospitalBostonMassachusettsUSA
- Department of PediatricsHarvard Medical SchoolBostonMassachusettsUSA
| | - Sallie W. Chisholm
- Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
38
|
Schwall CP, Loman TE, Martins BMC, Cortijo S, Villava C, Kusmartsev V, Livesey T, Saez T, Locke JCW. Tunable phenotypic variability through an autoregulatory alternative sigma factor circuit. Mol Syst Biol 2021; 17:e9832. [PMID: 34286912 PMCID: PMC8287880 DOI: 10.15252/msb.20209832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 11/17/2022] Open
Abstract
Genetically identical individuals in bacterial populations can display significant phenotypic variability. This variability can be functional, for example by allowing a fraction of stress prepared cells to survive an otherwise lethal stress. The optimal fraction of stress prepared cells depends on environmental conditions. However, how bacterial populations modulate their level of phenotypic variability remains unclear. Here we show that the alternative sigma factor σV circuit in Bacillus subtilis generates functional phenotypic variability that can be tuned by stress level, environmental history and genetic perturbations. Using single-cell time-lapse microscopy and microfluidics, we find the fraction of cells that immediately activate σV under lysozyme stress depends on stress level and on a transcriptional memory of previous stress. Iteration between model and experiment reveals that this tunability can be explained by the autoregulatory feedback structure of the sigV operon. As predicted by the model, genetic perturbations to the operon also modulate the response variability. The conserved sigma-anti-sigma autoregulation motif is thus a simple mechanism for bacterial populations to modulate their heterogeneity based on their environment.
Collapse
Affiliation(s)
| | | | - Bruno M C Martins
- Sainsbury LaboratoryUniversity of CambridgeCambridgeUK
- School of Life SciencesUniversity of WarwickCoventryUK
| | | | | | | | - Toby Livesey
- Sainsbury LaboratoryUniversity of CambridgeCambridgeUK
| | - Teresa Saez
- Sainsbury LaboratoryUniversity of CambridgeCambridgeUK
| | | |
Collapse
|
39
|
Steiner UK. Senescence in Bacteria and Its Underlying Mechanisms. Front Cell Dev Biol 2021; 9:668915. [PMID: 34222238 PMCID: PMC8249858 DOI: 10.3389/fcell.2021.668915] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/14/2021] [Indexed: 12/11/2022] Open
Abstract
Bacteria have been thought to flee senescence by dividing into two identical daughter cells, but this notion of immortality has changed over the last two decades. Asymmetry between the resulting daughter cells after binary fission is revealed in physiological function, cell growth, and survival probabilities and is expected from theoretical understanding. Since the discovery of senescence in morphologically identical but physiologically asymmetric dividing bacteria, the mechanisms of bacteria aging have been explored across levels of biological organization. Quantitative investigations are heavily biased toward Escherichia coli and on the role of inclusion bodies—clusters of misfolded proteins. Despite intensive efforts to date, it is not evident if and how inclusion bodies, a phenotype linked to the loss of proteostasis and one of the consequences of a chain of reactions triggered by reactive oxygen species, contribute to senescence in bacteria. Recent findings in bacteria question that inclusion bodies are only deleterious, illustrated by fitness advantages of cells holding inclusion bodies under varying environmental conditions. The contributions of other hallmarks of aging, identified for metazoans, remain elusive. For instance, genomic instability appears to be age independent, epigenetic alterations might be little age specific, and other hallmarks do not play a major role in bacteria systems. What is surprising is that, on the one hand, classical senescence patterns, such as an early exponential increase in mortality followed by late age mortality plateaus, are found, but, on the other hand, identifying mechanisms that link to these patterns is challenging. Senescence patterns are sensitive to environmental conditions and to genetic background, even within species, which suggests diverse evolutionary selective forces on senescence that go beyond generalized expectations of classical evolutionary theories of aging. Given the molecular tool kits available in bacteria, the high control of experimental conditions, the high-throughput data collection using microfluidic systems, and the ease of life cell imaging of fluorescently marked transcription, translation, and proteomic dynamics, in combination with the simple demographics of growth, division, and mortality of bacteria, make the challenges surprising. The diversity of mechanisms and patterns revealed and their environmental dependencies not only present challenges but also open exciting opportunities for the discovery and deeper understanding of aging and its mechanisms, maybe beyond bacteria and aging.
