1
|
Naik YD, Bahuguna RN, Garcia‐Caparros P, Zwart RS, Reddy MSS, Mir RR, Jha UC, Fakrudin B, Pandey MK, Challabathula D, Sharma VK, Reddy UK, Kumar CVS, Mendu V, Prasad PVV, Punnuri SM, Varshney RK, Thudi M. Exploring the multifaceted dynamics of flowering time regulation in field crops: Insight and intervention approaches. THE PLANT GENOME 2025; 18:e70017. [PMID: 40164968 PMCID: PMC11958873 DOI: 10.1002/tpg2.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 01/16/2025] [Accepted: 02/24/2025] [Indexed: 04/02/2025]
Abstract
The flowering time (FTi) plays a critical role in the reproductive success and yield of various crop species by directly impacting both the quality and quantity of grain yield. Achieving optimal FTi is crucial for maximizing reproductive success and ensuring overall agricultural productivity. While genetic factors undoubtedly influence FTi, photoperiodism and vernalization are recognized as key contributors to the complex physiological processes governing flowering in plants. Identifying candidate genes and pathways associated with FTi is essential for developing genomic interventions and plant breeding to enhance adaptability to diverse environmental conditions. This review highlights the intricate nature of the regulatory mechanisms of flowering and emphasizes the vital importance of precisely regulating FTi to ensure plant adaptability and reproductive success. Special attention is given to essential genes, pathways, and genomic interventions geared toward promoting early flowering, particularly under challenging environmental conditions such as drought, heat, and cold stress as well as other abiotic stresses that occur during the critical flowering stage of major field crops. Moreover, this review explores the significant progress achieved in omics technologies, offering valuable insights and tools for deciphering and regulating FTi. In summary, this review aims to provide a comprehensive understanding of the mechanisms governing FTi, with a particular focus on their crucial role in bolstering yields under adverse environmental conditions to safeguard food security.
Collapse
Affiliation(s)
- Yogesh Dashrath Naik
- Department of Agricultural Biotechnology and Molecular BiologyDr. Rajendra Prasad Central Agricultural UniversityPusaBiharIndia
| | | | | | - Rebecca S. Zwart
- Centre for Crop Health and School of Agriculture and Environmental ScienceUniversity of Southern QueenslandToowoombaAustralia
| | - M. S. Sai Reddy
- Department of EntomologyDr. Rajendra Prasad Central Agricultural UniversityPusaBiharIndia
| | - Reyazul Rouf Mir
- Faculty of AgricultureSher‐e‐Kashmir University of Agricultural Sciences and TechnologySoporeKashmirIndia
| | - Uday Chand Jha
- Indian Council of Agricultural Research, Indian Institute of Pulses ResearchKanpurUttar PradeshIndia
| | - B. Fakrudin
- Department of Biotechnology and Crop ImprovementUniversity of Horticultural SciencesBagalkotKarnatakaIndia
| | - Manish K. Pandey
- International Crops Research Institute for the Semi‐Arid TropicsHyderabadTelanganaIndia
| | - Dinakar Challabathula
- Department of BiotechnologyCentral University of Tamil NaduThiruvarurTamil NaduIndia
| | - Vinay Kumar Sharma
- Department of Agricultural Biotechnology and Molecular BiologyDr. Rajendra Prasad Central Agricultural UniversityPusaBiharIndia
| | - Umesh K. Reddy
- Department of BiologyWest Virginia State UniversityMorgantownWest VirginiaUSA
| | - Chanda Venkata Sameer Kumar
- Department of Genetics and Plant BreedingProfessor Jayashankar Telangana State Agricultural UniversityHyderabadTelanganaIndia
| | - Venugopal Mendu
- Department of Agronomy, Agribusiness & Environmental SciencesTexas A&M UniversityKingsvilleTexasUSA
| | | | - Somashekhar M. Punnuri
- College of Agriculture, Family Sciences and TechnologyFort Valley State UniversityFort ValleyGeorgiaUSA
| | - Rajeev K. Varshney
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food InnovationMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Mahendar Thudi
- Centre for Crop Health and School of Agriculture and Environmental ScienceUniversity of Southern QueenslandToowoombaAustralia
- College of Agriculture, Family Sciences and TechnologyFort Valley State UniversityFort ValleyGeorgiaUSA
| |
Collapse
|
2
|
Sciara G, Camerlengo F, Welcker C, Cabrera‐Bosquet L, Grau A, Cané MA, Bovina R, Tardieu F, Tuberosa R, Salvi S. A maize landrace introgression library reveals a negative effect of root-to-shoot ratio on water-use efficiency. THE PLANT GENOME 2025; 18:e70036. [PMID: 40281664 PMCID: PMC12032046 DOI: 10.1002/tpg2.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/29/2025]
Abstract
Novel sources of genetic variability for water-use efficiency (WUE) are needed in order to breed varieties more suitable to sustainable cropping systems. Here, a maize (Zea mays L.) introgression library of the landrace Gaspé Flint into the reference line B73 was characterized in high-throughput phenotyping platforms, both in well-watered and moderate water-deficit conditions, for water use, WUE, and root and shoot growth. Traits heritability ranged from 0.77 to 0.93. The introgression of Gaspé Flint chromosome segments into the B73 genome significantly altered several traits. Some introgression lines exhibited a faster shoot biomass accumulation than B73, resulting in higher WUE at the expense of root growth. Quantitative trait loci (QTL) mapping identified seven major QTL clusters affecting shoot growth and WUE, two of which overlapped, with opposite effects, with QTLs for root biomass known to include root developmental genes. These results support the non-intuitive hypothesis that reduced root-to-shoot ratio positively affects maize WUE.
Collapse
Affiliation(s)
- Giuseppe Sciara
- Department of Agricultural and Food SciencesUniversity of BolognaBolognaItaly
| | | | | | | | - Antonin Grau
- INRAE, LEPSEUniversité de MontpellierMontpellierFrance
| | - Maria Angela Cané
- Department of Agricultural and Food SciencesUniversity of BolognaBolognaItaly
| | - Riccardo Bovina
- Department of Agricultural and Food SciencesUniversity of BolognaBolognaItaly
| | | | - Roberto Tuberosa
- Department of Agricultural and Food SciencesUniversity of BolognaBolognaItaly
| | - Silvio Salvi
- Department of Agricultural and Food SciencesUniversity of BolognaBolognaItaly
| |
Collapse
|
3
|
Han X, Li J, Li D, Guo L, Wu L, Liang Y, Jia H, Xia J, Qin C, Qin W, Chen Q, Deng D, Wang C, Tian F. A copy number variation in the ZmMADS1 promoter enhances maize adaptation to high altitudes. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025. [PMID: 40432508 DOI: 10.1111/jipb.13924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/20/2025] [Accepted: 04/08/2025] [Indexed: 05/29/2025]
Abstract
A 178-bp copy number variation in the ZmMADS1 promoter represses ZmMADS1 expression and results in delayed flowering, which has been a target of selection during maize spread into higher altitudes. ZmMADS1 promotes maize flowering via the autonomous pathway by directly activating the expression of ZmMADS69 and ZCN8, while repressing ZmRap2.7.
Collapse
Affiliation(s)
- Xu Han
- Frontiers Science Center for Molecular Design Breeding and State Key Laboratory of Plant Environmental Resilience, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jianing Li
- Frontiers Science Center for Molecular Design Breeding and State Key Laboratory of Plant Environmental Resilience, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Dan Li
- Frontiers Science Center for Molecular Design Breeding and State Key Laboratory of Plant Environmental Resilience, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Li Guo
- Frontiers Science Center for Molecular Design Breeding and State Key Laboratory of Plant Environmental Resilience, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Lishuan Wu
- Frontiers Science Center for Molecular Design Breeding and State Key Laboratory of Plant Environmental Resilience, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yameng Liang
- Frontiers Science Center for Molecular Design Breeding and State Key Laboratory of Plant Environmental Resilience, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Hong Jia
- Frontiers Science Center for Molecular Design Breeding and State Key Laboratory of Plant Environmental Resilience, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jinliang Xia
- Frontiers Science Center for Molecular Design Breeding and State Key Laboratory of Plant Environmental Resilience, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Congying Qin
- Frontiers Science Center for Molecular Design Breeding and State Key Laboratory of Plant Environmental Resilience, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Wenchao Qin
- Frontiers Science Center for Molecular Design Breeding and State Key Laboratory of Plant Environmental Resilience, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Qiuyue Chen
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, 27695, NC, USA
| | - Dezhi Deng
- Beijing Origin Agricultural Co., Ltd, Beijing, 101119, China
| | - Chenglong Wang
- Frontiers Science Center for Molecular Design Breeding and State Key Laboratory of Plant Environmental Resilience, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572024, China
| | - Feng Tian
- Frontiers Science Center for Molecular Design Breeding and State Key Laboratory of Plant Environmental Resilience, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572024, China
| |
Collapse
|
4
|
Beernink BM, Vogel JP, Lei L. Enhancers in Plant Development, Adaptation and Evolution. PLANT & CELL PHYSIOLOGY 2025; 66:461-476. [PMID: 39412125 PMCID: PMC12085095 DOI: 10.1093/pcp/pcae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/13/2024] [Accepted: 10/09/2024] [Indexed: 05/18/2025]
Abstract
Understanding plant responses to developmental and environmental cues is crucial for studying morphological divergence and local adaptation. Gene expression changes, governed by cis-regulatory modules (CRMs) including enhancers, are a major source of plant phenotypic variation. However, while genome-wide approaches have revealed thousands of putative enhancers in mammals, far fewer have been identified and functionally characterized in plants. This review provides an overview of how enhancers function to control gene regulation, methods to predict DNA sequences that may have enhancer activity, methods utilized to functionally validate enhancers and the current knowledge of enhancers in plants, including how they impact plant development, response to environment and evolutionary adaptation.
Collapse
Affiliation(s)
- Bliss M Beernink
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - John P Vogel
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Li Lei
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| |
Collapse
|
5
|
Neupane SP, Stagnati L, Dell'Acqua M, Busconi M, Lanubile A, Pè ME, Caproni L, Marocco A. Genetic basis of Fusarium ear rot resistance and productivity traits in a heterozygous multi-parent recombinant inbred intercross (RIX) maize population. BMC PLANT BIOLOGY 2025; 25:639. [PMID: 40375124 PMCID: PMC12080043 DOI: 10.1186/s12870-025-06684-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 05/06/2025] [Indexed: 05/18/2025]
Abstract
Maize (Zea mays L.) is one of the most productive crops worldwide. As a heterotic crop predominantly grown as F1 hybrid, maize exhibits challenges for genetic studies of complex traits, since homozygous genotypes, which are largely used in these studies, may not accurately reflect what happens in cultivated conditions. To map Fusarium Ear Rot (FER) resistance to Fusarium verticillioides and traits with potential impact on yield, including phenology, we constructed a recombinant intercross (RIX) population. This was achived by crossing pairs of recombinant inbred lines (RILs) derived from a multi-parent maize population. We characterized the RIX population over two growing seasons, employing artificial F. verticillioides inoculation. The heterozygous background of the material enabled the identification of QTL and candidate genes through in silico reconstruction of RIX genotype probabilities. A total of 37 loci were identified using single-year BLUPs while 29 with joint-year BLUPs. These, included several known QTL associated with days to tasseling, kernel row number and a QTL on the chromosome 9 associated with FER resistance. In this region, we could identify candidates based on their predicted functions and potential roles in plant-pathogen interactions and/or resistance mechanisms. These QTL represent potential breeding targets to FER resistance and yield components in commercial maize varieties.
Collapse
Affiliation(s)
| | - Lorenzo Stagnati
- Dipartimento di Scienze delle produzioni vegetali sostenibili, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Matteo Dell'Acqua
- Institute of Plant Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Matteo Busconi
- Dipartimento di Scienze delle produzioni vegetali sostenibili, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Alessandra Lanubile
- Dipartimento di Scienze delle produzioni vegetali sostenibili, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Mario Enrico Pè
- Institute of Plant Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Leonardo Caproni
- Institute of Plant Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.
| | - Adriano Marocco
- Dipartimento di Scienze delle produzioni vegetali sostenibili, Università Cattolica del Sacro Cuore, Piacenza, Italy.
| |
Collapse
|
6
|
Aragón-Raygoza A, Strable J. Diverse roles of ethylene in maize growth and development, and its importance in shaping plant architecture. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1854-1865. [PMID: 39973110 PMCID: PMC12066121 DOI: 10.1093/jxb/eraf062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 02/18/2025] [Indexed: 02/21/2025]
Abstract
The gaseous plant hormone ethylene is a key developmental and growth regulator, and a pivotal endogenous response signal to abiotic and biotic interactions, including stress. Much of what is known about ethylene biosynthesis, perception, and signaling comes from decades of research primarily in Arabidopsis thaliana and other eudicot model systems. In contrast, detailed knowledge on the ethylene pathway and response to the hormone is markedly limited in maize (Zea mays L.), a global cereal crop that is a major source of calories for humans and livestock, as well as a key industrial biofeedstock. Recent reports of forward screens and targeted reverse genetics have provided important insight into conserved and unique differences of the ethylene pathway and downstream responses. Natural and edited allelic variation in the promoter regions and coding sequences of ethylene biosynthesis and signaling genes alters maize shoot and root architectures, and plays a crucial role in biomass and grain yields. This review discusses recent advances in ethylene research in maize, with an emphasis on the role of ethylene in regulating growth and development of the shoot and root systems, and ultimately how this crucial hormone impacts plant architecture and grain yield.
Collapse
Affiliation(s)
| | - Josh Strable
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
7
|
Marand AP, Jiang L, Gomez-Cano F, Minow MAA, Zhang X, Mendieta JP, Luo Z, Bang S, Yan H, Meyer C, Schlegel L, Johannes F, Schmitz RJ. The genetic architecture of cell type-specific cis regulation in maize. Science 2025; 388:eads6601. [PMID: 40245149 DOI: 10.1126/science.ads6601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/04/2025] [Indexed: 04/19/2025]
Abstract
Gene expression and complex phenotypes are determined by the activity of cis-regulatory elements. However, an understanding of how extant genetic variants affect cis regulation remains limited. Here, we investigated the consequences of cis-regulatory diversity using single-cell genomics of more than 0.7 million nuclei across 172 Zea mays (maize) inbreds. Our analyses pinpointed cis-regulatory elements distinct to domesticated maize and revealed how historical transposon activity has shaped the cis-regulatory landscape. Leveraging population genetics principles, we fine-mapped about 22,000 chromatin accessibility-associated genetic variants with widespread cell type-specific effects. Variants in TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR-binding sites were the most prevalent determinants of chromatin accessibility. Finally, integrating chromatin accessibility-associated variants, organismal trait variation, and population differentiation revealed how local adaptation has rewired regulatory networks in unique cellular contexts to alter maize flowering.
