1
|
Nappi A, Miro C, Cicatiello AG, Sagliocchi S, Acampora L, Restolfer F, Dentice M. The thyroid hormone activating enzyme, DIO2, is a potential pan-cancer biomarker and immunotherapy target. J Endocrinol Invest 2025; 48:1149-1172. [PMID: 39821172 PMCID: PMC12049402 DOI: 10.1007/s40618-024-02526-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/27/2024] [Indexed: 01/19/2025]
Abstract
PURPOSE Type 2 deiodinase (D2), encoded by DIO2 gene, catalyzes the activation of the prohormone thyroxine (T4) into the bioactive hormone triiodothyronine (T3) in peripheral tissues, thereby regulating the intracellular Thyroid Hormone (TH) availability. Recently, several studies have demonstrated that a drastic increase in the peripheral activation of TH, via D2, fosters tumor progression, metastasis, and immunity. METHODS To further prove the clinical relevance of D2 in human cancer, based on public Database of The Cancer Genome Atlas (TCGA), we conducted a pan-cancer analysis of DIO2 expression in various cancer types and investigated the association of DIO2 expression with the tumor microenvironment (TME) components and immune cell infiltration, along with the DIO2 genetic alteration types. RESULTS Although with different expression levels between the various cancer types, the pan-cancer analysis showed that DIO2 was highly expressed in most tumors and related to the progression of some tumor types. Furthermore, DIO2 expression was also significantly correlated with TME components, immune cell infiltration, and immunoinhibitory and immunostimulatory gene subsets. CONCLUSION The relevance of this study is that it adds a clinical relevance to the recent demonstrations that D2 accelerates tumor invasion in animal models and poses DIO2 gene as a potential prognostic marker in various human cancers.
Collapse
Affiliation(s)
- A Nappi
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy.
| | - C Miro
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - A G Cicatiello
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - S Sagliocchi
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - L Acampora
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - F Restolfer
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - M Dentice
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy.
- CEINGE-, Biotecnologie Avanzate S.c.a.r.l., 80131, Naples, Italy.
| |
Collapse
|
2
|
Luongo C, Di Girolamo D, Ambrosio R, Di Cintio S, De Stefano MA, Porcelli T, Salvatore D. Type 2 Deiodinase Promotes Fatty Adipogenesis in Muscle Fibroadipogenic Progenitors From Adult Male Mice. Endocrinology 2025; 166:bqaf050. [PMID: 40059408 PMCID: PMC11933820 DOI: 10.1210/endocr/bqaf050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Indexed: 03/26/2025]
Abstract
Fibro-adipogenic progenitor cells (FAPs) are a heterogeneous population of multipotent mesenchymal cells that give rise to fibroblasts and adipocytes. In response to muscle injury, FAPs are activated and cooperate with inflammatory and muscle stem cells to promote muscle regeneration. In pathological conditions, such as muscular dystrophies, this coordinated response is partially lost and an accumulation of FAPs is observed that is responsible for maladaptive fibrosis, ectopic fat deposition, and impaired muscle regeneration. The role of intracellular thyroid hormone (TH) signaling in this cellular context is largely unknown. Here we show that intracellular 3,5,3'-triiodothyronine (T3) concentration in FAPs is increased in vitro during adipogenic differentiation via the increase of the T3-producing type 2 deiodinase (D2). The adipogenic potential is reduced in FAPs cultured in the presence of 3,3,5'-triiodothyronine (rT3), a specific D2 inhibitor, while exogenous administration of THs is able to induce the expression of relevant adipogenic genes. Accordingly, on genetic D2 depletion in vivo, adipogenesis was significantly reduced in D2KO compared to control mice. These data were confirmed using a FAP-inducible specific D2-KO mouse model, suggesting that a cell-specific D2-depletion in FAPs is sufficient to decrease fatty muscle infiltration and to improve muscle regeneration. Taken together, these data show that TH signaling is dynamically modulated in FAPs wherein D2-produced T3 is required to promote maturation of FAPs into adipocytes.
Collapse
Affiliation(s)
- Cristina Luongo
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples 80131, Italy
| | - Daniela Di Girolamo
- Department of Biology, University of Naples Federico II, Naples 80131, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples 80131, Italy
| | - Raffaele Ambrosio
- Department of Public Health, University of Naples Federico II, Naples 80131, Italy
| | - Sara Di Cintio
- Department of Public Health, University of Naples Federico II, Naples 80131, Italy
| | | | - Tommaso Porcelli
- Department of Public Health, University of Naples Federico II, Naples 80131, Italy
| | - Domenico Salvatore
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples 80131, Italy
- Department of Public Health, University of Naples Federico II, Naples 80131, Italy
| |
Collapse
|
3
|
Chen J, Ge H, Liu N, Li Y, Dong Y, Wang X, Xun Z, Li S. Sex-specific differences in the relationship between thyroid hormones and neurocognition in schizophrenia: A large-scale cross-sectional study. Psychoneuroendocrinology 2025; 172:107249. [PMID: 39591844 DOI: 10.1016/j.psyneuen.2024.107249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND Sex differences in thyroid hormones, cognitive function, and psychiatric symptoms in schizophrenia remain underexplored. The study aimed to investigate the cross-sectional relationships between thyroid hormone levels, cognitive impairments, and clinical symptoms in people with chronic schizophrenia, with a focus on sex differences. METHODS We included 1007 people with schizophrenia (602 males and 405 females), and 326 healthy controls (193 males and 133 females). Cognitive function and psychiatric symptoms were assessed using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) and the Positive and Negative Syndrome Scale (PANSS), respectively. Blood samples were collected to measure serum total thyroxine (TT4), total triiodothyronine (TT3), thyroid-stimulating hormone (TSH), free thyroxine (FT4), and free triiodothyronine (FT3). Analysis of variance (ANOVA) and two-way ANOVA were used to compare clinical characteristics and sex differences. Pearson correlation and hierarchical linear regression were conducted to assess the relationships between thyroid hormone levels, cognitive impairments, and clinical symptoms. RESULTS People with schizophrenia exhibited lower levels of thyroid hormones compared to the healthy control group (both P < 0.01). Male patients had higher TT3 and FT3 levels than female patients (both P < 0.01). The cognitive scores of the healthy controls were generally higher than those of people with schizophrenia (P < 0.001). Additionally, there were significant sex differences in visuospatial/constructive abilities and language (both P < 0.01) among people with schizophrenia, with males scoring higher than females. The linear regression found that in the cognitive domain, TT4 was negatively associated with Visuospatial/Constructive abilities and RBANS total scores in male patients (both P < 0.05), whereas TT4 was positively associated with these abilities and attention in female patients (all P < 0.05). Additionally, in male patients, TT3 was negatively associated with most of PANSS scale (all P < 0.05). In female, TT3 was only negatively associated with the PANSS Negative scale (P < 0.05). CONCLUSION Sex differences exist in thyroid hormone T3 levels in people with schizophrenia. The association between thyroid hormones and cognitive performance varies by sex in chronic schizophrenia.
Collapse
Affiliation(s)
- Junhao Chen
- Department of Psychiatry, Tianjin Anding Hospital, Mental health center of Tianjin Medical University, Tianjin 300222, China; Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Hongmin Ge
- Department of Psychiatry, Tianjin Anding Hospital, Mental health center of Tianjin Medical University, Tianjin 300222, China
| | - Nannan Liu
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin 300222, China; Brain Assessment & Intervention Laboratory, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Yanzhe Li
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin 300222, China; Brain Assessment & Intervention Laboratory, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Yeqing Dong
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin 300222, China; Brain Assessment & Intervention Laboratory, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Xinxu Wang
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin 300222, China; Brain Assessment & Intervention Laboratory, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Zhiyuan Xun
- Department of Psychiatry, Tianjin Anding Hospital, Mental health center of Tianjin Medical University, Tianjin 300222, China.
| | - Shen Li
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin 300222, China; Brain Assessment & Intervention Laboratory, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin 300222, China.
| |
Collapse
|
4
|
Wang G, Gao T, Liu Y, Duan J, Lu H, Jiang A, Xu Y, Lu X, Li X, Wang Y, Yu W. Type 3 deiodinase activation mediated by the Shh/Gli1 axis promotes sepsis-induced metabolic dysregulation in skeletal muscles. BURNS & TRAUMA 2025; 13:tkae066. [PMID: 39877839 PMCID: PMC11773416 DOI: 10.1093/burnst/tkae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/23/2024] [Accepted: 10/18/2024] [Indexed: 01/31/2025]
Abstract
Background Non-thyroidal illness syndrome is commonly observed in critically ill patients, characterized by the inactivation of systemic thyroid hormones (TH), which aggravates metabolic dysfunction. Recent evidence indicates that enhanced TH inactivation is mediated by the reactivation of type 3 deiodinase (Dio3) at the tissue level, culminating in a perturbed local metabolic equilibrium. This study assessed whether targeted inhibition of Dio3 can maintain tissue metabolic homeostasis under septic conditions and explored the mechanism behind Dio3 reactivation. Methods A retrospective clinical study was conducted to investigate the attributes of rT3. The expression of Dio3 was detected by immunoblotting, immunofluorescence, and immunohistochemical staining in tissues extracted from CLP-induced septic rats and human biopsy samples. In addition, the effect of Dio3 inhibition on skeletal muscle metabolism was observed in rats with targeted Dio3 knockdown using an adeno-associated virus. The effectiveness of Sonic hedgehog (Shh) signaling inhibition on systemic TH levels was observed in CLP-induced septic rats receiving cyclopamine. The mechanisms underlying such inhibition were explored using immunoblotting, RNA-seq, and chromatin immunoprecipitation-qPCR assays. Results The main product of Dio3, rT3, is strongly associated with organ function. Early sepsis leads to significant upregulation of Dio3 in the skeletal muscles and lung tissues of septic rats. The targeted inhibition of Dio3 in skeletal muscle restores TH responsiveness, prevents fast-to-slow fiber conversion, preserves glucose transporter type 4 functionality, and maintains metabolic balance between protein synthesis and proteolysis, which leads to preserved muscle mass. The reactivation of Dio3 is transcriptionally regulated by the Shh pathway induced by the signal transducer and activator of transcription 3. Conclusions The suppression of Dio3 restores tissue TH actions, attenuates proteolysis, and ameliorates anabolic resistance in the skeletal muscles of septic rats, thereby improving local metabolic homeostasis. Our results provide insights into the mechanisms of Dio3 reactivation and its critical role in local metabolic alterations induced by sepsis, while also suggesting novel targets aimed at ameliorating tissue-specific metabolic disorders.
Collapse
Affiliation(s)
- Gang Wang
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing, Jiangsu 210008, China
- The State Key Laboratory of Pharmaceutical Biotechnology, No. 22 Hankou Road, Gulou district, Nanjing, Jiangsu 210093, China
| | - Tao Gao
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing, Jiangsu 210008, China
- The State Key Laboratory of Pharmaceutical Biotechnology, No. 22 Hankou Road, Gulou district, Nanjing, Jiangsu 210093, China
| | - Yijiang Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, No. 22 Hankou Road, Gulou district, Nanjing, Jiangsu 210093, China
- Department of Critical Care Medicine, The Drum Tower Clinical Collage of Nanjing Medical University, No. 321 Zhongshan Road, Gulou District, Nanjing, Jiangsu 210008, China
| | - Jianfeng Duan
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing, Jiangsu 210008, China
- The State Key Laboratory of Pharmaceutical Biotechnology, No. 22 Hankou Road, Gulou district, Nanjing, Jiangsu 210093, China
| | - Huimin Lu
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing, Jiangsu 210008, China
- The State Key Laboratory of Pharmaceutical Biotechnology, No. 22 Hankou Road, Gulou district, Nanjing, Jiangsu 210093, China
| | - Anqi Jiang
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing, Jiangsu 210008, China
- The State Key Laboratory of Pharmaceutical Biotechnology, No. 22 Hankou Road, Gulou district, Nanjing, Jiangsu 210093, China
| | - Yun Xu
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing, Jiangsu 210008, China
- The State Key Laboratory of Pharmaceutical Biotechnology, No. 22 Hankou Road, Gulou district, Nanjing, Jiangsu 210093, China
| | - Xiaolan Lu
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing, Jiangsu 210008, China
- The State Key Laboratory of Pharmaceutical Biotechnology, No. 22 Hankou Road, Gulou district, Nanjing, Jiangsu 210093, China
| | - Xiaoyao Li
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing, Jiangsu 210008, China
- The State Key Laboratory of Pharmaceutical Biotechnology, No. 22 Hankou Road, Gulou district, Nanjing, Jiangsu 210093, China
| | - Yong Wang
- The State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, No. 22 Hankou Road, Gulou district, Nanjing, Jiangsu 210093, China
| | - Wenkui Yu
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing, Jiangsu 210008, China
- The State Key Laboratory of Pharmaceutical Biotechnology, No. 22 Hankou Road, Gulou district, Nanjing, Jiangsu 210093, China
- Department of Critical Care Medicine, The Drum Tower Clinical Collage of Nanjing Medical University, No. 321 Zhongshan Road, Gulou District, Nanjing, Jiangsu 210008, China
| |
Collapse
|
5
|
Zhi J, Li F, Jiang X, Bai R. Thyroid receptor β: A promising target for developing novel anti-androgenetic alopecia drugs. Drug Discov Today 2024; 29:104013. [PMID: 38705510 DOI: 10.1016/j.drudis.2024.104013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
Androgenetic alopecia (AGA) significantly impacts the self-confidence and mental well-being of people. Recent research has revealed that thyroid receptor β (TRβ) agonists can activate hair follicles and effectively stimulate hair growth. This review aims to comprehensively elucidate the specific mechanism of action of TRβ in treating AGA from various perspectives, highlighting its potential as a drug target for combating AGA. Moreover, this review provides a thorough summary of the research advances in TRβ agonist candidates with anti-AGA efficacy and outlines the structure-activity relationships (SARs) of TRβ agonists. We hope that this review will provide practical information for the development of effective anti-alopecia drugs.