Collapse
Affiliation(s)
- Ulrich Karl Steiner
- Evolutionary Demography Group, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
40
|
Generation of Genetic Tools for Gauging Multiple-Gene Expression at the Single-Cell Level. Appl Environ Microbiol 2021; 87:AEM.02956-20. [PMID: 33608300 DOI: 10.1128/aem.02956-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/11/2021] [Indexed: 11/20/2022] Open
Abstract
Key microbial processes in many bacterial species are heterogeneously expressed in single cells of bacterial populations. However, the paucity of adequate molecular tools for live, real-time monitoring of multiple-gene expression at the single-cell level has limited the understanding of phenotypic heterogeneity. To investigate phenotypic heterogeneity in the ubiquitous opportunistic pathogen Pseudomonas aeruginosa, a genetic tool that allows gauging multiple-gene expression at the single-cell level has been generated. This tool, named pRGC, consists of a promoter-probe vector for transcriptional fusions that carries three reporter genes coding for the fluorescent proteins mCherry, green fluorescent protein (GFP), and cyan fluorescent protein (CFP). The pRGC vector has been characterized and validated via single-cell gene expression analysis of both constitutive and iron-regulated promoters, showing clear discrimination of the three fluorescence signals in single cells of a P. aeruginosa population without the need for image processing for spectral cross talk correction. In addition, two pRGC variants have been generated for either (i) integration of the reporter gene cassette into a single neutral site of P. aeruginosa chromosome that is suitable for long-term experiments in the absence of antibiotic selection or (ii) replication in bacterial genera other than Pseudomonas The easy-to-use genetic tools generated in this study will allow rapid and cost-effective investigation of multiple-gene expression in populations of environmental and pathogenic bacteria, hopefully advancing the understanding of microbial phenotypic heterogeneity.IMPORTANCE Within a bacterial population, single cells can differently express some genes, even though they are genetically identical and experience the same chemical and physical stimuli. This phenomenon, known as phenotypic heterogeneity, is mainly driven by gene expression noise and results in the emergence of bacterial subpopulations with distinct phenotypes. The analysis of gene expression at the single-cell level has shown that phenotypic heterogeneity is associated with key bacterial processes, including competence, sporulation, and persistence. In this study, new genetic tools have been generated that allow easy cloning of up to three promoters upstream of distinct fluorescent genes, making it possible to gauge multiple-gene expression at the single-cell level by fluorescence microscopy without the need for advanced image-processing procedures. A proof of concept has been provided by investigating iron uptake and iron storage gene expression in response to iron availability in P. aeruginosa.
Collapse
|
41
|
Different resource allocation in a Bacillus subtilis population displaying bimodal motility. J Bacteriol 2021; 203:e0003721. [PMID: 33782055 DOI: 10.1128/jb.00037-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
To cope with sudden changes in their environment, bacteria can use a bet-hedging strategy by dividing the population into cells with different properties. This so-called bimodal or bistable cellular differentiation is generally controlled by positive feedback regulation of transcriptional activators. Due to the continuous increase in cell volume, it is difficult for these activators to reach an activation threshold concentration when cells are growing exponentially. This is one reason why bimodal differentiation is primarily observed from the onset of the stationary phase when exponential growth ceases. An exception is the bimodal induction of motility in Bacillus subtilis, which occurs early during exponential growth. Several mechanisms have been put forward to explain this, including double negative-feedback regulation and the stability of the mRNA molecules involved. In this study, we used fluorescence-assisted cell sorting to compare the transcriptome of motile and non-motile cells and noted that expression of ribosomal genes is lower in motile cells. This was confirmed using an unstable GFP reporter fused to the strong ribosomal rpsD promoter. We propose that the reduction in ribosomal gene expression in motile cells is the result of a diversion of cellular resources to the synthesis of the chemotaxis and motility systems. In agreement, single-cell microscopic analysis showed that motile cells are slightly shorter than non-motile cells, an indication of slower growth. We speculate that this growth rate reduction can contribute to the bimodal induction of motility during exponential growth.IMPORTANCETo cope with sudden environmental changes, bacteria can use a bet-hedging strategy and generate different types of cells within a population, so called bimodal differentiation. For example, a Bacillus subtilis culture can contain both motile and non-motile cells. In this study we compared the gene expression between motile and non-motile cells. It appeared that motile cells express less ribosomes. To confirm this, we constructed a ribosomal promoter fusion that enabled us to measure expression of this promoter in individual cells. This reporter fusion confirmed our initial finding. The re-allocation of cellular resources from ribosome synthesis towards synthesis of the motility apparatus results in a reduction in growth. Interestingly, this growth reduction has been shown to stimulate bimodal differentiation.
