1
|
Brauer J, Tumani M, Frey N, Lehmann LH. The cardio-oncologic burden of breast cancer: molecular mechanisms and importance of preclinical models. Basic Res Cardiol 2025; 120:91-112. [PMID: 39621070 PMCID: PMC11790711 DOI: 10.1007/s00395-024-01090-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 02/04/2025]
Abstract
Breast cancer, the most prevalent cancer affecting women worldwide, poses a significant cardio-oncological burden. Despite advancements in novel therapeutic strategies, anthracyclines, HER2 antagonists, and radiation remain the cornerstones of oncological treatment. However, each carries a risk of cardiotoxicity, though the molecular mechanisms underlying these adverse effects differ. Common mechanisms include DNA damage response, increased reactive oxygen species, and mitochondrial dysfunction, which are key areas of ongoing research for potential cardioprotective strategies. Since these mechanisms are also essential for effective tumor cytotoxicity, we explore tumor-specific effects, particularly in hereditary breast cancer linked to BRCA1 and BRCA2 mutations. These genetic variants impair DNA repair mechanisms, increase the risk of tumorigenesis and possibly for cardiotoxicity from treatments such as anthracyclines and HER2 antagonists. Novel therapies, including immune checkpoint inhibitors, are used in the clinic for triple-negative breast cancer and improve the oncological outcomes of breast cancer patients. This review discusses the molecular mechanisms underlying BRCA dysfunction and the associated pathological pathways. It gives an overview of preclinical models of breast cancer, such as genetically engineered mouse models, syngeneic murine models, humanized mouse models, and various in vitro and ex vivo systems and models to study cardiovascular side effects of breast cancer therapies. Understanding the underlying mechanism of cardiotoxicity and developing cardioprotective strategies in preclinical models are essential for improving treatment outcomes and reducing long-term cardiovascular risks in breast cancer patients.
Collapse
Affiliation(s)
- J Brauer
- Department of Cardiology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- German Center of Cardiovascular Research (DZHK), Partnersite Heidelberg, Mannheim, Germany
| | - M Tumani
- Department of Cardiology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- German Center of Cardiovascular Research (DZHK), Partnersite Heidelberg, Mannheim, Germany
| | - N Frey
- Department of Cardiology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- German Center of Cardiovascular Research (DZHK), Partnersite Heidelberg, Mannheim, Germany
| | - L H Lehmann
- Department of Cardiology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
- German Center of Cardiovascular Research (DZHK), Partnersite Heidelberg, Mannheim, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
2
|
Tibiletti MG, Carnevali I, Facchi S, Libera L, Chiappa C, Sessa F, La Rosa S, Rovera F. PALB2 analysis in the diagnostic process of breast cancer: An Italian monocentric experience. TUMORI JOURNAL 2024:3008916241290738. [PMID: 39448951 DOI: 10.1177/03008916241290738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
BACKGROUND The clinical utility of germline BRCA1 and BRCA2 testing is well established in patients with family history suggestive for hereditary breast and ovarian cancer syndrome. Recently, germline PALB2 pathogenic variants were also associated with an increased risk of breast and other cancers and, in the Italian population, it has been described in few studies without a systematic germline analysis of BRCA1, BRCA2 and PALB2. OBJECTIVES AND METHODS In this study, we described ASST Sette Laghi cancer genetic counselling services' experience in the analysis of 402 patients with suspected breast and ovarian cancer syndrome, by using BRCA1, BRCA2 and PALB2 germline genetic test. RESULTS The frequency of PALB2 pathogenic variants was 1.2% compared to 3.5% and 3.2% for BRCA1 and BRCA2, respectively, whereas class 3 variants were detected in 0.3% and 0.5% of the BRCA1 and BRCA2 investigated patients, respectively. PALB2 pathogenic variants were identified in patients with a strong family history for breast cancer. Moreover, PALB2 variants were significantly associated with a younger age of breast cancer onset (mean age, 40.25 years) compared to wild-type patients (mean age 51.2 years, p-value = 0.0331). Similar to BRCA-associated breast cancer, the majority of PALB2 breast cancers were identified at an advanced clinical stage. Pedigree analysis revealed a family history of breast and ovarian cancer syndrome in all PALB2 pathogenic variants carriers (early breast cancer onset, bilateral breast cancer and ovarian cancer). CONCLUSION In conclusion, the germline analysis of BRCA1, BRCA2 and PALB2 should be included in breast cancer clinical practice as a not negligible number of PALB2 carriers could be identified and referred to specific surveillance protocols.
Collapse
Affiliation(s)
- Maria Grazia Tibiletti
- Research Center for Familial and Hereditary Tumors, Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
| | - Ileana Carnevali
- Research Center for Familial and Hereditary Tumors, Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
- Unit of Pathology, Ospedale di Circolo, Azienda Socio Sanitaria Territoriale (ASST) Sette Laghi Hospital, Varese, Italy
| | - Sofia Facchi
- Research Center for Familial and Hereditary Tumors, Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
- Unit of Pathology, Ospedale di Circolo, Azienda Socio Sanitaria Territoriale (ASST) Sette Laghi Hospital, Varese, Italy
| | - Laura Libera
- Research Center for Familial and Hereditary Tumors, Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
- Unit of Pathology, Ospedale di Circolo, Azienda Socio Sanitaria Territoriale (ASST) Sette Laghi Hospital, Varese, Italy
- Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
| | - Corrado Chiappa
- Breast Unit, Azienda Socio Sanitaria Territoriale (ASST) Sette Laghi Hospital and University of Insubria, Varese, Italy
| | - Fausto Sessa
- Research Center for Familial and Hereditary Tumors, Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
| | - Stefano La Rosa
- Research Center for Familial and Hereditary Tumors, Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
- Unit of Pathology, Ospedale di Circolo, Azienda Socio Sanitaria Territoriale (ASST) Sette Laghi Hospital, Varese, Italy
- Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
| | - Francesca Rovera
- Breast Unit, Azienda Socio Sanitaria Territoriale (ASST) Sette Laghi Hospital and University of Insubria, Varese, Italy
| |
Collapse
|
3
|
Pal M, Das D, Pandey M. Understanding genetic variations associated with familial breast cancer. World J Surg Oncol 2024; 22:271. [PMID: 39390525 PMCID: PMC11465949 DOI: 10.1186/s12957-024-03553-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Breast cancer is the most frequent cancer among women. Genetics are the main risk factor for breast cancer. Statistics show that 15-25% of breast cancers are inherited among those with cancer-prone relatives. BRCA1, BRCA2, TP53, CDH1, PTEN, and STK11 are the most frequent genes for familial breast cancer, which occurs 80% of the time. In rare situations, moderate-penetrance gene mutations such CHEK2, BRIP1, ATM, and PALB2 contribute 2-3%. METHODS A search of the PubMed database was carried out spanning from 2005 to July 2024, yielding a total of 768 articles that delve into the realm of familial breast cancer, concerning genes and genetic syndromes. After exclusion 150 articles were included in the final review. RESULTS We report on a set of 20 familial breast cancer -associated genes into high, moderate, and low penetrance levels. Additionally, 10 genetic disorders were found to be linked with familial breast cancer. CONCLUSION Familial breast cancer has been linked to several genetic diseases and mutations, according to studies. Screening for genetic disorders is recommended by National Comprehensive Cancer Network recommendations. Evaluation of breast cancer candidate variations and risk loci may improve individual risk assessment. Only high- and moderate-risk gene variations have clinical guidelines, whereas low-risk gene variants require additional investigation. With increasing use of NGS technology, more linkage with rare genes is being discovered.
Collapse
Affiliation(s)
- Manjusha Pal
- Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Doutrina Das
- Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Manoj Pandey
- Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
4
|
Hughes T, Rose AM. The emergence of Fanconi anaemia type S: a phenotypic spectrum of biallelic BRCA1 mutations. Front Oncol 2023; 13:1278004. [PMID: 38146508 PMCID: PMC10749362 DOI: 10.3389/fonc.2023.1278004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/23/2023] [Indexed: 12/27/2023] Open
Abstract
BRCA1 is involved in the Fanconi anaemia (FA) pathway, which coordinates repair of DNA interstrand cross-links. FA is a rare genetic disorder characterised by bone marrow failure, cancer predisposition and congenital abnormalities, caused by biallelic mutations affecting proteins in the FA pathway. Germline monoallelic pathogenic BRCA1 mutations are known to be associated with hereditary breast/ovarian cancer, however biallelic mutations of BRCA1 were long predicted to be incompatible with embryonic viability, hence BRCA1 was not considered to be a canonical FA gene. Despite this, several patients with biallelic pathogenic BRCA1 mutations and FA-like phenotypes have been identified - defining a new FA type (FA-S) and designating BRCA1 as an FA gene. This report presents a scoping review of the cases of biallelic BRCA1 mutations identified to date, discusses the functional effects of the mutations identified, and proposes a phenotypic spectrum of BRCA1 mutations based upon available clinical and genetic data. We report that this FA-S cohort phenotype includes short stature, microcephaly, facial dysmorphisms, hypo/hyperpigmented lesions, intellectual disability, chromosomal sensitivity to crosslinking agents and predisposition to breast/ovarian cancer and/or childhood cancers, with some patients exhibiting sensitivity to chemotherapy. Unlike most other types of FA, FA-S patients lack bone marrow failure.
Collapse
Affiliation(s)
- Tirion Hughes
- University of Oxford Medical School, Oxford, United Kingdom
| | - Anna M. Rose
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Zhao J, Zhang Y, Li W, Yao M, Liu C, Zhang Z, Wang C, Wang X, Meng K. Research progress of the Fanconi anemia pathway and premature ovarian insufficiency†. Biol Reprod 2023; 109:570-585. [PMID: 37669135 DOI: 10.1093/biolre/ioad110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/25/2023] [Accepted: 09/02/2023] [Indexed: 09/07/2023] Open
Abstract
The Fanconi anemia pathway is a key pathway involved in the repair of deoxyribonucleic acidinterstrand crosslinking damage, which chiefly includes the following four modules: lesion recognition, Fanconi anemia core complex recruitment, FANCD2-FANCI complex monoubiquitination, and downstream events (nucleolytic incision, translesion synthesis, and homologous recombination). Mutations or deletions of multiple Fanconi anemia genes in this pathway can damage the interstrand crosslinking repair pathway and disrupt primordial germ cell development and oocyte meiosis, thereby leading to abnormal follicular development. Premature ovarian insufficiency is a gynecological clinical syndrome characterized by amenorrhea and decreased fertility due to decreased oocyte pool, accelerated follicle atresia, and loss of ovarian function in women <40 years old. Furthermore, in recent years, several studies have detected mutations in the Fanconi anemia gene in patients with premature ovarian insufficiency. In addition, some patients with Fanconi anemia exhibit symptoms of premature ovarian insufficiency and infertility. The Fanconi anemia pathway and premature ovarian insufficiency are closely associated.
Collapse
Affiliation(s)
- Jingyu Zhao
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Yixin Zhang
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Wenbo Li
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Mengmeng Yao
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Chuqi Liu
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Zihan Zhang
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Caiqin Wang
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Xiaomei Wang
- College of Basic Medicine, Jining Medical University, Jining, China
| | - Kai Meng
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| |
Collapse
|
6
|
Butz H, Nagy P, Papp J, Bozsik A, Grolmusz VK, Pócza T, Oláh E, Patócs A. PALB2 Variants Extend the Mutational Profile of Hungarian Patients with Breast and Ovarian Cancer. Cancers (Basel) 2023; 15:4350. [PMID: 37686625 PMCID: PMC10487218 DOI: 10.3390/cancers15174350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND The pathogenic/likely pathogenic (P/LP) variant detection rate and profile of PALB2, the third most important breast cancer gene, may vary between different populations. METHODS PALB2 was analyzed in peripheral blood samples of three independent cohorts: prospectively between September 2021 and March 2023 (i) in 1280 consecutive patients with breast and/or ovarian cancer (HBOC), (ii) in 568 patients with other cancers (controls), and retrospectively, (iii) in 191 young breast cancer (<33 years, yBC) patients. These data were compared with data of 134,187 non-cancer individuals retrieved from the Genome Aggregation Database. RESULTS Altogether, 235 cases (235/1280; 18.3%) carried at least one P/LP variant in one of the HBOC susceptibility genes. P/LP PALB2 variants were identified in 18 patients (1.4%; 18/1280) in the HBOC and 3 cases (1.5%; 3/191) in the yBC group. In the control group, only one patient had a disease-causing PALB2 variant (0.17%; 1/568) as a secondary finding not related to the disease, which was similar (0.15%; 205/134,187) in the non-cancer control group. The NM_024675.4:c.509_510delGA variant was the most common among our patients (33%; 6/18). We did not find a significant difference in the incidence of PALB2 disease-causing variants according to age; however, the median age of tumor onset was lower in PALB2 P/LP carriers versus wild-type patients (44 vs. 48 years). In our cohort, the odds ratio for breast cancer risk in women with PALB2 P/LP variants was between 8.1 and 9.3 compared to non-HBOC cancer patients and the non-cancer population, respectively. CONCLUSIONS PALB2 P/LP variants are not uncommon among breast and/or ovarian cancer patients. Their incidence was the same in the two breast cancer cohorts studied but may occur rarely in patients with non-breast/ovarian cancer. The c.509_510delGA variant is particularly common in the studied Hungarian patient population.
Collapse
Affiliation(s)
- Henriett Butz
- Department of Molecular Genetics, The National Tumor Biology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, 1122 Budapest, Hungary (A.B.); (V.K.G.); (T.P.); (E.O.); (A.P.)
- Department of Oncology Biobank, National Institute of Oncology, 1122 Budapest, Hungary
- Hereditary Tumours Research Group, Eötvös Loránd Research Network, 1089 Budapest, Hungary
- Department of Laboratory Medicine, Semmelweis University, 1092 Budapest, Hungary
| | - Petra Nagy
- Department of Molecular Genetics, The National Tumor Biology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, 1122 Budapest, Hungary (A.B.); (V.K.G.); (T.P.); (E.O.); (A.P.)
| | - János Papp
- Department of Molecular Genetics, The National Tumor Biology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, 1122 Budapest, Hungary (A.B.); (V.K.G.); (T.P.); (E.O.); (A.P.)
- Hereditary Tumours Research Group, Eötvös Loránd Research Network, 1089 Budapest, Hungary
| | - Anikó Bozsik
- Department of Molecular Genetics, The National Tumor Biology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, 1122 Budapest, Hungary (A.B.); (V.K.G.); (T.P.); (E.O.); (A.P.)
- Hereditary Tumours Research Group, Eötvös Loránd Research Network, 1089 Budapest, Hungary
| | - Vince Kornél Grolmusz
- Department of Molecular Genetics, The National Tumor Biology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, 1122 Budapest, Hungary (A.B.); (V.K.G.); (T.P.); (E.O.); (A.P.)
- Hereditary Tumours Research Group, Eötvös Loránd Research Network, 1089 Budapest, Hungary
| | - Tímea Pócza
- Department of Molecular Genetics, The National Tumor Biology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, 1122 Budapest, Hungary (A.B.); (V.K.G.); (T.P.); (E.O.); (A.P.)
| | - Edit Oláh
- Department of Molecular Genetics, The National Tumor Biology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, 1122 Budapest, Hungary (A.B.); (V.K.G.); (T.P.); (E.O.); (A.P.)
| | - Attila Patócs
- Department of Molecular Genetics, The National Tumor Biology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, 1122 Budapest, Hungary (A.B.); (V.K.G.); (T.P.); (E.O.); (A.P.)
- Hereditary Tumours Research Group, Eötvös Loránd Research Network, 1089 Budapest, Hungary
- Department of Laboratory Medicine, Semmelweis University, 1092 Budapest, Hungary
| |
Collapse
|
7
|
Li N, Zethoven M, McInerny S, Healey E, DeSilva D, Devereux L, Scott RJ, James PA, Campbell IG. Contribution of large genomic rearrangements in PALB2 to familial breast cancer: implications for genetic testing. J Med Genet 2023; 60:112-118. [PMID: 35396271 DOI: 10.1136/jmedgenet-2021-108399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/08/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND PALB2 is the most important contributor to familial breast cancer after BRCA1 and BRCA2. Large genomic rearrangements (LGRs) in BRCA1 and BRCA2 are routinely assessed in clinical testing and are a significant contributor to the yield of actionable findings. In contrast, the contribution of LGRs in PALB2 has not been systematically studied. METHODS We performed targeted sequencing and real-time qPCR validation to identify LGRs in PALB2 in 5770 unrelated patients with familial breast cancer and 5741 cancer-free control women from the same Australian population. RESULTS Seven large deletions ranging in size from 0.96 kbp to 18.07 kbp involving PALB2 were identified in seven cases, while no LGRs were identified in any of the controls. Six LGRs were considered pathogenic as they included one or more exons of PALB2 and disrupted the WD40 domain at the C terminal end of the PALB2 protein while one LGR only involved a partial region of intron 10 and was considered a variant of unknown significance. Altogether, pathogenic LGRs identified in this study accounted for 10.3% (6 of 58) of the pathogenic PALB2 variants detected among the 5770 families with familial breast cancer. CONCLUSIONS Our data show that a clinically important proportion of PALB2 pathogenic mutations in Australian patients with familial breast cancer are LGRs. Such observations have provided strong support for inclusion of PALB2 LGRs in routine clinical genetic testing.
