1
|
Velez M, Arluison V. Does the Hfq Protein Contribute to RNA Cargo Translocation into Bacterial Outer Membrane Vesicles? Pathogens 2025; 14:399. [PMID: 40333199 PMCID: PMC12030562 DOI: 10.3390/pathogens14040399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 05/09/2025] Open
Abstract
Gram-negative bacteria release outer membrane vesicles (OMVs) that deliver various molecules, including virulence factors, to interact with their host. Recent studies have suggested that OMVs may also serve as carriers for RNAs, particularly small regulatory noncoding RNAs (sRNAs). For these RNAs to function effectively, they typically require a protein cofactor, Hfq, known as an RNA chaperone. In previous work, using molecular imaging, Circular Dichroism CD, and InfraRed FTIR spectroscopies, we demonstrated that Hfq interacts with the bacterial inner membrane and forms pores, suggesting a possible role in translocating RNA from the cytoplasm to periplasm and then to OMVs. In this study, we expand on our previous findings and provide evidence that RNA molecules bind to the Escherichia coli inner membrane in an Hfq-dependent manner. Moreover, we show that the lipid nature, in particular the presence of a cardiolipin-rich domain, is crucial for this interaction. These results reveal a new aspect of RNA translocation through the inner membrane, for further packaging in OMVs, and underscore the importance of Hfq in this mechanism.
Collapse
Affiliation(s)
- Marisela Velez
- Instituto de Catálisis y Petroleoquímica (CSIC), c/Marie Curie 2, Cantoblanco, 28049 Madrid, Spain
| | - Véronique Arluison
- Laboratoire Léon Brillouin, UMR 12 CEA/CNRS, Site de Saclay, 91191 Gif-sur-Yvette, France
- Université Paris Cité, UFR SDV, 35 Rue Hélène Brion, 75013 Paris, France
| |
Collapse
|
2
|
Giraldo R. The emergence of bacterial prions. PLoS Pathog 2024; 20:e1012253. [PMID: 38870093 PMCID: PMC11175392 DOI: 10.1371/journal.ppat.1012253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024] Open
Affiliation(s)
- Rafael Giraldo
- Department of Microbial Biotechnology, National Center for Biotechnology (CNB-CSIC), Madrid, Spain
| |
Collapse
|
3
|
Belousov MV, Kosolapova AO, Fayoud H, Sulatsky MI, Sulatskaya AI, Romanenko MN, Bobylev AG, Antonets KS, Nizhnikov AA. OmpC and OmpF Outer Membrane Proteins of Escherichia coli and Salmonella enterica Form Bona Fide Amyloids. Int J Mol Sci 2023; 24:15522. [PMID: 37958507 PMCID: PMC10649029 DOI: 10.3390/ijms242115522] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Outer membrane proteins (Omps) of Gram-negative bacteria represent porins involved in a wide range of virulence- and pathogenesis-related cellular processes, including transport, adhesion, penetration, and the colonization of host tissues. Most outer membrane porins share a specific spatial structure called the β-barrel that provides their structural integrity within the membrane lipid bilayer. Recent data suggest that outer membrane proteins from several bacterial species are able to adopt the amyloid state alternative to their β-barrel structure. Amyloids are protein fibrils with a specific spatial structure called the cross-β that gives them an unusual resistance to different physicochemical influences. Various bacterial amyloids are known to be involved in host-pathogen and host-symbiont interactions and contribute to colonization of host tissues. Such an ability of outer membrane porins to adopt amyloid state might represent an important mechanism of bacterial virulence. In this work, we investigated the amyloid properties of the OmpC and OmpF porins from two species belonging to Enterobacteriaceae family, Escherichia coli, and Salmonella enterica. We demonstrated that OmpC and OmpF of E. coli and S. enterica form toxic fibrillar aggregates in vitro. These aggregates exhibit birefringence upon binding Congo Red dye and show characteristic reflections under X-ray diffraction. Thus, we confirmed amyloid properties for OmpC of E. coli and demonstrated bona fide amyloid properties for three novel proteins: OmpC of S. enterica and OmpF of E. coli and S. enterica in vitro. All four studied porins were shown to form amyloid fibrils at the surface of E. coli cells in the curli-dependent amyloid generator system. Moreover, we found that overexpression of recombinant OmpC and OmpF in the E. coli BL21 strain leads to the formation of detergent- and protease-resistant amyloid-like aggregates and enhances the birefringence of bacterial cultures stained with Congo Red. We also detected detergent- and protease-resistant aggregates comprising OmpC and OmpF in S. enterica culture. These data are important in the context of understanding the structural dualism of Omps and its relation to pathogenesis.
Collapse
Affiliation(s)
- Mikhail V. Belousov
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.V.B.); (A.O.K.); (H.F.); (M.N.R.); (K.S.A.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anastasiia O. Kosolapova
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.V.B.); (A.O.K.); (H.F.); (M.N.R.); (K.S.A.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Haidar Fayoud
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.V.B.); (A.O.K.); (H.F.); (M.N.R.); (K.S.A.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Maksim I. Sulatsky
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (M.I.S.); (A.I.S.)
| | - Anna I. Sulatskaya
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (M.I.S.); (A.I.S.)
| | - Maria N. Romanenko
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.V.B.); (A.O.K.); (H.F.); (M.N.R.); (K.S.A.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Alexander G. Bobylev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia;
| | - Kirill S. Antonets
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.V.B.); (A.O.K.); (H.F.); (M.N.R.); (K.S.A.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anton A. Nizhnikov
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.V.B.); (A.O.K.); (H.F.); (M.N.R.); (K.S.A.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|
4
|
Nucleic acid actions on abnormal protein aggregation, phase transitions and phase separation. Curr Opin Struct Biol 2022; 73:102346. [PMID: 35247749 DOI: 10.1016/j.sbi.2022.102346] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/06/2021] [Accepted: 01/28/2022] [Indexed: 12/27/2022]
Abstract
Liquid-liquid phase separation (LLPS) and phase transitions (PT) of proteins, which include the formation of gel- and solid-like species, have been characterized as physical processes related to the pathology of conformational diseases. Nucleic acid (NA)-binding proteins related to neurodegenerative disorders and cancer were shown by us and others to experience PT modulated by different NAs. Herein, we discuss recent work on phase separation and phase transitions of two amyloidogenic proteins, i.e. the prion protein (PrP) and p53, which undergo conformational changes and aggregate upon NA interaction. The role of different NAs in these processes is discussed to shed light on the relevance of PSs and PTs for both the functional and pathological roles of these mammalian proteins.
Collapse
|
5
|
Vendrell-Fernández S, Lozano-Picazo P, Cuadros-Sánchez P, Tejero-Ojeda MM, Giraldo R. Conversion of the OmpF Porin into a Device to Gather Amyloids on the E. coli Outer Membrane. ACS Synth Biol 2022; 11:655-667. [PMID: 34852197 DOI: 10.1021/acssynbio.1c00347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein amyloids are ubiquitous in natural environments. They typically originate from microbial secretions or spillages from mammals infected by prions, currently raising concerns about their infectivity and toxicity in contexts such as gut microbiota or soils. Exploiting the self-assembly potential of amyloids for their scavenging, here, we report the insertion of an amyloidogenic sequence stretch from a bacterial prion-like protein (RepA-WH1) in one of the extracellular loops (L5) of the abundant Escherichia coli outer membrane porin OmpF. The expression of this grafted porin enables bacterial cells to trap on their envelopes the same amyloidogenic sequence when provided as an extracellular free peptide. Conversely, when immobilized on a surface as bait, the full-length prion-like protein including the amyloidogenic peptide can catch bacteria displaying the L5-grafted OmpF. Polyphenolic molecules known to inhibit amyloid assembly interfere with peptide recognition by the engineered OmpF, indicating that this is compatible with the kind of homotypic interactions expected for amyloid assembly. Our study suggests that synthetic porins may provide suitable scaffolds for engineering biosensor and clearance devices to tackle the threat posed by pathogenic amyloids.
Collapse
Affiliation(s)
- Sol Vendrell-Fernández
- Department of Microbial Biotechnology, National Centre for Biotechnology (CSIC), c/ Darwin 3, Campus Cantoblanco, 28049 Madrid, Spain
| | - Paloma Lozano-Picazo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), c/ Ramiro de Maeztu 9, Campus Moncloa, 28040 Madrid, Spain
| | - Paula Cuadros-Sánchez
- Department of Microbial Biotechnology, National Centre for Biotechnology (CSIC), c/ Darwin 3, Campus Cantoblanco, 28049 Madrid, Spain
| | - María M. Tejero-Ojeda
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), c/ Ramiro de Maeztu 9, Campus Moncloa, 28040 Madrid, Spain
| | - Rafael Giraldo
- Department of Microbial Biotechnology, National Centre for Biotechnology (CSIC), c/ Darwin 3, Campus Cantoblanco, 28049 Madrid, Spain
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), c/ Ramiro de Maeztu 9, Campus Moncloa, 28040 Madrid, Spain
| |
Collapse
|
6
|
Busi F, Turbant F, Waeytens J, El Hamoui O, Wien F, Arluison V. Evaluation of Amyloid Inhibitor Efficiency to Block Bacterial Survival. Methods Mol Biol 2022; 2538:145-163. [PMID: 35951299 DOI: 10.1007/978-1-0716-2529-3_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Amyloid inhibitors, such as the green tea compound epigallocatechin gallate EGCG, apomorphine or curlicide, have antibacterial properties. Conversely, antibiotics such as tetracycline derivatives or rifampicin also affect eukaryotic amyloids formation and may be used to treat neurodegenerative diseases. This opens the possibility for existing drugs to be repurposed in view of new therapy, targeting amyloid-like proteins from eukaryotes to prokaryotes and conversely. Here we present how to evaluate the effect of these amyloid-forming inhibitors on bacterial amyloid self-assemblies in vitro and on bacterial survival. The different approaches possible are presented.
Collapse
Affiliation(s)
- Florent Busi
- Université Paris Cité, BFA, UMR 8251, CNRS, Paris, France.