Collapse
Affiliation(s)
- Jia Zhi
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, P.R. China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Feifan Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, P.R. China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Xiaoying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, P.R. China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China.
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, P.R. China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China.
| |
Collapse
|
6
|
Demircan K, Bengtsson Y, Chillon TS, Vallon-Christersson J, Sun Q, Larsson C, Malmberg M, Saal LH, Rydén L, Borg Å, Manjer J, Schomburg L. Matched analysis of circulating selenium with the breast cancer selenotranscriptome: a multicentre prospective study. J Transl Med 2023; 21:658. [PMID: 37741974 PMCID: PMC10517476 DOI: 10.1186/s12967-023-04502-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/03/2023] [Indexed: 09/25/2023] Open
Abstract
INTRODUCTION Low serum selenium and altered tumour RNA expression of certain selenoproteins are associated with a poor breast cancer prognosis. Selenoprotein expression stringently depends on selenium availability, hence circulating selenium may interact with tumour selenoprotein expression. However, there is no matched analysis to date. METHODS This study included 1453 patients with newly diagnosed breast cancer from the multicentric prospective Sweden Cancerome Analysis Network - Breast study. Total serum selenium, selenoprotein P and glutathione peroxidase 3 were analysed at time of diagnosis. Bulk RNA-sequencing was conducted in matched tumour tissues. Fully adjusted Cox regression models with an interaction term were employed to detect dose-dependent interactions of circulating selenium with the associations of tumour selenoprotein mRNA expression and mortality. RESULTS 237 deaths were recorded within ~ 9 years follow-up. All three serum selenium biomarkers correlated positively (p < 0.001). All selenoproteins except for GPX6 were expressed in tumour tissues. Single cell RNA-sequencing revealed a heterogeneous expression pattern in the tumour microenvironment. Circulating selenium correlated positively with tumour SELENOW and SELENON expression (p < 0.001). In fully adjusted models, the associations of DIO1, DIO3 and SELENOM with mortality were dose-dependently modified by serum selenium (p < 0.001, p = 0.020, p = 0.038, respectively). With increasing selenium, DIO1 and SELENOM associated with lower, whereas DIO3 expression associated with higher mortality. Association of DIO1 with lower mortality was only apparent in patients with high selenium [above median (70.36 µg/L)], and the HR (95%CI) for one-unit increase in log(FPKM + 1) was 0.70 (0.50-0.98). CONCLUSIONS This first unbiased analysis of serum selenium with the breast cancer selenotranscriptome identified an effect-modification of selenium on the associations of DIO1, SELENOM, and DIO3 with prognosis. Selenium substitution in patients with DIO1-expressing tumours merits consideration to improve survival.
Collapse
Affiliation(s)
- Kamil Demircan
- Institute for Experimental Endocrinology, Cardiovascular-Metabolic-Renal (CMR)-Research Center, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health (BIH), Biomedical Innovation Academy (BIA), Berlin, Germany
| | - Ylva Bengtsson
- Department of Surgery, Skåne University Hospital Malmö, Lund University, Malmö, Sweden
| | - Thilo Samson Chillon
- Institute for Experimental Endocrinology, Cardiovascular-Metabolic-Renal (CMR)-Research Center, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | | | - Qian Sun
- Institute for Experimental Endocrinology, Cardiovascular-Metabolic-Renal (CMR)-Research Center, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Christer Larsson
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Martin Malmberg
- Department of Oncology, Skåne University Hospital, Lund, Sweden
| | - Lao H Saal
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Lisa Rydén
- Department of Surgery, Skåne University Hospital Malmö, Lund University, Malmö, Sweden
| | - Åke Borg
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Jonas Manjer
- Department of Surgery, Skåne University Hospital Malmö, Lund University, Malmö, Sweden.
| | - Lutz Schomburg
- Institute for Experimental Endocrinology, Cardiovascular-Metabolic-Renal (CMR)-Research Center, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
7
|
Van Dingenen I, Vergauwen L, Haigis AC, Blackwell BR, Stacy E, Villeneuve DL, Knapen D. Deiodinase inhibition impairs the formation of the three posterior swim bladder tissue layers during early embryonic development in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106632. [PMID: 37451188 PMCID: PMC10949247 DOI: 10.1016/j.aquatox.2023.106632] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Thyroid hormone system disruption (THSD) negatively affects multiple developmental processes and organs. In fish, inhibition of deiodinases, which are enzymes crucial for (in)activating thyroid hormones (THs), leads to impaired swim bladder inflation. Until now, the underlying mechanism has remained largely unknown. Therefore, the objective of this study was to identify the process during swim bladder development that is impacted by deiodinase inhibition. Zebrafish embryos were exposed to 6 mg/L iopanoic acid (IOP), a model deiodinase inhibitor, during 8 different exposure windows (0-60, 60-120, 24-48, 48-72, 72-96, 96-120, 72-120 and 0-120 h post fertilization (hpf)). Exposure windows were chosen based on the three stages of swim bladder development: budding (24-48 hpf), pre-inflation, i.e., the formation of the swim bladder tissue layers (48-72 hpf), and inflation phase (72-120 hpf). Exposures prior to 72 hpf, during either the budding or pre-inflation phase (or both), impaired swim bladder inflation, while exposure during the inflation phase did not. Based on our results, we hypothesize that DIO inhibition before 72 hpf leads to a local decrease in T3 levels in the developing swim bladder. Gene transcript analysis showed that these TH level alterations disturb both Wnt and hedgehog signaling, known to be essential for swim bladder formation, eventually resulting in impaired development of the swim bladder tissue layers. Improper development of the swim bladder impairs swim bladder inflation, leading to reduced swimming performance. This study demonstrates that deiodinase inhibition impacts processes underlying the formation of the swim bladder and not the inflation process, suggesting that these processes primarily rely on maternal rather than endogenously synthetized THs since TH measurements showed that THs were not endogenously synthetized during the sensitive period.
Collapse
Affiliation(s)
- Imke Van Dingenen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Lucia Vergauwen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Ann-Cathrin Haigis
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Brett R Blackwell
- United States Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, MN 55804, United States
| | - Emma Stacy
- United States Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, MN 55804, United States
| | - Daniel L Villeneuve
- United States Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, MN 55804, United States
| | - Dries Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium.
| |
Collapse
|
8
|
Kaszuba A, Sławińska M, Żółkiewicz J, Sobjanek M, Nowicki RJ, Lange M. Mastocytosis and Skin Cancer: The Current State of Knowledge. Int J Mol Sci 2023; 24:9840. [PMID: 37372988 DOI: 10.3390/ijms24129840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Mastocytosis is a heterogeneous group of diseases associated with excessive proliferation and accumulation of mast cells in different organs. Recent studies have demonstrated that patients suffering from mastocytosis face an increased risk of melanoma and non-melanoma skin cancer. The cause of this has not yet been clearly identified. In the literature, the potential influence of several factors has been suggested, including genetic background, the role of cytokines produced by mast cells, iatrogenic and hormonal factors. The article summarizes the current state of knowledge regarding the epidemiology, pathogenesis, diagnosis, and management of skin neoplasia in mastocytosis patients.
Collapse
Affiliation(s)
- Agnieszka Kaszuba
- Department of Dermatology, Venereology and Allergology, Medical University of Gdańsk, Smoluchowskiego Street 17, 80-214 Gdańsk, Poland
| | - Martyna Sławińska
- Department of Dermatology, Venereology and Allergology, Medical University of Gdańsk, Smoluchowskiego Street 17, 80-214 Gdańsk, Poland
| | - Jakub Żółkiewicz
- Department of Dermatology, Venereology and Allergology, Medical University of Gdańsk, Smoluchowskiego Street 17, 80-214 Gdańsk, Poland
| | - Michał Sobjanek
- Department of Dermatology, Venereology and Allergology, Medical University of Gdańsk, Smoluchowskiego Street 17, 80-214 Gdańsk, Poland
| | - Roman J Nowicki
- Department of Dermatology, Venereology and Allergology, Medical University of Gdańsk, Smoluchowskiego Street 17, 80-214 Gdańsk, Poland
| | - Magdalena Lange
- Department of Dermatology, Venereology and Allergology, Medical University of Gdańsk, Smoluchowskiego Street 17, 80-214 Gdańsk, Poland
| |
Collapse
|
9
|
Amin MF, Zubair MS, Ammar M. A short review on the role of thyroxine in fast wound healing and tissue regeneration. Tissue Cell 2023; 82:102115. [PMID: 37244096 DOI: 10.1016/j.tice.2023.102115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/29/2023]
Abstract
Wound healing is a multiplex interaction process that involves extracellular matrix, blood vessels, proteases, cytokines, and chemokine. So far, a number of studies have been performed to understand the basis of the wound-healing process and multiple wound-healing products have been designed. However, significant morbidity and mortality incidents still occurred due to poor wound healing. Thus, there is a dire need to understand the effects of topical applications of various therapeutic options that lead to fast wound healing. Thyroxine is one great panacea for wound healing that has been vigorously mooted throughout the years but a conclusive result regarding its effectiveness is still not achieved. This review is intended to find a rational basis for its positive role in wound healing. To accomplish the objective, this review highlights the different aspects of thyroxine's role in wound healing like keratin synthesis, skin thickening, and pro-angiogenesis, the basis of controversy on its wound healing ability and its potential to be used as a wound healing agent. This study will be helpful for researchers and surgeons to assess the importance of thyroxine as a candidate to comprehensively research to develop a potent, effective, and affordable wound healing drug.
Collapse
Affiliation(s)
| | | | - Muhammad Ammar
- Princess Royal University Hospital, King College Hospital Trust, United Kingdom.
| |
Collapse
|
10
|
Nappi A, Miro C, Pezone A, Tramontano A, Di Cicco E, Sagliocchi S, Cicatiello AG, Murolo M, Torabinejad S, Abbotto E, Caiazzo G, Raia M, Stornaiuolo M, Antonini D, Fabbrocini G, Salvatore D, Avvedimento VE, Dentice M. Loss of p53 activates thyroid hormone via type 2 deiodinase and enhances DNA damage. Nat Commun 2023; 14:1244. [PMID: 36871014 PMCID: PMC9985592 DOI: 10.1038/s41467-023-36755-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
The Thyroid Hormone (TH) activating enzyme, type 2 Deiodinase (D2), is functionally required to elevate the TH concentration during cancer progression to advanced stages. However, the mechanisms regulating D2 expression in cancer still remain poorly understood. Here, we show that the cell stress sensor and tumor suppressor p53 silences D2 expression, thereby lowering the intracellular THs availability. Conversely, even partial loss of p53 elevates D2/TH resulting in stimulation and increased fitness of tumor cells by boosting a significant transcriptional program leading to modulation of genes involved in DNA damage and repair and redox signaling. In vivo genetic deletion of D2 significantly reduces cancer progression and suggests that targeting THs may represent a general tool reducing invasiveness in p53-mutated neoplasms.