Collapse
Affiliation(s)
- Na Li
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Victoria, Australia.,Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Magnus Zethoven
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Bioinformatics Core Facility, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Simone McInerny
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Eliza Healey
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Dilanka DeSilva
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Lisa Devereux
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.,Lifepool, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Rodney J Scott
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia.,Division of Molecular Medicine, Pathology North, Newcastle, New South Wales, Australia.,Discipline of Medical Genetics, The University of Newcastle and Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Paul A James
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Ian G Campbell
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia .,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Fierheller CT, Alenezi WM, Serruya C, Revil T, Amuzu S, Bedard K, Subramanian DN, Fewings E, Bruce JP, Prokopec S, Bouchard L, Provencher D, Foulkes WD, El Haffaf Z, Mes-Masson AM, Tischkowitz M, Campbell IG, Pugh TJ, Greenwood CMT, Ragoussis J, Tonin PN. Molecular Genetic Characteristics of FANCI, a Proposed New Ovarian Cancer Predisposing Gene. Genes (Basel) 2023; 14:genes14020277. [PMID: 36833203 PMCID: PMC9956348 DOI: 10.3390/genes14020277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
FANCI was recently identified as a new candidate ovarian cancer (OC)-predisposing gene from the genetic analysis of carriers of FANCI c.1813C>T; p.L605F in OC families. Here, we aimed to investigate the molecular genetic characteristics of FANCI, as they have not been described in the context of cancer. We first investigated the germline genetic landscape of two sisters with OC from the discovery FANCI c.1813C>T; p.L605F family (F1528) to re-affirm the plausibility of this candidate. As we did not find other conclusive candidates, we then performed a candidate gene approach to identify other candidate variants in genes involved in the FANCI protein interactome in OC families negative for pathogenic variants in BRCA1, BRCA2, BRIP1, RAD51C, RAD51D, and FANCI, which identified four candidate variants. We then investigated FANCI in high-grade serous ovarian carcinoma (HGSC) from FANCI c.1813C>T carriers and found evidence of loss of the wild-type allele in tumour DNA from some of these cases. The somatic genetic landscape of OC tumours from FANCI c.1813C>T carriers was investigated for mutations in selected genes, copy number alterations, and mutational signatures, which determined that the profiles of tumours from carriers were characteristic of features exhibited by HGSC cases. As other OC-predisposing genes such as BRCA1 and BRCA2 are known to increase the risk of other cancers including breast cancer, we investigated the carrier frequency of germline FANCI c.1813C>T in various cancer types and found overall more carriers among cancer cases compared to cancer-free controls (p = 0.007). In these different tumour types, we also identified a spectrum of somatic variants in FANCI that were not restricted to any specific region within the gene. Collectively, these findings expand on the characteristics described for OC cases carrying FANCI c.1813C>T; p.L605F and suggest the possible involvement of FANCI in other cancer types at the germline and/or somatic level.
Collapse
Affiliation(s)
- Caitlin T. Fierheller
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Wejdan M. Alenezi
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Medical Laboratory Technology, Taibah University, Medina 42353, Saudi Arabia
| | - Corinne Serruya
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Timothée Revil
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
- McGill Genome Centre, McGill University, Montreal, QC H3A 0G1, Canada
| | - Setor Amuzu
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
- McGill Genome Centre, McGill University, Montreal, QC H3A 0G1, Canada
| | - Karine Bedard
- Laboratoire de Diagnostic Moléculaire, Centre Hospitalier de l’Université de Montréal (CHUM), Montreal, QC H2X 3E4, Canada
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Deepak N. Subramanian
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Eleanor Fewings
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge CB2 1TN, UK
| | - Jeffrey P. Bruce
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Stephenie Prokopec
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Luigi Bouchard
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
- Department of Medical Biology, Centres Intégrés Universitaires de Santé et de Services Sociaux du Saguenay-Lac-Saint-Jean Hôpital Universitaire de Chicoutimi, Saguenay, QC G7H 7K9, Canada
- Centre de Recherche du Centre Hospitalier l’Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Diane Provencher
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal and Institut du Cancer de Montréal, Montreal, QC H2X 0A9, Canada
- Division of Gynecologic Oncology, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - William D. Foulkes
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
- Department of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
| | - Zaki El Haffaf
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Anne-Marie Mes-Masson
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal and Institut du Cancer de Montréal, Montreal, QC H2X 0A9, Canada
- Department of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Marc Tischkowitz
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge CB2 1TN, UK
| | - Ian G. Campbell
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Trevor J. Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Celia M. T. Greenwood
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H4A 3T2, Canada
- Department of Epidemiology, Biostatistics & Occupational Health, McGill University, Montreal, QC H3A 1Y7, Canada
| | - Jiannis Ragoussis
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
- McGill Genome Centre, McGill University, Montreal, QC H3A 0G1, Canada
| | - Patricia N. Tonin
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
- Correspondence:
| |
Collapse
|
9
|
Štancl P, Hamel N, Sigel KM, Foulkes WD, Karlić R, Polak P. The Great Majority of Homologous Recombination Repair-Deficient Tumors Are Accounted for by Established Causes. Front Genet 2022; 13:852159. [PMID: 35783256 PMCID: PMC9247292 DOI: 10.3389/fgene.2022.852159] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/03/2022] [Indexed: 11/18/2022] Open
Abstract
Background: Gene-agnostic genomic biomarkers were recently developed to identify homologous recombination deficiency (HRD) tumors that are likely to respond to treatment with PARP inhibitors. Two machine-learning algorithms that predict HRD status, CHORD, and HRDetect, utilize various HRD-associated features extracted from whole-genome sequencing (WGS) data and show high sensitivity in detecting patients with BRCA1/2 bi-allelic inactivation in all cancer types. When using only DNA mutation data for the detection of potential causes of HRD, both HRDetect and CHORD find that 30–40% of cases that have been classified as HRD are due to unknown causes. Here, we examined the impact of tumor-specific thresholds and measurement of promoter methylation of BRCA1 and RAD51C on unexplained proportions of HRD cases across various tumor types. Methods: We gathered published CHORD and HRDetect probability scores for 828 samples from breast, ovarian, and pancreatic cancer from previous studies, as well as evidence of their biallelic inactivation (by either DNA alterations or promoter methylation) in HR-related genes. ROC curve analysis evaluated the performance of each classifier in specific cancer. Tenfold nested cross-validation was used to find the optimal threshold values of HRDetect and CHORD for classifying HR-deficient samples within each cancer type. Results: With the universal threshold, HRDetect has higher sensitivity in the detection of biallelic inactivation in BRCA1/2 than CHORD and resulted in a higher proportion of unexplained cases. When promoter methylation was excluded, in ovarian carcinoma, the proportion of unexplained cases increased from 26.8 to 48.8% for HRDetect and from 14.7 to 41.2% for CHORD. A similar increase was observed in breast cancer. Applying cancer-type-specific thresholds led to similar sensitivity and specificity for both methods. The cancer-type-specific thresholds for HRDetect reduced the number of unexplained cases from 21 to 12.3% without reducing the 96% sensitivity to known events. For CHORD, unexplained cases were reduced from 10 to 9% while sensitivity increased from 85.3 to 93.9%. Conclusion: These results suggest that WGS-based HRD classifiers should be adjusted for tumor types. When applied, only ∼10% of breast, ovarian, and pancreas cancer cases are not explained by known events in our dataset.
Collapse
Affiliation(s)
- Paula Štancl
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Nancy Hamel
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Keith M. Sigel
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - William D. Foulkes
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Human Genetics, McGill University Montreal, Montreal, QC, Canada
- Cancer Axis, Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada
| | - Rosa Karlić
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
- *Correspondence: Paz Polak, ; Rosa Karlić,
| | - Paz Polak
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
- *Correspondence: Paz Polak, ; Rosa Karlić,
| |
Collapse
|
10
|
Fierheller CT, Guitton-Sert L, Alenezi WM, Revil T, Oros KK, Gao Y, Bedard K, Arcand SL, Serruya C, Behl S, Meunier L, Fleury H, Fewings E, Subramanian DN, Nadaf J, Bruce JP, Bell R, Provencher D, Foulkes WD, El Haffaf Z, Mes-Masson AM, Majewski J, Pugh TJ, Tischkowitz M, James PA, Campbell IG, Greenwood CMT, Ragoussis J, Masson JY, Tonin PN. A functionally impaired missense variant identified in French Canadian families implicates FANCI as a candidate ovarian cancer-predisposing gene. Genome Med 2021; 13:186. [PMID: 34861889 PMCID: PMC8642877 DOI: 10.1186/s13073-021-00998-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/27/2021] [Indexed: 12/14/2022] Open
Abstract
Background Familial ovarian cancer (OC) cases not harbouring pathogenic variants in either of the BRCA1 and BRCA2 OC-predisposing genes, which function in homologous recombination (HR) of DNA, could involve pathogenic variants in other DNA repair pathway genes. Methods Whole exome sequencing was used to identify rare variants in HR genes in a BRCA1 and BRCA2 pathogenic variant negative OC family of French Canadian (FC) ancestry, a population exhibiting genetic drift. OC cases and cancer-free individuals from FC and non-FC populations were investigated for carrier frequency of FANCI c.1813C>T; p.L605F, the top-ranking candidate. Gene and protein expression were investigated in cancer cell lines and tissue microarrays, respectively. Results In FC subjects, c.1813C>T was more common in familial (7.1%, 3/42) than sporadic (1.6%, 7/439) OC cases (P = 0.048). Carriers were detected in 2.5% (74/2950) of cancer-free females though female/male carriers were more likely to have a first-degree relative with OC (121/5249, 2.3%; Spearman correlation = 0.037; P = 0.011), suggesting a role in risk. Many of the cancer-free females had host factors known to reduce risk to OC which could influence cancer risk in this population. There was an increased carrier frequency of FANCI c.1813C>T in BRCA1 and BRCA2 pathogenic variant negative OC families, when including the discovery family, compared to cancer-free females (3/23, 13%; OR = 5.8; 95%CI = 1.7–19; P = 0.005). In non-FC subjects, 10 candidate FANCI variants were identified in 4.1% (21/516) of Australian OC cases negative for pathogenic variants in BRCA1 and BRCA2, including 10 carriers of FANCI c.1813C>T. Candidate variants were significantly more common in familial OC than in sporadic OC (P = 0.04). Localization of FANCD2, part of the FANCI-FANCD2 (ID2) binding complex in the Fanconi anaemia (FA) pathway, to sites of induced DNA damage was severely impeded in cells expressing the p.L605F isoform. This isoform was expressed at a reduced level, destabilized by DNA damaging agent treatment in both HeLa and OC cell lines, and exhibited sensitivity to cisplatin but not to a poly (ADP-ribose) polymerase inhibitor. By tissue microarray analyses, FANCI protein was consistently expressed in fallopian tube epithelial cells and only expressed at low-to-moderate levels in 88% (83/94) of OC samples. Conclusions This is the first study to describe candidate OC variants in FANCI, a member of the ID2 complex of the FA DNA repair pathway. Our data suggest that pathogenic FANCI variants may modify OC risk in cancer families. Supplementary Information The online version contains supplementary material available at 10.1186/s13073-021-00998-5.
Collapse
Affiliation(s)
- Caitlin T Fierheller
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Cancer Research Program, Centre for Translational Biology, The Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3 J1, Canada
| | - Laure Guitton-Sert
- Genome Stability Laboratory, CHU de Québec-Université Laval Research Center, Oncology Division, Quebec City, Quebec, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec City, Quebec, Canada
| | - Wejdan M Alenezi
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Cancer Research Program, Centre for Translational Biology, The Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3 J1, Canada.,Department of Medical Laboratory Technology, Taibah University, Medina, Saudi Arabia
| | - Timothée Revil
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,McGill Genome Centre, McGill University, Montreal, Quebec, Canada
| | - Kathleen K Oros
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Yuandi Gao
- Genome Stability Laboratory, CHU de Québec-Université Laval Research Center, Oncology Division, Quebec City, Quebec, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec City, Quebec, Canada
| | - Karine Bedard
- Laboratoire de Diagnostic Moléculaire, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, Canada.,Département de pathologie et biologie cellulaire, Université de Montréal, Montreal, Quebec, Canada
| | - Suzanna L Arcand
- Cancer Research Program, Centre for Translational Biology, The Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3 J1, Canada
| | - Corinne Serruya
- Cancer Research Program, Centre for Translational Biology, The Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3 J1, Canada
| | - Supriya Behl
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Liliane Meunier
- Centre de recherche du Centre hospitalier de l'Université de Montréal and Institut du cancer de Montréal, Montreal, Quebec, Canada
| | - Hubert Fleury
- Centre de recherche du Centre hospitalier de l'Université de Montréal and Institut du cancer de Montréal, Montreal, Quebec, Canada
| | - Eleanor Fewings
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Deepak N Subramanian
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Javad Nadaf
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,McGill Genome Centre, McGill University, Montreal, Quebec, Canada
| | - Jeffrey P Bruce
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Rachel Bell
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Diane Provencher
- Centre de recherche du Centre hospitalier de l'Université de Montréal and Institut du cancer de Montréal, Montreal, Quebec, Canada.,Division of Gynecologic Oncology, Université de Montréal, Montreal, Quebec, Canada
| | - William D Foulkes
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Cancer Research Program, Centre for Translational Biology, The Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3 J1, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Zaki El Haffaf
- Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Anne-Marie Mes-Masson
- Centre de recherche du Centre hospitalier de l'Université de Montréal and Institut du cancer de Montréal, Montreal, Quebec, Canada.,Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Jacek Majewski
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Trevor J Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Marc Tischkowitz
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Paul A James
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.,The Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Ian G Campbell
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Celia M T Greenwood
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.,Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada.,Department of Epidemiology, Biostatistics & Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Jiannis Ragoussis
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,McGill Genome Centre, McGill University, Montreal, Quebec, Canada
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Québec-Université Laval Research Center, Oncology Division, Quebec City, Quebec, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec City, Quebec, Canada
| | - Patricia N Tonin
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada. .,Cancer Research Program, Centre for Translational Biology, The Research Institute of the McGill University Health Centre, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3 J1, Canada. .,Department of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
11
|
Shen L, Zhang S, Wang K, Wang X. Familial Breast Cancer: Disease Related Gene Mutations and Screening Strategies for Chinese Population. Front Oncol 2021; 11:740227. [PMID: 34926254 PMCID: PMC8671637 DOI: 10.3389/fonc.2021.740227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/12/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND About 5%-10% of the breast cancer cases have a hereditary background, and this subset is referred to as familial breast cancer (FBC). In this review, we summarize the susceptibility genes and genetic syndromes associated with FBC and discuss the FBC screening and high-risk patient consulting strategies for the Chinese population. METHODS We searched the PubMed database for articles published between January 2000 and August 2021. Finally, 380 pieces of literature addressing the genes and genetic syndromes related to FBC were included and reviewed. RESULTS We identified 16 FBC-related genes and divided them into three types (high-, medium-, and low-penetrance) of genes according to their relative risk ratios. In addition, six genetic syndromes were found to be associated with FBC. We then summarized the currently available screening strategies for FBC and discussed those available for high-risk Chinese populations. CONCLUSION Multiple gene mutations and genetic disorders are closely related to FBC. The National Comprehensive Cancer Network (NCCN) guidelines recommend corresponding screening strategies for these genetic diseases. However, such guidelines for the Chinese population are still lacking. For screening high-risk groups in the Chinese population, genetic testing is recommended after genetic counseling.
Collapse
Affiliation(s)
| | | | | | - Xiaochen Wang
- Department of Breast Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
12
|
Boddicker NJ, Hu C, Weitzel JN, Kraft P, Nathanson KL, Goldgar DE, Na J, Huang H, Gnanaolivu RD, Larson N, Yussuf A, Yao S, Vachon CM, Trentham-Dietz A, Teras L, Taylor JA, Scott CE, Sandler DP, Pesaran T, Patel AV, Palmer JR, Ong IM, Olson JE, O'Brien K, Neuhausen S, Martinez E, Ma H, Lindstrom S, Le Marchand L, Kooperberg C, Karam R, Hunter DJ, Hodge JM, Haiman C, Gaudet MM, Gao C, LaDuca H, Lacey JV, Dolinsky JS, Chao E, Carter BD, Burnside ES, Bertrand KA, Bernstein L, Auer PW, Ambrosone C, Yadav S, Hart SN, Polley EC, Domchek SM, Couch FJ. Risk of Late-Onset Breast Cancer in Genetically Predisposed Women. J Clin Oncol 2021; 39:3430-3440. [PMID: 34292776 PMCID: PMC8547938 DOI: 10.1200/jco.21.00531] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/07/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022] Open
Abstract
PURPOSE The prevalence of germline pathogenic variants (PVs) in established breast cancer predisposition genes in women in the general population over age 65 years is not well-defined. However, testing guidelines suggest that women diagnosed with breast cancer over age 65 years might have < 2.5% likelihood of a PV in a high-penetrance gene. This study aimed to establish the frequency of PVs and remaining risks of breast cancer for each gene in women over age 65 years. METHODS A total of 26,707 women over age 65 years from population-based studies (51.5% with breast cancer and 48.5% unaffected) were tested for PVs in germline predisposition gene. Frequencies of PVs and associations between PVs in each gene and breast cancer were assessed, and remaining lifetime breast cancer risks were estimated for non-Hispanic White women with PVs. RESULTS The frequency of PVs in predisposition genes was 3.18% for women with breast cancer and 1.48% for unaffected women over age 65 years. PVs in BRCA1, BRCA2, and PALB2 were found in 3.42% of women diagnosed with estrogen receptor (ER)-negative, 1.0% with ER-positive, and 3.01% with triple-negative breast cancer. Frequencies of PVs were lower among women with no first-degree relatives with breast cancer. PVs in CHEK2, PALB2, BRCA2, and BRCA1 were associated with increased risks (odds ratio = 2.9-4.0) of breast cancer. Remaining lifetime risks of breast cancer were ≥ 15% for those with PVs in BRCA1, BRCA2, and PALB2. CONCLUSION This study suggests that all women diagnosed with triple-negative breast cancer or ER-negative breast cancer should receive genetic testing and that women over age 65 years with BRCA1 and BRCA2 PVs and perhaps with PALB2 and CHEK2 PVs should be considered for magnetic resonance imaging screening.
