1
|
Huang Z, Liao Y, Du J, Yang Z, Li F, Ruan L, Shi H. Transcriptomic insights into the resistance mechanism of Penaeus vannamei against highly lethal Vibrio parahaemolyticus. Sci Rep 2025; 15:13490. [PMID: 40251246 PMCID: PMC12008197 DOI: 10.1038/s41598-025-96168-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 03/26/2025] [Indexed: 04/20/2025] Open
Abstract
Highly lethal Vibrio disease (HLVD) caused by a virulent strain of Vibrio parahaemolyticus (VpHLVD), which poses a significant threat to Penaeus vannamei post-larvae, leads to substantial mortality and economic losses. To address this challenge, researchers have recently isolated a highly disease-resistant strain of P. vannamei shrimp. However, the underlying mechanisms that could improve disease resistance require further investigation. Our study found that disease-resistant shrimp exhibited a remarkable ability to prevent VpHLVD invasion effectively. To unravel the genetic basis of this resistance, we conducted a transcriptomic analysis with susceptible and disease-resistant shrimp at various time points (0, 6, and 12 h) post-infection with VpHLVD. Differential gene expression (DEGs) analysis of uninfected shrimp revealed that disease-resistant individuals displayed higher expression of immune-related genes and pathways compared to their susceptible counterparts. Simultaneously, they exhibited lower expression of Vibrio toxin-binding genes and Vibrio colonization gene, indicating enhanced defense mechanisms in the resistant shrimp. Upon VpHLVD infection, DEGs analysis also showed that susceptible shrimp attempt to mount a similar immune response as the disease-resistant shrimp during the early stages of infection. However, as the infection progresses, the defense strategies diverge between the two groups, with the peak of gene response occurring later in the disease-resistant shrimp. Our findings indicated that disease-resistant shrimp did not experience significant stress during the early stages of infection and are capable of effectively enhancing their immune response in the middle and late stages of the infection. In summary, our study enhanced the understanding of the mechanisms employed by disease-resistant shrimp to combat Vibrio, and would help to develop effective strategies for disease prevention and control, ultimately reducing the impact of HLVD on shrimp aquaculture.
Collapse
Affiliation(s)
- Zhihao Huang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, No. 178 Daxue Road, Xiamen, 361005, Fujian, People's Republic of China
| | - Yifei Liao
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, No. 178 Daxue Road, Xiamen, 361005, Fujian, People's Republic of China
- School of Advanced Manufacturing, Fuzhou University, Quanzhou, 362251, People's Republic of China
| | - Jianrong Du
- Xiamen Xinrongteng Aquaculture Co., Ltd, Xiamen, 361005, People's Republic of China
| | - Zhongming Yang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, No. 178 Daxue Road, Xiamen, 361005, Fujian, People's Republic of China
- School of Advanced Manufacturing, Fuzhou University, Quanzhou, 362251, People's Republic of China
| | - Fang Li
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, No. 178 Daxue Road, Xiamen, 361005, Fujian, People's Republic of China
| | - Lingwei Ruan
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, No. 178 Daxue Road, Xiamen, 361005, Fujian, People's Republic of China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222005, People's Republic of China
| | - Hong Shi
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, No. 178 Daxue Road, Xiamen, 361005, Fujian, People's Republic of China.
| |
Collapse
|
2
|
Ulbrich M, Seward CH, Ivanov AI, Ward BM, Butler JS, Dziejman M. VopX, a novel Vibrio cholerae T3SS effector, modulates host actin dynamics. mBio 2025; 16:e0301824. [PMID: 39878476 PMCID: PMC11898728 DOI: 10.1128/mbio.03018-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/19/2024] [Indexed: 01/31/2025] Open
Abstract
Pathogenic Vibrio cholerae strains cause cholera using different mechanisms. O1 and O139 serogroup strains use the toxin-co-regulated pilus (TCP) and cholera toxin (CT) for intestinal colonization and to promote secretory diarrhea, while non-O1/non-O139 serogroup strains are typically non-toxigenic and use alternate virulence factors to cause a clinically similar disease. An O39 serogroup, TCP/CT-negative V. cholerae strain, named AM-19226, uses a type III secretion system (T3SS) to translocate more than 10 effector proteins into the host cell cytosol. Effectors VopF and VopM directly interact with the host actin and contribute to colonization. Our previous studies using the Saccharomyces cerevisiae model system identified VopX as a third effector that alters cytoskeletal dynamics. Herein, we used complementary approaches to translate yeast findings to a mammalian system and determined the target and mechanism of VopX activity. VopX overexpression in HeLa cells caused dramatic cell rounding. Co-culture of strain AM-19226 with polarized Caco-2/BBE monolayers increased formation of stress fibers and focal adhesions, as well as Caco-2/BBE adherence to extracellular matrix in a VopX-dependent manner. Finally, we demonstrate in vitro that VopX can act as a guanine nucleotide exchange factor for RhoA, which functions upstream of a mitogen-activated protein kinase (MAPK) signaling pathway regulating cytoskeletal dynamics. Our results suggest that VopX activity initiates a signaling cascade resulting in enhanced cell-extracellular matrix adhesion, potentially preventing detachment of host cells, and facilitating sustained bacterial colonization during infection. VopX function is therefore part of a unique pathogenic strategy employed by T3SS-positive V. cholerae, which involves multiple cytoskeletal remodeling mechanisms to support a productive infection. IMPORTANCE Despite different infection strategies, enteric pathogens commonly employ a T3SS to colonize the human host and cause disease. Effector proteins are unique to each T3SS-encoding bacterial species and generally lack conserved amino acid sequences. However, T3SS effectors from diverse pathogens target and manipulate common host cell structures and signaling proteins, such as the actin cytoskeleton and MAPK pathway components. T3SS-encoding Vibrio cholerae strains and effectors have been relatively recently identified, and the mechanisms used to mediate colonization and secretory diarrhea are poorly understood. Two V. cholerae effectors that modify the host actin cytoskeleton were shown to be important for colonization. We therefore sought to determine the target(s) and mechanism of a third actin-reorganizing effector, VopX, based on results obtained from a yeast model system. We recapitulated actin-based phenotypes in multiple mammalian model systems, leading us to identify the molecular function of the V. cholerae VopX effector protein.
Collapse
Affiliation(s)
- Megan Ulbrich
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Christopher H. Seward
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Andrei I. Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Brian M. Ward
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - J. Scott Butler
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Michelle Dziejman
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
3
|
Zhang XF, Li Z, Qiu J, Zhang R, Jiang Z, Wang T, Chen H, Wei T. A phytoplasma effector suppresses insect melanization immune response to promote pathogen persistent transmission. SCIENCE ADVANCES 2025; 11:eads9781. [PMID: 39879313 PMCID: PMC11777251 DOI: 10.1126/sciadv.ads9781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/30/2024] [Indexed: 01/31/2025]
Abstract
Insect melanization triggered by the conversion of prophenoloxidase to active phenoloxidase via serine proteases (SPs) is an important immediate immune response. However, how phytoplasmas evade this immune response to promote their propagation in insect vectors remains unknown. Here, we demonstrate that infection of leafhopper vectors with rice orange leaf phytoplasma (ROLP) activates the mild melanization response in hemolymph. ROLP-encoded effector protein SRP1 is highly expressed in leafhopper hemolymph, where it competitively binds to SP2, thereby inhibiting SP2-mediated cleavage of prophenoloxidase into active phenoloxidase. Consequently, microinjection of SRP1 effectively suppresses the melanization response and enhances ROLP propagation. The histidine residue at position 23 of SRP1 is essential for SRP1-SP2 interaction, and the mutation of this position abolishes its ability to inhibit such SP2-meidated cleavage, ultimately promoting melanization response and inhibiting ROLP propagation. Our findings provide insights into how phytoplasmas antagonize insect melanization response to facilitate their persistent transmission.
Collapse
Affiliation(s)
| | | | - Jiaxin Qiu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ruonan Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zhoumian Jiang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Tengfei Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Hongyan Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Taiyun Wei
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
4
|
Li T, Song Y, Wei L, Song X, Duan R. Disulfidptosis: a novel cell death modality induced by actin cytoskeleton collapse and a promising target for cancer therapeutics. Cell Commun Signal 2024; 22:491. [PMID: 39394612 PMCID: PMC11470700 DOI: 10.1186/s12964-024-01871-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024] Open
Abstract
Disulfidptosis is a novel discovered form of programmed cell death (PCD) that diverges from apoptosis, necroptosis, ferroptosis, and cuproptosis, stemming from disulfide stress-induced cytoskeletal collapse. In cancer cells exhibiting heightened expression of the solute carrier family 7 member 11 (SLC7A11), excessive cystine importation and reduction will deplete nicotinamide adenine dinucleotide phosphate (NADPH) under glucose deprivation, followed by an increase in intracellular disulfide stress and aberrant disulfide bond formation within actin networks, ultimately culminating in cytoskeletal collapse and disulfidptosis. Disulfidptosis involves crucial physiological processes in eukaryotic cells, such as cystine and glucose uptake, NADPH metabolism, and actin dynamics. The Rac1-WRC pathway-mediated actin polymerization is also implicated in this cell death due to its contribution to disulfide bond formation. However, the precise mechanisms underlying disulfidptosis and its role in tumors are not well understood. This is probably due to the multifaceted functionalities of SLC7A11 within cells and the complexities of the downstream pathways driving disulfidptosis. This review describes the critical roles of SLC7A11 in cells and summarizes recent research advancements in the potential pathways of disulfidptosis. Moreover, the less-studied aspects of this newly discovered cell death process are highlighted to stimulate further investigations in this field.
Collapse
Affiliation(s)
- Tianyi Li
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ying Song
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Chang Chun, Jilin, China
| | - Lijuan Wei
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Chang Chun, Jilin, China
| | - Xiangyi Song
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Chang Chun, Jilin, China
| | - Ruifeng Duan
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Chang Chun, Jilin, China.
| |
Collapse
|
5
|
Jerez SA, Plaza N, Bravo V, Urrutia IM, Blondel CJ. Vibrio type III secretion system 2 is not restricted to the Vibrionaceae and encodes differentially distributed repertoires of effector proteins. Microb Genom 2023; 9:mgen000973. [PMID: 37018030 PMCID: PMC10210961 DOI: 10.1099/mgen.0.000973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/01/2023] [Indexed: 04/06/2023] Open
Abstract
Vibrio parahaemolyticus is the leading cause of seafood-borne gastroenteritis worldwide. A distinctive feature of the O3:K6 pandemic clone, and its derivatives, is the presence of a second, phylogenetically distinct, type III secretion system (T3SS2) encoded within the genomic island VPaI-7. The T3SS2 allows the delivery of effector proteins directly into the cytosol of infected eukaryotic cells to subvert key host-cell processes, critical for V. parahaemolyticus to colonize and cause disease. Furthermore, the T3SS2 also increases the environmental fitness of V. parahaemolyticus in its interaction with bacterivorous protists; hence, it has been proposed that it contributed to the global oceanic spread of the pandemic clone. Several reports have identified T3SS2-related genes in Vibrio and non-Vibrio species, suggesting that the T3SS2 gene cluster is not restricted to the Vibrionaceae and can mobilize through horizontal gene transfer events. In this work, we performed a large-scale genomic analysis to determine the phylogenetic distribution of the T3SS2 gene cluster and its repertoire of effector proteins. We identified putative T3SS2 gene clusters in 1130 bacterial genomes from 8 bacterial genera, 5 bacterial families and 47 bacterial species. A hierarchical clustering analysis allowed us to define six T3SS2 subgroups (I-VI) with different repertoires of effector proteins, redefining the concepts of T3SS2 core and accessory effector proteins. Finally, we identified a subset of the T3SS2 gene clusters (subgroup VI) that lacks most T3SS2 effector proteins described to date and provided a list of 10 novel effector candidates for this subgroup through bioinformatic analysis. Collectively, our findings indicate that the T3SS2 extends beyond the family Vibrionaceae and suggest that different effector protein repertories could have a differential impact on the pathogenic potential and environmental fitness of each bacterium that has acquired the Vibrio T3SS2 gene cluster.