Collapse
|
42
|
Abstract
Isogenic microbial populations in constant and homogeneous environments can display remarkable levels of phenotypic diversity. Quantitative understanding of how such diversity is generated and maintained in populations is, however, experimentally and theoretically challenging. We focus on the swimming behavior of Escherichia coli as a model system of phenotypic diversity and show that, despite temporal changes in behavior that each individual undergoes, significant differences between individuals persist throughout most of their lifetimes. While the behavior of even closely related bacteria can be remarkably different, the behavioral variations produced by nongenetic mechanisms are inherited across generations. The general experimental and theoretical framework developed here can be applied to study quantitative aspects of phenotypic diversity in many biological systems. Isogenic populations often display remarkable levels of phenotypic diversity even in constant, homogeneous environments. Such diversity results from differences between individuals (“nongenetic individuality”) as well as changes during individuals’ lifetimes (“changeability”). Yet, studies that capture and quantify both sources of diversity are scarce. Here we measure the swimming behavior of hundreds of Escherichia coli bacteria continuously over two generations and use a model-independent method for quantifying behavior to show that the behavioral space of E. coli is low-dimensional, with variations occurring mainly along two independent and interpretable behavioral traits. By statistically decomposing the diversity in these two traits, we find that individuality is the main source of diversity, while changeability makes a smaller but significant contribution. Finally, we show that even though traits of closely related individuals can be remarkably different, they exhibit positive correlations across generations that imply nongenetic inheritance. The model-independent experimental and theoretical framework developed here paves the way for more general studies of microbial behavioral diversity.
Collapse
|
43
|
Eckstein S, Brehm J, Seidel M, Lechtenfeld M, Heermann R. Two novel XRE-like transcriptional regulators control phenotypic heterogeneity in Photorhabdus luminescens cell populations. BMC Microbiol 2021; 21:63. [PMID: 33627070 PMCID: PMC7905540 DOI: 10.1186/s12866-021-02116-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/25/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The insect pathogenic bacterium Photorhabdus luminescens exists in two phenotypically different forms, designated as primary (1°) and secondary (2°) cells. Upon yet unknown environmental stimuli up to 50% of the 1° cells convert to 2° cells. Among others, one important difference between the phenotypic forms is that 2° cells are unable to live in symbiosis with their partner nematodes, and therefore are not able to re-associate with them. As 100% switching of 1° to 2° cells of the population would lead to a break-down of the bacteria's life cycle the switching process must be tightly controlled. However, the regulation mechanism of phenotypic switching is still puzzling. RESULTS Here we describe two novel XRE family transcriptional regulators, XreR1 and XreR2, that play a major role in the phenotypic switching process of P. luminescens. Deletion of xreR1 in 1° or xreR2 in 2° cells as well as insertion of extra copies of xreR1 into 2° or xreR2 into 1° cells, respectively, induced the opposite phenotype in either 1° or 2° cells. Furthermore, both regulators specifically bind to different promoter regions putatively fulfilling a positive autoregulation. We found initial evidence that XreR1 and XreR2 constitute an epigenetic switch, whereby XreR1 represses xreR2 expression and XreR2 self-reinforces its own gene by binding to XreR1. CONCLUSION Regulation of gene expression by the two novel XRE-type regulators XreR1 and XreR2 as well as their interplay represents a major regulatory process in phenotypic switching of P. luminescens. A fine-tuning balance between both regulators might therefore define the fate of single cells to convert from the 1° to the 2° phenotype.