Collapse
Affiliation(s)
| | - Luguang Jiang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Fabio Gomez-Cano
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Mark A A Minow
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - Xuan Zhang
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - John P Mendieta
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - Ziliang Luo
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - Sohyun Bang
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Haidong Yan
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - Cullan Meyer
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - Luca Schlegel
- Plant Epigenomics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Frank Johannes
- Plant Epigenomics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | | |
Collapse
|
8
|
Xiao Y, Wang J. Understanding the Regulation Activities of Transposons in Driving the Variation and Evolution of Polyploid Plant Genome. PLANTS (BASEL, SWITZERLAND) 2025; 14:1160. [PMID: 40284048 PMCID: PMC12030055 DOI: 10.3390/plants14081160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025]
Abstract
Transposon is the main component of the eukaryotic genome, and more and more plant genome data show that transposons are diverse in regulating genome structure, variation, function and evolution, with different transposition mechanisms in the genome. Hybridization and polyploidy play an important role in promoting plant speciation and evolution, and recent studies have shown that polyploidy is usually accompanied by the expansion of transposons, which affect the genome size and structure of polyploid plants. Transposons can insert into genes and intergenic regions, resulting in great differences in the overall genome structure of closely related plant species, and it can also capture gene segments in the genome to increase the copy number of genes. In addition, transposons influence the epigenetic modification state of the genome and regulate the expression of the gene, while plant phenotype, biological and abiotic stress response are also regulated by transposons. Overall, transposons play an important role in the plant genome, especially polyploid plant genome, adaptation and evolution.
Collapse
Affiliation(s)
- Yafang Xiao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| |
Collapse
|
9
|
Guo X, Sun K, Wu Z, Xiao D, Song Y, Li S, Wei G, Li W, Hao Y, Xu B, Zhang K, Liao N, Hu D, Liu YG, Zong W, Guo J. Improving yield-related traits by editing the promoter and distal regulatory region of heading date genes Ghd7 and PRR37 in elite rice variety Mei Xiang Zhan 2. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:92. [PMID: 40186758 DOI: 10.1007/s00122-025-04880-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 03/08/2025] [Indexed: 04/07/2025]
Abstract
KEY MESSAGE We revealed that editing the promoter and distal regulatory region of the pleiotropic genes Ghd7 and PRR37 reduces their ability to delay heading date while improving their capacity to boost crop yield, offering valuable resources for rice breeding. Heading date is a crucial agronomic characteristic in rice that governs the adaptability to different latitudes and the yield of various varieties. Optimizing the heading date of superior cultivars in breeding practice can significantly broaden their potential planting areas. Ghd7 and PRR37 are pivotal genes that control heading date and enhance agronomic traits. In the elite indica rice variety Mei Xiang Zhan 2 (MXZ2), we used CRISPR/Cas9 technology to effectively generate homozygous mutant lines with a gradient change in heading date by multi-target editing the promoter and distal regulatory region of Ghd7 and PRR37. Various degrees of down-regulation of Ghd7 or PRR37 expression, impaired gene functions, and advancement of the heading date were observed in the mutant lines. Certain mutant lines exhibited an early heading date and increased yield while preserving the exceptional quality of MXZ2. Our study revealed that editing the promoter and distal regulatory region of the pleiotropic genes Ghd7 and PRR37 reduces their ability to delay heading date while improving their capacity to boost crop yield, offering valuable resources for rice breeding.
Collapse
Affiliation(s)
- Xiaotong Guo
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Kangli Sun
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Zeqiang Wu
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Dongdong Xiao
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Yingang Song
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Shengting Li
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Guangliang Wei
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Weitao Li
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Yu Hao
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Bingqun Xu
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Kai Zhang
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Nan Liao
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Dan Hu
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Yao-Guang Liu
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Wubei Zong
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China.
| | - Jingxin Guo
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
10
|
Du X, Xu Z, Lu J, Chen Y, Gao X, Zhang J, He C, Huang L, Guo W, Cui Y, Wang X, Ai J, Li L, Cui Y, Liu Y, Fu J, Gu R, Wang J, Wang G. A LTR retrotransposon insertion leads to leafy phenotype in maize by elevating ZmOM66 expression. Nat Commun 2025; 16:3152. [PMID: 40175370 PMCID: PMC11965440 DOI: 10.1038/s41467-025-57811-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/04/2025] [Indexed: 04/04/2025] Open
Abstract
Leafy (Lfy1) is a classical dominant mutant showing more leaf number above primary ear and later flowering time in maize, but the causal gene together with its underlying genetic mechanism are unknown. Here, we report the cloning of Lfy1 mutant, and find that a retrotransposon insertion leads to leafy phenotype by elevating expression of its neighboring gene ZmOM66. ZmOM66 encodes an AAA+ ATPase that locate in mitochondria and interacts with itself. ZmOM66 overexpression affects the starch degradation, as well as contents of glucose, pyruvic acid, trehalose-6-phosphate, and TCA cycle related amino acids, and influences expression patterns of circadian clock genes. Moreover, expressions of floral related genes, including photoperiod regulated gene ZmPHYB1, integrator genes ZCN7, ZNC8 and ZCN12, and floral meristem identity genes ZMM4, ZMM15, and MASD67, are also significantly decreased by ZmOM66 overexpression. These results deepen our understanding of the regulatory mechanism of floral transition and leaf number in plant.
Collapse
Affiliation(s)
- Xuemei Du
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Maize Bio-Breeding, Frontiers Science Center for Molecular Design Breeding, Beijing Innovation Center for Crop Seed Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Zhuoyi Xu
- State Key Laboratory of Maize Bio-Breeding, Frontiers Science Center for Molecular Design Breeding, Beijing Innovation Center for Crop Seed Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jiawen Lu
- State Key Laboratory of Maize Bio-Breeding, Frontiers Science Center for Molecular Design Breeding, Beijing Innovation Center for Crop Seed Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yan Chen
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinpeng Gao
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Zhang
- State Key Laboratory of Maize Bio-Breeding, Frontiers Science Center for Molecular Design Breeding, Beijing Innovation Center for Crop Seed Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Cheng He
- State Key Laboratory of Maize Bio-Breeding, Frontiers Science Center for Molecular Design Breeding, Beijing Innovation Center for Crop Seed Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Liying Huang
- State Key Laboratory of Maize Bio-Breeding, Frontiers Science Center for Molecular Design Breeding, Beijing Innovation Center for Crop Seed Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Wei Guo
- State Key Laboratory of Maize Bio-Breeding, Frontiers Science Center for Molecular Design Breeding, Beijing Innovation Center for Crop Seed Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yangbo Cui
- State Key Laboratory of Maize Bio-Breeding, Frontiers Science Center for Molecular Design Breeding, Beijing Innovation Center for Crop Seed Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xiaoli Wang
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junmin Ai
- State Key Laboratory of Maize Bio-Breeding, Frontiers Science Center for Molecular Design Breeding, Beijing Innovation Center for Crop Seed Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Li Li
- State Key Laboratory of Maize Bio-Breeding, Frontiers Science Center for Molecular Design Breeding, Beijing Innovation Center for Crop Seed Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yu Cui
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunjun Liu
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junjie Fu
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Riliang Gu
- State Key Laboratory of Maize Bio-Breeding, Frontiers Science Center for Molecular Design Breeding, Beijing Innovation Center for Crop Seed Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.
| | - Jianhua Wang
- State Key Laboratory of Maize Bio-Breeding, Frontiers Science Center for Molecular Design Breeding, Beijing Innovation Center for Crop Seed Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.
| | - Guoying Wang
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
11
|
Wang Q, Wang M, Xia A, Wang J, Wang Z, Xu T, Jia D, Lu M, Tan W, Luo J, He Y. Natural variation in ZmNRT2.5 modulates husk leaf width and promotes seed protein content in maize. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1039-1052. [PMID: 39757743 PMCID: PMC11933875 DOI: 10.1111/pbi.14559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 01/07/2025]
Abstract
The husk leaf of maize (Zea mays) encases the ear as a modified leaf and plays pivotal roles in protecting the ear from pathogen infection, translocating nutrition for grains and warranting grain yield. However, the natural genetic basis for variation in husk leaf width remains largely unexplored. Here, we performed a genome-wide association study for maize husk leaf width and identified a 3-bp InDel (insertion/deletion) in the coding region of the nitrate transporter gene ZmNRT2.5. This polymorphism altered the interaction strength of ZmNRT2.5 with another transporter, ZmNPF5, thereby contributing to variation in husk leaf width. We also isolated loss-of-function mutants in ZmNRT2.5, which exhibited a substantial decrease in husk leaf width relative to their controls. We demonstrate that ZmNRT2.5 facilitates the transport of nitrate from husk leaves to maize kernels in plants grown under low-nitrogen conditions, contributing to the accumulation of proteins in maize seeds. Together, our findings uncovered a key gene controlling maize husk leaf width and nitrate transport from husk leaves to kernels. Identification of the ZmNRT2.5 loci offers direct targets for improving the protein content of maize seeds via molecular-assisted maize breeding.
Collapse
Affiliation(s)
- Qi Wang
- College of Agronomy and BiotechnologyChina Agricultural UniversityChina
| | - Min Wang
- College of Agronomy and BiotechnologyChina Agricultural UniversityChina
| | - Ai‐Ai Xia
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS)Chinese Academy of SciencesShanghaiChina
| | - Jin‐Yu Wang
- College of Agronomy and BiotechnologyChina Agricultural UniversityChina
| | - Zi Wang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Tao Xu
- Tieling Academy of Agricultural SciencesTielingChina
| | - De‐Tao Jia
- Tieling Academy of Agricultural SciencesTielingChina
| | - Ming Lu
- Maize Research InstituteJilin Academy of Agricultural SciencesGongzhulingChina
| | - Wei‐Ming Tan
- College of Agronomy and BiotechnologyChina Agricultural UniversityChina
| | - Jin‐Hong Luo
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Yan He
- College of Agronomy and BiotechnologyChina Agricultural UniversityChina
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| |
Collapse
|
12
|
Qiu Y, Liu L, Yan J, Xiang X, Wang S, Luo Y, Deng K, Xu J, Jin M, Wu X, Liwei Cheng, Zhou Y, Xie W, Liu HJ, Fernie AR, Hu X, Yan J. Precise engineering of gene expression by editing plasticity. Genome Biol 2025; 26:51. [PMID: 40065399 PMCID: PMC11892124 DOI: 10.1186/s13059-025-03516-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Identifying transcriptional cis-regulatory elements (CREs) and understanding their role in gene expression are essential for the precise manipulation of gene expression and associated phenotypes. This knowledge is fundamental for advancing genetic engineering and improving crop traits. RESULTS We here demonstrate that CREs can be accurately predicted and utilized to precisely regulate gene expression beyond the range of natural variation. We firstly build two sequence-to-expression deep learning models to respectively identify distal and proximal CREs by combining them with interpretability methods in multiple crops. A large number of distal CREs are verified for enhancer activity in vitro using UMI-STARR-seq on 12,000 synthesized sequences. These comprehensively characterized CREs and their precisely predicted effects further contribute to the design of in silico editing schemes for precise engineering of gene expression. We introduce a novel concept of "editingplasticity" to evaluate the potential of promoter editing to alter expression of each gene. As a proof of concept, both exhaustive prediction and random knockout mutants are analyzed within the promoter region of ZmVTE4, a key gene affecting α-tocopherol content in maize. A high degree of agreement between predicted and observed expression is observed, extending the range of natural variation and thereby allowing the creation of an optimal phenotype. CONCLUSIONS Our study provides a robust computational framework that advances knowledge-guided gene editing for precise regulation of gene expression and crop improvement. By reliably predicting and validating CREs, we offer a tool for targeted genetic modifications, enhancing desirable traits in crops.
Collapse
Affiliation(s)
- Yang Qiu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Lifen Liu
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- College of Informatics, Agricultural Bioinformatics Key Laboratory of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiali Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xianglei Xiang
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- College of Informatics, Agricultural Bioinformatics Key Laboratory of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shouzhe Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yun Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Kaixuan Deng
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- College of Informatics, Agricultural Bioinformatics Key Laboratory of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jieting Xu
- WIMI Biotechnology Co., Ltd., Sanya, Hainan, 572000, China
| | - Minliang Jin
- WIMI Biotechnology Co., Ltd., Sanya, Hainan, 572000, China
| | - Xiaoyu Wu
- WIMI Biotechnology Co., Ltd., Sanya, Hainan, 572000, China
| | - Liwei Cheng
- WIMI Biotechnology Co., Ltd., Sanya, Hainan, 572000, China
| | - Ying Zhou
- Institute of Agricultural Sciences of Xishuangbanna Prefecture of Yunnan Province, Jinghong, Yunnan, 666100, China
- The Expert Workstation of Jianbing Yan in Yunnan Province, Jinghong, Yunnan, 666100, China
| | - Weibo Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Hai-Jun Liu
- Yazhouwan National Laboratory, Sanya, 572024, China
| | - Alisdair R Fernie
- Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Xuehai Hu
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
- College of Informatics, Agricultural Bioinformatics Key Laboratory of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
- Yazhouwan National Laboratory, Sanya, 572024, China.
| |
Collapse
|
13
|
Zheng GM, Wu JW, Li J, Zhao YJ, Zhou C, Ren RC, Wei YM, Zhang XS, Zhao XY. The chromatin accessibility landscape during early maize seed development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70073. [PMID: 40127931 PMCID: PMC11932762 DOI: 10.1111/tpj.70073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 12/30/2024] [Accepted: 02/18/2025] [Indexed: 03/26/2025]
Abstract
Cis-regulatory elements (CREs) are enriched in accessible chromatin regions (ACRs) of eukaryotes. Despite extensive research on genome-wide ACRs in various plant tissues, the global impact of these changes on developmental processes in maize seeds remains poorly understood. In this study, we employed the assay for transposase-accessible chromatin sequencing (ATAC-seq) to reveal the chromatin accessibility profile throughout the genome during the early stages of maize seed development. We identified a total of 37 952 to 59 887 high-quality ACRs in maize seeds at 0 to 8 days after pollination (DAP). Furthermore, we examined the correlation between the identified ACRs and gene expression. We observed a positive correlation between the open degree of promoter-ACRs and the expression of most genes. Moreover, we identified binding footprints of numerous transcription factors (TFs) within chromatin accessibility regions and revealed key TF families involved in different stages. Through the footprints of accessible chromatin regions, we predicted transcription factor regulatory networks during early maize embryo development. Additionally, we discovered that DNA sequence diversity was notably reduced at ACRs, yet trait-associated SNPs were more likely to be located within ACRs. We edited the ACR containing the trait-associated SNP of NKD1. Both NKD1pro-1 and NKD1pro-2 showed phenotypes corresponding to the trait-associated SNP. Our results suggest that alterations in chromatin accessibility play a crucial role in maize seed development and highlight the potential contribution of open chromatin regions to advancements in maize breeding.
