1
|
Liu C, Li C. C-reactive protein and cardiovascular diseases: a synthesis of studies based on different designs. Eur J Prev Cardiol 2023; 30:1593-1596. [PMID: 37079296 PMCID: PMC11483225 DOI: 10.1093/eurjpc/zwad116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023]
Affiliation(s)
- Chunyu Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Chihua Li
- Survey Research Center, Institute for Social Research, University of Michigan, MI, USA
- Department of Epidemiology, School of Public Health, University of Michigan, MI, USA
- Department of Epidemiology, School of Public Health, Johns Hopkins Bloomberg School of Public Health, MD, USA
| |
Collapse
|
2
|
Potempa LA, Qiu WQ, Stefanski A, Rajab IM. Relevance of lipoproteins, membranes, and extracellular vesicles in understanding C-reactive protein biochemical structure and biological activities. Front Cardiovasc Med 2022; 9:979461. [PMID: 36158829 PMCID: PMC9493015 DOI: 10.3389/fcvm.2022.979461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Early purification protocols for C-reactive protein (CRP) often involved co-isolation of lipoproteins, primarily very low-density lipoproteins (VLDLs). The interaction with lipid particles was initially attributed to CRP’s calcium-dependent binding affinity for its primary ligand—phosphocholine—the predominant hydrophilic head group expressed on phospholipids of most lipoprotein particles. Later, CRP was shown to additionally express binding affinity for apolipoprotein B (apo B), a predominant apolipoprotein of both VLDL and LDL particles. Apo B interaction with CRP was shown to be mediated by a cationic peptide sequence in apo B. Optimal apo B binding required CRP to be surface immobilized or aggregated, treatments now known to structurally change CRP from its serum soluble pentamer isoform (i.e., pCRP) into its poorly soluble, modified, monomeric isoform (i.e., mCRP). Other cationic ligands have been described for CRP which affect complement activation, histone bioactivities, and interactions with membranes. mCRP, but not pCRP, binds cholesterol and activates signaling pathways that activate pro-inflammatory bioactivities long associated with CRP as a biomarker. Hence, a key step to express CRP’s biofunctions is its conversion into its mCRP isoform. Conversion occurs when (1) pCRP binds to a membrane surface expressed ligand (often phosphocholine); (2) biochemical forces associated with binding cause relaxation/partial dissociation of secondary and tertiary structures into a swollen membrane bound intermediate (described as mCRPm or pCRP*); (3) further structural relaxation which leads to total, irreversible dissociation of the pentamer into mCRP and expression of a cholesterol/multi-ligand binding sequence that extends into the subunit core; (4) reduction of the CRP subunit intrachain disulfide bond which enhances CRP’s binding accessibility for various ligands and activates acute phase proinflammatory responses. Taken together, the biofunctions of CRP involve both lipid and protein interactions and a conformational rearrangement of higher order structure that affects its role as a mediator of inflammatory responses.
Collapse
Affiliation(s)
- Lawrence A. Potempa
- College of Science, Health and Pharmacy, Roosevelt University Schaumburg, Schaumburg, IL, United States
- *Correspondence: Lawrence A. Potempa,
| | - Wei Qiao Qiu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Alzheimer’s Disease Center, Boston University School of Medicine, Boston, MA, United States
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, United States
| | - Ashley Stefanski
- College of Science, Health and Pharmacy, Roosevelt University Schaumburg, Schaumburg, IL, United States
| | - Ibraheem M. Rajab
- College of Science, Health and Pharmacy, Roosevelt University Schaumburg, Schaumburg, IL, United States
| |
Collapse
|
3
|
Elgormus Y. Biomarkers and their Clinical Applications in Pediatrics. Biomark Med 2022. [DOI: 10.2174/9789815040463122010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Biomarker studies are becoming increasingly interesting for many fields of
medicine. The use of biomarkers in medicine is involved in detecting diseases and
supporting diagnosis and treatment decisions. New research and new discoveries on the
molecular basis of the disease show that there may be a number of promising new
biomarkers for use in daily clinical practice. Clinical trials in children lag behind adult
research both in quality and quantity. The number of biomarkers validated to optimize
pediatric patient management is limited. In the pathogenesis of many diseases, it should
not be extrapolated to the pediatric clinical setting, taking into account that biomarkers
that are effective in adults are clearly different in children and that ontogeny directly
affects disease development and therapeutic response in children. The search for ideal
biomarkers or markers that can make an early and definitive diagnosis in neonatal
sepsis is still ongoing. The ideal biomarker for pediatric diseases should be costeffective,
noninvasive, applicable to pediatric specific diseases, and its results should
correspond to age-related physiological changes. Lactate, troponin and B-type
natriuretic peptide are valuable biomarkers in the evaluation and management of
critically ill children with cardiac disease. Tumor markers in children are biochemical
substances used in the clinical treatment of pediatric tumors and to detect the presence
of cancer (regression or progression). In this chapter, current and brief information
about biomarkers and their clinical applications used in the diagnosis and monitoring of
pediatric diseases is presented.;
Collapse
Affiliation(s)
- Yusuf Elgormus
- Medicine Hospital,Department of Pediatric Health and Diseases,Department of Pediatric Health and Diseases, Medicine Hospital, Istanbul, Turkey,Istanbul,Turkey
| |
Collapse
|
4
|
Pathak A, Singh SK, Thewke DP, Agrawal A. Conformationally Altered C-Reactive Protein Capable of Binding to Atherogenic Lipoproteins Reduces Atherosclerosis. Front Immunol 2020; 11:1780. [PMID: 32849641 PMCID: PMC7431523 DOI: 10.3389/fimmu.2020.01780] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/03/2020] [Indexed: 12/27/2022] Open
Abstract
The aim of this study was to test the hypothesis that C-reactive protein (CRP) protects against the development of atherosclerosis and that a conformational alteration of wild-type CRP is necessary for CRP to do so. Atherosclerosis is an inflammatory cardiovascular disease and CRP is a plasma protein produced by the liver in inflammatory states. The co-localization of CRP and low-density lipoproteins (LDL) at atherosclerotic lesions suggests a possible role of CRP in atherosclerosis. CRP binds to phosphocholine-containing molecules but does not interact with LDL unless the phosphocholine groups in LDL are exposed. However, CRP can bind to LDL, without the exposure of phosphocholine groups, if the native conformation of CRP is altered. Previously, we reported a CRP mutant, F66A/T76Y/E81A, generated by site-directed mutagenesis, that did not bind to phosphocholine. Unexpectedly, this mutant CRP, without any more conformational alteration, was found to bind to atherogenic LDL. We hypothesized that this CRP mutant, unlike wild-type CRP, could be anti-atherosclerotic and, accordingly, the effects of mutant CRP on atherosclerosis in atherosclerosis-prone LDL receptor-deficient mice were evaluated. Administration of mutant CRP into mice every other day for a few weeks slowed the progression of atherosclerosis. The size of atherosclerotic lesions in the aorta of mice treated with mutant CRP for 9 weeks was ~40% smaller than the lesions in the aorta of untreated mice. Thus, mutant CRP conferred protection against atherosclerosis, providing a proof of concept that a local inflammation-induced structural change in wild-type CRP is a prerequisite for CRP to control the development of atherosclerosis.
Collapse
Affiliation(s)
- Asmita Pathak
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Sanjay K Singh
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Douglas P Thewke
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Alok Agrawal
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
5
|
Fu Y, Wu Y, Liu E. C-reactive protein and cardiovascular disease: From animal studies to the clinic (Review). Exp Ther Med 2020; 20:1211-1219. [PMID: 32765664 PMCID: PMC7388508 DOI: 10.3892/etm.2020.8840] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 05/05/2020] [Indexed: 12/22/2022] Open
Abstract
C-reactive protein (CRP) and cardiovascular disease (CVD) have long been important research topics. CRP is an acute phase protein, while CVD is an inflammatory condition. The association between CRP and CVD remains controversial and has been attracting increasing attention. Traditionally, the main marker of CVD is considered to be low-density lipoprotein cholesterol. However, due to its unique characteristics, CRP may represent a novel marker or a new therapeutic target for CVD. Clinical studies have demonstrated that CRP is a predictor of CVD, but whether it is directly involved in the development and progression of CVD has yet to be fully elucidated. Recent clinical studies have demonstrated that lowering plasma CRP levels may reduce the incidence of CVD. The aim of the present review was to investigate the association between CRP and CVD, particularly atherosclerosis, from laboratory animal studies to clinical research.
Collapse
Affiliation(s)
- Yu Fu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
- Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Yi Wu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
- Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Enqi Liu
- Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
6
|
Zhang X, Wang A, Zhang J, Singh M, Liu D, Zuo Y, Wu L, Song M, Wang W, Feigin V, Wang Y, Zheng D. Association of plasma C-reactive protein with ischaemic stroke: a Mendelian randomization study. Eur J Neurol 2019; 27:565-571. [PMID: 31692152 DOI: 10.1111/ene.14113] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/04/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND PURPOSE Elevated C-reactive protein (CRP) is associated with an increased risk of ischaemic stroke (IS). However, the causality of this association is uncertain. The aim is to investigate whether genetically raised plasma CRP concentration levels are associated with IS on the basis of the Mendelian randomization method. METHODS Based on the National Center for Biotechnology Information single nucleotide polymorphism (SNP) database, the Chinese online genetic database as well as previously published studies, four CRP-associated SNP alleles (rs1130864, rs1205, rs876537 and rs3093059) with minor allele frequency ≥0.15 were selected and the concentration levels of CRP were measured in 378 first-ever IS patients and 613 healthy controls. RESULTS Three SNPs were chosen and used as instrumental variables. The adjusted odds ratios (ORs) [95% confidence interval (95% CI)] of IS per addition of the modelled allele were 1.07 (0.79-1.45) for rs876537, 0.99 (0.73-1.35) for rs1205 and 1.08 (0.71-1.65) for rs3093059. The OR (95% CI) of IS for plasma CRP ≥2.0 mg/l was 2.19 (1.06-4.53) compared with <2.0 mg/l. The adjusted OR (95% CI) of IS per genetically predicted 10% higher CRP concentration, based on the three SNPs as the instruments, was 1.02 (0.94-1.11). Furthermore, similar results were obtained with adjusted ORs (95% CI) of 1.00 (0.88-1.13) and 1.04 (0.93-1.16), respectively, for large-artery atherosclerosis and small-artery occlusion per genetically predicted 10% higher CRP concentration. CONCLUSIONS This Mendelian randomization study provides no clear support that elevated CRP concentration is causally associated with the risk of IS.