Collapse
Affiliation(s)
| | | | | | - Peter Kraft
- Harvard University T.H. Chan School of Public Health, Boston, MA
| | - Katherine L. Nathanson
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Basser Center for BRCA, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | | | - Jie Na
- Mayo Clinic, Rochester, MN
| | - Hongyan Huang
- Harvard University T.H. Chan School of Public Health, Boston, MA
| | | | | | | | - Song Yao
- Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | | | | | - Lauren Teras
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, GA
| | | | | | | | | | - Alpa V. Patel
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, GA
| | | | | | | | | | | | | | - Huiyan Ma
- Beckman Research Institute of City of Hope, Duarte, CA
| | - Sara Lindstrom
- Department of Epidemiology, University of Washington, Seattle, WA
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI
| | | | | | | | - James M. Hodge
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, GA
| | - Christopher Haiman
- Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Mia M. Gaudet
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, GA
| | - Chi Gao
- Harvard University T.H. Chan School of Public Health, Boston, MA
| | | | | | | | | | - Brian D. Carter
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, GA
| | | | | | | | - Paul W. Auer
- UWM Joseph J. Zilber School of Public Health, Milwaukee, WI
| | | | | | | | | | - Susan M. Domchek
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Basser Center for BRCA, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | | |
Collapse
|
13
|
Kwong A, Shin VY, Ho CYS, Khalid A, Au CH, Chan KKL, Ngan HYS, Chan TL, Ma ESK. Germline PALB2 Mutation in High-Risk Chinese Breast and/or Ovarian Cancer Patients. Cancers (Basel) 2021; 13:4195. [PMID: 34439348 PMCID: PMC8394494 DOI: 10.3390/cancers13164195] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/23/2022] Open
Abstract
The prevalence of the PALB2 mutation in breast cancer varies across different ethnic groups; hence, it is of intense interest to evaluate the cancer risk and clinical association of the PALB2 mutation in Chinese breast and/or ovarian cancer patients. We performed sequencing with a 6-gene test panel (BRCA1, BRCA2, TP53, PTEN, PALB2, and CDH1) to identify the prevalence of the PALB2 germline mutation among 2631 patients with breast and/or ovarian cancer. In this cohort, 39 mutations were identified with 24 types of mutation variants, where the majority of the mutations were frame-shift mutations and resulted in early termination. We also identified seven novel PALB2 mutations. Most of the PALB2 mutation carriers had breast cancer (36, 92.3%) and were more likely to have family history of breast cancer (19, 48.7%). The majority of the breast tumors were invasive ductal carcinoma (NOS type) (34, 81.0%) and hormonal positive (ER: 32, 84.2%; PR: 23, 60.5%). Pathogenic mutations of PALB2 were found in 39 probands with a mutation frequency of 1.6% and 1% in breast cancer and ovarian cancer patients, respectively. PALB2 mutation carriers were more likely have hormonal positive tumors and were likely to have familial aggregation of breast cancer.
Collapse
Affiliation(s)
- Ava Kwong
- Department of Surgery, The University of Hong Kong, Hong Kong, China; (V.Y.S.); (A.K.)
- University of Hong Kong-Shenzhen Hospital, Hong Kong, China
- Department of Surgery, Hong Kong Sanatorium & Hospital, Hong Kong, China
- Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong, China; (T.-L.C.); (E.S.K.M.)
| | - Vivian Y. Shin
- Department of Surgery, The University of Hong Kong, Hong Kong, China; (V.Y.S.); (A.K.)
- University of Hong Kong-Shenzhen Hospital, Hong Kong, China
| | - Cecilia Y. S. Ho
- Department of Pathology, Division of Molecular Pathology, Hong Kong Sanatorium & Hospital, Hong Kong, China; (C.Y.S.H.); (C.H.A.)
| | - Aleena Khalid
- Department of Surgery, The University of Hong Kong, Hong Kong, China; (V.Y.S.); (A.K.)
- University of Hong Kong-Shenzhen Hospital, Hong Kong, China
| | - Chun Hang Au
- Department of Pathology, Division of Molecular Pathology, Hong Kong Sanatorium & Hospital, Hong Kong, China; (C.Y.S.H.); (C.H.A.)
| | - Karen K. L. Chan
- Department of Obstetrics and Gynecology, The University of Hong Kong, Hong Kong, China; (K.K.L.C.); (H.Y.S.N.)
| | - Hextan Y. S. Ngan
- Department of Obstetrics and Gynecology, The University of Hong Kong, Hong Kong, China; (K.K.L.C.); (H.Y.S.N.)
| | - Tsun-Leung Chan
- Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong, China; (T.-L.C.); (E.S.K.M.)
- Department of Pathology, Division of Molecular Pathology, Hong Kong Sanatorium & Hospital, Hong Kong, China; (C.Y.S.H.); (C.H.A.)
| | - Edmond S. K. Ma
- Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong, China; (T.-L.C.); (E.S.K.M.)
- Department of Pathology, Division of Molecular Pathology, Hong Kong Sanatorium & Hospital, Hong Kong, China; (C.Y.S.H.); (C.H.A.)
| |
Collapse
|
14
|
Brnich SE, Arteaga EC, Wang Y, Tan X, Berg JS. A Validated Functional Analysis of Partner and Localizer of BRCA2 Missense Variants for Use in Clinical Variant Interpretation. J Mol Diagn 2021; 23:847-864. [PMID: 33964450 PMCID: PMC8491091 DOI: 10.1016/j.jmoldx.2021.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/06/2021] [Indexed: 12/29/2022] Open
Abstract
Clinical genetic testing readily detects germline genetic variants. Yet, the rarity of individual variants limits the evidence available for variant classification, leading to many variants of uncertain significance (VUS). VUS cannot guide clinical decisions, complicating counseling and management. In hereditary breast cancer gene PALB2, approximately 50% of clinically identified germline variants are VUS and approximately 90% of VUS are missense. Truncating PALB2 variants have homologous recombination (HR) defects and rely on error-prone nonhomologous end-joining for DNA damage repair (DDR). Recent reports show that some missense PALB2 variants may also be damaging, but most functional studies have lacked benchmarking controls required for sufficient predictive power for clinical use. Here, variant-level DDR capacity in hereditary breast cancer genes was assessed using the Traffic Light Reporter (TLR) to quantify cellular HR/nonhomologous end-joining with fluorescent markers. First, using BRCA2 missense variants of known significance as benchmarks, the TLR distinguished between normal/abnormal HR function. The TLR was then validated for PALB2 and used to test 37 PALB2 variants. Based on the TLR's ability to correctly classify PALB2 validation controls, these functional data where applied in subsequent germline variant interpretations at a moderate level of evidence toward a pathogenic interpretation (PS3_moderate) for 8 variants with abnormal DDR, or a supporting level of evidence toward a benign interpretation (BS3_supporting) for 13 variants with normal DDR.
Collapse
Affiliation(s)
- Sarah E Brnich
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Eyla Cristina Arteaga
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Yueting Wang
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Xianming Tan
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jonathan S Berg
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
15
|
Tischkowitz M, Balmaña J, Foulkes WD, James P, Ngeow J, Schmutzler R, Voian N, Wick MJ, Stewart DR, Pal T. Management of individuals with germline variants in PALB2: a clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2021; 23:1416-1423. [PMID: 33976419 DOI: 10.1038/s41436-021-01151-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/16/2022] Open
Abstract
PURPOSE PALB2 germline pathogenic variants are associated with increased breast cancer risk and smaller increased risk of pancreatic and likely ovarian cancer. Resources for health-care professionals managing PALB2 heterozygotes are currently limited. METHODS A workgroup of experts sought to outline management of PALB2 heterozygotes based on current evidence. Peer-reviewed publications from PubMed were identified to guide recommendations, which arose by consensus and the collective expertise of the authors. RESULTS PALB2 heterozygotes should be offered BRCA1/2-equivalent breast surveillance. Risk-reducing mastectomy can be considered guided by personalized risk estimates. Pancreatic cancer surveillance should be considered, but ideally as part of a clinical trial. Typically, ovarian cancer surveillance is not recommended, and risk-reducing salpingo-oophorectomy should only rarely be considered before the age of 50. Given the mechanistic similarities, PALB2 heterozygotes should be considered for therapeutic regimens and trials as those for BRCA1/2. CONCLUSION This guidance is similar to those for BRCA1/2. While the range of the cancer risk estimates overlap with BRCA1/2, point estimates are lower in PALB2 so individualized estimates are important for management decisions. Systematic prospective data collection is needed to determine as yet unanswered questions such as the risk of contralateral breast cancer and survival after cancer diagnosis.
Collapse
Affiliation(s)
- Marc Tischkowitz
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Judith Balmaña
- Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO) and Medical Oncology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Hospital Campus, Barcelona, Spain
| | - William D Foulkes
- Departments of Human Genetics, Oncology and Medicine, McGill University, Montréal, QC, Canada
| | - Paul James
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia.,Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Joanne Ngeow
- Genomic Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre, Singapore, Singapore
| | - Rita Schmutzler
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,University Hospital of Cologne, Center of Integrated Oncology, CIO and Center of Familial Breast and Ovarian Cancer, Cologne, Germany
| | - Nicoleta Voian
- Genetic Risk Clinic, Providence Cancer Institute, Portland, OR, USA
| | - Myra J Wick
- Departments of Obstetrics and Gynecology and Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Douglas R Stewart
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Tuya Pal
- Department of Medicine, Vanderbilt University Medical Center/Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | | |
Collapse
|
16
|
Zhang Y, Park JY, Zhang F, Olson SH, Orlow I, Li Y, Kurtz RC, Ladanyi M, Chen J, Toland AE, Zhang L, Andreassen PR. The p.Ser64Leu and p.Pro104Leu missense variants of PALB2 identified in familial pancreatic cancer patients compromise the DNA damage response. Hum Mutat 2020; 42:150-163. [PMID: 33169439 DOI: 10.1002/humu.24133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 09/17/2020] [Accepted: 11/01/2020] [Indexed: 11/12/2022]
Abstract
PALB2 has been identified as a breast and pancreatic cancer susceptibility gene. Utilizing a targeted sequencing approach, we discovered two novel germline missense PALB2 variants c.191C>T and c.311C>T, encoding p.Ser64Leu and p.Pro104Leu, respectively, in individuals in a pancreatic cancer registry. No missense PALB2 variants from familial pancreatic cancer patients, and few PALB2 variants overall, have been functionally characterized. Given the known role of PALB2, we tested the impact of p.Ser64Leu and p.Pro104Leu variants on DNA damage responses. Neither p.Ser64Leu nor p.Pro104Leu have clear effects on interactions with BRCA1 and KEAP1, which are mediated by adjacent motifs in PALB2. However, both variants are associated with defective recruitment of PALB2, and the RAD51 recombinase downstream, to DNA damage foci. Furthermore, p.Ser64Leu and p.Pro104Leu both largely compromise DNA double-strand break-initiated homologous recombination, and confer increased cellular sensitivity to ionizing radiation (IR) and the poly (ADP-ribose) polymerase (PARP) inhibitor Olaparib. Taken together, our results represent the first demonstration of functionally deleterious PALB2 missense variants associated with familial pancreatic cancer and of deleterious variants in the N-terminus outside of the coiled-coil domain. Furthermore, our results suggest the possibility of personalized treatments, using IR or PARP inhibitor, of pancreatic and other cancers that carry a deleterious PALB2 variant.
Collapse
Affiliation(s)
- Yue Zhang
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Peking Union Medical College Hospital, Chinese Academy of Medical Sciences - Peking Union Medical College, Beijing, China
| | - Jung-Young Park
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Fan Zhang
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Sara H Olson
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Irene Orlow
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Yirong Li
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Robert C Kurtz
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jie Chen
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences - Peking Union Medical College, Beijing, China
| | - Amanda E Toland
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Division of Human Genetics, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Liying Zhang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles (UCLA), Los Angeles, California, USA
| | - Paul R Andreassen
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
17
|
Nepomuceno TC, Carvalho MA, Rodrigue A, Simard J, Masson JY, Monteiro ANA. PALB2 Variants: Protein Domains and Cancer Susceptibility. Trends Cancer 2020; 7:188-197. [PMID: 33139182 DOI: 10.1016/j.trecan.2020.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 01/09/2023]
Abstract
Since its discovery, partner and localizer of breast cancer 2 (BRCA2) (PALB2) has emerged as a major tumor suppressor gene linked to breast cancer (BC), pancreatic cancer (PC), and ovarian cancer (OC) susceptibility. Its protein product plays a pivotal role in the maintenance of genome integrity. Here we discuss the first functional evaluation of a large set of PALB2 missense variants of uncertain significance (VUSs). Assessment of 136 VUSs interrogating a range of PALB2 biological functions resulted in the identification of 15 variants with consistent loss of function across different assays. All loss-of-function variants are located at the PALB2 coiled coil (CC) or at the WD40 domain, highlighting the importance of modular domains mechanistically involved in the DNA damage response (DDR) and pinpointing their roles in tumor suppression.
Collapse
Affiliation(s)
- Thales C Nepomuceno
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Divisão de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro 20230-130, Brazil
| | - Marcelo A Carvalho
- Divisão de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro 20230-130, Brazil; Instituto Federal do Rio de Janeiro (IFRJ), Rio de Janeiro 20270-021, Brazil
| | - Amélie Rodrigue
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, 9 McMahon, Quebec City, QC G1R 3S3, Canada
| | - Jacques Simard
- Genomics Center, CHU de Quebec-Université Laval Research Center, Quebec City, QC, Canada
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, 9 McMahon, Quebec City, QC G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec City, QC G1V 0A6, Canada
| | - Alvaro N A Monteiro
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
18
|
Preobrazhenskaya EV, Shleykina AU, Gorustovich OA, Martianov AS, Bizin IV, Anisimova EI, Sokolova TN, Chuinyshena SA, Kuligina ES, Togo AV, Belyaev AM, Ivantsov AO, Sokolenko AP, Imyanitov EN. Frequency and molecular characteristics of PALB2-associated cancers in Russian patients. Int J Cancer 2020; 148:203-210. [PMID: 32997802 DOI: 10.1002/ijc.33317] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 12/23/2022]
Abstract
PALB2 is а high-penetrance gene for hereditary breast cancer (BC). Our study aimed to investigate the spectrum of PALB2 mutations in Russian cancer patients. PALB2 sequencing revealed pathogenic variants in 3/190 (1.6%) young-onset and/or familial and/or bilateral BC cases but none in 96 ovarian cancer (OC) or 172 pancreatic cancer patients. Subsequently, seven recurrent PALB2 pathogenic alleles were selected from this and previous Slavic studies and tested in an extended patient series. PALB2 pathogenic variants were detected in 5/585 (0.9%) "high-risk" BC, 10/1508 (0.7%) consecutive BC and 5/1802 (0.3%) OC cases. Haplotyping suggested that subjects with Slavic alleles c.509-510delGA (n = 10) and c.172-175delTTGT (n = 4) as well as carriers of Finnish c.1592delT mutation (n = 4) originated from a single founder each, while PALB2 p.R414X allele (n = 4) had at least two independent founders. Somatic loss of heterozygosity (LOH) was revealed in 5/10 chemonaive BCs and in 0/2 BC samples obtained after neoadjuvant therapy. Multigene sequencing identified somatic PALB2 inactivating point mutation in one out of two tumors without PALB2 LOH but in none of four BCs with PALB2 LOH. Genomic instability, as determined by NGS, was observed in four out of five tumors with biallelic PALB2 inactivation but not in the BC sample with the preserved wild-type PALB2 allele. PALB2 germ-line mutations contribute to a small fraction of cancer cases in Russia. The majority although not all PALB2-driven BCs have somatic inactivation of the remaining PALB2 allele and therefore potential sensitivity to platinum compounds and PARP inhibitors.