Collapse
Affiliation(s)
- Guang Ming Zheng
- State Key Laboratory of Crop Biology, College of Life SciencesShandong Agricultural UniversityTaianShandong271018China
| | - Jia Wen Wu
- State Key Laboratory of Crop Biology, College of Life SciencesShandong Agricultural UniversityTaianShandong271018China
| | - Jun Li
- State Key Laboratory of Crop Biology, College of Life SciencesShandong Agricultural UniversityTaianShandong271018China
| | - Ya Jie Zhao
- State Key Laboratory of Crop Biology, College of Life SciencesShandong Agricultural UniversityTaianShandong271018China
| | - Chao Zhou
- State Key Laboratory of Crop Biology, College of Life SciencesShandong Agricultural UniversityTaianShandong271018China
| | - Ru Chang Ren
- State Key Laboratory of Crop Biology, College of Life SciencesShandong Agricultural UniversityTaianShandong271018China
| | - Yi Ming Wei
- State Key Laboratory of Crop Biology, College of Life SciencesShandong Agricultural UniversityTaianShandong271018China
| | - Xian Sheng Zhang
- State Key Laboratory of Crop Biology, College of Life SciencesShandong Agricultural UniversityTaianShandong271018China
| | - Xiang Yu Zhao
- State Key Laboratory of Crop Biology, College of Life SciencesShandong Agricultural UniversityTaianShandong271018China
| |
Collapse
|
14
|
Torres-Rodríguez JV, Li D, Schnable JC. Evolving best practices for transcriptome-wide association studies accelerate discovery of gene-phenotype links. CURRENT OPINION IN PLANT BIOLOGY 2025; 83:102670. [PMID: 39626491 DOI: 10.1016/j.pbi.2024.102670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/20/2024] [Accepted: 11/01/2024] [Indexed: 02/01/2025]
Abstract
Transcriptome-wide association studies (TWAS) complement genome-wide association studies (GWAS) by using gene expression data to link specific genes to phenotypes. This review examines 37 TWAS studies across eight plant species, evaluating the impact of methodological choices on outcomes using maize and soybean datasets. Large sample sizes and synchronized sample collection for gene expression measurement appear to significantly increase power for discovering gene-phenotype linkages, while matching tissue, stage, and environment may matter much less than previously believed, making it feasible to reuse large and well-collected expression datasets across multiple studies. The development of statistical approaches and computational tools specifically optimized for plant TWAS data will ultimately be needed, but further potential remains to adapt advances developed in GWAS to TWAS contexts.
Collapse
Affiliation(s)
- J Vladimir Torres-Rodríguez
- Quantitative Life Sciences Initiative, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA; Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA; Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Delin Li
- Xianghu Laboratory, Hangzhou, 311231, China
| | - James C Schnable
- Quantitative Life Sciences Initiative, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA; Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA; Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
| |
Collapse
|
15
|
Luo Y, Zhai H, Zhong X, Yang B, Xu Y, Liu T, Wang Q, Zhou Y, Mao Y, Liu Y, Tang Q, Lu Y, Wang Y, Xu J. Characterization and functional analysis of conserved non-coding sequences among poaceae: insights into gene regulation and phenotypic variation in maize. BMC Genomics 2025; 26:46. [PMID: 39833673 PMCID: PMC11745007 DOI: 10.1186/s12864-025-11221-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Conserved non-coding sequences (CNS) are islands of non-coding sequences conserved across species and play an important role in regulating the spatiotemporal expression of genes. Identification of CNS provides valuable information about potentially functional genomic elements, regulatory regions, and helps to gain insights into the genetic basis of crop agronomic traits. RESULTS Here, we comprehensively analyze CNS in maize, by comparing the genomes of maize inbred line B73 (Zea mays ssp. mays), its close wild relative Zea mays spp. mexicana, and other grasses in Poaceae, including sorghum (Sorghum bicolor), foxtail millet (Setaria italica) and two adlay (Coix lacryma) cultivars. There were 289,931 CNS found in two syntenic gene pairs, while 51,701 CNS were conserved within at least three species. To explore the regulatory characteristics of the CNS identified, the flanking regions of CNS were compared with the peaks called using both transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) and chromatin immunoprecipitation with high-throughput sequencing (ChIP-Seq) data of histone modifications. It was found that CNS in maize were enriched in open chromatin regions compared with randomly selected non-coding regions of similar length. A significant enrichment of transcription factor binding sites was found within CNS sequences, including different transcription factors involved in abiotic stress response, such as OBP (OBF-BINDING PROTEIN) family and Adof1 (Encodes dof zinc finger protein). To investigate the epigenetic modification patterns in CNS, ChIP-Seq data for histone modifications H3K9ac, H3K4me3, H3K36me3, H3K9me3, and H3K27ac were further analyzed to depict the changes along CNS. Our findings revealed significantly elevated levels of transcription-promoting histone modifications in the CNS regions compared to randomly selected non-coding sequences with an equal number and similar length. Notably, CNS were also identified on both Vgt1 (Vegetative to generative transition 1) and ZmCCT10. In addition, CNS with potential functions were identified based on SNPs within CNS significantly associated with various agronomic traits in maize, which holds potential utility in molecular breeding for maize. CONCLUSIONS In summary, we identified and characterized CNS in maize through genomic comparative analysis, which provides valuable insights into their potential regulatory effects on gene expression and phenotypic variation.
Collapse
Affiliation(s)
- Yi Luo
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Hang Zhai
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Xiu Zhong
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Bo Yang
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Yang Xu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Tianhong Liu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
- Sichuan Tianfu New Area Rural Revitalization Research Institute, Tianfu New Area, 610213, China
| | - Qi Wang
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Yang Zhou
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Yan Mao
- College of Chemistry and Life Sciences, Chengdu Normal University, Wenjiang, 611130, Sichuan, China
| | - Yaxi Liu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Qi Tang
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Yanli Lu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Yao Wang
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Jie Xu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China.
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China.
| |
Collapse
|
16
|
Yu Y, Li W, Liu Y, Liu Y, Zhang Q, Ouyang Y, Ding W, Xue Y, Zou Y, Yan J, Jia A, Yan J, Hao X, Gou Y, Zhai Z, Liu L, Zheng Y, Zhang B, Xu J, Yang N, Xiao Y, Zhuo L, Lai Z, Yin P, Liu HJ, Fernie AR, Jackson D, Yan J. A Zea genus-specific micropeptide controls kernel dehydration in maize. Cell 2025; 188:44-59.e21. [PMID: 39536747 DOI: 10.1016/j.cell.2024.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 06/09/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Kernel dehydration rate (KDR) is a crucial production trait that affects mechanized harvesting and kernel quality in maize; however, the underlying mechanisms remain unclear. Here, we identified a quantitative trait locus (QTL), qKDR1, as a non-coding sequence that regulates the expression of qKDR1 REGULATED PEPTIDE GENE (RPG). RPG encodes a 31 amino acid micropeptide, microRPG1, which controls KDR by precisely modulating the expression of two genes, ZmETHYLENE-INSENSITIVE3-like 1 and 3, in the ethylene signaling pathway in the kernels after filling. microRPG1 is a Zea genus-specific micropeptide and originated de novo from a non-coding sequence. Knockouts of microRPG1 result in faster KDR in maize. By contrast, overexpression or exogenous application of the micropeptide shows the opposite effect both in maize and Arabidopsis. Our findings reveal the molecular mechanism of microRPG1 in kernel dehydration and provide an important tool for future crop breeding.
Collapse
Affiliation(s)
- Yanhui Yu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Wenqiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Yuanfang Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Yanjun Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Qinzhi Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yidan Ouyang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Wenya Ding
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yu Xue
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yilin Zou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Junjun Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Anqiang Jia
- Yazhouwan National Laboratory, Sanya 572024, China
| | - Jiali Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xinfei Hao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yujie Gou
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Zhaowei Zhai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Longyu Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Yang Zheng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Bao Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Jieting Xu
- WIMI Biotechnology Co., Ltd., Changzhou, Jiangsu 213000, China
| | - Ning Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Yingjie Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Lin Zhuo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Zhibing Lai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Hai-Jun Liu
- Yazhouwan National Laboratory, Sanya 572024, China
| | - Alisdair R Fernie
- Department of Root Biology and Symbiosis, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| | - David Jackson
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China; Yazhouwan National Laboratory, Sanya 572024, China.
| |
Collapse
|
17
|
Kong L, Cheng H, Zhu K, Song B. LOGOWheat: deep learning-based prediction of regulatory effects for noncoding variants in wheats. Brief Bioinform 2024; 26:bbae705. [PMID: 39789857 PMCID: PMC11717721 DOI: 10.1093/bib/bbae705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/18/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025] Open
Abstract
Identifying the regulatory effects of noncoding variants presents a significant challenge. Recently, the accumulation of epigenomic profiling data in wheat has provided an opportunity to model the functional impacts of these variants. In this study, we introduce Language of Genome for Wheat (LOGOWheat), a deep learning-based tool designed to predict the regulatory effects of noncoding variants in wheat. LOGOWheat initially employs a self-attention-based, contextualized pretrained language model to acquire bidirectional representations of the unlabeled wheat reference genome. Epigenomic profiling data are also collected and utilized to fine-tune the model, enabling it to discern the regulatory code inherent in genomic sequences. The test results suggest that LOGOWheat is highly effective in predicting multiple chromatin features, achieving an average area under the receiver operating characteristic (AUROC) of 0.8531 and an average area under the precision-recall curve (AUPRC) of 0.7633. Two case studies illustrate and demonstrate the main functions provided by LOGOWheat: assigning scores and prioritizing causal variants within a given variant set and constructing a saturated mutagenesis map in silico to discover high-impact sites or functional motifs in a given sequence. Finally, we propose the concept of extracting potential functional variations from the wheat population by integrating evolutionary conservation information. LOGOWheat is available at http://logowheat.cn/.
Collapse
Affiliation(s)
- Lingpeng Kong
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, No. 97 Buxin Road, Dapeng New District, Shenzhen 518124, China
| | - Hong Cheng
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, No. 97 Buxin Road, Dapeng New District, Shenzhen 518124, China
| | - Kun Zhu
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, No. 97 Buxin Road, Dapeng New District, Shenzhen 518124, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, No. 379 Mingli Road (North Section), Zhengzhou 450046, China
| | - Bo Song
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, No. 97 Buxin Road, Dapeng New District, Shenzhen 518124, China
| |
Collapse
|
18
|
Cao S, Chen ZJ. Transgenerational epigenetic inheritance during plant evolution and breeding. TRENDS IN PLANT SCIENCE 2024; 29:1203-1223. [PMID: 38806375 PMCID: PMC11560745 DOI: 10.1016/j.tplants.2024.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/12/2024] [Accepted: 04/25/2024] [Indexed: 05/30/2024]
Abstract
Plants can program and reprogram their genomes to create genetic variation and epigenetic modifications, leading to phenotypic plasticity. Although consequences of genetic changes are comprehensible, the basis for transgenerational inheritance of epigenetic variation is elusive. This review addresses contributions of external (environmental) and internal (genomic) factors to the establishment and maintenance of epigenetic memory during plant evolution, crop domestication, and modern breeding. Dynamic and pervasive changes in DNA methylation and chromatin modifications provide a diverse repertoire of epigenetic variation potentially for transgenerational inheritance. Elucidating and harnessing epigenetic inheritance will help us develop innovative breeding strategies and biotechnological tools to improve crop yield and resilience in the face of environmental challenges. Beyond plants, epigenetic principles are shared across sexually reproducing organisms including humans with relevance to medicine and public health.
Collapse
Affiliation(s)
- Shuai Cao
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Z Jeffrey Chen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
19
|
Maistriaux LC, Laurent MJ, Jeanguenin L, Prado SA, Nader J, Welcker C, Charcosset A, Tardieu F, Nicolas SD, Chaumont F. Genetic variability of aquaporin expression in maize: From eQTLs to a MITE insertion regulating PIP2;5 expression. PLANT PHYSIOLOGY 2024; 196:368-384. [PMID: 38839061 PMCID: PMC11376376 DOI: 10.1093/plphys/kiae326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 02/28/2024] [Accepted: 05/02/2024] [Indexed: 06/07/2024]
Abstract
Plant aquaporins are involved in numerous physiological processes, such as cellular homeostasis, tissue hydraulics, transpiration, and nutrient supply, and are key players of the response to environmental cues. While varying expression patterns of aquaporin genes have been described across organs, developmental stages, and stress conditions, the underlying regulation mechanisms remain elusive. Hence, this work aimed to shed light on the expression variability of 4 plasma membrane intrinsic protein (PIP) genes in maize (Zea mays) leaves, and its genetic causes, through expression quantitative trait locus (eQTL) mapping across a 252-hybrid diversity panel. Significant genetic variability in PIP transcript abundance was observed to different extents depending on the isoforms. The genome-wide association study mapped numerous eQTLs, both local and distant, thus emphasizing the existing natural diversity of PIP gene expression across the studied panel and the potential to reveal regulatory actors and mechanisms. One eQTL associated with PIP2;5 expression variation was characterized. Genomic sequence comparison and in vivo reporter assay attributed, at least partly, the local eQTL to a transposon-containing polymorphism in the PIP2;5 promoter. This work paves the way to the molecular understanding of PIP gene regulation and its possible integration into larger networks regulating physiological and stress adaptation processes.
Collapse
Affiliation(s)
- Laurie C Maistriaux
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium
| | - Maxime J Laurent
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium
| | - Linda Jeanguenin
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium
| | | | - Joseph Nader
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium
| | - Claude Welcker
- INRAE, LEPSE, Université de Montpellier, 34060 Montpellier, France
| | - Alain Charcosset
- INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - François Tardieu
- INRAE, LEPSE, Université de Montpellier, 34060 Montpellier, France
| | - Stéphane D Nicolas
- INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - François Chaumont
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
20
|
Schlegel L, Bhardwaj R, Shahryary Y, Demirtürk D, Marand A, Schmitz R, Johannes F. GenomicLinks: deep learning predictions of 3D chromatin interactions in the maize genome. NAR Genom Bioinform 2024; 6:lqae123. [PMID: 39318505 PMCID: PMC11420838 DOI: 10.1093/nargab/lqae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/25/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024] Open
Abstract
Gene regulation in eukaryotes is partly shaped by the 3D organization of chromatin within the cell nucleus. Distal interactions between cis-regulatory elements and their target genes are widespread, and many causal loci underlying heritable agricultural traits have been mapped to distal non-coding elements. The biology underlying chromatin loop formation in plants is poorly understood. Dissecting the sequence features that mediate distal interactions is an important step toward identifying putative molecular mechanisms. Here, we trained GenomicLinks, a deep learning model, to identify DNA sequence features predictive of 3D chromatin interactions in maize. We found that the presence of binding motifs of specific transcription factor classes, especially bHLH, is predictive of chromatin interaction specificities. Using an in silico mutagenesis approach we show the removal of these motifs from loop anchors leads to reduced interaction probabilities. We were able to validate these predictions with single-cell co-accessibility data from different maize genotypes that harbor natural substitutions in these TF binding motifs. GenomicLinks is currently implemented as an open-source web tool, which should facilitate its wider use in the plant research community.