Collapse
Affiliation(s)
- X Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - A Wang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - J Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - M Singh
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - D Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Y Zuo
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - L Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - M Song
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - W Wang
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - V Feigin
- National Institute for Stroke and Applied Neurosciences, Auckland University of Technology, Auckland, New Zealand
| | - Y Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - D Zheng
- Department of Epidemiology and Health Statistics, School of Public Health, Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Singh SK, Agrawal A. Functionality of C-Reactive Protein for Atheroprotection. Front Immunol 2019; 10:1655. [PMID: 31379851 PMCID: PMC6646712 DOI: 10.3389/fimmu.2019.01655] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/03/2019] [Indexed: 12/14/2022] Open
Abstract
C-reactive protein (CRP) is a pentameric molecule made up of identical monomers. CRP can be seen in three different forms: native pentameric CRP (native CRP), non-native pentameric CRP (non-native CRP), and monomeric CRP (mCRP). Both native and non-native CRP execute ligand-recognition functions for host defense. The fate of any pentameric CRP after binding to a ligand is dissociation into ligand-bound mCRP. If ligand-bound mCRP is proinflammatory, like free mCRP has been shown to be in vitro, then mCRP along with the bound ligand must be cleared from the site of inflammation. Once pentameric CRP is bound to atherogenic low-density lipoprotein (LDL), it reduces both formation of foam cells and proinflammatory effects of atherogenic LDL. A CRP mutant, that is non-native CRP, which readily binds to atherogenic LDL, has been found to be atheroprotective in a murine model of atherosclerosis. Thus, unlike statins, a drug that can lower only cholesterol levels but not CRP levels should be developed. Since non-native CRP has been shown to bind to all kinds of malformed proteins in general, it is possible that non-native CRP would be protective against all inflammatory states in which host proteins become pathogenic. If it is proven through experimentation employing transgenic mice that non-native CRP is beneficial for the host, then using a small-molecule compound to target CRP with the goal of changing the conformation of endogenous native CRP would be preferred over using recombinant non-native CRP as a biologic to treat diseases caused by pathogenic proteins such as oxidized LDL.
Collapse
Affiliation(s)
| | - Alok Agrawal
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
8
|
Boncler M, Wu Y, Watala C. The Multiple Faces of C-Reactive Protein-Physiological and Pathophysiological Implications in Cardiovascular Disease. Molecules 2019; 24:E2062. [PMID: 31151201 PMCID: PMC6600390 DOI: 10.3390/molecules24112062] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/24/2019] [Accepted: 05/29/2019] [Indexed: 01/08/2023] Open
Abstract
C-reactive protein (CRP) is an intriguing protein which plays a variety of roles in either physiological or pathophysiological states. For years it has been regarded merely as a useful biomarker of infection, tissue injury and inflammation, and it was only in the early 80s that the modified isoforms (mCRP) of native CRP (nCRP) appeared. It soon became clear that the roles of native CRP should be clearly discriminated from those of the modified form and so the impacts of both isoforms were divided to a certain degree between physiological and pathophysiological states. For decades, CRP has been regarded only as a hallmark of inflammation; however, it has since been recognised as a significant predictor of future episodes of cardiovascular disease, independent of other risk factors. The existence of modified CRP isoforms and their possible relevance to various pathophysiological conditions, suggested over thirty years ago, has prompted the search for structural and functional dissimilarities between the pentameric nCRP and monomeric mCRP isoforms. New attempts to identify the possible relevance between the diversity of structures and their opposing functions have initiated a new era of research on C-reactive protein. This review discusses the biochemical aspects of CRP physiology, emphasizing the supposed relevance between the structural biology of CRP isoforms and their differentiated physiological and pathophysiological roles.
Collapse
Affiliation(s)
- Magdalena Boncler
- Department of Haemostasis and Haemostatic Disorders, Medical University of Lodz, 92-215 Lodz, Poland.
| | - Yi Wu
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University, West Yanta Road, Xi'an 710061, China.
| | - Cezary Watala
- Department of Haemostasis and Haemostatic Disorders, Medical University of Lodz, 92-215 Lodz, Poland.
| |
Collapse
|
9
|
Abstract
C-reactive protein (CRP) is an evolutionarily conserved protein. From arthropods to humans, CRP has been found in every organism where the presence of CRP has been sought. Human CRP is a pentamer made up of five identical subunits which binds to phosphocholine (PCh) in a Ca2+-dependent manner. In various species, we define a protein as CRP if it has any two of the following three characteristics: First, it is a cyclic oligomer of almost identical subunits of molecular weight 20–30 kDa. Second, it binds to PCh in a Ca2+-dependent manner. Third, it exhibits immunological cross-reactivity with human CRP. In the arthropod horseshoe crab, CRP is a constitutively expressed protein, while in humans, CRP is an acute phase plasma protein and a component of the acute phase response. As the nature of CRP gene expression evolved from a constitutively expressed protein in arthropods to an acute phase protein in humans, the definition of CRP became distinctive. In humans, CRP can be distinguished from other homologous proteins such as serum amyloid P, but this is not the case for most other vertebrates and invertebrates. Literature indicates that the binding ability of CRP to PCh is less relevant than its binding to other ligands. Human CRP displays structure-based ligand-binding specificities, but it is not known if that is true for invertebrate CRP. During evolution, changes in the intrachain disulfide and interchain disulfide bonds and changes in the glycosylation status of CRP may be responsible for different structure-function relationships of CRP in various species. More studies of invertebrate CRP are needed to understand the reasons behind such evolution of CRP. Also, CRP evolved as a component of and along with the development of the immune system. It is important to understand the biology of ancient CRP molecules because the knowledge could be useful for immunodeficient individuals.
Collapse
Affiliation(s)
- Asmita Pathak
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Alok Agrawal
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
10
|
A redox sensitivity-based method to quantify both pentameric and monomeric C-reactive protein in a single assay. J Immunol Methods 2019; 470:40-45. [PMID: 31034879 DOI: 10.1016/j.jim.2019.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 04/17/2019] [Accepted: 04/25/2019] [Indexed: 12/14/2022]
Abstract
C-reactive protein (CRP) can exist in both pentameric (pCRP) and monomeric conformation (mCRP). Though serum pCRP is an established marker of inflammation, the diagnostic significance of mCRP remains unknown largely due to the lack of a reliable assay. The power and specificity of antibody-based assays are limited by the antibody reagents used and by the degree of cross-reactivity that may exist in detecting each antigen, as mCRP is known to be formed from the pentameric and both conformations usually coexist in clinical samples. Here, we describe an assay that measures both CRP conformations in simple samples in a single assay. This assay depends on the rationale that the intra-molecular disulfide bonds in pCRP resist reduction, while those in mCRP can be readily reduced. The distinct sensitivity of pCRP and mCRP to reduction can be easily detected and separated by electrophoresis. This assay may provide a means to study clinical correlation between pCRP and mCRP in clinical samples in the future and to evaluate their respective significance as disease markers.
Collapse
|
11
|
Zhang M, Liu Y, Liu Z, Wang J, Gong M, Ge H, Li X, Yang Y, Zou Z. Hyper-acidic fusion minipeptides escort the intrinsic antioxidative ability of the pattern recognition receptor CRP in non-animal organisms. Sci Rep 2019; 9:3032. [PMID: 30816172 PMCID: PMC6395739 DOI: 10.1038/s41598-019-39388-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/18/2019] [Indexed: 01/15/2023] Open
Abstract
C-reactive protein (CRP) is widely used as a biomarker of inflammation. It plays important roles in innate immunity response as a member of pattern recognition receptors, by binding oxidation-specific epitopes including some intermediates of lipid oxidative chain reaction. The inferred antioxidative ability of CRP was ever demonstrated by only few in vitro evidences, and needs to be clarified especially in vivo. Herein, we expressed human CRP in three representative non-animal organisms (Escherichia coli, Saccharomyces cerevisiae, and tobacco) inherently lacking the milieu for CRP signalling, and found CRP did possess an intrinsic antioxidative ability. Heterologous CRP could confer increased oxidative resistance in its recombinant E. coli and yeast cells and transgenic tobaccos. We also revealed a positive correlation between the antioxidative effect of CRP and its solubility. Only soluble CRP could exhibit distinct antioxidative activity, while the CRP aggregates might be instead toxic (probably pro-oxidative) to cells. Moreover, fusion with hyper-acidic minipeptides could remarkably improve CRP solubility, and meanwhile guarantee or enhance CRP antioxidative ability. These results not only provide a new insight for understanding the etiology of CRP-involved inflammations and diseases, and also endorse a potential of CRP biotechnological applications in developing new pharmaceutical therapies and improving plant oxidative resistance.
Collapse
Affiliation(s)
- Mengru Zhang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Yanjuan Liu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, School of Life Sciences, Yunnan Normal University, Kunming, 650500, China
| | - Zhibin Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Jianmei Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Ming Gong
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, School of Life Sciences, Yunnan Normal University, Kunming, 650500, China
| | - Hu Ge
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Xufeng Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Yi Yang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China.
| | - Zhurong Zou
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, School of Life Sciences, Yunnan Normal University, Kunming, 650500, China.
| |
Collapse
|
12
|
Huang S, Frangogiannis NG. Anti-inflammatory therapies in myocardial infarction: failures, hopes and challenges. Br J Pharmacol 2018; 175:1377-1400. [PMID: 29394499 PMCID: PMC5901181 DOI: 10.1111/bph.14155] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/18/2018] [Accepted: 01/22/2018] [Indexed: 12/14/2022] Open
Abstract
In the infarcted heart, the damage-associated molecular pattern proteins released by necrotic cells trigger both myocardial and systemic inflammatory responses. Induction of chemokines and cytokines and up-regulation of endothelial adhesion molecules mediate leukocyte recruitment in the infarcted myocardium. Inflammatory cells clear the infarct of dead cells and matrix debris and activate repair by myofibroblasts and vascular cells, but may also contribute to adverse fibrotic remodelling of viable segments, accentuate cardiomyocyte apoptosis and exert arrhythmogenic actions. Excessive, prolonged and dysregulated inflammation has been implicated in the pathogenesis of complications and may be involved in the development of heart failure following infarction. Studies in animal models of myocardial infarction (MI) have suggested the effectiveness of pharmacological interventions targeting the inflammatory response. This article provides a brief overview of the cell biology of the post-infarction inflammatory response and discusses the use of pharmacological interventions targeting inflammation following infarction. Therapy with broad anti-inflammatory and immunomodulatory agents may also inhibit important repair pathways, thus exerting detrimental actions in patients with MI. Extensive experimental evidence suggests that targeting specific inflammatory signals, such as the complement cascade, chemokines, cytokines, proteases, selectins and leukocyte integrins, may hold promise. However, clinical translation has proved challenging. Targeting IL-1 may benefit patients with exaggerated post-MI inflammatory responses following infarction, not only by attenuating adverse remodelling but also by stabilizing the atherosclerotic plaque and by inhibiting arrhythmia generation. Identification of the therapeutic window for specific interventions and pathophysiological stratification of MI patients using inflammatory biomarkers and imaging strategies are critical for optimal therapeutic design.