Collapse
Affiliation(s)
- Elena V Preobrazhenskaya
- N.N. Petrov Institute of Oncology, St. Petersburg, Russia.,St. Petersburg Pediatric Medical University, St. Petersburg, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical and Chemical Medicine, Moscow, Russia
| | | | | | | | - Ilya V Bizin
- N.N. Petrov Institute of Oncology, St. Petersburg, Russia
| | | | - Tatjana N Sokolova
- N.N. Petrov Institute of Oncology, St. Petersburg, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical and Chemical Medicine, Moscow, Russia
| | | | - Ekatherina Sh Kuligina
- N.N. Petrov Institute of Oncology, St. Petersburg, Russia.,St. Petersburg Pediatric Medical University, St. Petersburg, Russia
| | - Alexandr V Togo
- N.N. Petrov Institute of Oncology, St. Petersburg, Russia.,St. Petersburg Pediatric Medical University, St. Petersburg, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical and Chemical Medicine, Moscow, Russia
| | - Alexey M Belyaev
- N.N. Petrov Institute of Oncology, St. Petersburg, Russia.,I.I. Mechnikov North-Western Medical University, St. Petersburg, Russia
| | - Alexandr O Ivantsov
- N.N. Petrov Institute of Oncology, St. Petersburg, Russia.,St. Petersburg Pediatric Medical University, St. Petersburg, Russia
| | - Anna P Sokolenko
- N.N. Petrov Institute of Oncology, St. Petersburg, Russia.,St. Petersburg Pediatric Medical University, St. Petersburg, Russia
| | - Evgeny N Imyanitov
- N.N. Petrov Institute of Oncology, St. Petersburg, Russia.,St. Petersburg Pediatric Medical University, St. Petersburg, Russia.,I.I. Mechnikov North-Western Medical University, St. Petersburg, Russia
| |
Collapse
|
19
|
Sadeghi F, Asgari M, Matloubi M, Ranjbar M, Karkhaneh Yousefi N, Azari T, Zaki-Dizaji M. Molecular contribution of BRCA1 and BRCA2 to genome instability in breast cancer patients: review of radiosensitivity assays. Biol Proced Online 2020; 22:23. [PMID: 33013205 PMCID: PMC7528506 DOI: 10.1186/s12575-020-00133-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/04/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND DNA repair pathways, cell cycle arrest checkpoints, and cell death induction are present in cells to process DNA damage and prevent genomic instability caused by various extrinsic and intrinsic ionizing factors. Mutations in the genes involved in these pathways enhances the ionizing radiation sensitivity, reduces the individual's capacity to repair DNA damages, and subsequently increases susceptibility to tumorigenesis. BODY BRCA1 and BRCA2 are two highly penetrant genes involved in the inherited breast cancer and contribute to different DNA damage pathways and cell cycle and apoptosis cascades. Mutations in these genes have been associated with hypersensitivity and genetic instability as well as manifesting severe radiotherapy complications in breast cancer patients. The genomic instability and DNA repair capacity of breast cancer patients with BRCA1/2 mutations have been analyzed in different studies using a variety of assays, including micronucleus assay, comet assay, chromosomal assay, colony-forming assay, γ -H2AX and 53BP1 biomarkers, and fluorescence in situ hybridization. The majority of studies confirmed the enhanced spontaneous & radiation-induced radiosensitivity of breast cancer patients compared to healthy controls. Using G2 micronucleus assay and G2 chromosomal assay, most studies have reported the lymphocyte of healthy carriers with BRCA1 mutation are hypersensitive to invitro ionizing radiation compared to non-carriers without a history of breast cancer. However, it seems this approach is not likely to be useful to distinguish the BRCA carriers from non-carrier with familial history of breast cancer. CONCLUSION In overall, breast cancer patients are more radiosensitive compared to healthy control; however, inconsistent results exist about the ability of current radiosensitive techniques in screening BRCA1/2 carriers or those susceptible to radiotherapy complications. Therefore, developing further radiosensitivity assay is still warranted to evaluate the DNA repair capacity of individuals with BRCA1/2 mutations and serve as a predictive factor for increased risk of cancer mainly in the relatives of breast cancer patients. Moreover, it can provide more evidence about who is susceptible to manifest severe complication after radiotherapy.
Collapse
Affiliation(s)
- Fatemeh Sadeghi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Digestive Diseases Research Institute, Digestive Oncology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Asgari
- Rheumatology Research Center, Tehran University of Medical Sciences, Shariati Hospital, Kargar Ave, Tehran, Iran
| | - Mojdeh Matloubi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maral Ranjbar
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nahid Karkhaneh Yousefi
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahereh Azari
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Zaki-Dizaji
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Boonen RACM, Vreeswijk MPG, van Attikum H. Functional Characterization of PALB2 Variants of Uncertain Significance: Toward Cancer Risk and Therapy Response Prediction. Front Mol Biosci 2020; 7:169. [PMID: 33195396 PMCID: PMC7525363 DOI: 10.3389/fmolb.2020.00169] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years it has become clear that pathogenic variants in PALB2 are associated with a high risk for breast, ovarian and pancreatic cancer. However, the clinical relevance of variants of uncertain significance (VUS) in PALB2, which are increasingly identified through clinical genetic testing, is unclear. Here we review recent advances in the functional characterization of VUS in PALB2. A combination of assays has been used to assess the impact of PALB2 VUS on its function in DNA repair by homologous recombination, cell cycle regulation and the control of cellular levels of reactive oxygen species (ROS). We discuss the outcome of this comprehensive analysis of PALB2 VUS, which showed that VUS in PALB2’s Coiled-Coil (CC) domain can impair the interaction with BRCA1, whereas VUS in its WD40 domain affect PALB2 protein stability. Accordingly, the CC and WD40 domains of PALB2 represent hotspots for variants that impair PALB2 protein function. We also provide a future perspective on the high-throughput analysis of VUS in PALB2, as well as the functional characterization of variants that affect PALB2 RNA splicing. Finally, we discuss how results from these functional assays can be valuable for predicting cancer risk and responsiveness to cancer therapy, such as treatment with PARP inhibitor- or platinum-based chemotherapy.
Collapse
Affiliation(s)
- Rick A C M Boonen
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Maaike P G Vreeswijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
21
|
Saberian N, Shafi A, Peyvandipour A, Draghici S. MAGPEL: an autoMated pipeline for inferring vAriant-driven Gene PanEls from the full-length biomedical literature. Sci Rep 2020; 10:12365. [PMID: 32703994 PMCID: PMC7378213 DOI: 10.1038/s41598-020-68649-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 06/17/2020] [Indexed: 11/09/2022] Open
Abstract
In spite of the efforts in developing and maintaining accurate variant databases, a large number of disease-associated variants are still hidden in the biomedical literature. Curation of the biomedical literature in an effort to extract this information is a challenging task due to: (i) the complexity of natural language processing, (ii) inconsistent use of standard recommendations for variant description, and (iii) the lack of clarity and consistency in describing the variant-genotype-phenotype associations in the biomedical literature. In this article, we employ text mining and word cloud analysis techniques to address these challenges. The proposed framework extracts the variant-gene-disease associations from the full-length biomedical literature and designs an evidence-based variant-driven gene panel for a given condition. We validate the identified genes by showing their diagnostic abilities to predict the patients' clinical outcome on several independent validation cohorts. As representative examples, we present our results for acute myeloid leukemia (AML), breast cancer and prostate cancer. We compare these panels with other variant-driven gene panels obtained from Clinvar, Mastermind and others from literature, as well as with a panel identified with a classical differentially expressed genes (DEGs) approach. The results show that the panels obtained by the proposed framework yield better results than the other gene panels currently available in the literature.
Collapse
Affiliation(s)
- Nafiseh Saberian
- Department of Computer Science, Wayne State University, Detroit, MI, USA
| | - Adib Shafi
- Department of Computer Science, Wayne State University, Detroit, MI, USA
| | - Azam Peyvandipour
- Department of Computer Science, Wayne State University, Detroit, MI, USA
| | - Sorin Draghici
- Department of Computer Science, Wayne State University, Detroit, MI, USA.
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
22
|
Wesolowski R, Stover DG, Lustberg MB, Shoben A, Zhao M, Mrozek E, Layman RM, Macrae E, Duan W, Zhang J, Hall N, Wright CL, Gillespie S, Berger M, Chalmers JJ, Carey A, Balasubramanian P, Miller BL, Amaya P, Andreopoulou E, Sparano J, Shapiro CL, Villalona‐Calero MA, Geyer S, Chen A, Grever MR, Knopp MV, Ramaswamy B. Phase I Study of Veliparib on an Intermittent and Continuous Schedule in Combination with Carboplatin in Metastatic Breast Cancer: A Safety and [18F]-Fluorothymidine Positron Emission Tomography Biomarker Study. Oncologist 2020; 25:e1158-e1169. [PMID: 32452601 PMCID: PMC7418347 DOI: 10.1634/theoncologist.2020-0039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Poly(ADP-ribose) polymerase inhibitors (PARPis) are U.S. Food and Drug Administration (FDA) approved for treatment of BRCA-mutated metastatic breast cancer. Furthermore, the BROCADE studies demonstrated benefit of adding an oral PARPi, veliparib, to carboplatin and paclitaxel in patients with metastatic breast cancer harboring BRCA mutation. Given multiple possible dosing schedules and the potential benefit of this regimen for patients with defective DNA repair beyond BRCA, we sought to find the recommended phase II dose (RP2D) and schedule of veliparib in combination with carboplatin in patients with advanced breast cancer, either triple-negative (TNBC) or hormone receptor (HR)-positive, human epidermal growth receptor 2 (HER2) negative with defective Fanconi anemia (FA) DNA-repair pathway based on FA triple staining immunofluorescence assay. MATERIALS AND METHODS Patients received escalating doses of veliparib on a 7-, 14-, or 21-day schedule with carboplatin every 3 weeks. Patients underwent [18]fluoro-3'-deoxythymidine (18 FLT) positron emission tomography (PET) imaging. RESULTS Forty-four patients (39 TNBC, 5 HR positive/HER2 negative with a defective FA pathway) received a median of 5 cycles (range 1-36). Observed dose-limiting toxicities were grade (G) 4 thrombocytopenia (n = 4), G4 neutropenia (n = 1), and G3 akathisia (n = 1). Common grade 3-4 toxicities included thrombocytopenia, lymphopenia, neutropenia, anemia, and fatigue. Of the 43 patients evaluable for response, 18.6% achieved partial response and 48.8% had stable disease. Median progression-free survival was 18.3 weeks. RP2D of veliparib was established at 250 mg twice daily on days 1-21 along with carboplatin at area under the curve 5. Patients with partial response had a significant drop in maximum standard uptake value (SUVmax ) of target lesions between baseline and early in cycle 1 based on 18 FLT-PET (day 7-21; ptrend = .006). CONCLUSION The combination of continuous dosing of veliparib and every-3-week carboplatin demonstrated activity and an acceptable toxicity profile. Decrease in SUVmax on 18 FLT-PET scan during the first cycle of this therapy can identify patients who are likely to have a response. IMPLICATIONS FOR PRACTICE The BROCADE studies suggest that breast cancer patients with BRCA mutation benefit from addition of veliparib to carboplatin plus paclitaxel. This study demonstrates that a higher dose of veliparib is tolerable and active in combination with carboplatin alone. With growing interest in imaging-based early response assessment, the authors demonstrate that decrease in [18]fluoro-3'-deoxythymidine positron emission tomography (FLT-PET) SUVmax during cycle 1 of therapy is associated with response. Collectively, this study established a safety profile of veliparib and carboplatin in advanced breast cancer while also providing additional data on the potential for FLT-PET imaging modality in monitoring therapy response.
Collapse
Affiliation(s)
- Robert Wesolowski
- Stefanie Spielman Comprehensive Breast Center, The Ohio State UniversityColumbusOhioUSA
- The Ohio State University Comprehensive Cancer CenterColumbusOhioUSA
| | - Daniel G. Stover
- Stefanie Spielman Comprehensive Breast Center, The Ohio State UniversityColumbusOhioUSA
- The Ohio State University Comprehensive Cancer CenterColumbusOhioUSA
| | - Maryam B. Lustberg
- Stefanie Spielman Comprehensive Breast Center, The Ohio State UniversityColumbusOhioUSA
| | - Abigail Shoben
- The Ohio State University Comprehensive Cancer CenterColumbusOhioUSA
| | - Meng Zhao
- Stefanie Spielman Comprehensive Breast Center, The Ohio State UniversityColumbusOhioUSA
| | - Ewa Mrozek
- Mercy Health – St. Rita's Medical CenterLimaOhioUSA
| | | | | | - Wenrui Duan
- The Ohio State University Comprehensive Cancer CenterColumbusOhioUSA
| | - Jun Zhang
- The Ohio State University Comprehensive Cancer CenterColumbusOhioUSA
| | - Nathan Hall
- The Ohio State University Comprehensive Cancer CenterColumbusOhioUSA
| | | | - Susan Gillespie
- Stefanie Spielman Comprehensive Breast Center, The Ohio State UniversityColumbusOhioUSA
| | - Michael Berger
- Stefanie Spielman Comprehensive Breast Center, The Ohio State UniversityColumbusOhioUSA
| | | | - Alahdra Carey
- The Ohio State University Comprehensive Cancer CenterColumbusOhioUSA
| | | | - Brandon L. Miller
- The Ohio State University Comprehensive Cancer CenterColumbusOhioUSA
| | - Peter Amaya
- The Ohio State University Comprehensive Cancer CenterColumbusOhioUSA
| | | | - Joseph Sparano
- Montefiore Medical Center, Albert Einstein College of MedicineBronxNew YorkUSA
| | | | | | | | - Alice Chen
- National Cancer InstituteBethesdaMarylandUSA
| | - Michael R. Grever
- The Ohio State University Comprehensive Cancer CenterColumbusOhioUSA
| | - Michael V. Knopp
- The Ohio State University Comprehensive Cancer CenterColumbusOhioUSA
| | | |
Collapse
|
23
|
Rodrigue A, Margaillan G, Torres Gomes T, Coulombe Y, Montalban G, da Costa E Silva Carvalho S, Milano L, Ducy M, De-Gregoriis G, Dellaire G, Araújo da Silva W, Monteiro AN, Carvalho MA, Simard J, Masson JY. A global functional analysis of missense mutations reveals two major hotspots in the PALB2 tumor suppressor. Nucleic Acids Res 2020; 47:10662-10677. [PMID: 31586400 PMCID: PMC6847799 DOI: 10.1093/nar/gkz780] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/12/2019] [Accepted: 09/24/2019] [Indexed: 01/01/2023] Open
Abstract
While biallelic mutations in the PALB2 tumor suppressor cause Fanconi anemia subtype FA-N, monoallelic mutations predispose to breast and familial pancreatic cancer. Although hundreds of missense variants in PALB2 have been identified in patients to date, only a few have clear functional and clinical relevance. Herein, we investigate the effects of 44 PALB2 variants of uncertain significance found in breast cancer patients and provide detailed analysis by systematic functional assays. Our comprehensive functional analysis reveals two hotspots for potentially deleterious variations within PALB2, one at each terminus. PALB2 N-terminus variants p.P8L [c.23C>T], p.Y28C [c.83A>G], and p.R37H [c.110G>A] compromised PALB2-mediated homologous recombination. At the C-terminus, PALB2 variants p.L947F [c.2841G>T], p.L947S [c.2840T>C], and most strikingly p.T1030I [c.3089C>T] and p.W1140G [c.3418T>C], stood out with pronounced PARP inhibitor sensitivity and cytoplasmic accumulation in addition to marked defects in recruitment to DNA damage sites, interaction with BRCA2 and homologous recombination. Altogether, our findings show that a combination of functional assays is necessary to assess the impact of germline missense variants on PALB2 function, in order to guide proper classification of their deleteriousness.
Collapse
Affiliation(s)
- Amélie Rodrigue
- CHU de Québec-Université Laval, Oncology Division, 9 McMahon, Québec City, QC G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, QC G1V 0A6, Canada
| | - Guillaume Margaillan
- CHU de Québec-Université Laval Research Center, Genomics Center, Québec City, QC, Canada
| | - Thiago Torres Gomes
- Instituto Nacional de Câncer, Centro de Pesquisa, Programa de Pesquisa Clínica, Rio de Janeiro, Brazil.,Instituto Federal do Rio de Janeiro, Laboratório de Genética Molecular, Maracanã, Rio de Janeiro, Brazil
| | - Yan Coulombe
- CHU de Québec-Université Laval, Oncology Division, 9 McMahon, Québec City, QC G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, QC G1V 0A6, Canada
| | - Gemma Montalban
- CHU de Québec-Université Laval, Oncology Division, 9 McMahon, Québec City, QC G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, QC G1V 0A6, Canada.,CHU de Québec-Université Laval Research Center, Genomics Center, Québec City, QC, Canada
| | - Simone da Costa E Silva Carvalho
- CHU de Québec-Université Laval, Oncology Division, 9 McMahon, Québec City, QC G1R 3S3, Canada.,Instituto Nacional de Câncer, Centro de Pesquisa, Programa de Pesquisa Clínica, Rio de Janeiro, Brazil.,Department of Genetics at Ribeirão Preto Medical School, University of São Paulo; Center for Cell-Based Therapy (CEPID/FAPESP); National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Ribeirão Preto, SP, Brazil
| | - Larissa Milano
- CHU de Québec-Université Laval, Oncology Division, 9 McMahon, Québec City, QC G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, QC G1V 0A6, Canada
| | - Mandy Ducy
- CHU de Québec-Université Laval, Oncology Division, 9 McMahon, Québec City, QC G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, QC G1V 0A6, Canada.,CHU de Québec-Université Laval Research Center, Genomics Center, Québec City, QC, Canada
| | - Giuliana De-Gregoriis
- Instituto Nacional de Câncer, Centro de Pesquisa, Programa de Pesquisa Clínica, Rio de Janeiro, Brazil.,Instituto Federal do Rio de Janeiro, Laboratório de Genética Molecular, Maracanã, Rio de Janeiro, Brazil
| | - Graham Dellaire
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Wilson Araújo da Silva
- Department of Genetics at Ribeirão Preto Medical School, University of São Paulo; Center for Cell-Based Therapy (CEPID/FAPESP); National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Ribeirão Preto, SP, Brazil
| | | | - Marcelo A Carvalho
- Instituto Nacional de Câncer, Centro de Pesquisa, Programa de Pesquisa Clínica, Rio de Janeiro, Brazil.,Instituto Federal do Rio de Janeiro, Laboratório de Genética Molecular, Maracanã, Rio de Janeiro, Brazil
| | - Jacques Simard
- CHU de Québec-Université Laval Research Center, Genomics Center, Québec City, QC, Canada
| | - Jean-Yves Masson
- CHU de Québec-Université Laval, Oncology Division, 9 McMahon, Québec City, QC G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Québec City, QC G1V 0A6, Canada
| |
Collapse
|
24
|
Toh MR, Low CE, Chong ST, Chan SH, Ishak NDB, Courtney E, Kolinjivadi AM, Rodrigue A, Masson JY, Ngeow J. Missense PALB2 germline variant disrupts nuclear localization of PALB2 in a patient with breast cancer. Fam Cancer 2020; 19:123-131. [PMID: 32048105 DOI: 10.1007/s10689-020-00163-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The PALB2 protein is essential to RAD51-mediated homologous recombination (HR) repair. Germline monoallelic PALB2 pathogenic variants confer significant risks for breast cancer. However, the majority of PALB2 variants remain classified as variants of unknown significance (VUS). We aim to functionally and mechanistically evaluate three novel PALB2 VUS. Patient-derived lymphoblastoid cell lines containing the VUS were analyzed for nuclear localization and foci formation of RAD51 as a measure of HR efficiency. To understand the mechanism underlying the HR deficiency, PALB2 nuclear localization was assessed using immunofluorescence studies. Among these VUS, c.3251C>T (p.Ser1084Leu) occurred in a patient with metastatic breast cancer while c.1054G>C (p.Glu352Gln) and c.1057A>G (p.Lys353Glu) were seen in patients with squamous cell carcinoma of skin and renal cell carcinoma respectively. Variant c.3251C>T was located within the WD40 domain which normally masked the nuclear export signal sequence responsible for nuclear delocalization of PALB2. Correspondingly, c.3251C>T displayed aberrant cytoplasmic localization of PALB2 which led to an impaired RAD51 nuclear localization and foci formation. On the other hand, both c.1054G>C and c.1057A>G showed intact HR functions and nuclear localization of PALB2, consistent with their locations within domains of no known function. Additionally, the prevalence of c.1054G>C was similar among healthy controls and patients with breast cancer (as seen in other studies), suggestive of its non-pathogenicity. In conclusion, our studies provided the functional evidence showing the deleterious effect of c.3251C>T, and non-deleterious effects of c.1054G>C and c.1057A>G. Using the ClinGen Pathogenicity calculator, c.3251C>T remains a VUS while c.1054G>C and c.1057A>G may be classified as likely benign variants.