Collapse
Affiliation(s)
- Luca Schlegel
- TUM School of Life Sciences, Plant Epigenomics, Technical University of Munich, Freising, 85354, Germany
| | - Rohan Bhardwaj
- TUM School of Life Sciences, Plant Epigenomics, Technical University of Munich, Freising, 85354, Germany
| | - Yadollah Shahryary
- TUM School of Life Sciences, Plant Epigenomics, Technical University of Munich, Freising, 85354, Germany
| | - Defne Demirtürk
- TUM School of Life Sciences, Plant Epigenomics, Technical University of Munich, Freising, 85354, Germany
| | - Alexandre P Marand
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Frank Johannes
- TUM School of Life Sciences, Plant Epigenomics, Technical University of Munich, Freising, 85354, Germany
| |
Collapse
|
21
|
Guo S, Ai J, Zheng N, Hu H, Xu Z, Chen Q, Li L, Liu Y, Zhang H, Li J, Pan Q, Chen F, Yuan L, Fu J, Gu R, Wang J, Du X. A genome-wide association study uncovers a ZmRap2.7-ZCN9/ZCN10 module to regulate ABA signalling and seed vigour in maize. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2472-2487. [PMID: 38761386 PMCID: PMC11331778 DOI: 10.1111/pbi.14362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 05/20/2024]
Abstract
Seed vigour, including rapid, uniform germination and robust seedling establishment under various field conditions, is becoming an increasingly essential agronomic trait for achieving high yield in crops. However, little is known about this important seed quality trait. In this study, we performed a genome-wide association study to identify a key transcription factor ZmRap2.7, which regulates seed vigour through transcriptionally repressing expressions of three ABA signalling genes ZmPYL3, ZmPP2C and ZmABI5 and two phosphatidylethanolamine-binding genes ZCN9 and ZCN10. In addition, ZCN9 and ZCN10 proteins could interact with ZmPYL3, ZmPP2C and ZmABI5 proteins, and loss-of-function of ZmRap2.7 and overexpression of ZCN9 and ZCN10 reduced ABA sensitivity and seed vigour, suggesting a complex regulatory network for regulation of ABA signalling mediated seed vigour. Finally, we showed that four SNPs in ZmRap2.7 coding region influenced its transcriptionally binding activity to the downstream gene promoters. Together with previously identified functional variants within and surrounding ZmRap2.7, we concluded that the distinct allelic variations of ZmRap2.7 were obtained independently during maize domestication and improvement, and responded separately for the diversities of seed vigour, flowering time and brace root development. These results provide novel genes, a new regulatory network and an evolutional mechanism for understanding the molecular mechanism of seed vigour.
Collapse
Affiliation(s)
- Shasha Guo
- State Key Laboratory of Maize Bio‐breeding, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Junmin Ai
- State Key Laboratory of Maize Bio‐breeding, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Nannan Zheng
- State Key Laboratory of Maize Bio‐breeding, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Hairui Hu
- State Key Laboratory of Maize Bio‐breeding, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Zhuoyi Xu
- State Key Laboratory of Maize Bio‐breeding, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Quanquan Chen
- State Key Laboratory of Maize Bio‐breeding, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Li Li
- State Key Laboratory of Maize Bio‐breeding, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Yunjun Liu
- Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijingChina
| | - Hongwei Zhang
- Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijingChina
| | - Jieping Li
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green DevelopmentChina Agricultural UniversityBeijingChina
| | - Qingchun Pan
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green DevelopmentChina Agricultural UniversityBeijingChina
| | - Fanjun Chen
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green DevelopmentChina Agricultural UniversityBeijingChina
| | - Lixing Yuan
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green DevelopmentChina Agricultural UniversityBeijingChina
| | - Junjie Fu
- Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijingChina
| | - Riliang Gu
- State Key Laboratory of Maize Bio‐breeding, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
- Joint Research Institute of China Agricultural University in AksuAksuChina
| | - Jianhua Wang
- State Key Laboratory of Maize Bio‐breeding, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Xuemei Du
- State Key Laboratory of Maize Bio‐breeding, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| |
Collapse
|
22
|
Yan R, Dong Y, Li Y, Xu C, Luan Q, Diao S, Wu C. Enhancing genomic association studies in slash pine through close-range UAV-based morphological phenotyping. FORESTRY RESEARCH 2024; 4:e025. [PMID: 39524429 PMCID: PMC11524239 DOI: 10.48130/forres-0024-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/24/2024] [Accepted: 07/10/2024] [Indexed: 11/16/2024]
Abstract
In forestry genetics and industry, tree morphological traits such as height, crown size, and shape are critical for understanding growth dynamics and productivity. Traditional methods for measuring these traits are limited in efficiency, scalability, and accuracy, posing challenges for large-scale forest assessments. This study focuses on integrating unmanned aerial vehicle (UAV) technology with GWAS to improve genomic association studies in slash pine (Pinus elliottii). Seven key morphological traits have been identified (canopy area (CA), crown base height (CBH), crown length (CL), canopy volume (CV), crown width (CW), crown width height (CWH), and tree height (H)) through advanced UAV-based phenotyping. These associations account for a remarkable range of heritability in slash pine, with traits such as CBH, CL, CV, and H showing relatively high heritability across both Single nucleotide polymorphisms (SNP) and pedigree methods, indicating strong genetic influence, while traits such as CWH show lower heritability, suggesting greater environmental influence or non-additive genetic variance. The GWAS identified 28 associations, including 22 different SNPs localized to 16 candidate genes, that were significantly associated with the morphological traits of Slash Pine. Notably, two of these candidate genes, annotated as putative DEAD-like helicase and ethylene-responsive element binding factor (ERF), were present at different mutation sites and were significantly associated with CW and CA traits, respectively. These results demonstrate that the UAV imaging enables a comprehensive analysis of the Morphological growth response of slash pine and can facilitate the discovery of informative alleles to elucidate the genetic structure underlying complex phenotypic variation in conifers.
Collapse
Affiliation(s)
- Ruiye Yan
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, Zhejiang, China
- College of Landscape and Travel, Agricultural University of Hebei, Baoding 071051, Hebei, China
| | - Yihan Dong
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, Zhejiang, China
| | - Yanjie Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, Zhejiang, China
| | - Cong Xu
- School of Forestry, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Qifu Luan
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, Zhejiang, China
| | - Shu Diao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, Zhejiang, China
| | - Chunyan Wu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
23
|
Wang D, He X, Baer M, Lami K, Yu B, Tassinari A, Salvi S, Schaaf G, Hochholdinger F, Yu P. Lateral root enriched Massilia associated with plant flowering in maize. MICROBIOME 2024; 12:124. [PMID: 38982519 PMCID: PMC11234754 DOI: 10.1186/s40168-024-01839-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 05/16/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND Beneficial associations between plants and soil microorganisms are critical for crop fitness and resilience. However, it remains obscure how microorganisms are assembled across different root compartments and to what extent such recruited microbiomes determine crop performance. Here, we surveyed the root transcriptome and the root and rhizosphere microbiome via RNA sequencing and full-length (V1-V9) 16S rRNA gene sequencing from genetically distinct monogenic root mutants of maize (Zea mays L.) under different nutrient-limiting conditions. RESULTS Overall transcriptome and microbiome display a clear assembly pattern across the compartments, i.e., from the soil through the rhizosphere to the root tissues. Co-variation analysis identified that genotype dominated the effect on the microbial community and gene expression over the nutrient stress conditions. Integrated transcriptomic and microbial analyses demonstrated that mutations affecting lateral root development had the largest effect on host gene expression and microbiome assembly, as compared to mutations affecting other root types. Cooccurrence and trans-kingdom network association analysis demonstrated that the keystone bacterial taxon Massilia (Oxalobacteraceae) is associated with root functional genes involved in flowering time and overall plant biomass. We further observed that the developmental stage drives the differentiation of the rhizosphere microbial assembly, especially the associations of the keystone bacteria Massilia with functional genes in reproduction. Taking advantage of microbial inoculation experiments using a maize early flowering mutant, we confirmed that Massilia-driven maize growth promotion indeed depends on flowering time. CONCLUSION We conclude that specific microbiota supporting lateral root formation could enhance crop performance by mediating functional gene expression underlying plant flowering time in maize. Video Abstract.
Collapse
Affiliation(s)
- Danning Wang
- Emmy Noether Group Root Functional Biology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, 53113, Germany
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, 53113, Germany
| | - Xiaoming He
- Emmy Noether Group Root Functional Biology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, 53113, Germany
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, 53113, Germany
| | - Marcel Baer
- Emmy Noether Group Root Functional Biology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, 53113, Germany
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, 53113, Germany
| | - Klea Lami
- Emmy Noether Group Root Functional Biology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, 53113, Germany
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, 53113, Germany
- Plant Nutrition, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, 53113, Germany
| | - Baogang Yu
- Emmy Noether Group Root Functional Biology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, 53113, Germany
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, 53113, Germany
| | - Alberto Tassinari
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, 40127, Italy
| | - Silvio Salvi
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, 40127, Italy
| | - Gabriel Schaaf
- Plant Nutrition, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, 53113, Germany
| | - Frank Hochholdinger
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, 53113, Germany
| | - Peng Yu
- Emmy Noether Group Root Functional Biology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, 53113, Germany.
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, 53113, Germany.
| |
Collapse
|
24
|
Galli M, Chen Z, Ghandour T, Chaudhry A, Gregory J, Li M, Zhang X, Dong Y, Song G, Walley JW, Chuck G, Whipple C, Kaeppler HF, Huang SSC, Gallavotti A. Transcription factor binding site divergence across maize inbred lines drives transcriptional and phenotypic variation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.31.596834. [PMID: 38895211 PMCID: PMC11185568 DOI: 10.1101/2024.05.31.596834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Regulatory elements are important constituents of plant genomes that have shaped ancient and modern crops. Their identification, function, and diversity in crop genomes however are poorly characterized, thus limiting our ability to harness their power for further agricultural advances using induced or natural variation. Here, we use DNA affinity purification-sequencing (DAP-seq) to map transcription factor (TF) binding events for 200 maize TFs belonging to 30 distinct families and heterodimer pairs in two distinct inbred lines historically used for maize hybrid plant production, providing empirical binding site annotation for 5.3% of the maize genome. TF binding site comparison in B73 and Mo17 inbreds reveals widespread differences, driven largely by structural variation, that correlate with gene expression changes. TF binding site presence-absence variation helps clarify complex QTL such as vgt1, an important determinant of maize flowering time, and DICE, a distal enhancer involved in herbivore resistance. Modification of TF binding regions via CRISPR-Cas9 mediated editing alters target gene expression and phenotype. Our functional catalog of maize TF binding events enables collective and comparative TF binding analysis, and highlights its value for agricultural improvement.
Collapse
Affiliation(s)
- Mary Galli
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
| | - Zongliang Chen
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
| | - Tara Ghandour
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Amina Chaudhry
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
| | - Jason Gregory
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
| | - Miaomiao Li
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Xuan Zhang
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - Yinxin Dong
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - Gaoyuan Song
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University; Ames, IA, 50011
| | - Justin W. Walley
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University; Ames, IA, 50011
| | - George Chuck
- Plant Gene Expression Center, Albany, CA 94710, USA
| | - Clinton Whipple
- Department of Biology, Brigham Young University, 4102 LSB, Provo, UT 84602, USA
| | - Heidi F. Kaeppler
- Department of Agronomy, University of Wisconsin, Madison, WI, USA
- Wisconsin Crop Innovation Center, University of Wisconsin, Middleton, WI, USA
| | - Shao-shan Carol Huang
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Andrea Gallavotti
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA
| |
Collapse
|
25
|
Chen S, Gao S, Wang D, Liu J, Ren Y, Wang Z, Wei X, Wang Q, Huang X. FKF1b controls reproductive transition associated with adaptation to geographical distribution in maize. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:943-955. [PMID: 38501459 DOI: 10.1111/jipb.13639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/23/2024] [Indexed: 03/20/2024]
Abstract
Maize (Zea mays subspecies mays) is an important commercial crop across the world, and its flowering time is closely related to grain yield, plant cycle and latitude adaptation. FKF1 is an essential clock-regulated blue-light receptor with distinct functions on flowering time in plants, and its function in maize remains unclear. In this study, we identified two FKF1 homologs in the maize genome, named ZmFKF1a and ZmFKF1b, and indicated that ZmFKF1a and ZmFKF1b independently regulate reproductive transition through interacting with ZmCONZ1 and ZmGI1 to increase the transcription levels of ZmCONZ1 and ZCN8. We demonstrated that ZmFKF1b underwent artificial selection during modern breeding in China probably due to its role in geographical adaptation. Furthermore, our data suggested that ZmFKF1bHap_C7 may be an elite allele, which increases the abundance of ZmCONZ1 mRNA more efficiently and adapt to a wider range of temperature zone than that of ZmFKF1bHap_Z58 to promote maize floral transition. It extends our understanding of the genetic diversity of maize flowering. This allele is expected to be introduced into tropical maize germplasm to enrich breeding resources and may improve the adaptability of maize at different climate zones, especially at temperate region.
Collapse
Affiliation(s)
- Suhui Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Shan Gao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Dongyang Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jie Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yingying Ren
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zhihan Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xin Wei
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Qin Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xuehui Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
26
|
Jafari F, Wang B, Wang H, Zou J. Breeding maize of ideal plant architecture for high-density planting tolerance through modulating shade avoidance response and beyond. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:849-864. [PMID: 38131117 DOI: 10.1111/jipb.13603] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/27/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Maize is a major staple crop widely used as food, animal feed, and raw materials in industrial production. High-density planting is a major factor contributing to the continuous increase of maize yield. However, high planting density usually triggers a shade avoidance response and causes increased plant height and ear height, resulting in lodging and yield loss. Reduced plant height and ear height, more erect leaf angle, reduced tassel branch number, earlier flowering, and strong root system architecture are five key morphological traits required for maize adaption to high-density planting. In this review, we summarize recent advances in deciphering the genetic and molecular mechanisms of maize involved in response to high-density planting. We also discuss some strategies for breeding advanced maize cultivars with superior performance under high-density planting conditions.