Collapse
Affiliation(s)
- Shuaibo Huang
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology)Albert Einstein College of MedicineBronxNY10461USA
- Department of Cardiology, Changzheng HospitalSecond Military Medical UniversityShanghai200003China
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology)Albert Einstein College of MedicineBronxNY10461USA
| |
Collapse
|
13
|
M1 Macrophages but Not M2 Macrophages Are Characterized by Upregulation of CRP Expression via Activation of NFκB: a Possible Role for Ox-LDL in Macrophage Polarization. Inflammation 2018; 41:1477-1487. [DOI: 10.1007/s10753-018-0793-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
14
|
Singh SK, Thirumalai A, Pathak A, Ngwa DN, Agrawal A. Functional Transformation of C-reactive Protein by Hydrogen Peroxide. J Biol Chem 2017; 292:3129-3136. [PMID: 28096464 PMCID: PMC5336149 DOI: 10.1074/jbc.m116.773176] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 01/11/2017] [Indexed: 12/21/2022] Open
Abstract
C-reactive protein (CRP) is present at sites of inflammation including amyloid plaques, atherosclerotic lesions, and arthritic joints. CRP, in its native pentameric structural conformation, binds to cells and molecules that have exposed phosphocholine (PCh) groups. CRP, in its non-native pentameric structural conformation, binds to a variety of deposited, denatured, and aggregated proteins, in addition to binding to PCh-containing substances. In this study, we investigated the effects of H2O2, a prototypical reactive oxygen species that is also present at sites of inflammation, on the ligand recognition function of CRP. Controlled H2O2 treatment of native CRP did not monomerize CRP and did not affect the PCh binding activity of CRP. In solid phase ELISA-based ligand binding assays, purified pentameric H2O2-treated CRP bound to a number of immobilized proteins including oxidized LDL, IgG, amyloid β peptide 1-42, C4b-binding protein, and factor H, in a CRP concentration- and ligand concentration-dependent manner. Using oxidized LDL as a representative protein ligand for H2O2-treated CRP, we found that the binding occurred in a Ca2+-independent manner and did not involve the PCh-binding site of CRP. We conclude that H2O2 is a biological modifier of the structure and ligand recognition function of CRP. Overall, the data suggest that the ligand recognition function of CRP is dependent on the presence of an inflammatory microenvironment. We hypothesize that one of the functions of CRP at sites of inflammation is to sense the inflammatory microenvironment, change its own structure in response but remain pentameric, and then bind to pathogenic proteins deposited at those sites.
Collapse
Affiliation(s)
- Sanjay K Singh
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614
| | - Avinash Thirumalai
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614
| | - Asmita Pathak
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614
| | - Donald N Ngwa
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614
| | - Alok Agrawal
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614.
| |
Collapse
|
15
|
Thirumalai A, Singh SK, Hammond DJ, Gang TB, Ngwa DN, Pathak A, Agrawal A. Purification of recombinant C-reactive protein mutants. J Immunol Methods 2017; 443:26-32. [PMID: 28167277 DOI: 10.1016/j.jim.2017.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/09/2017] [Accepted: 01/17/2017] [Indexed: 12/18/2022]
Abstract
C-reactive protein (CRP) is an evolutionarily conserved protein, a component of the innate immune system, and an acute phase protein in humans. In addition to its raised level in blood in inflammatory states, CRP is also localized at sites of inflammation including atherosclerotic lesions, arthritic joints and amyloid plaque deposits. Results of in vivo experiments in animal models of inflammatory diseases indicate that CRP is an anti-pneumococcal, anti-atherosclerotic, anti-arthritic and an anti-amyloidogenic molecule. The mechanisms through which CRP functions in inflammatory diseases are not fully defined; however, the ligand recognition function of CRP in its native and non-native pentameric structural conformations and the complement-activating ability of ligand-complexed CRP have been suggested to play a role. One tool to understand the structure-function relationships of CRP and determine the contributions of the recognition and effector functions of CRP in host defense is to employ site-directed mutagenesis to create mutants for experimentation. For example, CRP mutants incapable of binding to phosphocholine are generated to investigate the importance of the phosphocholine-binding property of CRP in mediating host defense. Recombinant CRP mutants can be expressed in mammalian cells and, if expressed, can be purified from the cell culture media. While the methods to purify wild-type CRP are well established, different purification strategies are needed to purify various mutant forms of CRP if the mutant does not bind to either calcium or phosphocholine. In this article, we report the methods used to purify pentameric recombinant wild-type and mutant CRP expressed in and secreted by mammalian cells.
Collapse
Affiliation(s)
- Avinash Thirumalai
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States
| | - Sanjay K Singh
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States
| | - David J Hammond
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States
| | - Toh B Gang
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States
| | - Donald N Ngwa
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States
| | - Asmita Pathak
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States
| | - Alok Agrawal
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States.
| |
Collapse
|
16
|
Wu Y, Potempa LA, El Kebir D, Filep JG. C-reactive protein and inflammation: conformational changes affect function. Biol Chem 2016; 396:1181-97. [PMID: 26040008 DOI: 10.1515/hsz-2015-0149] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/29/2015] [Indexed: 12/30/2022]
Abstract
The prototypic acute-phase reactant C-reactive protein (CRP) has long been recognized as a useful marker and gauge of inflammation. CRP also plays an important role in host defense against invading pathogens as well as in inflammation. CRP consists of five identical subunits arranged as a cyclic pentamer. CRP exists in at least two conformationally distinct forms, i.e. native pentameric CRP (pCRP) and modified/monomeric CRP (mCRP). These isoforms bind to distinct receptors and lipid rafts, and exhibit distinct functional properties. Dissociation of pCRP into its subunits occurs within the inflammatory microenvironment and newly formed mCRP may then contribute to localizing the inflammatory response. Accumulating evidence indicates that pCRP possesses both pro- and anti-inflammatory actions in a context-dependent manner, whereas mCRP exerts potent pro-inflammatory actions on endothelial cells, endothelial progenitor cells, leukocytes and platelets, and thus may amplify inflammation. Here, we review recent advances that may explain how conformational changes in CRP contribute to shaping the inflammatory response and discuss CRP isomers as potential therapeutic targets to dampen inflammation.
Collapse
|
17
|
Talukdar HA, Foroughi Asl H, Jain RK, Ermel R, Ruusalepp A, Franzén O, Kidd BA, Readhead B, Giannarelli C, Kovacic JC, Ivert T, Dudley JT, Civelek M, Lusis AJ, Schadt EE, Skogsberg J, Michoel T, Björkegren JLM. Cross-Tissue Regulatory Gene Networks in Coronary Artery Disease. Cell Syst 2016; 2:196-208. [PMID: 27135365 PMCID: PMC4855300 DOI: 10.1016/j.cels.2016.02.002] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 12/02/2015] [Accepted: 01/30/2016] [Indexed: 01/23/2023]
Abstract
Inferring molecular networks can reveal how genetic perturbations interact with environmental factors to cause common complex diseases. We analyzed genetic and gene expression data from seven tissues relevant to coronary artery disease (CAD) and identified regulatory gene networks (RGNs) and their key drivers. By integrating data from genome-wide association studies, we identified 30 CAD-causal RGNs interconnected in vascular and metabolic tissues, and we validated them with corresponding data from the Hybrid Mouse Diversity Panel. As proof of concept, by targeting the key drivers AIP, DRAP1, POLR2I, and PQBP1 in a cross-species-validated, arterial-wall RGN involving RNA-processing genes, we re-identified this RGN in THP-1 foam cells and independent data from CAD macrophages and carotid lesions. This characterization of the molecular landscape in CAD will help better define the regulation of CAD candidate genes identified by genome-wide association studies and is a first step toward achieving the goals of precision medicine.
Collapse
Affiliation(s)
- Husain A Talukdar
- Cardiovascular Genomics Group, Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Hassan Foroughi Asl
- Cardiovascular Genomics Group, Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Rajeev K Jain
- Department of Physiology, Institute of Biomedicine and Translation Medicine, University of Tartu, 51014 Tartu, Estonia
| | - Raili Ermel
- Department of Physiology, Institute of Biomedicine and Translation Medicine, University of Tartu, 51014 Tartu, Estonia; Department of Cardiac Surgery, Tartu University Hospital, 51014 Tartu, Estonia
| | - Arno Ruusalepp
- Department of Physiology, Institute of Biomedicine and Translation Medicine, University of Tartu, 51014 Tartu, Estonia; Department of Cardiac Surgery, Tartu University Hospital, 51014 Tartu, Estonia; Clinical Gene Networks AB, 114 44 Stockholm, Sweden
| | - Oscar Franzén
- Clinical Gene Networks AB, 114 44 Stockholm, Sweden; Department of Genetics & Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Brian A Kidd
- Department of Genetics & Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ben Readhead
- Department of Genetics & Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chiara Giannarelli
- Department of Genetics & Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jason C Kovacic
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Torbjörn Ivert
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Thoracic Surgery, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Joel T Dudley
- Department of Genetics & Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mete Civelek
- Departments of Medicine, Cardiology, Human Genetics, Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90024, USA
| | - Aldons J Lusis
- Departments of Medicine, Cardiology, Human Genetics, Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90024, USA
| | - Eric E Schadt
- Clinical Gene Networks AB, 114 44 Stockholm, Sweden; Department of Genetics & Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Josefin Skogsberg
- Cardiovascular Genomics Group, Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Tom Michoel
- Clinical Gene Networks AB, 114 44 Stockholm, Sweden; Division of Genetics and Genomics, The Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Johan L M Björkegren
- Cardiovascular Genomics Group, Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Physiology, Institute of Biomedicine and Translation Medicine, University of Tartu, 51014 Tartu, Estonia; Clinical Gene Networks AB, 114 44 Stockholm, Sweden; Department of Genetics & Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Cardiovascular Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
18
|
Crawford JR, Trial J, Nambi V, Hoogeveen RC, Taffet GE, Entman ML. Plasma Levels of Endothelial Microparticles Bearing Monomeric C-reactive Protein are Increased in Peripheral Artery Disease. J Cardiovasc Transl Res 2016; 9:184-193. [PMID: 26891844 DOI: 10.1007/s12265-016-9678-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 01/22/2016] [Indexed: 01/24/2023]
Abstract
C-reactive protein (CRP) as an indicator of cardiovascular disease (CVD) has shown limited sensitivity. We demonstrate that two isoforms of CRP (pentameric, pCRP and monomeric, mCRP) present in soluble form or on microparticles (MPs) have different biological effects and are not all measured by clinical CRP assays. The high-sensitivity CRP assay (hsCRP) did not measure pCRP or mCRP on MPs, whereas flow cytometry did. MPs derived from endothelial cells, particularly those bearing mCRP, were elevated in peripheral artery disease (PAD) patients compared to controls. The numbers of mCRP(+) endothelial MPs did not correlate with hsCRP measurements of soluble pCRP, indicating their independent modulation. In controls, statins lowered mCRP(+) endothelial MPs. In a model of vascular inflammation, mCRP induced endothelial shedding of MPs and was proinflammatory, while pCRP was anti-inflammatory. mCRP on endothelial MPs may be both an unmeasured indicator of, and an amplifier of, vascular disease, and its detection might improve risk sensitivity.