Collapse
Affiliation(s)
- Sebastian A. Jerez
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Nicolas Plaza
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Veronica Bravo
- Programa Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago, Chile
| | - Italo M. Urrutia
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Carlos J. Blondel
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| |
Collapse
|
6
|
Kudryashova E, Ankita, Ulrichs H, Shekhar S, Kudryashov DS. Pointed-end processive elongation of actin filaments by Vibrio effectors VopF and VopL. SCIENCE ADVANCES 2022; 8:eadc9239. [PMID: 36399577 PMCID: PMC9674292 DOI: 10.1126/sciadv.adc9239] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/03/2022] [Indexed: 07/20/2023]
Abstract
According to the cellular actin dynamics paradigm, filaments grow at their barbed ends and depolymerize predominantly from their pointed ends to form polar structures and do productive work. We show that actin can elongate at the pointed end when assisted by Vibrio VopF/L toxins, which act as processive polymerases. In cells, processively moving VopF/L speckles are inhibited by factors blocking the pointed but not barbed ends. Multispectral single-molecule imaging confirmed that VopF molecules associate with the pointed end, actively promoting its elongation even in the presence of profilin. Consequently, VopF/L can break the actin cytoskeleton's polarity by compromising actin-based cellular processes. Therefore, actin filament design allows processive growth at both ends, which suggests unforeseen possibilities for cellular actin organization, particularly in specialized cells and compartments.
Collapse
Affiliation(s)
- Elena Kudryashova
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Ankita
- Department of Physics, Emory University, Atlanta, GA 30322, USA
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | - Heidi Ulrichs
- Department of Physics, Emory University, Atlanta, GA 30322, USA
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | - Shashank Shekhar
- Department of Physics, Emory University, Atlanta, GA 30322, USA
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | - Dmitri S. Kudryashov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
7
|
Alqassim SS. Functional Mimicry of Eukaryotic Actin Assembly by Pathogen Effector Proteins. Int J Mol Sci 2022; 23:ijms231911606. [PMID: 36232907 PMCID: PMC9569871 DOI: 10.3390/ijms231911606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
The actin cytoskeleton lies at the heart of many essential cellular processes. There are hundreds of proteins that cells use to control the size and shape of actin cytoskeletal networks. As such, various pathogens utilize different strategies to hijack the infected eukaryotic host actin dynamics for their benefit. These include the control of upstream signaling pathways that lead to actin assembly, control of eukaryotic actin assembly factors, encoding toxins that distort regular actin dynamics, or by encoding effectors that directly interact with and assemble actin filaments. The latter class of effectors is unique in that, quite often, they assemble actin in a straightforward manner using novel sequences, folds, and molecular mechanisms. The study of these mechanisms promises to provide major insights into the fundamental determinants of actin assembly, as well as a deeper understanding of host-pathogen interactions in general, and contribute to therapeutic development efforts targeting their respective pathogens. This review discusses mechanisms and highlights shared and unique features of actin assembly by pathogen effectors that directly bind and assemble actin, focusing on eukaryotic actin nucleator functional mimics Rickettsia Sca2 (formin mimic), Burkholderia BimA (Ena/VASP mimic), and Vibrio VopL (tandem WH2-motif mimic).
Collapse
Affiliation(s)
- Saif S Alqassim
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Building 14, Dubai Health Care City, Dubai P.O. Box 505055, United Arab Emirates
| |
Collapse
|
8
|
Lafrance AE, Chimalapati S, Garcia Rodriguez N, Kinch LN, Kaval KG, Orth K. Enzymatic Specificity of Conserved Rho GTPase Deamidases Promotes Invasion of Vibrio parahaemolyticus at the Expense of Infection. mBio 2022; 13:e0162922. [PMID: 35862776 PMCID: PMC9426531 DOI: 10.1128/mbio.01629-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/17/2022] [Indexed: 11/23/2022] Open
Abstract
Vibrio parahaemolyticus is among the leading causes of bacterial seafood-borne acute gastroenteritis. Like many intracellular pathogens, V. parahaemolyticus invades host cells during infection by deamidating host small Rho GTPases. The Rho GTPase deamidating activity of VopC, a type 3 secretion system (T3SS) translocated effector, drives V. parahaemolyticus invasion. The intracellular pathogen uropathogenic Escherichia coli (UPEC) invades host cells by secreting a VopC homolog, the secreted toxin cytotoxic necrotizing factor 1 (CNF1). Because of the homology between VopC and CNF1, we hypothesized that topical application of CNF1 during V. parahaemolyticus infection could supplement VopC activity. Here, we demonstrate that CNF1 improves the efficiency of V. parahaemolyticus invasion, a bottleneck in V. parahaemolyticus infection, across a range of doses. CNF1 increases V. parahaemolyticus invasion independent of both VopC and the T3SS altogether but leaves a disproportionate fraction of intracellular bacteria unable to escape the endosome and complete their infection cycle. This phenomenon holds true in the presence or absence of VopC but is particularly pronounced in the absence of a T3SS. The native VopC, by contrast, promotes a far less efficient invasion but permits the majority of internalized bacteria to escape the endosome and complete their infection cycle. These studies highlight the significance of enzymatic specificity during infection, as virulence factors (VopC and CNF1 in this instance) with similarities in function (bacterial uptake), catalytic activity (deamidation), and substrates (Rho GTPases) are not sufficiently interchangeable for mediating a successful invasion for neighboring bacterial pathogens. IMPORTANCE Many species of intracellular bacterial pathogens target host small Rho GTPases to initiate invasion, including the human pathogens Vibrio parahaemolyticus and uropathogenic Escherichia coli (UPEC). The type three secretion system (T3SS) effector VopC of V. parahaemolyticus promotes invasion through the deamidation of Rac1 and CDC42 in the host, whereas the secreted toxin cytotoxic necrotizing factor 1 (CNF1) drives UPEC's internalization through the deamidation of Rac1, CDC42, and RhoA. Despite these similarities in the catalytic activity of CNF1 and VopC, we observed that the two enzymes were not interchangeable. Although CNF1 increased V. parahaemolyticus endosomal invasion, most intracellular V. parahaemolyticus aborted their infection cycle and remained trapped in endosomes. Our findings illuminate how the precise biochemical fine-tuning of T3SS effectors is essential for efficacious pathogenesis. Moreover, they pave the way for future investigations into the biochemical mechanisms underpinning V. parahaemolyticus endosomal escape and, more broadly, the regulation of successful pathogenesis.
Collapse
Affiliation(s)
- Alexander E. Lafrance
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Suneeta Chimalapati
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Nalleli Garcia Rodriguez
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lisa N. Kinch
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Karan Gautam Kaval
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
9
|
Qiao X, Lu Y, Xu J, Deng N, Lai W, Wu Z, Lin H, Zhang Y, Lu D. Integrative analyses of mRNA and microRNA expression profiles reveal the innate immune mechanism for the resistance to Vibrio parahaemolyticus infection in Epinephelus coioides. Front Immunol 2022; 13:982973. [PMID: 36059501 PMCID: PMC9437975 DOI: 10.3389/fimmu.2022.982973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Vibrio parahaemolyticus, as one of the main pathogens of marine vibriosis, has brought huge losses to aquaculture. However, the interaction mechanism between V. parahaemolyticus and Epinephelus coioides remains unclear. Moreover, there is a lack of comprehensive multi-omics analysis of the immune response of grouper spleen to V. parahaemolyticus. Herein, E. coioides was artificially injected with V. parahaemolyticus, and it was found that the mortality was 16.7% in the early stage of infection, and accompanied by obvious histopathological lesions in the spleen. Furthermore, 1586 differentially expressed genes were screened by mRNA-seq. KEGG analysis showed that genes were significantly enriched in immune-related pathways, Acute-phase immune response, Apoptosis, Complement system and Cytokine-cytokine receptor interaction. As for miRNA-seq analysis, a total of 55 significantly different miRNAs were identified. Further functional annotation analysis indicated that the target genes of differentially expressed miRNAs were enriched in three important pathways (Phosphatidylinositol signaling system, Lysosome and Focal adhesions). Through mRNA-miRNA integrated analysis, 1427 significant miRNA–mRNA pairs were obtained and “p53 signaling pathway”, “Intestinal immune network for IgA production” were considered as two crucial pathways. Finally, miR-144-y, miR-497-x, novel-m0459-5p, miR-7133-y, miR-378-y, novel-m0440-5p and novel-m0084-3p may be as key miRNAs to regulate immune signaling pathways via the miRNA-mRNA interaction network. The above results suggest that the mRNA-miRNA integrated analysis not only sheds new light on the molecular mechanisms underlying the interaction between host and V. parahaemolyticus but also provides valuable and new insights into resistance to vibrio infection.
Collapse
Affiliation(s)
- Xifeng Qiao
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
- Guangzhou Laboratory, Guangzhou, China
| | - Yuyou Lu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Jiachang Xu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Niuniu Deng
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Wenjie Lai
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Ziyi Wu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Haoran Lin
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- College of Ocean, Haikou, China
| | - Yong Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Yong Zhang, ; Danqi Lu,
| | - Danqi Lu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Yong Zhang, ; Danqi Lu,
| |
Collapse
|
10
|
Paria P, Behera BK, Mohapatra PKD, Parida PK. Virulence factor genes and comparative pathogenicity study of tdh, trh and tlh positive Vibrio parahaemolyticus strains isolated from Whiteleg shrimp, Litopenaeus vannamei (Boone, 1931) in India. INFECTION GENETICS AND EVOLUTION 2021; 95:105083. [PMID: 34536578 DOI: 10.1016/j.meegid.2021.105083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/25/2021] [Accepted: 09/10/2021] [Indexed: 01/20/2023]
Abstract
Vibrio parahaemolyticus is a gram-negative halophilic bacterium responsible for gastrointestinal infection in human and vibriosis in aquatic animals. The thermostable direct hemolysin (tdh), tdh-related hemolysin (trh) and thermolabile hemolysin (tlh) positive strains of V. parahaemolyticus were identified from brackishwater aquaculture farms of West Bengal and Andhra Pradesh, India. Moreover, the presence of other virulent genes like vcrD1, vopD, vp1680 under type three secretion system 1 (T3SS1) and vcrD2 vopD2, vopB2, vopC2 under type three secretion system 2 (T3SS2) were detected in tdh positive strain of V. parahaemolyticus. Furthermore, the study revealed that the tdh and trh positive isolates were resistant to β-lactam antibiotics and were able to lyse more than 95% of human Red Blood Cells (RBCs). In addition, both the isolates showed high cytotoxicity in Human Embryonic Kidney (HEK) cell line compared to tlh positive strain. Additionally, intraperitoneal and oral administration of tdh and trh positive strain of V. parahaemolyticus in Indian Major Carp, Labeo rohita caused 100% mortality at the level of 2.0 × 108 CFU ml-1 and 1.6 × 108 CFU ml-1, respectively. In contrast, only 10% mortality was observed in the case of tlh positive strain at the level of 2.5× 108 CFU ml-1. The histopathological changes like infiltration of blood cells and degenerated hepatic tissue in the liver of L. rohita were observed after the experimental challenge. The changes like degeneration of glomeruli, necrosis of renal tubules and Bowman's capsule were observed in the kidney section. Ragged, irregular shaped villi and necrosis of the villus were observed in the intestinal lumen. Overall, the study demonstrates that isolated V. parahaemolyticus is a potent aquatic microbial pathogen. Additionally, as V. parahaemolyticus is also a human pathogen and might pose a threat to the human population, proper management strategies are required to prevent the possible occurrence of disease.