Collapse
Affiliation(s)
- Simone Eckstein
- Johannes-Gutenberg-Universität Mainz, Institut für Molekulare Physiologie, Biozentrum II, Mikrobiologie und Weinforschung, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany.,Ludwig-Maximilians-Universität München, Biozentrum, Bereich Mikrobiologie, Martinsried, Germany
| | - Jannis Brehm
- Johannes-Gutenberg-Universität Mainz, Institut für Molekulare Physiologie, Biozentrum II, Mikrobiologie und Weinforschung, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
| | - Michael Seidel
- Ludwig-Maximilians-Universität München, Biozentrum, Bereich Mikrobiologie, Martinsried, Germany
| | - Mats Lechtenfeld
- Johannes-Gutenberg-Universität Mainz, Institut für Molekulare Physiologie, Biozentrum II, Mikrobiologie und Weinforschung, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
| | - Ralf Heermann
- Johannes-Gutenberg-Universität Mainz, Institut für Molekulare Physiologie, Biozentrum II, Mikrobiologie und Weinforschung, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany.
| |
Collapse
|
44
|
Vashistha H, Kohram M, Salman H. Non-genetic inheritance restraint of cell-to-cell variation. eLife 2021; 10:64779. [PMID: 33523801 PMCID: PMC7932692 DOI: 10.7554/elife.64779] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/28/2021] [Indexed: 12/22/2022] Open
Abstract
Heterogeneity in physical and functional characteristics of cells (e.g. size, cycle time, growth rate, protein concentration) proliferates within an isogenic population due to stochasticity in intracellular biochemical processes and in the distribution of resources during divisions. Conversely, it is limited in part by the inheritance of cellular components between consecutive generations. Here we introduce a new experimental method for measuring proliferation of heterogeneity in bacterial cell characteristics, based on measuring how two sister cells become different from each other over time. Our measurements provide the inheritance dynamics of different cellular properties, and the 'inertia' of cells to maintain these properties along time. We find that inheritance dynamics are property specific and can exhibit long-term memory (∼10 generations) that works to restrain variation among cells. Our results can reveal mechanisms of non-genetic inheritance in bacteria and help understand how cells control their properties and heterogeneity within isogenic cell populations.
Collapse
Affiliation(s)
- Harsh Vashistha
- Department of Physics and Astronomy, The Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, United States
| | - Maryam Kohram
- Department of Physics and Astronomy, The Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, United States
| | - Hanna Salman
- Department of Physics and Astronomy, The Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, United States.,Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, United States
| |
Collapse
|
45
|
Nguyen J, Lara-Gutiérrez J, Stocker R. Environmental fluctuations and their effects on microbial communities, populations and individuals. FEMS Microbiol Rev 2020; 45:6041721. [PMID: 33338228 PMCID: PMC8371271 DOI: 10.1093/femsre/fuaa068] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/05/2020] [Indexed: 12/20/2022] Open
Abstract
From the homeostasis of human health to the cycling of Earth's elements, microbial activities underlie environmental, medical and industrial processes. These activities occur in chemical and physical landscapes that are highly dynamic and experienced by bacteria as fluctuations. In this review, we first discuss how bacteria can experience both spatial and temporal heterogeneity in their environments as temporal fluctuations of various timescales (seconds to seasons) and types (nutrient, sunlight, fluid flow, etc.). We then focus primarily on nutrient fluctuations to discuss how bacterial communities, populations and single cells respond to environmental fluctuations. Overall, we find that environmental fluctuations are ubiquitous and diverse, and strongly shape microbial behavior, ecology and evolution when compared with environments in which conditions remain constant over time. We hope this review may serve as a guide toward understanding the significance of environmental fluctuations in microbial life, such that their contributions and implications can be better assessed and exploited.
Collapse
Affiliation(s)
- Jen Nguyen
- Institute for Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, 8093 Zürich, Switzerland.,Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Juanita Lara-Gutiérrez
- Institute for Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Roman Stocker
- Institute for Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
46
|
Deshmukh S, Saini S. Phenotypic Heterogeneity in Tumor Progression, and Its Possible Role in the Onset of Cancer. Front Genet 2020; 11:604528. [PMID: 33329751 PMCID: PMC7734151 DOI: 10.3389/fgene.2020.604528] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/10/2020] [Indexed: 12/20/2022] Open
Abstract
Heterogeneity among isogenic cells/individuals has been known for at least 150 years. Even Mendel, working on pea plants, realized that not all tall plants were identical. However, Mendel was more interested in the discontinuous variation between genetically distinct individuals. The concept of environment dictating distinct phenotypes among isogenic individuals has since been shown to impact the evolution of populations in numerous examples at different scales of life. In this review, we discuss how phenotypic heterogeneity and its evolutionary implications exist at all levels of life, from viruses to mammals. In particular, we discuss how a particular disease condition (cancer) is impacted by heterogeneity among isogenic cells, and propose a potential role that phenotypic heterogeneity might play toward the onset of the disease.