Collapse
Affiliation(s)
- Jeffrey R Crawford
- The Division of Cardiovascular Sciences and the DeBakey Heart Center, Department of Medicine, Baylor College of Medicine and Houston Methodist Hospital, One Baylor Plaza, M.S. BCM620, Houston, TX, 77030, USA
| | - JoAnn Trial
- The Division of Cardiovascular Sciences and the DeBakey Heart Center, Department of Medicine, Baylor College of Medicine and Houston Methodist Hospital, One Baylor Plaza, M.S. BCM620, Houston, TX, 77030, USA.
| | - Vijay Nambi
- The Division of Cardiology, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA.,The Division of Atherosclerosis and Vascular Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.,Center for Cardiovascular Prevention, Methodist DeBakey Heart and Vascular Center, 6565 Fannin St., Houston, TX, 77030, USA
| | - Ron C Hoogeveen
- The Division of Atherosclerosis and Vascular Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - George E Taffet
- The Division of Cardiovascular Sciences and the DeBakey Heart Center, Department of Medicine, Baylor College of Medicine and Houston Methodist Hospital, One Baylor Plaza, M.S. BCM620, Houston, TX, 77030, USA
| | - Mark L Entman
- The Division of Cardiovascular Sciences and the DeBakey Heart Center, Department of Medicine, Baylor College of Medicine and Houston Methodist Hospital, One Baylor Plaza, M.S. BCM620, Houston, TX, 77030, USA
| |
Collapse
|
19
|
Potempa LA, Yao ZY, Ji SR, Filep JG, Wu Y. Solubilization and purification of recombinant modified C-reactive protein from inclusion bodies using reversible anhydride modification. BIOPHYSICS REPORTS 2015; 1:18-33. [PMID: 26942216 PMCID: PMC4762138 DOI: 10.1007/s41048-015-0003-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 03/26/2015] [Indexed: 02/07/2023] Open
Abstract
The precise function of C-reactive protein (CRP) as a regulator of inflammation in health and disease continues to evolve. The true understanding of its role in host defense responses has been hampered by numerous reports of comparable systems with contradictory interpretations of CRP as a stimulator, suppressor, or benign contributor to such processes. These discrepancies may be explained in part by the existence of a naturally occurring CRP isoform, termed modified CRP (i.e., mCRP), that is expressed when CRP subunits are dissociated into monomeric structures. The free mCRP subunit undergoes a non-proteolytic conformational change that has unique solubility, antigenicity, and bioactivity compared to the subunits that remain associated in the native, pentameric CRP molecule (i.e., pCRP). As specific reagents have been developed to identify and quantify mCRP, it has become apparent that this isoform can be formed spontaneously in calcium-free solutions. Furthermore, mCRP can be expressed on perturbed cell membranes with as little as 24–48 h incubation in tissue culture. Because mCRP has the same size as pCRP subunits as evaluated by SDS-PAGE, its presence in a pCRP reagent would not be apparent using this technique to evaluate purity. Finally, because many antibody reagents purported to be specific for “CRP” contains some, or substantial specificity to mCRP, antigen-detection techniques using such reagents may fail to distinguish the specific CRP isoform detected. All these caveats concerning CRP structures and measurements suggest that the aforementioned contradictory studies may reflect to some extent on distinctive bioactivities of mCRP rather than on pCRP. To provide a reliable, abundant supply of mCRP for separate and comparable studies, a recombinant protein was engineered and expressed in E. coli (i.e., recombinant mCRP or rmCRP). Synthesized protein was produced as inclusion bodies which proved difficult to solubilize for purification and characterization. Herein, we describe a method using anhydride reagents to effectively solubilize rmCRP and allow for chromatographic purification in high yield and free of contaminating endotoxin. Furthermore, the purified rmCRP reagent represents an excellent comparable protein to the biologically produced mCRP and as a distinctive reagent from pCRP. Deciphering the true function of CRP in both health and disease requires a knowledge, understanding, and reliable supply of each of its structures so to define the distinctive effects of each on the body’s response to tissue damaging events.
Collapse
Affiliation(s)
| | - Zhen-Yu Yao
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000 People's Republic of China
| | - Shang-Rong Ji
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000 People's Republic of China
| | - János G Filep
- Research Center, Maisonneuve-Rosemont Hospital, University of Montréal, Montréal, QC Canada
| | - Yi Wu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000 People's Republic of China ; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, 730000 People's Republic of China
| |
Collapse
|
20
|
Fan J, Zhang J, Chen YE. C-Reactive Protein and its Pathophysiological Roles in Atherosclerosis. Atherosclerosis 2015. [DOI: 10.1002/9781118828533.ch20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Tanigaki K, Sundgren N, Khera A, Vongpatanasin W, Mineo C, Shaul PW. Fcγ receptors and ligands and cardiovascular disease. Circ Res 2015; 116:368-84. [PMID: 25593280 DOI: 10.1161/circresaha.116.302795] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fcγ receptors (FcγRs) classically modulate intracellular signaling on binding of the Fc region of IgG in immune response cells. How FcγR and their ligands affect cardiovascular health and disease has been interrogated recently in both preclinical and clinical studies. The stimulation of activating FcγR in endothelial cells, vascular smooth muscle cells, and monocytes/macrophages causes a variety of cellular responses that may contribute to vascular disease pathogenesis. Stimulation of the lone inhibitory FγcR, FcγRIIB, also has adverse consequences in endothelial cells, antagonizing NO production and reparative mechanisms. In preclinical disease models, activating FcγRs promote atherosclerosis, whereas FcγRIIB is protective, and activating FcγRs also enhance thrombotic and nonthrombotic vascular occlusion. The FcγR ligand C-reactive protein (CRP) has undergone intense study. Although in rodents CRP does not affect atherosclerosis, it causes hypertension and insulin resistance and worsens myocardial infarction. Massive data have accumulated indicating an association between increases in circulating CRP and coronary heart disease in humans. However, Mendelian randomization studies reveal that CRP is not likely a disease mediator. CRP genetics and hypertension warrant further investigation. To date, studies of genetic variants of activating FcγRs are insufficient to implicate the receptors in coronary heart disease pathogenesis in humans. However, a link between FcγRIIB and human hypertension may be emerging. Further knowledge of the vascular biology of FcγR and their ligands will potentially enhance our understanding of cardiovascular disorders, particularly in patients whose greater predisposition for disease is not explained by traditional risk factors, such as individuals with autoimmune disorders.
Collapse
Affiliation(s)
- Keiji Tanigaki
- From the Department of Pediatrics, Center for Pulmonary and Vascular Biology (K.T., N.S., C.M., P.W.S.), and Division of Cardiology, Department of Internal Medicine (A.K., W.V.), University of Texas Southwestern Medical Center, Dallas
| | - Nathan Sundgren
- From the Department of Pediatrics, Center for Pulmonary and Vascular Biology (K.T., N.S., C.M., P.W.S.), and Division of Cardiology, Department of Internal Medicine (A.K., W.V.), University of Texas Southwestern Medical Center, Dallas
| | - Amit Khera
- From the Department of Pediatrics, Center for Pulmonary and Vascular Biology (K.T., N.S., C.M., P.W.S.), and Division of Cardiology, Department of Internal Medicine (A.K., W.V.), University of Texas Southwestern Medical Center, Dallas
| | - Wanpen Vongpatanasin
- From the Department of Pediatrics, Center for Pulmonary and Vascular Biology (K.T., N.S., C.M., P.W.S.), and Division of Cardiology, Department of Internal Medicine (A.K., W.V.), University of Texas Southwestern Medical Center, Dallas
| | - Chieko Mineo
- From the Department of Pediatrics, Center for Pulmonary and Vascular Biology (K.T., N.S., C.M., P.W.S.), and Division of Cardiology, Department of Internal Medicine (A.K., W.V.), University of Texas Southwestern Medical Center, Dallas
| | - Philip W Shaul
- From the Department of Pediatrics, Center for Pulmonary and Vascular Biology (K.T., N.S., C.M., P.W.S.), and Division of Cardiology, Department of Internal Medicine (A.K., W.V.), University of Texas Southwestern Medical Center, Dallas.
| |
Collapse
|
22
|
Mutations of C-reactive protein (CRP) -286 SNP, APC and p53 in colorectal cancer: implication for a CRP-Wnt crosstalk. PLoS One 2014; 9:e102418. [PMID: 25025473 PMCID: PMC4099363 DOI: 10.1371/journal.pone.0102418] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 06/18/2014] [Indexed: 11/19/2022] Open
Abstract
C-reactive protein (CRP) is an established marker of inflammation with pattern-recognition receptor-like activities. Despite the close association of the serum level of CRP with the risk and prognosis of several types of cancer, it remains elusive whether CRP contributes directly to tumorigenesis or just represents a bystander marker. We have recently identified recurrent mutations at the SNP position -286 (rs3091244) in the promoter of CRP gene in several tumor types, instead suggesting that locally produced CRP is a potential driver of tumorigenesis. However, it is unknown whether the -286 site is the sole SNP position of CRP gene targeted for mutation and whether there is any association between CRP SNP mutations and other frequently mutated genes in tumors. Herein, we have examined the genotypes of three common CRP non-coding SNPs (rs7553007, rs1205, rs3093077) in tumor/normal sample pairs of 5 cancer types (n = 141). No recurrent somatic mutations are found at these SNP positions, indicating that the -286 SNP mutations are preferentially selected during the development of cancer. Further analysis reveals that the -286 SNP mutations of CRP tend to co-occur with mutated APC particularly in rectal cancer (p = 0.04; n = 67). By contrast, mutations of CRP and p53 or K-ras appear to be unrelated. There results thus underscore the functional importance of the -286 mutation of CRP in tumorigenesis and imply an interaction between CRP and Wnt signaling pathway.
