1
|
Gupta A, Mirarab S, Turakhia Y. Accurate, scalable, and fully automated inference of species trees from raw genome assemblies using ROADIES. Proc Natl Acad Sci U S A 2025; 122:e2500553122. [PMID: 40314967 PMCID: PMC12088440 DOI: 10.1073/pnas.2500553122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/31/2025] [Indexed: 05/03/2025] Open
Abstract
Current genome sequencing initiatives across a wide range of life forms offer significant potential to enhance our understanding of evolutionary relationships and support transformative biological and medical applications. Species trees play a central role in many of these applications; however, despite the widespread availability of genome assemblies, accurate inference of species trees remains challenging due to the limited automation, substantial domain expertise, and computational resources required by conventional methods. To address this limitation, we present ROADIES, a fully automated pipeline to infer species trees starting from raw genome assemblies. In contrast to the prominent approach, ROADIES incorporates a unique strategy of randomly sampling segments of the input genomes to generate gene trees. This eliminates the need for predefining a set of loci, limiting the analyses to a fixed number of genes, and performing the cumbersome gene annotation and/or whole genome alignment steps. ROADIES also eliminates the need to infer orthology by leveraging existing discordance-aware methods that allow multicopy genes. Using the genomic datasets from large-scale sequencing efforts across four diverse life forms (placental mammals, pomace flies, birds, and budding yeasts), we show that ROADIES infers species trees that are comparable in quality to the state-of-the-art studies but in a fraction of the time and effort, including on challenging datasets with rampant gene tree discordance and complex polyploidy. With its speed, accuracy, and automation, ROADIES has the potential to vastly simplify species tree inference, making it accessible to a broader range of scientists and applications.
Collapse
Affiliation(s)
- Anshu Gupta
- Department of Computer Science and Engineering, University of California, San Diego, CA92093
| | - Siavash Mirarab
- Department of Electrical and Computer Engineering, University of California, San Diego, CA92093
| | - Yatish Turakhia
- Department of Electrical and Computer Engineering, University of California, San Diego, CA92093
| |
Collapse
|
2
|
Gupta A, Mirarab S, Turakhia Y. Accurate, scalable, and fully automated inference of species trees from raw genome assemblies using ROADIES. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.27.596098. [PMID: 38854139 PMCID: PMC11160643 DOI: 10.1101/2024.05.27.596098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Inference of species trees plays a crucial role in advancing our understanding of evolutionary relationships and has immense significance for diverse biological and medical applications. Extensive genome sequencing efforts are currently in progress across a broad spectrum of life forms, holding the potential to unravel the intricate branching patterns within the tree of life. However, estimating species trees starting from raw genome sequences is quite challenging, and the current cutting-edge methodologies require a series of error-prone steps that are neither entirely automated nor standardized. In this paper, we present ROADIES, a novel pipeline for species tree inference from raw genome assemblies that is fully automated, easy to use, scalable, free from reference bias, and provides flexibility to adjust the tradeoff between accuracy and runtime. The ROADIES pipeline eliminates the need to align whole genomes, choose a single reference species, or pre-select loci such as functional genes found using cumbersome annotation steps. Moreover, it leverages recent advances in phylogenetic inference to allow multi-copy genes, eliminating the need to detect orthology. Using the genomic datasets released from large-scale sequencing consortia across three diverse life forms (placental mammals, pomace flies, and birds), we show that ROADIES infers species trees that are comparable in quality with the state-of-the-art approaches but in a fraction of the time. By incorporating optimal approaches and automating all steps from assembled genomes to species and gene trees, ROADIES is poised to improve the accuracy, scalability, and reproducibility of phylogenomic analyses.
Collapse
Affiliation(s)
- Anshu Gupta
- Department of Computer Science and Engineering, University of California, San Diego; San Diego, CA 92093, USA
| | - Siavash Mirarab
- Department of Electrical and Computer Engineering, University of California, San Diego; San Diego, CA 92093, USA
| | - Yatish Turakhia
- Department of Electrical and Computer Engineering, University of California, San Diego; San Diego, CA 92093, USA
| |
Collapse
|
3
|
Foley NM, Mason VC, Harris AJ, Bredemeyer KR, Damas J, Lewin HA, Eizirik E, Gatesy J, Karlsson EK, Lindblad-Toh K, Springer MS, Murphy WJ, Andrews G, Armstrong JC, Bianchi M, Birren BW, Bredemeyer KR, Breit AM, Christmas MJ, Clawson H, Damas J, Di Palma F, Diekhans M, Dong MX, Eizirik E, Fan K, Fanter C, Foley NM, Forsberg-Nilsson K, Garcia CJ, Gatesy J, Gazal S, Genereux DP, Goodman L, Grimshaw J, Halsey MK, Harris AJ, Hickey G, Hiller M, Hindle AG, Hubley RM, Hughes GM, Johnson J, Juan D, Kaplow IM, Karlsson EK, Keough KC, Kirilenko B, Koepfli KP, Korstian JM, Kowalczyk A, Kozyrev SV, Lawler AJ, Lawless C, Lehmann T, Levesque DL, Lewin HA, Li X, Lind A, Lindblad-Toh K, Mackay-Smith A, Marinescu VD, Marques-Bonet T, Mason VC, Meadows JRS, Meyer WK, Moore JE, Moreira LR, Moreno-Santillan DD, Morrill KM, Muntané G, Murphy WJ, Navarro A, Nweeia M, Ortmann S, Osmanski A, Paten B, Paulat NS, Pfenning AR, Phan BN, Pollard KS, Pratt HE, Ray DA, Reilly SK, Rosen JR, Ruf I, Ryan L, Ryder OA, Sabeti PC, Schäffer DE, Serres A, Shapiro B, Smit AFA, Springer M, Srinivasan C, Steiner C, Storer JM, Sullivan KAM, Sullivan PF, Sundström E, et alFoley NM, Mason VC, Harris AJ, Bredemeyer KR, Damas J, Lewin HA, Eizirik E, Gatesy J, Karlsson EK, Lindblad-Toh K, Springer MS, Murphy WJ, Andrews G, Armstrong JC, Bianchi M, Birren BW, Bredemeyer KR, Breit AM, Christmas MJ, Clawson H, Damas J, Di Palma F, Diekhans M, Dong MX, Eizirik E, Fan K, Fanter C, Foley NM, Forsberg-Nilsson K, Garcia CJ, Gatesy J, Gazal S, Genereux DP, Goodman L, Grimshaw J, Halsey MK, Harris AJ, Hickey G, Hiller M, Hindle AG, Hubley RM, Hughes GM, Johnson J, Juan D, Kaplow IM, Karlsson EK, Keough KC, Kirilenko B, Koepfli KP, Korstian JM, Kowalczyk A, Kozyrev SV, Lawler AJ, Lawless C, Lehmann T, Levesque DL, Lewin HA, Li X, Lind A, Lindblad-Toh K, Mackay-Smith A, Marinescu VD, Marques-Bonet T, Mason VC, Meadows JRS, Meyer WK, Moore JE, Moreira LR, Moreno-Santillan DD, Morrill KM, Muntané G, Murphy WJ, Navarro A, Nweeia M, Ortmann S, Osmanski A, Paten B, Paulat NS, Pfenning AR, Phan BN, Pollard KS, Pratt HE, Ray DA, Reilly SK, Rosen JR, Ruf I, Ryan L, Ryder OA, Sabeti PC, Schäffer DE, Serres A, Shapiro B, Smit AFA, Springer M, Srinivasan C, Steiner C, Storer JM, Sullivan KAM, Sullivan PF, Sundström E, Supple MA, Swofford R, Talbot JE, Teeling E, Turner-Maier J, Valenzuela A, Wagner F, Wallerman O, Wang C, Wang J, Weng Z, Wilder AP, Wirthlin ME, Xue JR, Zhang X. A genomic timescale for placental mammal evolution. Science 2023; 380:eabl8189. [PMID: 37104581 DOI: 10.1126/science.abl8189] [Show More Authors] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
The precise pattern and timing of speciation events that gave rise to all living placental mammals remain controversial. We provide a comprehensive phylogenetic analysis of genetic variation across an alignment of 241 placental mammal genome assemblies, addressing prior concerns regarding limited genomic sampling across species. We compared neutral genome-wide phylogenomic signals using concatenation and coalescent-based approaches, interrogated phylogenetic variation across chromosomes, and analyzed extensive catalogs of structural variants. Interordinal relationships exhibit relatively low rates of phylogenomic conflict across diverse datasets and analytical methods. Conversely, X-chromosome versus autosome conflicts characterize multiple independent clades that radiated during the Cenozoic. Genomic time trees reveal an accumulation of cladogenic events before and immediately after the Cretaceous-Paleogene (K-Pg) boundary, implying important roles for Cretaceous continental vicariance and the K-Pg extinction in the placental radiation.
Collapse
Affiliation(s)
- Nicole M Foley
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Victor C Mason
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Andrew J Harris
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX, USA
| | - Kevin R Bredemeyer
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX, USA
| | - Joana Damas
- The Genome Center, University of California, Davis, CA, USA
| | - Harris A Lewin
- The Genome Center, University of California, Davis, CA, USA
- Department of Evolution and Ecology, University of California, Davis, CA, USA
| | - Eduardo Eizirik
- School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - John Gatesy
- Division of Vertebrate Zoology, American Museum of Natural History, New York, NY, USA
| | - Elinor K Karlsson
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA 01605, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Program in Molecular Medicine, University of Massachussetts Chan Medical School, Worcester, MA 01605, USA
| | - Kerstin Lindblad-Toh
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 32 Uppsala, Sweden
| | - Mark S Springer
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA
| | - William J Murphy
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Ye Z, Damgaard J, Hädicke CW, Zhu X, Mazzucconi SA, Hebsgaard MB, Xie T, Yang H, Bu W. Phylogeny and historical biogeography of the water boatmen (Insecta: Hemiptera: Heteroptera: Nepomorpha: Corixoidea). Mol Phylogenet Evol 2023; 180:107698. [PMID: 36587885 DOI: 10.1016/j.ympev.2022.107698] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
The water boatmen of Corixoidea, a group of aquatic bugs with more than 600 extant species, is one of the largest superfamilies of Nepomorpha. Contrary to the other nepomorphan lineages, the Corixoidea are most diverse in the Laurasian remnant Holarctic region. To explicitly test whether the present-day Holarctic distribution of diverse corixids is associated with the arising of the Laurasian landmass that was separated from Gondwana, we investigated the phylogeny, divergence times and historical biogeography of Corixoidea based on morphological and molecular characters sampled from 122 taxa representing all families, subfamilies, tribes and approximately 54 % of the genera. Our results were largely congruent with the phylogenetic relationships within the established nepomorphan phylogenetic context. The fossil calibrated chronogram, diversification analysis and ancestral ranges reconstruction indicated that Corixoidea began to diversify in Gondwana in the late Triassic approximately at 224 Ma and the arising of the most diverse subfamily Corixinae in Corixidae in the Holarctic region was largely congruent with the time of separation of Laurasia from Gondwana. The large-scale expansion of the temperate and cold zones on the northward-moving Laurasian landmass after the breakup of the Pangea provided new aquatic niches and ecological opportunities for promoting rapid diversification for the Holarctic corixid lineage.