- Université Paris Cité, Paris, France.
| | - Florian Turbant
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR 12, Université Paris Saclay, CEA Saclay, Gif-sur-Yvette, France
| | - Jehan Waeytens
- Structure et Fonction des Membranes Biologiques, Université libre de Bruxelles, Bruxelles, Belgium
- Institut de Chimie Physique, CNRS UMR8000, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Omar El Hamoui
- DISCO Beamline, Synchrotron SOLEIL, L'Orme des Merisiers Saint Aubin, Gif-sur-Yvette, France
| | - Frank Wien
- DISCO Beamline, Synchrotron SOLEIL, L'Orme des Merisiers Saint Aubin, Gif-sur-Yvette, France
| | - Véronique Arluison
- Université Paris Cité, Paris, France
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR 12, Université Paris Saclay, CEA Saclay, Gif-sur-Yvette, France
| |
Collapse
|
7
|
Turbant F, Wu P, Wien F, Arluison V. The Amyloid Region of Hfq Riboregulator Promotes DsrA: rpoS RNAs Annealing. BIOLOGY 2021; 10:biology10090900. [PMID: 34571778 PMCID: PMC8468756 DOI: 10.3390/biology10090900] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/30/2021] [Accepted: 09/05/2021] [Indexed: 11/16/2022]
Abstract
Hfq is a bacterial RNA chaperone which promotes the pairing of small noncoding RNAs to target mRNAs, allowing post-transcriptional regulation. This RNA annealing activity has been attributed for years to the N-terminal region of the protein that forms a toroidal structure with a typical Sm-fold. Nevertheless, many Hfqs, including that of Escherichia coli, have a C-terminal region with unclear functions. Here we use a biophysical approach, Synchrotron Radiation Circular Dichroism (SRCD), to probe the interaction of the E. coli Hfq C-terminal amyloid region with RNA and its effect on RNA annealing. This C-terminal region of Hfq, which has been described to be dispensable for sRNA:mRNA annealing, has an unexpected and significant effect on this activity. The functional consequences of this novel property of the amyloid region of Hfq in relation to physiological stress are discussed.
Collapse
Affiliation(s)
- Florian Turbant
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France;
| | - Pengzhi Wu
- Department of Biology, ETH Zürich, 8093 Zürich, Switzerland;
| | - Frank Wien
- Synchrotron SOLEIL, L’Orme des Merisiers, Saint Aubin BP48, 91192 Gif-sur-Yvette, France
- Correspondence: (F.W.); or (V.A.); Tel.: +33-(0)169359665 (F.W.); +33-(0)169083282 (V.A.)
| | - Véronique Arluison
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France;
- UFR Sciences du Vivant, Université de Paris, 75006 Paris, France
- Correspondence: (F.W.); or (V.A.); Tel.: +33-(0)169359665 (F.W.); +33-(0)169083282 (V.A.)
| |
Collapse
|
8
|
Matiiv AB, Trubitsina NP, Matveenko AG, Barbitoff YA, Zhouravleva GA, Bondarev SA. Amyloid and Amyloid-Like Aggregates: Diversity and the Term Crisis. BIOCHEMISTRY (MOSCOW) 2021; 85:1011-1034. [PMID: 33050849 DOI: 10.1134/s0006297920090035] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Active accumulation of the data on new amyloids continuing nowadays dissolves boundaries of the term "amyloid". Currently, it is most often used to designate aggregates with cross-β structure. At the same time, amyloids also exhibit a number of other unusual properties, such as: detergent and protease resistance, interaction with specific dyes, and ability to induce transition of some proteins from a soluble form to an aggregated one. The same features have been also demonstrated for the aggregates lacking cross-β structure, which are commonly called "amyloid-like" and combined into one group, although they are very diverse. We have collected and systematized information on the properties of more than two hundred known amyloids and amyloid-like proteins with emphasis on conflicting examples. In particular, a number of proteins in membraneless organelles form aggregates with cross-β structure that are morphologically indistinguishable from the other amyloids, but they can be dissolved in the presence of detergents, which is not typical for amyloids. Such paradoxes signify the need to clarify the existing definition of the term amyloid. On the other hand, the demonstrated structural diversity of the amyloid-like aggregates shows the necessity of their classification.
Collapse
Affiliation(s)
- A B Matiiv
- Department of Genetics and Biotechnology, Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia
| | - N P Trubitsina
- Department of Genetics and Biotechnology, Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia
| | - A G Matveenko
- Department of Genetics and Biotechnology, Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia
| | - Y A Barbitoff
- Department of Genetics and Biotechnology, Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia.,Bioinformatics Institute, St. Petersburg, 197342, Russia
| | - G A Zhouravleva
- Department of Genetics and Biotechnology, Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia.,Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, 199034, Russia
| | - S A Bondarev
- Department of Genetics and Biotechnology, Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia. .,Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, 199034, Russia
| |
Collapse
|
9
|
Turbant F, Hamoui OE, Partouche D, Sandt C, Busi F, Wien F, Arluison V. Identification and characterization of the Hfq bacterial amyloid region DNA interactions. BBA ADVANCES 2021; 1:100029. [PMID: 37082015 PMCID: PMC10074921 DOI: 10.1016/j.bbadva.2021.100029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/18/2022] Open
Abstract
Nucleic acid amyloid proteins interactions have been observed in the past few years. These interactions often promote protein aggregation. Nevertheless, molecular basis and physiological consequences of these interactions are still poorly understood. Additionally, it is unknown whether the nucleic acid promotes the formation of self-assembly due to direct interactions or indirectly via sequences surrounding the amyloid region. Here we focus our attention on a bacterial amyloid, Hfq. This protein is a pleiotropic bacterial regulator that mediates many aspects of nucleic acids metabolism. The protein notably mediates mRNA stability and translation efficiency by using stress-related small non coding regulatory RNA. In addition, Hfq, thanks to its amyloid C-terminal region, binds and compacts DNA. A combination of experimental methodologies, including synchrotron radiation circular dichroism (SRCD), gel shift assay and infrared (FTIR) spectroscopy have been used to probe the interaction of Hfq C-terminal region with DNA. We clearly identify important amino acids in this region involved in DNA binding and polymerization properties. This allows to understand better how this bacterial amyloid interacts with DNA. Possible functional consequence to answer to stresses are discussed.
Collapse
Affiliation(s)
- Florian Turbant
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Omar El Hamoui
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP48, 91192, Gif-sur-Yvette, France
| | - David Partouche
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP48, 91192, Gif-sur-Yvette, France
| | - Christophe Sandt
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP48, 91192, Gif-sur-Yvette, France
| | - Florent Busi
- Université de Paris, UFR Sciences du vivant, 75006 Paris cedex, France
- Université de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, France
| | - Frank Wien
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP48, 91192, Gif-sur-Yvette, France
- Corresponding author.
| | - Véronique Arluison
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
- Université de Paris, UFR Sciences du vivant, 75006 Paris cedex, France
- Corresponding author.
| |
Collapse
|
10
|
Andreychuk YV, Zadorsky SP, Zhuk AS, Stepchenkova EI, Inge-Vechtomov SG. Relationship between Type I and Type II Template Processes: Amyloids and Genome Stability. Mol Biol 2020. [DOI: 10.1134/s0026893320050027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Abstract
Amyloids are protein polymers that were initially linked to human diseases. Across the whole Tree of Life, many disease-unrelated proteins are now emerging for which amyloids represent distinct functional states. Most bacterial amyloids described are extracellular, contributing to biofilm formation. However, only a few have been found in the bacterial cytosol. This paper reviews from the perspective of synthetic biology (SynBio) our understanding of the subtle line that separates functional from pathogenic and transmissible amyloids (prions). Amyloids are protein polymers that were initially linked to human diseases. Across the whole Tree of Life, many disease-unrelated proteins are now emerging for which amyloids represent distinct functional states. Most bacterial amyloids described are extracellular, contributing to biofilm formation. However, only a few have been found in the bacterial cytosol. This paper reviews from the perspective of synthetic biology (SynBio) our understanding of the subtle line that separates functional from pathogenic and transmissible amyloids (prions). In particular, it is focused on RepA-WH1, a functional albeit unconventional natural amyloidogenic protein domain that participates in controlling DNA replication of bacterial plasmids. SynBio approaches, including protein engineering and the design of allosteric effectors such as diverse ligands and an optogenetic module, have enabled the generation in RepA-WH1 of an intracellular cytotoxic prion-like agent in bacteria. The synthetic RepA-WH1 prion has the potential to develop into novel antimicrobials.
Collapse
|
12
|
Intercellular Transmission of a Synthetic Bacterial Cytotoxic Prion-Like Protein in Mammalian Cells. mBio 2020; 11:mBio.02937-19. [PMID: 32291306 PMCID: PMC7157824 DOI: 10.1128/mbio.02937-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Proteotoxic amyloid seeds can be transmitted between mammalian cells, arguing that the intercellular exchange of prion-like protein aggregates can be a common phenomenon. RepA-WH1 is derived from a bacterial intracellular functional amyloid protein, engineered to become cytotoxic in Escherichia coli. Here, we have studied if such bacterial aggregates can also be transmitted to, and become cytotoxic to, mammalian cells. We demonstrate that RepA-WH1 is capable of entering naive cells, thereby inducing the cytotoxic aggregation of a soluble RepA-WH1 variant expressed in the cytosol, following the same trend that had been described in bacteria. These findings highlight the universality of one of the central principles underlying prion biology: No matter the biological origin of a given prion-like protein, it can be transmitted to a phylogenetically unrelated recipient cell, provided that the latter expresses a soluble protein onto which the incoming protein can readily template its amyloid conformation. RepA is a bacterial protein that builds intracellular amyloid oligomers acting as inhibitory complexes of plasmid DNA replication. When carrying a mutation enhancing its amyloidogenesis (A31V), the N-terminal domain (WH1) generates cytosolic amyloid particles that are inheritable within a bacterial lineage. Such amyloids trigger in bacteria a lethal cascade reminiscent of mitochondrial impairment in human cells affected by neurodegeneration. To fulfill all the criteria to qualify as a prion-like protein, horizontal (intercellular) transmissibility remains to be demonstrated for RepA-WH1. Since this is experimentally intractable in bacteria, here we transiently expressed in a murine neuroblastoma cell line the soluble, barely cytotoxic RepA-WH1 wild type [RepA-WH1(WT)] and assayed its response to exposure to in vitro-assembled RepA-WH1(A31V) amyloid fibers. In parallel, murine cells releasing RepA-WH1(A31V) aggregates were cocultured with human neuroblastoma cells expressing RepA-WH1(WT). Both the assembled fibers and donor-derived RepA-WH1(A31V) aggregates induced, in the cytosol of recipient cells, the formation of cytotoxic amyloid particles. Mass spectrometry analyses of the proteomes of both types of injured cells pointed to alterations in mitochondria, protein quality triage, signaling, and intracellular traffic. Thus, a synthetic prion-like protein can be propagated to, and become cytotoxic to, cells of organisms placed at such distant branches of the tree of life as bacteria and mammalia, suggesting that mechanisms of protein aggregate spreading and toxicity follow default pathways.