Collapse
Affiliation(s)
- Fereshteh Jafari
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Baobao Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- National Nanfan Research Institute, CAAS, Sanya, 572025, China
| | - Haiyang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Junjie Zou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- National Nanfan Research Institute, CAAS, Sanya, 572025, China
| |
Collapse
|
27
|
Ran F, Wang Y, Jiang F, Yin X, Bi Y, Shaw RK, Fan X. Studies on Candidate Genes Related to Flowering Time in a Multiparent Population of Maize Derived from Tropical and Temperate Germplasm. PLANTS (BASEL, SWITZERLAND) 2024; 13:1032. [PMID: 38611561 PMCID: PMC11013272 DOI: 10.3390/plants13071032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/31/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
A comprehensive study on maize flowering traits, focusing on the regulation of flowering time and the elucidation of molecular mechanisms underlying the genes controlling flowering, holds the potential to significantly enhance our understanding of the associated regulatory gene network. In this study, three tropical maize inbreds, CML384, CML171, and CML444, were used, along with a temperate maize variety, Shen137, as parental lines to cross with Ye107. The resulting F1s underwent seven consecutive generations of self-pollination through the single-seed descent (SSD) method to develop a multiparent population. To investigate the regulation of maize flowering time-related traits and to identify loci and candidate genes, a genome-wide association study (GWAS) was conducted. GWAS analysis identified 556 SNPs and 12 candidate genes that were significantly associated with flowering time-related traits. Additionally, an analysis of the effect of the estimated breeding values of the subpopulations on flowering time was conducted to further validate the findings of the present study. Collectively, this study offers valuable insights into novel candidate genes, contributing to an improved understanding of maize flowering time-related traits. This information holds practical significance for future maize breeding programs aimed at developing high-yielding hybrids.
Collapse
Affiliation(s)
- Fengyun Ran
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650500, China; (F.R.); (Y.W.)
| | - Yizhu Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650500, China; (F.R.); (Y.W.)
| | - Fuyan Jiang
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; (F.J.); (X.Y.); (Y.B.); (R.K.S.)
| | - Xingfu Yin
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; (F.J.); (X.Y.); (Y.B.); (R.K.S.)
| | - Yaqi Bi
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; (F.J.); (X.Y.); (Y.B.); (R.K.S.)
| | - Ranjan K. Shaw
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; (F.J.); (X.Y.); (Y.B.); (R.K.S.)
| | - Xingming Fan
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; (F.J.); (X.Y.); (Y.B.); (R.K.S.)
| |
Collapse
|
28
|
Yang H, Zhang Z, Zhang N, Li T, Wang J, Zhang Q, Xue J, Zhu W, Xu S. QTL mapping for plant height and ear height using bi-parental immortalized heterozygous populations in maize. FRONTIERS IN PLANT SCIENCE 2024; 15:1371394. [PMID: 38590752 PMCID: PMC10999566 DOI: 10.3389/fpls.2024.1371394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/06/2024] [Indexed: 04/10/2024]
Abstract
Introduction Plant height (PH) and ear height (EH) are key plant architectural traits in maize, which will affect the photosynthetic efficiency, high plant density tolerance, suitability for mechanical harvesting. Methods QTL mapping were conducted for PH and EH using a recombinant inbred line (RIL) population and two corresponding immortalized backcross (IB) populations obtained from crosses between the RIL population and the two parental lines. Results A total of 17 and 15 QTL were detected in the RIL and IB populations, respectively. Two QTL, qPH1-1 (qEH1-1) and qPH1-2 (qEH1-4) in the RIL, were simultaneously identified for PH and EH. Combing reported genome-wide association and cloned PH-related genes, co-expression network analyses were constructed, then five candidate genes with high confidence in major QTL were identified including Zm00001d011117 and Zm00001d011108, whose homologs have been confirmed to play a role in determining PH in maize and soybean. Discussion QTL mapping used a immortalized backcross population is a new strategy. These identified genes in this study can provide new insights for improving the plant architecture in maize.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wanchao Zhu
- College of Agronomy, Key Laboratory of Maize Biology and Genetic Breeding in Arid Area of Northwest Region, Yangling, Shaanxi, China
| | - Shutu Xu
- College of Agronomy, Key Laboratory of Maize Biology and Genetic Breeding in Arid Area of Northwest Region, Yangling, Shaanxi, China
| |
Collapse
|
29
|
Xie S, Luo H, Huang W, Jin W, Dong Z. Striking a growth-defense balance: Stress regulators that function in maize development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:424-442. [PMID: 37787439 DOI: 10.1111/jipb.13570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/01/2023] [Indexed: 10/04/2023]
Abstract
Maize (Zea mays) cultivation is strongly affected by both abiotic and biotic stress, leading to reduced growth and productivity. It has recently become clear that regulators of plant stress responses, including the phytohormones abscisic acid (ABA), ethylene (ET), and jasmonic acid (JA), together with reactive oxygen species (ROS), shape plant growth and development. Beyond their well established functions in stress responses, these molecules play crucial roles in balancing growth and defense, which must be finely tuned to achieve high yields in crops while maintaining some level of defense. In this review, we provide an in-depth analysis of recent research on the developmental functions of stress regulators, focusing specifically on maize. By unraveling the contributions of these regulators to maize development, we present new avenues for enhancing maize cultivation and growth while highlighting the potential risks associated with manipulating stress regulators to enhance grain yields in the face of environmental challenges.
Collapse
Affiliation(s)
- Shiyi Xie
- Maize Engineering and Technology Research Center of Hunan Province, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Hongbing Luo
- Maize Engineering and Technology Research Center of Hunan Province, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Wei Huang
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Weiwei Jin
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, Fresh Corn Research Center of BTH, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China
| | - Zhaobin Dong
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
30
|
Song B, Buckler ES, Stitzer MC. New whole-genome alignment tools are needed for tapping into plant diversity. TRENDS IN PLANT SCIENCE 2024; 29:355-369. [PMID: 37749022 DOI: 10.1016/j.tplants.2023.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/19/2023] [Accepted: 08/23/2023] [Indexed: 09/27/2023]
Abstract
Genome alignment is one of the most foundational methods for genome sequence studies. With rapid advances in sequencing and assembly technologies, these newly assembled genomes present challenges for alignment tools to meet the increased complexity and scale. Plant genome alignment is technologically challenging because of frequent whole-genome duplications (WGDs) as well as chromosome rearrangements and fractionation, high nucleotide diversity, widespread structural variation, and high transposable element (TE) activity causing large proportions of repeat elements. We summarize classical pairwise and multiple genome alignment (MGA) methods, and highlight techniques that are widely used or are being developed by the plant research community. We also outline the remaining challenges for precise genome alignment and the interpretation of alignment results in plants.
Collapse
Affiliation(s)
- Baoxing Song
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong 261325, China; Key Laboratory of Maize Biology and Genetic Breeding in Arid Area of Northwest Region of the Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Edward S Buckler
- Institute for Genomic Diversity, Cornell University, Ithaca, NY 14853, USA; Section of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853, USA; Agricultural Research Service, United States Department of Agriculture, Ithaca, NY 14853, USA
| | - Michelle C Stitzer
- Institute for Genomic Diversity, Cornell University, Ithaca, NY 14853, USA; Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
31
|
Liu W, Zheng T, Qiu L, Guo X, Li P, Yong X, Li L, Ahmad S, Wang J, Cheng T, Zhang Q. A 49-bp deletion of PmAP2L results in a double flower phenotype in Prunus mume. HORTICULTURE RESEARCH 2024; 11:uhad278. [PMID: 38371636 PMCID: PMC10873580 DOI: 10.1093/hr/uhad278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/10/2023] [Indexed: 02/20/2024]
Abstract
The double flower is an important trait with substantial ornamental value. While mutations in PETALOSA TOE-type or AG (AGAMOUS) genes play a crucial role in enhancing petal number in ornamental plants, the complete mechanism underlying the formation of double flowers remains to be fully elucidated. Through the application of bulked segregant analysis (BSA), we identified a novel gene, APETALA2-like (PmAP2L), characterized by a 49-bp deletion in double-flowered Prunus mume. β-Glucuronidase (GUS) staining and luciferase reporter assays confirmed that the 49-bp deletion in PmAP2L reduced its binding with Pmu-miRNA172a. Phylogenetic analysis and microsynteny analysis suggested that PmAP2L was not a PETALOSA TOE-type gene, and it might be a new gene controlling the formation of double flower in P. mume. Subsequently, overexpression of PmAP2L-D in tobacco led to a significant rise in the number of stamens and the conversion of stamens to petals. Furthermore, silencing of the homologue of RC5G0530900 in rose significantly reduced the number of petals. Using transient gene expression in P. mume flower buds, we determined the functional differences between PmAP2L-D and PmAP2-S in controlling flower development. Meanwhile, DNA-affinity purification sequencing (DAP-seq), yeast hybrid assays and luciferase reporter assays indicated that PmAP2L negatively regulated the floral organ identity genes by forming a repressor complex with PmTPL and PmHDA6/19. Overall, these findings indicate that the variation in PmAP2L is associated with differences in the regulation of genes responsible for floral organ identity, providing new insights into the double-flower trait and double-flower breeding in plants.
Collapse
Affiliation(s)
- Weichao Liu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Tangchun Zheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Like Qiu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Xiaoyu Guo
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Ping Li
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Xue Yong
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Lulu Li
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Sagheer Ahmad
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| |
Collapse
|
32
|
Lu C, Wei Y, Abbas M, Agula H, Wang E, Meng Z, Zhang R. Application of Single-Cell Assay for Transposase-Accessible Chromatin with High Throughput Sequencing in Plant Science: Advances, Technical Challenges, and Prospects. Int J Mol Sci 2024; 25:1479. [PMID: 38338756 PMCID: PMC10855595 DOI: 10.3390/ijms25031479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
The Single-cell Assay for Transposase-Accessible Chromatin with high throughput sequencing (scATAC-seq) has gained increasing popularity in recent years, allowing for chromatin accessibility to be deciphered and gene regulatory networks (GRNs) to be inferred at single-cell resolution. This cutting-edge technology now enables the genome-wide profiling of chromatin accessibility at the cellular level and the capturing of cell-type-specific cis-regulatory elements (CREs) that are masked by cellular heterogeneity in bulk assays. Additionally, it can also facilitate the identification of rare and new cell types based on differences in chromatin accessibility and the charting of cellular developmental trajectories within lineage-related cell clusters. Due to technical challenges and limitations, the data generated from scATAC-seq exhibit unique features, often characterized by high sparsity and noise, even within the same cell type. To address these challenges, various bioinformatic tools have been developed. Furthermore, the application of scATAC-seq in plant science is still in its infancy, with most research focusing on root tissues and model plant species. In this review, we provide an overview of recent progress in scATAC-seq and its application across various fields. We first conduct scATAC-seq in plant science. Next, we highlight the current challenges of scATAC-seq in plant science and major strategies for cell type annotation. Finally, we outline several future directions to exploit scATAC-seq technologies to address critical challenges in plant science, ranging from plant ENCODE(The Encyclopedia of DNA Elements) project construction to GRN inference, to deepen our understanding of the roles of CREs in plant biology.
Collapse
Affiliation(s)
- Chao Lu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.L.); (Y.W.)
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yunxiao Wei
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.L.); (Y.W.)
| | - Mubashir Abbas
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.L.); (Y.W.)
| | - Hasi Agula
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Edwin Wang
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Zhigang Meng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.L.); (Y.W.)
| | - Rui Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.L.); (Y.W.)
| |
Collapse
|
33
|
Yu G, Sun B, Zhu Z, Mehareb EM, Teng A, Han J, Zhang H, Liu J, Liu X, Raza G, Zhang B, Zhang Y, Wang K. Genome-wide DNase I-hypersensitive site assay reveals distinct genomic distributions and functional features of open chromatin in autopolyploid sugarcane. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:573-589. [PMID: 37897092 DOI: 10.1111/tpj.16513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/15/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
The characterization of cis-regulatory DNA elements (CREs) is essential for deciphering the regulation of gene expression in eukaryotes. Although there have been endeavors to identify CREs in plants, the properties of CREs in polyploid genomes are still largely unknown. Here, we conducted the genome-wide identification of DNase I-hypersensitive sites (DHSs) in leaf and stem tissues of the auto-octoploid species Saccharum officinarum. We revealed that DHSs showed highly similar distributions in the genomes of these two S. officinarum tissues. Notably, we observed that approximately 74% of DHSs were located in distal intergenic regions, suggesting considerable differences in the abundance of distal CREs between S. officinarum and other plants. Leaf- and stem-dependent transcriptional regulatory networks were also developed by mining the binding motifs of transcription factors (TFs) from tissue-specific DHSs. Four TEOSINTE BRANCHED 1, CYCLOIDEA, and PCF1 (TCP) TFs (TCP2, TCP4, TCP7, and TCP14) and two ethylene-responsive factors (ERFs) (ERF109 and ERF03) showed strong causal connections with short binding distances from each other, pointing to their possible roles in the regulatory networks of leaf and stem development. Through functional validation in transiently transgenic protoplasts, we isolate a set of tissue-specific promoters. Overall, the DHS maps presented here offer a global view of the potential transcriptional regulatory elements in polyploid sugarcane and can be expected to serve as a valuable resource for both transcriptional network elucidation and genome editing in sugarcane breeding.
Collapse
Affiliation(s)
- Guangrun Yu
- School of Life Sciences, Nantong University, Nantong, 226019, China
| | - Bo Sun
- School of Life Sciences, Nantong University, Nantong, 226019, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhiying Zhu
- School of Life Sciences, Nantong University, Nantong, 226019, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Eid M Mehareb
- Sugar Crops Research Institute (SRCI), Agricultural Research Center (ARC), Giza, 12619, Egypt
| | - Ailing Teng
- School of Life Sciences, Nantong University, Nantong, 226019, China
| | - Jinlei Han
- School of Life Sciences, Nantong University, Nantong, 226019, China
| | - Hui Zhang
- School of Life Sciences, Nantong University, Nantong, 226019, China
| | - Jiayong Liu
- Sugarcane Institute, Yunnan Academy of Agricultural Sciences, Kaiyuan, 661699, China
| | - Xinlong Liu
- Sugarcane Institute, Yunnan Academy of Agricultural Sciences, Kaiyuan, 661699, China
| | - Ghulam Raza
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, 38000, Pakistan
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, North Carolina, 27858, USA
| | - Yuebin Zhang
- Sugarcane Institute, Yunnan Academy of Agricultural Sciences, Kaiyuan, 661699, China
| | - Kai Wang
- School of Life Sciences, Nantong University, Nantong, 226019, China
| |
Collapse
|
34
|
Hodaei A, Werbrouck SPO. Unlocking Nature's Clock: CRISPR Technology in Flowering Time Engineering. PLANTS (BASEL, SWITZERLAND) 2023; 12:4020. [PMID: 38068655 PMCID: PMC10708119 DOI: 10.3390/plants12234020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2024]
Abstract
Flowering is a crucial process in the life cycle of most plants as it is essential for the reproductive success and genetic diversity of the species. There are situations in which breeders want to expedite, delay, or prevent flowering, for example, to shorten or prolong vegetative growth, to prevent unwanted pollination, to reduce the risk of diseases or pests, or to modify the plant's phenotypes. This review aims to provide an overview of the current state of knowledge to use CRISPR/Cas9, a powerful genome-editing technology to modify specific DNA sequences related to flowering induction. We discuss the underlying molecular mechanisms governing the regulation of the photoperiod, autonomous, vernalization, hormonal, sugar, aging, and temperature signal pathways regulating the flowering time. In addition, we are investigating the most effective strategies for nominating target genes. Furthermore, we have collected a dataset showing successful applications of CRISPR technology to accelerate flowering in several plant species from 2015 up to date. Finally, we explore the opportunities and challenges of using the potential of CRISPR technology in flowering time engineering.