Collapse
Affiliation(s)
- Saniya Deshmukh
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Supreet Saini
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
47
|
Huemer M, Mairpady Shambat S, Brugger SD, Zinkernagel AS. Antibiotic resistance and persistence-Implications for human health and treatment perspectives. EMBO Rep 2020; 21:e51034. [PMID: 33400359 PMCID: PMC7726816 DOI: 10.15252/embr.202051034] [Citation(s) in RCA: 376] [Impact Index Per Article: 75.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/13/2020] [Accepted: 11/02/2020] [Indexed: 12/24/2022] Open
Abstract
Antimicrobial resistance (AMR) and persistence are associated with an elevated risk of treatment failure and relapsing infections. They are thus important drivers of increased morbidity and mortality rates resulting in growing healthcare costs. Antibiotic resistance is readily identifiable with standard microbiological assays, and the threat imposed by antibiotic resistance has been well recognized. Measures aiming to reduce resistance development and spreading of resistant bacteria are being enforced. However, the phenomenon of bacteria surviving antibiotic exposure despite being fully susceptible, so-called antibiotic persistence, is still largely underestimated. In contrast to antibiotic resistance, antibiotic persistence is difficult to measure and therefore often missed, potentially leading to treatment failures. In this review, we focus on bacterial mechanisms allowing evasion of antibiotic killing and discuss their implications on human health. We describe the relationship between antibiotic persistence and bacterial heterogeneity and discuss recent studies that link bacterial persistence and tolerance with the evolution of antibiotic resistance. Finally, we review persister detection methods, novel strategies aiming at eradicating bacterial persisters and the latest advances in the development of new antibiotics.
Collapse
Affiliation(s)
- Markus Huemer
- Department of Infectious Diseases and Hospital EpidemiologyUniversity Hospital ZurichUniversity of ZurichZurichSwitzerland
| | - Srikanth Mairpady Shambat
- Department of Infectious Diseases and Hospital EpidemiologyUniversity Hospital ZurichUniversity of ZurichZurichSwitzerland
| | - Silvio D Brugger
- Department of Infectious Diseases and Hospital EpidemiologyUniversity Hospital ZurichUniversity of ZurichZurichSwitzerland
| | - Annelies S Zinkernagel
- Department of Infectious Diseases and Hospital EpidemiologyUniversity Hospital ZurichUniversity of ZurichZurichSwitzerland
| |
Collapse
|
48
|
Garde R, Ewald J, Kovács ÁT, Schuster S. Modelling population dynamics in a unicellular social organism community using a minimal model and evolutionary game theory. Open Biol 2020; 10:200206. [PMID: 33142084 PMCID: PMC7729035 DOI: 10.1098/rsob.200206] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Most unicellular organisms live in communities and express different phenotypes. Many efforts have been made to study the population dynamics of such complex communities of cells, coexisting as well-coordinated units. Minimal models based on ordinary differential equations are powerful tools that can help us understand complex phenomena. They represent an appropriate compromise between complexity and tractability; they allow a profound and comprehensive analysis, which is still easy to understand. Evolutionary game theory is another powerful tool that can help us understand the costs and benefits of the decision a particular cell of a unicellular social organism takes when faced with the challenges of the biotic and abiotic environment. This work is a binocular view at the population dynamics of such a community through the objectives of minimal modelling and evolutionary game theory. We test the behaviour of the community of a unicellular social organism at three levels of antibiotic stress. Even in the absence of the antibiotic, spikes in the fraction of resistant cells can be observed indicating the importance of bet hedging. At moderate level of antibiotic stress, we witness cyclic dynamics reminiscent of the renowned rock–paper–scissors game. At a very high level, the resistant type of strategy is the most favourable.
