1
|
Zhang Y, Hardy LC, Kapita CM, Hall JA, Arbeeva L, Campbell E, Urban JF, Belkaid Y, Nagler CR, Iweala OI. Intestinal Helminth Infection Impairs Oral and Parenteral Vaccine Efficacy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:389-402. [PMID: 37272847 PMCID: PMC10524302 DOI: 10.4049/jimmunol.2300084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/18/2023] [Indexed: 06/06/2023]
Abstract
The impact of endemic parasitic infection on vaccine efficacy is an important consideration for vaccine development and deployment. We have examined whether intestinal infection with the natural murine helminth Heligmosomoides polygyrus bakeri alters Ag-specific Ab and cellular immune responses to oral and parenteral vaccination in mice. Oral vaccination of mice with a clinically relevant, live, attenuated, recombinant Salmonella vaccine expressing chicken egg OVA (Salmonella-OVA) induced the accumulation of activated, OVA-specific T effector cells rather than OVA-specific regulatory T cells in the GALT. Intestinal helminth infection significantly reduced Th1-skewed Ab responses to oral vaccination with Salmonella-OVA. Activated, adoptively transferred, OVA-specific CD4+ T cells accumulated in draining mesenteric lymph nodes of vaccinated mice, regardless of their helminth infection status. However, helminth infection increased the frequencies of adoptively transferred OVA-specific CD4+ T cells producing IL-4 and IL-10 in the mesenteric lymph node. Ab responses to the oral Salmonella-OVA vaccine were reduced in helminth-free mice adoptively transferred with OVA-specific CD4+ T cells harvested from mice with intestinal helminth infection. Intestinal helminth infection also significantly reduced Th2-skewed Ab responses to parenteral vaccination with OVA adsorbed to alum. These findings suggest that vaccine-specific CD4+ T cells induced in the context of helminth infection retain durable immunomodulatory properties and may promote blunted Ab responses to vaccination. They also underscore the potential need to treat parasitic infection before mass vaccination campaigns in helminth-endemic areas.
Collapse
Affiliation(s)
- Yugen Zhang
- Department of Medicine, Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology, Chapel Hill, NC, 27599
- Department of Pediatrics, University of North Carolina Food Allergy Initiative, Division of Allergy and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, 27599
| | - LaKeya C. Hardy
- Department of Medicine, Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology, Chapel Hill, NC, 27599
- Department of Pediatrics, University of North Carolina Food Allergy Initiative, Division of Allergy and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, 27599
| | - Camille M. Kapita
- Department of Medicine, Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology, Chapel Hill, NC, 27599
| | - Jason A. Hall
- National Institute of Allergy and Infectious Diseases Microbiome Program and Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, Center for Human Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Liubov Arbeeva
- Department of Medicine, Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology, Chapel Hill, NC, 27599
| | - Evelyn Campbell
- Biological Sciences Division, University of Chicago, Chicago, IL, 60637
| | - Joseph F. Urban
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory and Beltsville Human Nutrition Research Center, Diet, Genomics, and Immunology Laboratory, 10300 Baltimore Avenue BLDG 307-C BARC-East, Beltsville, MD, 20705
| | - Yasmine Belkaid
- National Institute of Allergy and Infectious Diseases Microbiome Program and Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, Center for Human Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Cathryn R. Nagler
- Biological Sciences Division, University of Chicago, Chicago, IL, 60637
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637
- Center for Immunology and Inflammatory Disease, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Charlestown, MA 02129
| | - Onyinye I. Iweala
- Department of Medicine, Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology, Chapel Hill, NC, 27599
- Department of Pediatrics, University of North Carolina Food Allergy Initiative, Division of Allergy and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, 27599
- Center for Immunology and Inflammatory Disease, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Charlestown, MA 02129
| |
Collapse
|
2
|
Khalid F, Tahir R, Ellahi M, Amir N, Rizvi SFA, Hasnain A. Emerging trends of edible vaccine therapy for combating human diseases especially
COVID
‐19: Pros, cons, and future challenges. Phytother Res 2022; 36:2746-2766. [PMID: 35499291 PMCID: PMC9347755 DOI: 10.1002/ptr.7475] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/18/2022] [Accepted: 04/06/2022] [Indexed: 11/07/2022]
Abstract
The researchers are still doing efforts to develop an effective, reliable, and easily accessible vaccine candidate to protect against COVID‐19. As of the August 2020, nearly 30 conventional vaccines have been emerged in clinical trials, and more than 200 vaccines are in various development stages. Nowadays, plants are also considered as a potential source for the production of monoclonal antibodies, vaccines, drugs, immunomodulatory proteins, as well as used as bioreactors or factories for their bulk production. The scientific evidences enlighten that plants are the rich source of oral vaccines, which can be given either by eating the edible parts of plants and/or by oral administration of highly refined proteins. The use of plant‐based edible vaccines is an emerging trend as it possesses minimum or no side effects compared with synthetic vaccines. This review article gives insights into different types of vaccines, the use of edible vaccines, advantages of edible vaccines over conventional vaccines, and mechanism of action of edible vaccines. This review article also focuses on the applications of edible vaccines in wide‐range of human diseases especially against COVID‐19 with emphasis on future perspectives of the use of edible vaccines.