Collapse
Affiliation(s)
| | - Stefaan P. O. Werbrouck
- Laboratory for Applied In Vitro Plant Biotechnology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| |
Collapse
|
35
|
Kuang T, Hu C, Shaw RK, Zhang Y, Fan J, Bi Y, Jiang F, Guo R, Fan X. A potential candidate gene associated with the angles of the ear leaf and the second leaf above the ear leaf in maize. BMC PLANT BIOLOGY 2023; 23:540. [PMID: 37924003 PMCID: PMC10625212 DOI: 10.1186/s12870-023-04553-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/22/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND Leaf angle is a key trait for maize plant architecture that plays a significant role in its morphological development, and ultimately impacting maize grain yield. Although many studies have been conducted on the association and localization of genes regulating leaf angle in maize, most of the candidate genes identified are associated with the regulation of ligule-ear development and phytohormone pathways, and only a few candidate genes have been reported to enhance the mechanical strength of leaf midrib and vascular tissues. RESULTS To address this gap, we conducted a genome-wide association study (GWAS) using the leaf angle phenotype and genotyping-by-sequencing data generated from three recombinant inbred line (RIL) populations of maize. Through GWAS analysis, we identified 156 SNPs significantly associated with the leaf angle trait and detected a total of 68 candidate genes located within 10 kb upstream and downstream of these individual SNPs. Among these candidate genes, Zm00001d045408, located on chromosome 9 emerged as a key gene controlling the angles of both the ear leaf and the second leaf above the ear leaf. Notably, this new gene's homolog in Arabidopsis promotes cell division and vascular tissue development. Further analysis revealed that a SNP transversion (G/T) at 7.536 kb downstream of the candidate gene Zm00001d045408 may have caused a reduction in leaf angles of the ear and the second leaf above the ear leaf. Our analysis of the 10 kb region downstream of this candidate gene revealed a 4.337 kb solo long-terminal reverse transcription transposon (solo LTR), located 3.112 kb downstream of Zm00001d045408, with the SNP located 87 bp upstream of the solo LTR. CONCLUSIONS In summary, we have identified a novel candidate gene, Zm00001d045408 and a solo LTR that are associated with the angles of both the ear leaf and the second leaf above the ear leaf. The future research holds great potential in exploring the precise role of newly identified candidate gene in leaf angle regulation. Functional characterization of this gene can help in gaining deeper insights into the complex genetic pathways underlying maize plant architecture.
Collapse
Affiliation(s)
- Tianhui Kuang
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Can Hu
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, China
- School of Agriculture, Yunnan University, Kunming, China
| | - Ranjan Kumar Shaw
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Yudong Zhang
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Jun Fan
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Yaqi Bi
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Fuyan Jiang
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Ruijia Guo
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Xingming Fan
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, China.
| |
Collapse
|
36
|
Ma Y, Yang W, Zhang H, Wang P, Liu Q, Li F, Du W. Genetic analysis of phenotypic plasticity identifies BBX6 as the candidate gene for maize adaptation to temperate regions. FRONTIERS IN PLANT SCIENCE 2023; 14:1280331. [PMID: 37964997 PMCID: PMC10642939 DOI: 10.3389/fpls.2023.1280331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023]
Abstract
Introduction Climate changes pose a significant threat to crop adaptation and production. Dissecting the genetic basis of phenotypic plasticity and uncovering the responsiveness of regulatory genes to environmental factors can significantly contribute to the improvement of climate- resilience in crops. Methods We established a BC1F3:4 population using the elite inbred lines Zheng58 and PH4CV and evaluated plant height (PH) across four environments characterized by substantial variations in environmental factors. Then, we quantified the correlation between the environmental mean of PH (the mean performance in each environment) and the environmental parameters within a specific growth window. Furthermore, we performed GWAS analysis of phenotypic plasticity, and identified QTLs and candidate gene that respond to key environment index. After that, we constructed the coexpression network involving the candidate gene, and performed selective sweep analysis of the candidate gene. Results We found that the environmental parameters demonstrated substantial variation across the environments, and genotype by environment interaction contributed to the variations of PH. Then, we identified PTT(35-48) (PTT is the abbreviation for photothermal units), the mean PTT from 35 to 48 days after planting, as the pivotal environmental index that closely correlated with environmental mean of PH. Leveraging the slopes of the response of PH to both the environmental mean and PTT(35-48), we successfully pinpointed QTLs for phenotypic plasticity on chromosomes 1 and 2. Notably, the PH4CV genotypes at these two QTLs exhibited positive contributions to phenotypic plasticity. Furthermore, our analysis demonstrated a direct correlation between the additive effects of each QTL and PTT(35-48). By analyzing transcriptome data of the parental lines in two environments, we found that the 1009 genes responding to PTT(35-48) were enriched in the biological processes related to environmental sensitivity. BBX6 was the prime candidate gene among the 13 genes in the two QTL regions. The coexpression network of BBX6 contained other genes related to flowering time and photoperiod sensitivity. Our investigation, including selective sweep analysis and genetic differentiation analysis, suggested that BBX6 underwent selection during maize domestication. Discussion Th is research substantially advances our understanding of critical environmental factors influencing maize adaptation while simultaneously provides an invaluable gene resource for the development of climate-resilient maize hybrid varieties.
Collapse
Affiliation(s)
- Yuting Ma
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenyan Yang
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongwei Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Pingxi Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qian Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fenghai Li
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Wanli Du
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
37
|
Li M, Feng Y, Han Q, Yang Y, Shi Y, Zheng D, Zhang W. Genomic variations combined with epigenetic modifications rewire open chromatin in rice. PLANT PHYSIOLOGY 2023; 193:1880-1896. [PMID: 37539937 DOI: 10.1093/plphys/kiad440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023]
Abstract
Cis-regulatory elements (CREs) fine-tune gene transcription in eukaryotes. CREs with sequence variations play vital roles in driving plant or crop domestication. However, how global sequence and structural variations (SVs) are responsible for multilevel changes between indica and japonica rice (Oryza sativa) is still not fully elucidated. To address this, we conducted multiomic studies using MNase hypersensitivity sequencing (MH-seq) in combination with RNA sequencing (RNA-seq), chromatin immunoprecipitation sequencing (ChIP-seq), and bisulfite sequencing (BS-seq) between the japonica rice variety Nipponbare (NIP) and indica rice variety 93-11. We found that differential MNase hypersensitive sites (MHSs) exhibited some distinct intrinsic genomic sequence features between NIP and 93-11. Notably, through MHS-genome-wide association studies (GWAS) integration, we found that key sequence variations may be associated with differences of agronomic traits between NIP and 93-11, which is partly achieved by MHSs harboring CREs. In addition, SV-derived differential MHSs caused by transposable element (TE) insertion, especially by noncommon TEs among rice varieties, were associated with genes with distinct functions, indicating that TE-driven gene neo- or subfunctionalization is mediated by changes of chromatin openness. This study thus provides insights into how sequence and genomic SVs control agronomic traits of NIP and 93-11; it also provides genome-editing targets for molecular breeding aiming at improving favorable agronomic properties.
Collapse
Affiliation(s)
- Mengqi Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Yilong Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Qi Han
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Ying Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Yining Shi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Dongyang Zheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Wenli Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| |
Collapse
|
38
|
Beugnot A, Mary-Huard T, Bauland C, Combes V, Madur D, Lagardère B, Palaffre C, Charcosset A, Moreau L, Fievet JB. Identifying QTLs involved in hybrid performance and heterotic group complementarity: new GWAS models applied to factorial and admixed diallel maize hybrid panels. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:219. [PMID: 37816986 PMCID: PMC10564676 DOI: 10.1007/s00122-023-04431-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/25/2023] [Indexed: 10/12/2023]
Abstract
KEY MESSAGE An original GWAS model integrating the ancestry of alleles was proposed and allowed the detection of background specific additive and dominance QTLs involved in heterotic group complementarity and hybrid performance. Maize genetic diversity is structured into genetic groups selected and improved relative to each other. This process increases group complementarity and differentiation over time and ensures that the hybrids produced from inter-group crosses exhibit high performances and heterosis. To identify loci involved in hybrid performance and heterotic group complementarity, we introduced an original association study model that disentangles allelic effects from the heterotic group origin of the alleles and compared it with a conventional additive/dominance model. This new model was applied on a factorial between Dent and Flint lines and a diallel between Dent-Flint admixed lines with two different layers of analysis: within each environment and in a multiple-environment context. We identified several strong additive QTLs for all traits, including some well-known additive QTLs for flowering time (in the region of Vgt1/2 on chromosome 8). Yield trait displayed significant non-additive effects in the diallel panel. Most of the detected Yield QTLs exhibited overdominance or, more likely, pseudo-overdominance effects. Apparent overdominance at these QTLs contributed to a part of the genetic group complementarity. The comparison between environments revealed a higher stability of additive QTL effects than non-additive ones. Several QTLs showed variations of effects according to the local heterotic group origin. We also revealed large chromosomic regions that display genetic group origin effects. Altogether, our results illustrate how admixed panels combined with dedicated GWAS modeling allow the identification of new QTLs that could not be revealed by a classical hybrid panel analyzed with traditional modeling.
Collapse
Affiliation(s)
- Aurélien Beugnot
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, UMR GQE-Le Moulon, 91272, Gif-Sur-Yvette, France
| | - Tristan Mary-Huard
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, UMR GQE-Le Moulon, 91272, Gif-Sur-Yvette, France
- Université Paris-Saclay, AgroParisTech, INRAE, UMR MIA Paris-Saclay, 91120, Palaiseau, France
| | - Cyril Bauland
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, UMR GQE-Le Moulon, 91272, Gif-Sur-Yvette, France
| | - Valerie Combes
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, UMR GQE-Le Moulon, 91272, Gif-Sur-Yvette, France
| | - Delphine Madur
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, UMR GQE-Le Moulon, 91272, Gif-Sur-Yvette, France
| | | | | | - Alain Charcosset
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, UMR GQE-Le Moulon, 91272, Gif-Sur-Yvette, France
| | - Laurence Moreau
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, UMR GQE-Le Moulon, 91272, Gif-Sur-Yvette, France
| | - Julie B Fievet
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, UMR GQE-Le Moulon, 91272, Gif-Sur-Yvette, France.
| |
Collapse
|
39
|
Yang S, Zhou J, Li Y, Wu J, Ma C, Chen Y, Sun X, Wu L, Liang X, Fu Q, Xu Z, Li L, Huang Z, Zhu J, Jia X, Ye X, Chen R. AP2/EREBP Pathway Plays an Important Role in Chaling Wild Rice Tolerance to Cold Stress. Int J Mol Sci 2023; 24:14441. [PMID: 37833888 PMCID: PMC10572191 DOI: 10.3390/ijms241914441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Cold stress is the main factor limiting rice production and distribution. Chaling wild rice can survive in cold winters. AP2/EREBP is a known transcription factor family associated with abiotic stress. We identified the members of the AP2/EREBP transcription factor family in rice, maize, and Arabidopsis, and conducted collinearity analysis and gene family analysis. We used Affymetrix array technology to analyze the expression of AP2/EREBP family genes in Chaling wild rice and cultivated rice cultivar Pei'ai64S, which is sensitive to cold. According to the GeneChip results, the expression levels of AP2/EREBP genes in Chaling wild rice were different from those in Pei'ai64S; and the increase rate of 36 AP2/EREBP genes in Chaling wild rice was higher than that in Pei'ai64S. Meanwhile, the MYC elements in cultivated rice and Chaling wild rice for the Os01g49830, Os03g08470, and Os03g64260 genes had different promoter sequences, resulting in the high expression of these genes in Chaling wild rice under low-temperature conditions. Furthermore, we analyzed the upstream and downstream genes of the AP2/EREBP transcription factor family and studied the conservation of these genes. We found that the upstream transcription factors were more conserved, indicating that these upstream transcription factors may be more important in regulating cold stress. Meanwhile, we found the expression of AP2/EREBP pathway genes was significantly increased in recombinant inbred lines from Nipponbare crossing with Chaling wild rice, These results suggest that the AP2/EREBP signaling pathway plays an important role in Chaling wild rice tolerance to cold stress.