Collapse
Affiliation(s)
- Annarita Nappi
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Caterina Miro
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Antonio Pezone
- Department of Biology, University of Naples "Federico II", 80126, Naples, Italy
| | - Alfonso Tramontano
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Emery Di Cicco
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Serena Sagliocchi
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | | | - Melania Murolo
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Sepehr Torabinejad
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Elena Abbotto
- Department of Experimental Medicine, University of Genoa, 16132, Genoa, Italy
| | - Giuseppina Caiazzo
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Maddalena Raia
- CEINGE, Biotecnologie Avanzate S.c.a.r.l., 80131, Naples, Italy
| | - Mariano Stornaiuolo
- Department of Pharmacy, University of Naples "Federico II", 80149, Naples, Italy
| | - Dario Antonini
- Department of Biology, University of Naples "Federico II", 80126, Naples, Italy
| | - Gabriella Fabbrocini
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Domenico Salvatore
- CEINGE, Biotecnologie Avanzate S.c.a.r.l., 80131, Naples, Italy.,Department of Public Health, University of Naples "Federico II", 80131, Naples, Italy
| | - Vittorio Enrico Avvedimento
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", 80131, Naples, Italy
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy. .,CEINGE, Biotecnologie Avanzate S.c.a.r.l., 80131, Naples, Italy.
| |
Collapse
|
11
|
Repositioning of Cefuroxime as novel selective inhibitor of the thyroid hormone activating enzyme type 2 deiodinase. Pharmacol Res 2023; 189:106685. [PMID: 36773711 DOI: 10.1016/j.phrs.2023.106685] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023]
Abstract
The iodothyronine deiodinases constitute a family of three selenoenzymes regulating the intracellular metabolism of Thyroid Hormones (THs, T4 and T3) and impacting on several physiological processes, including energy metabolism, development and cell differentiation. The type 1, 2 and 3 deiodinases (D1, D2, and D3), are sensitive, rate-limiting components within the TH axis, and rapidly control TH action in physiological conditions or disease. Notably, several human pathologies are characterized by deiodinases deregulation (e.g., inflammation, osteoporosis, metabolic syndrome, muscle wasting and cancer). Consequently, these enzymes are golden targets for the identification and development of pharmacological compounds endowed with modulatory activities. However, until now, the portfolio of inhibitors for deiodinases is limited and the few active compounds lack selectivity. Here, we describe the cephalosporin Cefuroxime as a novel D2 specific inhibitor. In both in vivo and in vitro settings, Cefuroxime acts as a selective inhibitor of D2 activity, without altering the enzymatic activity of D1 and D3. By inhibiting TH activation in target tissues, Cefuroxime alters the sensitivity of the hypothalamus-pituitary axis and interferes with the central regulation of THs levels, and is thus eligible as a potential new regulator of hyperthyroid pathologies, which affect thousands of patients worldwide.
Collapse
|
12
|
Rua RM, Nogales F, Carreras O, Ojeda ML. Selenium, selenoproteins and cancer of the thyroid. J Trace Elem Med Biol 2023; 76:127115. [PMID: 36481604 DOI: 10.1016/j.jtemb.2022.127115] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 10/03/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Selenium is an essential mineral element with important biological functions for the whole body through incorporation into selenoproteins. This element is highly concentrated in the thyroid gland. Selenoproteins provide antioxidant protection for this tissue against the oxidative stress caused by free radicals and contribute, via iodothyronine deiodinases, to the metabolism of thyroid hormones. It is known that oxidative stress plays a major role in carcinogenesis and that in recent decades there has been an increase in the incidence of thyroid cancer. The anti-carcinogenic action of selenium, although not fully understood, is mainly attributable to selenoproteins antioxidant properties, and to the ability to modulate cell proliferation (cell cycle and apoptosis), energy metabolism, and cellular immune response, significantly altered during tumorigenesis. Researchers have suggested that different forms of selenium supplementation may be beneficial in the prevention and treatment of thyroid cancer; however, the studies have several methodological limitations. This review is a summary of the current knowledge on how selenium and selenoproteins related to thyroid cancer.
Collapse
Affiliation(s)
- Rui Manuel Rua
- Faculty of Health Sciences, University Fernando Pessoa, 4249-004 Porto, Portugal.
| | - Fátima Nogales
- Department of Physiology, Faculty of Pharmacy, Seville University, 41012 Seville, Spain.
| | - Olimpia Carreras
- Department of Physiology, Faculty of Pharmacy, Seville University, 41012 Seville, Spain.
| | - María Luisa Ojeda
- Department of Physiology, Faculty of Pharmacy, Seville University, 41012 Seville, Spain.
| |
Collapse
|
13
|
Tetrabromobisphenol A and Diclazuril Evoke Tissue-Specific Changes of Thyroid Hormone Signaling in Male Thyroid Hormone Action Indicator Mice. Int J Mol Sci 2022; 23:ijms232314782. [PMID: 36499108 PMCID: PMC9738630 DOI: 10.3390/ijms232314782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Thyroid hormone (TH) signaling is a prerequisite of normal tissue function. Environmental pollutants with the potential to disrupt endocrine functions represent an emerging threat to human health and agricultural production. We used our Thyroid Hormone Action Indicator (THAI) mouse model to study the effects of tetrabromobisphenol A (TBBPA; 150 mg/bwkg/day orally for 6 days) and diclazuril (10.0 mg/bwkg/day orally for 5 days), a known and a potential hormone disruptor, respectively, on local TH economy. Tissue-specific changes of TH action were assessed in 90-day-old THAI mice by measuring the expression of a TH-responsive luciferase reporter in tissue samples and by in vivo imaging (14-day-long treatment accompanied with imaging on day 7, 14 and 21 from the first day of treatment) in live THAI mice. This was followed by promoter assays to elucidate the mechanism of the observed effects. TBBPA and diclazuril impacted TH action differently and tissue-specifically. TBBPA disrupted TH signaling in the bone and small intestine and impaired the global TH economy by decreasing the circulating free T4 levels. In the promoter assays, TBBPA showed a direct stimulatory effect on the hdio3 promoter, indicating a potential mechanism for silencing TH action. In contrast, diclazuril acted as a stimulator of TH action in the liver, skeletal muscle and brown adipose tissue without affecting the Hypothalamo-Pituitary-Thyroid axis. Our data demonstrate distinct and tissue-specific effects of TBBPA and diclazuril on local TH action and prove that the THAI mouse is a novel mammalian model to identify TH disruptors and their tissue-specific effects.
Collapse
|
14
|
Köhrle J, Frädrich C. Deiodinases control local cellular and systemic thyroid hormone availability. Free Radic Biol Med 2022; 193:59-79. [PMID: 36206932 DOI: 10.1016/j.freeradbiomed.2022.09.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022]
Abstract
Iodothyronine deiodinases (DIO) are a family of selenoproteins controlling systemic and local availability of the major thyroid hormone l-thyroxine (T4), a prohormone secreted by the thyroid gland. T4 is activated to the active 3,3'-5-triiodothyronine (T3) by two 5'-deiodinases, DIO1 and DIO2. DIO3, a 5-deiodinase selenoenzyme inactivates both the prohormone T4 and its active form T3. DIOs show species-specific different patterns of temporo-spatial expression, regulation and function and exhibit different mechanisms of reaction and inhibitor sensitivities. The main regulators of DIO expression and function are the thyroid hormone status, several growth factors, cytokines and altered pathophysiological conditions. Selenium (Se) status has a modest impact on DIO expression and translation. DIOs rank high in the priority of selenium supply to various selenoproteins; thus, their function is impaired only during severe selenium deficiency. DIO variants, polymorphisms, SNPs and rare mutations have been identified. Development of DIO isozyme selective drugs is ongoing. A first X-ray structure has been reported for DIO3. This review focusses on the biochemical characteristics and reaction mechanisms, the relationships between DIO selenoproteins and their importance for local and systemic provision of the active hormone T3. Nutritional, pharmacological, and environmental factors and inhibitors, such as endocrine disruptors, impact DIO functions.
Collapse
Affiliation(s)
- Josef Köhrle
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Max Rubner Center (MRC) für Kardiovaskuläre-metabolische-renale Forschung in Berlin, Institut für Experimentelle Endokrinologie, 10115, Berlin, Germany.
| | - Caroline Frädrich
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Max Rubner Center (MRC) für Kardiovaskuläre-metabolische-renale Forschung in Berlin, Institut für Experimentelle Endokrinologie, 10115, Berlin, Germany
| |
Collapse
|
15
|
Thyroid hormone and androgen signals mutually interplay and enhance inflammation and tumorigenic activation of tumor microenvironment in prostate cancer. Cancer Lett 2022; 532:215581. [DOI: 10.1016/j.canlet.2022.215581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 01/18/2022] [Accepted: 01/31/2022] [Indexed: 11/23/2022]
|
16
|
Sirakov M, Claret L, Plateroti M. Thyroid Hormone Nuclear Receptor TRα1 and Canonical WNT Pathway Cross-Regulation in Normal Intestine and Cancer. Front Endocrinol (Lausanne) 2021; 12:725708. [PMID: 34956074 PMCID: PMC8705541 DOI: 10.3389/fendo.2021.725708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/16/2021] [Indexed: 12/21/2022] Open
Abstract
A pivotal role of thyroid hormones and their nuclear receptors in intestinal development and homeostasis have been described, whereas their involvement in intestinal carcinogenesis is still controversial. In this perspective article we briefly summarize the recent advances in this field and present new data regarding their functional interaction with one of the most important signaling pathway, such as WNT, regulating intestinal development and carcinogenesis. These complex interactions unveil new concepts and will surely be of importance for translational research.
Collapse
Affiliation(s)
- Maria Sirakov
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Leo Claret
- Université de Strasbourg, Inserm, Interface de Recherche fondamentale et Appliquée en Cancérologie (IRFAC)/Unité Mixte de Recherche (UMR)-S1113, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Michelina Plateroti
- Université de Strasbourg, Inserm, Interface de Recherche fondamentale et Appliquée en Cancérologie (IRFAC)/Unité Mixte de Recherche (UMR)-S1113, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| |
Collapse
|
17
|
Targeting the DIO3 enzyme using first-in-class inhibitors effectively suppresses tumor growth: a new paradigm in ovarian cancer treatment. Oncogene 2021; 40:6248-6257. [PMID: 34556811 DOI: 10.1038/s41388-021-02020-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/26/2021] [Accepted: 09/10/2021] [Indexed: 02/08/2023]
Abstract
The enzyme iodothyronine deiodinase type 3 (DIO3) contributes to cancer proliferation by inactivating the tumor-suppressive actions of thyroid hormone (T3). We recently established DIO3 involvement in the progression of high-grade serous ovarian cancer (HGSOC). Here we provide a link between high DIO3 expression and lower survival in patients, similar to common disease markers such as Ki67, PAX8, CA-125, and CCNE1. These observations suggest that DIO3 is a logical target for inhibition. Using a DIO3 mimic, we developed original DIO3 inhibitors that contain a core of dibromomaleic anhydride (DBRMD) as scaffold. Two compounds, PBENZ-DBRMD and ITYR-DBRMD, demonstrated attenuated cell counts, induction in apoptosis, and a reduction in cell proliferation in DIO3-positive HGSOC cells (OVCAR3 and KURAMOCHI), but not in DIO3-negative normal ovary cells (CHOK1) and OVCAR3 depleted for DIO3 or its substrate, T3. Potent tumor inhibition with a high safety profile was further established in HGSOC xenograft model, with no effect in DIO3-depleted tumors. The antitumor effects are mediated by downregulation in an array of pro-cancerous proteins, the majority of which known to be repressed by T3. To conclude, using small molecules that specifically target the DIO3 enzyme we present a new treatment paradigm for ovarian cancer and potentially other DIO3-dependent malignancies.
Collapse
|
18
|
Mohammed DAE, Ahmed RR, R G A. Maternal LiCl exposure disrupts thyroid-cerebral axis in neonatal albino rats. Int J Dev Neurosci 2021; 81:741-758. [PMID: 34528732 DOI: 10.1002/jdn.10151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/23/2021] [Accepted: 09/08/2021] [Indexed: 12/19/2022] Open
Abstract
This work aimed to elucidate whether maternal lithium chloride (LiCl) exposure disturbs the thyroid-cerebral axis in neonatal albino rats. 50 mg of LiCl/kg b.wt. is orally given for pregnant Wistar rats from gestational day (GD) 1 to lactation day (LD) 28. The maternal administration of LiCl induced follicular dilatation and degeneration, hyperplasia, lumen obliteration and colloid vacuolation in the maternal and neonatal thyroid gland at postnatal days (PNDs) 14, 21 and 28. Neuronal degeneration (spongiform), gliosis, nuclear pyknosis, perivascular oedema, and meningeal hyperaemia were observed in the neonatal cerebral cortex of the maternal LiCl-treated group at examined PNDs. This disturbance appears to depend on intensification in the neonatal cerebral malondialdehyde (MDA), nitric oxide (NO), and hydrogen peroxide (H2 O2 ) levels, and attenuation in the glutathione (GSH), total thiol (t-SH), catalase (CAT), and superoxide dismutase (SOD) levels. In the neonatal cerebrum, the fold change in the relative mRNA expression of deiodinases (DII and DIII) increased significantly at PNDs 21 and 14, respectively, in the maternal LiCl-treated group. These data suggest that maternal LiCl may perturb the thyroid-cerebrum axis generating neonatal neurodevelopmental disorder.