Collapse
|
13
|
Pantoja-Uceda D, Oroz J, Fernández C, de Alba E, Giraldo R, Laurents DV. Conformational Priming of RepA-WH1 for Functional Amyloid Conversion Detected by NMR Spectroscopy. Structure 2020; 28:336-347.e4. [PMID: 31918960 DOI: 10.1016/j.str.2019.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 10/03/2019] [Accepted: 12/16/2019] [Indexed: 12/21/2022]
Abstract
How proteins with a stable globular fold acquire the amyloid state is still largely unknown. RepA, a versatile plasmidic DNA binding protein from Pseudomonas savastanoi, is functional as a transcriptional repressor or as an initiator or inhibitor of DNA replication, the latter via assembly of an amyloidogenic oligomer. Its N-terminal domain (WH1) is responsible for discrimination between these functional abilities by undergoing insufficiently understood structural changes. RepA-WH1 is a stable dimer whose conformational dynamics had not been explored. Here, we have studied it through NMR {1H}-15N relaxation and H/D exchange kinetics measurements. The N- and the C-terminal α-helices, and the internal amyloidogenic loop, are partially unfolded in solution. S4-indigo, a small inhibitor of RepA-WH1 amyloidogenesis, binds to and tethers the N-terminal α-helix to a β-hairpin that is involved in dimerization, thus providing evidence for a priming role of fraying ends and dimerization switches in the amyloidogenesis of folded proteins.
Collapse
Affiliation(s)
- David Pantoja-Uceda
- Instituto de Química Física "Rocasolano", Consejo Superior de Investigaciones Científicas, c/ Serrano 119, Madrid 28006, Spain
| | - Javier Oroz
- Instituto de Química Física "Rocasolano", Consejo Superior de Investigaciones Científicas, c/ Serrano 119, Madrid 28006, Spain
| | - Cristina Fernández
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, c/ Ramiro de Maeztu 9, Madrid 28040, Spain
| | - Eva de Alba
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, c/ Ramiro de Maeztu 9, Madrid 28040, Spain
| | - Rafael Giraldo
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, c/ Ramiro de Maeztu 9, Madrid 28040, Spain.
| | - Douglas V Laurents
- Instituto de Química Física "Rocasolano", Consejo Superior de Investigaciones Científicas, c/ Serrano 119, Madrid 28006, Spain.
| |
Collapse
|
14
|
Rha AK, Das D, Taran O, Ke Y, Mehta AK, Lynn DG. Electrostatic Complementarity Drives Amyloid/Nucleic Acid Co‐Assembly. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907661] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Allisandra K. Rha
- Chemistry and Biology Emory University 1521 Dickey Drive NE Atlanta GA 30322 USA
| | - Dibyendu Das
- Chemistry and Biology Emory University 1521 Dickey Drive NE Atlanta GA 30322 USA
| | - Olga Taran
- Chemistry and Biology Emory University 1521 Dickey Drive NE Atlanta GA 30322 USA
| | - Yonggang Ke
- Biomedical Engineering Emory and Georgia Institute of Technology Atlanta GA 30322 USA
| | - Anil K. Mehta
- Chemistry and Biology Emory University 1521 Dickey Drive NE Atlanta GA 30322 USA
| | - David G. Lynn
- Chemistry and Biology Emory University 1521 Dickey Drive NE Atlanta GA 30322 USA
| |
Collapse
|
15
|
Rha AK, Das D, Taran O, Ke Y, Mehta AK, Lynn DG. Electrostatic Complementarity Drives Amyloid/Nucleic Acid Co-Assembly. Angew Chem Int Ed Engl 2019; 59:358-363. [PMID: 31617300 DOI: 10.1002/anie.201907661] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/11/2019] [Indexed: 12/20/2022]
Abstract
Proteinaceous plaques associated with neurodegenerative diseases contain many biopolymers including the polyanions glycosaminoglycans and nucleic acids. Polyanion-induced amyloid fibrillation has been implicated in disease etiology, but structural models for amyloid/nucleic acid co-assemblies remain limited. Here we constrain nucleic acid/peptide interactions with model peptides that exploit electrostatic complementarity and define a novel amyloid/nucleic acid co-assembly. The structure provides a model for nucleic acid/amyloid co-assembly as well as insight into the energetic determinants involved in templating amyloid assembly.
Collapse
Affiliation(s)
- Allisandra K Rha
- Chemistry and Biology, Emory University, 1521 Dickey Drive NE, Atlanta, GA, 30322, USA
| | - Dibyendu Das
- Chemistry and Biology, Emory University, 1521 Dickey Drive NE, Atlanta, GA, 30322, USA
| | - Olga Taran
- Chemistry and Biology, Emory University, 1521 Dickey Drive NE, Atlanta, GA, 30322, USA
| | - Yonggang Ke
- Biomedical Engineering, Emory and Georgia Institute of Technology, Atlanta, GA, 30322, USA
| | - Anil K Mehta
- Chemistry and Biology, Emory University, 1521 Dickey Drive NE, Atlanta, GA, 30322, USA
| | - David G Lynn
- Chemistry and Biology, Emory University, 1521 Dickey Drive NE, Atlanta, GA, 30322, USA
| |
Collapse
|
16
|
Protein misfolding, aggregation and mechanism of amyloid cytotoxicity: An overview and therapeutic strategies to inhibit aggregation. Int J Biol Macromol 2019; 134:1022-1037. [PMID: 31128177 DOI: 10.1016/j.ijbiomac.2019.05.109] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/18/2019] [Accepted: 05/18/2019] [Indexed: 12/18/2022]
Abstract
Protein and peptides are converted from their soluble forms into highly ordered fibrillar aggregates under various conditions inside the cell. Such transitions confer diverse neurodegenerative diseases including Alzheimer's disease, Huntington's disease Prion's disease, Parkinson's disease, polyQ and share abnormal folding of potentially cytotoxic protein species linked with degeneration and death of precise neuronal populations. Presently, major advances are made to understand and get detailed insight into the structural basis and mechanism of amyloid formation, cytotoxicity and therapeutic approaches to combat them. Here we highlight classifies and summarizes the detailed overview of protein misfolding and aggregation at their molecular level including the factors that promote protein aggregation under in vivo and in vitro conditions. In addition, we describe the recent technologies that aid the characterization of amyloid aggregates along with several models that might be responsible for amyloid induced cytotoxicity to cells. Overview on the inhibition of amyloidosis by targeting different small molecules (both natural and synthetic origin) have been also discussed, that provides important approaches to identify novel targets and develop specific therapeutic strategies to combat protein aggregation related neurodegenerative diseases.
Collapse
|
17
|
Optogenetic Navigation of Routes Leading to Protein Amyloidogenesis in Bacteria. J Mol Biol 2019; 431:1186-1202. [PMID: 30721672 DOI: 10.1016/j.jmb.2019.01.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 01/10/2023]
Abstract
Modulation of liquid-liquid and liquid-hydrogel phase transitions is central to avoid the cytotoxic aggregation of proteins in eukaryotic cells, but knowledge on its relevance in bacteria is limited. Here the power of optogenetics to engineer proteins as light-responsive switches has been used to control the balance between solubility and aggregation for LOV2-WH1, a chimera between the plant blue light-responsive domain LOV2 and the bacterial prion-like protein RepA-WH1. These proteins were first linked by fusing, as a continuous α-helix, the C-terminal photo-transducer Jα helix in LOV2 with the N-terminal domain-closure α1 helix in RepA-WH1, and then improved for light-responsiveness by including mutations in the Jα moiety. In the darkness and in a crowded solution in vitro, LOV2-WH1 nucleates the irreversible assembly of amyloid fibers into a hydrogel. However, under blue light illumination, LOV2-WH1 assembles as soluble oligomers. When expressed in Escherichia coli, LOV2-WH1 forms in the darkness large intracellular amyloid inclusions compatible with bacterial proliferation. Strikingly, under blue light, LOV2-WH1 aggregates decrease in size, while they become detrimental for bacterial growth. LOV2-WH1 optogenetics governs the assembly of mutually exclusive inert amyloid fibers or cytotoxic oligomers, thus enabling the navigation of the conformational landscape of protein amyloidogenesis to generate potential photo-activated anti-bacterial devices (optobiotics).
Collapse
|
18
|
Malabirade A, Partouche D, El Hamoui O, Turbant F, Geinguenaud F, Recouvreux P, Bizien T, Busi F, Wien F, Arluison V. Revised role for Hfq bacterial regulator on DNA topology. Sci Rep 2018; 8:16792. [PMID: 30429520 PMCID: PMC6235962 DOI: 10.1038/s41598-018-35060-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/26/2018] [Indexed: 12/11/2022] Open
Abstract
Hfq is a pleiotropic regulator that mediates several aspects of bacterial RNA metabolism. The protein notably regulates translation efficiency and RNA decay in Gram-negative bacteria, usually via its interaction with small regulatory RNA. Besides these RNA-related functions, Hfq has also been described as one of the nucleoid associated proteins shaping the bacterial chromosome. Therefore, Hfq appears as a versatile nucleic acid-binding protein, which functions are probably even more numerous than those initially suggested. For instance, E. coli Hfq, and more precisely its C-terminal region (CTR), has been shown to induce DNA compaction into a condensed form. In this paper, we establish that DNA induces Hfq-CTR amyloidogenesis, resulting in a change of DNA local conformation. Furthermore, we clarify the effect of Hfq on DNA topology. Our results evidence that, even if the protein has a strong propensity to compact DNA thanks to its amyloid region, it does not affect overall DNA topology. We confirm however that hfq gene disruption influences plasmid supercoiling in vivo, indicating that the effect on DNA topology in former reports was indirect. Most likely, this effect is related to small regulatory sRNA-Hfq-based regulation of another protein that influences DNA supercoiling, possibly a nucleoid associated protein such as H-NS or Dps. Finally, we hypothesise that this indirect effect on DNA topology explains, at least partially, the previously reported effect of Hfq on plasmid replication efficiency.