Collapse
Affiliation(s)
- Prasenjit Paria
- Biotechnology Laboratory, Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, West Bengal, India; Department of Microbiology, Vidyasagar University, Midnapure 721102, West Bengal, India
| | - Bijay Kumar Behera
- Biotechnology Laboratory, Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, West Bengal, India.
| | | | - Pranaya Kumar Parida
- Biotechnology Laboratory, Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, West Bengal, India
| |
Collapse
|
11
|
Hotinger JA, Pendergrass HA, May AE. Molecular Targets and Strategies for Inhibition of the Bacterial Type III Secretion System (T3SS); Inhibitors Directly Binding to T3SS Components. Biomolecules 2021; 11:biom11020316. [PMID: 33669653 PMCID: PMC7922566 DOI: 10.3390/biom11020316] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 01/01/2023] Open
Abstract
The type III secretion system (T3SS) is a virulence apparatus used by many Gram-negative pathogenic bacteria to cause infections. Pathogens utilizing a T3SS are responsible for millions of infections yearly. Since many T3SS knockout strains are incapable of causing systemic infection, the T3SS has emerged as an attractive anti-virulence target for therapeutic design. The T3SS is a multiprotein molecular syringe that enables pathogens to inject effector proteins into host cells. These effectors modify host cell mechanisms in a variety of ways beneficial to the pathogen. Due to the T3SS’s complex nature, there are numerous ways in which it can be targeted. This review will be focused on the direct targeting of components of the T3SS, including the needle, translocon, basal body, sorting platform, and effector proteins. Inhibitors will be considered a direct inhibitor if they have a binding partner that is a T3SS component, regardless of the inhibitory effect being structural or functional.
Collapse
|
12
|
Chimalapati S, de Souza Santos M, Lafrance AE, Ray A, Lee WR, Rivera-Cancel G, Vale G, Pawlowski K, Mitsche MA, McDonald JG, Liou J, Orth K. Vibrio deploys type 2 secreted lipase to esterify cholesterol with host fatty acids and mediate cell egress. eLife 2020; 9:58057. [PMID: 32808593 PMCID: PMC7434443 DOI: 10.7554/elife.58057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 07/28/2020] [Indexed: 12/23/2022] Open
Abstract
Pathogens find diverse niches for survival including inside a host cell where replication occurs in a relatively protective environment. Vibrio parahaemolyticus is a facultative intracellular pathogen that uses its type 3 secretion system 2 (T3SS2) to invade and replicate inside host cells. Analysis of the T3SS2 pathogenicity island encoding the T3SS2 appeared to lack a mechanism for egress of this bacterium from the invaded host cell. Using a combination of molecular tools, we found that VPA0226, a constitutively secreted lipase, is required for escape of V. parahaemolyticus from the host cells. This lipase must be delivered into the host cytoplasm where it preferentially uses fatty acids associated with innate immune response to esterify cholesterol, weakening the plasma membrane and allowing egress of the bacteria. This study reveals the resourcefulness of microbes and the interplay between virulence systems and host cell resources to evolve an ingenious scheme for survival and escape.
Collapse
Affiliation(s)
- Suneeta Chimalapati
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Marcela de Souza Santos
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Alexander E Lafrance
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Ann Ray
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Wan-Ru Lee
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Giomar Rivera-Cancel
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Gonçalo Vale
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, United States
| | - Krzysztof Pawlowski
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States.,Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Matthew A Mitsche
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Jeffrey G McDonald
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Jen Liou
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
13
|
Sámano-Sánchez H, Gibson TJ. Mimicry of Short Linear Motifs by Bacterial Pathogens: A Drugging Opportunity. Trends Biochem Sci 2020; 45:526-544. [PMID: 32413327 DOI: 10.1016/j.tibs.2020.03.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/25/2020] [Accepted: 03/03/2020] [Indexed: 12/11/2022]
Abstract
Bacterial pathogens have developed complex strategies to successfully survive and proliferate within their hosts. Throughout the infection cycle, direct interaction with host cells occurs. Many bacteria have been found to secrete proteins, such as effectors and toxins, directly into the host cell with the potential to interfere with cell regulatory processes, either enzymatically or through protein-protein interactions (PPIs). Short linear motifs (SLiMs) are abundant peptide modules in cell signaling proteins. Here, we cover the reported examples of eukaryotic-like SLiM mimicry being used by pathogenic bacteria to hijack host cell machinery and discuss how drugs targeting SLiM-regulated cell signaling networks are being evaluated for interference with bacterial infections. This emerging anti-infective opportunity may become an essential contributor to antibiotic replacement strategies.
Collapse
Affiliation(s)
- Hugo Sámano-Sánchez
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany; Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Faculty of Biosciences, 69120 Heidelberg, Germany
| | - Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
14
|
Meparambu Prabhakaran D, Ramamurthy T, Thomas S. Genetic and virulence characterisation of Vibrio parahaemolyticus isolated from Indian coast. BMC Microbiol 2020; 20:62. [PMID: 32293257 PMCID: PMC7092547 DOI: 10.1186/s12866-020-01746-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 03/05/2020] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND V. parahaemolyticus is autochthonous to the marine environment and causes seafood-borne gastroenteritis in humans. Generally, V. parahaemolyticus recovered from the environment and/or seafood is thought to be non-pathogenic and the relationship between environmental isolates and acute diarrhoeal disease is poorly understood. In this study, we explored the virulence potential of environmental V. parahaemolyticus isolated from water, plankton and assorted seafood samples collected from the Indian coast. RESULTS Twenty-two V. parahaemolyticus isolates from seafood harboured virulence associated genes encoding the thermostable-direct haemolysin (TDH), TDH-related haemolysin (TRH), and Type 3 secretion systems (T3SS) and 95.5% of the toxigenic isolates had pandemic strain attributes (toxRS/new+). Nine serovars, with pandemic strain traits were newly identified and an O4:K36 tdh-trh+V. parahaemolyticus bearing pandemic marker gene was recognised for the first time. Results obtained by reverse transcription PCR showed trh, T3SS1 and T3SS2β to be functional in the seafood isolates. Moreover, the environmental strains were cytotoxic and could invade Caco-2 cells upon infection as well as induce changes to the tight junction protein, ZO-1 and the actin cytoskeleton. CONCLUSION Our study provides evidence that environmental isolates of V. parahaemolyticus are potentially invasive and capable of eliciting pathogenic characteristics typical of clinical strains and present a potential health risk. We also demonstrate that virulence of this pathogen is highly complex and hence draws attention for the need to investigate more reliable virulence markers in order to distinguish the environmental and clinical isolates, which will be crucial for the pathogenomics and control of this pathogen.
Collapse
Affiliation(s)
- Divya Meparambu Prabhakaran
- Cholera and Biofilm Research Lab, Department of Pathogen Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695 014, India
| | - Thandavarayan Ramamurthy
- Centre for Human Microbial Ecology, Translational Health Science and Technology Institute, Faridabad, India
| | - Sabu Thomas
- Cholera and Biofilm Research Lab, Department of Pathogen Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695 014, India.
| |
Collapse
|
15
|
Matsuda S, Hiyoshi H, Tandhavanant S, Kodama T. Advances on
Vibrio parahaemolyticus
research in the postgenomic era. Microbiol Immunol 2020; 64:167-181. [DOI: 10.1111/1348-0421.12767] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/08/2019] [Indexed: 01/13/2023]
Affiliation(s)
- Shigeaki Matsuda
- Department of Bacterial Infections, Research Institute for Microbial DiseasesOsaka University Suita Osaka Japan
| | - Hirotaka Hiyoshi
- Department of Bacterial Infections, Research Institute for Microbial DiseasesOsaka University Suita Osaka Japan
- Department of Medical Microbiology and Immunology, School of MedicineUniversity of California Davis California, USA
| | - Sarunporn Tandhavanant
- Department of Bacterial Infections, Research Institute for Microbial DiseasesOsaka University Suita Osaka Japan
- Department of Microbiology and Immunology, Faculty of Tropical MedicineMahidol University Bangkok Thailand
| | - Toshio Kodama
- Department of Bacterial Infections, Research Institute for Microbial DiseasesOsaka University Suita Osaka Japan
| |
Collapse
|
16
|
Bradley AO, Vizcarra CL, Bailey HM, Quinlan ME. Spire stimulates nucleation by Cappuccino and binds both ends of actin filaments. Mol Biol Cell 2019; 31:273-286. [PMID: 31877067 PMCID: PMC7183766 DOI: 10.1091/mbc.e19-09-0550] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The actin nucleators Spire and Cappuccino synergize to promote actin assembly, but the mechanism of their synergy is controversial. Together these proteins promote the formation of actin meshes, which are conserved structures that regulate the establishment of oocyte polarity. Direct interaction between Spire and Cappuccino is required for oogenesis and for in vitro synergistic actin assembly. This synergy is proposed to be driven by elongation and the formation of a ternary complex at filament barbed ends, or by nucleation and interaction at filament pointed ends. To mimic the geometry of Spire and Cappuccino in vivo, we immobilized Spire on beads and added Cappuccino and actin. Barbed ends, protected by Cappuccino, grow away from the beads while pointed ends are retained, as expected for nucleation-driven synergy. We found that Spire is sufficient to bind barbed ends and retain pointed ends of actin filaments near beads and we identified Spire’s barbed-end binding domain. Loss of barbed-end binding increases nucleation by Spire and synergy with Cappuccino in bulk pyrene assays and on beads. Importantly, genetic rescue by the loss-of-function mutant indicates that barbed-end binding is not necessary for oogenesis. Thus, increased nucleation is a critical element of synergy both in vitro and in vivo.