Collapse
Affiliation(s)
- Zhen Ye
- Institute of Entomology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Jakob Damgaard
- Natural History Museum of Denmark, Zoological Museum, Universitetsparken 15, 2100 Ø, Denmark.
| | | | - Xiuxiu Zhu
- Institute of Entomology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Silvia A Mazzucconi
- Laboratorio de Entomología, IBBEA, CONICET-UBA., DBBE-FCEN, Universidad de Buenos Aires, C1428EHA Buenos Aires, Argentina
| | - Martin B Hebsgaard
- Natural History Museum of Denmark, Zoological Museum, Universitetsparken 15, 2100 Ø, Denmark
| | - Tongyin Xie
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Huanhuan Yang
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - Wenjun Bu
- Institute of Entomology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| |
Collapse
|
5
|
A homotetrameric hemoglobin expressed in alveolar epithelial cells increases blood oxygenation in high-altitude plateau pika (Ochotona curzoniae). Cell Rep 2022; 41:111446. [DOI: 10.1016/j.celrep.2022.111446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/28/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022] Open
|
6
|
Steenwyk JL, Goltz DC, Buida TJ, Li Y, Shen XX, Rokas A. OrthoSNAP: A tree splitting and pruning algorithm for retrieving single-copy orthologs from gene family trees. PLoS Biol 2022; 20:e3001827. [PMID: 36228036 PMCID: PMC9595520 DOI: 10.1371/journal.pbio.3001827] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 10/25/2022] [Accepted: 09/13/2022] [Indexed: 11/19/2022] Open
Abstract
Molecular evolution studies, such as phylogenomic studies and genome-wide surveys of selection, often rely on gene families of single-copy orthologs (SC-OGs). Large gene families with multiple homologs in 1 or more species-a phenomenon observed among several important families of genes such as transporters and transcription factors-are often ignored because identifying and retrieving SC-OGs nested within them is challenging. To address this issue and increase the number of markers used in molecular evolution studies, we developed OrthoSNAP, a software that uses a phylogenetic framework to simultaneously split gene families into SC-OGs and prune species-specific inparalogs. We term SC-OGs identified by OrthoSNAP as SNAP-OGs because they are identified using a splitting and pruning procedure analogous to snapping branches on a tree. From 415,129 orthologous groups of genes inferred across 7 eukaryotic phylogenomic datasets, we identified 9,821 SC-OGs; using OrthoSNAP on the remaining 405,308 orthologous groups of genes, we identified an additional 10,704 SNAP-OGs. Comparison of SNAP-OGs and SC-OGs revealed that their phylogenetic information content was similar, even in complex datasets that contain a whole-genome duplication, complex patterns of duplication and loss, transcriptome data where each gene typically has multiple transcripts, and contentious branches in the tree of life. OrthoSNAP is useful for increasing the number of markers used in molecular evolution data matrices, a critical step for robustly inferring and exploring the tree of life.
Collapse
Affiliation(s)
- Jacob L. Steenwyk
- Vanderbilt University, Department of Biological Sciences, Nashville, Tennessee, United States of America
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Dayna C. Goltz
- Independent Researcher, Nashville, Tennessee, United States of America
| | - Thomas J. Buida
- Independent Researcher, Nashville, Tennessee, United States of America
| | - Yuanning Li
- Vanderbilt University, Department of Biological Sciences, Nashville, Tennessee, United States of America
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Xing-Xing Shen
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Antonis Rokas
- Vanderbilt University, Department of Biological Sciences, Nashville, Tennessee, United States of America
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| |
Collapse
|
7
|
Li J, An Z, Wei L, Xu B, Wang Z, Gao C, Wei L, Qi D, Shi P, Zhang T, Wei D. A New Homotetramer Hemoglobin in the Pulmonary Surfactant of Plateau Zokors (Myospalax Baileyi). Front Genet 2022; 13:824049. [PMID: 35368669 PMCID: PMC8967358 DOI: 10.3389/fgene.2022.824049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
The plateau zokor (Myospalax baileyi) is a native species to the Qinghai-Tibetan Plateau, inhabiting hypoxia and hypercapnia sealed subterranean burrows that pose several unique physiological challenges. In this study, we observed a novel heme-containing protein in the pulmonary surfactant (PS) of plateau zokor, identified the encoding gene of the protein, predicted its origination and structure, verified its expression in alveolar epithelial cells, and determined the protein’s affinity to oxygen and its effect on the oxygen-dissolving capability in the PS of plateau zokors. The protein is an unusual homotetramer hemoglobin consisting of four γ-like subunits, and the subunit is encoded by a paralog gene of γ, that is γ-like. The divergence time of γ-like from γ is estimated by the molecular clock to be about 2.45 Mya. The generation of γ-like in plateau zokors might well relate to long-time stress of the high land hypoxia. Unlike γ, the γ-like has a hypoxia response element (HRE) and a lung tissue-specific enhancer in its upstream region, and it is expressed specifically in lung tissues and up-regulated by hypoxia. The protein is named as γ4-like which is expressed specifically in Alveolar epithelial type II (ATII) cells and secreted into the alveolar cavities through the osmiophilic multilamellar body (LBs). The γ4-like has a higher affinity to oxygen, and that increases significantly oxygen-dissolving capability in the PS of plateau zokors by its oxygenation function, which might be beneficial for the plateau zokors to obtain oxygen from the severe hypoxia environments by facilitating oxygen diffusion from alveoli to blood.
Collapse
Affiliation(s)
- Jimei Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
| | - Zhifang An
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Linna Wei
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Bo Xu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Zhijie Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Conghui Gao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Lian Wei
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Delin Qi
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Peng Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- *Correspondence: Dengbang Wei, ; Tongzuo Zhang, ; Peng Shi,
| | - Tongzuo Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- *Correspondence: Dengbang Wei, ; Tongzuo Zhang, ; Peng Shi,
| | - Dengbang Wei
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
- *Correspondence: Dengbang Wei, ; Tongzuo Zhang, ; Peng Shi,
| |
Collapse
|
8
|
Makuya L, Olivier C, Schradin C. Field studies need to report essential information on social organisation – independent of the study focus. Ethology 2021. [DOI: 10.1111/eth.13249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Lindelani Makuya
- School of Animal, Plant and Environmental Sciences University of the Witwatersrand Johannesburg South Africa
| | - Charlotte‐Anaïs Olivier
- School of Animal, Plant and Environmental Sciences University of the Witwatersrand Johannesburg South Africa
- IPHCUNISTRACNRS Strasbourg France
| | - Carsten Schradin
- School of Animal, Plant and Environmental Sciences University of the Witwatersrand Johannesburg South Africa
- IPHCUNISTRACNRS Strasbourg France
| |
Collapse
|
9
|
Lv X, Hu J, Hu Y, Li Y, Xu D, Ryder OA, Irwin DM, Yu L. Diverse phylogenomic datasets uncover a concordant scenario of laurasiatherian interordinal relationships. Mol Phylogenet Evol 2020; 157:107065. [PMID: 33387649 DOI: 10.1016/j.ympev.2020.107065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 10/22/2022]
Abstract
Resolving the interordinal relationships in the mammalian superorder Laurasiatheria has been among the most intractable problems in higher-level mammalian systematics, with many conflicting hypotheses having been proposed. The present study collected three different sources of genome-scale data with comprehensive taxon sampling of laurasiatherian species, including two protein-coding datasets (4,186 protein-coding genes for an amino acid dataset comprising 2,761,247 amino acid residues and a nucleotide dataset comprising 5,516,340 nucleotides from 1st and 2nd codon positions), an intronic dataset (1,210 introns comprising 1,162,723 nucleotides) and an ultraconserved elements (UCEs) dataset (1,246 UCEs comprising 1,946,472 nucleotides) from 40 species representing all six laurasiatherian orders and 7 non-laurasiatherian outgroups. Remarkably, phylogenetic trees reconstructed with the four datasets using different tree-building methods (RAxML, FastTree, ASTRAL and MP-EST) all supported the relationship (Eulipotyphla, (Chiroptera, ((Carnivora, Pholidota), (Cetartiodactyla, Perissodactyla)))). We find a resolution of interordinal relationships of Laurasiatheria among all types of markers used in the present study, and the likelihood ratio tests for tree comparisons confirmed that the present tree topology is the optimal hypothesis compared to other examined hypotheses. Jackknifing subsampling analyses demonstrate that the results of laurasiatherian tree reconstruction varied with the number of loci and ordinal representatives used, which are likely the two main contributors to phylogenetic disagreements of Laurasiatheria seen in previous studies. Our study provides significant insight into laurasiatherian evolution, and moreover, an important methodological strategy and reference for resolving phylogenies of adaptive radiation, which have been a long-standing challenge in the field of phylogenetics.