Collapse
Affiliation(s)
- Antoine Malabirade
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris Saclay, CEA Saclay, 91191, Gif-sur-Yvette, France
| | - David Partouche
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris Saclay, CEA Saclay, 91191, Gif-sur-Yvette, France.,Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP48, 91192, Gif-sur-Yvette, France
| | - Omar El Hamoui
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP48, 91192, Gif-sur-Yvette, France
| | - Florian Turbant
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris Saclay, CEA Saclay, 91191, Gif-sur-Yvette, France
| | | | | | - Thomas Bizien
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP48, 91192, Gif-sur-Yvette, France
| | - Florent Busi
- Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR8251, Université Paris Diderot, 75013, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, 75013, Paris, France
| | - Frank Wien
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP48, 91192, Gif-sur-Yvette, France
| | - Véronique Arluison
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris Saclay, CEA Saclay, 91191, Gif-sur-Yvette, France. .,Université Paris Diderot, Sorbonne Paris Cité, 75013, Paris, France.
| |
Collapse
|
19
|
Fernández C, Giraldo R. Modulation of the Aggregation of the Prion-like Protein RepA-WH1 by Chaperones in a Cell-Free Expression System and in Cytomimetic Lipid Vesicles. ACS Synth Biol 2018; 7:2087-2093. [PMID: 30125497 DOI: 10.1021/acssynbio.8b00283] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The accumulation of aggregated forms of proteins as toxic species is associated with fatal diseases such as amyloid proteinopathies. With the purpose of deconstructing the molecular mechanisms of these type of diseases through a Synthetic Biology approach, we are working with a model bacterial prion-like protein, RepA-WH1, expressed in a cell-free system. Our findings show that the Hsp70 chaperone from Escherichia coli, together with its Hsp40 and nucleotide exchange factor cochaperones, modulates the aggregation of the prion-like protein in the cell-free system. Moreover, we observe the same effect by reconstructing the aggregation process inside lipid vesicles. Chaperones reduce the number of aggregates formed, matching previous findings in vivo. We expect that the in vitro approach reported here will help to achieve better understanding and control of amyloid proteinopathies.
Collapse
Affiliation(s)
- Cristina Fernández
- Department of Cellular and Molecular Biology , Centro de Investigaciones Biológicas-CSIC , Madrid, E28040 , Spain
| | - Rafael Giraldo
- Department of Cellular and Molecular Biology , Centro de Investigaciones Biológicas-CSIC , Madrid, E28040 , Spain
| |
Collapse
|
20
|
Kaur G, Kapoor S, Thakur KG. Bacillus subtilis HelD, an RNA Polymerase Interacting Helicase, Forms Amyloid-Like Fibrils. Front Microbiol 2018; 9:1934. [PMID: 30186259 PMCID: PMC6111841 DOI: 10.3389/fmicb.2018.01934] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/30/2018] [Indexed: 12/26/2022] Open
Abstract
HelD, an RNA polymerase binding protein from Bacillus subtilis, stimulates transcription and helps in timely adaptation of cells under diverse environmental conditions. At present, no structural information is available for HelD. In the current study, we performed size exclusion chromatography coupled to small angle X-ray scattering (SEC-SAXS) which suggests that HelD is predominantly monomeric and globular in solution. Using combination of size exclusion chromatography and analytical ultracentrifugation, we also show that HelD has a tendency to form higher order oligomers in solution. CD experiments suggest that HelD has both α-helical (∼35%) and β sheet (∼26%) secondary structural elements. Thermal melting experiments suggest that even at 90°C, there is only about 30% loss in secondary structural contents with Tm of 44°C. However, with the increase in temperature, there was a gain in the β-sheet content and significant irreversible loss of α-helical content. Using a combination of X-ray fiber diffraction analysis, and dye based assays including Thioflavin-T based fluorescence and Congo red binding assays, we discovered that HelD forms amyloid-like fibrils at physiologically relevant conditions in vitro. Using confocal imaging, we further show that HelD forms amyloid inclusions in Escherichia coli. Bioinformatics-based sequence analysis performed using three independent web-based servers suggests that HelD has more than 20 hot-spots spread across the sequence that may aid the formation of amyloid-like fibrils. This discovery adds one more member to the growing list of amyloid or amyloid-like fibril forming cytosolic proteins in bacteria. Future studies aimed at resolving the function of amyloid-like fibrils or amyloid inclusions may help better understand their role, if any, in the bacterial physiology.
Collapse
Affiliation(s)
- Gundeep Kaur
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Srajan Kapoor
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Krishan G Thakur
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
21
|
Khan MV, Zakariya SM, Khan RH. Protein folding, misfolding and aggregation: A tale of constructive to destructive assembly. Int J Biol Macromol 2018; 112:217-229. [DOI: 10.1016/j.ijbiomac.2018.01.099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/04/2018] [Accepted: 01/14/2018] [Indexed: 12/20/2022]
|
22
|
Molina-García L, Gasset-Rosa F, Álamo MMD, de la Espina SMD, Giraldo R. Addressing Intracellular Amyloidosis in Bacteria with RepA-WH1, a Prion-Like Protein. Methods Mol Biol 2018; 1779:289-312. [PMID: 29886540 DOI: 10.1007/978-1-4939-7816-8_18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Bacteria are the simplest cellular model in which amyloidosis has been addressed. It is well documented that bacterial consortia (biofilms) assemble their extracellular matrix on an amyloid scaffold, yet very few intracellular amyloids are known in bacteria. Here, we describe the methods we have resorted to characterize in Escherichia coli cells the amyloidogenesis, propagation, and dynamics of the RepA-WH1 prionoid. This prion-like protein, a manifold domain from the plasmid replication protein RepA, itself capable of assembling a functional amyloid, causes when expressed in E. coli a synthetic amyloid proteinopathy, the first model for an amyloid disease with a purely bacterial origin. These protocols are useful to study other intracellular amyloids in bacteria.
Collapse
Affiliation(s)
- Laura Molina-García
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Fátima Gasset-Rosa
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
- Department of Neurosciences, Ludwig Institute for Cancer Research, University of California in San Diego, La Jolla, CA, USA
| | - María Moreno-Del Álamo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
- Department of Microbial Biotechnology, National Centre for Biotechnology (CSIC), Madrid, Spain
| | | | - Rafael Giraldo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain.
| |
Collapse
|
23
|
Abstract
Mammalian prion proteins (PrPs) that cause transmissible spongiform encephalopathies are misfolded conformations of the host cellular PrP. The misfolded form, the scrapie PrP (PrP(Sc)), can aggregate into amyloid fibrils that progressively accumulate in the brain, evolving to a pathological phenotype. A particular characteristic of PrP(Sc) is to be found as different strains, related to the diversity of conformational states it can adopt. Prion strains are responsible for the multiple phenotypes observed in prion diseases, presenting different incubation times and diverse deposition profiles in the brain. PrP biochemical properties are also strain-dependent, such as different digestion pattern after proteolysis and different stability. Although they have long been studied, strain formation is still a major unsolved issue in prion biology. The recreation of strain-specific conformational features is of fundamental importance to study this unique pathogenic phenomenon. In our recent paper, we described that murine PrP, when expressed in bacteria, forms amyloid inclusion bodies that possess different strain-like characteristics, depending on the PrP construct. Here, we present an extra-view of these data and propose that bacteria might become a successful model to generate preparative amounts of prion strain-specific assemblies for high-resolution structural analysis as well as for addressing the determinants of infectivity and transmissibility.
Collapse
Affiliation(s)
- Bruno Macedo
- a Institut de Biotecnologia i de Biomedicina and Departament de Bioquimica i Biologia Molecular , Universitat Autonoma de Barcelona , Bellaterra ( Barcelona ), Spain ;,b Faculdade de Farmacia , Universidade Federal do Rio de Janeiro, Rio de Janeiro , Brazil
| | - Yraima Cordeiro
- b Faculdade de Farmacia , Universidade Federal do Rio de Janeiro, Rio de Janeiro , Brazil
| | - Salvador Ventura
- a Institut de Biotecnologia i de Biomedicina and Departament de Bioquimica i Biologia Molecular , Universitat Autonoma de Barcelona , Bellaterra ( Barcelona ), Spain
| |
Collapse
|
24
|
Enabling stop codon read-through translation in bacteria as a probe for amyloid aggregation. Sci Rep 2017; 7:11908. [PMID: 28928456 PMCID: PMC5605706 DOI: 10.1038/s41598-017-12174-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 09/05/2017] [Indexed: 11/23/2022] Open
Abstract
Amyloid aggregation of the eukaryotic translation terminator eRF3/Sup35p, the [PSI+] prion, empowers yeast ribosomes to read-through UGA stop codons. No similar functional prion, skipping a stop codon, has been found in Escherichia coli, a fact possibly due to the efficient back-up systems found in bacteria to rescue non-stop complexes. Here we report that engineering hydrophobic amyloidogenic repeats from a synthetic bacterial prion-like protein (RepA-WH1) into the E. coli releasing factor RF1 promotes its aggregation and enables ribosomes to continue with translation through a premature UAG stop codon located in a β-galactosidase reporter. To our knowledge, intended aggregation of a termination factor is a way to overcome the bacterial translation quality checkpoint that had not been reported so far. We also show the feasibility of using the amyloidogenic RF1 chimeras as a reliable, rapid and cost-effective system to screen for molecules inhibiting intracellular protein amyloidogenesis in vivo, by testing the effect on the chimeras of natural polyphenols with known anti-amyloidogenic properties. Resveratrol exhibits a clear amyloid-solubilizing effect in this assay, showing no toxicity to bacteria or interference with the enzymatic activity of β-galactosidase.
Collapse
|
25
|
Molina-García L, Moreno-Del Álamo M, Botias P, Martín-Moldes Z, Fernández M, Sánchez-Gorostiaga A, Alonso-Del Valle A, Nogales J, García-Cantalejo J, Giraldo R. Outlining Core Pathways of Amyloid Toxicity in Bacteria with the RepA-WH1 Prionoid. Front Microbiol 2017; 8:539. [PMID: 28421043 PMCID: PMC5378768 DOI: 10.3389/fmicb.2017.00539] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/14/2017] [Indexed: 12/14/2022] Open
Abstract
The synthetic bacterial prionoid RepA-WH1 causes a vertically transmissible amyloid proteinopathy in Escherichia coli that inhibits growth and eventually kills the cells. Recent in vitro studies show that RepA-WH1 builds pores through model lipid membranes, suggesting a possible mechanism for bacterial cell death. By comparing acutely (A31V) and mildly (ΔN37) cytotoxic mutant variants of the protein, we report here that RepA-WH1(A31V) expression decreases the intracellular osmotic pressure and compromise bacterial viability under either aerobic or anaerobic conditions. Both are effects expected from threatening membrane integrity and are in agreement with findings on the impairment by RepA-WH1(A31V) of the proton motive force (PMF)-dependent transport of ions (Fe3+) and ATP synthesis. Systems approaches reveal that, in aerobiosis, the PMF-independent respiratory dehydrogenase NdhII is induced in response to the reduction in intracellular levels of iron. While NdhII is known to generate H2O2 as a by-product of the autoxidation of its FAD cofactor, key proteins in the defense against oxidative stress (OxyR, KatE), together with other stress-resistance factors, are sequestered by co-aggregation with the RepA-WH1(A31V) amyloid. Our findings suggest a route for RepA-WH1 toxicity in bacteria: a primary hit of damage to the membrane, compromising bionergetics, triggers a stroke of oxidative stress, which is exacerbated due to the aggregation-dependent inactivation of enzymes and transcription factors that enable the cellular response to such injury. The proteinopathy caused by the prion-like protein RepA-WH1 in bacteria recapitulates some of the core hallmarks of human amyloid diseases.