Collapse
Affiliation(s)
- Ming Ren Toh
- Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Chen Ee Low
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Center, Singapore, 169610, Singapore
| | - Siao Ting Chong
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Center, Singapore, 169610, Singapore
| | - Sock Hoai Chan
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Center, Singapore, 169610, Singapore
| | - Nur Diana Binte Ishak
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Center, Singapore, 169610, Singapore
| | - Eliza Courtney
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Center, Singapore, 169610, Singapore
| | - Arun Mouli Kolinjivadi
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Center, Singapore, 169610, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 639798, Singapore
| | - Amélie Rodrigue
- CHU de Québec Research Center, Oncology Division, HDQ Pavilion, 9 McMahon, Québec City, QC, G1R 3S3, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Jean-Yves Masson
- CHU de Québec Research Center, Oncology Division, HDQ Pavilion, 9 McMahon, Québec City, QC, G1R 3S3, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Joanne Ngeow
- Duke-NUS Medical School, Singapore, 169857, Singapore.
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Center, Singapore, 169610, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 639798, Singapore.
- Institute of Molecular and Cellular Biology, Agency for Science, Technology and Research, Singapore, 138673, Singapore.
| |
Collapse
|
25
|
YÜKSEL BİLEN M, BERKÖZ M, YALIN AE, ÇALIKUŞU Z, EROĞLU P, ÇÖMELEKOĞLU Ü, YALIN S. PALB2 genetik varyasyonlarının meme kanseri yatkınlığı üzerindeki etkilerinin araştırılması. CUKUROVA MEDICAL JOURNAL 2020. [DOI: 10.17826/cumj.634598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
26
|
Yang X, Leslie G, Doroszuk A, Schneider S, Allen J, Decker B, Dunning AM, Redman J, Scarth J, Plaskocinska I, Luccarini C, Shah M, Pooley K, Dorling L, Lee A, Adank MA, Adlard J, Aittomäki K, Andrulis IL, Ang P, Barwell J, Bernstein JL, Bobolis K, Borg Å, Blomqvist C, Claes KB, Concannon P, Cuggia A, Culver JO, Damiola F, de Pauw A, Diez O, Dolinsky JS, Domchek SM, Engel C, Evans DG, Fostira F, Garber J, Golmard L, Goode EL, Gruber SB, Hahnen E, Hake C, Heikkinen T, Hurley JE, Janavicius R, Kleibl Z, Kleiblova P, Konstantopoulou I, Kvist A, Laduca H, Lee AS, Lesueur F, Maher ER, Mannermaa A, Manoukian S, McFarland R, McKinnon W, Meindl A, Metcalfe K, Mohd Taib NA, Moilanen J, Nathanson KL, Neuhausen S, Ng PS, Nguyen-Dumont T, Nielsen SM, Obermair F, Offit K, Olopade OI, Ottini L, Penkert J, Pylkäs K, Radice P, Ramus SJ, Rudaitis V, Side L, Silva-Smith R, Silvestri V, Skytte AB, Slavin T, Soukupova J, Tondini C, Trainer AH, Unzeitig G, Usha L, van Overeem Hansen T, Whitworth J, Wood M, Yip CH, Yoon SY, Yussuf A, Zogopoulos G, Goldgar D, Hopper JL, Chenevix-Trench G, Pharoah P, George SH, Balmaña J, Houdayer C, et alYang X, Leslie G, Doroszuk A, Schneider S, Allen J, Decker B, Dunning AM, Redman J, Scarth J, Plaskocinska I, Luccarini C, Shah M, Pooley K, Dorling L, Lee A, Adank MA, Adlard J, Aittomäki K, Andrulis IL, Ang P, Barwell J, Bernstein JL, Bobolis K, Borg Å, Blomqvist C, Claes KB, Concannon P, Cuggia A, Culver JO, Damiola F, de Pauw A, Diez O, Dolinsky JS, Domchek SM, Engel C, Evans DG, Fostira F, Garber J, Golmard L, Goode EL, Gruber SB, Hahnen E, Hake C, Heikkinen T, Hurley JE, Janavicius R, Kleibl Z, Kleiblova P, Konstantopoulou I, Kvist A, Laduca H, Lee AS, Lesueur F, Maher ER, Mannermaa A, Manoukian S, McFarland R, McKinnon W, Meindl A, Metcalfe K, Mohd Taib NA, Moilanen J, Nathanson KL, Neuhausen S, Ng PS, Nguyen-Dumont T, Nielsen SM, Obermair F, Offit K, Olopade OI, Ottini L, Penkert J, Pylkäs K, Radice P, Ramus SJ, Rudaitis V, Side L, Silva-Smith R, Silvestri V, Skytte AB, Slavin T, Soukupova J, Tondini C, Trainer AH, Unzeitig G, Usha L, van Overeem Hansen T, Whitworth J, Wood M, Yip CH, Yoon SY, Yussuf A, Zogopoulos G, Goldgar D, Hopper JL, Chenevix-Trench G, Pharoah P, George SH, Balmaña J, Houdayer C, James P, El-Haffaf Z, Ehrencrona H, Janatova M, Peterlongo P, Nevanlinna H, Schmutzler R, Teo SH, Robson M, Pal T, Couch F, Weitzel JN, Elliott A, Southey M, Winqvist R, Easton DF, Foulkes WD, Antoniou AC, Tischkowitz M. Cancer Risks Associated With Germline PALB2 Pathogenic Variants: An International Study of 524 Families. J Clin Oncol 2020; 38:674-685. [PMID: 31841383 PMCID: PMC7049229 DOI: 10.1200/jco.19.01907] [Show More Authors] [Citation(s) in RCA: 285] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2019] [Indexed: 12/30/2022] Open
Abstract
PURPOSE To estimate age-specific relative and absolute cancer risks of breast cancer and to estimate risks of ovarian, pancreatic, male breast, prostate, and colorectal cancers associated with germline PALB2 pathogenic variants (PVs) because these risks have not been extensively characterized. METHODS We analyzed data from 524 families with PALB2 PVs from 21 countries. Complex segregation analysis was used to estimate relative risks (RRs; relative to country-specific population incidences) and absolute risks of cancers. The models allowed for residual familial aggregation of breast and ovarian cancer and were adjusted for the family-specific ascertainment schemes. RESULTS We found associations between PALB2 PVs and risk of female breast cancer (RR, 7.18; 95% CI, 5.82 to 8.85; P = 6.5 × 10-76), ovarian cancer (RR, 2.91; 95% CI, 1.40 to 6.04; P = 4.1 × 10-3), pancreatic cancer (RR, 2.37; 95% CI, 1.24 to 4.50; P = 8.7 × 10-3), and male breast cancer (RR, 7.34; 95% CI, 1.28 to 42.18; P = 2.6 × 10-2). There was no evidence for increased risks of prostate or colorectal cancer. The breast cancer RRs declined with age (P for trend = 2.0 × 10-3). After adjusting for family ascertainment, breast cancer risk estimates on the basis of multiple case families were similar to the estimates from families ascertained through population-based studies (P for difference = .41). On the basis of the combined data, the estimated risks to age 80 years were 53% (95% CI, 44% to 63%) for female breast cancer, 5% (95% CI, 2% to 10%) for ovarian cancer, 2%-3% (95% CI females, 1% to 4%; 95% CI males, 2% to 5%) for pancreatic cancer, and 1% (95% CI, 0.2% to 5%) for male breast cancer. CONCLUSION These results confirm PALB2 as a major breast cancer susceptibility gene and establish substantial associations between germline PALB2 PVs and ovarian, pancreatic, and male breast cancers. These findings will facilitate incorporation of PALB2 into risk prediction models and optimize the clinical cancer risk management of PALB2 PV carriers.
Collapse
Affiliation(s)
- Xin Yang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Goska Leslie
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Alicja Doroszuk
- Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, and Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, United Kingdom
| | - Sandra Schneider
- Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, and Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, United Kingdom
| | - Jamie Allen
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Brennan Decker
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | - Alison M. Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology,University of Cambridge, Cambridge, United Kingdom
| | - James Redman
- Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, and Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, United Kingdom
| | - James Scarth
- Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, and Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, United Kingdom
| | - Inga Plaskocinska
- Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, and Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, United Kingdom
| | - Craig Luccarini
- Centre for Cancer Genetic Epidemiology, Department of Oncology,University of Cambridge, Cambridge, United Kingdom
| | - Mitul Shah
- Centre for Cancer Genetic Epidemiology, Department of Oncology,University of Cambridge, Cambridge, United Kingdom
| | - Karen Pooley
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Leila Dorling
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Andrew Lee
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Muriel A. Adank
- Family Cancer Clinic, The Netherlands Cancer Institute–Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Julian Adlard
- Yorkshire Regional Genetics Service, Chapel Allerton Hospital, Leeds, United Kingdom
| | - Kristiina Aittomäki
- Department of Clinical Genetics, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Irene L. Andrulis
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Peter Ang
- Laboratory of Molecular Oncology, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore
| | - Julian Barwell
- Leicestershire Clinical Genetics Service, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| | - Jonine L. Bernstein
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kristie Bobolis
- Clinical Cancer Genomics Community Research Network, City of Hope, Duarte, CA
| | - Åke Borg
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Carl Blomqvist
- Department of Oncology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | | | - Patrick Concannon
- University of Florida Genetics Institute, University of Florida, Gainesville, FL
| | - Adeline Cuggia
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
- The Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Julie O. Culver
- Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA
| | | | | | - Orland Diez
- Oncogenetics Group, Clinical and Molecular Genetics Area, Vall d’Hebron Institute of Oncology (VHIO), University Hospital, Vall d’Hebron, Barcelona, Spain
| | | | - Susan M. Domchek
- Department ofMedicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Prospective Registry of Multiplex Testing (PROMPT), United States and Europe
| | - Christoph Engel
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - D. Gareth Evans
- Division of Evolution and Genomic Sciences, University of Manchester; Manchester Centre for Genomic Medicine, St Mary’s Hospital–Manchester University Hospitals NHS Foundation Trust; and Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Florentia Fostira
- Molecular Diagnostics Laboratory, INRASTES, National Centre for Scientific Research “Demokritos,” Athens, Greece
| | - Judy Garber
- Prospective Registry of Multiplex Testing (PROMPT), United States and Europe
- Dana-Farber Cancer Institute, Boston, MA
| | - Lisa Golmard
- Service de Génétique, Institut Curie, Paris, France
| | - Ellen L. Goode
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | | | - Eric Hahnen
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Center for Hereditary Breast and Ovarian Cancer, University Hospital of Cologne, Cologne, Germany
| | - Christopher Hake
- Clinical Cancer Genomics Community Research Network, City of Hope, Duarte, CA
| | - Tuomas Heikkinen
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Judith E. Hurley
- Division of Medical Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL
| | - Ramunas Janavicius
- Hematology, Oncology and Transfusion Medicine Center, Department of Molecular and Regenerative Medicine, Vilnius University Hospital Santariskiu Clinics, Vilnius, Lithuania
- State Research Institute Innovative Medicine Center, Vilnius, Lithuania
| | - Zdenek Kleibl
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Petra Kleiblova
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Irene Konstantopoulou
- Molecular Diagnostics Laboratory, INRASTES, National Centre for Scientific Research “Demokritos,” Athens, Greece
| | - Anders Kvist
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | | | - Ann S.G. Lee
- Leicestershire Clinical Genetics Service, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- SingHealth Duke-NUS Oncology Academic Clinical Programme (ONCO ACP), Duke-NUS Medical School, Singapore
| | - Fabienne Lesueur
- INSERM U900, Institut Curie, PSL University, Mines ParisTech, Paris, France
| | - Eamonn R. Maher
- Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, and Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, United Kingdom
| | - Arto Mannermaa
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
| | - Siranoush Manoukian
- Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Rachel McFarland
- Ambry Genetics, Aliso Viejo, CA
- Department of Epidemiology, University of California, Irvine, Irvine, CA
| | - Wendy McKinnon
- Familial Cancer Program, The University of Vermont Cancer Center, Burlington, VT
| | - Alfons Meindl
- Department of Gynecology and Obstetrics, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Kelly Metcalfe
- Lawrence S. Bloomberg Faculty of Nursing, University of Toronto, Toronto, Ontario, Canada
| | - Nur Aishah Mohd Taib
- University Malaya Cancer Research Institute, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| | - Jukka Moilanen
- Department of Clinical Genetics, Oulu University Hospital, Medical Research Center Oulu and PEDEGO Research Unit, University of Oulu, Oulu, Finland
| | - Katherine L. Nathanson
- Department ofMedicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Susan Neuhausen
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, CA
| | - Pei Sze Ng
- University Malaya Cancer Research Institute, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
- Cancer Research Malaysia, Subang Jaya Selangor, Malaysia
| | - Tu Nguyen-Dumont
- Department of Clinical Pathology, The University of Melbourne, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Sarah M. Nielsen
- Center for Clinical Cancer Genetics, The University of Chicago, Chicago, IL
| | - Florian Obermair
- Institute of Medical Genetics, Kepler University Hospital Linz and Laboratory for Molecular Biology and Tumor Cytogenetics, Ordensklinikum Linz, Linz, Austria
| | - Kenneth Offit
- Prospective Registry of Multiplex Testing (PROMPT), United States and Europe
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Laura Ottini
- Department of Molecular Medicine, University La Sapienza, Rome, Italy
| | - Judith Penkert
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Katri Pylkäs
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, and Northern Finland Laboratory Centre, Oulu, Finland
| | - Paolo Radice
- Unit of Molecular Basis of Genetic Risk and Genetic Testing, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Susan J. Ramus
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales Sydney, Sydney, New South Wales, Australia
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Vilius Rudaitis
- Hematology, Oncology and Transfusion Medicine Center, Department of Molecular and Regenerative Medicine, Vilnius University Hospital Santariskiu Clinics, Vilnius, Lithuania
| | - Lucy Side
- Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, United Kingdom
| | - Rachel Silva-Smith
- Department of Genetics, University of MiamiMiller School of Medicine, Miami, FL
| | | | - Anne-Bine Skytte
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas Slavin
- Clinical Cancer Genomics Community Research Network, City of Hope, Duarte, CA
- Department of Medical Oncology, Division of Clinical Cancer Genomics, City of Hope, Duarte, CA
| | - Jana Soukupova
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Carlo Tondini
- Unit of Medical Oncology, Department of Oncology and Hematology,Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Alison H. Trainer
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia
| | - Gary Unzeitig
- Clinical Cancer Genomics Community Research Network, City of Hope, Duarte, CA
| | - Lydia Usha
- Clinical Cancer Genomics Community Research Network, City of Hope, Duarte, CA
| | - Thomas van Overeem Hansen
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - James Whitworth
- Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, and Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, United Kingdom
| | - Marie Wood
- Familial Cancer Program, The University of Vermont Cancer Center, Burlington, VT
| | - Cheng Har Yip
- Cancer Research Malaysia, Subang Jaya Selangor, Malaysia
| | - Sook-Yee Yoon
- Cancer Research Malaysia, Subang Jaya Selangor, Malaysia
| | | | - George Zogopoulos
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
- The Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - David Goldgar
- Huntsman Cancer Institute, Department of Population Health Sciences, University of Utah, Salt Lake City, UT
| | - John L. Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Georgia Chenevix-Trench
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Paul Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Sophia H.L. George
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Gynecologic Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL
| | - Judith Balmaña
- Oncogenetics Group, Clinical and Molecular Genetics Area, Vall d’Hebron Institute of Oncology (VHIO), University Hospital, Vall d’Hebron, Barcelona, Spain
- Prospective Registry of Multiplex Testing (PROMPT), United States and Europe
| | - Claude Houdayer
- Service de Génétique, Institut Curie, Paris, France
- Genetics Department, F76000 and Normandy University, UNIROUEN, INSERM U1245, Normandy Centre for Genomic and Personalized Medicine, Rouen University Hospital, Rouen, France
| | - Paul James
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia
| | - Zaki El-Haffaf
- Department of Genetics, Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
| | - Hans Ehrencrona
- Department of Clinical Genetics and Pathology, Department of Laboratory Medicine, Office for Medical Services, Lund, Sweden
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Marketa Janatova
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Paolo Peterlongo
- Genome Diagnostics Program, IFOM–The FIRC Institute for Molecular Oncology, Milan, Italy
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Rita Schmutzler
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Center for Hereditary Breast and Ovarian Cancer, University Hospital of Cologne, Cologne, Germany
| | - Soo-Hwang Teo
- University Malaya Cancer Research Institute, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
- Cancer Research Malaysia, Subang Jaya Selangor, Malaysia
| | - Mark Robson
- Prospective Registry of Multiplex Testing (PROMPT), United States and Europe
- Breast Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Tuya Pal
- Vanderbilt-Ingram Cancer Center, Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Fergus Couch
- Prospective Registry of Multiplex Testing (PROMPT), United States and Europe
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Jeffrey N. Weitzel
- Clinical Cancer Genomics Community Research Network, City of Hope, Duarte, CA
- Department of Medical Oncology, Division of Clinical Cancer Genomics, City of Hope, Duarte, CA
| | | | - Melissa Southey
- Department of Clinical Pathology, The University of Melbourne, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, and Northern Finland Laboratory Centre, Oulu, Finland
| | - Douglas F. Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - William D. Foulkes
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
- Departments of Human Genetics, Oncology, and Medicine, McGill University, Montreal, Quebec, Canada
| | - Antonis C. Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Marc Tischkowitz
- Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, and Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
27
|
Foulkes WD, Polak P. Journey's end: the quest for BRCA-like hereditary breast cancer genes is nearly over. Ann Oncol 2019; 30:1023-1025. [PMID: 31090898 PMCID: PMC6637371 DOI: 10.1093/annonc/mdz152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- W D Foulkes
- Department of Human Genetics, McGill University, Montreal, Canada.