Collapse
Affiliation(s)
- Songjin Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China; (S.Y.); (J.Z.); (Y.L.); (J.W.); (C.M.); (Y.C.); (X.S.); (L.W.); (X.L.); (Q.F.); (Z.X.); (L.L.); (Z.H.)
| | - Jingming Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China; (S.Y.); (J.Z.); (Y.L.); (J.W.); (C.M.); (Y.C.); (X.S.); (L.W.); (X.L.); (Q.F.); (Z.X.); (L.L.); (Z.H.)
| | - Yaqi Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China; (S.Y.); (J.Z.); (Y.L.); (J.W.); (C.M.); (Y.C.); (X.S.); (L.W.); (X.L.); (Q.F.); (Z.X.); (L.L.); (Z.H.)
| | - Jiacheng Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China; (S.Y.); (J.Z.); (Y.L.); (J.W.); (C.M.); (Y.C.); (X.S.); (L.W.); (X.L.); (Q.F.); (Z.X.); (L.L.); (Z.H.)
| | - Chuan Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China; (S.Y.); (J.Z.); (Y.L.); (J.W.); (C.M.); (Y.C.); (X.S.); (L.W.); (X.L.); (Q.F.); (Z.X.); (L.L.); (Z.H.)
| | - Yulin Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China; (S.Y.); (J.Z.); (Y.L.); (J.W.); (C.M.); (Y.C.); (X.S.); (L.W.); (X.L.); (Q.F.); (Z.X.); (L.L.); (Z.H.)
| | - Xingzhuo Sun
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China; (S.Y.); (J.Z.); (Y.L.); (J.W.); (C.M.); (Y.C.); (X.S.); (L.W.); (X.L.); (Q.F.); (Z.X.); (L.L.); (Z.H.)
| | - Lingli Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China; (S.Y.); (J.Z.); (Y.L.); (J.W.); (C.M.); (Y.C.); (X.S.); (L.W.); (X.L.); (Q.F.); (Z.X.); (L.L.); (Z.H.)
| | - Xin Liang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China; (S.Y.); (J.Z.); (Y.L.); (J.W.); (C.M.); (Y.C.); (X.S.); (L.W.); (X.L.); (Q.F.); (Z.X.); (L.L.); (Z.H.)
| | - Qiuping Fu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China; (S.Y.); (J.Z.); (Y.L.); (J.W.); (C.M.); (Y.C.); (X.S.); (L.W.); (X.L.); (Q.F.); (Z.X.); (L.L.); (Z.H.)
| | - Zhengjun Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China; (S.Y.); (J.Z.); (Y.L.); (J.W.); (C.M.); (Y.C.); (X.S.); (L.W.); (X.L.); (Q.F.); (Z.X.); (L.L.); (Z.H.)
| | - Lihua Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China; (S.Y.); (J.Z.); (Y.L.); (J.W.); (C.M.); (Y.C.); (X.S.); (L.W.); (X.L.); (Q.F.); (Z.X.); (L.L.); (Z.H.)
| | - Zhengjian Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China; (S.Y.); (J.Z.); (Y.L.); (J.W.); (C.M.); (Y.C.); (X.S.); (L.W.); (X.L.); (Q.F.); (Z.X.); (L.L.); (Z.H.)
| | - Jianqing Zhu
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (J.Z.); (X.J.); (X.Y.)
| | - Xiaomei Jia
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (J.Z.); (X.J.); (X.Y.)
| | - Xiaoying Ye
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (J.Z.); (X.J.); (X.Y.)
| | - Rongjun Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China; (S.Y.); (J.Z.); (Y.L.); (J.W.); (C.M.); (Y.C.); (X.S.); (L.W.); (X.L.); (Q.F.); (Z.X.); (L.L.); (Z.H.)
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (J.Z.); (X.J.); (X.Y.)
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
40
|
Adak A, Kang M, Anderson SL, Murray SC, Jarquin D, Wong RKW, Katzfuß M. Phenomic data-driven biological prediction of maize through field-based high-throughput phenotyping integration with genomic data. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5307-5326. [PMID: 37279568 DOI: 10.1093/jxb/erad216] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/02/2023] [Indexed: 06/08/2023]
Abstract
High-throughput phenotyping (HTP) has expanded the dimensionality of data in plant research; however, HTP has resulted in few novel biological discoveries to date. Field-based HTP (FHTP), using small unoccupied aerial vehicles (UAVs) equipped with imaging sensors, can be deployed routinely to monitor segregating plant population interactions with the environment under biologically meaningful conditions. Here, flowering dates and plant height, important phenological fitness traits, were collected on 520 segregating maize recombinant inbred lines (RILs) in both irrigated and drought stress trials in 2018. Using UAV phenomic, single nucleotide polymorphism (SNP) genomic, as well as combined data, flowering times were predicted using several scenarios. Untested genotypes were predicted with 0.58, 0.59, and 0.41 prediction ability for anthesis, silking, and terminal plant height, respectively, using genomic data, but prediction ability increased to 0.77, 0.76, and 0.58 when phenomic and genomic data were used together. Using the phenomic data in a genome-wide association study, a heat-related candidate gene (GRMZM2G083810; hsp18f) was discovered using temporal reflectance phenotypes belonging to flowering times (both irrigated and drought) trials where heat stress also peaked. Thus, a relationship between plants and abiotic stresses belonging to a specific time of growth was revealed only through use of temporal phenomic data. Overall, this study showed that (i) it is possible to predict complex traits using high dimensional phenomic data between different environments, and (ii) temporal phenomic data can reveal a time-dependent association between genotypes and abiotic stresses, which can help understand mechanisms to develop resilient plants.
Collapse
Affiliation(s)
- Alper Adak
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843-2474, USA
| | - Myeongjong Kang
- Department of Statistics, Texas A&M University, College Station, TX 77843, USA
| | | | - Seth C Murray
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843-2474, USA
| | - Diego Jarquin
- Agronomy Department, University of Florida, Gainesville, FL 32611, USA
| | - Raymond K W Wong
- Department of Statistics, Texas A&M University, College Station, TX 77843, USA
| | - Matthias Katzfuß
- Department of Statistics, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
41
|
Choquette NE, Weldekidan T, Brewer J, Davis SB, Wisser RJ, Holland JB. Enhancing adaptation of tropical maize to temperate environments using genomic selection. G3 (BETHESDA, MD.) 2023; 13:jkad141. [PMID: 37368984 PMCID: PMC10468305 DOI: 10.1093/g3journal/jkad141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/28/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023]
Abstract
Tropical maize can be used to diversify the genetic base of temperate germplasm and help create climate-adapted cultivars. However, tropical maize is unadapted to temperate environments, in which sensitivities to long photoperiods and cooler temperatures result in severely delayed flowering times, developmental defects, and little to no yield. Overcoming this maladaptive syndrome can require a decade of phenotypic selection in a targeted, temperate environment. To accelerate the incorporation of tropical diversity in temperate breeding pools, we tested if an additional generation of genomic selection can be used in an off-season nursery where phenotypic selection is not very effective. Prediction models were trained using flowering time recorded on random individuals in separate lineages of a heterogenous population grown at two northern U.S. latitudes. Direct phenotypic selection and genomic prediction model training was performed within each target environment and lineage, followed by genomic prediction of random intermated progenies in the off-season nursery. Performance of genomic prediction models was evaluated on self-fertilized progenies of prediction candidates grown in both target locations in the following summer season. Prediction abilities ranged from 0.30 to 0.40 among populations and evaluation environments. Prediction models with varying marker effect distributions or spatial field effects had similar accuracies. Our results suggest that genomic selection in a single off-season generation could increase genetic gains for flowering time by more than 50% compared to direct selection in summer seasons only, reducing the time required to change the population mean to an acceptably adapted flowering time by about one-third to one-half.
Collapse
Affiliation(s)
- Nicole E Choquette
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | | | - Jason Brewer
- USDA-ARS Plant Science Research Unit, Raleigh, NC 27695, USA
| | - Scott B Davis
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
| | - Randall J Wisser
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
- Laboratoire d’Ecophysiologie des Plantes sous Stress Environmentaux, INRAE, University of Montpellier, L’Institut Agro, Montpellier, FR 34000, USA
| | - James B Holland
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
- USDA-ARS Plant Science Research Unit, Raleigh, NC 27695, USA
| |
Collapse
|
42
|
Li C, Li Y, Song G, Yang D, Xia Z, Sun C, Zhao Y, Hou M, Zhang M, Qi Z, Wang B, Wang H. Gene expression and expression quantitative trait loci analyses uncover natural variations underlying the improvement of important agronomic traits during modern maize breeding. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:772-787. [PMID: 37186341 DOI: 10.1111/tpj.16260] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/15/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023]
Abstract
Maize (Zea mays L.) is a major staple crop worldwide, and during modern maize breeding, cultivars with increased tolerance to high-density planting and higher yield per plant have contributed significantly to the increased yield per unit land area. Systematically identifying key agronomic traits and their associated genomic changes during modern maize breeding remains a significant challenge because of the complexity of genetic regulation and the interactions of the various agronomic traits, with most of them being controlled by numerous small-effect quantitative trait loci (QTLs). Here, we performed phenotypic and gene expression analyses for a set of 137 elite inbred lines of maize from different breeding eras in China. We found four yield-related traits are significantly improved during modern maize breeding. Through gene-clustering analyses, we identified four groups of expressed genes with distinct trends of expression pattern change across the historical breeding eras. In combination with weighted gene co-expression network analysis, we identified several candidate genes regulating various plant architecture- and yield-related agronomic traits, such as ZmARF16, ZmARF34, ZmTCP40, ZmPIN7, ZmPYL10, ZmJMJ10, ZmARF1, ZmSWEET15b, ZmGLN6 and Zm00001d019150. Further, by combining expression quantitative trait loci (eQTLs) analyses, correlation coefficient analyses and population genetics, we identified a set of candidate genes that might have been under selection and contributed to the genetic improvement of various agronomic traits during modern maize breeding, including a number of known key regulators of plant architecture, flowering time and yield-related traits, such as ZmPIF3.3, ZAG1, ZFL2 and ZmBES1. Lastly, we validated the functional variations in GL15, ZmPHYB2 and ZmPYL10 that influence kernel row number, flowering time, plant height and ear height, respectively. Our results demonstrates the effectiveness of our combined approaches for uncovering key candidate regulatory genes and functional variation underlying the improvement of important agronomic traits during modern maize breeding, and provide a valuable genetic resource for the molecular breeding of maize cultivars with tolerance for high-density planting.
Collapse
Affiliation(s)
- Changyu Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot, 010070, China
| | - Yaoyao Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Guangshu Song
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, 136100, China
| | - Di Yang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhanchao Xia
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Changhe Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuelei Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Mei Hou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Mingyue Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zhi Qi
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot, 010070, China
| | - Baobao Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- HainanYazhou Bay Seed Lab, Sanya, 572025, China
| | - Haiyang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| |
Collapse
|
43
|
Marand AP, Eveland AL, Kaufmann K, Springer NM. cis-Regulatory Elements in Plant Development, Adaptation, and Evolution. ANNUAL REVIEW OF PLANT BIOLOGY 2023; 74:111-137. [PMID: 36608347 PMCID: PMC9881396 DOI: 10.1146/annurev-arplant-070122-030236] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
cis-Regulatory elements encode the genomic blueprints that ensure the proper spatiotemporal patterning of gene expression necessary for appropriate development and responses to the environment. Accumulating evidence implicates changes to gene expression as a major source of phenotypic novelty in eukaryotes, including acute phenotypes such as disease and cancer in mammals. Moreover, genetic and epigenetic variation affecting cis-regulatory sequences over longer evolutionary timescales has become a recurring theme in studies of morphological divergence and local adaptation. Here, we discuss the functions of and methods used to identify various classes of cis-regulatory elements, as well as their role in plant development and response to the environment. We highlight opportunities to exploit cis-regulatory variants underlying plant development and environmental responses for crop improvement efforts. Although a comprehensive understanding of cis-regulatory mechanisms in plants has lagged behind that in animals, we showcase several breakthrough findings that have profoundly influenced plant biology and shaped the overall understanding of transcriptional regulation in eukaryotes.
Collapse
Affiliation(s)
| | | | - Kerstin Kaufmann
- Department for Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany;
| | - Nathan M Springer
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota, USA;
| |
Collapse
|
44
|
Du F, Tao Y, Ma C, Zhu M, Guo C, Xu M. Effects of the quantitative trait locus qPss3 on inhibition of photoperiod sensitivity and resistance to stalk rot disease in maize. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:126. [PMID: 37165143 DOI: 10.1007/s00122-023-04370-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/17/2023] [Indexed: 05/12/2023]
Abstract
KEY MESSAGE We identified a quantitative trait locus, qPss3, and fine-mapped the causal locus to a 120-kb interval in maize. This locus inhibits the photoperiod sensitivity caused by ZmCCT9 and ZmCCT10, resulting in earlier flowering by 2 ~ 4 days without reduction in stalk-rot resistance in certain genotypes. Photoperiod sensitivity is a key factor affecting the adaptation of maize (Zea mays L.) to high-latitude growing areas. Although many genes associated with flowering time have been identified in maize, no gene that inhibits photoperiod sensitivity has been reported. In our previous study, we detected large differences in photoperiod sensitivity among maize inbred lines with the same photoperiod-sensitive allele at the ZmCCT10 locus. Here, we used two segregating populations with the same genetic backgrounds but different ZmCCT10 alleles to perform quantitative trait locus (QTL) analysis. We identified a unique QTL, qPss3, on chromosome 3 in the population carrying the sensitive ZmCCT10 allele. After sequential fine-mapping, we eventually delimited qPss3 to an interval of ~ 120 kb. qPss3 behaved as a dominant locus and caused earlier flowering by 2-4 days via inhibiting ZmCCT10-induced photoperiod sensitivity under long-day conditions. qPss3 also inhibited the photoperiod sensitivity induced by another flowering-related gene, ZmCCT9. For application in agriculture, an F1 hybrid heterozygous at both qPss3 and ZmCCT10 loci constitutes an optimal allele combination, showing high resistance to stalk rot without a significant delay in flowering time. Moreover, qPss3 is of great value in regulating the flowering time of tropical maize grown at high-latitude regions.
Collapse
Affiliation(s)
- Feili Du
- State Key Laboratory of Plant Environmental Resilience, College of Agronomy and Biotechnology, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, China
| | - Yiyuan Tao
- State Key Laboratory of Plant Environmental Resilience, College of Agronomy and Biotechnology, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, China
| | - Chuanyu Ma
- Research Pipeline Enablement SBC, Syngenta Biotechnology China Co. Ltd., Beijing, China
| | - Mang Zhu
- State Key Laboratory of Plant Environmental Resilience, College of Agronomy and Biotechnology, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, China
| | - Chenyu Guo
- State Key Laboratory of Plant Environmental Resilience, College of Agronomy and Biotechnology, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, China
| | - Mingliang Xu
- State Key Laboratory of Plant Environmental Resilience, College of Agronomy and Biotechnology, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, China.
| |
Collapse
|
45
|
Sun S, Wang X, Liu Z, Bai J, Song J, Li R, Cui X. Tomato APETALA2 family member SlTOE1 regulates inflorescence branching by repressing SISTER OF TM3. PLANT PHYSIOLOGY 2023; 192:293-306. [PMID: 36747310 PMCID: PMC10152655 DOI: 10.1093/plphys/kiad075] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/06/2023] [Accepted: 01/17/2023] [Indexed: 05/03/2023]
Abstract
Inflorescence architecture directly impacts yield potential in most crops. As a model of sympodial plants, tomato (Solanum lycopersicum) inflorescence exhibits highly structural plasticity. However, the genetic regulatory network of inflorescence architecture in tomato remains unclear. Here, we investigated a modulator of inflorescence branching in tomato, TARGET OF EAT1 (SlTOE1), an APETALA2 (AP2) family member found to be predominantly expressed in the floral meristem (FM) of tomato. sltoe1 knockout mutants displayed highly branched inflorescences and defective floral organs. Transcriptome analysis revealed that SISTER OF TM3 (STM3) and certain floral development-related genes were upregulated in the flower meristem of sltoe1. SlTOE1 could directly bind the promoters of STM3 and Tomato MADS-box gene 3 (TM3) to repress their transcription. Simultaneous mutation of STM3 and TM3 partially restored the inflorescence branching of the sltoe1cr mutants, suggesting that SlTOE1 regulates inflorescence development, at least in part through an SlTOE1STM3/TM3 module. Genetic analysis showed that SlTOE1 and ENHANCER OF JOINTLESS 2 (EJ2) additively regulate tomato inflorescence branching; their double mutants showed more extensive inflorescence branching. Our findings uncover a pathway controlling tomato inflorescence branching and offer deeper insight into the functions of AP2 subfamily members.