Collapse
Affiliation(s)
- Laura Molina-García
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - María Moreno-Del Álamo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Pedro Botias
- Genomics Unit, Complutense UniversityMadrid, Spain
| | - Zaira Martín-Moldes
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - María Fernández
- Proteomics Facility, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Alicia Sánchez-Gorostiaga
- Department of Microbial Biotechnology, National Centre for Biotechnology, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Aída Alonso-Del Valle
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Juan Nogales
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | | | - Rafael Giraldo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| |
Collapse
|
26
|
Giraldo R, Fernández C, Moreno-del Álamo M, Molina-García L, Revilla-García A, Sánchez-Martínez MC, Giménez-Abián JF, Moreno-Díaz de la Espina S. RepA-WH1 prionoid: Clues from bacteria on factors governing phase transitions in amyloidogenesis. Prion 2017; 10:41-9. [PMID: 27040981 PMCID: PMC4981189 DOI: 10.1080/19336896.2015.1129479] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In bacterial plasmids, Rep proteins initiate DNA replication by undergoing a structural transformation coupled to dimer dissociation. Amyloidogenesis of the ‘winged-helix’ N-terminal domain of RepA (WH1) is triggered in vitro upon binding to plasmid-specific DNA sequences, and occurs at the bacterial nucleoid in vivo. Amyloid fibers are made of distorted RepA-WH1 monomers that assemble as single or double intertwined tubular protofilaments. RepA-WH1 causes in E. coli an amyloid proteinopathy, which is transmissible from mother to daughter cells, but not infectious, and enables conformational imprinting in vitro and in vivo; i.e. RepA-WH1 is a ‘prionoid’. Microfluidics allow the assessment of the intracellular dynamics of RepA-WH1: bacterial lineages maintain two types (strains-like) of RepA-WH1 amyloids, either multiple compact cytotoxic particles or a single aggregate with the appearance of a fluidized hydrogel that it is mildly detrimental to growth. The Hsp70 chaperone DnaK governs the phase transition between both types of RepA-WH1 aggregates in vivo, thus modulating the vertical propagation of the prionoid. Engineering chimeras between the Sup35p/[PSI+] prion and RepA-WH1 generates [REP-PSI+], a synthetic prion exhibiting strong and weak phenotypic variants in yeast. These recent findings on a synthetic, self-contained bacterial prionoid illuminate central issues of protein amyloidogenesis.
Collapse
Affiliation(s)
- Rafael Giraldo
- a Department of Cellular & Molecular Biology , Centro de Investigaciones Biológicas - CSIC , Madrid , Spain
| | - Cristina Fernández
- a Department of Cellular & Molecular Biology , Centro de Investigaciones Biológicas - CSIC , Madrid , Spain
| | - María Moreno-del Álamo
- a Department of Cellular & Molecular Biology , Centro de Investigaciones Biológicas - CSIC , Madrid , Spain
| | - Laura Molina-García
- a Department of Cellular & Molecular Biology , Centro de Investigaciones Biológicas - CSIC , Madrid , Spain
| | - Aída Revilla-García
- a Department of Cellular & Molecular Biology , Centro de Investigaciones Biológicas - CSIC , Madrid , Spain
| | | | - Juan F Giménez-Abián
- a Department of Cellular & Molecular Biology , Centro de Investigaciones Biológicas - CSIC , Madrid , Spain
| | | |
Collapse
|
27
|
Fernández C, González-Rubio G, Langer J, Tardajos G, Liz-Marzán LM, Giraldo R, Guerrero-Martínez A. Nucleation of Amyloid Oligomers by RepA-WH1-Prionoid-Functionalized Gold Nanorods. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201604970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Cristina Fernández
- Department of Cellular and Molecular Biology; Centro de Investigaciones Biológicas-CSIC; 28040 Madrid Spain
| | - Guillermo González-Rubio
- Departamento de Química Física I; Universidad Complutense de Madrid; Avda. Complutense s/n 28040 Madrid Spain
- BioNanoPlasmonics Laboratory; CIC biomaGUNE; Donostia- 20009 San Sebastián Spain
| | - Judith Langer
- BioNanoPlasmonics Laboratory; CIC biomaGUNE; Donostia- 20009 San Sebastián Spain
| | - Gloria Tardajos
- Departamento de Química Física I; Universidad Complutense de Madrid; Avda. Complutense s/n 28040 Madrid Spain
| | - Luis M. Liz-Marzán
- BioNanoPlasmonics Laboratory; CIC biomaGUNE; Donostia- 20009 San Sebastián Spain
- Ikerbasque; Basque Foundation for Science; 48013 Bilbao Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine, CIBER-BBN; Spain
| | - Rafael Giraldo
- Department of Cellular and Molecular Biology; Centro de Investigaciones Biológicas-CSIC; 28040 Madrid Spain
| | - Andrés Guerrero-Martínez
- Departamento de Química Física I; Universidad Complutense de Madrid; Avda. Complutense s/n 28040 Madrid Spain
| |
Collapse
|
28
|
Fernández C, González-Rubio G, Langer J, Tardajos G, Liz-Marzán LM, Giraldo R, Guerrero-Martínez A. Nucleation of Amyloid Oligomers by RepA-WH1-Prionoid-Functionalized Gold Nanorods. Angew Chem Int Ed Engl 2016; 55:11237-41. [PMID: 27489029 DOI: 10.1002/anie.201604970] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/30/2016] [Indexed: 12/12/2022]
Abstract
Understanding protein amyloidogenesis is an important topic in protein science, fueled by the role of amyloid aggregates, especially oligomers, in the etiology of a number of devastating human degenerative diseases. However, the mechanisms that determine the formation of amyloid oligomers remain elusive due to the high complexity of the amyloidogenesis process. For instance, gold nanoparticles promote or inhibit amyloid fibrillation. We have functionalized gold nanorods with a metal-chelating group to selectively immobilize soluble RepA-WH1, a model synthetic bacterial prionoid, using a hexa-histidine tag (H6). H6-RepA-WH1 undergoes stable amyloid oligomerization in the presence of catalytic concentrations of anisotropic nanoparticles. Then, in a physically separated event, such oligomers promote the growth of amyloid fibers of untagged RepA-WH1. SERS spectral changes of H6-RepA-WH1 on spherical citrate-AuNP substrates provide evidence for structural modifications in the protein, which are compatible with a gradual increase in β-sheet structure, as expected in amyloid oligomerization.
Collapse
Affiliation(s)
- Cristina Fernández
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas-CSIC, 28040, Madrid, Spain
| | - Guillermo González-Rubio
- Departamento de Química Física I, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid, Spain.,BioNanoPlasmonics Laboratory, CIC biomaGUNE, Donostia-, 20009, San Sebastián, Spain
| | - Judith Langer
- BioNanoPlasmonics Laboratory, CIC biomaGUNE, Donostia-, 20009, San Sebastián, Spain
| | - Gloria Tardajos
- Departamento de Química Física I, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid, Spain
| | - Luis M Liz-Marzán
- BioNanoPlasmonics Laboratory, CIC biomaGUNE, Donostia-, 20009, San Sebastián, Spain.,Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine, CIBER-BBN, Spain
| | - Rafael Giraldo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas-CSIC, 28040, Madrid, Spain.
| | - Andrés Guerrero-Martínez
- Departamento de Química Física I, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid, Spain.
| |
Collapse
|
29
|
Silva JL, Cordeiro Y. The "Jekyll and Hyde" Actions of Nucleic Acids on the Prion-like Aggregation of Proteins. J Biol Chem 2016; 291:15482-90. [PMID: 27288413 DOI: 10.1074/jbc.r116.733428] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Protein misfolding results in devastating degenerative diseases and cancer. Among the culprits involved in these illnesses are prions and prion-like proteins, which can propagate by converting normal proteins to the wrong conformation. For spongiform encephalopathies, a real prion can be transmitted among individuals. In other disorders, the bona fide prion characteristics are still under investigation. Besides inducing misfolding of native proteins, prions bind nucleic acids and other polyanions. Here, we discuss how nucleic acid binding might influence protein misfolding for both disease-related and benign, functional prions and why the line between bad and good amyloids might be more subtle than previously thought.
Collapse
Affiliation(s)
- Jerson L Silva
- From the Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, and
| | - Yraima Cordeiro
- the Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| |
Collapse
|
30
|
Molina-García L, Gasset-Rosa F, Moreno-del Álamo M, Fernández-Tresguerres ME, Moreno-Díaz de la Espina S, Lurz R, Giraldo R. Functional amyloids as inhibitors of plasmid DNA replication. Sci Rep 2016; 6:25425. [PMID: 27147472 PMCID: PMC4857107 DOI: 10.1038/srep25425] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/12/2016] [Indexed: 12/24/2022] Open
Abstract
DNA replication is tightly regulated to constrain the genetic material within strict spatiotemporal boundaries and copy numbers. Bacterial plasmids are autonomously replicating DNA molecules of much clinical, environmental and biotechnological interest. A mechanism used by plasmids to prevent over-replication is 'handcuffing', i.e. inactivating the replication origins in two DNA molecules by holding them together through a bridge built by a plasmid-encoded initiator protein (Rep). Besides being involved in handcuffing, the WH1 domain in the RepA protein assembles as amyloid fibres upon binding to DNA in vitro. The amyloid state in proteins is linked to specific human diseases, but determines selectable and epigenetically transmissible phenotypes in microorganisms. Here we have explored the connection between handcuffing and amyloidogenesis of full-length RepA. Using a monoclonal antibody specific for an amyloidogenic conformation of RepA-WH1, we have found that the handcuffed RepA assemblies, either reconstructed in vitro or in plasmids clustering at the bacterial nucleoid, are amyloidogenic. The replication-inhibitory RepA handcuff assembly is, to our knowledge, the first protein amyloid directly dealing with DNA. Built on an amyloid scaffold, bacterial plasmid handcuffs can bring a novel molecular solution to the universal problem of keeping control on DNA replication initiation.