| | - P Polak
- Department of Oncological Sciences, Icahn School of Medicine, Mount Sinai Hospital, New York, USA
| |
Collapse
|
28
|
Wu Y, Ouyang T, Li J, Wang T, Fan Z, Fan T, Lin B, Xu Y, Xie Y. Spectrum and clinical relevance of PALB2 germline mutations in 7657 Chinese BRCA1/2-negative breast cancer patients. Breast Cancer Res Treat 2019; 179:605-614. [DOI: 10.1007/s10549-019-05483-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 10/25/2019] [Indexed: 11/27/2022]
|
29
|
Bochtler T, Haag GM, Schott S, Kloor M, Krämer A, Müller-Tidow C. Hematological Malignancies in Adults With a Family Predisposition. DEUTSCHES ARZTEBLATT INTERNATIONAL 2019; 115:848-854. [PMID: 30722840 DOI: 10.3238/arztebl.2018.0848] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 12/08/2017] [Accepted: 07/03/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Some hematological malignancies arise in persons with a hereditary predisposition. The hereditary nature of these diseases often goes unrecognized, particularly when symptoms begin in adulthood. METHODS This review is based on pertinent publications retrieved by a selective search in PubMed. RESULTS Many rare germline mutations have been identified that lead to acute leukemia and myelodysplastic syndromes. They differ from one another with respect to their penetrance, the age of onset of disease, and the clinical manifestations. In view of this heterogeneity, no uniform recommendations have yet been formulated for their diagnosis and treatment. The most common types of hematological malig- nancy with a hereditary predisposition are traceable to an underlying disturbance of DNA damage response and repair mechanisms and to mutations of hematological transcription factors. With regard to the selection of patients for testing, the con- sensus is that cytogenetic and molecular-genetic findings that are suspect for a hereditary predisposition, such as CEBPA and RUNX1 mutations, call for further investigation, as do any clinical features that are typical of tumor syndromes, or a positive family history. The knowledge that a hereditary predisposition may be present is highly stressful for patients; testing should only be carried out after the patient has received genetic counseling. The confirmation of a germline mutation always requires a comparison with healthy tissue. A fibroblast culture is recom- mended as the gold standard for this purpose. CONCLUSION The detection of a hereditary predisposition to hematological neoplasia is often relevant to treatment and follow-up care: for example, it may motivate early allogeneic stem-cell transplantation. Counseling, predictive testing, and follow-up care are available to the patients' relatives as well.
Collapse
Affiliation(s)
- Tilmann Bochtler
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital and Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) Heidelberg, Germany; Department of Internal Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany; Medical Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany; Section Head of Translational Gynecology, University Women's Hospital Heidelberg, German Cancer Consortium (DKTK), Heidelberg, Germany; Institute of Pathology, Department of Applied Tumor Biology, Heidelberg University Hospital, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Vagena A, Papamentzelopoulou M, Kalfakakou D, Kollia P, Papadimitriou C, Psyrri A, Apostolou P, Fountzilas G, Konstantopoulou I, Yannoukakos D, Fostira F. PALB2 c.2257C>T truncating variant is a Greek founder and is associated with high breast cancer risk. J Hum Genet 2019; 64:767-773. [DOI: 10.1038/s10038-019-0612-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 03/15/2019] [Accepted: 04/19/2019] [Indexed: 12/20/2022]
|
31
|
Macedo GS, Alemar B, Ashton-Prolla P. Reviewing the characteristics of BRCA and PALB2-related cancers in the precision medicine era. Genet Mol Biol 2019; 42:215-231. [PMID: 31067289 PMCID: PMC6687356 DOI: 10.1590/1678-4685-gmb-2018-0104] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/24/2018] [Indexed: 12/24/2022] Open
Abstract
Germline mutations in BRCA1 and BRCA2 (BRCA) genes confer high risk of developing cancer, especially breast and ovarian tumors. Since the cloning of these tumor suppressor genes over two decades ago, a significant amount of research has been done. Most recently, monoallelic loss-of-function mutations in PALB2 have also been shown to increase the risk of breast cancer. The identification of BRCA1, BRCA2 and PALB2 as proteins involved in DNA double-strand break repair by homologous recombination and of the impact of complete loss of BRCA1 or BRCA2 within tumors have allowed the development of novel therapeutic approaches for patients with germline or somatic mutations in said genes. Despite the advances, especially in the clinical use of PARP inhibitors, key gaps remain. Now, new roles for BRCA1 and BRCA2 are emerging and old concepts, such as the classical two-hit hypothesis for tumor suppression, have been questioned, at least for some BRCA functions. Here aspects regarding cancer predisposition, cellular functions, histological and genomic findings in BRCA and PALB2-related tumors will be presented, in addition to an up-to-date review of the evolution and challenges in the development and clinical use of PARP inhibitors.
Collapse
Affiliation(s)
- Gabriel S Macedo
- Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Precision Medicine Program, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Barbara Alemar
- Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Patricia Ashton-Prolla
- Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Precision Medicine Program, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| |
Collapse
|
32
|
Chen FY, Wang H, Li H, Hu XL, Dai X, Wang SM, Yan GJ, Jiang PL, Hu YP, Huang J, Tang LL. Association of Single-Nucleotide Polymorphisms in Monoubiquitinated FANCD2-DNA Damage Repair Pathway Genes With Breast Cancer in the Chinese Population. Technol Cancer Res Treat 2019; 17:1533033818819841. [PMID: 30799775 PMCID: PMC6311543 DOI: 10.1177/1533033818819841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Objective: The aim of the study was to estimate breast cancer risk conferred by individual single-nucleotide polymorphisms of breast cancer susceptibility genes. Methods: We analyzed the 48 tagging single-nucleotide polymorphisms of 8 breast cancer susceptibility genes involved in the monoubiquitinated FANCD2–DNA damage repair pathway in 734 Chinese women with breast cancer and 672 age-matched healthy controls. Results: Forty-five tagging single-nucleotide polymorphisms were successfully genotyped by SNPscan, and the call rates for each tagging single-nucleotide polymorphisms were above 98.9%. We found that 13 tagging single-nucleotide polymorphisms of 5 genes (Parter and localizer of Breast cancer gene2 (PALB2), Tumour protein 53 (TP53), Nijmegen breakage syndrome 1, Phosphatase and tensin homolog deleted from chromosome 10 (PTEN), and Breast cancer gene 1 (BRCA1-interacting protein 1)) were significantly associated with breast cancer risk. A total of 5 tagging single-nucleotide polymorphisms (rs2299941 of PTEN, rs2735385, rs6999227, rs1805812, and rs1061302 of Nijmegen breakage syndrome 1) were tightly associated with breast cancer risk in sporadic cases, and 5 other tagging single-nucleotide polymorphisms (rs1042522 of TP53, rs2735343 of PTEN, rs7220719, rs16945628, and rs11871753 of BRCA1-interacting protein 1) were tightly associated with breast cancer risk in familial and early-onset cases. Conclusions: Some of the tagging single-nucleotide polymorphisms of 5 genes (PALB2, TP53, Nijmegen breakage syndrome 1, PTEN, and BRCA1-interacting protein 1) involved in the monoubiquitinated FANCD2–DNA damage repair pathway were significantly associated with breast cancer risk.
Collapse
Affiliation(s)
- Fei-Yu Chen
- 1 Department of Breast Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Hao Wang
- 2 Department of Breast Surgery, Second People's Hospital of Sichuan Province, Chengdu, People's Republic of China
| | - Hui Li
- 2 Department of Breast Surgery, Second People's Hospital of Sichuan Province, Chengdu, People's Republic of China
| | - Xue-Li Hu
- 1 Department of Breast Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Xu Dai
- 1 Department of Breast Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Shou-Man Wang
- 1 Department of Breast Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Guo-Jiao Yan
- 1 Department of Breast Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Ping-Lan Jiang
- 1 Department of Breast Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Yuan-Ping Hu
- 1 Department of Breast Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Juan Huang
- 1 Department of Breast Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Li-Li Tang
- 1 Department of Breast Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| |
Collapse
|
33
|
Kim B, Lee H, Jang J, Kim SJ, Lee ST, Cheong JW, Lyu CJ, Min YH, Choi JR. Targeted next generation sequencing can serve as an alternative to conventional tests in myeloid neoplasms. PLoS One 2019; 14:e0212228. [PMID: 30840646 PMCID: PMC6402635 DOI: 10.1371/journal.pone.0212228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/29/2019] [Indexed: 12/30/2022] Open
Abstract
The 2016 World Health Organization classification introduced a number of genes with somatic mutations and a category for germline predisposition syndromes in myeloid neoplasms. We have designed a comprehensive next-generation sequencing assay to detect somatic mutations, translocations, and germline mutations in a single assay and have evaluated its clinical utility in patients with myeloid neoplasms. Extensive and specified bioinformatics analyses were undertaken to detect single nucleotide variations, FLT3 internal tandem duplication, genic copy number variations, and chromosomal copy number variations. This enabled us to maximize the clinical utility of the assay, and we concluded that, as a single assay, it can be a good supplement for many conventional tests, including Sanger sequencing, RT-PCR, and cytogenetics. Of note, we found that 8.4-11.6% of patients with acute myeloid leukemia and 12.9% of patients with myeloproliferative neoplasms had germline mutations, and most were heterozygous carriers for autosomal recessive marrow failure syndromes. These patients often did not respond to standard chemotherapy, suggesting that germline predisposition may have distinct and significant clinical implications.
Collapse
Affiliation(s)
- Borahm Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Hyeonah Lee
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
| | - Jieun Jang
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Soo-Jeong Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Seung-Tae Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
- * E-mail: (STL); (JRC)
| | - June-Won Cheong
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Chuhl Joo Lyu
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| | - Yoo Hong Min
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Rak Choi
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
- * E-mail: (STL); (JRC)
| |
Collapse
|
34
|
Ramírez-Calvo M, García-Casado Z, Fernández-Serra A, de Juan I, Palanca S, Oltra S, Soto JL, Castillejo A, Barbera VM, Juan-Fita MJ, Segura Á, Chirivella I, Sánchez AB, Tena I, Chaparro C, Salas D, López-Guerrero JA. Implementation of massive sequencing in the genetic diagnosis of hereditary cancer syndromes: diagnostic performance in the Hereditary Cancer Programme of the Valencia Community (FamCan-NGS). Hered Cancer Clin Pract 2019; 17:3. [PMID: 30675318 PMCID: PMC6339395 DOI: 10.1186/s13053-019-0104-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/09/2019] [Indexed: 02/07/2023] Open
Abstract
Background Approximately 5 to 10% of all cancers are caused by inherited germline mutations, many of which are associated with different Hereditary Cancer Syndromes (HCS). In the context of the Program of Hereditary Cancer of the Valencia Community, individuals belonging to specific HCS and their families receive genetic counselling and genetic testing according to internationally established guidelines. The current diagnostic approach is based on sequencing a few high-risk genes related to each HCS; however, this method is time-consuming, expensive and does not achieve a confirmatory genetic diagnosis in many cases. This study aims to test the level of improvement offered by a Next Generation Sequencing (NGS) gene-panel compared to the standard approach in a diagnostic reference laboratory setting. Methods A multi-gene NGS panel was used to test a total of 91 probands, previously classified as non-informative by analysing the high-risk genes defined in our guidelines. Results Nineteen deleterious mutations were detected in 16% of patients, some mutations were found in already-tested high-risk genes (BRCA1, BRCA2, MSH2) and others in non-prevalent genes (RAD51D, PALB2, ATM, TP53, MUTYH, BRIP1). Conclusions Overall, our findings reclassify several index cases into different HCS, and change the mutational status of 14 cases from non-informative to gene mutation carriers. In conclusion, we highlight the necessity of incorporating validated multi-gene NGS panels into the HCSs diagnostic routine to increase the performance of genetic diagnosis. Electronic supplementary material The online version of this article (10.1186/s13053-019-0104-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marta Ramírez-Calvo
- 1Laboratory of Molecular Biology, Fundación Instituto Valenciano de Oncología, C/Prof. Beltrán Báguena, 8-11, 46009 Valencia, Spain
| | - Zaida García-Casado
- 1Laboratory of Molecular Biology, Fundación Instituto Valenciano de Oncología, C/Prof. Beltrán Báguena, 8-11, 46009 Valencia, Spain
| | - Antonio Fernández-Serra
- 1Laboratory of Molecular Biology, Fundación Instituto Valenciano de Oncología, C/Prof. Beltrán Báguena, 8-11, 46009 Valencia, Spain
| | - Inmaculada de Juan
- 2Laboratory of Molecular Biology, Service of Clinical Analysis, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Sarai Palanca
- 2Laboratory of Molecular Biology, Service of Clinical Analysis, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Silvestre Oltra
- 3Genetics Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - José Luis Soto
- 4Molecular Genetics Unit, Hospital General Universitario de Elche, Elche, Spain
| | - Adela Castillejo
- 4Molecular Genetics Unit, Hospital General Universitario de Elche, Elche, Spain
| | - Víctor M Barbera
- 4Molecular Genetics Unit, Hospital General Universitario de Elche, Elche, Spain
| | - Ma José Juan-Fita
- 5Unit of Genetic Counselling in Cancer, Fundación Instituto Valenciano de Oncología, Valencia, Spain
| | - Ángel Segura
- 6Unit of Genetic Counselling in Cancer, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Isabel Chirivella
- 7Unit of Genetic Counselling in Cancer, Hospital Clínico, Valencia, Spain
| | - Ana Beatriz Sánchez
- 8Unit of Genetic Counselling in Cancer, Hospital General de Elche, Elche, Spain
| | - Isabel Tena
- 9Unit of Genetic Counselling in Cancer, Hospital General de Castellón, Castellón, Spain
| | - Carolina Chaparro
- Cancer and Public Health Area, FISABIO-Public Health, Valencia, Spain
| | - Dolores Salas
- General Directorate Public Health, Valencia, Spain.,Epidemiology and Public Health Networking Biomedical Research Centre (CIBERESP), Madrid, Spain
| | - José Antonio López-Guerrero
- 1Laboratory of Molecular Biology, Fundación Instituto Valenciano de Oncología, C/Prof. Beltrán Báguena, 8-11, 46009 Valencia, Spain
| |
Collapse
|
35
|
Ducy M, Sesma-Sanz L, Guitton-Sert L, Lashgari A, Gao Y, Brahiti N, Rodrigue A, Margaillan G, Caron MC, Côté J, Simard J, Masson JY. The Tumor Suppressor PALB2: Inside Out. Trends Biochem Sci 2019; 44:226-240. [PMID: 30638972 DOI: 10.1016/j.tibs.2018.10.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/14/2018] [Accepted: 10/20/2018] [Indexed: 12/26/2022]
Abstract
Partner and Localizer of BRCA2 (PALB2) has emerged as an important and versatile player in genome integrity maintenance. Biallelic mutations in PALB2 cause Fanconi anemia (FA) subtype FA-N, whereas monoallelic mutations predispose to breast, and pancreatic familial cancers. Herein, we review recent developments in our understanding of the mechanisms of regulation of the tumor suppressor PALB2 and its functional domains. Regulation of PALB2 functions in DNA damage response and repair occurs on multiple levels, including homodimerization, phosphorylation, and ubiquitylation. With a molecular emphasis, we present PALB2-associated cancer mutations and their detailed analysis by functional assays.