Collapse
Affiliation(s)
- Fatima Khalid
- Institute of Molecular Biology and BiotechnologyThe University of LahoreLahorePakistan
| | - Reema Tahir
- Institute of Molecular Biology and BiotechnologyThe University of LahoreLahorePakistan
| | - Manahil Ellahi
- Institute of Molecular Biology and BiotechnologyThe University of LahoreLahorePakistan
| | - Nilofer Amir
- Institute of Molecular Biology and BiotechnologyThe University of LahoreLahorePakistan
| | - Syed Faheem Askari Rizvi
- Institute of Molecular Biology and BiotechnologyThe University of LahoreLahorePakistan
- College of Chemistry and Chemical EngineeringLanzhou UniversityLanzhouP.R. China
| | - Ammarah Hasnain
- Institute of Molecular Biology and BiotechnologyThe University of LahoreLahorePakistan
| |
Collapse
|
3
|
Development of Plant-Based Vaccines for Prevention of Avian Influenza and Newcastle Disease in Poultry. Vaccines (Basel) 2022; 10:vaccines10030478. [PMID: 35335110 PMCID: PMC8952014 DOI: 10.3390/vaccines10030478] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
Viral diseases, including avian influenza (AI) and Newcastle disease (ND), are an important cause of morbidity and mortality in poultry, resulting in significant economic losses. Despite the availability of commercial vaccines for the major viral diseases of poultry, these diseases continue to pose a significant risk to global food security. There are multiple factors for this: vaccine costs may be prohibitive, cold chain storage for attenuated live-virus vaccines may not be achievable, and commercial vaccines may protect poorly against local emerging strains. The development of transient gene expression systems in plants provides a versatile and robust tool to generate a high yield of recombinant proteins with superior speed while managing to achieve cost-efficient production. Plant-derived vaccines offer good stability and safety these include both subunit and virus-like particle (VLP) vaccines. VLPs offer potential benefits compared to currently available traditional vaccines, including significant reductions in virus shedding and the ability to differentiate between infected and vaccinated birds (DIVA). This review discusses the current state of plant-based vaccines for prevention of the AI and ND in poultry, challenges in their development, and potential for expanding their use in low- and middle-income countries.
Collapse
|
4
|
Sethi L, Kumari K, Dey N. Engineering of Plants for Efficient Production of Therapeutics. Mol Biotechnol 2021; 63:1125-1137. [PMID: 34398446 PMCID: PMC8365136 DOI: 10.1007/s12033-021-00381-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/10/2021] [Indexed: 02/07/2023]
Abstract
Plants are becoming useful platforms for recombinant protein production at present time. With the advancement of efficient molecular tools of genomics, proteomics, plants are now being used as a biofactory for production of different life saving therapeutics. Plant-based biofactory is an established production system with the benefits of cost-effectiveness, high scalability, rapid production, enabling post-translational modification, and being devoid of harmful pathogens contamination. This review introduces the main challenges faced by plant expression system: post-translational modifications, protein stability, biosafety concern and regulation. It also summarizes essential factors to be considered in engineering plants, including plant expression system, promoter, post-translational modification, codon optimization, and fusion tags, protein stabilization and purification, subcellular targeting, and making vaccines in an edible way. This review will be beneficial and informative to scholars and readers in the field of plant biotechnology.