Collapse
Affiliation(s)
- Dena A E Mohammed
- Division of Anatomy and Embryology, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Rasha R Ahmed
- Division of Histology and Cytology, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed R G
- Division of Anatomy and Embryology, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
19
|
Mancino G, Miro C, Di Cicco E, Dentice M. Thyroid hormone action in epidermal development and homeostasis and its implications in the pathophysiology of the skin. J Endocrinol Invest 2021; 44:1571-1579. [PMID: 33683663 PMCID: PMC8285348 DOI: 10.1007/s40618-020-01492-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023]
Abstract
Thyroid hormones (THs) are key endocrine regulators of tissue development and homeostasis. They are constantly released into the bloodstream and help to regulate many cell functions. The principal products released by the follicular epithelial cells are T3 and T4. T4, which is the less active form of TH, is produced in greater amounts than T3, which is the most active form of TH. This mechanism highlights the importance of the peripheral regulation of TH levels that goes beyond the central axis. Skin, muscle, liver, bone and heart are finely regulated by TH. In particular, skin is among the target organs most influenced by TH, which is essential for skin homeostasis. Accordingly, skin diseases are associated with an altered thyroid status. Alopecia, dermatitis and vitiligo are associated with thyroiditis and alopecia and eczema are frequently correlated with the Graves' disease. However, only in recent decades have studies started to clarify the molecular mechanisms underlying the effects of TH in epidermal homeostasis. Herein, we summarize the most frequent clinical epidermal alterations linked to thyroid diseases and review the principal mechanisms involved in TH control of keratinocyte proliferation and functional differentiation. Our aim is to define the open questions in this field that are beginning to be elucidated thanks to the advent of mouse models of altered TH metabolism and to obtain novel insights into the physiopathological consequences of TH metabolism on the skin.
Collapse
Affiliation(s)
- G Mancino
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Via S. Pansini 5, 80131, Naples, Italy
| | - C Miro
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Via S. Pansini 5, 80131, Naples, Italy
| | - E Di Cicco
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Via S. Pansini 5, 80131, Naples, Italy
| | - M Dentice
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Via S. Pansini 5, 80131, Naples, Italy.
- CEINGE-Biotecnologie Avanzate Scarl, Naples, Italy.
| |
Collapse
|
20
|
Abstract
Deiodinases modify the biological activity of thyroid hormone (TH) molecules, ie, they may activate thyroxine (T4) to 3,5,3'-triiodothyronine (T3), or they may inactivate T3 to 3,3'-diiodo-L-thyronine (T2) or T4 to reverse triiodothyronine (rT3). Although evidence of deiodination of T4 to T3 has been available since the 1950s, objective evidence of TH metabolism was not established until the 1970s. The modern paradigm considers that the deiodinases not only play a role in the homeostasis of circulating T3, but they also provide dynamic control of TH signaling: cells that express the activating type 2 deiodinase (D2) have enhanced TH signaling due to intracellular build-up of T3; the opposite is seen in cells that express type 3 deiodinase (D3), the inactivating deiodinase. D2 and D3 are expressed in metabolically relevant tissues such as brown adipose tissue, skeletal muscle and liver, and their roles have been investigated using cell, animal, and human models. During development, D2 and D3 expression customize for each tissue/organ the timing and intensity of TH signaling. In adult cells, D2 is induced by cyclic adenosine monophosphate (cAMP), and its expression is invariably associated with enhanced T3 signaling, expression of PGC1 and accelerated energy expenditure. In contrast, D3 expression is induced by hypoxia-inducible factor 1α (HIF-1a), dampening T3 signaling and the metabolic rate. The coordinated expression of these enzymes adjusts TH signaling in a time- and tissue-specific fashion, affecting metabolic pathways in health and disease states.
Collapse
Affiliation(s)
- Samuel C Russo
- Section of Endocrinology, Diabetes & Metabolism, University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Federico Salas-Lucia
- Section of Endocrinology, Diabetes & Metabolism, University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Antonio C Bianco
- Section of Endocrinology, Diabetes & Metabolism, University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
21
|
Di Cicco E, Moran C, Visser WE, Nappi A, Schoenmakers E, Todd P, Lyons G, Dattani M, Ambrosio R, Parisi S, Salvatore D, Chatterjee K, Dentice M. Germ Line Mutations in the Thyroid Hormone Receptor Alpha Gene Predispose to Cutaneous Tags and Melanocytic Nevi. Thyroid 2021; 31:1114-1126. [PMID: 33509032 PMCID: PMC8290313 DOI: 10.1089/thy.2020.0391] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Background: Many physiological effects of thyroid hormone (TH) are mediated by its canonical action via nuclear receptors (TH receptor α and β [TRα and TRβ]) to regulate transcription of target genes. Heterozygous dominant negative mutations in human TRα mediate resistance to thyroid hormone alpha (RTHα), characterized by features of hypothyroidism (e.g., skeletal dysplasia, neurodevelopmental retardation, constipation) in specific tissues, but near-normal circulating TH concentrations. Hitherto, 41 RTHα cases have been recorded worldwide. Methods: RTHα cases (n = 10) attending a single center underwent cutaneous assessment, recording skin lesions. Lesions excised from different RTHα patients were analyzed histologically and profiled for cellular markers of proliferation and oncogenic potential. Proliferative characteristics of dermal fibroblasts and inducible pluripotent stem cell (iPSC)-derived keratinocytes from patients and control subjects were analyzed. Results: Multiple skin tags and nevi were recorded in all cases, mainly in the head and neck area with a predilection for flexures. The affected patients had highly deleterious mutations (p.E403X, p.E403K, p.F397fs406X, p.A382PfsX7) involving TRα1 alone or mild/moderate loss-of-function mutations (p.A263V, p.L274P) common to TRα1 and TRα2 isoforms. In four patients, although lesions excised for cosmetic reasons were benign intradermal melanocytic nevi histologically, they significantly overexpressed markers of cell proliferation (K17, cyclin D1) and type 3 deiodinase. In addition, oncogenic markers typical of basal cell carcinoma (Gli-1, Gli-2, Ptch-1, n = 2 cases) and melanoma (c-kit, MAGE, CDK4, n = 1) were markedly upregulated in skin lesions. Cell cycle progression and proliferation of TRα mutation-containing dermal fibroblasts and iPSC-derived keratinocytes from patients were markedly increased. Conclusions: Our observations highlight frequent occurrence of skin tags and benign melanocytic nevi in RTHα, with cutaneous cells from patients being in a hyperproliferative state. Such excess of skin lesions, including nevi expressing oncogenic markers, indicates that dermatologic surveillance of RTHα patients, monitoring lesions for features that are suspicious for neoplastic change, is warranted.
Collapse
Affiliation(s)
- Emery Di Cicco
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Carla Moran
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - W. Edward Visser
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Annarita Nappi
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Erik Schoenmakers
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Pamela Todd
- Department of Dermatology, Addenbrookes Hospital, Cambridge, United Kingdom
| | - Greta Lyons
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Mehul Dattani
- Genetics and Genomics Programme, UCL GOS Institute of Child Health London; Great Ormond St Hospital for Children, London, United Kingdom
- Department of Endocrinology, Great Ormond St Hospital for Children, London, United Kingdom
| | | | - Silvia Parisi
- Department of Molecular Medicine and Medical Biotechnology, and University of Naples Federico II, Naples, Italy
| | - Domenico Salvatore
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Krishna Chatterjee
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
- Address correspondence to: Krishna Chatterjee, MD, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrookes Hospital, Cambridge CB2 0QQ, United Kingdom
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
- Address correspondence to: Monica Dentice, PhD, Laboratory of Molecular Endocrinology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, Naples 80131, Italy
| |
Collapse
|
22
|
Aranda A. MicroRNAs and thyroid hormone action. Mol Cell Endocrinol 2021; 525:111175. [PMID: 33515639 DOI: 10.1016/j.mce.2021.111175] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/29/2020] [Accepted: 01/21/2021] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that post-transcriptionally repress gene expression by binding generally to the 3'-untranslated regions of their target mRNAs. miRNAs regulate a large fraction of the genome, playing a key role in most physiological and pathological processes. The thyroid hormones (T4 and T3) are major regulators of development, metabolism and cell growth. The thyroid hormones (THs) are synthetized in the thyroid gland and enter the cells through transporter proteins. In the cells, T4 and T3 are metabolized by deiodinase enzymes and bind to nuclear receptors (TRs), which have a higher affinity by T3. TRs act as hormone dependent transcription factors by binding to thyroid hormone response elements (TREs) in the target genes and recruiting transcriptional coregulators. There is increasing evidence that a variety of miRNAs target deiodinases and the receptor, thus regulating TH signaling is different tissues. In turn, the THs have been shown to modulate the expression of specific miRNAs and their mRNA targets in different cell types and organs. In many cases, the existence of TREs in the regulatory regions of these miRNAs has been identified, and the hormone bound receptors transcriptionally regulate expression of these molecules. Changes in the levels of miRNAs have been demonstrated to mediate some of the important actions of the THs in processes such as muscle and heart function, lipid liver metabolism or skin physiology. In addition, miRNA regulation is involved in the effects of TRs on cell proliferation and cancer.
Collapse
Affiliation(s)
- Ana Aranda
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
23
|
Abstract
Hormones are key drivers of cancer development, and alteration of the intratumoral concentration of thyroid hormone (TH) is a common feature of many human neoplasias. Besides the systemic control of TH levels, the expression and activity of deiodinases constitute a major mechanism for the cell-autonomous, prereceptoral control of TH action. The action of deiodinases ensures tight control of TH availability at intracellular level in a time- and tissue-specific manner, and alterations in deiodinase expression are frequent in tumors. Research over the past decades has shown that in cancer cells, a complex and dynamic expression of deiodinases is orchestrated by a network of growth factors, oncogenic proteins, and miRNA. It has become increasingly evident that this fine regulation exposes cancer cells to a dynamic concentration of TH that is functional to stimulate or inhibit various cellular functions. This review summarizes recent advances in the identification of the complex interplay between deiodinases and cancer and how this family of enzymes is relevant in cancer progression. We also discuss whether deiodinase expression could represent a diagnostic tool with which to define tumor staging in cancer treatment or even a therapeutic tool against cancer.
Collapse
Affiliation(s)
- Annarita Nappi
- Department of Clinical Medicine and Surgery, University of Naples “Federico II,” Naples, Italy
| | - Maria Angela De Stefano
- Department of Clinical Medicine and Surgery, University of Naples “Federico II,” Naples, Italy
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, University of Naples “Federico II,” Naples, Italy
| | - Domenico Salvatore
- Department of Public Health, University of Naples “Federico II,” Naples, Italy
- Correspondence: Domenico Salvatore, Department of Public Health, University of Naples “Federico II”, Napoli, Italy.
| |
Collapse
|
24
|
Baksi S, Pradhan A. Thyroid hormone: sex-dependent role in nervous system regulation and disease. Biol Sex Differ 2021; 12:25. [PMID: 33685490 PMCID: PMC7971120 DOI: 10.1186/s13293-021-00367-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
Thyroid hormone (TH) regulates many functions including metabolism, cell differentiation, and nervous system development. Alteration of thyroid hormone level in the body can lead to nervous system-related problems linked to cognition, visual attention, visual processing, motor skills, language, and memory skills. TH has also been associated with neuropsychiatric disorders including schizophrenia, bipolar disorder, anxiety, and depression. Males and females display sex-specific differences in neuronal signaling. Steroid hormones including testosterone and estrogen are considered to be the prime regulators for programing the neuronal signaling in a male- and female-specific manner. However, other than steroid hormones, TH could also be one of the key signaling molecules to regulate different brain signaling in a male- and female-specific manner. Thyroid-related diseases and neurological diseases show sex-specific incidence; however, the molecular mechanisms behind this are not clear. Hence, it will be very beneficial to understand how TH acts in male and female brains and what are the critical genes and signaling networks. In this review, we have highlighted the role of TH in nervous system regulation and disease outcome and given special emphasis on its sex-specific role in male and female brains. A network model is also presented that provides critical information on TH-regulated genes, signaling, and disease.