Collapse
Affiliation(s)
- Xue Lv
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China; School of Life Sciences, Yunnan University, Kunming, China
| | - Jingyang Hu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China; School of Life Sciences, Yunnan University, Kunming, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Yiwen Hu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China; School of Life Sciences, Yunnan University, Kunming, China
| | - Yitian Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China; School of Life Sciences, Yunnan University, Kunming, China
| | - Dongming Xu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Kunming, China
| | - Oliver A Ryder
- Institute for Conservation Research, San Diego Zoo Global, Escondido, CA, USA
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.
| |
Collapse
|
10
|
Murphy WJ, Foley NM, Bredemeyer KR, Gatesy J, Springer MS. Phylogenomics and the Genetic Architecture of the Placental Mammal Radiation. Annu Rev Anim Biosci 2020; 9:29-53. [PMID: 33228377 DOI: 10.1146/annurev-animal-061220-023149] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The genomes of placental mammals are being sequenced at an unprecedented rate. Alignments of hundreds, and one day thousands, of genomes spanning the rich living and extinct diversity of species offer unparalleled power to resolve phylogenetic controversies, identify genomic innovations of adaptation, and dissect the genetic architecture of reproductive isolation. We highlight outstanding questions about the earliest phases of placental mammal diversification and the promise of newer methods, as well as remaining challenges, toward using whole genome data to resolve placental mammal phylogeny. The next phase of mammalian comparative genomics will see the completion and application of finished-quality, gapless genome assemblies from many ordinal lineages and closely related species. Interspecific comparisons between the most hypervariable genomic loci will likely reveal large, but heretofore mostly underappreciated, effects on population divergence, morphological innovation, and the origin of new species.
Collapse
Affiliation(s)
- William J Murphy
- Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843, USA;
| | - Nicole M Foley
- Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843, USA;
| | - Kevin R Bredemeyer
- Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843, USA;
| | - John Gatesy
- Division of Vertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
| | - Mark S Springer
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, California 92521, USA
| |
Collapse
|
11
|
Ye Z, Damgaard J, Yang H, Hebsgaard MB, Weir T, Bu W. Phylogeny and diversification of the true water bugs (Insecta: Hemiptera: Heteroptera: Nepomorpha). Cladistics 2020; 36:72-87. [PMID: 34618947 DOI: 10.1111/cla.12383] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2019] [Indexed: 01/29/2023] Open
Abstract
Climate fluctuations and tectonic reconfigurations associated with environmental changes play large roles in determining patterns of adaptation and diversification, but studies documenting how such drivers have shaped the evolutionary history and diversification dynamics of limnic organisms during the Mesozoic are scarce. Members of the heteropteran infraorder Nepomorpha, or aquatic bugs, are ideal for testing the effects of these determinants on their diversification pulses because most species are confined to aquatic environments during their entire life. The group has a relatively mature taxonomy and is well represented in the fossil record. We investigated the evolution of Nepomorpha based on phylogenetic analyses of morphological and molecular characters sampled from 115 taxa representing all 13 families and approximately 40% of recognized genera. Our results were largely congruent with the phylogenetic relationships inferred from morphology. A divergence dating analysis indicated that Nepomorpha began to diversify in the late Permian (approximately 263 Ma), and diversification analyses suggested that palaeoecological opportunities probably promoted lineage diversification in this group.
Collapse
Affiliation(s)
- Zhen Ye
- Institute of Entomology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Jakob Damgaard
- Natural History Museum of Denmark, Zoological Museum, Universitetsparken 15, Kobenhavn, 2100 Ø, Denmark
| | - Huanhuan Yang
- School of Life Sciences, Ludong University, 264025, Yantai, Shandong, China
| | - Martin B Hebsgaard
- Natural History Museum of Denmark, Zoological Museum, Universitetsparken 15, Kobenhavn, 2100 Ø, Denmark
| | - Tom Weir
- CSIRO Entomology, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Wenjun Bu
- Institute of Entomology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| |
Collapse
|
12
|
Springer MS, Foley NM, Brady PL, Gatesy J, Murphy WJ. Evolutionary Models for the Diversification of Placental Mammals Across the KPg Boundary. Front Genet 2019; 10:1241. [PMID: 31850081 PMCID: PMC6896846 DOI: 10.3389/fgene.2019.01241] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/08/2019] [Indexed: 01/29/2023] Open
Abstract
Deciphering the timing of the placental mammal radiation is a longstanding problem in evolutionary biology, but consensus on the tempo and mode of placental diversification remains elusive. Nevertheless, an accurate timetree is essential for understanding the role of important events in Earth history (e.g., Cretaceous Terrestrial Revolution, KPg mass extinction) in promoting the taxonomic and ecomorphological diversification of Placentalia. Archibald and Deutschman described three competing models for the diversification of placental mammals, which are the Explosive, Long Fuse, and Short Fuse Models. More recently, the Soft Explosive Model and Trans-KPg Model have emerged as additional hypotheses for the placental radiation. Here, we review molecular and paleontological evidence for each of these five models including the identification of general problems that can negatively impact divergence time estimates. The Long Fuse Model has received more support from relaxed clock studies than any of the other models, but this model is not supported by morphological cladistic studies that position Cretaceous eutherians outside of crown Placentalia. At the same time, morphological cladistics has a poor track record of reconstructing higher-level relationships among the orders of placental mammals including the results of new pseudoextinction analyses that we performed on the largest available morphological data set for mammals (4,541 characters). We also examine the strengths and weaknesses of different timetree methods (node dating, tip dating, and fossilized birth-death dating) that may now be applied to estimate the timing of the placental radiation. While new methods such as tip dating are promising, they also have problems that must be addressed if these methods are to effectively discriminate among competing hypotheses for placental diversification. Finally, we discuss the complexities of timetree estimation when the signal of speciation times is impacted by incomplete lineage sorting (ILS) and hybridization. Not accounting for ILS results in dates that are older than speciation events. Hybridization, in turn, can result in dates than are younger or older than speciation dates. Disregarding this potential variation in "gene" history across the genome can distort phylogenetic branch lengths and divergence estimates when multiple unlinked genomic loci are combined together in a timetree analysis.
Collapse
Affiliation(s)
- Mark S. Springer
- Department of Evolution, Ecology, and Evolutionary Biology, University of California, Riverside, Riverside, CA, United States
| | - Nicole M. Foley
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| | - Peggy L. Brady
- Department of Evolution, Ecology, and Evolutionary Biology, University of California, Riverside, Riverside, CA, United States
| | - John Gatesy
- Division of Vertebrate Zoology, American Museum of Natural History, New York, NY, United States
| | - William J. Murphy
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
13
|
Watson C, Binks D. Elongation of the CA1 field of the septal hippocampus in ungulates. J Comp Neurol 2019; 527:818-832. [PMID: 30393922 DOI: 10.1002/cne.24573] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 10/24/2018] [Accepted: 10/24/2018] [Indexed: 11/06/2022]
Abstract
It is widely assumed that the hippocampal formation seen in laboratory rodents and in primates is typical of that seen in other mammals. We have tested this assumption by examining sections of brains of 56 mammals from 20 mammalian orders from images on the brainmuseum.org website. We found wide variation in the form of the hippocampal formation, the most extreme examples of which are seen in ungulates, which possess an unusual elongation of the distal CA1 of the septal hippocampus. This phenomenon has not previously been reported. In individual coronal sections of the brains of seven artiodactyl ungulates, the pyramidal layer of CA1 is four times as long as CA2 + CA3. In a perissodactyl ungulate (Burchell's zebra) the distal end of CA1 is so large that it forms a number of folds. A similar but less pronounced CA1 elongation was seen in the brains of 14 carnivores. A modest elongation of CA1 is also present in some other placental mammals, notably the elephant shrew, hyrax, capybara, beaver, and rabbit. The elongation was not present in brains of primates, marsupials, or monotremes. The distal part of CA1 has been shown to play a role in object integration into the spatial map. We hypothesize that the distal CA1 enlargement could serve to enhance the ability to integrate objects into spatial navigation, which would be an advantage for migrating herds of ungulates. We suggest that the remarkable elongation of Q5 CA1 represents a major evolutionary specialization in the ungulates.
Collapse
Affiliation(s)
- Charles Watson
- School of Biological Sciences, The University of Western Australia, Perth, Australia.,Neuroscience Research Australia, Sydney, Australia
| | - Daniel Binks
- School of Biological Sciences, The University of Western Australia, Perth, Australia.,Perron Institute of Neurological and Translational Science
| |
Collapse
|
14
|
Donath A, Stadler PF. Split-inducing indels in phylogenomic analysis. Algorithms Mol Biol 2018; 13:12. [PMID: 30026791 PMCID: PMC6047143 DOI: 10.1186/s13015-018-0130-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 06/16/2018] [Indexed: 11/13/2022] Open
Abstract
Background Most phylogenetic studies using molecular data treat gaps in multiple sequence alignments as missing data or even completely exclude alignment columns that contain gaps. Results Here we show that gap patterns in large-scale, genome-wide alignments are themselves phylogenetically informative and can be used to infer reliable phylogenies provided the gap data are properly filtered to reduce noise introduced by the alignment method. We introduce here the notion of split-inducing indels (splids) that define an approximate bipartition of the taxon set. We show both in simulated data and in case studies on real-life data that splids can be efficiently extracted from phylogenomic data sets. Conclusions Suitably processed gap patterns extracted from genome-wide alignment provide a surprisingly clear phylogenetic signal and an allow the inference of accurate phylogenetic trees. Electronic supplementary material The online version of this article (10.1186/s13015-018-0130-7) contains supplementary material, which is available to authorized users.
Collapse
|
15
|
Abstract
BACKGROUND Gene order changes, under rearrangements, insertions, deletions and duplications, have been used as a new type of data source for phylogenetic reconstruction. Because these changes are rare compared to sequence mutations, they allow the inference of phylogeny further back in evolutionary time. There exist many computational methods for the reconstruction of gene-order phylogenies, including widely used maximum parsimonious methods and maximum likelihood methods. However, both methods face challenges in handling large genomes with many duplicated genes, especially in the presence of whole genome duplication. METHODS In this paper, we present three simple yet powerful methods based on maximum-likelihood (ML) approaches that encode multiplicities of both gene adjacency and gene content information for phylogenetic reconstruction. RESULTS Extensive experiments on simulated data sets show that our new method achieves the most accurate phylogenies compared to existing approaches. We also evaluate our method on real whole-genome data from eleven mammals. The package is publicly accessible at http://www.geneorder.org . CONCLUSIONS Our new encoding schemes successfully incorporate the multiplicity information of gene adjacencies and gene content into an ML framework, and show promising results in reconstruct phylogenies for whole-genome data in the presence of massive duplications.