Collapse
Affiliation(s)
- Lini Sethi
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha 751023 India ,Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana (NCR Delhi) 121001 India
| | - Khushbu Kumari
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha 751023 India ,Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana (NCR Delhi) 121001 India
| | - Nrisingha Dey
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha 751023 India
| |
Collapse
|
5
|
Nikitin NA, Trifonova EA, Karpova OV, Atabekov JG. Biosafety of plant viruses for human and animals. ACTA ACUST UNITED AC 2016. [DOI: 10.3103/s0096392516030081] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Gasanova TV, Petukhova NV, Ivanov PA. Chimeric particles of tobacco mosaic virus as a platform for the development of next-generation nanovaccines. ACTA ACUST UNITED AC 2016. [DOI: 10.1134/s1995078016020051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Liew PS, Hair-Bejo M. Farming of Plant-Based Veterinary Vaccines and Their Applications for Disease Prevention in Animals. Adv Virol 2015; 2015:936940. [PMID: 26351454 PMCID: PMC4550766 DOI: 10.1155/2015/936940] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/26/2015] [Indexed: 12/21/2022] Open
Abstract
Plants have been studied for the production of pharmaceutical compounds for more than two decades now. Ever since the plant-made poultry vaccine against Newcastle disease virus made a breakthrough and went all the way to obtain regulatory approval, research to use plants for expression and delivery of vaccine proteins for animals was intensified. Indeed, in view of the high production costs of veterinary vaccines, plants represent attractive biofactories and offer many promising advantages in the production of recombinant vaccine proteins. Furthermore, the possibility of conducting immunogenicity and challenge studies in target animals has greatly exaggerated the progress. Although there are no edible plant-produced animal vaccines in the market, plant-based vaccine technology has great potentials. In this review, development, uses, and advantages of plant-based recombinant protein production in various expression platforms are discussed. In addition, examples of plant-based veterinary vaccines showing strong indication in terms of efficacy in animal disease prevention are also described.
Collapse
Affiliation(s)
- Pit Sze Liew
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Mohd Hair-Bejo
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| |
Collapse
|
8
|
Hefferon K. Plant-derived pharmaceuticals for the developing world. Biotechnol J 2013; 8:1193-202. [PMID: 23857915 DOI: 10.1002/biot.201300162] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 04/02/2013] [Accepted: 06/26/2013] [Indexed: 12/17/2022]
Abstract
Plant-produced vaccines and therapeutic agents offer enormous potential for providing relief to developing countries by reducing the incidence of infant mortality caused by infectious diseases. Vaccines derived from plants have been demonstrated to effectively elicit an immune response. Biopharmaceuticals produced in plants are inexpensive to produce, require fewer expensive purification steps, and can be stored at ambient temperatures for prolonged periods of time. As a result, plant-produced biopharmaceuticals have the potential to be more accessible to the rural poor. This review describes current progress with respect to plant-produced biopharmaceuticals, with a particular emphasis on those that target developing countries. Specific emphasis is given to recent research on the production of plant-produced vaccines toward human immunodeficiency virus, malaria, tuberculosis, hepatitis B virus, Ebola virus, human papillomavirus, rabies virus and common diarrheal diseases. Production platforms used to express vaccines in plants, including nuclear and chloroplast transformation, and the use of viral expression vectors, are described in this review. The review concludes by outlining the next steps for plant-produced vaccines to achieve their goal of providing safe, efficacious and inexpensive vaccines to the developing world.
Collapse
Affiliation(s)
- Kathleen Hefferon
- Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada; Cornell University, Ithaca, NY, USA.