Collapse
Affiliation(s)
- Shounak Baksi
- Causality Biomodels, Kerala Technology Innovation Zone, Cochin, 683503, India
| | - Ajay Pradhan
- Biology, The Life Science Center, School of Science and Technology, Örebro University, SE-701 82, Örebro, Sweden.
| |
Collapse
|
25
|
Moskovich D, Alfandari A, Finkelshtein Y, Weisz A, Katzav A, Kidron D, Edelstein E, Veroslavski D, Perets R, Arbib N, Kadan Y, Fishman A, Lerer B, Ellis M, Ashur-Fabian O. DIO3, the thyroid hormone inactivating enzyme, promotes tumorigenesis and metabolic reprogramming in high grade serous ovarian cancer. Cancer Lett 2020; 501:224-233. [PMID: 33221455 DOI: 10.1016/j.canlet.2020.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/18/2020] [Accepted: 11/11/2020] [Indexed: 12/27/2022]
Abstract
High grade serous ovarian cancer (HGSOC) is the most lethal gynecologic malignancy with a need for better understanding the disease pathogenesis. The biologically active thyroid hormone, T3, is considered a tumor suppressor by promoting cell differentiation and mitochondrial respiration. Tumors evolved a strategy to avoid these anticancer actions by expressing the T3 catabolizing enzyme, Deiodinase type 3 (DIO3). This stimulates cancer proliferation and aerobic glycolysis (Warburg effect). We identified DIO3 expression in HGSOC cell lines, tumor tissues from mice and human patients, fallopian tube (FT) premalignant lesion and secretory cells of normal FT, considered the disease site-of-origin. Stable DIO3 knockdown (DIO3-KD) in HGSOC cells led to increased T3 bioavailability and demonstrated induced apoptosis and attenuated proliferation, migration, colony formation, oncogenic signaling, Warburg effect and tumor growth in mice. Proteomics analysis further indicated alterations in an array of cancer-relevant proteins, the majority of which are involved in tumor suppression and metabolism. Collectively this study establishes the functional role of DIO3 in facilitating tumorigenesis and metabolic reprogramming, and proposes this enzyme as a promising target for inhibition in HGSOC.
Collapse
Affiliation(s)
- Dotan Moskovich
- Translational Oncology Laboratory, Hematology Institute and Blood Bank, Meir Medical Center, Kfar-Saba, Israel; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Adi Alfandari
- Translational Oncology Laboratory, Hematology Institute and Blood Bank, Meir Medical Center, Kfar-Saba, Israel; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Finkelshtein
- Translational Oncology Laboratory, Hematology Institute and Blood Bank, Meir Medical Center, Kfar-Saba, Israel; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Avivit Weisz
- Department of Pathology, Meir Medical Center, Kfar Saba, Israel; Sackler Faculty of Medicine, Israel
| | - Aviva Katzav
- Department of Pathology, Meir Medical Center, Kfar Saba, Israel; Sackler Faculty of Medicine, Israel
| | - Debora Kidron
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Pathology, Meir Medical Center, Kfar Saba, Israel; Sackler Faculty of Medicine, Israel
| | - Evgeny Edelstein
- Department of Pathology, Meir Medical Center, Kfar Saba, Israel; Sackler Faculty of Medicine, Israel
| | - Daniel Veroslavski
- Clinical Research Institute at Rambam, Division of Oncology, Rambam Health Care Campus, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ruth Perets
- Clinical Research Institute at Rambam, Division of Oncology, Rambam Health Care Campus, Technion-Israel Institute of Technology, Haifa, Israel
| | - Nissim Arbib
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Gynecological Oncology Unit, The Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel
| | - Yfat Kadan
- Gynecological Oncology Unit, The Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel
| | - Ami Fishman
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Gynecological Oncology Unit, The Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel
| | - Bernard Lerer
- Biological Psychiatry Laboratory Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Martin Ellis
- Translational Oncology Laboratory, Hematology Institute and Blood Bank, Meir Medical Center, Kfar-Saba, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Osnat Ashur-Fabian
- Translational Oncology Laboratory, Hematology Institute and Blood Bank, Meir Medical Center, Kfar-Saba, Israel; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
26
|
Marcelino CP, McAninch EA, Fernandes GW, Bocco BMLC, Ribeiro MO, Bianco AC. Temporal Pole Responds to Subtle Changes in Local Thyroid Hormone Signaling. J Endocr Soc 2020; 4:bvaa136. [PMID: 33123655 PMCID: PMC7575126 DOI: 10.1210/jendso/bvaa136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023] Open
Abstract
To study thyroid hormone (TH) signaling in the human brain, we analyzed published microarray data sets of the temporal pole (Brodmann area 38) of 19 deceased donors. An index of TH signaling built on the expression of 19 well known TH-responsive genes in mouse brains (T3S+) varied from 0.92 to 1.1. After Factor analysis, T3S+ correlated independently with the expression of TH transporters (MCT8, LAT2), TH receptor (TR) beta and TR coregulators (CARM1, MED1, KAT2B, SRC2, SRC3, NCOR2a). Unexpectedly, no correlation was found between T3S+ vs DIO2, DIO3, SRC1, or TRα. An unbiased systematic analysis of the entire transcriptome identified a set of 1649 genes (set #1) with strong positive correlation with T3S+ (r > 0.75). Factor analysis of set #1 identified 2 sets of genes that correlated independently with T3S+, sets #2 (329 genes) and #3 (191 genes). When processed through the Molecular Signatures Data Base (MSigDB), both sets #2 and #3 were enriched with Gene Ontology (GO)-sets related to synaptic transmission and metabolic processes. Ranking individual human brain donors according to their T3S+ led us to identify 1262 genes (set #4) with >1.3-fold higher expression in the top half. The analysis of the overlapped genes between sets #1 and #4 resulted in 769 genes (set #5), which have a very similar MSigDB signature as sets #2 and #3. In conclusion, gene expression in the human temporal pole can be assessed through T3S+ and fluctuates with subtle variations in local TH signaling.
Collapse
Affiliation(s)
- Cícera P Marcelino
- Department of Health and Biological Sciences - CCBS, Mackenzie Presbyterian University, Sao Paulo, Sao Paulo, Brazil
- Department of Translational Medicine, Federal University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Elizabeth A McAninch
- Division of Endocrinology and Metabolism, Rush University Medical Center, Chicago, Illinois
| | - Gustavo W Fernandes
- Section of Endocrinology and Metabolism, University of Chicago, Chicago, Illinois
| | - Barbara M L C Bocco
- Section of Endocrinology and Metabolism, University of Chicago, Chicago, Illinois
| | - Miriam O Ribeiro
- Department of Health and Biological Sciences - CCBS, Mackenzie Presbyterian University, Sao Paulo, Sao Paulo, Brazil
- Department of Translational Medicine, Federal University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Antonio C Bianco
- Section of Endocrinology and Metabolism, University of Chicago, Chicago, Illinois
| |
Collapse
|
27
|
Paus R, Ramot Y, Kirsner RS, Tomic-Canic M. Topical L-thyroxine: The Cinderella among hormones waiting to dance on the floor of dermatological therapy? Exp Dermatol 2020; 29:910-923. [PMID: 32682336 PMCID: PMC7722149 DOI: 10.1111/exd.14156] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/28/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022]
Abstract
Topical hormone therapy with natural or synthetic ligands of nuclear hormone receptors such as glucocorticoids, vitamin D analogues and retinoids has a long and highly successful tradition in dermatology. Yet the dermatological potential of thyroid hormone receptor (TR) agonists has been widely ignored, despite abundant clinical, cell and molecular biology, mouse in vivo, and human skin and hair follicle organ culture data documenting a role of TR-mediated signalling in skin physiology and pathology. Here, we review this evidence, with emphasis on wound healing and hair growth, and specifically highlight the therapeutic potential of repurposing topical L-thyroxine (T4) for selected applications in future dermatological therapy. We underscore the known systemic safety and efficacy profile of T4 in clinical medicine, and the well-documented impact of thyroid hormones on, for example, human epidermal and hair follicle physiology, hair follicle epithelial stem cells and pigmentation, keratin expression, mitochondrial energy metabolism and wound healing. On this background, we argue that short-term topical T4 treatment deserves careful further preclinical and clinical exploration for repurposing as a low-cost, effective and widely available dermatotherapeutic, namely in the management of skin ulcers and telogen effluvium, and that its predictable adverse effects are well-manageable.
Collapse
Affiliation(s)
- Ralf Paus
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Centre for Dermatology Research, University of Manchester & NIHR Manchester Biomedical Research Centre, Manchester, UK
- Monasterium Laboratory, Münster, Germany
| | - Yuval Ramot
- Department of Dermatology, Hadassah Medical Center, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Robert S. Kirsner
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Marjana Tomic-Canic
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
28
|
Goemann IM, Marczyk VR, Recamonde-Mendoza M, Wajner SM, Graudenz MS, Maia AL. Decreased expression of the thyroid hormone-inactivating enzyme type 3 deiodinase is associated with lower survival rates in breast cancer. Sci Rep 2020; 10:13914. [PMID: 32807826 PMCID: PMC7431418 DOI: 10.1038/s41598-020-70892-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 06/29/2020] [Indexed: 12/31/2022] Open
Abstract
Thyroid hormones (THs) are critical regulators of cellular processes, while changes in their levels impact all the hallmarks of cancer. Disturbed expression of type 3 deiodinase (DIO3), the main TH-inactivating enzyme, occurs in several human neoplasms and has been associated with adverse outcomes. Here, we investigated the patterns of DIO3 expression and its prognostic significance in breast cancer. DIO3 expression was evaluated by immunohistochemistry in a primary cohort of patients with breast cancer and validated in a second cohort using RNA sequencing data from the TCGA database. DNA methylation data were obtained from the same database. DIO3 expression was present in normal and tumoral breast tissue. Low levels of DIO3 expression were associated with increased mortality in the primary cohort. Accordingly, low DIO3 mRNA levels were associated with an increased risk of death in a multivariate model in the validation cohort. DNA methylation analysis revealed that the DIO3 gene promoter is hypermethylated in tumors when compared to normal tissue. In conclusion, DIO3 is expressed in normal and tumoral breast tissue, while decreased expression relates to poor overall survival in breast cancer patients. Finally, loss of DIO3 expression is associated with hypermethylation of the gene promoter and might have therapeutic implications.
Collapse
Affiliation(s)
- Iuri Martin Goemann
- Thyroid Unit, Endocrine Division, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, CEP 90035-003, Brasil
| | - Vicente Rodrigues Marczyk
- Thyroid Unit, Endocrine Division, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, CEP 90035-003, Brasil.,Faculdade de Medicina, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Mariana Recamonde-Mendoza
- Institute of Informatics, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil.,Bioinformatics Core, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Simone Magagnin Wajner
- Thyroid Unit, Endocrine Division, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, CEP 90035-003, Brasil.,Faculdade de Medicina, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Marcia Silveira Graudenz
- Department of Pathology, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Faculdade de Medicina, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Ana Luiza Maia
- Thyroid Unit, Endocrine Division, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, CEP 90035-003, Brasil. .,Faculdade de Medicina, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil.
| |
Collapse
|
29
|
Mancino G, Sibilio A, Luongo C, Di Cicco E, Miro C, Cicatiello AG, Nappi A, Sagliocchi S, Ambrosio R, De Stefano MA, Di Girolamo D, Porcelli T, Murolo M, Saracino F, Perruolo G, Formisano P, Stornaiuolo M, Dentice M. The Thyroid Hormone Inactivator Enzyme, Type 3 Deiodinase, Is Essential for Coordination of Keratinocyte Growth and Differentiation. Thyroid 2020; 30:1066-1078. [PMID: 32111151 DOI: 10.1089/thy.2019.0557] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Background: Thyroid hormones (THs) are key regulators of development, tissue differentiation, and maintenance of metabolic balance in virtually every cell of the body. Accordingly, severe alteration of TH action during fetal life leads to permanent deficits in humans. The skin is among the few adult tissues expressing the oncofetal protein type 3 deiodinase (D3), the TH inactivating enzyme. Here, we demonstrate that D3 is dynamically regulated during epidermal ontogenesis. Methods: To investigate the function of D3 in a postdevelopmental context, we used a mouse model of conditional epidermal-specific D3 depletion. Loss of D3 resulted in tissue hypoplasia and enhanced epidermal differentiation in a cell-autonomous manner. Results: Accordingly, wound healing repair and hair follicle cycle were altered in the D3-depleted epidermis. Further, in vitro ablation of D3 in primary culture of keratinocytes indicated that various markers of stratified epithelial layers were upregulated, thereby confirming the pro-differentiative action of D3 depletion and the consequent increased intracellular triiodothyronine levels. Notably, loss of D3 reduced the clearance of systemic TH in vivo, thereby demonstrating the critical requirement for epidermal D3 in the maintenance of TH homeostasis. Conclusion: In conclusion, our results show that the D3 enzyme is a key TH-signaling component in the skin, thereby providing a striking example of a physiological context for deiodinase-mediated TH metabolism, as well as a rationale for therapeutic manipulation of deiodinases in pathophysiological contexts.