Collapse
Affiliation(s)
- Laura Molina-García
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas – CSIC, E28040 Madrid, Spain
| | - Fátima Gasset-Rosa
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas – CSIC, E28040 Madrid, Spain
| | - María Moreno-del Álamo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas – CSIC, E28040 Madrid, Spain
| | | | | | - Rudi Lurz
- Max Planck Institute for Molecular Genetics, D14195 Berlin, Germany
| | - Rafael Giraldo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas – CSIC, E28040 Madrid, Spain
| |
Collapse
|
31
|
Fernández C, Núñez-Ramírez R, Jiménez M, Rivas G, Giraldo R. RepA-WH1, the agent of an amyloid proteinopathy in bacteria, builds oligomeric pores through lipid vesicles. Sci Rep 2016; 6:23144. [PMID: 26984374 PMCID: PMC4794723 DOI: 10.1038/srep23144] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/29/2016] [Indexed: 12/12/2022] Open
Abstract
RepA-WH1 is a disease-unrelated protein that recapitulates in bacteria key aspects of human amyloid proteinopathies: i) It undergoes ligand-promoted amyloidogenesis in vitro; ii) its aggregates are able to seed/template amyloidosis on soluble protein molecules; iii) its conformation is modulated by Hsp70 chaperones in vivo, generating transmissible amyloid strains; and iv) causes proliferative senescence. Membrane disruption by amyloidogenic oligomers has been found for most proteins causing human neurodegenerative diseases. Here we report that, as for PrP prion and α-synuclein, acidic phospholipids also promote RepA-WH1 amyloidogenesis in vitro. RepA-WH1 molecules bind to liposomes, where the protein assembles oligomeric membrane pores. Fluorescent tracer molecules entrapped in the lumen of the vesicles leak through these pores and RepA-WH1 can then form large aggregates on the surface of the vesicles without inducing their lysis. These findings prove that it is feasible to generate in vitro a synthetic proteinopathy with a minimal set of cytomimetic components and support the view that cell membranes are primary targets in protein amyloidoses.
Collapse
Affiliation(s)
- Cristina Fernández
- Department of Cellular and Molecular Biology Centro de Investigaciones Biológicas-CSIC, E28040 Madrid, Spain
| | - Rafael Núñez-Ramírez
- Electron Microscopy Facility, Centro de Investigaciones Biológicas–CSIC, E28040 Madrid, Spain
| | - Mercedes Jiménez
- Department of Cellular and Molecular Biology Centro de Investigaciones Biológicas-CSIC, E28040 Madrid, Spain
| | - Germán Rivas
- Department of Cellular and Molecular Biology Centro de Investigaciones Biológicas-CSIC, E28040 Madrid, Spain
| | - Rafael Giraldo
- Department of Cellular and Molecular Biology Centro de Investigaciones Biológicas-CSIC, E28040 Madrid, Spain
| |
Collapse
|
32
|
Abstract
Iteron-containing plasmids are model systems for studying the metabolism of extrachromosomal genetic elements in bacterial cells. Here we describe the current knowledge and understanding of the structure of iteron-containing replicons, the structure of the iteron plasmid encoded replication initiation proteins, and the molecular mechanisms for iteron plasmid DNA replication initiation. We also discuss the current understanding of control mechanisms affecting the plasmid copy number and how host chaperone proteins and proteases can affect plasmid maintenance in bacterial cells.
Collapse
|
33
|
Aguilera P, Marcoleta A, Lobos-Ruiz P, Arranz R, Valpuesta JM, Monasterio O, Lagos R. Identification of Key Amino Acid Residues Modulating Intracellular and In vitro Microcin E492 Amyloid Formation. Front Microbiol 2016; 7:35. [PMID: 26858708 PMCID: PMC4729943 DOI: 10.3389/fmicb.2016.00035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/11/2016] [Indexed: 12/30/2022] Open
Abstract
Microcin E492 (MccE492) is a pore-forming bacteriocin produced and exported by Klebsiella pneumoniae RYC492. Besides its antibacterial activity, excreted MccE492 can form amyloid fibrils in vivo as well as in vitro. It has been proposed that bacterial amyloids can be functional playing a biological role, and in the particular case of MccE492 it would control the antibacterial activity. MccE492 amyloid fibril's morphology and formation kinetics in vitro have been well-characterized, however, it is not known which amino acid residues determine its amyloidogenic propensity, nor if it forms intracellular amyloid inclusions as has been reported for other bacterial amyloids. In this work we found the conditions in which MccE492 forms intracellular amyloids in Escherichia coli cells, that were visualized as round-shaped inclusion bodies recognized by two amyloidophilic probes, 2-4'-methylaminophenyl benzothiazole and thioflavin-S. We used this property to perform a flow cytometry-based assay to evaluate the aggregation propensity of MccE492 mutants, that were designed using an in silico prediction of putative aggregation hotspots. We established that the predicted amino acid residues 54-63, effectively act as a pro-amyloidogenic stretch. As in the case of other amyloidogenic proteins, this region presented two gatekeeper residues (P57 and P59), which disfavor both intracellular and in vitro MccE492 amyloid formation, preventing an uncontrolled aggregation. Mutants in each of these gatekeeper residues showed faster in vitro aggregation and bactericidal inactivation kinetics, and the two mutants were accumulated as dense amyloid inclusions in more than 80% of E. coli cells expressing these variants. In contrast, the MccE492 mutant lacking residues 54-63 showed a significantly lower intracellular aggregation propensity and slower in vitro polymerization kinetics. Electron microscopy analysis of the amyloids formed in vitro by these mutants revealed that, although with different efficiency, all formed fibrils morphologically similar to wild-type MccE492. The physiological implication of MccE492 intracellular amyloid formation is probably similar to the inactivation process observed for extracellular amyloids, and could be used as a mean of sequestering potentially toxic species inside the cell when this bacteriocin is produced in large amounts.
Collapse
Affiliation(s)
- Paulina Aguilera
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile Santiago, Chile
| | - Andrés Marcoleta
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile Santiago, Chile
| | - Pablo Lobos-Ruiz
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile Santiago, Chile
| | - Rocío Arranz
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - José M Valpuesta
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Octavio Monasterio
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile Santiago, Chile
| | - Rosalba Lagos
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile Santiago, Chile
| |
Collapse
|
34
|
Moreno-Del Álamo M, de la Espina SMD, Fernández-Tresguerres ME, Giraldo R. Pre-amyloid oligomers of the proteotoxic RepA-WH1 prionoid assemble at the bacterial nucleoid. Sci Rep 2015; 5:14669. [PMID: 26423724 PMCID: PMC4589793 DOI: 10.1038/srep14669] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/03/2015] [Indexed: 12/13/2022] Open
Abstract
Upon binding to short specific dsDNA sequences in vitro, the N-terminal WH1 domain of the plasmid DNA replication initiator RepA assembles as amyloid fibres. These are bundles of single or double twisted tubular filaments in which distorted RepA-WH1 monomers are the building blocks. When expressed in Escherichia coli, RepA-WH1 triggers the first synthetic amyloid proteinopathy in bacteria, recapitulating some of the features of mammalian prion diseases: it is vertically transmissible, albeit non-infectious, showing up in at least two phenotypically distinct and interconvertible strains. Here we report B3h7, a monoclonal antibody specific for oligomers of RepA-WH1, but which does not recognize the mature amyloid fibres. Unlike a control polyclonal antibody generated against the soluble protein, B3h7 interferes in vitro with DNA-promoted or amyloid-seeded assembly of RepA-WH1 fibres, thus the targeted oligomers are on-pathway amyloidogenic intermediates. Immuno-electron microscopy with B3h7 on thin sections of E. coli cells expressing RepA-WH1 consistently labels the bacterial nucleoid, but not the large cytoplasmic aggregates of the protein. This observation points to the nucleoid as the place where oligomeric amyloid precursors of RepA-WH1 are generated, and suggests that, once nucleated by DNA, further growth must continue in the cytoplasm due to entropic exclusion.
Collapse
Affiliation(s)
- María Moreno-Del Álamo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas - CSIC, Madrid E28040, Spain
| | | | | | - Rafael Giraldo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas - CSIC, Madrid E28040, Spain
| |
Collapse
|
35
|
Arutyunov D, Szymanski CM. A novel DNA-binding protein from Campylobacter jejuni bacteriophage NCTC12673. FEMS Microbiol Lett 2015; 362:fnv160. [PMID: 26363017 DOI: 10.1093/femsle/fnv160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2015] [Indexed: 12/21/2022] Open
Abstract
We previously suggested that the double-stranded genomic DNA of Campylobacter jejuni bacteriophage NCTC12673 was complexed with proteins. Mass spectrometry of peptides obtained from tryptic digests of purified phage DNA indicated that phage protein Gp001 co-purified with the DNA. Gp001 is an acidic protein that lacks any obvious homology or conserved domains found in known DNA-binding proteins. The DNA-binding ability of recombinant Gp001 was examined using an electrophoretic mobility shift assay. Slow DNA-Gp001 complex formation was observed at pH 5.5, but not at neutral or basic pH. This nucleoprotein complex had difficulty entering agarose gels used in the assay while proteinase K pretreatment released the DNA from the complex. No mobility shift was observed when the DNA was immediately subjected to electrophoresis after mixing with Gp001, even if both components were separately pre-incubated at pH 5.5. The complexed DNA was unable to transform chemically competent Escherichia coli cells and was less susceptible to degradation by nucleases. The formation of Gp001-DNA complexes at low pH may provide a mechanism for maintaining DNA integrity while the phage pursues its host through the gastrointestinal tract. Also, this feature can potentially be used to improve DNA delivery protocols applied in gene therapy.