| |
Collapse
|
9
|
Balique F, Colson P, Barry AO, Nappez C, Ferretti A, Moussawi KA, Ngounga T, Lepidi H, Ghigo E, Mege JL, Lecoq H, Raoult D. Tobacco mosaic virus in the lungs of mice following intra-tracheal inoculation. PLoS One 2013; 8:e54993. [PMID: 23383021 PMCID: PMC3559775 DOI: 10.1371/journal.pone.0054993] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 12/19/2012] [Indexed: 12/23/2022] Open
Abstract
Plant viruses are generally considered incapable of infecting vertebrates. Accordingly, they are not considered harmful for humans. However, a few studies questioned the certainty of this paradigm. Tobacco mosaic virus (TMV) RNA has been detected in human samples and TMV RNA translation has been described in animal cells. We sought to determine if TMV is detectable, persists, and remains viable in the lung tissues of mice following intratracheal inoculation, and we attempted to inoculate mouse macrophages with TMV. In the animal model, mice were intratracheally inoculated with 10(11) viral particles and were sacrificed at different time points. The virus was detected in the mouse lungs using immunohistochemistry, electron microscopy, real-time RT-PCR and sequencing, and its viability was studied with an infectivity assay on plants. In the cellular model, the culture medium of murine bone marrow derived macrophages (BMDM) was inoculated with different concentrations of TMV, and the virus was detected with real-time RT-PCR and immunofluorescence. In addition, anti-TMV antibodies were detected in mouse sera with ELISA. We showed that infectious TMV could enter and persist in mouse lungs via the intratracheal route. Over 14 days, the TMV RNA level decreased by 5 log(10) copies/ml in the mouse lungs and by 3.5 log(10) in macrophages recovered from bronchoalveolar lavage. TMV was localized to lung tissue, and its infectivity was observed on plants until 3 days after inoculation. In addition, anti-TMV antibody seroconversions were observed in the sera from mice 7 days after inoculation. In the cellular model, we observed that TMV persisted over 15 days after inoculation and it was visualized in the cytoplasm of the BMDM. This work shows that a plant virus, Tobacco mosaic virus, could persist and enter in cells in mammals, which raises questions about the potential interactions between TMV and human hosts.
Collapse
Affiliation(s)
- Fanny Balique
- Aix-Marseille Univ., Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes (URMITE) UM 63 CNRS 7278 IRD 3R198 INSERM U1095, IHU Méditerranée Infection, Facultés de Médecine et de Pharmacie, Marseille, France
- Institut National de la Recherche Agronomique (INRA), UR 407, Pathologie Végétale, Montfavet, France
| | - Philippe Colson
- Aix-Marseille Univ., Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes (URMITE) UM 63 CNRS 7278 IRD 3R198 INSERM U1095, IHU Méditerranée Infection, Facultés de Médecine et de Pharmacie, Marseille, France
- Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Centre Hospitalo-Universitaire Timone, Assistance Publique des Hôpitaux de Marseille, Marseille, France
- * E-mail:
| | - Abdoulaye Oury Barry
- Aix-Marseille Univ., Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes (URMITE) UM 63 CNRS 7278 IRD 3R198 INSERM U1095, IHU Méditerranée Infection, Facultés de Médecine et de Pharmacie, Marseille, France
| | - Claude Nappez
- Aix-Marseille Univ., Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes (URMITE) UM 63 CNRS 7278 IRD 3R198 INSERM U1095, IHU Méditerranée Infection, Facultés de Médecine et de Pharmacie, Marseille, France
| | - Audrey Ferretti
- Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Centre Hospitalo-Universitaire Timone, Assistance Publique des Hôpitaux de Marseille, Marseille, France
| | - Khatoun Al Moussawi
- Aix-Marseille Univ., Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes (URMITE) UM 63 CNRS 7278 IRD 3R198 INSERM U1095, IHU Méditerranée Infection, Facultés de Médecine et de Pharmacie, Marseille, France
| | - Tatsiana Ngounga
- Aix-Marseille Univ., Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes (URMITE) UM 63 CNRS 7278 IRD 3R198 INSERM U1095, IHU Méditerranée Infection, Facultés de Médecine et de Pharmacie, Marseille, France
| | - Hubert Lepidi
- Aix-Marseille Univ., Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes (URMITE) UM 63 CNRS 7278 IRD 3R198 INSERM U1095, IHU Méditerranée Infection, Facultés de Médecine et de Pharmacie, Marseille, France
| | - Eric Ghigo
- Aix-Marseille Univ., Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes (URMITE) UM 63 CNRS 7278 IRD 3R198 INSERM U1095, IHU Méditerranée Infection, Facultés de Médecine et de Pharmacie, Marseille, France
| | - Jean-Louis Mege
- Aix-Marseille Univ., Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes (URMITE) UM 63 CNRS 7278 IRD 3R198 INSERM U1095, IHU Méditerranée Infection, Facultés de Médecine et de Pharmacie, Marseille, France
- Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Centre Hospitalo-Universitaire Timone, Assistance Publique des Hôpitaux de Marseille, Marseille, France
| | - Hervé Lecoq
- Institut National de la Recherche Agronomique (INRA), UR 407, Pathologie Végétale, Montfavet, France
| | - Didier Raoult