Collapse
Affiliation(s)
- Giuseppina Mancino
- Department of Clinical Medicine and Surgery, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR); University of Naples "Federico II," Naples, Italy
| | - Annarita Sibilio
- Department of Clinical Medicine and Surgery, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR); University of Naples "Federico II," Naples, Italy
| | - Cristina Luongo
- Department of Public Health, and Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR); University of Naples "Federico II," Naples, Italy
| | - Emery Di Cicco
- Department of Clinical Medicine and Surgery, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR); University of Naples "Federico II," Naples, Italy
| | - Caterina Miro
- Department of Public Health, and Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR); University of Naples "Federico II," Naples, Italy
| | - Annunziata Gaetana Cicatiello
- Department of Clinical Medicine and Surgery, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR); University of Naples "Federico II," Naples, Italy
| | - Annarita Nappi
- Department of Public Health, and Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR); University of Naples "Federico II," Naples, Italy
| | - Serena Sagliocchi
- Department of Clinical Medicine and Surgery, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR); University of Naples "Federico II," Naples, Italy
| | | | - Maria Angela De Stefano
- Department of Clinical Medicine and Surgery, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR); University of Naples "Federico II," Naples, Italy
| | - Daniela Di Girolamo
- Department of Clinical Medicine and Surgery, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR); University of Naples "Federico II," Naples, Italy
| | - Tommaso Porcelli
- Department of Clinical Medicine and Surgery, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR); University of Naples "Federico II," Naples, Italy
| | - Melania Murolo
- Department of Clinical Medicine and Surgery, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR); University of Naples "Federico II," Naples, Italy
| | - Federica Saracino
- Department of Clinical Medicine and Surgery, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR); University of Naples "Federico II," Naples, Italy
| | - Giuseppe Perruolo
- Department of Department of Translational Medicine, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR); University of Naples "Federico II," Naples, Italy
| | - Pietro Formisano
- Department of Department of Translational Medicine, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR); University of Naples "Federico II," Naples, Italy
| | - Mariano Stornaiuolo
- Department of Pharmacy; Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR); University of Naples "Federico II," Naples, Italy
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR); University of Naples "Federico II," Naples, Italy
- CEINGE-Biotecnologie Avanzate Scarl, Naples, Italy
| |
Collapse
|
30
|
Sonic Hedgehog and Triiodothyronine Pathway Interact in Mouse Embryonic Neural Stem Cells. Int J Mol Sci 2020; 21:ijms21103672. [PMID: 32456161 PMCID: PMC7279276 DOI: 10.3390/ijms21103672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/13/2020] [Accepted: 05/19/2020] [Indexed: 11/17/2022] Open
Abstract
Neural stem cells are fundamental to development of the central nervous system (CNS)-as well as its plasticity and regeneration-and represent a potential tool for neuro transplantation therapy and research. This study is focused on examination of the proliferation dynamic and fate of embryonic neural stem cells (eNSCs) under differentiating conditions. In this work, we analyzed eNSCs differentiating alone and in the presence of sonic hedgehog (SHH) or triiodothyronine (T3) which play an important role in the development of the CNS. We found that inhibition of the SHH pathway and activation of the T3 pathway increased cellular health and survival of differentiating eNSCs. In addition, T3 was able to increase the expression of the gene for the receptor smoothened (Smo), which is part of the SHH signaling cascade, while SHH increased the expression of the T3 receptor beta gene (Thrb). This might be the reason why the combination of SHH and T3 increased the expression of the thyroxine 5-deiodinase type III gene (Dio3), which inhibits T3 activity, which in turn affects cellular health and proliferation activity of eNSCs.
Collapse
|
31
|
Zohreh B, Masoumeh V, Fakhraddin N, Omrani GHR. Apigenin-mediated Alterations in Viability and Senescence of SW480 Colorectal Cancer Cells Persist in The Presence of L-thyroxine. Anticancer Agents Med Chem 2020; 19:1535-1542. [PMID: 31272364 DOI: 10.2174/1871520619666190704102708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/15/2019] [Accepted: 04/24/2019] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Deregulation of Thyroid Hormones (THs) system in Colorectal Cancer (CRC) suggests that these hormones may play roles in CRC pathogenesis. Flavonoids are polyphenolic compounds, which possess potent antitumor activities and interfere, albeit some of them, with all aspects of THs physiology. Whether the antitumor actions of flavonoids are affected by THs is unknown. Therefore, we investigated the effects of apigenin (Api), a well-known flavone, on some tumorigenic properties of SW480 CRC cells in the presence and absence of L-thyroxine (T4). METHODS Cell viability was assessed by MTT assay. Flow cytometry and DNA electrophoresis were used to evaluate cell death. Cell senescence was examined by in situ detection of β-galactosidase activity. Protein expression was assessed by antibody array technique. RESULTS While T4 had minimal effects, Api reduced cell growth and senescence by induction of apoptosis. Expression of anti-apoptotic and pro-apoptotic proteins were differentially affected by Api and T4. Survivin, HSP60 and HTRA were the most expressed proteins by the cells. Almost all Api-induced effects persisted in the presence of T4. CONCLUSION These data suggest that Api may inhibit CRC cell growth and progression through induction of apoptosis rather than cell necrosis or senescence. In addition, they suggest that T4 has minimal effects on CRC cell growth, and is not able to antagonize the anti-growth effects of Api. Regardless of the treatments, cells expressed high levels of survivin, HSP60 and HTRA, indicating that these proteins may play central roles in SW480 CRC cell immortality.
Collapse
Affiliation(s)
- Bagheri Zohreh
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Varedi Masoumeh
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Gholam H R Omrani
- Endocrine and Metabolism Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
32
|
Nappi A, Di Cicco E, Miro C, Cicatiello AG, Sagliocchi S, Mancino G, Ambrosio R, Luongo C, Di Girolamo D, De Stefano MA, Porcelli T, Stornaiuolo M, Dentice M. The NANOG Transcription Factor Induces Type 2 Deiodinase Expression and Regulates the Intracellular Activation of Thyroid Hormone in Keratinocyte Carcinomas. Cancers (Basel) 2020; 12:cancers12030715. [PMID: 32197405 PMCID: PMC7140064 DOI: 10.3390/cancers12030715] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 12/11/2022] Open
Abstract
Type 2 deiodinase (D2), the principal activator of thyroid hormone (TH) signaling in target tissues, is expressed in cutaneous squamous cell carcinomas (SCCs) during late tumorigenesis, and its repression attenuates the invasiveness and metastatic spread of SCC. Although D2 plays multiple roles in cancer progression, nothing is known about the mechanisms regulating D2 in cancer. To address this issue, we investigated putative upstream regulators of D2 in keratinocyte carcinomas. We found that the expression of D2 in SCC cells is positively regulated by the NANOG transcription factor, whose expression, besides being causally linked to embryonic stemness, is associated with many human cancers. We also found that NANOG binds to the D2 promoter and enhances D2 transcription. Notably, blockage of D2 activity reduced NANOG-induced cell migration as well as the expression of key genes involved in epithelial-mesenchymal transition in SCC cells. In conclusion, our study reveals a link among endogenous endocrine regulators of cancer, thyroid hormone and its activating enzyme, and the NANOG regulator of cancer biology. These findings could provide the basis for the development of TH inhibitors as context-dependent anti-tumor agents.
Collapse
Affiliation(s)
- Annarita Nappi
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (A.N.); (E.D.C.); (C.M.); (A.G.C.); (S.S.); (G.M.); (M.A.D.S.)
| | - Emery Di Cicco
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (A.N.); (E.D.C.); (C.M.); (A.G.C.); (S.S.); (G.M.); (M.A.D.S.)
| | - Caterina Miro
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (A.N.); (E.D.C.); (C.M.); (A.G.C.); (S.S.); (G.M.); (M.A.D.S.)
| | - Annunziata Gaetana Cicatiello
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (A.N.); (E.D.C.); (C.M.); (A.G.C.); (S.S.); (G.M.); (M.A.D.S.)
| | - Serena Sagliocchi
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (A.N.); (E.D.C.); (C.M.); (A.G.C.); (S.S.); (G.M.); (M.A.D.S.)
| | - Giuseppina Mancino
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (A.N.); (E.D.C.); (C.M.); (A.G.C.); (S.S.); (G.M.); (M.A.D.S.)
| | | | - Cristina Luongo
- Department of Public Health, University of Naples “Federico II”, 80131 Naples, Italy; (C.L.); (D.D.G.); (T.P.)
| | - Daniela Di Girolamo
- Department of Public Health, University of Naples “Federico II”, 80131 Naples, Italy; (C.L.); (D.D.G.); (T.P.)
| | - Maria Angela De Stefano
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (A.N.); (E.D.C.); (C.M.); (A.G.C.); (S.S.); (G.M.); (M.A.D.S.)
| | - Tommaso Porcelli
- Department of Public Health, University of Naples “Federico II”, 80131 Naples, Italy; (C.L.); (D.D.G.); (T.P.)
| | - Mariano Stornaiuolo
- Department of Pharmacy, University of Naples Federico II. Via Montesano 49, 80149 Naples, Italy;
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (A.N.); (E.D.C.); (C.M.); (A.G.C.); (S.S.); (G.M.); (M.A.D.S.)
- CEINGE–Biotecnologie Avanzate Scarl, 80131 Naples, Italy
- Correspondence:
| |
Collapse
|
33
|
TBX1 and Basal Cell Carcinoma: Expression and Interactions with Gli2 and Dvl2 Signaling. Int J Mol Sci 2020; 21:ijms21020607. [PMID: 31963474 PMCID: PMC7014135 DOI: 10.3390/ijms21020607] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/16/2022] Open
Abstract
Early events of basal cell carcinoma (BCC) tumorigenesis are triggered by inappropriate activation of SHH signaling, via the loss of Patched1 (Ptch1) or by activating mutations of Smoothened (Smo). TBX1 is a key regulator of pharyngeal development, mainly through expression in multipotent progenitor cells of the cardiopharyngeal lineage. This transcription factor is connected to several major signaling systems, such as FGF, WNT, and SHH, and it has been linked to cell proliferation and to the regulation of cell shape and cell dynamics. Here, we show that TBX1 was expressed in all of the 51 BCC samples that we have tested, while in healthy human skin it was only expressed in the hair follicle. Signal intensity and distribution was heterogeneous among tumor samples. Experiments performed on a cellular model of mouse BCC showed that Tbx1 is downstream to GLI2, a factor in the SHH signaling, and that, in turn, it regulates the expression of Dvl2, which encodes an adaptor protein that is necessary for the transduction of WNT signaling. Consistently, Tbx1 depletion in the cellular model significantly reduced cell migration. These results suggest that TBX1 is part of a core transcription network that promotes BCC tumorigenesis.
Collapse
|
34
|
Miro C, Di Cicco E, Ambrosio R, Mancino G, Di Girolamo D, Cicatiello AG, Sagliocchi S, Nappi A, De Stefano MA, Luongo C, Antonini D, Visconte F, Varricchio S, Ilardi G, Del Vecchio L, Staibano S, Boelen A, Blanpain C, Missero C, Salvatore D, Dentice M. Thyroid hormone induces progression and invasiveness of squamous cell carcinomas by promoting a ZEB-1/E-cadherin switch. Nat Commun 2019; 10:5410. [PMID: 31776338 PMCID: PMC6881453 DOI: 10.1038/s41467-019-13140-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 10/18/2019] [Indexed: 01/04/2023] Open
Abstract
Epithelial tumor progression often involves epithelial-mesenchymal transition (EMT). We report that increased intracellular levels of thyroid hormone (TH) promote the EMT and malignant evolution of squamous cell carcinoma (SCC) cells. TH induces the EMT by transcriptionally up-regulating ZEB-1, mesenchymal genes and metalloproteases and suppresses E-cadherin expression. Accordingly, in human SCC, elevated D2 (the T3-producing enzyme) correlates with tumor grade and is associated with an increased risk of postsurgical relapse and shorter disease-free survival. These data provide the first in vivo demonstration that TH and its activating enzyme, D2, play an effective role not only in the EMT but also in the entire neoplastic cascade starting from tumor formation up to metastatic transformation, and supports the concept that TH is an EMT promoter. Our studies indicate that tumor progression relies on precise T3 availability, suggesting that pharmacological inactivation of D2 and TH signaling may suppress the metastatic proclivity of SCC.