Collapse
Affiliation(s)
- Alexander O Bradley
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Christina L Vizcarra
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Hannah M Bailey
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Margot E Quinlan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
17
|
De Souza Santos M, Orth K. The Role of the Type III Secretion System in the Intracellular Lifestyle of Enteric Pathogens. Microbiol Spectr 2019; 7:10.1128/microbiolspec.bai-0008-2019. [PMID: 31152523 PMCID: PMC11026088 DOI: 10.1128/microbiolspec.bai-0008-2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Indexed: 11/20/2022] Open
Abstract
Several pathogens have evolved to infect host cells from within, which requires subversion of many host intracellular processes. In the case of Gram-negative pathogenic bacteria, adaptation to an intracellular life cycle relies largely on the activity of type III secretion systems (T3SSs), an apparatus used to deliver effector proteins into the host cell, from where these effectors regulate important cellular functions such as vesicular trafficking, cytoskeleton reorganization, and the innate immune response. Each bacterium is equipped with a unique suite of these T3SS effectors, which aid in the development of an individual intracellular lifestyle for their respective pathogens. Some bacteria adapt to reside and propagate within a customized vacuole, while others establish a replicative niche in the host cytosol. In this article, we review the mechanisms by which T3SS effectors contribute to these different lifestyles. To illustrate the formation of a vacuolar and a cytosolic lifestyle, we discuss the intracellular habitats of the enteric pathogens Salmonella enterica serovar Typhimurium and Shigella flexneri, respectively. These represent well-characterized systems that function as informative models to contribute to our understanding of T3SS-dependent subversion of intracellular processes. Additionally, we present Vibrio parahaemolyticus, another enteric Gram-negative pathogen, as an emerging model for future studies of the cytosolic lifestyle.
Collapse
Affiliation(s)
- Marcela De Souza Santos
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Biochemistry and
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
18
|
Li L, Meng H, Gu D, Li Y, Jia M. Molecular mechanisms of Vibrio parahaemolyticus pathogenesis. Microbiol Res 2019; 222:43-51. [PMID: 30928029 DOI: 10.1016/j.micres.2019.03.003] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/27/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022]
Abstract
Vibrio parahaemolyticus is a Gram-negative halophilic bacterium that is mainly distributed in the seafood such as fish, shrimps and shellfish throughout the world. V. parahaemolyticus can cause diseases in marine aquaculture, leading to huge economic losses to the aquaculture industry. More importantly, it is also the leading cause of seafood-borne diarrheal disease in humans worldwide. With the development of animal model, next-generation sequencing as well as biochemical and cell biological technologies, deeper understanding of the virulence factors and pathogenic mechanisms of V. parahaemolyticus has been gained. As a globally transmitted pathogen, the pathogenicity of V. parahaemolyticus is closely related to a variety of virulence factors. This article comprehensively reviewed the molecular mechanisms of eight types of virulence factors: hemolysin, type III secretion system, type VI secretion system, adhesion factor, iron uptake system, lipopolysaccharide, protease and outer membrane proteins. This review comprehensively summarized our current understanding of the virulence factors in V. parahaemolyticus, which are potentially new targets for the development of therapeutic and preventive strategies.
Collapse
Affiliation(s)
- Lingzhi Li
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety/Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Hongmei Meng
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety/Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Dan Gu
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety/Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| | - Yang Li
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety/Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Mengdie Jia
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety/Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
19
|
Alqassim SS, Lee IG, Dominguez R. Rickettsia Sca2 Recruits Two Actin Subunits for Nucleation but Lacks WH2 Domains. Biophys J 2019; 116:540-550. [PMID: 30638962 DOI: 10.1016/j.bpj.2018.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/07/2018] [Accepted: 12/12/2018] [Indexed: 11/16/2022] Open
Abstract
The Rickettsia ∼1800-amino-acid autotransporter protein surface cell antigen 2 (Sca2) promotes actin polymerization on the surface of the bacterium to drive its movement using an actin comet-tail mechanism. Sca2 mimics eukaryotic formins in that it promotes both actin filament nucleation and elongation and competes with capping protein to generate filaments that are long and unbranched. However, despite these functional similarities, Sca2 is structurally unrelated to eukaryotic formins and achieves these functions through an entirely different mechanism. Thus, while formins are dimeric, Sca2 functions as a monomer. However, Sca2 displays intramolecular interactions and functional cooperativity between its N- and C-terminal domains that are crucial for actin nucleation and elongation. Here, we map the interaction of N- and C- terminal fragments of Sca2 and their contribution to actin binding and nucleation. We find that both the N- and C-terminal regions of Sca2 interact with actin monomers but only weakly, whereas the full-length protein binds two actin monomers with high affinity. Moreover, deletions at both ends of the N- and C-terminal regions disrupt their ability to interact with each other, suggesting that they form a contiguous ring-like structure that wraps around two actin subunits, analogous to the formin homology-2 domain. The discovery of Sca2 as an actin nucleator followed the identification of what appeared to be a repeat of three Wiskott-Aldrich syndrome homology 2 (WH2) domains in the middle of the molecule, consistent with the presence of WH2 domains in most actin nucleators. However, we show here that contrary to previous assumptions, Sca2 does not contain WH2 domains. Instead, our analysis indicates that the region containing the putative WH2 domains is folded as a globular domain that cooperates with other parts of the Sca2 molecule for actin binding and nucleation.
Collapse
Affiliation(s)
- Saif S Alqassim
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - In-Gyun Lee
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Roberto Dominguez
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
20
|
Miller KA, Tomberlin KF, Dziejman M. Vibrio variations on a type three theme. Curr Opin Microbiol 2019; 47:66-73. [PMID: 30711745 DOI: 10.1016/j.mib.2018.12.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/06/2018] [Accepted: 12/16/2018] [Indexed: 11/18/2022]
Abstract
Mounting evidence suggests that Type 3 Secretion Systems (T3SS) are widespread among Vibrio species, and are present in strains isolated from diverse sources such as human clinical infections, environmental reservoirs, and diseased marine life. Experiments evaluating Vibrio parahaemolyticus and Vibrio cholerae T3SS mediated virulence suggest that Vibrio T3SS pathogenicity islands have a tripartite composition. A conserved 'core' region encodes functions essential for colonization and disease in vivo, including modulation of innate immune signaling pathways and actin dynamics, whereas regions flanking core sequences are variable among strains and encode effector proteins performing a diverse array of activities. Characterizing novel functions associated with Vibrio-specific effectors is, therefore, essential for understanding how vibrios employ T3SS mechanisms to cause disease in a broad range of hosts and how T3SS island composition potentially defines species-specific disease.
Collapse
Affiliation(s)
- Kelly A Miller
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Katharine F Tomberlin
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Michelle Dziejman
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States.
| |
Collapse
|
21
|
Zhang Y, Hu L, Qiu Y, Osei-Adjei G, Tang H, Zhang Y, Zhang R, Sheng X, Xu S, Yang W, Yang H, Yin Z, Yang R, Huang X, Zhou D. QsvR integrates into quorum sensing circuit to control Vibrio parahaemolyticus virulence. Environ Microbiol 2019; 21:1054-1067. [PMID: 30623553 DOI: 10.1111/1462-2920.14524] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/22/2018] [Accepted: 01/05/2019] [Indexed: 11/29/2022]
Abstract
Vibrio parahaemolyticus, the leading cause of seafood-associated gastroenteritis worldwide, requires the two type-III secretion systems (T3SS1 and T3SS2) and a thermostable direct hemolysin (encoded by tdh1 and tdh2) for full virulence. The tdh genes and the T3SS2 gene cluster constitute an 80 kb pathogenicity island known as Vp-PAI located on the chromosome II. Expression of T3SS1 and Vp-PAI is regulated in a quorum sensing (QS)-dependent manner but its detailed mechanisms remain unknown. Herein, we show that three factors (QS regulators AphA and OpaR and an AraC-type transcriptional regulator QsvR) form a complex regulatory network to control the expression of T3SS1 and Vp-PAI genes. At low cell density (LCD), whereas Vp-PAI expression is repressed, T3SS1 genes are induced by AphA, which directly binds (an operator region of) the exsBAD-vscBCD operon. At high cell density (HCD), the bacterium turns off T3SS1 expression by replacing AphA with OpaR, triggering the induction of Vp-PAI. Furthermore, QsvR binds to the regulatory regions of all the tested T3SS1 and Vp-PAI genes to activate their transcription at HCD. Taken together, our data highlight how multiple QS regulators contribute to the pathogenicity of V. parahaemolyticus by precisely controlling the expression of major virulence determinants during different stages of growth.
Collapse
Affiliation(s)
- Yiquan Zhang
- Department of Biochemistry, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Linghui Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People's Republic of China
| | - Yue Qiu
- Department of Biochemistry, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - George Osei-Adjei
- Department of Biochemistry, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Hao Tang
- Department of Biochemistry, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Ying Zhang
- Department of Biochemistry, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Rui Zhang
- Department of Biochemistry, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Xiumei Sheng
- Department of Biochemistry, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Shungao Xu
- Department of Biochemistry, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Wenhui Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People's Republic of China
| | - Huiying Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People's Republic of China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People's Republic of China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People's Republic of China
| | - Xinxiang Huang
- Department of Biochemistry, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People's Republic of China
| |
Collapse
|
22
|
Vibrio parahaemolyticus Senses Intracellular K + To Translocate Type III Secretion System 2 Effectors Effectively. mBio 2018; 9:mBio.01366-18. [PMID: 30042203 PMCID: PMC6058294 DOI: 10.1128/mbio.01366-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many Gram-negative bacterial symbionts and pathogens employ a type III secretion system (T3SS) to live in contact with eukaryotic cells. Because T3SSs inject bacterial proteins (effectors) directly into host cells, the switching of secretory substrates between translocators and effectors in response to host cell attachment is a crucial step for the effective delivery of effectors. Here, we show that the protein secretion switch of Vibrio parahaemolyticus T3SS2, which is a main contributor to the enteropathogenicity of a food poisoning bacterium, is regulated by two gatekeeper proteins, VgpA and VgpB. In the absence of these gatekeepers, effector secretion was activated, but translocator secretion was abolished, causing the loss of virulence. We found that the K+ concentration, which is high inside the host cell but low outside, is a key factor for VgpA- and VgpB-mediated secretion switching. Exposure of wild-type bacteria to K+ ions provoked both gatekeeper and effector secretions but reduced the level of secretion of translocators. The secretion protein profile of wild-type bacteria cultured with 0.1 M KCl was similar to that of gatekeeper mutants. Furthermore, depletion of K+ ions in host cells diminished the efficiency of T3SS2 effector translocation. Thus, T3SS2 senses the high intracellular concentration of K+ of the host cell so that T3SS2 effectors can be effectively injected. The pathogenesis of many Gram-negative bacterial pathogens arises from a type III secretion system (T3SS), whereby bacterial proteins (effectors) are directly injected into host cells. The injected effectors then modify host cell functions. For effective delivery of effector proteins, bacteria need to both recognize host cell attachment and switch the type of secreted proteins. Here, we identified gatekeeper proteins that play important roles in a T3SS2 secretion switch of Vibrio parahaemolyticus, a causative agent of food-borne gastroenteritis. We also found that K+, which is present in high concentrations inside the host cell but in low concentrations outside, is a key factor for the secretion switch. Thus, V. parahaemolyticus senses the high intracellular K+ concentration, triggering the effective injection of effectors.