Collapse
Affiliation(s)
- Denis Arutyunov
- Department of Biological Sciences and Alberta Glycomics Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Christine M Szymanski
- Department of Biological Sciences and Alberta Glycomics Centre, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
36
|
Gasset-Rosa F, Giraldo R. Engineered bacterial hydrophobic oligopeptide repeats in a synthetic yeast prion, [REP-PSI (+)]. Front Microbiol 2015; 6:311. [PMID: 25954252 PMCID: PMC4404881 DOI: 10.3389/fmicb.2015.00311] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 03/29/2015] [Indexed: 11/25/2022] Open
Abstract
The yeast translation termination factor Sup35p, by aggregating as the [PSI (+)] prion, enables ribosomes to read-through stop codons, thus expanding the diversity of the Saccharomyces cerevisiae proteome. Yeast prions are functional amyloids that replicate by templating their conformation on native protein molecules, then assembling as large aggregates and fibers. Prions propagate epigenetically from mother to daughter cells by fragmentation of such assemblies. In the N-terminal prion-forming domain, Sup35p has glutamine/asparagine-rich oligopeptide repeats (OPRs), which enable propagation through chaperone-elicited shearing. We have engineered chimeras by replacing the polar OPRs in Sup35p by up to five repeats of a hydrophobic amyloidogenic sequence from the synthetic bacterial prionoid RepA-WH1. The resulting hybrid, [REP-PSI (+)], (i) was functional in a stop codon read-through assay in S. cerevisiae; (ii) generates weak phenotypic variants upon both its expression or transformation into [psi (-)] cells; (iii) these variants correlated with high molecular weight aggregates resistant to SDS during electrophoresis; and (iv) according to fluorescence microscopy, the fusion of the prion domains from the engineered chimeras to the reporter protein mCherry generated perivacuolar aggregate foci in yeast cells. All these are signatures of bona fide yeast prions. As assessed through biophysical approaches, the chimeras assembled as oligomers rather than as the fibers characteristic of [PSI (+)]. These results suggest that it is the balance between polar and hydrophobic residues in OPRs what determines prion conformational dynamics. In addition, our findings illustrate the feasibility of enabling new propagation traits in yeast prions by engineering OPRs with heterologous amyloidogenic sequence repeats.
Collapse
Affiliation(s)
| | - Rafael Giraldo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas – Consejo Superior de Investigaciones CientíficasMadrid, Spain
| |
Collapse
|
37
|
Torreira E, Moreno-Del Álamo M, Fuentes-Perez ME, Fernández C, Martín-Benito J, Moreno-Herrero F, Giraldo R, Llorca O. Amyloidogenesis of bacterial prionoid RepA-WH1 recapitulates dimer to monomer transitions of RepA in DNA replication initiation. Structure 2014; 23:183-189. [PMID: 25543255 DOI: 10.1016/j.str.2014.11.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 11/03/2014] [Accepted: 11/06/2014] [Indexed: 01/14/2023]
Abstract
Most available structures of amyloids correspond to peptide fragments that self-assemble in extended cross β sheets. However, structures in which a whole protein domain acts as building block of an amyloid fiber are scarce, in spite of their relevance to understand amyloidogenesis. Here, we use electron microscopy (EM) and atomic force microscopy (AFM) to analyze the structure of amyloid filaments assembled by RepA-WH1, a winged-helix domain from a DNA replication initiator in bacterial plasmids. RepA-WH1 functions as a cytotoxic bacterial prionoid that recapitulates features of mammalian amyloid proteinopathies. RepA are dimers that monomerize at the origin to initiate replication, and we find that RepA-WH1 reproduces this transition to form amyloids. RepA-WH1 assembles double helical filaments by lateral association of a single-stranded precursor built by monomers. Double filaments then associate in mature fibers. The intracellular and cytotoxic RepA-WH1 aggregates might reproduce the hierarchical assembly of human amyloidogenic proteins.
Collapse
Affiliation(s)
- Eva Torreira
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - María Moreno-Del Álamo
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Maria Eugenia Fuentes-Perez
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Darwin 3, 28049 Madrid, Spain
| | - Cristina Fernández
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Jaime Martín-Benito
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Darwin 3, 28049 Madrid, Spain
| | - Fernando Moreno-Herrero
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Darwin 3, 28049 Madrid, Spain
| | - Rafael Giraldo
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | - Oscar Llorca
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain.
| |
Collapse
|
38
|
Zhao D, Zhang S, Meng Y, Xiongwei D, Zhang D, Liang Y, Wang L, Liu C. Polyanion binding accelerates the formation of stable and low-toxic aggregates of ALS-linked SOD1 mutant A4V. Proteins 2014; 82:3356-72. [PMID: 25220364 DOI: 10.1002/prot.24691] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 09/04/2014] [Accepted: 09/10/2014] [Indexed: 12/16/2022]
Abstract
The toxic property thus far shared by both ALS-linked SOD1 variants and wild-type SOD1 is an increased propensity to aggregation. However, whether SOD1 oligomers or aggregates are toxic to cells remains to be well defined. Moreover, how the toxic SOD1 species are removed from intra- and extracellular environments also needs to be further explored. The DNA binding has been shown to be capable of accelerating the aggregatio\n of wild-type and oxidized SOD1 forms under acidic and neutral conditions. In this study, we explore the binding of DNA and heparin, two types of essential life polyanions, to A4V, an ALS-linked SOD1 mutant, under acidic conditions, and its consequences. The polyanion binding alters the A4V conformation, neutralizes its local positive charges, and increases its local concentrations along the polyanion chain, which are sufficient to lead to acceleration of the pH-dependent A4V aggregation. The accelerated aggregation, which is ascribed to the polyanion binding-mediated removal or shortening of the lag phase in aggregation, contributes to the formation of amorphous A4V nanoparticles. The prolonged incubation with polyanions not only results in the complete conversion of likely soluble toxic A4V oligomers into non- and low-toxic SDS-resistant aggregates, but also increases their stability. Although this is only an initial step toward reducing the toxicity of SOD1 mutants, the accelerating role of polyanions in protein aggregation might become one of the rapid pathways that remove toxic forms of SOD1 mutants from intra- and extracellular environments.
Collapse
Affiliation(s)
- Dan Zhao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education and School of Chemistry, Central China Normal University, Wuhan, 430079, China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Aggregation interplay between variants of the RepA-WH1 prionoid in Escherichia coli. J Bacteriol 2014; 196:2536-42. [PMID: 24794561 DOI: 10.1128/jb.01527-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The N-terminal domain (winged-helix domain, or WH1) of the Pseudomonas pPS10 plasmid DNA replication protein RepA can assemble into amyloid fibers in vitro and, when expressed in Escherichia coli, leads to a unique intracellular amyloid proteinopathy by hampering bacterial proliferation. RepA-WH1 amyloidosis propagates along generations through the transmission of aggregated particles across the progeny, but it is unable to propagate horizontally as an infectious agent and is thus the first synthetic bacterial prionoid. RepA-WH1 amyloidosis is promoted by binding to double-stranded DNA (dsDNA) in vitro, and it is modulated by the Hsp70 chaperone DnaK in vivo. Different mutations in the repA-WH1 gene result in variants of the protein with distinct amyloidogenic properties. Here, we report that intracellular aggregates of the hyperamyloidogenic RepA with an A31V change in WH1 [RepA-WH1(A31V)] are able to induce and enhance the growth in vivo of new amyloid particles from molecules of wild-type RepA-WH1 [RepA-WH1(WT)], which otherwise would remain soluble in the cytoplasm. In contrast, RepA-WH1(ΔN37), a variant lacking a clear amyloidogenic sequence stretch that aggregates as conventional inclusion bodies (IBs), can drive the aggregation of the soluble protein into IBs only if expressed at high molar ratios over RepA-WH1(WT). The cytotoxic bacterial intracellular prionoid RepA-WH1 thus exhibits a hallmark feature of amyloids, as characterized in eukaryotes: cross-aggregation between variants of the same protein.
Collapse
|
40
|
Gasset-Rosa F, Coquel AS, Moreno-Del Álamo M, Chen P, Song X, Serrano AM, Fernández-Tresguerres ME, Moreno-Díaz de la Espina S, Lindner AB, Giraldo R. Direct assessment in bacteria of prionoid propagation and phenotype selection by Hsp70 chaperone. Mol Microbiol 2014; 91:1070-87. [PMID: 24417419 DOI: 10.1111/mmi.12518] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2014] [Indexed: 11/28/2022]
Abstract
Protein amyloid aggregates epigenetically determine either advantageous or proteinopathic phenotypes. Prions are infectious amyloidogenic proteins, whereas prionoids lack infectivity but spread from mother to daughter cells. While prion amyloidosis has been studied in yeast and mammalian cells models, the dynamics of transmission of an amyloid proteinopathy has not been addressed yet in bacteria. Using time-lapse microscopy and a microfluidic set-up, we have assessed in Escherichia coli the vertical transmission of the amyloidosis caused by the synthetic bacterial model prionoid RepA-WH1 at single cell resolution within their lineage context. We identify in vivo the coexistence of two strain-like types of amyloid aggregates within a genetically identical population and a controlled homogeneous environment. The amyloids are either toxic globular particles or single comet-shaped aggregates that split during cytokinesis and exhibit milder toxicity. Both segregate and propagate in sublineages, yet show interconversion. ClpB (Hsp104) chaperone, key for spreading of yeast prions, has no effect on the dynamics of the two RepA-WH1 aggregates. However, the propagation of the comet-like species is DnaK (Hsp70)-dependent. The bacterial RepA-WH1 prionoid thus provides key qualitative and quantitative clues on the biology of intracellular amyloid proteinopathies.
Collapse
Affiliation(s)
- Fátima Gasset-Rosa
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas - CSIC, C/ Ramiro de Maeztu 9, Madrid, E-28040, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Pathological implications of nucleic acid interactions with proteins associated with neurodegenerative diseases. Biophys Rev 2014; 6:97-110. [PMID: 28509960 DOI: 10.1007/s12551-013-0132-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Accepted: 12/03/2013] [Indexed: 10/25/2022] Open
Abstract
Protein misfolding disorders (PMDs) refer to a group of diseases related to the misfolding of particular proteins that aggregate and deposit in the cells and tissues of humans and other mammals. The mechanisms that trigger protein misfolding and aggregation are still not fully understood. Increasing experimental evidence indicates that abnormal interactions between PMD-related proteins and nucleic acids (NAs) can induce conformational changes. Here, we discuss these protein-NA interactions and address the role of deoxyribonucleic (DNA) and ribonucleic (RNA) acid molecules in the conformational conversion of different proteins that aggregate in PMDs, such as Alzheimer's, Parkinson's, and prion diseases. Studies on the affinity, stability, and specificity of proteins involved in neurodegenerative diseases and NAs are specifically addressed. A landscape of reciprocal effects resulting from the binding of prion proteins, amyloid-β peptides, tau proteins, huntingtin, and α-synuclein are presented here to clarify the possible role of NAs, not only as encoders of genetic information but also in triggering PMDs.