- Aix-Marseille Univ., Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes (URMITE) UM 63 CNRS 7278 IRD 3R198 INSERM U1095, IHU Méditerranée Infection, Facultés de Médecine et de Pharmacie, Marseille, France
- Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Centre Hospitalo-Universitaire Timone, Assistance Publique des Hôpitaux de Marseille, Marseille, France
| |
Collapse
|
10
|
Shahid M, Shahzad A, Malik A, Sahai A. Plant Edible Vaccines: A Revolution in Vaccination. RECENT TRENDS IN BIOTECHNOLOGY AND THERAPEUTIC APPLICATIONS OF MEDICINAL PLANTS 2013. [PMCID: PMC7120501 DOI: 10.1007/978-94-007-6603-7_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Mohd. Shahid
- Arabian Gulf University, Department Of Medical Microbiology, College of Medicine & Medical Sciences, Manama, Bahrain
| | - Anwar Shahzad
- , Department of Botany, Aligarh Muslim University, Aligarh, 202002 Uttar Pradesh India
| | - Abida Malik
- , Department of Microbiology, Aligarh Muslim University, J. N. Medical College & Hospital, Aligarh, 202002 Uttar Pradesh India
| | - Aastha Sahai
- , Department of Botany, Aligarh Muslim University, Aligarh, 202002 Uttar Pradesh India
| |
Collapse
|
11
|
Zhang Y, Chen S, Li J, Liu Y, Hu Y, Cai H. Oral immunogenicity of potato-derived antigens to Mycobacterium tuberculosis in mice. Acta Biochim Biophys Sin (Shanghai) 2012; 44:823-30. [PMID: 22917938 DOI: 10.1093/abbs/gms068] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The novel use of transgenic plants as vectors for the expression of viral and bacterial antigens has been increasingly tested as an alternative methodology for the production and delivery of experimental oral vaccines. Here, we examined the immunogenicity of combined plant-made vaccines that include four genes encoding immune-dominant antigens from Mycobacterium tuberculosis. Compared with the wild type and other control groups, mice treated with the combined plant-made vaccines showed significantly higher levels of interferon-γ and interleukin-2 production in response to all four proteins, and higher levels of antigen-specific CD4(+) and CD8(+) T-cell responses and immunoglobulin (Ig) G and IgA titers. These results suggest that combined plant-made vaccines can induce immunogenicity against M. tuberculosis through the induction of stronger Th1-associated immune responses. This is the first report of an orally delivered combined plant-made vaccine against tuberculosis priming an antigen-specific Th1 response, a comprehensive effect including both mucosal and systemic immune responses.
Collapse
Affiliation(s)
- Yi Zhang
- State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, China
| | | | | | | | | | | |
Collapse
|
12
|
Ahmad P, Ashraf M, Younis M, Hu X, Kumar A, Akram NA, Al-Qurainy F. Role of transgenic plants in agriculture and biopharming. Biotechnol Adv 2011; 30:524-40. [PMID: 21959304 DOI: 10.1016/j.biotechadv.2011.09.006] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 08/23/2011] [Accepted: 09/12/2011] [Indexed: 11/29/2022]
Abstract
At present, environmental degradation and the consistently growing population are two main problems on the planet earth. Fulfilling the needs of this growing population is quite difficult from the limited arable land available on the globe. Although there are legal, social and political barriers to the utilization of biotechnology, advances in this field have substantially improved agriculture and human life to a great extent. One of the vital tools of biotechnology is genetic engineering (GE) which is used to modify plants, animals and microorganisms according to desired needs. In fact, genetic engineering facilitates the transfer of desired characteristics into other plants which is not possible through conventional plant breeding. A variety of crops have been engineered for enhanced resistance to a multitude of stresses such as herbicides, insecticides, viruses and a combination of biotic and abiotic stresses in different crops including rice, mustard, maize, potato, tomato, etc. Apart from the use of GE in agriculture, it is being extensively employed to modify the plants for enhanced production of vaccines, hormones, etc. Vaccines against certain diseases are certainly available in the market, but most of them are very costly. Developing countries cannot afford the disease control through such cost-intensive vaccines. Alternatively, efforts are being made to produce edible vaccines which are cheap and have many advantages over the commercialized vaccines. Transgenic plants generated for this purpose are capable of expressing recombinant proteins including viral and bacterial antigens and antibodies. Common food plants like banana, tomato, rice, carrot, etc. have been used to produce vaccines against certain diseases like hepatitis B, cholera, HIV, etc. Thus, the up- and down-regulation of desired genes which are used for the modification of plants have a marked role in the improvement of genetic crops. In this review, we have comprehensively discussed the role of genetic engineering in generating transgenic lines/cultivars of different crops with improved nutrient quality, biofuel production, enhanced production of vaccines and antibodies, increased resistance against insects, herbicides, diseases and abiotic stresses as well as the safety measures for their commercialization.