Collapse
|
23
|
Stradal TEB, Schelhaas M. Actin dynamics in host-pathogen interaction. FEBS Lett 2018; 592:3658-3669. [PMID: 29935019 PMCID: PMC6282728 DOI: 10.1002/1873-3468.13173] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 02/06/2023]
Abstract
The actin cytoskeleton and Rho GTPase signaling to actin assembly are prime targets of bacterial and viral pathogens, simply because actin is involved in all motile and membrane remodeling processes, such as phagocytosis, macropinocytosis, endocytosis, exocytosis, vesicular trafficking and membrane fusion events, motility, and last but not least, autophagy. This article aims at providing an overview of the most prominent pathogen‐induced or ‐hijacked actin structures, and an outlook on how future research might uncover additional, equally sophisticated interactions.
Collapse
Affiliation(s)
- Theresia E B Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Mario Schelhaas
- Institute of Cellular Virology, ZMBE, University of Münster, Germany
| |
Collapse
|
24
|
Rottner K, Faix J, Bogdan S, Linder S, Kerkhoff E. Actin assembly mechanisms at a glance. J Cell Sci 2018; 130:3427-3435. [PMID: 29032357 DOI: 10.1242/jcs.206433] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The actin cytoskeleton and associated motor proteins provide the driving forces for establishing the astonishing morphological diversity and dynamics of mammalian cells. Aside from functions in protruding and contracting cell membranes for motility, differentiation or cell division, the actin cytoskeleton provides forces to shape and move intracellular membranes of organelles and vesicles. To establish the many different actin assembly functions required in time and space, actin nucleators are targeted to specific subcellular compartments, thereby restricting the generation of specific actin filament structures to those sites. Recent research has revealed that targeting and activation of actin filament nucleators, elongators and myosin motors are tightly coordinated by conserved protein complexes to orchestrate force generation. In this Cell Science at a Glance article and the accompanying poster, we summarize and discuss the current knowledge on the corresponding protein complexes and their modes of action in actin nucleation, elongation and force generation.
Collapse
Affiliation(s)
- Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Jan Faix
- Institute for Biophysical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Sven Bogdan
- Institute for Physiology and Pathophysiology, Department of Molecular Cell Physiology, Philipps-University of Marburg, 35032 Marburg, Germany
| | - Stefan Linder
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, 20246 Hamburg, Germany
| | - Eugen Kerkhoff
- Department of Neurology, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
25
|
Wagley S, Borne R, Harrison J, Baker-Austin C, Ottaviani D, Leoni F, Vuddhakul V, Titball RW. Galleria mellonella as an infection model to investigate virulence of Vibrio parahaemolyticus. Virulence 2018; 9:197-207. [PMID: 28960137 PMCID: PMC5801645 DOI: 10.1080/21505594.2017.1384895] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/14/2017] [Accepted: 09/21/2017] [Indexed: 11/24/2022] Open
Abstract
Non-toxigenic V. parahaemolyticus isolates (tdh-/trh-/T3SS2-) have recently been isolated from patients with gastroenteritis. In this study we report that the larvae of the wax moth (Galleria mellonella) are susceptible to infection by toxigenic or non-toxigenic clinical isolates of V. parahaemolyticus. In comparison larvae inoculated with environmental isolates of V. parahaemolyticus did not succumb to disease. Whole genome sequencing of clinical non-toxigenic isolates revealed the presence of a gene encoding a nudix hydrolase, identified as mutT. A V. parahaemolyticus mutT mutant was unable to kill G. mellonella at 24 h post inoculation, indicating a role of this gene in virulence. Our findings show that G. mellonella is a valuable model for investigating screening of possible virulence genes of V. parahaemolyticus and can provide new insights into mechanisms of virulence of atypical non-toxigenic V. parahaemolyticus. These findings will allow improved genetic tests for the identification of pathogenic V. parahaemolyticus to be developed and will have a significant impact for the scientific community.
Collapse
Affiliation(s)
- Sariqa Wagley
- Biosciences College of life and Environmental Sciences, University of Exeter, Exeter, Devon, EX4 S4QD, UK
| | | | - Jamie Harrison
- Biosciences College of life and Environmental Sciences, University of Exeter, Exeter, Devon, EX4 S4QD, UK
| | - Craig Baker-Austin
- Centre for Environment, Fisheries, and Aquaculture Science, Weymouth Laboratory, Weymouth, Dorset DT4 8UB UK
| | - Donatella Ottaviani
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Laboratorio Nazionale di Riferimento Contaminazioni Batteriologiche dei Molluschi Bivalvi, Ancona, Italy
| | - Francesca Leoni
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Laboratorio Nazionale di Riferimento Contaminazioni Batteriologiche dei Molluschi Bivalvi, Ancona, Italy
| | - Varaporn Vuddhakul
- Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Thailand
| | - Richard W. Titball
- Biosciences College of life and Environmental Sciences, University of Exeter, Exeter, Devon, EX4 S4QD, UK
| |
Collapse
|
26
|
Osei-Adjei G, Gao H, Zhang Y, Zhang L, Yang W, Yang H, Yin Z, Huang X, Zhang Y, Zhou D. Regulatory actions of ToxR and CalR on their own genes and type III secretion system 1 in Vibrio parahaemolyticus. Oncotarget 2017; 8:65809-65822. [PMID: 29029474 PMCID: PMC5630374 DOI: 10.18632/oncotarget.19498] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/20/2017] [Indexed: 12/11/2022] Open
Abstract
Vibrio parahaemolyticus is the leading cause of seafood-associated gastroenteritis. Type III secretion system 1 (T3SS1) is one of the virulence determinants of this bacteria. T3SS1 expression is regulated by ToxR and CalR. ToxR represses the transcription of T3SS1 genes via activation of CalR, which acts as a transcriptional repressor of T3SS1 genes. However, the transcriptional regulation mechanisms have not been elucidated. As showing in the present work, ToxR binds to the promoter DNA region of calR to activate its transcription. CalR occupies the promoter-proximal regions of each detected target operons in T3SS1 loci to repress their transcription, and thereby inhibiting T3SS1-dependent cytotoxicity. Moreover, a feedback CalR inhibits toxR and its own gene in a direct manner. Collectively, this work reported an interesting gene regulatory network involving the reciprocal regulation of ToxR and CalR, and their regulation on T3SS1 genes transcription in V. parahaemolyticus.
Collapse
Affiliation(s)
| | - He Gao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Ying Zhang
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Lingyu Zhang
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Wenhui Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Huiying Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Xinxiang Huang
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yiquan Zhang
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| |
Collapse
|
27
|
de Souza Santos M, Salomon D, Orth K. T3SS effector VopL inhibits the host ROS response, promoting the intracellular survival of Vibrio parahaemolyticus. PLoS Pathog 2017. [PMID: 28640881 PMCID: PMC5481031 DOI: 10.1371/journal.ppat.1006438] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The production of antimicrobial reactive oxygen species by the nicotinamide dinucleotide phosphate (NADPH) oxidase complex is an important mechanism for control of invading pathogens. Herein, we show that the gastrointestinal pathogen Vibrio parahaemolyticus counteracts reactive oxygen species (ROS) production using the Type III Secretion System 2 (T3SS2) effector VopL. In the absence of VopL, intracellular V. parahaemolyticus undergoes ROS-dependent filamentation, with concurrent limited growth. During infection, VopL assembles actin into non-functional filaments resulting in a dysfunctional actin cytoskeleton that can no longer mediate the assembly of the NADPH oxidase at the cell membrane, thereby limiting ROS production. This is the first example of how a T3SS2 effector contributes to the intracellular survival of V. parahaemolyticus, supporting the establishment of a protective intracellular replicative niche.
Collapse
Affiliation(s)
- Marcela de Souza Santos
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Dor Salomon
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
28
|
Functional Actin Networks under Construction: The Cooperative Action of Actin Nucleation and Elongation Factors. Trends Biochem Sci 2017; 42:414-430. [DOI: 10.1016/j.tibs.2017.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 03/04/2017] [Accepted: 03/07/2017] [Indexed: 12/31/2022]
|
29
|
Burke TA, Harker AJ, Dominguez R, Kovar DR. The bacterial virulence factors VopL and VopF nucleate actin from the pointed end. J Cell Biol 2017; 216:1267-1276. [PMID: 28363971 PMCID: PMC5412564 DOI: 10.1083/jcb.201608104] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 01/31/2017] [Accepted: 02/16/2017] [Indexed: 11/22/2022] Open
Abstract
How the bacterial virulence factors VopL/F from Vibrio catalyze actin nucleation is unclear. Using multicolor TIRF microscopy imaging, Burke et al. find that VopL and VopF stimulate actin assembly via identical pointed-end nucleation mechanisms. VopL and VopF (VopL/F) are tandem WH2-domain actin assembly factors used by infectious Vibrio species to induce actin assembly in host cells. There is disagreement about the filament assembly mechanism of VopL/F, including whether they associate with the filament barbed or pointed end. Here, we used multicolor total internal reflection fluorescence microscopy to directly observe actin assembly with fluorescently labeled VopL/F. In actin monomer assembly reactions, VopL/F exclusively nucleate actin filament assemblies, remaining only briefly associated with the pointed end. VopL/F do not associate with the ends of preassembled filaments. In assembly reactions with saturating profilin, ∼85% of VopL/F molecules also promote nucleation from the pointed end, whereas a smaller fraction (<15%) associate for ∼25 s with the barbed end of preassembled filaments, inhibiting their elongation. We conclude that VopL/F function primarily as actin nucleation factors that remain briefly (∼100 s) associated with the pointed end.
Collapse
Affiliation(s)
- Thomas A Burke
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
| | - Alyssa J Harker
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
| | - Roberto Dominguez
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - David R Kovar
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637 .,Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
30
|
Hiyoshi H. Actin cytoskeleton-modulating T3SS2 effectors and their contribution to the Vibrio parahaemolyticus-induced diarrhea. Nihon Saikingaku Zasshi 2016; 71:199-208. [PMID: 27980291 DOI: 10.3412/jsb.71.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To understand how bacterial pathogens cause diseases is the most important step in order to prevent the infection and develop an effective treatment. However, the past proceeding studies make us aware of quite-complicated interactions between the host and pathogenic bacteria. Vibrio parahaemolyticus, a food-born pathogen that is a subject of our study, causes inflammatory diarrhea in human upon ingestion of contaminated raw or undercooked seafood. Many virulence factors has been proposed since its discovery in Osaka around 70 years ago, while our research group has revealed that one of these virulence factors, type 3 secretion system 2 (T3SS2), is necessary for diarrhea induced by this bacterium. In addition, we recently found two novel T3SS2 effectors (VopO and VopV) that manipulate the actin cytoskeleton in infected host cells. In this article, I would like to show our findings with regard to biological activities of the effectors and their contributions to the T3SS2-induced enterotoxicity.