Collapse
Affiliation(s)
- Mandy Ducy
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; CHU de Québec Research Center, Endocrinology and Nephrology Division, 2705 Bld Laurier, Québec City, QC, G1V 4G2, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Laura Sesma-Sanz
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Laure Guitton-Sert
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Anahita Lashgari
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Yuandi Gao
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Nadine Brahiti
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Amélie Rodrigue
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Guillaume Margaillan
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; CHU de Québec Research Center, Endocrinology and Nephrology Division, 2705 Bld Laurier, Québec City, QC, G1V 4G2, Canada
| | - Marie-Christine Caron
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Jacques Côté
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Jacques Simard
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; CHU de Québec Research Center, Endocrinology and Nephrology Division, 2705 Bld Laurier, Québec City, QC, G1V 4G2, Canada
| | - Jean-Yves Masson
- CHU de Québec Research Center, Oncology Division, 9 McMahon, Québec City, QC, G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada.
| |
Collapse
|
36
|
Velázquez C, Esteban-Cardeñosa EM, Lastra E, Abella LE, de la Cruz V, Lobatón CD, Durán M, Infante M. A PALB2 truncating mutation: Implication in cancer prevention and therapy of Hereditary Breast and Ovarian Cancer. Breast 2018; 43:91-96. [PMID: 30521987 DOI: 10.1016/j.breast.2018.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/27/2018] [Indexed: 10/27/2022] Open
Abstract
Explaining genetic predisposition in Hereditary Breast and Ovarian Cancer (HBOC) families without BRCA mutations is crucial. Germline PALB2 inactivating mutations were associated with an increased risk of HBOC due to its role in DNA repair through cooperation with BRCA proteins. The prevalence and penetrance of PALB2 mutations in Spanish HBOC patients remains unexplained. PALB2 mutation screening has been conducted in 160 high-risk BRCA-negative patients and 320 controls. We evaluated four predicted splicing disruption variants and large genomic rearrangements by multiplex ligation-dependent probe amplification. We have found a frameshift mutation which segregates in an early onset cancer family; and four rare missense variants. None of the variants tested for a predicted splicing disruption showed an aberrant transcript pattern. No large genomic rearrangements were detected. Although PALB2 truncating mutations are rarely identified, segregation analysis and early onset cancer suggest a significant contribution to HBOC susceptibility in the Spanish population. PALB2 screening may improve genetic counselling through prevention measures, pedigree management and PARP inhibitor therapy selection.
Collapse
Affiliation(s)
- Carolina Velázquez
- Cancer Genetics Group, Institute of Genetics and Molecular Biology (UVa-CSIC), Sanz y Forés 3, 47003 Valladolid, Spain.
| | - Eva M Esteban-Cardeñosa
- Cancer Genetics Group, Institute of Genetics and Molecular Biology (UVa-CSIC), Sanz y Forés 3, 47003 Valladolid, Spain.
| | - Enrique Lastra
- Unit of Genetic Counseling in Cancer, Complejo Hospitalario de Burgos, Burgos, Spain.
| | - Luis E Abella
- Unit of Genetic Counseling in Cancer, Hospital Universitario Rio Hortega, Valladolid, Spain.
| | - Virginia de la Cruz
- Unit of Genetic Counseling in Cancer, Hospital Universitario Rio Hortega, Valladolid, Spain.
| | - Carmen D Lobatón
- Cancer Genetics Group, Institute of Genetics and Molecular Biology (UVa-CSIC), Sanz y Forés 3, 47003 Valladolid, Spain.
| | - Mercedes Durán
- Cancer Genetics Group, Institute of Genetics and Molecular Biology (UVa-CSIC), Sanz y Forés 3, 47003 Valladolid, Spain.
| | - Mar Infante
- Cancer Genetics Group, Institute of Genetics and Molecular Biology (UVa-CSIC), Sanz y Forés 3, 47003 Valladolid, Spain.
| |
Collapse
|
37
|
Kolli S, Asarian A, Genato R, Xiao P. A Devastatingly "Minor" Relationship Between Male Breast Cancer and Prostate Cancer. Cureus 2018; 10:e3463. [PMID: 30564542 PMCID: PMC6298615 DOI: 10.7759/cureus.3463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 10/17/2018] [Indexed: 11/07/2022] Open
Abstract
Certain cancers pave way for other primary cancers to emerge with genetic disturbances serving as a common denominator as demonstrated by our male patient who developed prostate cancer within three months of being diagnosed with breast cancer despite being negative for the major genetic mutations, BRCA1 and BRCA2 and having a negative family history for cancers. Here we examine overlapping major and minor contributing risk factors and the limitations of the most current screening guidelines.
Collapse
Affiliation(s)
- Sindhura Kolli
- Internal Medicine, The Brooklyn Hospital Center, Brooklyn, USA
| | | | - Romulo Genato
- Surgery, The Brooklyn Hospital Center, Brooklyn, USA
| | - Philip Xiao
- Pathology, The Brooklyn Hospital Center, Brooklyn, USA
| |
Collapse
|
38
|
A synonymous germline variant PALB2 c.18G>T (p.Gly6=) disrupts normal splicing in a family with pancreatic and breast cancers. Breast Cancer Res Treat 2018; 173:79-86. [PMID: 30255452 DOI: 10.1007/s10549-018-4980-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 09/20/2018] [Indexed: 12/21/2022]
Abstract
PURPOSE Mutations in PALB2 have been associated with a predisposition to breast and pancreatic cancers. This study aims to characterize a novel PALB2 synonymous variant c.18G>T (p.Gly6=) identified in a family with pancreatic and breast cancers. METHODS The PALB2 c.18G>T (p.Gly6=) variant in this family was identified using Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT™). RT-PCR and subsequent cloning were performed to investigate whether this variant affects normal splicing. RESULTS This variant completely disrupts normal splicing and leads to several abnormal transcripts, which presumably leads to premature protein truncation. The major abnormal transcript resulted in a deletion of 32 base pairs in exon 1 and frameshift. CONCLUSIONS Our results indicate that the PALB2 c.18G>T (p.Gly6=) variant is likely pathogenic. This study provided important laboratory evidence for classification of this variant and guided improved patient management.
Collapse
|
39
|
Feng W, Jasin M. Homologous Recombination and Replication Fork Protection: BRCA2 and More! COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2018; 82:329-338. [PMID: 29686033 DOI: 10.1101/sqb.2017.82.035006] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BRCA2 is a breast and ovarian tumor suppressor that guards against genome instability, a hallmark of cancer. Significant progress has been made in improving our understanding of BRCA2 function from biochemical, cellular, and mouse studies. The knowledge gained has been actively exploited to develop therapeutic strategies, including PARP inhibition, which has shown promising clinical outcomes. Recently, tremendous excitement has been generated by the findings of the roles of BRCA2 and other proteins in suppressing replication stress through homologous recombination and in the protection of stalled replication forks. Processes such as mitotic DNA synthesis and fork reversal have taken center stage in these studies. Here, we discuss our recent findings in the context of these advances.
Collapse
Affiliation(s)
- Weiran Feng
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065.,Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065.,Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| |
Collapse
|
40
|
Lee JEA, Li N, Rowley SM, Cheasley D, Zethoven M, McInerny S, Gorringe KL, James PA, Campbell IG. Molecular analysis of PALB2-associated breast cancers. J Pathol 2018; 245:53-60. [PMID: 29431189 DOI: 10.1002/path.5055] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/22/2018] [Accepted: 02/05/2018] [Indexed: 12/15/2022]
Abstract
PALB2 is established as the most clinically important moderate to high penetrance breast cancer predisposition gene after BRCA1 and BRCA2. Mutations in classical familial cancer predisposition genes are presumed to be recessive at the cellular level and therefore a second inactivating somatic mutation is required in the tumour tissue. However, from the limited data that exist, PALB2 may be an example of a cancer predisposition gene that does not conform to Knudson's 'two hit' paradigm. We conducted genome-wide copy number analysis and targeted sequencing of PALB2 and other breast cancer driver genes in 15 invasive breast cancers from individuals carrying pathogenic germline mutations in PALB2. The majority of cancers showed clear evidence of bi-allelic inactivation of PALB2 (10/15) either as loss of heterozygosity involving the wild-type allele (six tumours) or as somatic point mutations (four tumours). All PALB2-null cancers had high homologous recombination deficiency (HRD) scores consistent with a homologous recombination repair deficiency. Interestingly, all but one of the PALB2 heterozygous cancers also had high HRD scores, suggesting that alternative mechanisms of PALB2 functional loss might be operating in these cancers. Our findings demonstrate that PALB2 does undergo bi-allelic inactivation in the majority of breast cancers from PALB2 germline mutation carriers. This feature has implications for the discovery of new moderate to high penetrance breast cancer predisposition genes as it supports using the existence of a 'second hit' and mutation signatures as important search criteria. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jue Er Amanda Lee
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Na Li
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Cancer Biology Medical Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Simone M Rowley
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Dane Cheasley
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Magnus Zethoven
- Bioinformatics Consulting Core, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Simone McInerny
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Kylie L Gorringe
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.,Cancer Genomics Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Department of Pathology, University of Melbourne, Melbourne, Victoria, Australia
| | - Paul A James
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.,Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Ian G Campbell
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.,Department of Pathology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
41
|
Nepomuceno TC, De Gregoriis G, de Oliveira FMB, Suarez-Kurtz G, Monteiro AN, Carvalho MA. The Role of PALB2 in the DNA Damage Response and Cancer Predisposition. Int J Mol Sci 2017; 18:ijms18091886. [PMID: 28858227 PMCID: PMC5618535 DOI: 10.3390/ijms18091886] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/21/2017] [Accepted: 08/26/2017] [Indexed: 01/01/2023] Open
Abstract
The deoxyribonucleic acid (DNA) damage response (DDR) is a major feature in the maintenance of genome integrity and in the suppression of tumorigenesis. PALB2 (Partner and Localizer of Breast Cancer 2 (BRCA2)) plays an important role in maintaining genome integrity through its role in the Fanconi anemia (FA) and homologous recombination (HR) DNA repair pathways. Since its identification as a BRCA2 interacting partner, PALB2 has emerged as a pivotal tumor suppressor protein associated to hereditary cancer susceptibility to breast and pancreatic cancers. In this review, we discuss how other DDR proteins (such as the kinases Ataxia Telangiectasia Mutated (ATM) and ATM- and Rad3-Related (ATR), mediators BRCA1 (Breast Cancer 1)/BRCA2 and effectors RAD51/DNA Polymerase η (Polη) interact with PALB2 to orchestrate DNA repair. We also examine the involvement of PALB2 mutations in the predisposition to cancer and the role of PALB2 in stimulating error-free DNA repair through the FA/HR pathway.
Collapse
Affiliation(s)
- Thales C Nepomuceno
- Programa de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro 20231-050, Brazil.
| | - Giuliana De Gregoriis
- Programa de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro 20231-050, Brazil.
| | | | - Guilherme Suarez-Kurtz
- Programa de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro 20231-050, Brazil.
| | - Alvaro N Monteiro
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
| | - Marcelo A Carvalho
- Programa de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro 20231-050, Brazil.
- Instituto Federal do Rio de Janeiro-IFRJ, Rio de Janeiro 20270-021, Brazil.
| |
Collapse
|
42
|
Foo TK, Tischkowitz M, Simhadri S, Boshari T, Zayed N, Burke KA, Berman SH, Blecua P, Riaz N, Huo Y, Ding YC, Neuhausen SL, Weigelt B, Reis-Filho JS, Foulkes WD, Xia B. Compromised BRCA1-PALB2 interaction is associated with breast cancer risk. Oncogene 2017; 36:4161-4170. [PMID: 28319063 PMCID: PMC5519427 DOI: 10.1038/onc.2017.46] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/30/2017] [Accepted: 01/31/2017] [Indexed: 12/14/2022]
Abstract
The major breast cancer suppressor proteins BRCA1 and BRCA2 play essential roles in homologous recombination (HR)-mediated DNA repair, which is thought to be critical for tumor suppression. The two BRCA proteins are linked by a third tumor suppressor, PALB2, in the HR pathway. While truncating mutations in these genes are generally pathogenic, interpretations of missense variants remains a challenge. To date, patient-derived missense variants that disrupt PALB2 binding have been identified in BRCA1 and BRCA2; however, there has not been sufficient evidence to prove their pathogenicity in humans, and no variants in PALB2 that disrupt either its BRCA1 or BRCA2 binding have been reported. Here, we report on the identification of a novel PALB2 variant, c.104T>C [p.L35P], that segregated in a family with a strong history of breast cancer. Functional analyses showed that L35P abrogates the PALB2-BRCA1 interaction and completely disables its abilities to promote HR and confer resistance to platinum salts and PARP inhibitors. Whole-exome sequencing of a breast cancer from a c.104T>C carrier revealed a second, somatic, truncating mutation affecting PALB2, and the tumor displays hallmark genomic features of tumors with BRCA mutations and HR defects, cementing the pathogenicity of L35P. Parallel analyses of other germline variants in the PALB2 N-terminal BRCA1-binding domain identified multiple variants that affect HR function to varying degrees, suggesting their possible contribution to cancer development. Our findings establish L35P as the first pathogenic missense mutation in PALB2 and directly demonstrate the requirement of the PALB2-BRCA1 interaction for breast cancer suppression.
Collapse
Affiliation(s)
- T K Foo
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - M Tischkowitz
- Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - S Simhadri
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - T Boshari
- Department of Medical Genetics and Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - N Zayed
- Department of Medical Genetics and Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - K A Burke
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - S H Berman
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - P Blecua
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - N Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Y Huo
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Y C Ding
- Department of Population Sciences, Beckman Research Institute at the City of Hope, Duarte, CA, USA
| | - S L Neuhausen
- Department of Population Sciences, Beckman Research Institute at the City of Hope, Duarte, CA, USA
| | - B Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - J S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - W D Foulkes
- Department of Medical Genetics and Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - B Xia
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
43
|
Pauty J, Couturier AM, Rodrigue A, Caron MC, Coulombe Y, Dellaire G, Masson JY. Cancer-causing mutations in the tumor suppressor PALB2 reveal a novel cancer mechanism using a hidden nuclear export signal in the WD40 repeat motif. Nucleic Acids Res 2017; 45:2644-2657. [PMID: 28158555 PMCID: PMC5389658 DOI: 10.1093/nar/gkx011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 12/31/2016] [Accepted: 01/24/2017] [Indexed: 12/22/2022] Open
Abstract
One typical mechanism to promote genomic instability, a hallmark of cancer, is to inactivate tumor suppressors, such as PALB2. It has recently been reported that mutations in PALB2 increase the risk of breast cancer by 8-9-fold by age 40 and the life time risk is ∼3-4-fold. To date, predicting the functional consequences of PALB2 mutations has been challenging as they lead to different cancer risks. Here, we performed a structure-function analysis of PALB2, using PALB2 truncated mutants (R170fs, L531fs, Q775X and W1038X), and uncovered a new mechanism by which cancer cells could drive genomic instability. Remarkably, the PALB2 W1038X mutant, harboring a mutation in its C-terminal domain, is still proficient in stimulating RAD51-mediated recombination in vitro, although it is unusually localized to the cytoplasm. After further investigation, we identified a hidden NES within the WD40 domain of PALB2 and found that the W1038X truncation leads to the exposure of this NES to CRM1, an export protein. This concept was also confirmed with another WD40-containing protein, RBBP4. Consequently, our studies reveal an unreported mechanism linking the nucleocytoplasmic translocation of PALB2 mutants to cancer formation.
Collapse
Affiliation(s)
- Joris Pauty
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Axis, 9 McMahon, Québec City, QC G1R 2J6, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Laval University, Québec City, QC G1V 0A6, Canada
| | - Anthony M. Couturier
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Axis, 9 McMahon, Québec City, QC G1R 2J6, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Laval University, Québec City, QC G1V 0A6, Canada
| | - Amélie Rodrigue
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Axis, 9 McMahon, Québec City, QC G1R 2J6, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Laval University, Québec City, QC G1V 0A6, Canada
| | - Marie-Christine Caron
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Axis, 9 McMahon, Québec City, QC G1R 2J6, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Laval University, Québec City, QC G1V 0A6, Canada
| | - Yan Coulombe
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Axis, 9 McMahon, Québec City, QC G1R 2J6, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Laval University, Québec City, QC G1V 0A6, Canada
| | - Graham Dellaire
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Axis, 9 McMahon, Québec City, QC G1R 2J6, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology; Laval University Cancer Research Center, Laval University, Québec City, QC G1V 0A6, Canada
| |
Collapse
|
44
|
Yang C, Arnold AG, Trottier M, Sonoda Y, Abu-Rustum NR, Zivanovic O, Robson ME, Stadler ZK, Walsh MF, Hyman DM, Offit K, Zhang L. Characterization of a novel germline PALB2 duplication in a hereditary breast and ovarian cancer family. Breast Cancer Res Treat 2016; 160:447-456. [PMID: 27757719 DOI: 10.1007/s10549-016-4021-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 12/21/2022]
Abstract
PURPOSE Mutations in PALB2 have been associated with a predisposition to breast and pancreatic cancers. This study aims to characterize a novel PALB2 exon 13 duplication in a hereditary breast and ovarian cancer family. METHODS The PALB2 exon 13 duplication in this family was evaluated using Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT™) and confirmed by multiplex ligation-dependent probe amplification (MLPA). The duplication breakpoints were determined by long-range PCR and DNA sequencing. The effects of this mutation on mRNA splicing were characterized using RT-PCR, cloning, and DNA sequencing. RESULTS The 5' and 3' breakpoints were mapped to intron 12 and downstream of 3'UTR. The tandem duplication is mediated by Alu elements in these regions. This duplication disrupts normal mRNA splicing and presumably leads to a frameshift and premature protein truncation. This duplication segregates with ovarian and breast cancer in multiple members in this family. CONCLUSIONS Our results indicate that the PALB2 exon 13 duplication is a pathogenic variant. The presence of the PALB2 duplication in the proband affected with high-grade serous ovarian cancer suggests that PALB2 might be associated with a predisposition to ovarian cancer.