Collapse
|
42
|
Huang Z, Zhang C, Chen S, Ye F, Xing XH. Active inclusion bodies of acid phosphatase PhoC: aggregation induced by GFP fusion and activities modulated by linker flexibility. Microb Cell Fact 2013; 12:25. [PMID: 23497261 PMCID: PMC3608069 DOI: 10.1186/1475-2859-12-25] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 03/01/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Biologically active inclusion bodies (IBs) have gained much attention in recent years. Fusion with IB-inducing partner has been shown to be an efficient strategy for generating active IBs. To make full use of the advantages of active IBs, one of the key issues will be to improve the activity yield of IBs when expressed in cells, which would need more choices on IB-inducing fusion partners and approaches for engineering IBs. Green fluorescent protein (GFP) has been reported to aggregate when overexpressed, but GFP fusion has not been considered as an IB-inducing approach for these fusion proteins so far. In addition, the role of linker in fusion proteins has been shown to be important for protein characteristics, yet impact of linker on active IBs has never been reported. RESULTS Here we report that by fusing GFP and acid phosphatase PhoC via a linker region, the resultant PhoC-GFPs were expressed largely as IBs. These IBs show high levels of specific fluorescence and specific PhoC activities (phosphatase and phosphotransferase), and can account for up to over 80% of the total PhoC activities in the cells. We further demonstrated that the aggregation of GFP moiety in the fusion protein plays an essential role in the formation of PhoC-GFP IBs. In addition, PhoC-GFP IBs with linkers of different flexibility were found to exhibit different levels of activities and ratios in the cells, suggesting that the linker region can be utilized to manipulate the characteristics of active IBs. CONCLUSIONS Our results show that active IBs of PhoC can be generated by GFP fusion, demonstrating for the first time the potential of GFP fusion to induce active IB formation of another soluble protein. We also show that the linker sequence in PhoC-GFP fusion proteins plays an important role on the regulation of IB characteristics, providing an alternative and important approach for engineering of active IBs with the goal of obtaining high activity yield of IBs.
Collapse
Affiliation(s)
- Ziliang Huang
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | | | | | | | | |
Collapse
|
43
|
Macedo B, Millen TA, Braga CACA, Gomes MPB, Ferreira PS, Kraineva J, Winter R, Silva JL, Cordeiro Y. Nonspecific Prion Protein–Nucleic Acid Interactions Lead to Different Aggregates and Cytotoxic Species. Biochemistry 2012; 51:5402-13. [DOI: 10.1021/bi300440e] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bruno Macedo
- Faculdade de Farmacia, Universidade Federal do Rio de Janeiro, RJ 21941-590,
Rio de Janeiro, Brazil
| | - Thiago A. Millen
- Instituto de Bioquimica Medica, Universidade Federal do Rio de Janeiro, Rio de Janeiro,
Brazil
| | - Carolina A. C. A. Braga
- Instituto de Bioquimica Medica, Universidade Federal do Rio de Janeiro, Rio de Janeiro,
Brazil
| | - Mariana P. B. Gomes
- Faculdade de Farmacia, Universidade Federal do Rio de Janeiro, RJ 21941-590,
Rio de Janeiro, Brazil
| | - Priscila S. Ferreira
- Instituto de Bioquimica Medica, Universidade Federal do Rio de Janeiro, Rio de Janeiro,
Brazil
| | - Julia Kraineva
- Faculty of Chemistry,
Physical
Chemistry I, Dortmund University, Dortmund,
Germany
| | - Roland Winter
- Faculty of Chemistry,
Physical
Chemistry I, Dortmund University, Dortmund,
Germany
| | - Jerson L. Silva
- Instituto de Bioquimica Medica, Universidade Federal do Rio de Janeiro, Rio de Janeiro,
Brazil
| | - Yraima Cordeiro
- Faculdade de Farmacia, Universidade Federal do Rio de Janeiro, RJ 21941-590,
Rio de Janeiro, Brazil
| |
Collapse
|
44
|
Gomes MPB, Vieira TCRG, Cordeiro Y, Silva JL. The role of RNA in mammalian prion protein conversion. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 3:415-28. [PMID: 22095764 DOI: 10.1002/wrna.118] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Prion diseases remain a challenge to modern science in the 21st century because of their capacity for transmission without an encoding nucleic acid. PrP(Sc), the infectious and alternatively folded form of the PrP prion protein, is capable of self-replication, using PrP(C), the properly folded form of PrP, as a template. This process is associated with neuronal death and the clinical manifestation of prion-based diseases. Unfortunately, little is known about the mechanisms that drive this process. Over the last decade, the theory that a nucleic acid, such as an RNA molecule, might be involved in the process of prion structural conversion has become more widely accepted; such a nucleic acid would act as a catalyst rather than encoding genetic information. Significant amounts of data regarding the interactions of PrP with nucleic acids have created a new foundation for understanding prion conversion and the transmission of prion diseases. Our knowledge has been enhanced by the characterization of a large group of RNA molecules known as non-coding RNAs, which execute a series of important cellular functions, from transcriptional regulation to the modulation of neuroplasticity. The RNA-binding properties of PrP along with the competition with other polyanions, such as glycosaminoglycans and nucleic acid aptamers, open new avenues for therapy.
Collapse
Affiliation(s)
- Mariana P B Gomes
- Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Instituto de Bioquímica Médica, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
45
|
Pissuti Damalio JC, Garcia W, Alves Macêdo JN, de Almeida Marques I, Andreu JM, Giraldo R, Garratt RC, Ulian Araújo AP. Self assembly of human septin 2 into amyloid filaments. Biochimie 2011; 94:628-36. [PMID: 21967827 DOI: 10.1016/j.biochi.2011.09.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 09/15/2011] [Indexed: 11/15/2022]
Abstract
Septins are a conserved group of GTP-binding proteins that form hetero-oligomeric complexes which assemble into filaments. These are essential for septin function, including their role in cytokinesis, cell division, exocytosis and membrane trafficking. Septin 2 (SEPT2) is a member of the septin family and has been associated with neurofibrillary tangles and other pathological features of senile plaques in Alzheimer's disease. An in silico analysis of the amino acid sequence of SEPT2 identified regions with a significant tendency to aggregate and/or form amyloid. These were all observed within the GTP-binding domain. This was consistent with the experimental identification of a structure rich in β-sheet during temperature induced unfolding transitions observed for both the full length protein and the GTP-binding domain alone. This intermediate state is characterized by irreversible aggregation and has the ability to bind Thioflavin-T, suggesting its amyloid nature. Under electron microscopy, fibers extending for several micrometers in length could be visualized. The results shown in this study support the hypothesis that single septins, when present in excess or with unbalanced stoichiometries, may be unstable and assemble into amyloid-like structures.
Collapse
Affiliation(s)
- Julio Cesar Pissuti Damalio
- Centro de Biotecnologia Molecular Estrutural, Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador Sãocarlense, 400, 13560-970 São Carlos, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Giraldo R, Moreno-Díaz de la Espina S, Fernández-Tresguerres ME, Gasset-Rosa F. RepA-WH1 prionoid: a synthetic amyloid proteinopathy in a minimalist host. Prion 2011; 5:60-4. [PMID: 21293179 DOI: 10.4161/pri.5.2.14913] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The intricate complexity, at the molecular and cellular levels, of the processes leading to the development of amyloid proteinopathies is somehow counterbalanced by their common, universal structural basis. The later has fueled the quest for suitable model systems to study protein amyloidosis under quasi-physiological conditions in vitro and in simpler organisms in vivo. Yeast prions have provided several of such model systems, yielding invaluable insights on amyloid structure, dynamics and transmission. However, yeast prions, unlike mammalian PrP, do not elicit any proteinopathy. We have recently reported that engineering RepA-WH1, a bacterial DNA-toggled protein conformational switch (dWH1 → mWH1) sharing some analogies with nucleic acid-promoted PrPC → PrPSc replication, enables control on protein amyloidogenesis in vitro. Furthermore, RepA-WH1 gives way to a non-infectious, vertically-transmissible (from mother to daughter cells) amyloid proteinopathy in Escherichia coli. RepA-WH1 amyloid aggregates efficiently promote aging in bacteria, which exhibit a drastic lengthening in generation time, a limited number of division cycles and reduced fitness. The RepA-WH1 prionoid opens a direct means to untangle the general pathway(s) for protein amyloidosis in a host with reduced genome and proteome.
Collapse
Affiliation(s)
- Rafael Giraldo
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas - CSIC, C/ Ramiro de Maeztu, Madrid, Spain.
| | | | | | | |
Collapse
|
47
|
Liu C, Zhang Y. Nucleic acid-mediated protein aggregation and assembly. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2011; 84:1-40. [DOI: 10.1016/b978-0-12-386483-3.00005-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
48
|
Giraldo R. Amyloid Assemblies: Protein Legos at a Crossroads in Bottom-Up Synthetic Biology. Chembiochem 2010; 11:2347-57. [DOI: 10.1002/cbic.201000412] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
49
|
Voyage of RepA protein from plasmid DNA replication through amyloid aggregation towards synthetic biology. J Appl Biomed 2010. [DOI: 10.2478/v10136-009-0018-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
50
|
Fernández-Tresguerres ME, de la Espina SMD, Gasset-Rosa F, Giraldo R. A DNA-promoted amyloid proteinopathy in Escherichia coli. Mol Microbiol 2010; 77:1456-69. [PMID: 20662778 DOI: 10.1111/j.1365-2958.2010.07299.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Protein amyloids arise from the conformational conversion and assembly of a soluble protein into fibrilar aggregates with a crossed β-sheet backbone. Amyloid aggregates are able to replicate by acting as a template for the structural transformation and accretion of further protein molecules. In physicochemical terms, amyloids arguably constitute the simplest self-replicative macromolecular assemblies. Similarly to the mammalian proteins PrP and α-synuclein, the winged-helix dimerization (WH1) domain of the bacterial, plasmid-encoded protein RepA can assemble into amyloid fibres upon binding to DNA in vitro. Here we report that a hyper-amyloidogenic functional variant (A31V) of RepA, fused to a red fluorescent protein, causes an amyloid proteinopathy in Escherichia coli with the following features: (i) in the presence of multiple copies of the specific DNA sequence opsp, WH1(A31V) accumulates as cytoplasmatic inclusions segregated from the nucleoid; (ii) such aggregates are amyloid in nature; (iii) bacteria carrying the amyloid inclusions age, exhibiting a fivefold expanded generation time; (iv) before cytokinesis, small inclusions are assembled de novo and transferred to the daughter cells, in which transmission failures cure amyloidosis; and (v) in the absence of inducer DNA, purified cellular WH1(A31V) inclusions seed amyloid fibre growth in vitro from the soluble protein. RepA-WH1 is a suitable bacterial model system for amyloid proteinopathies.
Collapse
Affiliation(s)
- M Elena Fernández-Tresguerres
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas - CSIC, C/Ramiro de Maeztu, 9, E-28040 Madrid, Spain
| | | | | | | |
Collapse
|