Collapse
|
23
|
Recognition functions of pentameric C-reactive protein in cardiovascular disease. Mediators Inflamm 2014; 2014:319215. [PMID: 24948846 PMCID: PMC4052174 DOI: 10.1155/2014/319215] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 05/07/2014] [Accepted: 05/07/2014] [Indexed: 02/02/2023] Open
Abstract
C-reactive protein (CRP) performs two recognition functions that are relevant to cardiovascular disease. First, in its native pentameric conformation, CRP recognizes molecules and cells with exposed phosphocholine (PCh) groups, such as microbial pathogens and damaged cells. PCh-containing ligand-bound CRP activates the complement system to destroy the ligand. Thus, the PCh-binding function of CRP is defensive if it occurs on foreign pathogens because it results in the killing of the pathogen via complement activation. On the other hand, the PCh-binding function of CRP is detrimental if it occurs on injured host cells because it causes more damage to the tissue via complement activation; this is how CRP worsens acute myocardial infarction and ischemia/reperfusion injury. Second, in its nonnative pentameric conformation, CRP also recognizes atherogenic low-density lipoprotein (LDL). Recent data suggest that the LDL-binding function of CRP is beneficial because it prevents formation of macrophage foam cells, attenuates inflammatory effects of LDL, inhibits LDL oxidation, and reduces proatherogenic effects of macrophages, raising the possibility that nonnative CRP may show atheroprotective effects in experimental animals. In conclusion, temporarily inhibiting the PCh-binding function of CRP along with facilitating localized presence of nonnative pentameric CRP could be a promising approach to treat atherosclerosis and myocardial infarction. There is no need to stop the biosynthesis of CRP.
Collapse
|
24
|
Effects of antisense oligonucleotides against C-reactive protein on the development of atherosclerosis in WHHL rabbits. Mediators Inflamm 2014; 2014:979132. [PMID: 24872601 PMCID: PMC4020194 DOI: 10.1155/2014/979132] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 04/01/2014] [Indexed: 01/02/2023] Open
Abstract
Increased plasma levels of C-reactive protein (CRP) are closely associated with cardiovascular diseases, but whether CRP is directly involved in the pathogenesis of atherosclerosis is still under debate. Many controversial and contradictory results using transgenic mice and rabbits have been published but it is also unclear whether CRP lowering can be used for the treatment of atherosclerosis. In the current study, we examined the effects of the rabbit CRP antisense oligonucleotides (ASO) on the development of atherosclerosis in WHHL rabbits. CRP ASO treatment led to a significant reduction of plasma CRP levels; however, both aortic and coronary atherosclerotic lesions were not significantly changed compared to those of control WHHL rabbits. These results suggest that inhibition of plasma CRP does not affect the development of atherosclerosis in WHHL rabbits.
Collapse
|
25
|
Animal models of C-reactive protein. Mediators Inflamm 2014; 2014:683598. [PMID: 24872599 PMCID: PMC4020216 DOI: 10.1155/2014/683598] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 03/17/2014] [Accepted: 04/01/2014] [Indexed: 11/17/2022] Open
Abstract
As the main theme of this special issue, CRP not only is an inflammatory marker but also has diverse biological functions associated with different diseases. To investigate CRP's physiologies and their relationship with human pathological significance, it is essential to use appropriate animal models for translational research. The most popular models for the study of CRP are transgenic mice. However, researchers should be careful when extrapolating the findings derived from these animal models. This review will discuss the current concerns on CRP transgenic mice and rabbits.
Collapse
|
26
|
Satoh K, Shimokawa H. High-sensitivity C-reactive protein: still need for next-generation biomarkers for remote future cardiovascular events. Eur Heart J 2014; 35:1776-8. [DOI: 10.1093/eurheartj/ehu115] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
27
|
Grufman H, Gonçalves I, Edsfeldt A, Nitulescu M, Persson A, Nilsson M, Nilsson J. Plasma levels of high-sensitive C-reactive protein do not correlate with inflammatory activity in carotid atherosclerotic plaques. J Intern Med 2014; 275:127-33. [PMID: 24010553 DOI: 10.1111/joim.12133] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND It is well established that subjects with moderately elevated plasma levels of C-reactive protein (CRP) have an increased risk of development of cardiovascular events. As atherosclerosis is a disease characterized by chronic arterial inflammation, it is possible that moderate increases in CRP level reflect the presence of plaque inflammation. To investigate this possibility, we compared plasma levels of hsCRP the day before carotid endarterectomy with the degree of inflammation in the excised plaque tissue. METHODS Luminex immunoassays were used to determine the levels of IL-6, IL-10, monocyte chemoattractant protein-1 and tumour necrosis factor-α (TNF-α) in plasma and in homogenized plaque tissue from 160 endarterectomy specimens. Plaque sections were stained with antibodies against CD68 to determine the plaque macrophage content. RESULTS Plasma high-sensitivity (hs)CRP levels were significantly correlated with plasma IL-6 and TNF-α. However, there were no significant associations between plasma hsCRP concentration and plaque cytokine levels or macrophage contents. CONCLUSIONS The present findings strongly argue against hsCRP as a marker of plaque inflammation. Hence, it is more likely that elevated hsCRP is a sign of a subclinical systemic inflammation and this in turn may contribute to progression of cardiovascular disease.
Collapse
Affiliation(s)
- H Grufman
- Experimental Cardiovascular Research Group, Clinical Research Center, Clinical Sciences, Lund University, Malmö, Sweden; Deptartment of Cardiology, Skåne University Hospital, Malmö, Sweden
| | | | | | | | | | | | | |
Collapse
|
28
|
Lane T, Wassef N, Poole S, Mistry Y, Lachmann HJ, Gillmore JD, Hawkins PN, Pepys MB. Infusion of pharmaceutical-grade natural human C-reactive protein is not proinflammatory in healthy adult human volunteers. Circ Res 2013; 114:672-6. [PMID: 24337102 DOI: 10.1161/circresaha.114.302770] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Baseline circulating concentrations of C-reactive protein (CRP) are significantly associated with cardiovascular disease risk in general populations. This modest association has been inappropriately conflated with causality, and it has been claimed that CRP is proatherogenic. Most of the known causative factors for atherosclerosis stimulate increased CRP production, but comprehensive genetic epidemiology studies provide no support for a pathogenic role of CRP. The reported proinflammatory effects of human CRP preparations on healthy cells in vitro and in healthy animals in vivo have all been produced by poorly characterized CRP preparations, demonstrably caused by impurities, or elicited by CRP made in recombinant Escherichia coli not by humans. None of the in vitro or animal findings have been reproduced with pure natural human CRP. Nevertheless, the strong proinflammatory effects of infusing recombinant bacterial CRP into humans have still been inappropriately ascribed to CRP. OBJECTIVE To investigate the effects of infusion into healthy adult human volunteers of pure natural human CRP. METHODS AND RESULTS Comprehensively characterized, pharmaceutical-grade, endotoxin-free, purified CRP, prepared to GMP standard from pooled normal human donor plasma was infused as an intravenous bolus in 7 healthy adult human volunteers at ≤2 mg/kg to provide circulating CRP concentrations ≤44 mg/L. No recipient showed any significant clinical, hematologic, coagulation, or biochemical changes, or any increase in proinflammatory cytokines or acute phase proteins. CONCLUSIONS The human CRP molecule itself is not proinflammatory in healthy human adults.
Collapse
Affiliation(s)
- Thirusha Lane
- From the Wolfson Drug Discovery Unit, and the National Amyloidosis Centre, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London, United Kingdom (M.B.P., T.L., H.J.L., J.D.G., P.N.H.); Department of Clinical Biochemistry, Royal Free Hospital, London, United Kingdom (N.W.); and the National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (S.P., Y.M.)
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Du Clos TW. Pentraxins: structure, function, and role in inflammation. ISRN INFLAMMATION 2013; 2013:379040. [PMID: 24167754 PMCID: PMC3791837 DOI: 10.1155/2013/379040] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 08/19/2013] [Indexed: 12/03/2022]
Abstract
The pentraxins are an ancient family of proteins with a unique architecture found as far back in evolution as the Horseshoe crab. In humans the two members of this family are C-reactive protein and serum amyloid P. Pentraxins are defined by their sequence homology, their pentameric structure and their calcium-dependent binding to their ligands. Pentraxins function as soluble pattern recognition molecules and one of the earliest and most important roles for these proteins is host defense primarily against pathogenic bacteria. They function as opsonins for pathogens through activation of the complement pathway and through binding to Fc gamma receptors. Pentraxins also recognize membrane phospholipids and nuclear components exposed on or released by damaged cells. CRP has a specific interaction with small nuclear ribonucleoproteins whereas SAP is a major recognition molecule for DNA, two nuclear autoantigens. Studies in autoimmune and inflammatory disease models suggest that pentraxins interact with macrophage Fc receptors to regulate the inflammatory response. Because CRP is a strong acute phase reactant it is widely used as a marker of inflammation and infection.
Collapse
Affiliation(s)
- Terry W. Du Clos
- The Department of Veterans Affairs Medical Center, Research Service 151, 1501 San Pedro SE, Albuquerque, NM 87108, USA
- Department of Internal Medicine, The University of New Mexico School of Medicine, Albuquerque, NM 87108, USA
| |
Collapse
|
30
|
|
31
|
Regulated conformation changes in C-reactive protein orchestrate its role in atherogenesis. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11434-012-5591-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Chang MK, Hartvigsen K, Ryu J, Kim Y, Han KH. The pro-atherogenic effects of macrophages are reduced upon formation of a complex between C-reactive protein and lysophosphatidylcholine. JOURNAL OF INFLAMMATION-LONDON 2012; 9:42. [PMID: 23114023 PMCID: PMC3506444 DOI: 10.1186/1476-9255-9-42] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 09/17/2012] [Indexed: 12/03/2022]
Abstract
Rationale C-reactive protein (CRP) and lysophosphatidylcholine (LPC) are phosphorylcholine-(PC)-containing oxidized phospholipids (oxPLs) found in oxidized LDL (oxLDL), which trigger pro-atherogenic activities of macrophages during the process of atherosclerosis. It has been previously reported that CRP binds to the PC head group of oxLDL in a calcium-dependent manner. The aim of this study was to investigate the importance of binding between CRP and LPC to the pro-atherogenic activities of macrophages. Objectives and findings A chemiluminescent immunoassay and HPLC showed that human recombinant CRP formed a stable complex with LPC in the presence of calcium. The Kd value of the binding of the CRP-LPC complex to the receptors FcγRIA or FcγRIIA was 3–5 fold lower than that of CRP alone. The CRP-LPC complex triggered less potent generation of reactive oxygen species and less activation of the transcription factors AP-1 and NF-kB by human monocyte-derived macrophages in comparison to CRP or LPC alone. However, CRP did not affect activities driven by components of oxLDL lacking PC, such as upregulation of PPRE, ABCA1, CD36 and PPARγ and the enhancement of cholesterol efflux by human macrophages. The presence of CRP inhibited the association of Dil-labelled oxLDL to human macrophages. Conclusions The formation of complexes between CRP and PC-containing oxPLs, such as LPC, suppresses the pro-atherogenic effects of CRP and LPC on macrophages. This effect may in part retard the progression of atherosclerosis.