Collapse
Affiliation(s)
- Ciyu Yang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Angela G Arnold
- Departments of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Magan Trottier
- Departments of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Yukio Sonoda
- Departments of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Nadeem R Abu-Rustum
- Departments of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Oliver Zivanovic
- Departments of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Mark E Robson
- Departments of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Zsofia K Stadler
- Departments of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Michael F Walsh
- Departments of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - David M Hyman
- Departments of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Kenneth Offit
- Departments of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Liying Zhang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, Box 36, New York, NY, 10065, USA.
| |
Collapse
|
45
|
Association of PALB2 sequence variants with the risk of early-onset breast cancer in patients from Turkey. Mol Biol Rep 2016; 43:1273-1284. [DOI: 10.1007/s11033-016-4061-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 08/16/2016] [Indexed: 02/05/2023]
|
46
|
Vietri MT, Caliendo G, Schiano C, Casamassimi A, Molinari AM, Napoli C, Cioffi M. Analysis of PALB2 in a cohort of Italian breast cancer patients: identification of a novel PALB2 truncating mutation. Fam Cancer 2016; 14:341-8. [PMID: 25666743 DOI: 10.1007/s10689-015-9786-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PALB2 gene is mutated in about 1-2% of familial breast cancer as well as in 3-4% of familial pancreatic cancer cases. Few studies have reported mutations in Italian patients with breast or pancreatic cancer. We evaluate the occurrence of PALB2 mutations in Italian patients affected with hereditary breast and ovarian cancers and define the pathological significance of the putative allelic variants. We recruited 98 patients (F = 93, M = 5) affected with breast and/or ovarian cancer, negative for mutations in BRCA1 and BRCA2 (BRCAX). Genomic DNA was isolated from peripheral blood lymphocytes, PALB2 coding regions and adjacent intronic were sequenced; in silico predictions were carried out using prediction programs. Mutational analysis of PALB2 gene revealed the novel mutation c.1919C>A (p.S640X) in a 29 years old woman with breast cancer. The c.1919C>A (p.S640X) mutation causes the lack of C-terminus region inducing alteration of MORF4L1-PALB2 association and the lack of interaction of PALB2 with RAD51 and BRCA2. In addition, we identified two novel PALB2 variants, c.3047T>C (p.F1016S) and c.*146A>G. In silico analysis conducted for c.*146A>G indicates that this variant does not affect the splicing while c.3047T>C (p.F1016S) was predicted as damaging in three classifier algorithms. The proband carrier of c.3047T>C (p.F1016S) showed two breast cancer cases, two ovarian cancer cases and one pancreatic cancer in mother's family. c.3047T>C (p.F1016S) and c.*146A>G should be considered PALB2 UVs even though the genotype-phenotype correlation for these variants remains still unclear. Our findings indicate that the presence of PALB2 mutation should be routinely investigated in hereditary breast and ovarian cancers families since it could be of clinical relevance for clinical management.
Collapse
Affiliation(s)
- Maria Teresa Vietri
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via Luigi De Crecchio, 7, 80138, Naples, Italy,
| | | | | | | | | | | | | |
Collapse
|
47
|
Kapoor NS, Banks KC. Should multi-gene panel testing replace limited BRCA1/2 testing? A review of genetic testing for hereditary breast and ovarian cancers. World J Surg Proced 2016; 6:13-18. [DOI: 10.5412/wjsp.v6.i1.13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 12/12/2015] [Accepted: 01/07/2016] [Indexed: 02/06/2023] Open
Abstract
Clinical testing of patients for hereditary breast and ovarian cancer syndromes began in the mid-1990s with the identification of the BRCA1 and BRCA2 genes. Since then, mutations in dozens of other genes have been correlated to increased breast, ovarian, and other cancer risk. The following decades of data collection and patient advocacy allowed for improvements in medical, legal, social, and ethical advances in genetic testing. Technological advances have made it possible to sequence multiple genes at once in a panel to give patients a more thorough evaluation of their personal cancer risk. Panel testing increases the detection of mutations that lead to increased risk of breast, ovarian, and other cancers and can better guide individualized screening measures compared to limited BRCA testing alone. At the same time, multi-gene panel testing is more time-and cost-efficient. While the clinical application of panel testing is in its infancy, many problems arise such as lack of guidelines for management of newly identified gene mutations, high rates of variants of uncertain significance, and limited ability to screen for some cancers. Through on-going concerted efforts of pooled data collection and analysis, it is likely that the benefits of multi-gene panel testing will outweigh the risks in the near future.
Collapse
|
48
|
Ghazwani Y, AlBalwi M, Al-Abdulkareem I, Al-Dress M, Alharbi T, Alsudairy R, Alomari A, Aljamaan K, Essa M, Al-Zahrani M, Alsultan A. Clinical characteristics and genetic subtypes of Fanconi anemia in Saudi patients. Cancer Genet 2016; 209:171-6. [PMID: 26968956 DOI: 10.1016/j.cancergen.2016.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/09/2016] [Accepted: 02/08/2016] [Indexed: 11/29/2022]
Abstract
We reviewed our institutional experience from 2011 to 2015 on new cases of Fanconi anemia (FA). Ten unrelated cases were diagnosed during this period. Four patients with severe aplastic anemia (SAA) had c.2392C > T (p.Arg798*) BRIP1/FANCJ mutation. Another child with SAA had novel c.1475T > C (p.Leu492Pro) FANCC mutation. One individual with SAA and acute myeloid leukemia had c.637_643del (p.Tyr213Lysfs*6) FANCG mutation. Three patients presented with early onset of cancer, two had BRCA2 mutation c.7007G > A (p.Arg2336His) and one had a novel c.3425del (p.Leu1142Tyrfs*21) PALB2 mutation. Another infant with c.3425del PALB2 mutation had clonal aberration with partial trisomy of the long arm of chromosome 17. Mutations in FA downstream pathway genes are more frequent in our series than expected. Our preliminary observation will be confirmed in a large multi-institutional study.
Collapse
Affiliation(s)
- Yahya Ghazwani
- Department of Pediatric Hematology/Oncology, King Abdullah Specialist Children's Hospital, Riyadh, Saudi Arabia
| | - Mohammed AlBalwi
- Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City, National Guard Health Affairs, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center, National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Ibrahim Al-Abdulkareem
- King Abdullah International Medical Research Center, National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Mohammed Al-Dress
- King Abdullah International Medical Research Center, National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Talal Alharbi
- Department of Pediatric Hematology/Oncology, King Abdullah Specialist Children's Hospital, Riyadh, Saudi Arabia
| | - Reem Alsudairy
- Department of Pediatric Hematology/Oncology, King Abdullah Specialist Children's Hospital, Riyadh, Saudi Arabia
| | - Ali Alomari
- Department of Pediatric Hematology/Oncology, King Abdullah Specialist Children's Hospital, Riyadh, Saudi Arabia
| | - Khalid Aljamaan
- Department of Pediatric Hematology/Oncology, King Abdullah Specialist Children's Hospital, Riyadh, Saudi Arabia
| | - Mohammed Essa
- Department of Pediatric Hematology/Oncology, King Abdullah Specialist Children's Hospital, Riyadh, Saudi Arabia
| | - Mohsen Al-Zahrani
- Department of Oncology, King Abdulaziz Medical City, National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Abdulrahman Alsultan
- Department of Pediatric Hematology/Oncology, King Abdullah Specialist Children's Hospital, Riyadh, Saudi Arabia; Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
49
|
Villalona-Calero MA, Duan W, Zhao W, Shilo K, Schaaf LJ, Thurmond J, Westman JA, Marshall J, Xiaobai L, Ji J, Rose J, Lustberg M, Bekaii-Saab T, Chen A, Timmers C. Veliparib Alone or in Combination with Mitomycin C in Patients with Solid Tumors With Functional Deficiency in Homologous Recombination Repair. J Natl Cancer Inst 2016; 108:djv437. [PMID: 26848151 DOI: 10.1093/jnci/djv437] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 12/21/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND BRCA germline mutations are being targeted for development of PARP inhibitors. BRCA genes collaborate with several others in the Fanconi Anemia (FA) pathway. We screened cancer patients' tumors for FA functional defects then aimed to establish the safety/feasibility of administering PARP inhibitors as monotherapy and combined with a DNA-breaking agent. METHODS Patients underwent FA functional screening for the presence (or lack) of tumor FancD2 nuclear foci formation on their archival tumor material, utilizing a newly developed method (Fanconi Anemia triple-stain immunofluorescence [FATSI]), performed in a Clinical Laboratory Improvement Amendments-certified laboratory. FATSI-negative patients were selected for enrollment in a two-arm dose escalation trial of veliparib, or veliparib/mitomycin-C (MMC). RESULTS One hundred eighty-five of 643 (28.7%) screened patients were FATSI-negative. Sixty-one received veliparib or veliparib/MMC through 14 dose levels. Moderate/severe toxicities included fatigue (DLT at veliparib 400mg BID), diarrhea, and thrombocytopenia. Recommended doses are 300mg BID veliparib and veliparib 200mg BID for 21 days following 10mg/m(2) MMC every 28 days. Six antitumor responses occurred, five in the combination arm (3 breast, 1 ovarian, 1 endometrial [uterine], and 1 non-small cell lung cancer). Two patients have received 36 and 60 cycles to date. BRCA germline analysis among 51 patients revealed five deleterious mutations while a targeted FA sequencing gene panel showed missense/nonsense mutations in 29 of 49 FATSI-negative tumor specimens. CONCLUSIONS FATSI screening showed that a substantial number of patients' tumors have FA functional deficiency, which led to germline alterations in several patients' tumors. Veliparib alone or with MMC was safely administered to these patients and produced clinical benefit in some. However, a better understanding of resistance mechanisms in this setting is needed.
Collapse
Affiliation(s)
- Miguel A Villalona-Calero
- Divisions of Medical Oncology (MAVC, WD, JR, ML, TBS) and Clinical Cancer Genetics (JAW), Department of Pathology (WZ, KS), Comprehensive Cancer Center (MAVC, WD, LJS, JT, TBS, CT), and Center for Biostatistics (LX), The Ohio State University , Columbus, OH ; Lombardi Cancer Center, Georgetown University , Washington, DC (JM); National Cancer Institute , Bethesda, MD (JJ, AC)
| | - Wenrui Duan
- Divisions of Medical Oncology (MAVC, WD, JR, ML, TBS) and Clinical Cancer Genetics (JAW), Department of Pathology (WZ, KS), Comprehensive Cancer Center (MAVC, WD, LJS, JT, TBS, CT), and Center for Biostatistics (LX), The Ohio State University , Columbus, OH ; Lombardi Cancer Center, Georgetown University , Washington, DC (JM); National Cancer Institute , Bethesda, MD (JJ, AC)
| | - Weiqiang Zhao
- Divisions of Medical Oncology (MAVC, WD, JR, ML, TBS) and Clinical Cancer Genetics (JAW), Department of Pathology (WZ, KS), Comprehensive Cancer Center (MAVC, WD, LJS, JT, TBS, CT), and Center for Biostatistics (LX), The Ohio State University , Columbus, OH ; Lombardi Cancer Center, Georgetown University , Washington, DC (JM); National Cancer Institute , Bethesda, MD (JJ, AC)
| | - Konstantin Shilo
- Divisions of Medical Oncology (MAVC, WD, JR, ML, TBS) and Clinical Cancer Genetics (JAW), Department of Pathology (WZ, KS), Comprehensive Cancer Center (MAVC, WD, LJS, JT, TBS, CT), and Center for Biostatistics (LX), The Ohio State University , Columbus, OH ; Lombardi Cancer Center, Georgetown University , Washington, DC (JM); National Cancer Institute , Bethesda, MD (JJ, AC)
| | - Larry J Schaaf
- Divisions of Medical Oncology (MAVC, WD, JR, ML, TBS) and Clinical Cancer Genetics (JAW), Department of Pathology (WZ, KS), Comprehensive Cancer Center (MAVC, WD, LJS, JT, TBS, CT), and Center for Biostatistics (LX), The Ohio State University , Columbus, OH ; Lombardi Cancer Center, Georgetown University , Washington, DC (JM); National Cancer Institute , Bethesda, MD (JJ, AC)
| | - Jennifer Thurmond
- Divisions of Medical Oncology (MAVC, WD, JR, ML, TBS) and Clinical Cancer Genetics (JAW), Department of Pathology (WZ, KS), Comprehensive Cancer Center (MAVC, WD, LJS, JT, TBS, CT), and Center for Biostatistics (LX), The Ohio State University , Columbus, OH ; Lombardi Cancer Center, Georgetown University , Washington, DC (JM); National Cancer Institute , Bethesda, MD (JJ, AC)
| | - Judith A Westman
- Divisions of Medical Oncology (MAVC, WD, JR, ML, TBS) and Clinical Cancer Genetics (JAW), Department of Pathology (WZ, KS), Comprehensive Cancer Center (MAVC, WD, LJS, JT, TBS, CT), and Center for Biostatistics (LX), The Ohio State University , Columbus, OH ; Lombardi Cancer Center, Georgetown University , Washington, DC (JM); National Cancer Institute , Bethesda, MD (JJ, AC)
| | - John Marshall
- Divisions of Medical Oncology (MAVC, WD, JR, ML, TBS) and Clinical Cancer Genetics (JAW), Department of Pathology (WZ, KS), Comprehensive Cancer Center (MAVC, WD, LJS, JT, TBS, CT), and Center for Biostatistics (LX), The Ohio State University , Columbus, OH ; Lombardi Cancer Center, Georgetown University , Washington, DC (JM); National Cancer Institute , Bethesda, MD (JJ, AC)
| | - Li Xiaobai
- Divisions of Medical Oncology (MAVC, WD, JR, ML, TBS) and Clinical Cancer Genetics (JAW), Department of Pathology (WZ, KS), Comprehensive Cancer Center (MAVC, WD, LJS, JT, TBS, CT), and Center for Biostatistics (LX), The Ohio State University , Columbus, OH ; Lombardi Cancer Center, Georgetown University , Washington, DC (JM); National Cancer Institute , Bethesda, MD (JJ, AC)
| | - Jiuping Ji
- Divisions of Medical Oncology (MAVC, WD, JR, ML, TBS) and Clinical Cancer Genetics (JAW), Department of Pathology (WZ, KS), Comprehensive Cancer Center (MAVC, WD, LJS, JT, TBS, CT), and Center for Biostatistics (LX), The Ohio State University , Columbus, OH ; Lombardi Cancer Center, Georgetown University , Washington, DC (JM); National Cancer Institute , Bethesda, MD (JJ, AC)
| | - Jeffrey Rose
- Divisions of Medical Oncology (MAVC, WD, JR, ML, TBS) and Clinical Cancer Genetics (JAW), Department of Pathology (WZ, KS), Comprehensive Cancer Center (MAVC, WD, LJS, JT, TBS, CT), and Center for Biostatistics (LX), The Ohio State University , Columbus, OH ; Lombardi Cancer Center, Georgetown University , Washington, DC (JM); National Cancer Institute , Bethesda, MD (JJ, AC)
| | - Maryam Lustberg
- Divisions of Medical Oncology (MAVC, WD, JR, ML, TBS) and Clinical Cancer Genetics (JAW), Department of Pathology (WZ, KS), Comprehensive Cancer Center (MAVC, WD, LJS, JT, TBS, CT), and Center for Biostatistics (LX), The Ohio State University , Columbus, OH ; Lombardi Cancer Center, Georgetown University , Washington, DC (JM); National Cancer Institute , Bethesda, MD (JJ, AC)
| | - Tanios Bekaii-Saab
- Divisions of Medical Oncology (MAVC, WD, JR, ML, TBS) and Clinical Cancer Genetics (JAW), Department of Pathology (WZ, KS), Comprehensive Cancer Center (MAVC, WD, LJS, JT, TBS, CT), and Center for Biostatistics (LX), The Ohio State University , Columbus, OH ; Lombardi Cancer Center, Georgetown University , Washington, DC (JM); National Cancer Institute , Bethesda, MD (JJ, AC)
| | - Alice Chen
- Divisions of Medical Oncology (MAVC, WD, JR, ML, TBS) and Clinical Cancer Genetics (JAW), Department of Pathology (WZ, KS), Comprehensive Cancer Center (MAVC, WD, LJS, JT, TBS, CT), and Center for Biostatistics (LX), The Ohio State University , Columbus, OH ; Lombardi Cancer Center, Georgetown University , Washington, DC (JM); National Cancer Institute , Bethesda, MD (JJ, AC)
| | - Cynthia Timmers
- Divisions of Medical Oncology (MAVC, WD, JR, ML, TBS) and Clinical Cancer Genetics (JAW), Department of Pathology (WZ, KS), Comprehensive Cancer Center (MAVC, WD, LJS, JT, TBS, CT), and Center for Biostatistics (LX), The Ohio State University , Columbus, OH ; Lombardi Cancer Center, Georgetown University , Washington, DC (JM); National Cancer Institute , Bethesda, MD (JJ, AC)
| |
Collapse
|
50
|
Investigation on the formation, conversion and bioactivity of a G-quadruplex structure in the PALB2 gene. Int J Biol Macromol 2016; 83:242-8. [DOI: 10.1016/j.ijbiomac.2015.11.069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 10/22/2022]
|