Collapse
Affiliation(s)
- Hirotaka Hiyoshi
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis
| |
Collapse
|
31
|
Choe JE, Welch MD. Actin-based motility of bacterial pathogens: mechanistic diversity and its impact on virulence. Pathog Dis 2016; 74:ftw099. [PMID: 27655913 DOI: 10.1093/femspd/ftw099] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A diverse spectrum of intracellular bacterial pathogens that inhabit the cytosol have evolved the ability to polymerize actin on their surface to power intracellular actin-based motility (ABM). These include species of Listeria, Burkholderia and Rickettsia, as well as Shigella and Mycobacteria Here, we provide an overview of the roles of bacterial ABM in survival and virulence. Moreover, we survey the molecular mechanisms of actin polymerization in host cells and describe how bacterial pathogens mimic or harness the full diversity of these mechanisms for ABM. Finally, we present ABM through a new lens by comparing motility mechanisms between related species of Listeria, Burkholderia, and Rickettsia Through these comparisons, we hope to illuminate how exploitation of different actin polymerization mechanisms influences ABM as well as pathogenicity and virulence in humans and other animals.
Collapse
Affiliation(s)
- Julie E Choe
- Department of Molecular & Cell Biology, University of California, Berkeley CA 94720 USA
| | - Matthew D Welch
- Department of Molecular & Cell Biology, University of California, Berkeley CA 94720 USA
| |
Collapse
|
32
|
Identification and Characterization of a Candidate Wolbachia pipientis Type IV Effector That Interacts with the Actin Cytoskeleton. mBio 2016; 7:mBio.00622-16. [PMID: 27381293 PMCID: PMC4958246 DOI: 10.1128/mbio.00622-16] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Many bacteria live as intracellular symbionts, causing persistent infections within insects. One extraordinarily common infection is that of Wolbachia pipientis, which infects 40% of insect species and induces reproductive effects. The bacteria are passed from generation to generation both vertically (through the oocyte) and horizontally (by environmental transmission). Maintenance of the infection within Drosophila melanogaster is sensitive to the regulation of actin, as Wolbachia inefficiently colonizes strains hemizygous for the profilin or villin genes. Therefore, we hypothesized that Wolbachia must depend on the host actin cytoskeleton. In this study, we identify and characterize a Wolbachia protein (WD0830) that is predicted to be secreted by the bacterial parasite. Expression of WD0830 in a model eukaryote (the yeast Saccharomyces cerevisiae) induces a growth defect associated with the appearance of aberrant, filamentous structures which colocalize with rhodamine-phalloidin-stained actin. Purified WD0830 bundles actin in vitro and cosediments with actin filaments, suggesting a direct interaction of the two proteins. We characterized the expression of WD0830 throughout Drosophila development and found it to be upregulated in third-instar larvae, peaking in early pupation, during the critical formation of adult tissues, including the reproductive system. In transgenic flies, heterologously expressed WD0830 localizes to the developing oocyte. Additionally, overexpression of WD0830 results in increased Wolbachia titers in whole flies, in stage 9 and 10 oocytes, and in embryos, compared to controls, suggesting that the protein may facilitate Wolbachia's replication or transmission. Therefore, this candidate secreted effector may play a role in Wolbachia's infection of and persistence within host niches. IMPORTANCE The obligate intracellular Wolbachia pipientis is a ubiquitous alphaproteobacterial symbiont of arthropods and nematodes and is related to the rickettsial pathogens Ehrlichia spp. and Anaplasma spp. Studies of Wolbachia cell biology suggest that this bacterium relies on host actin for efficient proliferation and transmission between generations. Here, we identified and characterized a Wolbachia protein that localizes to and manipulates the eukaryotic actin cytoskeleton, is expressed by Wolbachia during host development, and alters Wolbachia titers and localization in transgenic fruit flies. We hypothesize that WD0830 may be utilized by the bacterium to facilitate replication in or invasion of different niches during host development.
Collapse
|
33
|
Renault L. Intrinsic, Functional, and Structural Properties of β-Thymosins and β-Thymosin/WH2 Domains in the Regulation and Coordination of Actin Self-Assembly Dynamics and Cytoskeleton Remodeling. VITAMINS AND HORMONES 2016; 102:25-54. [PMID: 27450729 DOI: 10.1016/bs.vh.2016.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
β-Thymosins are a family of heat-stable multifunctional polypeptides that are expressed as small proteins of about 5kDa (~45 amino acids) almost exclusively in multicellular animals. They were first isolated from the thymus. As full-length or truncated polypeptides, they appear to stimulate a broad range of extracellular activities in various signaling pathways, including tissue repair and regeneration, inflammation, cell migration, and immune defense. However, their cell surface receptors and structural mechanisms of regulations in these multiple pathways remain still poorly understood. Besides their extracellular activities, they belong to a larger family of small, intrinsically disordered actin-binding domains called WH2/β-thymosin domains that have been identified in more than 1800 multidomain proteins found in different taxonomic domains of life and involved in various actin-based motile processes including cell morphogenesis, motility, adhesions, tissue development, intracellular trafficking, or pathogen infections. This review briefly surveys the main recent findings to understand how these small, intrinsically disordered but functional domains can interact with many unrelated partners and can thus integrate and coordinate various intracellular activities in actin self-assembly dynamics and cell signaling pathways linked to their cytoskeleton remodeling.
Collapse
Affiliation(s)
- L Renault
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France.
| |
Collapse
|
34
|
Nagahama M, Ohkubo A, Kinouchi Y, Kobayashi K, Miyamoto K, Takehara M, Sakurai J. Clostridium perfringens TpeL Induces Formation of Stress Fibers via Activation of RhoA-ROCK Signaling Pathway. Biol Pharm Bull 2016; 38:732-9. [PMID: 25947919 DOI: 10.1248/bpb.b14-00842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Clostridium perfringens TpeL belongs to a family of large clostridial glucosylating cytotoxins. TpeL modifies Rac1 and Ras subfamily proteins. Herein we report TpeL-induced formation of stress fibers via RhoA-Rho kinase (ROCK) signaling. A recombinant protein (TpeL1-525) derived from the TpeL N-terminal catalytic domain in the presence of streptolysin O (SLO) induced the formation of actin stress fibers in Madin-Darby canine kidney (MDCK) cells in a dose-dependent manner. The RhoA/ROCK pathway is known to control the formation of stress fibers. We examined the role of the RhoA/ROCK pathway in TpeL-induced formation of stress fibers. TpeL1-525-induced formation of stress fibers was inhibited by the ROCK inhibitor, Y27632 and Rho protein inhibitor, C3 transferase. TpeL1-525 activated RhoA and ROCK in a dose-dependent manner. C3 transferase blocked TpeL1-525-induced activation of RhoA and ROCK whereas Y27632 inhibited TpeL-induced activation of ROCK. These results demonstrate for the first time that TpeL induces the formation of stress fibers by activating the RhoA/ROCK signaling pathway.
Collapse
Affiliation(s)
- Masahiro Nagahama
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Bacterial pathogens encode a wide variety of effectors and toxins that hijack host cell structure and function. Of particular importance are virulence factors that target actin cytoskeleton dynamics critical for cell shape, stability, motility, phagocytosis, and division. In addition, many bacteria target organelles of the general secretory pathway (e.g., the endoplasmic reticulum and the Golgi complex) and recycling pathways (e.g., the endolysosomal system) to establish and maintain an intracellular replicative niche. Recent research on the biochemistry and structural biology of bacterial effector proteins and toxins has begun to shed light on the molecular underpinnings of these host-pathogen interactions. This exciting work is revealing how pathogens gain control of the complex and dynamic host cellular environments, which impacts our understanding of microbial infectious disease, immunology, and human cell biology.
Collapse
Affiliation(s)
- Alyssa Jimenez
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390;
| | - Didi Chen
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390;
| | - Neal M Alto
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390;
| |
Collapse
|
36
|
The WH2 Domain and Actin Nucleation: Necessary but Insufficient. Trends Biochem Sci 2016; 41:478-490. [PMID: 27068179 DOI: 10.1016/j.tibs.2016.03.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/18/2016] [Accepted: 03/11/2016] [Indexed: 11/22/2022]
Abstract
Two types of sequences, proline-rich domains (PRDs) and the WASP-homology 2 (WH2) domain, are found in most actin filament nucleation and elongation factors discovered thus far. PRDs serve as a platform for protein-protein interactions, often mediating the binding of profilin-actin. The WH2 domain is an abundant actin monomer-binding motif comprising ∼17 amino acids. It frequently occurs in tandem repeats, and functions in nucleation by recruiting actin subunits to form the polymerization nucleus. It is found in Spire, Cordon Bleu (Cobl), Leiomodin (Lmod), Arp2/3 complex activators (WASP, WHAMM, WAVE, etc.), the bacterial nucleators VopL/VopF and Sca2, and some formins. Yet, it is argued here that the WH2 domain plays only an auxiliary role in nucleation, always synergizing with other domains or proteins for this activity.
Collapse
|
37
|
Kühn S, Mannherz HG. Actin: Structure, Function, Dynamics, and Interactions with Bacterial Toxins. Curr Top Microbiol Immunol 2016; 399:1-34. [PMID: 27848038 DOI: 10.1007/82_2016_45] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Actin is one of the most abundant proteins in any eukaryotic cell and an indispensable component of the cytoskeleton. In mammalian organisms, six highly conserved actin isoforms can be distinguished, which differ by only a few amino acids. In non-muscle cells, actin polymerizes into actin filaments that form actin structures essential for cell shape stabilization, and participates in a number of motile activities like intracellular vesicle transport, cytokinesis, and also cell locomotion. Here, we describe the structure of monomeric and polymeric actin, the polymerization kinetics, and its regulation by actin-binding proteins. Probably due to its conserved nature and abundance, actin and its regulating factors have emerged as prefered targets of bacterial toxins and effectors, which subvert the host actin cytoskeleton to serve bacterial needs.
Collapse
Affiliation(s)
- Sonja Kühn
- Department of Cell Biology and Infection, Institut Pasteur, Paris, France
| | - Hans Georg Mannherz
- Department of Anatomy and Molecular Embryology, Ruhr-University, Bochum, Germany.
| |
Collapse
|
38
|
Caburlotto G, Suffredini E, Toson M, Fasolato L, Antonetti P, Zambon M, Manfrin A. Occurrence and molecular characterisation of Vibrio parahaemolyticus in crustaceans commercialised in Venice area, Italy. Int J Food Microbiol 2015; 220:39-49. [PMID: 26773255 DOI: 10.1016/j.ijfoodmicro.2015.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 09/08/2015] [Accepted: 12/20/2015] [Indexed: 02/09/2023]
Abstract
Infections due to the pathogenic human vibrios, Vibrio parahaemolyticus, Vibrio cholerae and Vibrio vulnificus, are mainly associated with consumption of raw or partially cooked bivalve molluscs. At present, little is known about the presence of Vibrio species in crustaceans and the risk of vibriosis associated with the consumption of these products. The aim of the present study was to evaluate the prevalence and concentration of the main pathogenic Vibrio spp. in samples of crustaceans (n=143) commonly eaten in Italy, taking into account the effects of different variables such as crustacean species, storage conditions and geographic origin. Subsequently, the potential pathogenicity of V. parahaemolyticus strains isolated from crustaceans (n=88) was investigated, considering the classic virulence factors (tdh and trh genes) and four genes coding for relevant proteins of the type III secretion systems 2 (T3SS2α and T3SS2β). In this study, the presence of V. cholerae and V. vulnificus was never detected, whereas 40 samples (28%) were positive for V. parahaemolyticus with an overall prevalence of 41% in refrigerated products and 8% in frozen products. The highest prevalence and average contamination levels were detected in Crangon crangon (prevalence 58% and median value 3400 MPN/g) and in products from the northern Adriatic Sea (35%), with the samples from the northern Venetian Lagoon reaching a median value of 1375 MPN/g. While genetic analysis confirmed absence of the tdh gene, three of the isolates contained the trh gene and, simultaneously, the T3SS2β genes. Moreover three possibly clonal tdh-negative/trh-negative isolates carried the T3SS2α apparatus. The detection of both T3SS2α and T3SS2β apparatuses in V. parahaemolyticus strains isolated from crustaceans emphasised the importance of considering new genetic markers associated with virulence besides the classical factors. Moreover this study represents the first report dealing with Vibrio spp. in crustaceans in Italy, and it may provide useful information for the development of sanitary surveillance plans to prevent the risk of vibriosis in seafood consumers.