Collapse
Affiliation(s)
- Lingxi Zhou
- Department of Computer Science and Engineering, University of South Carolina, Columbia, 29208 South Carolina USA
| | - Yu Lin
- Research School of Computer Science, Australian National University, Canberra, 2601 ACT Australia
| | - Bing Feng
- Department of Computer Science and Engineering, University of South Carolina, Columbia, 29208 South Carolina USA
| | - Jieyi Zhao
- University of Texas School of Biomedical Informatics at Houston, Houston, 77030 Texas USA
| | - Jijun Tang
- School of Computer Science and Engineering, Tianjin University, Tianjin, 300072 China
- Department of Computer Science and Engineering, University of South Carolina, Columbia, 29208 South Carolina USA
| |
Collapse
|
16
|
Hautier L, Oliver JD, Pierce SE. An Overview of Xenarthran Developmental Studies with a Focus on the Development of the Xenarthrous Vertebrae. J MAMM EVOL 2017. [DOI: 10.1007/s10914-017-9412-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Esselstyn JA, Oliveros CH, Swanson MT, Faircloth BC. Investigating Difficult Nodes in the Placental Mammal Tree with Expanded Taxon Sampling and Thousands of Ultraconserved Elements. Genome Biol Evol 2017; 9:2308-2321. [PMID: 28934378 PMCID: PMC5604124 DOI: 10.1093/gbe/evx168] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2017] [Indexed: 12/21/2022] Open
Abstract
The phylogeny of eutherian mammals contains some of the most recalcitrant nodes in the tetrapod tree of life. We combined comprehensive taxon and character sampling to explore three of the most debated interordinal relationships among placental mammals. We performed in silico extraction of ultraconserved element loci from 72 published genomes and invitro enrichment and sequencing of ultraconserved elements from 28 additional mammals, resulting in alignments of 3,787 loci. We analyzed these data using concatenated and multispecies coalescent phylogenetic approaches, topological tests, and exploration of support among individual loci to identify the root of Eutheria and the sister groups of tree shrews (Scandentia) and horses (Perissodactyla). Individual loci provided weak, but often consistent support for topological hypotheses. Although many gene trees lacked accepted species-tree relationships, summary coalescent topologies were largely consistent with inferences from concatenation. At the root of Eutheria, we identified consistent support for a sister relationship between Xenarthra and Afrotheria (i.e., Atlantogenata). At the other nodes of interest, support was less consistent. We suggest Scandentia is the sister of Primatomorpha (Euarchonta), but we failed to reject a sister relationship between Scandentia and Glires. Similarly, we suggest Perissodactyla is sister to Cetartiodactyla (Euungulata), but a sister relationship between Perissodactyla and Chiroptera remains plausible.
Collapse
Affiliation(s)
- Jacob A. Esselstyn
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge
| | - Carl H. Oliveros
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge
| | - Mark T. Swanson
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge
| | - Brant C. Faircloth
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge
| |
Collapse
|
18
|
Esselstyn JA, Oliveros CH, Swanson MT, Faircloth BC. Investigating Difficult Nodes in the Placental Mammal Tree with Expanded Taxon Sampling and Thousands of Ultraconserved Elements. Genome Biol Evol 2017. [PMID: 28934378 DOI: 10.1093/gbe/evx168)] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The phylogeny of eutherian mammals contains some of the most recalcitrant nodes in the tetrapod tree of life. We combined comprehensive taxon and character sampling to explore three of the most debated interordinal relationships among placental mammals. We performed in silico extraction of ultraconserved element loci from 72 published genomes and invitro enrichment and sequencing of ultraconserved elements from 28 additional mammals, resulting in alignments of 3,787 loci. We analyzed these data using concatenated and multispecies coalescent phylogenetic approaches, topological tests, and exploration of support among individual loci to identify the root of Eutheria and the sister groups of tree shrews (Scandentia) and horses (Perissodactyla). Individual loci provided weak, but often consistent support for topological hypotheses. Although many gene trees lacked accepted species-tree relationships, summary coalescent topologies were largely consistent with inferences from concatenation. At the root of Eutheria, we identified consistent support for a sister relationship between Xenarthra and Afrotheria (i.e., Atlantogenata). At the other nodes of interest, support was less consistent. We suggest Scandentia is the sister of Primatomorpha (Euarchonta), but we failed to reject a sister relationship between Scandentia and Glires. Similarly, we suggest Perissodactyla is sister to Cetartiodactyla (Euungulata), but a sister relationship between Perissodactyla and Chiroptera remains plausible.
Collapse
Affiliation(s)
- Jacob A Esselstyn
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge
| | - Carl H Oliveros
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge
| | - Mark T Swanson
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge
| | - Brant C Faircloth
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge
| |
Collapse
|
19
|
Genomic evidence reveals a radiation of placental mammals uninterrupted by the KPg boundary. Proc Natl Acad Sci U S A 2017; 114:E7282-E7290. [PMID: 28808022 DOI: 10.1073/pnas.1616744114] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The timing of the diversification of placental mammals relative to the Cretaceous-Paleogene (KPg) boundary mass extinction remains highly controversial. In particular, there have been seemingly irreconcilable differences in the dating of the early placental radiation not only between fossil-based and molecular datasets but also among molecular datasets. To help resolve this discrepancy, we performed genome-scale analyses using 4,388 loci from 90 taxa, including representatives of all extant placental orders and transcriptome data from flying lemurs (Dermoptera) and pangolins (Pholidota). Depending on the gene partitioning scheme, molecular clock model, and genic deviation from molecular clock assumptions, extensive sensitivity analyses recovered widely varying diversification scenarios for placental mammals from a given gene set, ranging from a deep Cretaceous origin and diversification to a scenario spanning the KPg boundary, suggesting that the use of suboptimal molecular clock markers and methodologies is a major cause of controversies regarding placental diversification timing. We demonstrate that reconciliation between molecular and paleontological estimates of placental divergence times can be achieved using the appropriate clock model and gene partitioning scheme while accounting for the degree to which individual genes violate molecular clock assumptions. A birth-death-shift analysis suggests that placental mammals underwent a continuous radiation across the KPg boundary without apparent interruption by the mass extinction, paralleling a genus-level radiation of multituberculates and ecomorphological diversification of both multituberculates and therians. These findings suggest that the KPg catastrophe evidently played a limited role in placental diversification, which, instead, was likely a delayed response to the slightly earlier radiation of angiosperms.
Collapse
|
20
|
Advantages and Limitations in the Use of Extant Xenarthrans (Mammalia) as Morphological Models for Paleobiological Reconstruction. J MAMM EVOL 2017. [DOI: 10.1007/s10914-017-9400-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Wildman DE. IFPA award in placentology lecture: Phylogenomic origins and evolution of the mammalian placenta. Placenta 2016; 48 Suppl 1:S31-S39. [PMID: 27105828 DOI: 10.1016/j.placenta.2016.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/01/2016] [Accepted: 04/05/2016] [Indexed: 01/11/2023]
Abstract
The placenta has had the most dynamic evolutionary history of all mammalian organs. It has undergone massive shifts in anatomy, physiology, and the way in which uterine and fetal tissue interact with one another during pregnancy. The human placenta is arguably the best studied amongst mammals, yet much about its function during pregnancy is not understood. The purpose of this paper is to outline the evolutionary history of the placenta, and to point out major gaps in the current state of knowledge. I also propose novel theoretical, experimental, and computational approaches that are likely to provide insight into the normal process of placentation and the role the placenta plays in the great obstetrical syndromes.
Collapse
Affiliation(s)
- Derek E Wildman
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA; Department of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA.
| |
Collapse
|
22
|
Springer MS, Emerling CA, Meredith RW, Janečka JE, Eizirik E, Murphy WJ. Waking the undead: Implications of a soft explosive model for the timing of placental mammal diversification. Mol Phylogenet Evol 2016; 106:86-102. [PMID: 27659724 DOI: 10.1016/j.ympev.2016.09.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 09/15/2016] [Accepted: 09/18/2016] [Indexed: 02/06/2023]
Abstract
The explosive, long fuse, and short fuse models represent competing hypotheses for the timing of placental mammal diversification. Support for the explosive model, which posits both interordinal and intraordinal diversification after the KPg mass extinction, derives from morphological cladistic studies that place Cretaceous eutherians outside of crown Placentalia. By contrast, most molecular studies favor the long fuse model wherein interordinal cladogenesis occurred in the Cretaceous followed by intraordinal cladogenesis after the KPg boundary. Phillips (2016) proposed a soft explosive model that allows for the emergence of a few lineages (Xenarthra, Afrotheria, Euarchontoglires, Laurasiatheria) in the Cretaceous, but otherwise agrees with the explosive model in positing the majority of interordinal diversification after the KPg mass extinction. Phillips (2016) argues that rate transference errors associated with large body size and long lifespan have inflated previous estimates of interordinal divergence times, and further suggests that most interordinal divergences are positioned after the KPg boundary when rate transference errors are avoided through the elimination of calibrations in large-bodied and/or long lifespan clades. Here, we show that rate transference errors can also occur in the opposite direction and drag forward estimated divergence dates when calibrations in large-bodied/long lifespan clades are omitted. This dragging forward effect results in the occurrence of more than half a billion years of 'zombie lineages' on Phillips' preferred timetree. By contrast with ghost lineages, which are a logical byproduct of an incomplete fossil record, zombie lineages occur when estimated divergence dates are younger than the minimum age of the oldest crown fossils. We also present the results of new timetree analyses that address the rate transference problem highlighted by Phillips (2016) by deleting taxa that exceed thresholds for body size and lifespan. These analyses recover all interordinal divergence times in the Cretaceous and are consistent with the long fuse model of placental diversification. Finally, we outline potential problems with morphological cladistic analyses of higher-level relationships among placental mammals that may account for the perceived discrepancies between molecular and paleontological estimates of placental divergence times.