Collapse
Affiliation(s)
- Mi-Kyung Chang
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.,Present address: Bayer Korea, 7th fl. Samsung-Boramae Omni Tower, 395-62, Sindaebang dong Dongzak-gu, Seoul, South Korea
| | - Karsten Hartvigsen
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jewon Ryu
- University of Ulsan College of Medicine, Asan Medical Center, 388-1 Pungnap-2 dong Songpa-gu 138-736, Seoul, South Korea
| | - Yuna Kim
- University of Ulsan College of Medicine, Asan Medical Center, 388-1 Pungnap-2 dong Songpa-gu 138-736, Seoul, South Korea
| | - Ki Hoon Han
- University of Ulsan College of Medicine, Asan Medical Center, 388-1 Pungnap-2 dong Songpa-gu 138-736, Seoul, South Korea
| |
Collapse
|
33
|
Complement and atherosclerosis-united to the point of no return? Clin Biochem 2012; 46:20-5. [PMID: 23010447 DOI: 10.1016/j.clinbiochem.2012.09.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 09/13/2012] [Accepted: 09/13/2012] [Indexed: 12/11/2022]
Abstract
Atherosclerosis is widely regarded as a chronic inflammatory disease that develops as a consequence of entrapment of oxidized low-density lipoprotein (LDL) in the arterial intima and its interaction with components of both innate and adaptive immunity. This article reviews the role of the complement system in the context of a different concept on atherogenesis. Arguments are forwarded in support of the contention that enzymatic and not oxidative modification of LDL is the prerequisite for transforming the lipoprotein into a moiety that is recognized by the innate immune system. In a departure from general wisdom, it is proposed that these processes are initially not pathological. To the contrary, they are physiological and meaningful because only thus can the stranded lipoprotein with its insoluble cargo, cholesterol, be removed from tissues. It is contended that histopathologically defined initial foam cell formation develops without inflammation and is reversible. Atherosclerosis as a disease evolves only when the cholesterol removal machinery is overloaded and it then represents a special type of immunopathological process primarily involving immune effectors of the innate rather than the adaptive immune system. This sets it apart from classical immunopathological reactions that are all based on dysfunctional adaptive immunity. But as with all other diseases of known origin, a defined molecular trigger, enzymatically modified-LDL (eLDL), exists whose intimal accumulation is required to initiate the pathologic process. And as with other diseases, the course of atherosclerosis will then be influenced by myriad genetic, endogenous, and environmental factors that by themselves, however, will not cause the disease. This simple concept is completely in line with general clinical experience and with the results of major clinical trials that have been conducted during the past decades.
Collapse
|
34
|
Gursu M, Ozturk S, Aydin Z, Karadag S, Doventas Y, Koldas M, Uzun S, Sumnu A, Kazancioglu R. Is Pentraxin-3 Stronger Than C-Reactive Protein to Determine Inflammation in Peritoneal Dialysis Patients? EUR J INFLAMM 2012. [DOI: 10.1177/1721727x1201000305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Pentraxin-3 (PTX-3) is the prototype of long pentraxins and is produced by many tissues and organs including vascular endothelial cells in response to pro-inflammatory signals. It is thought to be an independent indicator of disease activity. We analyzed the correlation of PTX-3 with other markers of inflammation in peritoneal dialysis (PD) patients. Non-diabetic patients on chronic PD program who meet the dialysis adequacy criteria and who had no active infectious/inflammatory disease were included. Demographic and clinical parameters were recorded as well as hsCRP, fibrinogen, interleukin-6 (IL-6) and PTX-3 levels; and the correlation between them were studied. Twenty-five patients (mean age: 45.7±12.5 years; female/male ratio: 16/9) were included. Mean PTX-3 level was 2.16±2.76ng/ml. PTX-3 was found to be correlated positively with only IL-6 among inflammatory markers (r=0.827; p<0.001) but not with hsCRP. With linear regression model, IL-6 was the only independent determinant of PTX-3 levels. PTX-3 may be a more valuable marker of inflammation than CRP in patients on PD.
Collapse
Affiliation(s)
- M. Gursu
- Haseki Training and Research Hospital, Department of Nephrology, Istanbul, Turkey
| | - S. Ozturk
- Haseki Training and Research Hospital, Department of Nephrology, Istanbul, Turkey
| | - Z. Aydin
- Haseki Training and Research Hospital, Department of Nephrology, Istanbul, Turkey
| | - S. Karadag
- Haseki Training and Research Hospital, Department of Nephrology, Istanbul, Turkey
| | - Y. Doventas
- Haseki Training and Research Hospital, Department of Biochemistry, Istanbul, Turkey
| | - M. Koldas
- Haseki Training and Research Hospital, Department of Biochemistry, Istanbul, Turkey
| | - S. Uzun
- Haseki Training and Research Hospital, Department of Nephrology, Istanbul, Turkey
| | - A. Sumnu
- Haseki Training and Research Hospital, Department of Nephrology, Istanbul, Turkey
| | - R. Kazancioglu
- Bezmialem Vakif University, Medical Faculty, Department of Nephrology, Istanbul, Turkey
| |
Collapse
|
35
|
|
36
|
Pepys MB, Gallimore JR, Lloyd J, Li Z, Graham D, Taylor GW, Ellmerich S, Mangione PP, Tennent GA, Hutchinson WL, Millar DJ, Bennett G, More J, Evans D, Mistry Y, Poole S, Hawkins PN. Isolation and characterization of pharmaceutical grade human pentraxins, serum amyloid P component and C-reactive protein, for clinical use. J Immunol Methods 2012; 384:92-102. [PMID: 22867744 PMCID: PMC4068106 DOI: 10.1016/j.jim.2012.07.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 07/19/2012] [Accepted: 07/23/2012] [Indexed: 12/11/2022]
Abstract
The human pentraxin proteins, serum amyloid P component
(SAP) and C‐reactive protein (CRP) are important in routine clinical diagnosis, SAP
for systemic amyloidosis and CRP for monitoring the non‐specific acute phase
response. They are also targets for novel therapies currently in development but
their roles in health and disease are controversial. Thus, both for clinical use and
to rigorously elucidate their functions, structurally and functionally intact,
pharmaceutical grade preparations of the natural, authentic proteins are required. We
report here the production from normal human donor plasma and the characterization of
the first such preparations. Importantly, we demonstrate that, contrary to reports
using recombinant proteins and less well characterized preparations, neither CRP nor
SAP stimulate the release by human peripheral blood mononuclear cells in
vitro of any TNFα, IL‐6 or IL‐8, nor does SAP cause release of IL‐1β
or IL‐10. Furthermore neither of our preparations was pro‐inflammatory in mice
in vivo.
Collapse
Affiliation(s)
- Mark B Pepys
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, Rowland Hill Street, London NW3 2PF, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kheirandish-Gozal L. The Endothelium as a Target in Pediatric OSA. Front Neurol 2012; 3:92. [PMID: 22701448 PMCID: PMC3371630 DOI: 10.3389/fneur.2012.00092] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Accepted: 05/22/2012] [Indexed: 12/16/2022] Open
Abstract
Pediatric sleep disordered breathing has emerged in the last few decades as a highly prevalent condition by virtue of its major morbidities encompassing the central nervous, cardiovascular, and metabolic systems. In this context, improved understanding of the pathophysiological mechanisms underlying the cellular and organ injury and repair mechanisms, and the variance of the phenotype at any level of disease severity is all the more critical if appropriate personalized therapies are to be developed in the future. In this paper, the current evidence and hypothetical framework pointing to the endothelium as a primary cellular target for many of the morbidities of pediatric sleep apnea is reviewed, and particular emphasis on the recruitment of the endothelial cell lineage will be explored. It is hoped that this perspective will foster both expansion and acceleration of discovery efforts aiming to ultimately prevent the potentially lifelong consequences of sleep apnea during childhood.
Collapse
Affiliation(s)
- Leila Kheirandish-Gozal
- Section of Pediatric Sleep Medicine, Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago Chicago, IL, USA
| |
Collapse
|
38
|
Rietzschel E, De Buyzere M. High-sensitive C-reactive protein: universal prognostic and causative biomarker in heart disease? Biomark Med 2012; 6:19-34. [DOI: 10.2217/bmm.11.108] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
C-reactive protein (CRP), a pentraxin protein, is an established marker of acute phase reactions. There is some experimental evidence that the CRP molecule could be causative in all stages of atherosclerotic disease starting from endothelial dysfunction, continuing to plaque formation and destabilization, and to atherothrombotic complications. However, each claim of causality has elicited a counterpoint argument, and Mendelian randomization studies have confidently shown that the concentration of CRP is unlikely to be causative. Meta-analyses have attributed a 1.5–1.7-fold risk to one standard deviation increase of high-sensitive CRP (a high-sensitivity CRP assay) for major cardiovascular events after adjustments for classical risk factors. Additional adjustments for metabolic factors reduced the risk to approximately 1.2–1.4-fold, which is still significant. Of interest, high-sensitive CRP also predicted all-cause and cancer mortality. Driven by the JUPITER trial that showed a benefit on outcome for treatment with rosuvastatin in primary prevention, treatment has been recommended in patients with a moderate Framingham Risk Score with a high-sensitive CRP of >2 mg/l. However, adding CRP to risk charts and biomarker panels mostly yielded small and inconsistent improvements.
Collapse
Affiliation(s)
- Ernst Rietzschel
- Department of Cardiology & Internal Medicine, University Ghent, 185 De Pintelaan, B-9000 Ghent, Belgium
| | - Marc De Buyzere
- Department of Cardiology, University Hospital Ghent, Ghent, Belgium
| |
Collapse
|
39
|
Singh SK, Thirumalai A, Hammond DJ, Pangburn MK, Mishra VK, Johnson DA, Rusiñol AE, Agrawal A. Exposing a hidden functional site of C-reactive protein by site-directed mutagenesis. J Biol Chem 2011; 287:3550-8. [PMID: 22158621 DOI: 10.1074/jbc.m111.310011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
C-reactive protein (CRP) is a cyclic pentameric protein whose major binding specificity, at physiological pH, is for substances bearing exposed phosphocholine moieties. Another pentameric form of CRP, which exists at acidic pH, displays binding activity for oxidized LDL (ox-LDL). The ox-LDL-binding site in CRP, which is hidden at physiological pH, is exposed by acidic pH-induced structural changes in pentameric CRP. The aim of this study was to expose the hidden ox-LDL-binding site of CRP by site-directed mutagenesis and to generate a CRP mutant that can bind to ox-LDL without the requirement of acidic pH. Mutation of Glu(42), an amino acid that participates in intersubunit interactions in the CRP pentamer and is buried, to Gln resulted in a CRP mutant (E42Q) that showed significant binding activity for ox-LDL at physiological pH. For maximal binding to ox-LDL, E42Q CRP required a pH much less acidic than that required by wild-type CRP. At any given pH, E42Q CRP was more efficient than wild-type CRP in binding to ox-LDL. Like wild-type CRP, E42Q CRP remained pentameric at acidic pH. Also, E42Q CRP was more efficient than wild-type CRP in binding to several other deposited, conformationally altered proteins. The E42Q CRP mutant provides a tool to investigate the functions of CRP in defined animal models of inflammatory diseases including atherosclerosis because wild-type CRP requires acidic pH to bind to deposited, conformationally altered proteins, including ox-LDL, and available animal models may not have sufficient acidosis or other possible modifiers of the pentameric structure of CRP at the sites of inflammation.