Collapse
Affiliation(s)
- Caterina Miro
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Emery Di Cicco
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | | | - Giuseppina Mancino
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Daniela Di Girolamo
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | | | - Serena Sagliocchi
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Annarita Nappi
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Maria Angela De Stefano
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Cristina Luongo
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Dario Antonini
- Department of Biology, University of Naples "Federico II", Naples, Italy
| | | | - Silvia Varricchio
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Gennaro Ilardi
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | | | - Stefania Staibano
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Anita Boelen
- Endocrine Laboratory, Department of Clinical Chemistry, Amsterdam University Medical Center, location AMC, Amsterdam, The Netherlands
| | - Cedric Blanpain
- IRIBHM, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Caterina Missero
- Department of Biology, University of Naples "Federico II", Naples, Italy
- CEINGE-Biotecnologie Avanzate Scarl, Naples, Italy
| | - Domenico Salvatore
- CEINGE-Biotecnologie Avanzate Scarl, Naples, Italy
- Department of Public Health, University of Naples "Federico II", Naples, Italy
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy.
- CEINGE-Biotecnologie Avanzate Scarl, Naples, Italy.
| |
Collapse
|
35
|
Bianco AC, Dumitrescu A, Gereben B, Ribeiro MO, Fonseca TL, Fernandes GW, Bocco BMLC. Paradigms of Dynamic Control of Thyroid Hormone Signaling. Endocr Rev 2019; 40:1000-1047. [PMID: 31033998 PMCID: PMC6596318 DOI: 10.1210/er.2018-00275] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/15/2019] [Indexed: 12/17/2022]
Abstract
Thyroid hormone (TH) molecules enter cells via membrane transporters and, depending on the cell type, can be activated (i.e., T4 to T3 conversion) or inactivated (i.e., T3 to 3,3'-diiodo-l-thyronine or T4 to reverse T3 conversion). These reactions are catalyzed by the deiodinases. The biologically active hormone, T3, eventually binds to intracellular TH receptors (TRs), TRα and TRβ, and initiate TH signaling, that is, regulation of target genes and other metabolic pathways. At least three families of transmembrane transporters, MCT, OATP, and LAT, facilitate the entry of TH into cells, which follow the gradient of free hormone between the extracellular fluid and the cytoplasm. Inactivation or marked downregulation of TH transporters can dampen TH signaling. At the same time, dynamic modifications in the expression or activity of TRs and transcriptional coregulators can affect positively or negatively the intensity of TH signaling. However, the deiodinases are the element that provides greatest amplitude in dynamic control of TH signaling. Cells that express the activating deiodinase DIO2 can rapidly enhance TH signaling due to intracellular buildup of T3. In contrast, TH signaling is dampened in cells that express the inactivating deiodinase DIO3. This explains how THs can regulate pathways in development, metabolism, and growth, despite rather stable levels in the circulation. As a consequence, TH signaling is unique for each cell (tissue or organ), depending on circulating TH levels and on the exclusive blend of transporters, deiodinases, and TRs present in each cell. In this review we explore the key mechanisms underlying customization of TH signaling during development, in health and in disease states.
Collapse
Affiliation(s)
- Antonio C Bianco
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Alexandra Dumitrescu
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Balázs Gereben
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Miriam O Ribeiro
- Developmental Disorders Program, Center of Biologic Sciences and Health, Mackenzie Presbyterian University, São Paulo, São Paulo, Brazil
| | - Tatiana L Fonseca
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Gustavo W Fernandes
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Barbara M L C Bocco
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| |
Collapse
|
36
|
Abstract
The deiodinase family of enzymes mediates the activation and inactivation of thyroid hormone. The role of these enzymes in the regulation of the systemic concentrations of thyroid hormone is well established and underpins the treatment of common thyroid diseases. Interest in this field has increased in the past 10 years as the deiodinases became implicated in tissue development and homeostasis, as well as in the pathogenesis of a wide range of human diseases. Three deiodinases have been identified, namely, types 1, 2 and 3 iodothyronine deiodinases, which differ in their catalytic properties and tissue distribution. Notably, the expression of these enzymes changes during the lifetime of an individual in relation to the different needs of each organ and to ageing. The systemic homeostatic role of deiodinases clearly emerges during changes in serum concentrations of thyroid hormone, as seen in patients with thyroid dysfunction. By contrast, the role of deiodinases at the tissue level allows thyroid hormone signalling to be finely tuned within a given cell in a precise time-space window without perturbing serum concentrations of thyroid hormone. This Review maps the overall functional role of the deiodinases and explores challenges and novel opportunities arising from the expanding knowledge of these 'master' components of the thyroid homeostatic system.
Collapse
Affiliation(s)
- Cristina Luongo
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Domenico Salvatore
- Department of Public Health, University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
37
|
|
38
|
de Souza JS, Ferreira DR, Herai R, Carromeu C, Torres LB, Araujo BHS, Cugola F, Maciel RMB, Muotri AR, Giannocco G. Altered Gene Expression of Thyroid Hormone Transporters and Deiodinases in iPS MeCP2-Knockout Cells-Derived Neurons. Mol Neurobiol 2019; 56:8277-8295. [DOI: 10.1007/s12035-019-01645-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/10/2019] [Indexed: 12/12/2022]
|
39
|
Manka P, Coombes JD, Boosman R, Gauthier K, Papa S, Syn WK. Thyroid hormone in the regulation of hepatocellular carcinoma and its microenvironment. Cancer Lett 2019; 419:175-186. [PMID: 29414304 DOI: 10.1016/j.canlet.2018.01.055] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/14/2018] [Accepted: 01/18/2018] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) commonly arises from a liver damaged by extensive inflammation and fibrosis. Various factors including cytokines, morphogens, and growth factors are involved in the crosstalk between HCC cells and the stromal microenvironment. Increasing our understanding of how stromal components interact with HCC and the signaling pathways involved could help identify new therapeutic and/or chemopreventive targets. It has become increasingly clear that the cross-talk between tumor cells and host stroma plays a key role in modulating tumor growth. Emerging reports suggest a relationship between HCC and thyroid hormone signaling (dysfunction), raising the possibility that perturbed thyroid hormone (TH) regulation influences the cancer microenvironment and cancer phenotype. This review provides an overview of the role of thyroid hormone and its related pathways in HCC and, specifically, its role in regulating the tumor microenvironment.
Collapse
Affiliation(s)
- P Manka
- Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany; Division of Gastroenterology and Hepatology, Department of Medicine, Medical University of South Carolina, Charleston (SC), USA.
| | - J D Coombes
- Regeneration and Repair, Institute of Hepatology, Division of Transplantation Immunology and Mucosal Biology, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - R Boosman
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - K Gauthier
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - S Papa
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - W K Syn
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical University of South Carolina, Charleston (SC), USA; Section of Gastroenterology, Ralph H Johnson Veteran Affairs Medical Center, Charleston (SC), USA.
| |
Collapse
|
40
|
Gionfra F, De Vito P, Pallottini V, Lin HY, Davis PJ, Pedersen JZ, Incerpi S. The Role of Thyroid Hormones in Hepatocyte Proliferation and Liver Cancer. Front Endocrinol (Lausanne) 2019; 10:532. [PMID: 31543862 PMCID: PMC6730500 DOI: 10.3389/fendo.2019.00532] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/17/2019] [Indexed: 12/13/2022] Open
Abstract
Thyroid hormones T3 and T4 (thyroxine) control a wide variety of effects related to development, differentiation, growth and metabolism, through their interaction with nuclear receptors. But thyroid hormones also produce non-genomic effects that typically start at the plasma membrane and are mediated mainly by integrin αvβ3, although other receptors such as TRα and TRβ are also able to elicit non-genomic responses. In the liver, the effects of thyroid hormones appear to be particularly important. The liver is able to regenerate, but it is subject to pathologies that may lead to cancer, such as fibrosis, cirrhosis, and non-alcoholic fatty liver disease. In addition, cancer cells undergo a reprogramming of their metabolism, resulting in drastic changes such as aerobic glycolysis instead of oxidative phosphorylation. As a consequence, the pyruvate kinase isoform M2, the rate-limiting enzyme of glycolysis, is dysregulated, and this is considered an important factor in tumorigenesis. Redox equilibrium is also important, in fact cancer cells give rise to the production of more reactive oxygen species (ROS) than normal cells. This increase may favor the survival and propagation of cancer cells. We evaluate the possible mechanisms involving the plasma membrane receptor integrin αvβ3 that may lead to cancer progression. Studying diseases that affect the liver and their experimental models may help to unravel the cellular pathways mediated by integrin αvβ3 that can lead to liver cancer. Inhibitors of integrin αvβ3 might represent a future therapeutic tool against liver cancer. We also include information on the possible role of exosomes in liver cancer, as well as on recent strategies such as organoids and spheroids, which may provide a new tool for research, drug discovery, and personalized medicine.
Collapse
Affiliation(s)
- Fabio Gionfra
- Department of Sciences, University Roma Tre, Rome, Italy
| | - Paolo De Vito
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | - Hung-Yun Lin
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States
- Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Medicine, Albany Medical College, Albany, NY, United States
| | - Paul J. Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States
- Department of Medicine, Albany Medical College, Albany, NY, United States
| | - Jens Z. Pedersen
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Sandra Incerpi
- Department of Sciences, University Roma Tre, Rome, Italy
- *Correspondence: Sandra Incerpi
| |
Collapse
|
41
|
Goemann IM, Marczyk VR, Romitti M, Wajner SM, Maia AL. Current concepts and challenges to unravel the role of iodothyronine deiodinases in human neoplasias. Endocr Relat Cancer 2018; 25:R625-R645. [PMID: 30400023 DOI: 10.1530/erc-18-0097] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/10/2018] [Indexed: 12/20/2022]
Abstract
Thyroid hormones (THs) are essential for the regulation of several metabolic processes and the energy consumption of the organism. Their action is exerted primarily through interaction with nuclear receptors controlling the transcription of thyroid hormone-responsive genes. Proper regulation of TH levels in different tissues is extremely important for the equilibrium between normal cellular proliferation and differentiation. The iodothyronine deiodinases types 1, 2 and 3 are key enzymes that perform activation and inactivation of THs, thus controlling TH homeostasis in a cell-specific manner. As THs seem to exert their effects in all hallmarks of the neoplastic process, dysregulation of deiodinases in the tumoral context can be critical to the neoplastic development. Here, we aim at reviewing the deiodinases expression in different neoplasias and exploit the mechanisms by which they play an essential role in human carcinogenesis. TH modulation by deiodinases and other classical pathways may represent important targets with the potential to oppose the neoplastic process.
Collapse
Affiliation(s)
- Iuri Martin Goemann
- Thyroid Unit, Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Vicente Rodrigues Marczyk
- Thyroid Unit, Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Mirian Romitti
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium
| | - Simone Magagnin Wajner
- Thyroid Unit, Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana Luiza Maia
- Thyroid Unit, Endocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
42
|
Baldini E, Odorisio T, Tuccilli C, Persechino S, Sorrenti S, Catania A, Pironi D, Carbotta G, Giacomelli L, Arcieri S, Vergine M, Monti M, Ulisse S. Thyroid diseases and skin autoimmunity. Rev Endocr Metab Disord 2018; 19:311-323. [PMID: 29948572 DOI: 10.1007/s11154-018-9450-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The skin is the largest organ of the body, at the boundary with the outside environment. Primarily, it provides a physical and chemical barrier against external insults, but it can act also as immune organ because it contains a whole host of immune-competent cells of both the innate and the adaptive immune systems, which cooperate in eliminating invading pathogens following tissue injury. On the other hand, improper skin immune responses lead to autoimmune skin diseases (AISD), such as pemphigus, bullous pemphigoid, vitiligo, and alopecia. Although the interplay among genetic, epigenetic, and environmental factors has been shown to play a major role in AISD etiology and progression, the molecular mechanisms underlying disease development are far from being fully elucidated. In this context, epidemiological studies aimed at defining the association of different AISD with other autoimmune pathologies revealed possible shared molecular mechanism(s) responsible for disease progression. In particular, over the last decades, a number of reports have highlighted a significant association between thyroid diseases (TD), mainly autoimmune ones (AITD), and AISD. Here, we will recapitulate the epidemiology, clinical manifestations, and pathogenesis of the main AISD, and we will summarize the epidemiological evidence showing the associations with TD as well as possible molecular mechanism(s) underlying TD and AISD pathological manifestations.