Collapse
Affiliation(s)
- Shuai Sun
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, China Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaotian Wang
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, China Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhiqiang Liu
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, China Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jingwei Bai
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, China Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jia Song
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, China Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ren Li
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, China Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xia Cui
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, China Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| |
Collapse
|
46
|
Jin Y, Li D, Liu M, Cui Z, Sun D, Li C, Zhang A, Cao H, Ruan Y. Genome-Wide Association Study Identified Novel SNPs Associated with Chlorophyll Content in Maize. Genes (Basel) 2023; 14:genes14051010. [PMID: 37239370 DOI: 10.3390/genes14051010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Chlorophyll is an essential component that captures light energy to drive photosynthesis. Chlorophyll content can affect photosynthetic activity and thus yield. Therefore, mining candidate genes of chlorophyll content will help increase maize production. Here, we performed a genome-wide association study (GWAS) on chlorophyll content and its dynamic changes in 378 maize inbred lines with extensive natural variation. Our phenotypic assessment showed that chlorophyll content and its dynamic changes were natural variations with a moderate genetic level of 0.66/0.67. A total of 19 single-nucleotide polymorphisms (SNPs) were found associated with 76 candidate genes, of which one SNP, 2376873-7-G, co-localized in chlorophyll content and area under the chlorophyll content curve (AUCCC). Zm00001d026568 and Zm00001d026569 were highly associated with SNP 2376873-7-G and encoded pentatricopeptide repeat-containing protein and chloroplastic palmitoyl-acyl carrier protein thioesterase, respectively. As expected, higher expression levels of these two genes are associated with higher chlorophyll contents. These results provide a certain experimental basis for discovering the candidate genes of chlorophyll content and finally provide new insights for cultivating high-yield and excellent maize suitable for planting environment.
Collapse
Affiliation(s)
- Yueting Jin
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Dan Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Meiling Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhenhai Cui
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Daqiu Sun
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Cong Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Ao Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Huiying Cao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Yanye Ruan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
- Liaoning Province Research Center of Plant Genetic Engineering Technology, Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang 110866, China
| |
Collapse
|
47
|
Liu Y, Chen S, Chen J, Wang J, Wei M, Tian X, Chen L, Ma J. Comprehensive analysis and expression profiles of the AP2/ERF gene family during spring bud break in tea plant (Camellia sinensis). BMC PLANT BIOLOGY 2023; 23:206. [PMID: 37081399 PMCID: PMC10116778 DOI: 10.1186/s12870-023-04221-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND AP2/ERF transcription factors (AP2/ERFs) are important regulators of plant physiological and biochemical metabolism. Evidence suggests that AP2/ERFs may be involved in the regulation of bud break in woody perennials. Green tea is economically vital in China, and its production value is significantly affected by the time of spring bud break of tea plant. However, the relationship between AP2/ERFs in tea plant and spring bud break remains largely unknown. RESULTS A total of 178 AP2/ERF genes (CsAP2/ERFs) were identified in the genome of tea plant. Based on the phylogenetic analysis, these genes could be classified into five subfamilies. The analysis of gene duplication events demonstrated that whole genome duplication (WGD) or segmental duplication was the primary way of CsAP2/ERFs amplification. According to the result of the Ka/Ks value calculation, purification selection dominated the evolution of CsAP2/ERFs. Furthermore, gene composition and structure analyses of CsAP2/ERFs indicated that different subfamilies contained a variety of gene structures and conserved motifs, potentially resulting in functional differences among five subfamilies. The promoters of CsAP2/ERFs also contained various signal-sensing elements, such as abscisic acid responsive elements, light responsive elements and low temperature responsive elements. The evidence presented here offers a theoretical foundation for the diverse functions of CsAP2/ERFs. Additionally, the expressions of CsAP2/ERFs during spring bud break of tea plant were analyzed by RNA-seq and grouped into clusters A-F according to their expression patterns. The gene expression changes in clusters A and B were more synchronized with the spring bud break of tea plant. Moreover, several potential correlation genes, such as D-type cyclin genes, were screened out through weighted correlation network analysis (WGCNA). Temperature and light treatment experiments individually identified nine candidate CsAP2/ERFs that may be related to the spring bud break of tea plant. CONCLUSIONS This study provides new evidence for role of the CsAP2/ERFs in the spring bud break of tea plant, establishes a theoretical foundation for analyzing the molecular mechanism of the spring bud break of tea plant, and contributes to the improvement of tea cultivars.
Collapse
Affiliation(s)
- Yujie Liu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Si Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Jiedan Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Junyu Wang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Mengyuan Wei
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Xiaomiao Tian
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Liang Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| | - Jianqiang Ma
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| |
Collapse
|
48
|
Shikha K, Madhumal Thayil V, Shahi JP, Zaidi PH, Seetharam K, Nair SK, Singh R, Tosh G, Singamsetti A, Singh S, Sinha B. Genomic-regions associated with cold stress tolerance in Asia-adapted tropical maize germplasm. Sci Rep 2023; 13:6297. [PMID: 37072497 PMCID: PMC10113201 DOI: 10.1038/s41598-023-33250-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/10/2023] [Indexed: 05/03/2023] Open
Abstract
Maize is gaining impetus in non-traditional and non-conventional seasons such as off-season, primarily due to higher demand and economic returns. Maize varieties directed for growing in the winter season of South Asia must have cold resilience as an important trait due to the low prevailing temperatures and frequent cold snaps observed during this season in most parts of the lowland tropics of Asia. The current study involved screening of a panel of advanced tropically adapted maize lines to cold stress during vegetative and flowering stage under field conditions. A suite of significant genomic loci (28) associated with grain yield along and agronomic traits such as flowering (15) and plant height (6) under cold stress environments. The haplotype regression revealed 6 significant haplotype blocks for grain yield under cold stress across the test environments. Haplotype blocks particularly on chromosomes 5 (bin5.07), 6 (bin6.02), and 9 (9.03) co-located to regions/bins that have been identified to contain candidate genes involved in membrane transport system that would provide essential tolerance to the plant. The regions on chromosome 1 (bin1.04), 2 (bin 2.07), 3 (bin 3.05-3.06), 5 (bin5.03), 8 (bin8.05-8.06) also harboured significant SNPs for the other agronomic traits. In addition, the study also looked at the plausibility of identifying tropically adapted maize lines from the working germplasm with cold resilience across growth stages and identified four lines that could be used as breeding starts in the tropical maize breeding pipelines.
Collapse
Affiliation(s)
- Kumari Shikha
- Department of Genetics and Plant Breeding, Banaras Hindu University (BHU), Varanasi, India
| | - Vinayan Madhumal Thayil
- International Maize and Wheat Improvement Centre (CIMMYT), ICRISAT Campus, Patancheru, Telangana, India.
| | - J P Shahi
- Department of Genetics and Plant Breeding, Banaras Hindu University (BHU), Varanasi, India
| | - P H Zaidi
- International Maize and Wheat Improvement Centre (CIMMYT), ICRISAT Campus, Patancheru, Telangana, India
| | - Kaliyamoorthy Seetharam
- International Maize and Wheat Improvement Centre (CIMMYT), ICRISAT Campus, Patancheru, Telangana, India
| | - Sudha K Nair
- International Maize and Wheat Improvement Centre (CIMMYT), ICRISAT Campus, Patancheru, Telangana, India
| | - Raju Singh
- Borlaug Institute for South Asia (BISA), Ludhiana, Punjab, India
| | - Garg Tosh
- Punjab Agricultural University (PAU), Ludhiana, India
| | - Ashok Singamsetti
- Department of Genetics and Plant Breeding, Banaras Hindu University (BHU), Varanasi, India
| | - Saurabh Singh
- Department of Genetics and Plant Breeding, Banaras Hindu University (BHU), Varanasi, India
| | - B Sinha
- Department of Genetics and Plant Breeding, Banaras Hindu University (BHU), Varanasi, India
| |
Collapse
|
49
|
Choquette NE, Holland JB, Weldekidan T, Drouault J, de Leon N, Flint-Garcia S, Lauter N, Murray SC, Xu W, Wisser RJ. Environment-specific selection alters flowering-time plasticity and results in pervasive pleiotropic responses in maize. THE NEW PHYTOLOGIST 2023; 238:737-749. [PMID: 36683443 DOI: 10.1111/nph.18769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Crop genetic diversity for climate adaptations is globally partitioned. We performed experimental evolution in maize to understand the response to selection and how plant germplasm can be moved across geographical zones. Initialized with a common population of tropical origin, artificial selection on flowering time was performed for two generations at eight field sites spanning 25° latitude, a 2800 km transect. We then jointly tested all selection lineages across the original sites of selection, for the target trait and 23 other traits. Modeling intergenerational shifts in a physiological reaction norm revealed separate components for flowering-time plasticity. Generalized and local modes of selection altered the plasticity of each lineage, leading to a latitudinal pattern in the responses to selection that were strongly driven by photoperiod. This transformation led to widespread changes in developmental, architectural, and yield traits, expressed collectively in an environment-dependent manner. Furthermore, selection for flowering time alone alleviated a maladaptive syndrome and improved yields for tropical maize in the temperate zone. Our findings show how phenotypic selection can rapidly shift the flowering phenology and plasticity of maize. They also demonstrate that selecting crops to local conditions can accelerate adaptation to climate change.
Collapse
Affiliation(s)
- Nicole E Choquette
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - James B Holland
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, USA
- USDA-ARS Plant Science Research Unit, Raleigh, NC, 27695, USA
| | | | - Justine Drouault
- Laboratoire d'Ecophysiologie des Plantes sous Stress Environmentaux, INRAE, University of Montpellier, L'Institut Agro, Montpellier, 34000, France
| | - Natalia de Leon
- Deptartment of Agronomy, University of Wisconsin, Madison, WI, 53706, USA
| | | | - Nick Lauter
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Ames, IA, 50011, USA
| | - Seth C Murray
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Wenwei Xu
- Agricultural Research and Extension Center, Texas A&M AgriLife Research, Lubbock, TX, 79403, USA
| | - Randall J Wisser
- Deptartment of Plant and Soil Sciences, University of Delaware, Newark, DE, 19716, USA
- Laboratoire d'Ecophysiologie des Plantes sous Stress Environmentaux, INRAE, University of Montpellier, L'Institut Agro, Montpellier, 34000, France
| |
Collapse
|
50
|
Sun G, Yu H, Wang P, Lopez-Guerrero M, Mural RV, Mizero ON, Grzybowski M, Song B, van Dijk K, Schachtman DP, Zhang C, Schnable JC. A role for heritable transcriptomic variation in maize adaptation to temperate environments. Genome Biol 2023; 24:55. [PMID: 36964601 PMCID: PMC10037803 DOI: 10.1186/s13059-023-02891-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/06/2023] [Indexed: 03/26/2023] Open
Abstract
Background Transcription bridges genetic information and phenotypes. Here, we evaluated how changes in transcriptional regulation enable maize (Zea mays), a crop originally domesticated in the tropics, to adapt to temperate environments. Result We generated 572 unique RNA-seq datasets from the roots of 340 maize genotypes. Genes involved in core processes such as cell division, chromosome organization and cytoskeleton organization showed lower heritability of gene expression, while genes involved in anti-oxidation activity exhibited higher expression heritability. An expression genome-wide association study (eGWAS) identified 19,602 expression quantitative trait loci (eQTLs) associated with the expression of 11,444 genes. A GWAS for alternative splicing identified 49,897 splicing QTLs (sQTLs) for 7614 genes. Genes harboring both cis-eQTLs and cis-sQTLs in linkage disequilibrium were disproportionately likely to encode transcription factors or were annotated as responding to one or more stresses. Independent component analysis of gene expression data identified loci regulating co-expression modules involved in oxidation reduction, response to water deprivation, plastid biogenesis, protein biogenesis, and plant-pathogen interaction. Several genes involved in cell proliferation, flower development, DNA replication, and gene silencing showed lower gene expression variation explained by genetic factors between temperate and tropical maize lines. A GWAS of 27 previously published phenotypes identified several candidate genes overlapping with genomic intervals showing signatures of selection during adaptation to temperate environments. Conclusion Our results illustrate how maize transcriptional regulatory networks enable changes in transcriptional regulation to adapt to temperate regions. Supplementary information The online version contains supplementary material available at 10.1186/s13059-023-02891-3.
Collapse
Affiliation(s)
- Guangchao Sun
- grid.24434.350000 0004 1937 0060Quantitative Life Sciences Initiative, University of Nebraska-Lincoln, Lincoln, USA
- grid.24434.350000 0004 1937 0060Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, USA
- grid.24434.350000 0004 1937 0060Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, USA
| | - Huihui Yu
- grid.24434.350000 0004 1937 0060Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, USA
- grid.24434.350000 0004 1937 0060School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, USA
| | - Peng Wang
- grid.24434.350000 0004 1937 0060Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, USA
| | - Martha Lopez-Guerrero
- grid.24434.350000 0004 1937 0060Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, USA
| | - Ravi V. Mural
- grid.24434.350000 0004 1937 0060Quantitative Life Sciences Initiative, University of Nebraska-Lincoln, Lincoln, USA
- grid.24434.350000 0004 1937 0060Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, USA
- grid.24434.350000 0004 1937 0060Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, USA
| | - Olivier N. Mizero
- grid.24434.350000 0004 1937 0060Quantitative Life Sciences Initiative, University of Nebraska-Lincoln, Lincoln, USA
- grid.24434.350000 0004 1937 0060Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, USA
- grid.24434.350000 0004 1937 0060Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, USA
| | - Marcin Grzybowski
- grid.24434.350000 0004 1937 0060Quantitative Life Sciences Initiative, University of Nebraska-Lincoln, Lincoln, USA
- grid.24434.350000 0004 1937 0060Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, USA
- grid.24434.350000 0004 1937 0060Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, USA
| | - Baoxing Song
- grid.5386.8000000041936877XInstitute for Genomic Diversity, Cornell University, Ithaca, USA
| | - Karin van Dijk
- grid.24434.350000 0004 1937 0060Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, USA
| | - Daniel P. Schachtman
- grid.24434.350000 0004 1937 0060Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, USA
- grid.24434.350000 0004 1937 0060Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, USA
| | - Chi Zhang
- grid.24434.350000 0004 1937 0060Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, USA
- grid.24434.350000 0004 1937 0060School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, USA
| | - James C. Schnable
- grid.24434.350000 0004 1937 0060Quantitative Life Sciences Initiative, University of Nebraska-Lincoln, Lincoln, USA
- grid.24434.350000 0004 1937 0060Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, USA
- grid.24434.350000 0004 1937 0060Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, USA
| |
Collapse
|