Collapse
Affiliation(s)
- Sanjay K Singh
- Department of Pharmacology, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Tousoulis D, Papageorgiou N, Latsios G, Siasos G, Antoniades C, Stefanadis C. C-reactive protein and endothelial dysfunction: gazing at the coronaries. Int J Cardiol 2011; 152:1-3. [PMID: 21862154 DOI: 10.1016/j.ijcard.2011.07.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 07/25/2011] [Indexed: 10/17/2022]
|
41
|
Grad E, Pachino RM, Danenberg HD. Endothelial C-reactive protein increases platelet adhesion under flow conditions. Am J Physiol Heart Circ Physiol 2011; 301:H730-6. [DOI: 10.1152/ajpheart.00067.2011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
While data regarding the pathogenetic role of C-reactive protein (CRP) in atherothrombosis are accumulating, it is still controversial whether local CRP secretion is of any pathobiological significance. The present study examined whether endothelial-derived CRP modulates autocrine prothrombotic activity. Endothelial cells were isolated from hearts of mice transgenic to human CRP and grown in primary cultures. Human CRP expression was confirmed in these cells compared with no expression in cultures derived from wild-type congenes. Adhesion of human platelets to endothelial cells was studied in the “cone and plate” flow system. Platelet adhesion to cells expressing CRP was significantly increased compared with that in controls ( n = 6, P < 0.01). The proadhesive effect of CRP was significantly suppressed in mouse heart endothelial cells and in human umbilical vein endothelial cells following treatment with small interfering RNA for human CRP. Adhesion was modulated by an increase in P-selectin. P-selectin expression correlated with a proadhesive phenotype, and blocking P-selectin with neutralizing antibody significantly decreased the adhesion of platelets to CRP-expressing cells (40.4 ± 10.5 to 9.4 ± 6.9 platelets/high-power field, n = 5 to 6, P < 0.01). In conclusion, human CRP that is locally produced in endothelial cells increases platelet adhesion to endothelial cells under normal shear flow conditions. These findings indicate that CRP exerts a local effect on endothelial cells via P-selectin expression, which promotes platelet adhesion and subsequent thrombus formation.
Collapse
Affiliation(s)
- Etty Grad
- Cardiovascular Research Center, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Rachel M. Pachino
- Cardiovascular Research Center, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Haim D. Danenberg
- Cardiovascular Research Center, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
42
|
Wang M, Ji S, Bai C, Kebir IE, Li H, Shi J, Zhu W, Costantino S, Zhou H, Potempa LA, Zhao J, Filep JG, Wu Y. A redox switch in C‐reactive protein modulates activation of endothelial cells. FASEB J 2011; 25:3186-96. [DOI: 10.1096/fj.11-182741] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ming‐Yu Wang
- Ministry of Education Key Laboratory of Arid and Grassland EcologyInstitute of BiophysicsLanzhou UniversityLanzhouChina
- Second HospitalLanzhou UniversityLanzhouChina
| | - Shang‐Rong Ji
- Ministry of Education Key Laboratory of Arid and Grassland EcologyInstitute of BiophysicsLanzhou UniversityLanzhouChina
- Second HospitalLanzhou UniversityLanzhouChina
| | - Cai‐Juan Bai
- Ministry of Education Key Laboratory of Arid and Grassland EcologyInstitute of BiophysicsLanzhou UniversityLanzhouChina
- Second HospitalLanzhou UniversityLanzhouChina
| | - iss El Kebir
- Research CenterMaisonneuve‐Rosemont HospitalUniversity of MontréalMontréalQuébecCanada
| | - Hai‐Yun Li
- Ministry of Education Key Laboratory of Arid and Grassland EcologyInstitute of BiophysicsLanzhou UniversityLanzhouChina
- Second HospitalLanzhou UniversityLanzhouChina
| | - Jing‐Ming Shi
- Ministry of Education Key Laboratory of Arid and Grassland EcologyInstitute of BiophysicsLanzhou UniversityLanzhouChina
- Second HospitalLanzhou UniversityLanzhouChina
| | - Wei Zhu
- Ministry of Education Key Laboratory of Arid and Grassland EcologyInstitute of BiophysicsLanzhou UniversityLanzhouChina
- Second HospitalLanzhou UniversityLanzhouChina
| | - Santiago Costantino
- Research CenterMaisonneuve‐Rosemont HospitalUniversity of MontréalMontréalQuébecCanada
| | - Hai‐Hong Zhou
- Ministry of Education Key Laboratory of Arid and Grassland EcologyInstitute of BiophysicsLanzhou UniversityLanzhouChina
- Second HospitalLanzhou UniversityLanzhouChina
| | | | - Jing Zhao
- Ministry of Education Key Laboratory of Arid and Grassland EcologyInstitute of BiophysicsLanzhou UniversityLanzhouChina
- Second HospitalLanzhou UniversityLanzhouChina
| | - János G. Filep
- Research CenterMaisonneuve‐Rosemont HospitalUniversity of MontréalMontréalQuébecCanada
| | - Yi Wu
- Ministry of Education Key Laboratory of Arid and Grassland EcologyInstitute of BiophysicsLanzhou UniversityLanzhouChina
- Second HospitalLanzhou UniversityLanzhouChina
| |
Collapse
|
43
|
Pravenec M, Kajiya T, Zídek V, Landa V, Mlejnek P, Simáková M, Silhavý J, Malínská H, Oliyarnyk O, Kazdová L, Fan J, Wang J, Kurtz TW. Effects of human C-reactive protein on pathogenesis of features of the metabolic syndrome. Hypertension 2011; 57:731-7. [PMID: 21357282 PMCID: PMC3060762 DOI: 10.1161/hypertensionaha.110.164350] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 01/27/2011] [Indexed: 02/05/2023]
Abstract
Major controversy exists as to whether increased C-reactive protein (CRP) contributes to individual components of the metabolic syndrome or is just a secondary response to inflammatory disease processes. We measured blood pressure and metabolic phenotypes in spontaneously hypertensive rats (SHRs) in which we transgenically expressed human CRP in the liver under control of the apolipoprotein E promoter. In transgenic SHRs, serum levels of human CRP approximated the endogenous levels of CRP normally found in the rat. Systolic and diastolic blood pressures measured by telemetry were 10 to 15 mm Hg greater in transgenic SHRs expressing human CRP than in SHR controls (P<0.01). During oral glucose tolerance testing, transgenic SHRs exhibited hyperinsulinemia compared with controls (insulin area under the curve: 36±7 versus 8±2 nmol/L per 2 hours, respectively; P<0.05). Transgenic SHRs also exhibited resistance to insulin stimulated glycogenesis in skeletal muscle (174±18 versus 278±32 nmol of glucose per gram per 2 hours; P<0.05), hypertriglyceridemia (0.84±0.05 versus 0.64±0.03 mmol/L; P<0.05), reduced serum adiponectin (2.4±0.3 versus 4.3±0.6 mmol/L; P<0.05), and microalbuminuria (200±35 versus 26±5 mg of albumin per gram of creatinine, respectively; P<0.001). Transgenic SHRs had evidence of inflammation and oxidative tissue damage with increased serum levels of interleukin 6 (36.4±5.2 versus 18±1.7 pg/mL; P<0.005) and increased hepatic and renal thiobarbituric acid reactive substances (1.2±0.09 versus 0.8±0.07 and 1.5±0.1 versus 1.1±0.05 nmol/L per milligram of protein, respectively; P<0.01), suggesting that oxidative stress may be mediating adverse effects of increased human CRP. These findings are consistent with the hypothesis that increased CRP is more than just a marker of inflammation and can directly promote multiple features of the metabolic syndrome.
Collapse
Affiliation(s)
- Michal Pravenec
- Institute of Physiology, Academy of Sciences of the Czech Republic, Videnska 1083, 14220 Prague 4, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
C Reactive Protein Coronary Heart Disease Genetics Collaboration (CCGC), Wensley F, Gao P, Burgess S, Kaptoge S, Di Angelantonio E, Shah T, Engert JC, Clarke R, Davey-Smith G, Nordestgaard BG, Saleheen D, Samani NJ, Sandhu M, Anand S, Pepys MB, Smeeth L, Whittaker J, Casas JP, Thompson SG, Hingorani AD, Danesh J. Association between C reactive protein and coronary heart disease: mendelian randomisation analysis based on individual participant data. BMJ 2011; 342:d548. [PMID: 21325005 PMCID: PMC3039696 DOI: 10.1136/bmj.d548] [Citation(s) in RCA: 475] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Collaborators] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/09/2010] [Indexed: 12/05/2022]
Abstract
OBJECTIVE To use genetic variants as unconfounded proxies of C reactive protein concentration to study its causal role in coronary heart disease. DESIGN Mendelian randomisation meta-analysis of individual participant data from 47 epidemiological studies in 15 countries. PARTICIPANTS 194 418 participants, including 46 557 patients with prevalent or incident coronary heart disease. Information was available on four CRP gene tagging single nucleotide polymorphisms (rs3093077, rs1205, rs1130864, rs1800947), concentration of C reactive protein, and levels of other risk factors. MAIN OUTCOME MEASURES Risk ratios for coronary heart disease associated with genetically raised C reactive protein versus risk ratios with equivalent differences in C reactive protein concentration itself, adjusted for conventional risk factors and variability in risk factor levels within individuals. RESULTS CRP variants were each associated with up to 30% per allele difference in concentration of C reactive protein (P<10(-34)) and were unrelated to other risk factors. Risk ratios for coronary heart disease per additional copy of an allele associated with raised C reactive protein were 0.93 (95% confidence interval 0.87 to 1.00) for rs3093077; 1.00 (0.98 to 1.02) for rs1205; 0.98 (0.96 to 1.00) for rs1130864; and 0.99 (0.94 to 1.03) for rs1800947. In a combined analysis, the risk ratio for coronary heart disease was 1.00 (0.90 to 1.13) per 1 SD higher genetically raised natural log (ln) concentration of C reactive protein. The genetic findings were discordant with the risk ratio observed for coronary heart disease of 1.33 (1.23 to 1.43) per 1 SD higher circulating ln concentration of C reactive protein in prospective studies (P=0.001 for difference). CONCLUSION Human genetic data indicate that C reactive protein concentration itself is unlikely to be even a modest causal factor in coronary heart disease.