Collapse
Affiliation(s)
- Mark S Springer
- Department of Biology, University of California, Riverside, CA 92521, USA.
| | | | - Robert W Meredith
- Department of Biology and Molecular Biology, Montclair State University, Montclair, NJ 07043, USA
| | - Jan E Janečka
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Eduardo Eizirik
- Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS 90619-900, Brazil
| | - William J Murphy
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
23
|
Gatesy J, Meredith RW, Janecka JE, Simmons MP, Murphy WJ, Springer MS. Resolution of a concatenation/coalescence kerfuffle: partitioned coalescence support and a robust family‐level tree for Mammalia. Cladistics 2016; 33:295-332. [DOI: 10.1111/cla.12170] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2016] [Indexed: 12/14/2022] Open
Affiliation(s)
- John Gatesy
- Department of Biology University of California Riverside CA 92521 USA
| | - Robert W. Meredith
- Department of Biology and Molecular Biology Montclair State University Montclair NJ 07043 USA
| | - Jan E. Janecka
- Department of Biological Sciences Duquesne University Pittsburgh PA 15282 USA
| | - Mark P. Simmons
- Department of Biology Colorado State University Fort Collins CO 80523 USA
| | - William J. Murphy
- Department of Veterinary Integrative Biosciences Texas A&M University College Station TX 77843 USA
| | - Mark S. Springer
- Department of Biology University of California Riverside CA 92521 USA
| |
Collapse
|
24
|
Foley NM, Springer MS, Teeling EC. Mammal madness: is the mammal tree of life not yet resolved? Philos Trans R Soc Lond B Biol Sci 2016; 371:20150140. [PMID: 27325836 PMCID: PMC4920340 DOI: 10.1098/rstb.2015.0140] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2016] [Indexed: 11/12/2022] Open
Abstract
Most molecular phylogenetic studies place all placental mammals into four superordinal groups, Laurasiatheria (e.g. dogs, bats, whales), Euarchontoglires (e.g. humans, rodents, colugos), Xenarthra (e.g. armadillos, anteaters) and Afrotheria (e.g. elephants, sea cows, tenrecs), and estimate that these clades last shared a common ancestor 90-110 million years ago. This phylogeny has provided a framework for numerous functional and comparative studies. Despite the high level of congruence among most molecular studies, questions still remain regarding the position and divergence time of the root of placental mammals, and certain 'hard nodes' such as the Laurasiatheria polytomy and Paenungulata that seem impossible to resolve. Here, we explore recent consensus and conflict among mammalian phylogenetic studies and explore the reasons for the remaining conflicts. The question of whether the mammal tree of life is or can be ever resolved is also addressed.This article is part of the themed issue 'Dating species divergences using rocks and clocks'.
Collapse
Affiliation(s)
- Nicole M Foley
- School of Biology and Environmental Science, Science Centre East, University College Dublin, Dublin 4, Ireland
| | - Mark S Springer
- Department of Biology, University of California, Riverside, CA 92521, USA
| | - Emma C Teeling
- School of Biology and Environmental Science, Science Centre East, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
25
|
Reyes LD, Harland T, Reep RL, Sherwood CC, Jacobs B. Golgi Analysis of Neuron Morphology in the Presumptive Somatosensory Cortex and Visual Cortex of the Florida Manatee (Trichechus manatus latirostris). BRAIN, BEHAVIOR AND EVOLUTION 2016; 87:105-16. [PMID: 27166161 DOI: 10.1159/000445495] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/15/2016] [Indexed: 11/19/2022]
Abstract
The current study investigates neuron morphology in presumptive primary somatosensory (S1) and primary visual (V1) cortices of the Florida manatee (Trichechus manatus latirostris) as revealed by Golgi impregnation. Sirenians, including manatees, have an aquatic lifestyle, a large body size, and a relatively large lissencephalic brain. The present study examines neuron morphology in 3 cortical areas: in S1, dorsolateral cortex area 1 (DL1) and cluster cortex area 2 (CL2) and in V1, dorsolateral cortex area 4 (DL4). Neurons exhibited a variety of morphological types, with pyramidal neurons being the most common. The large variety of neuron types present in the manatee cortex was comparable to that seen in other eutherian mammals, except for rodents and primates, where pyramid-shaped neurons predominate. A comparison between pyramidal neurons in S1 and V1 indicated relatively greater dendritic branching in S1. Across all 3 areas, the dendritic arborization pattern of pyramidal neurons was also similar to that observed previously in the afrotherian rock hyrax, cetartiodactyls, opossums, and echidnas but did not resemble the widely bifurcated dendrites seen in the large-brained African elephant. Despite adaptations for an aquatic environment, manatees did not share specific neuron types such as tritufted and star-like neurons that have been found in cetaceans. Manatees exhibit an evolutionarily primitive pattern of cortical neuron morphology shared with most other mammals and do not appear to have neuronal specializations for an aquatic niche.
Collapse
Affiliation(s)
- Laura D Reyes
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, D.C., USA
| | | | | | | | | |
Collapse
|
26
|
Tarver JE, Dos Reis M, Mirarab S, Moran RJ, Parker S, O'Reilly JE, King BL, O'Connell MJ, Asher RJ, Warnow T, Peterson KJ, Donoghue PCJ, Pisani D. The Interrelationships of Placental Mammals and the Limits of Phylogenetic Inference. Genome Biol Evol 2016; 8:330-44. [PMID: 26733575 PMCID: PMC4779606 DOI: 10.1093/gbe/evv261] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Placental mammals comprise three principal clades: Afrotheria (e.g., elephants and tenrecs), Xenarthra (e.g., armadillos and sloths), and Boreoeutheria (all other placental mammals), the relationships among which are the subject of controversy and a touchstone for debate on the limits of phylogenetic inference. Previous analyses have found support for all three hypotheses, leading some to conclude that this phylogenetic problem might be impossible to resolve due to the compounded effects of incomplete lineage sorting (ILS) and a rapid radiation. Here we show, using a genome scale nucleotide data set, microRNAs, and the reanalysis of the three largest previously published amino acid data sets, that the root of Placentalia lies between Atlantogenata and Boreoeutheria. Although we found evidence for ILS in early placental evolution, we are able to reject previous conclusions that the placental root is a hard polytomy that cannot be resolved. Reanalyses of previous data sets recover Atlantogenata + Boreoeutheria and show that contradictory results are a consequence of poorly fitting evolutionary models; instead, when the evolutionary process is better-modeled, all data sets converge on Atlantogenata. Our Bayesian molecular clock analysis estimates that marsupials diverged from placentals 157-170 Ma, crown Placentalia diverged 86-100 Ma, and crown Atlantogenata diverged 84-97 Ma. Our results are compatible with placental diversification being driven by dispersal rather than vicariance mechanisms, postdating early phases in the protracted opening of the Atlantic Ocean.
Collapse
Affiliation(s)
- James E Tarver
- Department of Biology, The National University of Ireland, Maynooth, Ireland School of Earth Sciences, University of Bristol, United Kingdom
| | - Mario Dos Reis
- Department of Genetics, Evolution and Environment, University College London, United Kingdom School of Biological and Chemical Sciences, Queen Mary University of London, United Kingdom
| | - Siavash Mirarab
- Department of Computer Science, University of Texas at Austin Department of Electrical and Computer Engineering, University of California, San Diego
| | - Raymond J Moran
- Computational and Molecular Evolutionary Biology Group, School of Biology, Faculty of Life Sciences, University of Leeds
| | - Sean Parker
- School of Earth Sciences, University of Bristol, United Kingdom
| | | | - Benjamin L King
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine
| | - Mary J O'Connell
- Computational and Molecular Evolutionary Biology Group, School of Biology, Faculty of Life Sciences, University of Leeds
| | - Robert J Asher
- Museum of Zoology, University of Cambridge, United Kingdom
| | - Tandy Warnow
- Department of Computer Science, University of Texas at Austin Department of Electrical and Computer Engineering, University of California, San Diego Departments of Bioengineering and Computer Science, University of Illinois at Urbana-Champaign
| | - Kevin J Peterson
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire
| | | | - Davide Pisani
- School of Earth Sciences, University of Bristol, United Kingdom School of Biological Sciences, University of Bristol, United Kingdom
| |
Collapse
|
27
|
Springer MS, Gatesy J. The gene tree delusion. Mol Phylogenet Evol 2016; 94:1-33. [DOI: 10.1016/j.ympev.2015.07.018] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/04/2015] [Accepted: 07/22/2015] [Indexed: 10/23/2022]
|
28
|
Reyes LD, Stimpson CD, Gupta K, Raghanti MA, Hof PR, Reep RL, Sherwood CC. Neuron Types in the Presumptive Primary Somatosensory Cortex of the Florida Manatee (Trichechus manatus latirostris). BRAIN, BEHAVIOR AND EVOLUTION 2015; 86:210-31. [PMID: 26613530 DOI: 10.1159/000441964] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 10/25/2015] [Indexed: 11/19/2022]
Abstract
Within afrotherians, sirenians are unusual due to their aquatic lifestyle, large body size and relatively large lissencephalic brain. However, little is known about the neuron type distributions of the cerebral cortex in sirenians within the context of other afrotherians and aquatic mammals. The present study investigated two cortical regions, dorsolateral cortex area 1 (DL1) and cluster cortex area 2 (CL2), in the presumptive primary somatosensory cortex (S1) in Florida manatees (Trichechus manatus latirostris) to characterize cyto- and chemoarchitecture. The mean neuron density for both cortical regions was 35,617 neurons/mm(3) and fell within the 95% prediction intervals relative to brain mass based on a reference group of afrotherians and xenarthrans. Densities of inhibitory interneuron subtypes labeled against calcium-binding proteins and neuropeptide Y were relatively low compared to afrotherians and xenarthrans and also formed a small percentage of the overall population of inhibitory interneurons as revealed by GAD67 immunoreactivity. Nonphosphorylated neurofilament protein-immunoreactive (NPNFP-ir) neurons comprised a mean of 60% of neurons in layer V across DL1 and CL2. DL1 contained a higher percentage of NPNFP-ir neurons than CL2, although CL2 had a higher variety of morphological types. The mean percentage of NPNFP-ir neurons in the two regions of the presumptive S1 were low compared to other afrotherians and xenarthrans but were within the 95% prediction intervals relative to brain mass, and their morphologies were comparable to those found in other afrotherians and xenarthrans. Although this specific pattern of neuron types and densities sets the manatee apart from other afrotherians and xenarthrans, the manatee isocortex does not appear to be explicitly adapted for an aquatic habitat. Many of the features that are shared between manatees and cetaceans are also shared with a diverse array of terrestrial mammals and likely represent highly conserved neural features. A comparative study across manatees and dugongs is necessary to determine whether these traits are specific to one or more of the manatee species, or can be generalized to all sirenians.