Collapse
Affiliation(s)
- Greta Caburlotto
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale Dell'Università 10, 35020 Legnaro, Padua, Italy.
| | - Elisabetta Suffredini
- Istituto Superiore di Sanità, Department of Veterinary Public Health and Food Safety, Viale Regina Elena 299, 00161 Rome, Italy
| | - Marica Toson
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale Dell'Università 10, 35020 Legnaro, Padua, Italy
| | - Luca Fasolato
- University of Padova, Department of Comparative Biomedicine and Food Science, Viale dell'Università 16, 35020 Legnaro, Padua, Italy
| | - Paolo Antonetti
- Azienda Ulss 12 Veneziana, Department of Prevention - Veterinary Service, P.le San Lorenzo Giustiniani 11/d, 30174 Venezia Mestre, VE, Italy
| | - Michela Zambon
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale Dell'Università 10, 35020 Legnaro, Padua, Italy
| | - Amedeo Manfrin
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale Dell'Università 10, 35020 Legnaro, Padua, Italy
| |
Collapse
|
39
|
Bugalhão JN, Mota LJ, Franco IS. Identification of regions within the Legionella pneumophila VipA effector protein involved in actin binding and polymerization and in interference with eukaryotic organelle trafficking. Microbiologyopen 2015; 5:118-33. [PMID: 26626407 PMCID: PMC4767423 DOI: 10.1002/mbo3.316] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 02/02/2023] Open
Abstract
The Legionella pneumophila effector protein VipA is an actin nucleator that co‐localizes with actin filaments and early endosomes in infected macrophages and which interferes with organelle trafficking when expressed in yeast. To identify the regions of VipA involved in its subcellular localization and functions, we ectopically expressed specific VipA mutant proteins in eukaryotic cells. This indicated that the characteristic punctate distribution of VipA depends on its NH2‐terminal (amino acid residues 1–133) and central coiled‐coil (amino acid residues 133–206) regions, and suggested a role for the COOH‐terminal (amino acid residues 206–339) region in association with actin filaments and for the NH2‐terminal in co‐localization with early endosomes. Co‐immunoprecipitation and in vitro assays showed that the COOH‐terminal region of VipA is necessary and sufficient to mediate actin binding, and is essential but insufficient to induce microfilament formation. Assays in yeast revealed that the NH2 and the COOH‐terminal regions, and possibly an NPY motif within the NH2 region of VipA, are necessary for interference with organelle trafficking. Overall, this suggests that subversion of eukaryotic vesicular trafficking by VipA involves both its ability to associate with early endosomes via its NH2‐terminal region and its capacity to bind and polymerize actin through its COOH‐terminal region.
Collapse
Affiliation(s)
- Joana N Bugalhão
- UCIBIO, REQUIMTE, Faculdade de Ciências e Tecnologia, Departamento de Ciências da Vida, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Luís Jaime Mota
- UCIBIO, REQUIMTE, Faculdade de Ciências e Tecnologia, Departamento de Ciências da Vida, Universidade NOVA de Lisboa, Caparica, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Irina S Franco
- UCIBIO, REQUIMTE, Faculdade de Ciências e Tecnologia, Departamento de Ciências da Vida, Universidade NOVA de Lisboa, Caparica, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| |
Collapse
|
40
|
Single-molecule visualization of a formin-capping protein 'decision complex' at the actin filament barbed end. Nat Commun 2015; 6:8707. [PMID: 26566078 PMCID: PMC4660045 DOI: 10.1038/ncomms9707] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/22/2015] [Indexed: 01/01/2023] Open
Abstract
Precise control of actin filament length is essential to many cellular processes. Formins processively elongate filaments, whereas capping protein (CP) binds to barbed ends and arrests polymerization. While genetic and biochemical evidence has indicated that these two proteins function antagonistically, the mechanism underlying the antagonism has remained unresolved. Here we use multi-wavelength single-molecule fluorescence microscopy to observe the fully reversible formation of a long-lived 'decision complex' in which a CP dimer and a dimer of the formin mDia1 simultaneously bind the barbed end. Further, mDia1 displaced from the barbed end by CP can randomly slide along the filament and later return to the barbed end to re-form the complex. Quantitative kinetic analysis reveals that the CP-mDia1 antagonism that we observe in vitro occurs through the decision complex. Our observations suggest new molecular mechanisms for the control of actin filament length and for the capture of filament barbed ends in cells.
Collapse
|
41
|
Bugalhão JN, Mota LJ, Franco IS. Bacterial nucleators: actin' on actin. Pathog Dis 2015; 73:ftv078. [PMID: 26416078 DOI: 10.1093/femspd/ftv078] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2015] [Indexed: 11/13/2022] Open
Abstract
The actin cytoskeleton is a key target of numerous microbial pathogens, including protozoa, fungi, bacteria and viruses. In particular, bacterial pathogens produce and deliver virulence effector proteins that hijack actin dynamics to enable bacterial invasion of host cells, allow movement within the host cytosol, facilitate intercellular spread or block phagocytosis. Many of these effector proteins directly or indirectly target the major eukaryotic actin nucleator, the Arp2/3 complex, by either mimicking nucleation promoting factors or activating upstream small GTPases. In contrast, this review is focused on a recently identified class of effector proteins from Gram-negative bacteria that function as direct actin nucleators. These effector proteins mimic functional activities of formins, WH2-nucleators and Ena/VASP assembly promoting factors demonstrating that bacteria have coopted the complete set of eukaryotic actin assembly pathways. Structural and functional analyses of these nucleators have revealed several motifs and/or mechanistic activities that are shared with eukaryotic actin nucleators. However, functional effects of these proteins during infection extend beyond plain actin polymerization leading to interference with other host cell functions such as vesicle trafficking, cell cycle progression and cell death. Therefore, their use as model systems could not only help in the understanding of the mechanistic details of actin polymerization but also provide novel insights into the connection between actin dynamics and other cellular pathways.
Collapse
Affiliation(s)
- Joana N Bugalhão
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Luís Jaime Mota
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Irina S Franco
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| |
Collapse
|
42
|
Virulent Burkholderia species mimic host actin polymerases to drive actin-based motility. Cell 2015; 161:348-60. [PMID: 25860613 DOI: 10.1016/j.cell.2015.02.044] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/22/2014] [Accepted: 02/05/2015] [Indexed: 11/23/2022]
Abstract
Burkholderia pseudomallei and B. mallei are bacterial pathogens that cause melioidosis and glanders, whereas their close relative B. thailandensis is non-pathogenic. All use the trimeric autotransporter BimA to facilitate actin-based motility, host cell fusion, and dissemination. Here, we show that BimA orthologs mimic different host actin-polymerizing proteins. B. thailandensis BimA activates the host Arp2/3 complex. In contrast, B. pseudomallei and B. mallei BimA mimic host Ena/VASP actin polymerases in their ability to nucleate, elongate, and bundle filaments by associating with barbed ends, as well as in their use of WH2 motifs and oligomerization for activity. Mechanistic differences among BimA orthologs resulted in distinct actin filament organization and motility parameters, which affected the efficiency of cell fusion during infection. Our results identify bacterial Ena/VASP mimics and reveal that pathogens imitate the full spectrum of host actin-polymerizing pathways, suggesting that mimicry of different polymerization mechanisms influences key parameters of infection.
Collapse
|
43
|
Dimeric WH2 repeats of VopF sequester actin monomers into non-nucleating linear string conformations: An X-ray scattering study. J Struct Biol 2015; 190:192-9. [PMID: 25818509 DOI: 10.1016/j.jsb.2015.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/12/2015] [Accepted: 03/18/2015] [Indexed: 11/23/2022]
Abstract
VopF and VopL are highly similar virulence-factors of Vibrio cholerae and Vibrio parahaemolyticus respectively that disrupt the host's actin cytoskeleton, using a unique organization in dimerized WH2 repeats. Association of dimerized WH2 domains with the barbed face of actin confers multifunctional activities to VopF in vitro, including G-actin sequestration and filament nucleation, barbed end tracking and uncapping. Here, small angle X-ray scattering (SAXS) measurements of complexes of VopF with actin and structural modeling reveal that VopF stabilizes linear actin-strings that differ from canonical actin filament architectures but represent non-polymerizable sequestered forms of actin. The results exclude that VopL binds the pointed end of actin filaments in the template filament nucleation mechanism derived from crystallographic studies.
Collapse
|
44
|
Wang R, Zhong Y, Gu X, Yuan J, Saeed AF, Wang S. The pathogenesis, detection, and prevention of Vibrio parahaemolyticus. Front Microbiol 2015; 6:144. [PMID: 25798132 PMCID: PMC4350439 DOI: 10.3389/fmicb.2015.00144] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/07/2015] [Indexed: 12/02/2022] Open
Abstract
Vibrio parahaemolyticus, a Gram-negative motile bacterium that inhabits marine and estuarine environments throughout the world, is a major food-borne pathogen that causes life-threatening diseases in humans after the consumption of raw or undercooked seafood. The global occurrence of V. parahaemolyticus accentuates the importance of investigating its virulence factors and their effects on the human host. This review describes the virulence factors of V. parahaemolyticus reported to date, including hemolysin, urease, two type III secretion systems and two type VI secretion systems, which both cause both cytotoxicity in cultured cells and enterotoxicity in animal models. We describe various types of detection methods, based on virulence factors, that are used for quantitative detection of V. parahaemolyticus in seafood. We also discuss some useful preventive measures and therapeutic strategies for the diseases mediated by V. parahaemolyticus, which can reduce, to some extent, the damage to humans and aquatic animals attributable to V. parahaemolyticus. This review extends our understanding of the pathogenic mechanisms of V. parahaemolyticus mediated by virulence factors and the diseases it causes in its human host. It should provide new insights for the diagnosis, treatment, and prevention of V. parahaemolyticus infection.