Collapse
Collaborators
G Eiriksdottir, T B Harris, L J Launer, V Gudnason, A R Folsom, G Andrews, C M Ballantyne, N J Samani, A S Hall, P S Braund, A J Balmforth, P H Whincup, R Morris, D A Lawlor, G D O Lowe, N Timpson, S Ebrahim, Y Ben-Shlomo, G Davey-Smith, N Timpson, B J Nordestgaard, A Tybjærg-Hansen, J Zacho, M Brown, M Sandhu, S L Ricketts, S Ashford, L Lange, A Reiner, M Cushman, R Tracy, C Wu, J Ge, Y Zou, A Sun, J Hung, B McQuillan, P Thompson, J Beilby, N Warrington, L J Palmer, C Wanner, C Drechsler, M M Hoffmann, F G R Fowkes, G D O Lowe, I Tzoulaki, M Kumari, M Miller, M Marmot, C Onland-Moret, Y T van der Schouw, J M Boer, C Wijmenga, S L Ricketts, S Ashford, M Sandhu, K-T Khaw, R S Vasan, R B Schnabel, J F Yamamoto, E J Benjamin, H Schunkert, J Erdmann, I R König, C Hengstenberg, B Chiodini, M G Franzosi, S Pietri, F Gori, M Rudock, Y Liu, K Lohman, T B Harris, S E Humphries, A Hamsten, P E Norman, G J Hankey, K Jamrozik, L J Palmer, E B Rimm, J K Pai, B M Psaty, S R Heckbert, J C Bis, S Yusuf, S Anand, J C Engert, C Xie, R Collins, R Clarke, D Bennett, J Kooner, J Chambers, P Elliott, W März, M E Kleber, B O Böhm, B R Winkelmann, O Melander, G Berglund, W Koenig, B Thorand, J Baumert, A Peters, E B Rimm, J Manson, J K Pai, S E Humphries, J A Cooper, P J Talmud, P Ladenvall, L Johansson, J-H Jansson, G Hallmans, M P Reilly, L Qu, M Li, D J Rader, H Watkins, R Clarke, J Hopewell, D Saleheen, J Danesh, P Frossard, N Sattar, M Robertson, J Shepherd, E Schaefer, A Hofman, J C M Witteman, I Kardys, A Dehghan, U de Faire, A Bennet, B Gigante, K Leander, Y Ben-Shlomo, G Davey-Smith, N Timpson, B Peters, A H Maitland-van der Zee, A de Boer, O Klungel, A Reiner, J Manson, P Greenland, J Dai, S Liu, M Kumari, E Brunner, M Kivimaki, M Marmot, N Sattar, D O'Reilly, I Ford, C J Packard,
Collapse
|
45
|
Affiliation(s)
- Thomas J Wang
- Cardiology Division, Massachusetts General Hospital, 55 Fruit St., Boston, MA 02114, USA.
| |
Collapse
|
46
|
Lin GM, Chu KM, Han CL. Reverse epidemiology reflects C-reactive protein as a bystander of atherosclerosis in established systemic inflammation models. Int J Cardiol 2011; 146:422-423. [DOI: 10.1016/j.ijcard.2010.10.094] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 10/23/2010] [Indexed: 11/15/2022]
|
47
|
Xi L, Xiao C, Bandsma RHJ, Naples M, Adeli K, Lewis GF. C-reactive protein impairs hepatic insulin sensitivity and insulin signaling in rats: role of mitogen-activated protein kinases. Hepatology 2011; 53:127-35. [PMID: 20967757 DOI: 10.1002/hep.24011] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 09/17/2010] [Indexed: 02/02/2023]
Abstract
UNLABELLED Plasma C-reactive protein (CRP) concentration is increased in the metabolic syndrome, which consists of a cluster of cardiovascular disease risk factors, including insulin resistance. It is not known, however, whether CRP is merely a marker of accompanying inflammation or whether it contributes causally to insulin resistance. The objective of this study is to investigate the role that CRP may play in the development of insulin resistance. We examined the effect of single-dose intravenous administration of purified human (h)CRP on insulin sensitivity in Sprague-Dawley rats using the euglycemic, hyperinsulinemic clamp technique. hCRP was associated with impaired insulin suppression of endogenous glucose production with no reduction in peripheral tissue glucose uptake, suggesting that hCRP mediated insulin resistance in the liver but not extrahepatic tissues. We further assessed components of the insulin signaling pathway and mitogen-activated protein kinases (MAPKs) in the liver. Liver tissues derived from hCRP-treated rats showed reduced insulin-stimulated insulin receptor substrate (IRS) tyrosine phosphorylation, IRS/phosphatidylinositol 3-kinase (PI3K) association, and Akt phosphorylation, consistent with hCRP-induced impairment of hepatic insulin signaling. Furthermore, hCRP enhanced phosphorylation of extracellular signal-regulated kinase (ERK)1/2 and p38 MAPK as well as IRS-1 Ser(612) . Finally, we observed in primary cultured rat hepatocytes that U0126 (a selective inhibitor of MAPK/ERK kinase1/2) corrected hCRP-induced impairment of insulin signaling. CONCLUSIONS hCRP plays an active role in inducing hepatic insulin resistance in the rat, at least in part by activating ERK1/2, with downstream impairment in the insulin signaling pathway.
Collapse
Affiliation(s)
- Liang Xi
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
48
|
Teupser D, Weber O, Rao TN, Sass K, Thiery J, Fehling HJ. No reduction of atherosclerosis in C-reactive protein (CRP)-deficient mice. J Biol Chem 2010; 286:6272-9. [PMID: 21149301 PMCID: PMC3057833 DOI: 10.1074/jbc.m110.161414] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
C-reactive protein (CRP), a phylogenetically highly conserved plasma protein, is the classical acute phase reactant in humans. Upon infection, inflammation, or tissue damage, its plasma level can rise within hours >1000-fold, providing an early, nonspecific disease indicator of prime clinical importance. In recent years, another aspect of CRP expression has attracted much scientific and public attention. Apart from transient, acute phase-associated spikes in plasma concentration, highly sensitive measurements have revealed stable interindividual differences of baseline CRP values in healthy persons. Strikingly, even modest elevations in stable baseline CRP plasma levels have been found to correlate with a significantly increased risk of future cardiovascular disease. These observations have triggered intense controversies about potential atherosclerosis-promoting properties of CRP. To directly assess potential effects of CRP on atherogenesis, we have generated CRP-deficient mice via gene targeting and introduced the inactivated allele into atherosclerosis-susceptible ApoE−/− and LDLR−/− mice, two well established mouse models of atherogenesis. Morphometric analyses of atherosclerotic plaques in CRP-deficient animals revealed equivalent or increased atherosclerotic lesions compared with controls, an experimental result, which does not support a proatherogenic role of CRP. In fact, our data suggest that mouse CRP may even mediate atheroprotective effects, adding a cautionary note to the idea of targeting CRP as therapeutic intervention against progressive cardiovascular disease.
Collapse
Affiliation(s)
- Daniel Teupser
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig Research Center for Civilization Diseases, University Leipzig, Liebigstrasse 27, D-04103 Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Agrawal A, Hammond DJ, Singh SK. Atherosclerosis-related functions of C-reactive protein. Cardiovasc Hematol Disord Drug Targets 2010; 10:235-40. [PMID: 20932269 PMCID: PMC3125067 DOI: 10.2174/187152910793743841] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Accepted: 09/13/2010] [Indexed: 11/22/2022]
Abstract
C-reactive protein (CRP) is secreted by hepatocytes as a pentameric molecule made up of identical monomers, circulates in the plasma as pentamers, and localizes in atherosclerotic lesions. In some cases, localized CRP was detected by using monoclonal antibodies that did not react with native pentameric CRP but were specific for isolated monomeric CRP. It has been reported that, once CRP is bound to certain ligands, the pentameric structure of CRP is altered so that it can dissociate into monomers. Accordingly, the monomeric CRP found in atherosclerotic lesions may be a stationary, ligand-bound, by-product of a ligand-binding function of CRP. CRP binds to modified forms of low-density lipoprotein (LDL). The binding of CRP to oxidized LDL requires acidic pH conditions; the binding at physiological pH is controversial. The binding of CRP to enzymatically-modified LDL occurs at physiological pH; however, the binding is enhanced at acidic pH. Using enzymatically-modified LDL, CRP has been shown to prevent the formation of enzymatically-modified LDL-loaded macrophage foam cells. CRP is neither pro-atherogenic nor atheroprotective in ApoE⁻(/)⁻ and ApoB¹⁰⁰(/)¹⁰⁰Ldlr ⁻(/)⁻ murine models of atherosclerosis, except in one study where CRP was found to be slightly atheroprotective in ApoB¹⁰⁰(/)¹⁰⁰Ldlr ⁻(/)⁻ mice. The reasons for the ineffectiveness of human CRP in murine models of atherosclerosis are not defined. It is possible that an inflammatory environment, such as those characterized by acidic pH, is needed for efficient interaction between CRP and atherogenic LDL during the development of atherosclerosis and to observe the possible atheroprotective function of CRP in animal models.
Collapse
Affiliation(s)
- Alok Agrawal
- Department of Pharmacology, East Tennessee State University, Johnson City, TN 37614, USA.
| | | | | |
Collapse
|
50
|
Fay WP. Linking inflammation and thrombosis: Role of C-reactive protein. World J Cardiol 2010; 2:365-9. [PMID: 21179303 PMCID: PMC3006472 DOI: 10.4330/wjc.v2.i11.365] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 09/18/2010] [Accepted: 09/23/2010] [Indexed: 02/06/2023] Open
Abstract
C-reactive protein (CRP) is a biomarker of inflammation. Increased plasma levels of CRP are associated with an increased risk of myocardial infarction. However, the correlation between plasma CRP concentration and atherosclerotic plaque burden is poor. Based on these observations, it has been hypothesized that CRP increases the risk of myocardial infarction by promoting thrombosis. This article reviews available data that link enhanced CRP expression to increased risk of thrombosis, with a focus on the effects of CRP on hemostasis, platelet function, and fibrinolysis. Overall, the available data support the hypothesis that CRP is an important mechanistic link between inflammation and thrombosis.
Collapse
Affiliation(s)
- William P Fay
- William P Fay, Department of Internal Medicine and Medical Pharmacology and Physiology, University of Missouri, School of Medicine, and the Research Service, Harry S. Truman Memorial Veterans Affairs Hospital, Columbia, MO 65212, United States
| |
Collapse
|