Collapse
Affiliation(s)
- Laura D Reyes
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, D.C., USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Zhu Q, Hastriter MW, Whiting MF, Dittmar K. Fleas (Siphonaptera) are Cretaceous, and evolved with Theria. Mol Phylogenet Evol 2015; 90:129-39. [DOI: 10.1016/j.ympev.2015.04.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 03/16/2015] [Accepted: 04/28/2015] [Indexed: 10/23/2022]
|
30
|
Gundling WE, Wildman DE. A review of inter- and intraspecific variation in the eutherian placenta. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140072. [PMID: 25602076 PMCID: PMC4305173 DOI: 10.1098/rstb.2014.0072] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The placenta is one of the most morphologically variable mammalian organs. Four major characteristics are typically discussed when comparing the placentas of different eutherian species: placental shape, maternal-fetal interdigitation, intimacy of the maternal-fetal interface and the pattern of maternal-fetal blood flow. Here, we describe the evolution of three of these features as well as other key aspects of eutherian placentation. In addition to interspecific anatomical variation, there is also variation in placental anatomy and function within a single species. Much of this intraspecific variation occurs in response to different environmental conditions such as altitude and poor maternal nutrition. Examinations of variation in the placenta from both intra- and interspecies perspectives elucidate different aspects of placental function and dysfunction at the maternal-fetal interface. Comparisons within species identify candidate mechanisms that are activated in response to environmental stressors ultimately contributing to the aetiology of obstetric syndromes such as pre-eclampsia. Comparisons above the species level identify the evolutionary lineages on which the potential for the development of obstetric syndromes emerged.
Collapse
Affiliation(s)
- William E Gundling
- Institute for Genomic Biology, University of Illinois, Urbana, IL, USA Department of Molecular and Integrative Physiology, University of Illinois, Urbana, IL, USA Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Derek E Wildman
- Institute for Genomic Biology, University of Illinois, Urbana, IL, USA Department of Molecular and Integrative Physiology, University of Illinois, Urbana, IL, USA Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
31
|
Averianov AO, Lopatin AV. High-level systematics of placental mammals: Current status of the problem. BIOL BULL+ 2014. [DOI: 10.1134/s1062359014090039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Gatesy J, Springer MS. Phylogenetic analysis at deep timescales: Unreliable gene trees, bypassed hidden support, and the coalescence/concatalescence conundrum. Mol Phylogenet Evol 2014; 80:231-66. [DOI: 10.1016/j.ympev.2014.08.013] [Citation(s) in RCA: 239] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 07/26/2014] [Accepted: 08/10/2014] [Indexed: 11/16/2022]
|
33
|
Lewis DS, Sperling FAH, Nakahara S, Cotton AM, Kawahara AY, Condamine FL. Role of
C
aribbean Islands in the diversification and biogeography of Neotropical
H
eraclides
swallowtails. Cladistics 2014; 31:291-314. [DOI: 10.1111/cla.12092] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2014] [Indexed: 11/29/2022] Open
Affiliation(s)
- Delano S. Lewis
- McGuire Center for Lepidoptera and Biodiversity Florida Museum of Natural History University of Florida Gainesville FL 32611 USA
- The Office of Research and Grants and the Biology, Chemistry, and Environmental Sciences Department Northern Caribbean University Manchester Road Mandeville Jamaica WI
| | - Felix A. H. Sperling
- Department of Biological Sciences University of Alberta Edmonton Alberta T6G 2E9 Canada
| | - Shinichi Nakahara
- McGuire Center for Lepidoptera and Biodiversity Florida Museum of Natural History University of Florida Gainesville FL 32611 USA
| | - Adam M. Cotton
- 86/2 Moo 5, Ban Hua Tung, Tambon Nong Kwai Amphoe Hang Dong Chiang Mai 50230 Thailand
| | - Akito Y. Kawahara
- McGuire Center for Lepidoptera and Biodiversity Florida Museum of Natural History University of Florida Gainesville FL 32611 USA
| | - Fabien L. Condamine
- CNRS UMR 7641 Centre de Mathématiques Appliquées (Ecole Polytechnique) Route de Saclay 91128 Palaiseau France
| |
Collapse
|
34
|
Cornelis H, Coop AD. Afference copy as a quantitative neurophysiological model for consciousness. J Integr Neurosci 2014; 13:363-402. [DOI: 10.1142/s0219635214400020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
35
|
Morgan CC, Foster PG, Webb AE, Pisani D, McInerney JO, O'Connell MJ. Heterogeneous models place the root of the placental mammal phylogeny. Mol Biol Evol 2013; 30:2145-56. [PMID: 23813979 PMCID: PMC3748356 DOI: 10.1093/molbev/mst117] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Heterogeneity among life traits in mammals has resulted in considerable phylogenetic conflict, particularly concerning the position of the placental root. Layered upon this are gene- and lineage-specific variation in amino acid substitution rates and compositional biases. Life trait variations that may impact upon mutational rates are longevity, metabolic rate, body size, and germ line generation time. Over the past 12 years, three main conflicting hypotheses have emerged for the placement of the placental root. These hypotheses place the Atlantogenata (common ancestor of Xenarthra plus Afrotheria), the Afrotheria, or the Xenarthra as the sister group to all other placental mammals. Model adequacy is critical for accurate tree reconstruction and by failing to account for these compositional and character exchange heterogeneities across the tree and data set, previous studies have not provided a strongly supported hypothesis for the placental root. For the first time, models that accommodate both tree and data set heterogeneity have been applied to mammal data. Here, we show the impact of accurate model assignment and the importance of data sets in accommodating model parameters while maintaining the power to reject competing hypotheses. Through these sophisticated methods, we demonstrate the importance of model adequacy, data set power and provide strong support for the Atlantogenata over other competing hypotheses for the position of the placental root.
Collapse
Affiliation(s)
- Claire C Morgan
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Glasnevin, Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
36
|
Romiguier J, Ranwez V, Delsuc F, Galtier N, Douzery EJP. Less is more in mammalian phylogenomics: AT-rich genes minimize tree conflicts and unravel the root of placental mammals. Mol Biol Evol 2013; 30:2134-44. [PMID: 23813978 DOI: 10.1093/molbev/mst116] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Despite the rapid increase of size in phylogenomic data sets, a number of important nodes on animal phylogeny are still unresolved. Among these, the rooting of the placental mammal tree is still a controversial issue. One difficulty lies in the pervasive phylogenetic conflicts among genes, with each one telling its own story, which may be reliable or not. Here, we identified a simple criterion, that is, the GC content, which substantially helps in determining which gene trees best reflect the species tree. We assessed the ability of 13,111 coding sequence alignments to correctly reconstruct the placental phylogeny. We found that GC-rich genes induced a higher amount of conflict among gene trees and performed worse than AT-rich genes in retrieving well-supported, consensual nodes on the placental tree. We interpret this GC effect mainly as a consequence of genome-wide variations in recombination rate. Indeed, recombination is known to drive GC-content evolution through GC-biased gene conversion and might be problematic for phylogenetic reconstruction, for instance, in an incomplete lineage sorting context. When we focused on the AT-richest fraction of the data set, the resolution level of the placental phylogeny was greatly increased, and a strong support was obtained in favor of an Afrotheria rooting, that is, Afrotheria as the sister group of all other placentals. We show that in mammals most conflicts among gene trees, which have so far hampered the resolution of the placental tree, are concentrated in the GC-rich regions of the genome. We argue that the GC content-because it is a reliable indicator of the long-term recombination rate-is an informative criterion that could help in identifying the most reliable molecular markers for species tree inference.
Collapse
Affiliation(s)
- Jonathan Romiguier
- CNRS, Université Montpellier, Institut des Sciences de l'Evolution, Montpellier, France.
| | | | | | | | | |
Collapse
|
37
|
Kimball RT, Wang N, Heimer-McGinn V, Ferguson C, Braun EL. Identifying localized biases in large datasets: a case study using the avian tree of life. Mol Phylogenet Evol 2013; 69:1021-32. [PMID: 23791948 DOI: 10.1016/j.ympev.2013.05.029] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 05/12/2013] [Accepted: 05/29/2013] [Indexed: 01/27/2023]
Abstract
Large-scale multi-locus studies have become common in molecular phylogenetics, with new studies continually adding to previous datasets in an effort to fully resolve the tree of life. Total evidence analyses that combine existing data with newly collected data are expected to increase the power of phylogenetic analyses to resolve difficult relationships. However, they might be subject to localized biases, with one or a few loci having a strong and potentially misleading influence upon the results. To examine this possibility we combined a newly collected 31-locus dataset that includes representatives of all major avian lineages with a published dataset of 19 loci that has a comparable number of sites (Hackett et al., 2008. Science 320, 1763-1768). This allowed us to explore the advantages of conducting total evidence analyses, and to determine whether it was also important to analyze new datasets independent of published ones. The total evidence analysis yielded results very similar to the published results, with only slightly increased support at a few nodes. However, analyzing the 31- and 19-locus datasets separately highlighted several differences. Two clades received strong support in the published dataset and total evidence analysis, but the support appeared to reflect bias at a single locus (β-fibrinogen [FGB]). The signal in FGB that supported these relationships was sufficient to result in their recovery with bootstrap support, even when combined with 49 loci lacking that signal. FGB did not appear to have a substantial impact upon the results of species tree methods, but another locus (brain-derived neurotrophic factor [BDNF]) did have an impact upon those analyses. These results demonstrated that localized biases can influence large-scale phylogenetic analyses but they also indicated that considering independent evidence and exploring multiple analytical approaches could reveal them.
Collapse
Affiliation(s)
- Rebecca T Kimball
- Department of Biology, University of Florida, Gainesville, FL 32611, United States.
| | | | | | | | | |
Collapse
|
38
|
Evolution of consciousness: phylogeny, ontogeny, and emergence from general anesthesia. Proc Natl Acad Sci U S A 2013; 110 Suppl 2:10357-64. [PMID: 23754370 DOI: 10.1073/pnas.1301188110] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Are animals conscious? If so, when did consciousness evolve? We address these long-standing and essential questions using a modern neuroscientific approach that draws on diverse fields such as consciousness studies, evolutionary neurobiology, animal psychology, and anesthesiology. We propose that the stepwise emergence from general anesthesia can serve as a reproducible model to study the evolution of consciousness across various species and use current data from anesthesiology to shed light on the phylogeny of consciousness. Ultimately, we conclude that the neurobiological structure of the vertebrate central nervous system is evolutionarily ancient and highly conserved across species and that the basic neurophysiologic mechanisms supporting consciousness in humans are found at the earliest points of vertebrate brain evolution. Thus, in agreement with Darwin's insight and the recent "Cambridge Declaration on Consciousness in Non-Human Animals," a review of modern scientific data suggests that the differences between species in terms of the ability to experience the world is one of degree and not kind.