Collapse
Affiliation(s)
- Parvaiz Ahmad
- Department of Botany, A.S. College, 190008, University of Kashmir, Srinagar, India.
| | | | | | | | | | | | | |
Collapse
|
13
|
Colson P, Richet H, Desnues C, Balique F, Moal V, Grob JJ, Berbis P, Lecoq H, Harlé JR, Berland Y, Raoult D. Pepper mild mottle virus, a plant virus associated with specific immune responses, Fever, abdominal pains, and pruritus in humans. PLoS One 2010; 5:e10041. [PMID: 20386604 PMCID: PMC2850318 DOI: 10.1371/journal.pone.0010041] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 03/09/2010] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Recently, metagenomic studies have identified viable Pepper mild mottle virus (PMMoV), a plant virus, in the stool of healthy subjects. However, its source and role as pathogen have not been determined. METHODS AND FINDINGS 21 commercialized food products containing peppers, 357 stool samples from 304 adults and 208 stool samples from 137 children were tested for PMMoV using real-time PCR, sequencing, and electron microscopy. Anti-PMMoV IgM antibody testing was concurrently performed. A case-control study tested the association of biological and clinical symptoms with the presence of PMMoV in the stool. Twelve (57%) food products were positive for PMMoV RNA sequencing. Stool samples from twenty-two (7.2%) adults and one child (0.7%) were positive for PMMoV by real-time PCR. Positive cases were significantly more likely to have been sampled in Dermatology Units (p<10(-6)), to be seropositive for anti-PMMoV IgM antibodies (p = 0.026) and to be patients who exhibited fever, abdominal pains, and pruritus (p = 0.045, 0.038 and 0.046, respectively). CONCLUSIONS Our study identified a local source of PMMoV and linked the presence of PMMoV RNA in stool with a specific immune response and clinical symptoms. Although clinical symptoms may be imputable to another cofactor, including spicy food, our data suggest the possibility of a direct or indirect pathogenic role of plant viruses in humans.
Collapse
Affiliation(s)
- Philippe Colson
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes (URMITE), Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 6236 – Institut de Recherche pour le Développement (IRD) 3R198, Facultés de Médecine et de Pharmacie, Université de la Méditerranée, Marseille, France
- Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Centre Hospitalo-Universitaire Timone, Marseille, France
| | - Hervé Richet
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes (URMITE), Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 6236 – Institut de Recherche pour le Développement (IRD) 3R198, Facultés de Médecine et de Pharmacie, Université de la Méditerranée, Marseille, France
| | - Christelle Desnues
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes (URMITE), Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 6236 – Institut de Recherche pour le Développement (IRD) 3R198, Facultés de Médecine et de Pharmacie, Université de la Méditerranée, Marseille, France
| | - Fanny Balique
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes (URMITE), Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 6236 – Institut de Recherche pour le Développement (IRD) 3R198, Facultés de Médecine et de Pharmacie, Université de la Méditerranée, Marseille, France
- Institut National de la Recherche Agronomique (INRA), Unité de Recherche (UR) 407, Unité de Pathologie Végétale, Montfavet, France
| | - Valérie Moal
- Centre de Néphrologie et Transplantation Rénale, Centre Hospitalo-Universitaire Conception, Marseille, France
| | - Jean-Jacques Grob
- Service de Dermatologie, Centre Hospitalo-Universitaire Sainte-Marguerite, Marseille, France
| | - Philippe Berbis
- Service de Dermatologie, Centre Hospitalo-Universitaire Nord, Marseille, France
| | - Hervé Lecoq
- Institut National de la Recherche Agronomique (INRA), Unité de Recherche (UR) 407, Unité de Pathologie Végétale, Montfavet, France
| | - Jean-Robert Harlé
- Service de Médecine Interne, Centre Hospitalo-Universitaire Conception, Marseille, France
| | - Yvon Berland
- Centre de Néphrologie et Transplantation Rénale, Centre Hospitalo-Universitaire Conception, Marseille, France
| | - Didier Raoult
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes (URMITE), Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 6236 – Institut de Recherche pour le Développement (IRD) 3R198, Facultés de Médecine et de Pharmacie, Université de la Méditerranée, Marseille, France
- Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Centre Hospitalo-Universitaire Timone, Marseille, France
- * E-mail:
| |
Collapse
|
14
|
Takahashi I, Nochi T, Kunisawa J, Yuki Y, Kiyono H. The mucosal immune system for secretory IgA responses and mucosal vaccine development. Inflamm Regen 2010. [DOI: 10.2492/inflammregen.30.40] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
15
|
New horizon of mucosal immunity and vaccines. Curr Opin Immunol 2009; 21:352-8. [PMID: 19493665 DOI: 10.1016/j.coi.2009.04.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 04/27/2009] [Indexed: 11/23/2022]
Abstract
Progress in the past quarter-century on understanding the molecular, cellular, and in vivo components of the mucosal immune system have allowed us to develop a practical strategy for a novel mucosal vaccine. The mucosal immune system can induce secretory IgA (SIgA) and serum IgG responses to provide two layers of defense against mucosal pathogens. For SIgA-mediated immunity in the gastrointestinal tract, the gut-associated lymphoid tissue contains both the tissue-dependent and tissue-independent IgA components. Harnessing the mucosal immune system for vaccine development may help prevent the global health problems caused by enteric infectious diseases. We have therefore combined mucosal immunology and plant biology to create a rice-based mucosal vaccine that requires neither needles and syringes nor refrigeration.
Collapse
|
16
|
Portocarrero C, Markley K, Koprowski H, Spitsin S, Golovkin M. Immunogenic properties of plant-derived recombinant smallpox vaccine candidate pB5. Vaccine 2008; 26:5535-40. [PMID: 18706953 DOI: 10.1016/j.vaccine.2008.07.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 06/17/2008] [Accepted: 07/01/2008] [Indexed: 11/29/2022]
Abstract
The extracellular virion membrane protein B5 is a potent inducer of immune responses capable of protecting mice and primates against poxvirus infections. Here, we examined the antibody response induced in mice immunized intramuscularly (i.m.) or intranasally (i.n.) with plant-derived B5 (pB5) accompanied or not with plant total soluble protein (TSP) at various concentrations. Increasing amounts of TSP inhibited the pB5-specific response in both i.m.- and i.n.-immunized mice, with more dramatic effects in the latter. pB5 administered to mucosal surfaces induced specific IgG and IgA responses, whereas i.m. immunization produced high serum IgG titers and no IgA. A 6-fold increase in pB5 dosage administered i.n. led to an antibody response comparable to that obtained by i.m. injection. Our study addresses the quality/quantity issues of the pB5 subunit preparation and demonstrates the feasibility of mucosal administration of plant-derived smallpox subunit vaccine in obtaining a potent immune response. Overall, this work points to the practicability of needle-free mucosal administration of such vaccines in light of purity, dosage and adjuvant formulation.
Collapse
Affiliation(s)
- Carla Portocarrero
- Biotechnology Foundation Laboratories, Thomas Jefferson University, Philadelphia, PA 19107-6799, United States
| | | | | | | | | |
Collapse
|
17
|
Lemaux PG. Genetically Engineered Plants and Foods: A Scientist's Analysis of the Issues (Part I). ANNUAL REVIEW OF PLANT BIOLOGY 2008; 59:771-812. [PMID: 18284373 DOI: 10.1146/annurev.arplant.58.032806.103840] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Through the use of the new tools of genetic engineering, genes can be introduced into the same plant or animal species or into plants or animals that are not sexually compatible-the latter is a distinction with classical breeding. This technology has led to the commercial production of genetically engineered (GE) crops on approximately 250 million acres worldwide. These crops generally are herbicide and pest tolerant, but other GE crops in the pipeline focus on other traits. For some farmers and consumers, planting and eating foods from these crops are acceptable; for others they raise issues related to safety of the foods and the environment. In Part I of this review some general and food issues raised regarding GE crops and foods will be addressed. Responses to these issues, where possible, cite peer-reviewed scientific literature. In Part II to appear in 2009, issues related to environmental and socioeconomic aspects of GE crops and foods will be covered.
Collapse
Affiliation(s)
- Peggy G Lemaux
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.
| |
Collapse
|