Collapse
Affiliation(s)
- Ravindra Garde
- Department of Bioinformatics, Matthias Schleiden Institute, Friedrich Schiller University Jena, Ernst-Abbe-Platz 2, 07743 Jena, Germany.,Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745 Jena, Germany
| | - Jan Ewald
- Department of Bioinformatics, Matthias Schleiden Institute, Friedrich Schiller University Jena, Ernst-Abbe-Platz 2, 07743 Jena, Germany
| | - Ákos T Kovács
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Søltofts Plads Building 221, 2800 Kongens Lyngby, Denmark
| | - Stefan Schuster
- Department of Bioinformatics, Matthias Schleiden Institute, Friedrich Schiller University Jena, Ernst-Abbe-Platz 2, 07743 Jena, Germany
| |
Collapse
|
49
|
Abstract
Damage is an inevitable consequence of life. For unicellular organisms, this leads to a trade-off between allocating resources into damage repair or into growth coupled with segregation of damage upon cell division, i.e., aging and senescence. Few studies considered repair as an alternative to senescence. None considered biofilms, where the majority of unicellular organisms live, although fitness advantages in well-mixed systems often turn into disadvantages in spatially structured systems such as biofilms. We compared the fitness consequences of aging versus an adaptive repair mechanism based on sensing damage, using an individual-based model of a generic unicellular organism growing in biofilms. We found that senescence is not beneficial provided that growth is limited by substrate availability. Instead, it is useful as a stress response to deal with damage that failed to be repaired when (i) extrinsic mortality was high; (ii) a degree of multicellularity was present; and (iii) damage segregation was effective. The extent of senescence due to damage accumulation—or aging—is evidently evolvable as it differs hugely between species and is not universal, suggesting that its fitness advantages depend on life history and environment. In contrast, repair of damage is present in all organisms studied. Despite the fundamental trade-off between investing resources into repair or into growth, repair and segregation of damage have not always been considered alternatives. For unicellular organisms, unrepaired damage could be divided asymmetrically between daughter cells, leading to senescence of one and rejuvenation of the other. Repair of “unicells” has been predicted to be advantageous in well-mixed environments such as chemostats. Most microorganisms, however, live in spatially structured systems, such as biofilms, with gradients of environmental conditions and cellular physiology as well as a clonal population structure. To investigate whether this clonal structure might favor senescence by damage segregation (a division-of-labor strategy akin to the germline-soma division in multicellular organisms), we used an individual-based computational model and developed an adaptive repair strategy where cells respond to their current intracellular damage levels by investing into repair machinery accordingly. Our simulations showed that the new adaptive repair strategy was advantageous provided that growth was limited by substrate availability, which is typical for biofilms. Thus, biofilms do not favor a germline-soma-like division of labor between daughter cells in terms of damage segregation. We suggest that damage segregation is beneficial only when extrinsic mortality is high, a degree of multicellularity is present, and an active mechanism makes segregation effective. IMPORTANCE Damage is an inevitable consequence of life. For unicellular organisms, this leads to a trade-off between allocating resources into damage repair or into growth coupled with segregation of damage upon cell division, i.e., aging and senescence. Few studies considered repair as an alternative to senescence. None considered biofilms, where the majority of unicellular organisms live, although fitness advantages in well-mixed systems often turn into disadvantages in spatially structured systems such as biofilms. We compared the fitness consequences of aging versus an adaptive repair mechanism based on sensing damage, using an individual-based model of a generic unicellular organism growing in biofilms. We found that senescence is not beneficial provided that growth is limited by substrate availability. Instead, it is useful as a stress response to deal with damage that failed to be repaired when (i) extrinsic mortality was high; (ii) a degree of multicellularity was present; and (iii) damage segregation was effective.
Collapse
|
50
|
Frentz Z, Dworkin J. Bioluminescence dynamics in single germinating bacterial spores reveal metabolic heterogeneity. J R Soc Interface 2020; 17:20200350. [PMID: 32900305 DOI: 10.1098/rsif.2020.0350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Spore-forming bacteria modulate their metabolic rate by over five orders of magnitude as they transition between dormant spores and vegetative cells and thus represent an extreme case of phenotypic variation. During environmental changes in nutrient availability, clonal populations of spore-forming bacteria exhibit individual differences in cell fate, the timing of phenotypic transitions and gene expression. One potential source of this variability is metabolic heterogeneity, but this has not yet been measured, as existing single-cell methods are not easily applicable to spores due to their small size and strong autofluorescence. Here, we use the bacterial bioluminescence system and a highly sensitive microscope to measure metabolic dynamics in thousands of B. subtilis spores as they germinate. We observe and quantitate large variations in the bioluminescence dynamics across individual spores that can be decomposed into contributions from variability in germination timing, the amount of endogenously produced luminescence substrate and the intracellular reducing power. This work shows that quantitative measurement of spore metabolism is possible and thus it opens avenues for future study of the thermodynamic nature of dormant states.
Collapse
Affiliation(s)
- Zak Frentz
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Jonathan Dworkin
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|