Collapse
|
39
|
Ge D, Wen Z, Xia L, Zhang Z, Erbajeva M, Huang C, Yang Q. Evolutionary history of lagomorphs in response to global environmental change. PLoS One 2013; 8:e59668. [PMID: 23573205 PMCID: PMC3616043 DOI: 10.1371/journal.pone.0059668] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 02/18/2013] [Indexed: 11/18/2022] Open
Abstract
Although species within Lagomorpha are derived from a common ancestor, the distribution range and body size of its two extant groups, ochotonids and leporids, are quite differentiated. It is unclear what has driven their disparate evolutionary history. In this study, we compile and update all fossil records of Lagomorpha for the first time, to trace the evolutionary processes and infer their evolutionary history using mitochondrial genes, body length and distribution of extant species. We also compare the forage selection of extant species, which offers an insight into their future prospects. The earliest lagomorphs originated in Asia and later diversified in different continents. Within ochotonids, more than 20 genera occupied the period from the early Miocene to middle Miocene, whereas most of them became extinct during the transition from the Miocene to Pliocene. The peak diversity of the leporids occurred during the Miocene to Pliocene transition, while their diversity dramatically decreased in the late Quaternary. Mantel tests identified a positive correlation between body length and phylogenetic distance of lagomorphs. The body length of extant ochotonids shows a normal distribution, while the body length of extant leporids displays a non-normal pattern. We also find that the forage selection of extant pikas features a strong preference for C3 plants, while for the diet of leporids, more than 16% of plant species are identified as C4 (31% species are from Poaceae). The ability of several leporid species to consume C4 plants is likely to result in their size increase and range expansion, most notably in Lepus. Expansion of C4 plants in the late Miocene, the so-called ‘nature’s green revolution’, induced by global environmental change, is suggested to be one of the major ‘ecological opportunities’, which probably drove large-scale extinction and range contraction of ochotonids, but inversely promoted diversification and range expansion of leporids.
Collapse
Affiliation(s)
- Deyan Ge
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhixin Wen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lin Xia
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhaoqun Zhang
- Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Margarita Erbajeva
- Geological Institute, Siberian Branch, Russian Academy of Sciences, Ulan-Ude, Russia
| | - Chengming Huang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qisen Yang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
40
|
Coalescent-based genome analyses resolve the early branches of the euarchontoglires. PLoS One 2013; 8:e60019. [PMID: 23560065 PMCID: PMC3613385 DOI: 10.1371/journal.pone.0060019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 02/20/2013] [Indexed: 11/19/2022] Open
Abstract
Despite numerous large-scale phylogenomic studies, certain parts of the mammalian tree are extraordinarily difficult to resolve. We used the coding regions from 19 completely sequenced genomes to study the relationships within the super-clade Euarchontoglires (Primates, Rodentia, Lagomorpha, Dermoptera and Scandentia) because the placement of Scandentia within this clade is controversial. The difficulty in resolving this issue is due to the short time spans between the early divergences of Euarchontoglires, which may cause incongruent gene trees. The conflict in the data can be depicted by network analyses and the contentious relationships are best reconstructed by coalescent-based analyses. This method is expected to be superior to analyses of concatenated data in reconstructing a species tree from numerous gene trees. The total concatenated dataset used to study the relationships in this group comprises 5,875 protein-coding genes (9,799,170 nucleotides) from all orders except Dermoptera (flying lemurs). Reconstruction of the species tree from 1,006 gene trees using coalescent models placed Scandentia as sister group to the primates, which is in agreement with maximum likelihood analyses of concatenated nucleotide sequence data. Additionally, both analytical approaches favoured the Tarsier to be sister taxon to Anthropoidea, thus belonging to the Haplorrhine clade. When divergence times are short such as in radiations over periods of a few million years, even genome scale analyses struggle to resolve phylogenetic relationships. On these short branches processes such as incomplete lineage sorting and possibly hybridization occur and make it preferable to base phylogenomic analyses on coalescent methods.
Collapse
|
41
|
Hautier L, Bennett NC, Viljoen H, Howard L, Milinkovitch MC, Tzika AC, Goswami A, Asher RJ. PATTERNS OF OSSIFICATION IN SOUTHERN VERSUS NORTHERN PLACENTAL MAMMALS. Evolution 2013; 67:1994-2010. [DOI: 10.1111/evo.12071] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 01/31/2013] [Indexed: 12/01/2022]
Affiliation(s)
- Lionel Hautier
- Department of Zoology; University of Cambridge; Downing St. Cambridge CB2 3EJ United Kingdom
| | - Nigel C. Bennett
- Department of Zoology and Entomology; University of Pretoria; Pretoria 0002 South Africa
| | - Hermien Viljoen
- Department of Zoology and Entomology; University of Pretoria; Pretoria 0002 South Africa
| | - Lauren Howard
- Science Facilities Department; British Museum of Natural History; Cromwell Road London SW7 5BD United Kingdom
| | - Michel C. Milinkovitch
- Laboratory of Artificial and Natural Evolution; Department of Genetics & Evolution; Sciences III Building; 30 Quai Ernest-Ansermet 1211 Geneva Switzerland
| | - Athanasia C. Tzika
- Laboratory of Artificial and Natural Evolution; Department of Genetics & Evolution; Sciences III Building; 30 Quai Ernest-Ansermet 1211 Geneva Switzerland
| | - Anjali Goswami
- Department of Genetics, Evolution, and Environment and Department of Earth Sciences; University College London; Wolfson House to Darwin Building; Gower Street London WC1E 6BT United Kingdom
| | - Robert J. Asher
- Department of Zoology; University of Cambridge; Downing St. Cambridge CB2 3EJ United Kingdom
| |
Collapse
|
42
|
Comin M, Verzotto D. Alignment-free phylogeny of whole genomes using underlying subwords. Algorithms Mol Biol 2012; 7:34. [PMID: 23216990 PMCID: PMC3549825 DOI: 10.1186/1748-7188-7-34] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 11/29/2012] [Indexed: 11/24/2022] Open
Abstract
Background With the progress of modern sequencing technologies a large number of complete genomes are now available. Traditionally the comparison of two related genomes is carried out by sequence alignment. There are cases where these techniques cannot be applied, for example if two genomes do not share the same set of genes, or if they are not alignable to each other due to low sequence similarity, rearrangements and inversions, or more specifically to their lengths when the organisms belong to different species. For these cases the comparison of complete genomes can be carried out only with ad hoc methods that are usually called alignment-free methods. Methods In this paper we propose a distance function based on subword compositions called Underlying Approach (UA). We prove that the matching statistics, a popular concept in the field of string algorithms able to capture the statistics of common words between two sequences, can be derived from a small set of “independent” subwords, namely the irredundant common subwords. We define a distance-like measure based on these subwords, such that each region of genomes contributes only once, thus avoiding to count shared subwords a multiple number of times. In a nutshell, this filter discards subwords occurring in regions covered by other more significant subwords. Results The Underlying Approach (UA) builds a scoring function based on this set of patterns, called underlying. We prove that this set is by construction linear in the size of input, without overlaps, and can be efficiently constructed. Results show the validity of our method in the reconstruction of phylogenetic trees, where the Underlying Approach outperforms the current state of the art methods. Moreover, we show that the accuracy of UA is achieved with a very small number of subwords, which in some cases carry meaningful biological information. Availability http://www.dei.unipd.it/∼ciompin/main/underlying.html
Collapse
|
43
|
Luo H, Arndt W, Zhang Y, Shi G, Alekseyev M, Tang J, Hughes AL, Friedman R. Phylogenetic analysis of genome rearrangements among five mammalian orders. Mol Phylogenet Evol 2012; 65:871-82. [PMID: 22929217 PMCID: PMC4425404 DOI: 10.1016/j.ympev.2012.08.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 08/11/2012] [Accepted: 08/13/2012] [Indexed: 01/16/2023]
Abstract
Evolutionary relationships among placental mammalian orders have been controversial. Whole genome sequencing and new computational methods offer opportunities to resolve the relationships among 10 genomes belonging to the mammalian orders Primates, Rodentia, Carnivora, Perissodactyla and Artiodactyla. By application of the double cut and join distance metric, where gene order is the phylogenetic character, we computed genomic distances among the sampled mammalian genomes. With a marsupial outgroup, the gene order tree supported a topology in which Rodentia fell outside the cluster of Primates, Carnivora, Perissodactyla, and Artiodactyla. Results of breakpoint reuse rate and synteny block length analyses were consistent with the prediction of random breakage model, which provided a diagnostic test to support use of gene order as an appropriate phylogenetic character in this study. We discussed the influence of rate differences among lineages and other factors that may contribute to different resolutions of mammalian ordinal relationships by different methods of phylogenetic reconstruction.
Collapse
Affiliation(s)
- Haiwei Luo
- Department of Biological Sciences, University of South Carolina, Columbia 29208, USA
| | - William Arndt
- Department of Computer Science and Engineering, University of South Carolina, Columbia 29208, USA
| | - Yiwei Zhang
- Department of Computer Science and Engineering, University of South Carolina, Columbia 29208, USA
| | - Guanqun Shi
- Department of Computer Science, University of California, Riverside, 92521, USA
| | - Max Alekseyev
- Department of Computer Science and Engineering, University of South Carolina, Columbia 29208, USA
| | - Jijun Tang
- Department of Computer Science and Engineering, University of South Carolina, Columbia 29208, USA
| | - Austin L. Hughes
- Department of Biological Sciences, University of South Carolina, Columbia 29208, USA
| | - Robert Friedman
- Department of Biological Sciences, University of South Carolina, Columbia 29208, USA
| |
Collapse
|
44
|
Resolution of the laurasiatherian phylogeny: Evidence from genomic data. Mol Phylogenet Evol 2012; 64:685-9. [DOI: 10.1016/j.ympev.2012.04.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 04/03/2012] [Accepted: 04/17/2012] [Indexed: 11/17/2022]
|
45
|
Lin Y, Rajan V, Moret BME. Bootstrapping phylogenies inferred from rearrangement data. Algorithms Mol Biol 2012; 7:21. [PMID: 22931958 PMCID: PMC3487984 DOI: 10.1186/1748-7188-7-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 07/26/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Large-scale sequencing of genomes has enabled the inference of phylogenies based on the evolution of genomic architecture, under such events as rearrangements, duplications, and losses. Many evolutionary models and associated algorithms have been designed over the last few years and have found use in comparative genomics and phylogenetic inference. However, the assessment of phylogenies built from such data has not been properly addressed to date. The standard method used in sequence-based phylogenetic inference is the bootstrap, but it relies on a large number of homologous characters that can be resampled; yet in the case of rearrangements, the entire genome is a single character. Alternatives such as the jackknife suffer from the same problem, while likelihood tests cannot be applied in the absence of well established probabilistic models. RESULTS We present a new approach to the assessment of distance-based phylogenetic inference from whole-genome data; our approach combines features of the jackknife and the bootstrap and remains nonparametric. For each feature of our method, we give an equivalent feature in the sequence-based framework; we also present the results of extensive experimental testing, in both sequence-based and genome-based frameworks. Through the feature-by-feature comparison and the experimental results, we show that our bootstrapping approach is on par with the classic phylogenetic bootstrap used in sequence-based reconstruction, and we establish the clear superiority of the classic bootstrap for sequence data and of our corresponding new approach for rearrangement data over proposed variants. Finally, we test our approach on a small dataset of mammalian genomes, verifying that the support values match current thinking about the respective branches. CONCLUSIONS Our method is the first to provide a standard of assessment to match that of the classic phylogenetic bootstrap for aligned sequences. Its support values follow a similar scale and its receiver-operating characteristics are nearly identical, indicating that it provides similar levels of sensitivity and specificity. Thus our assessment method makes it possible to conduct phylogenetic analyses on whole genomes with the same degree of confidence as for analyses on aligned sequences. Extensions to search-based inference methods such as maximum parsimony and maximum likelihood are possible, but remain to be thoroughly tested.