Collapse
Affiliation(s)
- Enke Baldini
- Department of Surgical Sciences, "Sapienza" University of Rome, Viale Regina Elena, 324, 00161, Rome, Italy
| | - Teresa Odorisio
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata-IRCCS, Rome, Italy
| | - Chiara Tuccilli
- Department of Surgical Sciences, "Sapienza" University of Rome, Viale Regina Elena, 324, 00161, Rome, Italy
| | | | - Salvatore Sorrenti
- Department of Surgical Sciences, "Sapienza" University of Rome, Viale Regina Elena, 324, 00161, Rome, Italy
| | - Antonio Catania
- Department of Surgical Sciences, "Sapienza" University of Rome, Viale Regina Elena, 324, 00161, Rome, Italy
| | - Daniele Pironi
- Department of Surgical Sciences, "Sapienza" University of Rome, Viale Regina Elena, 324, 00161, Rome, Italy
| | - Giovanni Carbotta
- Department of Surgical Sciences, "Sapienza" University of Rome, Viale Regina Elena, 324, 00161, Rome, Italy
| | - Laura Giacomelli
- Department of Surgical Sciences, "Sapienza" University of Rome, Viale Regina Elena, 324, 00161, Rome, Italy
| | - Stefano Arcieri
- Department of Surgical Sciences, "Sapienza" University of Rome, Viale Regina Elena, 324, 00161, Rome, Italy
| | - Massimo Vergine
- Department of Surgical Sciences, "Sapienza" University of Rome, Viale Regina Elena, 324, 00161, Rome, Italy
| | - Massimo Monti
- Department of Surgical Sciences, "Sapienza" University of Rome, Viale Regina Elena, 324, 00161, Rome, Italy
| | - Salvatore Ulisse
- Department of Surgical Sciences, "Sapienza" University of Rome, Viale Regina Elena, 324, 00161, Rome, Italy.
| |
Collapse
|
43
|
Shpakov AO. Molecular Mechanisms of the Relationship between Thyroid Dysfunctions and Diabetes Mellitus. J EVOL BIOCHEM PHYS+ 2018. [DOI: 10.1134/s0022093018040014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Ruiz-Llorente L, Contreras-Jurado C, Martínez-Fernández M, Paramio JM, Aranda A. Thyroid Hormone Receptors Regulate the Expression of microRNAs with Key Roles in Skin Homeostasis. Thyroid 2018; 28:921-932. [PMID: 29742977 DOI: 10.1089/thy.2017.0369] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) play a unique role in posttranscriptional regulation of gene expression and control different aspects of skin development, homeostasis, and disease. Although it is generally accepted that thyroid hormone signaling is important in skin pathophysiology, the role of their nuclear receptors (TRs) in cutaneous miRNA expression has yet to be explored. METHODS RNAseq was used to compare the skin miRnome of wild-type mice and genetically modified mice lacking both TRα1 and TRβ, the main thyroid hormone binding isoforms. Changes in miRNAs with a crucial role in skin physiopathology were confirmed by stem-loop quantitative polymerase chain reaction in both total skin and isolated keratinocytes, and the levels of their target mRNAs were evaluated by real-time polymerase chain reaction. RESULTS The skin of TRα1/TRβ knockout mice displays altered levels of >50 miRNAs. Among the downregulated species are several miRNAs, including miR-21, miR-31, miR-34, and miR-203, with crucial roles in skin homeostasis. TRα1 appears to be the main isoform responsible for their regulation. Increased levels of gene transcripts previously shown to be bona fide targets of these miRNAs are also found in the skin and keratinocytes of TR-deficient mice. This suggests that multiple miRNAs that are downregulated in the absence of TRs cooperate to regulate gene expression in the skin. CONCLUSIONS The miRNAs reduced in TRα1/TRβ knockout mice are known to play crucial roles in epidermal proliferation, hair cycling, wound healing, stem-cell function, and tumor development, all processes altered in the absence of TRs. These results suggest that their regulation could contribute to the skin defects found in these mice and to the skin disorders associated with altered thyroid status in humans.
Collapse
Affiliation(s)
- Lidia Ruiz-Llorente
- 1 Instituto de Investigaciones Biomédicas "Alberto Sols ," Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
- 2 Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) , Madrid, Spain
| | - Constanza Contreras-Jurado
- 1 Instituto de Investigaciones Biomédicas "Alberto Sols ," Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
- 3 Centro de Investigación Biomédica en Red de Cáncer (CIBERONC) , Madrid, Spain
| | - Mónica Martínez-Fernández
- 3 Centro de Investigación Biomédica en Red de Cáncer (CIBERONC) , Madrid, Spain
- 4 Molecular Oncology Unit , Division of Biomedicine, CIEMAT, Madrid, Spain
| | - Jesús M Paramio
- 3 Centro de Investigación Biomédica en Red de Cáncer (CIBERONC) , Madrid, Spain
- 4 Molecular Oncology Unit , Division of Biomedicine, CIEMAT, Madrid, Spain
| | - Ana Aranda
- 1 Instituto de Investigaciones Biomédicas "Alberto Sols ," Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
- 3 Centro de Investigación Biomédica en Red de Cáncer (CIBERONC) , Madrid, Spain
| |
Collapse
|
45
|
Nishimura K, Takeda M, Yamashita JK, Shiojima I, Toyoda N. Type 3 iodothyronine deiodinase is expressed in human induced pluripotent stem cell derived cardiomyocytes. Life Sci 2018; 203:276-281. [DOI: 10.1016/j.lfs.2018.04.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 04/07/2018] [Accepted: 04/19/2018] [Indexed: 12/29/2022]
|
46
|
Lomet D, Cognié J, Chesneau D, Dubois E, Hazlerigg D, Dardente H. The impact of thyroid hormone in seasonal breeding has a restricted transcriptional signature. Cell Mol Life Sci 2018; 75:905-919. [PMID: 28975373 PMCID: PMC11105383 DOI: 10.1007/s00018-017-2667-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/05/2017] [Accepted: 09/26/2017] [Indexed: 01/16/2023]
Abstract
Thyroid hormone (TH) directs seasonal breeding through reciprocal regulation of TH deiodinase (Dio2/Dio3) gene expression in tanycytes in the ependymal zone of the medio-basal hypothalamus (MBH). Thyrotropin secretion by the pars tuberalis (PT) is a major photoperiod-dependent upstream regulator of Dio2/Dio3 gene expression. Long days enhance thyrotropin production, which increases Dio2 expression and suppresses Dio3 expression, thereby heightening TH signaling in the MBH. Short days appear to exert the converse effect. Here, we combined endocrine profiling and transcriptomics to understand how photoperiod and TH control the ovine reproductive status through effects on hypothalamic function. Almost 3000 genes showed altered hypothalamic expression between the breeding- and non-breeding seasons, showing gene ontology enrichment for cell signaling, epigenetics and neural plasticity. In contrast, acute switching from a short (SP) to a long photoperiod (LP) affected the expression of a much smaller core of 134 LP-responsive genes, including a canonical group previously linked to photoperiodic synchronization. Reproductive switch-off at the end of the winter breeding season was completely blocked by thyroidectomy (THX), despite a very modest effect on the hypothalamic transcriptome. Only 49 genes displayed altered expression between intact and THX ewes, including less than 10% of the LP-induced gene set. Neuroanatomical mapping showed that many LP-induced genes were expressed in the PT, independently of the TH status. In contrast, TH-sensitive seasonal genes were principally expressed in the ependymal zone. These data highlight the distinctions between seasonal remodeling effects, which appear to be largely independent of TH, and TH-dependent localised effects which are permissive for transition to the non-breeding state.
Collapse
Affiliation(s)
- Didier Lomet
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Juliette Cognié
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Didier Chesneau
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Emeric Dubois
- MGX-Montpellier GenomiX, Institut de Génomique Fonctionnelle, 34094, Montpellier, France
| | - David Hazlerigg
- Department of Arctic and Marine Biology, University of Tromsø, 9037, Tromsø, Norway
| | - Hugues Dardente
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France.
| |
Collapse
|
47
|
Gouveia CHA, Miranda-Rodrigues M, Martins GM, Neofiti-Papi B. Thyroid Hormone and Skeletal Development. VITAMINS AND HORMONES 2018; 106:383-472. [PMID: 29407443 DOI: 10.1016/bs.vh.2017.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Thyroid hormone (TH) is essential for skeletal development from the late fetal life to the onset of puberty. During this large window of actions, TH has key roles in endochondral and intramembranous ossifications and in the longitudinal bone growth. There is evidence that TH acts directly in skeletal cells but also indirectly, specially via the growth hormone/insulin-like growth factor-1 axis, to control the linear skeletal growth and maturation. The presence of receptors, plasma membrane transporters, and activating and inactivating enzymes of TH in skeletal cells suggests that direct actions of TH in these cells are crucial for skeletal development, which has been confirmed by several in vitro and in vivo studies, including mouse genetic studies, and clinical studies in patients with resistance to thyroid hormone due to dominant-negative mutations in TH receptors. This review examines progress made on understanding the mechanisms by which TH regulates the skeletal development.
Collapse
Affiliation(s)
- Cecilia H A Gouveia
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil; Experimental Pathophysiology Program, School of Medicine, University of São Paulo, São Paulo, SP, Brazil.
| | | | - Gisele M Martins
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil; Experimental Pathophysiology Program, School of Medicine, University of São Paulo, São Paulo, SP, Brazil; Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Bianca Neofiti-Papi
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil; Experimental Pathophysiology Program, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
48
|
Hypothyroidism Potentially Linked to Cutaneous Squamous Cell Carcinoma: Retrospective Study at a Single Tertiary Academic Medical Center. Dermatol Surg 2018; 44:10-16. [DOI: 10.1097/dss.0000000000001241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
49
|
Abstract
Thyroid hormone signaling is customized in a time and cell-specific manner by the deiodinases, homodimeric thioredoxin fold containing selenoproteins. This ensures adequate T3 action in developing tissues, healthy adults and many disease states. D2 activates thyroid hormone by converting the pro-hormone T4 to T3, the biologically active thyroid hormone. D2 expression is tightly regulated by transcriptional mechanisms triggered by endogenous as well as environmental cues. There is also an on/off switch mechanism that controls D2 activity that is triggered by catalysis and functions via D2 ubiquitination/deubiquitination. D3 terminates thyroid hormone action by inactivation of both T4 and T3 molecules. Deiodinases play a role in thyroid hormone homeostasis, development, growth and metabolic control by affecting the intracellular levels of T3 and thus gene expression on a cell-specific basis. In many cases, tight control of these pathways by T3 is achieved with coordinated reciprocal changes in D2-mediated thyroid hormone activation D3-mediated thyroid hormone inactivation.
Collapse
|
50
|
Ambrosio R, De Stefano MA, Di Girolamo D, Salvatore D. Thyroid hormone signaling and deiodinase actions in muscle stem/progenitor cells. Mol Cell Endocrinol 2017; 459:79-83. [PMID: 28630021 DOI: 10.1016/j.mce.2017.06.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 06/01/2017] [Accepted: 06/15/2017] [Indexed: 11/30/2022]
Abstract
Thyroid hormone (TH) regulates such crucial biological functions as normal growth, development and metabolism of nearly all vertebrate tissues. In skeletal muscle, TH plays a critical role in regulating the function of satellite cells, the bona fide skeletal muscle stem cells. Deiodinases (D2 and D3) have been found to modulate the expression of various TH target genes in satellite cells. Regulation of the expression and activity of the deiodinases constitutes a cell-autonomous, pre-receptor mechanism that controls crucial steps during the various phases of myogenesis. Here, we review the roles of deiodinases in skeletal muscle stem cells, particularly in muscle homeostasis and upon regeneration. We focus on the role of T3 in stem cell functions and in commitment towards lineage progression. We also discuss how deiodinases might be therapeutically exploited to improve satellite-cell-mediated muscle repair in skeletal muscle disorders or injury.
Collapse
Affiliation(s)
- Raffaele Ambrosio
- Istituto di Ricovero e Cura a Carattere Scientifico SDN, Naples, Italy
| | - Maria Angela De Stefano
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Daniela Di Girolamo
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Domenico Salvatore
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy.
| |
Collapse
|