Collapse
Affiliation(s)
- Rongzhi Wang
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry and Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Yanfang Zhong
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry and Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Xiaosong Gu
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry and Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Jun Yuan
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry and Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Abdullah F Saeed
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry and Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Shihua Wang
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry and Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| |
Collapse
|
45
|
Hiyoshi H, Okada R, Matsuda S, Gotoh K, Akeda Y, Iida T, Kodama T. Interaction between the type III effector VopO and GEF-H1 activates the RhoA-ROCK pathway. PLoS Pathog 2015; 11:e1004694. [PMID: 25738744 PMCID: PMC4349864 DOI: 10.1371/journal.ppat.1004694] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 01/22/2015] [Indexed: 12/11/2022] Open
Abstract
Vibrio parahaemolyticus is an important pathogen that causes food-borne gastroenteritis in humans. The type III secretion system encoded on chromosome 2 (T3SS2) plays a critical role in the enterotoxic activity of V. parahaemolyticus. Previous studies have demonstrated that T3SS2 induces actin stress fibers in various epithelial cell lines during infection. This stress fiber formation is strongly related to pathogenicity, but the mechanisms that underlie T3SS2-dependent actin stress fiber formation and the main effector have not been elucidated. In this study, we identified VopO as a critical T3SS2 effector protein that activates the RhoA-ROCK pathway, which is an essential pathway for the induction of the T3SS2-dependent stress fiber formation. We also determined that GEF-H1, a RhoA guanine nucleotide exchange factor (GEF), directly binds VopO and is necessary for T3SS2-dependent stress fiber formation. The GEF-H1-binding activity of VopO via an alpha helix region correlated well with its stress fiber-inducing capacity. Furthermore, we showed that VopO is involved in the T3SS2-dependent disruption of the epithelial barrier. Thus, VopO hijacks the RhoA-ROCK pathway in a different manner compared with previously reported bacterial toxins and effectors that modulate the Rho GTPase signaling pathway. Many bacterial pathogens manipulate the actin cytoskeleton of mammalian cells to establish pathogenesis via invasion, to evade killing by phagocytes, to disrupt a barrier function, and to induce inflammation caused by translocation type III secretion (T3S) effector proteins. We demonstrated that the T3S effector protein (VopO) of the enteric pathogen Vibrio parahaemolyticus induced robust actin stress fiber formation in infected host cells. Furthermore, this actin rearrangement induced barrier disruption in a colon epithelial cell line. Although many types of effector proteins have been reported, VopO does not share homology with previously reported effector proteins, and no putative functional motifs could be identified. Finally, we determined that the direct binding of VopO to a RhoA guanine nucleotide exchange factor (GEF) is a key step in the induction of stress fiber formation. These findings indicate that VopO plays a unique role in the pathogenicity of V. parahaemolyticus.
Collapse
Affiliation(s)
- Hirotaka Hiyoshi
- Laboratory of Genomic Research on Pathogenic Bacteria, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Ryu Okada
- Laboratory of Genomic Research on Pathogenic Bacteria, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Shigeaki Matsuda
- Laboratory of Genomic Research on Pathogenic Bacteria, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Kazuyoshi Gotoh
- Laboratory of Genomic Research on Pathogenic Bacteria, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Yukihiro Akeda
- Laboratory of Clinical Research on Infectious Diseases, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Tetsuya Iida
- Laboratory of Genomic Research on Pathogenic Bacteria, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Toshio Kodama
- Microbe Repository Unit, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- * E-mail:
| |
Collapse
|
46
|
de Souza Santos M, Orth K. Subversion of the cytoskeleton by intracellular bacteria: lessons from Listeria, Salmonella and Vibrio. Cell Microbiol 2015; 17:164-73. [PMID: 25440316 PMCID: PMC5806695 DOI: 10.1111/cmi.12399] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 10/29/2014] [Accepted: 11/07/2014] [Indexed: 12/18/2022]
Abstract
Entry into host cells and intracellular persistence by invasive bacteria are tightly coupled to the ability of the bacterium to disrupt the eukaryotic cytoskeletal machinery. Herein we review the main strategies used by three intracellular pathogens to harness key modulators of the cytoskeleton. Two of these bacteria, namely Listeria monocytogenes and Salmonella enterica serovar Typhimurium, exhibit quite distinct intracellular lifestyles and therefore provide a comprehensive panel for the understanding of the intricate bacteria-cytoskeleton interplay during infections. The emerging intracellular pathogen Vibrio parahaemolyticus is depicted as a developing model for the uncovering of novel mechanisms used to hijack the cytoskeleton.
Collapse
Affiliation(s)
- Marcela de Souza Santos
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
47
|
Kodama T, Hiyoshi H, Okada R, Matsuda S, Gotoh K, Iida T. Regulation of Vibrio parahaemolyticus T3SS2 gene expression and function of T3SS2 effectors that modulate actin cytoskeleton. Cell Microbiol 2015; 17:183-90. [PMID: 25495647 DOI: 10.1111/cmi.12408] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/09/2014] [Accepted: 12/11/2014] [Indexed: 12/17/2022]
Abstract
Vibrio parahaemolyticus is a leading causative agent of seafood-borne gastroenteritis worldwide. Most clinical isolates from patients with diarrhoea possess two sets of genes for the type III secretion system (T3SS) on each chromosome (T3SS1 and T3SS2). T3SS is a protein secretion system that delivers effector proteins directly into eukaryotic cells. The injected effectors modify the normal cell functions by altering or disrupting the normal cell signalling pathways. Of the two sets of T3SS genes present in V. parahaemolyticus, T3SS2 is essential for enterotoxicity in several animal models. Recent studies have elucidated the biological activities of several T3SS2 effectors and their roles in virulence. This review focuses on the regulation of T3SS2 gene expression and T3SS2 effectors that specifically target the actin cytoskeleton.
Collapse
Affiliation(s)
- Toshio Kodama
- Pathogenic Microbes Repository Unit, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Calder T, de Souza Santos M, Attah V, Klimko J, Fernandez J, Salomon D, Krachler AM, Orth K. Structural and regulatory mutations in Vibrio parahaemolyticus type III secretion systems display variable effects on virulence. FEMS Microbiol Lett 2014; 361:107-14. [PMID: 25288215 DOI: 10.1111/1574-6968.12619] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/30/2014] [Accepted: 10/03/2014] [Indexed: 12/31/2022] Open
Abstract
The Gram-negative bacterium, Vibrio parahaemolyticus, is a major cause of seafood-derived food poisoning throughout the world. The pathogenicity of V. parahaemolyticus is attributed to several virulence factors, including two type III secretion systems (T3SS), T3SS1 and T3SS2. Herein, we compare the virulence of V. parahaemolyticus POR strains, which harbor a mutation in the T3SS needle apparatus of either system, to V. parahaemolyticus CAB strains, which harbor mutations in positive transcriptional regulators of either system. These strains are derived from the clinical RIMD 2210633 strain. We demonstrate that each mutation affects the virulence of the bacterium in a different manner. POR and CAB strains exhibited similar levels of swarming motility and T3SS effector production and secretion, but the CAB3 and CAB4 strains, which harbor a mutation in the T3SS2 master regulator gene, formed reduced biofilm growth under T3SS2 inducing conditions. Additionally, while the cytotoxicity of the POR and CAB strains was similar, the CAB2 (T3SS1 regulatory mutant) strain was strikingly more invasive than the comparable POR2 (T3SS1 structural mutant) strain. In summary, creating structural or regulatory mutations in either T3SS1 or T3SS2 causes differential downstream effects on other virulence systems. Understanding the biological differences of strains created from a clinical isolate is critical for interpreting and understanding the pathogenic nature of V. parahaemolyticus.
Collapse
Affiliation(s)
- Thomas Calder
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Franco IS, Shuman HA. A pathogen's journey in the host cell: Bridges between actin and traffic. BIOARCHITECTURE 2014; 2:38-42. [PMID: 22754628 PMCID: PMC3383720 DOI: 10.4161/bioa.20422] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Manipulation of the actin cytoskeleton is a commonly used process by which bacterial pathogens and viruses are able to neutralize host defense mechanisms and subvert them in order to replicate in a hostile environment. Diverse bacteria display a wide array of mechanisms of regulation of microfilaments to enter, move within or exit the host cell. A less studied subject is how pathogens may co-opt the actin cytoskeleton to disturb vesicle trafficking pathways, namely phagolysosomal fusion, and avoid degradation. In fact, although actin plays a role in endosomal trafficking and phagosome maturation, the knowledge on the exact mechanisms and additional players is still scarce. Recently, we found that the Legionella pneumophila virulence factor VipA is an actin nucleator, associates with actin filaments and early endosomes during infection, and interferes in yeast organelle trafficking pathways, suggesting it may be linking actin dynamics to endosome biogenesis. Further studies on this protein, together with work on other bacterial effectors, may help shed light in the role of actin in endosomal maturation.
Collapse
|
50
|
Rasson AS, Bois JS, Pham DSL, Yoo H, Quinlan ME. Filament assembly by Spire: key residues and concerted actin binding. J Mol Biol 2014; 427:824-839. [PMID: 25234086 DOI: 10.1016/j.jmb.2014.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 07/28/2014] [Accepted: 09/04/2014] [Indexed: 01/09/2023]
Abstract
The most recently identified class of actin nucleators, WASp homology domain 2 (WH2) nucleators, use tandem repeats of monomeric actin-binding WH2 domains to facilitate actin nucleation. WH2 domains are involved in a wide variety of actin regulatory activities. Structurally, they are expected to clash with interprotomer contacts within the actin filament. Thus, the discovery of their role in nucleation was surprising. Here we use Drosophila Spire (Spir) as a model system to investigate both how tandem WH2 domains can nucleate actin and what differentiates nucleating WH2-containing proteins from their non-nucleating counterparts. We found that the third WH2 domain in Spir (Spir-C or SC) plays a unique role. In the context of a short nucleation construct (containing only two WH2 domains), placement of SC in the N-terminal position was required for the most potent nucleation. We found that the native organization of the WH2 domains with respect to each other is necessary for binding to actin with positive cooperativity. We identified two residues within SC that are critical for its activity. Using this information, we were able to convert a weak synthetic nucleator into one with activity equal to a native Spir construct. Lastly, we found evidence that SC binds actin filaments, in addition to monomers.
Collapse
Affiliation(s)
- Amy S Rasson
- Department of Chemistry and Biochemistry, University of California Los Angeles, 607 Charles E. Young Drive, Los Angeles, CA 90095, USA
| | - Justin S Bois
- Department of Chemistry and Biochemistry, University of California Los Angeles, 607 Charles E. Young Drive, Los Angeles, CA 90095, USA
| | - Duy Stephen L Pham
- Department of Chemistry and Biochemistry, University of California Los Angeles, 607 Charles E. Young Drive, Los Angeles, CA 90095, USA
| | - Haneul Yoo
- Department of Chemistry and Biochemistry, University of California Los Angeles, 607 Charles E. Young Drive, Los Angeles, CA 90095, USA
| | - Margot E Quinlan
- Department of Chemistry and Biochemistry, University of California Los Angeles, 607 Charles E. Young Drive, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California Los Angeles, Paul D. Boyer Hall, 611 Charles E. Young Drive East, Box 951570, Los Angeles, CA 90095-1570, USA.
| |
Collapse
|