Collapse
Affiliation(s)
- Yu Lin
- Laboratory for Computational Biology and Bioinformatics, EPFL, EPFL-IC-LCBB INJ230, Station 14, CH-1015 Lausanne, Switzerland
| | - Vaibhav Rajan
- Laboratory for Computational Biology and Bioinformatics, EPFL, EPFL-IC-LCBB INJ230, Station 14, CH-1015 Lausanne, Switzerland
| | - Bernard ME Moret
- Laboratory for Computational Biology and Bioinformatics, EPFL, EPFL-IC-LCBB INJ230, Station 14, CH-1015 Lausanne, Switzerland
| |
Collapse
|
46
|
Resolving conflict in eutherian mammal phylogeny using phylogenomics and the multispecies coalescent model. Proc Natl Acad Sci U S A 2012; 109:14942-7. [PMID: 22930817 DOI: 10.1073/pnas.1211733109] [Citation(s) in RCA: 312] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The reconstruction of the Tree of Life has relied almost entirely on concatenation methods, which do not accommodate gene tree heterogeneity, a property that simulations and theory have identified as a likely cause of incongruent phylogenies. However, this incongruence has not yet been demonstrated in empirical studies. Several key relationships among eutherian mammals remain controversial and conflicting among previous studies, including the root of eutherian tree and the relationships within Euarchontoglires and Laurasiatheria. Both bayesian and maximum-likelihood analysis of genome-wide data of 447 nuclear genes from 37 species show that concatenation methods indeed yield strong incongruence in the phylogeny of eutherian mammals, as revealed by subsampling analyses of loci and taxa, which produced strongly conflicting topologies. In contrast, the coalescent methods, which accommodate gene tree heterogeneity, yield a phylogeny that is robust to variable gene and taxon sampling and is congruent with geographic data. The data also demonstrate that incomplete lineage sorting, a major source of gene tree heterogeneity, is relevant to deep-level phylogenies, such as those among eutherian mammals. Our results firmly place the eutherian root between Atlantogenata and Boreoeutheria and support ungulate polyphyly and a sister-group relationship between Scandentia and Primates. This study demonstrates that the incongruence introduced by concatenation methods is a major cause of long-standing uncertainty in the phylogeny of eutherian mammals, and the same may apply to other clades. Our analyses suggest that such incongruence can be resolved using phylogenomic data and coalescent methods that deal explicitly with gene tree heterogeneity.
Collapse
|
47
|
Svartman M, Stanyon R. The chromosomes of Afrotheria and their bearing on mammalian genome evolution. Cytogenet Genome Res 2012; 137:144-53. [PMID: 22868637 DOI: 10.1159/000341387] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Afrotheria is the clade of placental mammals that, together with Xenarthra, Euarchontoglires and Laurasiatheria, represents 1 of the 4 main recognized supraordinal eutherian clades. It reunites 6 orders of African origin: Proboscidea, Sirenia, Hyracoidea, Macroscelidea, Afrosoricida and Tubulidentata. The apparently unlikely relationship among such disparate morphological taxa and their possible basal position at the base of the eutherian phylogenetic tree led to a great deal of attention and research on the group. The use of biomolecular data was pivotal in Afrotheria studies, as they were the basis for the recognition of this clade. Although morphological evidence is still scarce, a plethora of molecular data firmly attests to the phylogenetic relationship among these mammals of African origin. Modern cytogenetic techniques also gave a significant contribution to the study of Afrotheria, revealing chromosome signatures for the group as a whole, as well as for some of its internal relationships. The associations of human chromosomes HSA1/19 and 5/21 were found to be chromosome signatures for the group and provided further support for Afrotheria. Additional chromosome synapomorphies were also identified linking elephants and manatees in Tethytheria (the associations HSA2/3, 3/13, 8/22, 18/19 and the lack of HSA4/8) and elephant shrews with the aardvark (HSA2/8, 3/20 and 10/17). Herein, we review the current knowledge on Afrotheria chromosomes and genome evolution. The already available data on the group suggests that further work on this apparently bizarre assemblage of mammals will provide important data to a better understanding on mammalian genome evolution.
Collapse
Affiliation(s)
- M Svartman
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | | |
Collapse
|
48
|
Phan TH, Nguyen DL. Species-specificity of DNA trimer densities in chromosomes and their use in the classification of closely related organisms. J Microbiol Methods 2012; 91:30-7. [PMID: 22820348 DOI: 10.1016/j.mimet.2012.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Revised: 07/09/2012] [Accepted: 07/10/2012] [Indexed: 11/27/2022]
Abstract
16S rDNA sequences are conventionally used for classification of organisms. However, the use of these sequences is sometimes not successful, especially for closely related species. For better classification of these organisms, several methods that are genome sequence-based have been developed. Sequence alignment-based methods are tedious and time-consuming, as they need conserved coding sequences to be identified and deduced prior to sequence alignment. Likewise, method that relies on gene function needs genes to be assessed for function similarity. Other alignment-free methods, which are based on particular genome sequence properties, so far have been complex and not species-specific enough for classification of organisms below genus level. The present study found that the ratios of DNA trimer frequencies to chromosomal length were species-specific. Density of a trimer in a chromosomal sequence was defined as the average frequency of the trimer per 1 kbp. The species-specificity of trimer densities in chromosomes of many closely related bacteria was compared in parallel with 16S rDNA sequences in these same bacteria. The results of these comparisons indicate that trimer densities in chromosomes can be used to simply and efficiently classify the organisms below genus level.
Collapse
Affiliation(s)
- Thi Huyen Phan
- Department of Biotechnology, Ho Chi Minh City University of Technology, VNU-HCM, Ward 14, District 10, Ho Chi Minh City, Vietnam.
| | | |
Collapse
|
49
|
Svartman M. Chromosome evolution in Xenarthra: new insights from an ancient group. Cytogenet Genome Res 2012; 137:130-43. [PMID: 22678153 DOI: 10.1159/000339115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The Magnaorder Xenarthra is one of the four main supraordinal eutherian clades, together with Afrotheria, Euarchontoglires and Laurasiatheria. Xenarthra is an eminently Central and South American group of special interest in phylogenetic studies due to its possible position at the base of the eutherian tree. The use of modern cytogenetic techniques in some species of Xenarthra has provided important insights into the karyotypic evolution of mammals. Nevertheless, chromosome analyses in the group are still restricted, with only a few individuals of each species studied and karyotype descriptions mostly without banding patterns. In addition, it is likely that still unknown species exist and that the chromosome variability in the group is underestimated. We present a review of the currently available data on Xenarthra chromosomes and genomes and on the impact that their study has had in the understanding of mammalian genome evolution. It is clear that further cytogenetic analyses in Xenarthra, including banding patterns and molecular approaches, are likely to help in the identification of new species, reveal still undetected chromosome variations, provide information to support conservation strategies planning, and greatly contribute to a better understanding of mammalian genome evolution.
Collapse
Affiliation(s)
- M Svartman
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
50
|
Brinkmalm G, Portelius E, Öhrfelt A, Mattsson N, Persson R, Gustavsson MK, Vite CH, Gobom J, Månsson JE, Nilsson J, Halim A, Larson G, Rüetschi U, Zetterberg H, Blennow K, Brinkmalm A. An online nano-LC-ESI-FTICR-MS method for comprehensive characterization of endogenous fragments from amyloid β and amyloid precursor protein in human and cat cerebrospinal fluid. JOURNAL OF MASS SPECTROMETRY : JMS 2012; 47:591-603. [PMID: 22576872 DOI: 10.1002/jms.2987] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Amyloid precursor protein (APP) is the precursor protein to amyloid β (Aβ), the main constituent of senile plaques in Alzheimer's disease (AD). Endogenous Aβ peptides reflect the APP processing, and greater knowledge of different APP degradation pathways is important to understand the mechanism underlying AD pathology. When one analyzes longer Aβ peptides by low-energy collision-induced dissociation tandem mass spectrometry (MS/MS), mainly long b-fragments are observed, limiting the possibility to determine variations such as amino acid variants or post-translational modifications (PTMs) within the N-terminal half of the peptide. However, by using electron capture dissociation (ECD), we obtained a more comprehensive sequence coverage for several APP/Aβ peptide species, thus enabling a deeper characterization of possible variants and PTMs. Abnormal APP/Aβ processing has also been described in the lysosomal storage disease Niemann-Pick type C and the major large animal used for studying this disease is cat. By ECD MS/MS, a substitution of Asp7 → Glu in cat Aβ was identified. Further, sialylated core 1 like O-glycans at Tyr10, recently discovered in human Aβ (a previously unknown glycosylation type), were identified also in cat cerebrospinal fluid (CSF). It is therefore likely that this unusual type of glycosylation is common for (at least) species belonging to the magnorder Boreoeutheria. We here describe a detailed characterization of endogenous APP/Aβ peptide species in CSF by using an online top-down MS-based method.
Collapse
Affiliation(s)
- Gunnar Brinkmalm
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|