1
|
Rai MF, Duan X, Yan M, Brophy RH, Cai L. Loss of periostin function impairs ligament fibroblast activity and facilitates ROS-mediated cellular senescence. FASEB J 2024; 38:e23862. [PMID: 39162681 PMCID: PMC11346584 DOI: 10.1096/fj.202302615rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/21/2024]
Abstract
Anterior cruciate ligament (ACL) injuries pose a significant challenge due to their limited healing potential, often resulting in premature arthritis. The factors and mechanisms contributing to this inadequate healing process remain elusive. During the acute phase of injury, ACL tissues express elevated periostin levels that decline over time. The functional significance of periostin in ligament biology remains understudied. In this study, we investigated the functional and mechanistic implications of periostin deficiency in ACL biology, utilizing ligament fibroblasts derived from patients and a murine model of ACL rupture. Our investigations unveiled that periostin knockdown compromised fibroblast growth characteristics, hindered the egress of progenitor cells from explants, and arrested cell-cycle progression, resulting in the accumulation of cells in the G0/G1 phase and moderate apoptosis. Concurrently, a significant reduction in the expression of cell-cycle and matrix-related genes was observed. Moreover, periostin deficiency triggered apoptosis through STAT3Y705/p38MAPK signaling and induced cellular senescence through increased production of reactive oxygen species (ROS). Mechanistically, inhibition of ROS production mitigated cell senescence in these cells. Notably, in vivo data revealed that ACL in Postn-/- mice exhibited a higher tearing frequency than wild-type mice under equivalent loading conditions. Furthermore, injured ACL with silenced periostin expression, achieved through nanoparticle-siRNA complex delivery, displayed an elevated propensity for apoptosis and senescence compared to intact ACL in C57BL/6 mice. Together, our findings underscore the pivotal role of periostin in ACL health, injury, and potential for healing.
Collapse
Affiliation(s)
- Muhammad Farooq Rai
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States of America
- Department of Biomedical Engineering, Saint Louis University School of Science and Engineering, St. Louis, MO, United States of America
| | - Xin Duan
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Mingming Yan
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, United States of America
- Department of Orthopaedic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Robert H. Brophy
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Lei Cai
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, United States of America
| |
Collapse
|
2
|
Lu Y, Wang Y, Wang J, Liang L, Li J, Yu Y, Zeng J, He M, Wei X, Liu Z, Shi P, Li J. A comprehensive exploration of hydrogel applications in multi-stage skin wound healing. Biomater Sci 2024; 12:3745-3764. [PMID: 38959069 DOI: 10.1039/d4bm00394b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Hydrogels, as an emerging biomaterial, have found extensive use in the healing of wounds due to their distinctive physicochemical structure and functional properties. Moreover, hydrogels can be made to match a range of therapeutic requirements for materials used in wound healing through specific functional modifications. This review provides a step-by-step explanation of the processes involved in cutaneous wound healing, including hemostasis, inflammation, proliferation, and reconstitution, along with an investigation of the factors that impact these processes. Furthermore, a thorough analysis is conducted on the various stages of the wound healing process at which functional hydrogels are implemented, including hemostasis, anti-infection measures, encouraging regeneration, scar reduction, and wound monitoring. Next, the latest progress of multifunctional hydrogels for wound healing and the methods to achieve these functions are discussed in depth and categorized for elucidation. Finally, perspectives and challenges associated with the clinical applications of multifunctional hydrogels are discussed.
Collapse
Affiliation(s)
- Yongping Lu
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Yuemin Wang
- College of Medicine, Southwest Jiaotong University, 610003, China
| | - Jie Wang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Ling Liang
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Jinrong Li
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Yue Yu
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Jia Zeng
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Mingfang He
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Xipeng Wei
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Zhining Liu
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Ping Shi
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| |
Collapse
|
3
|
Ghatak S, Khanna S, Roy S, Thirunavukkarasu M, Pradeep SR, Wulff BC, El Masry MS, Sharma A, Palakurti R, Ghosh N, Xuan Y, Wilgus TA, Maulik N, Yoder MC, Sen CK. Driving adult tissue repair via re-engagement of a pathway required for fetal healing. Mol Ther 2023; 31:454-470. [PMID: 36114673 PMCID: PMC9931555 DOI: 10.1016/j.ymthe.2022.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 08/16/2022] [Accepted: 09/06/2022] [Indexed: 02/07/2023] Open
Abstract
Fetal cutaneous wound closure and repair differ from that in adulthood. In this work, we identify an oxidant stress sensor protein, nonselenocysteine-containing phospholipid hydroperoxide glutathione peroxidase (NPGPx), that is abundantly expressed in normal fetal epidermis (and required for fetal wound closure), though not in adult epidermis, but is variably re-induced upon adult tissue wounding. NPGPx is a direct target of the miR-29 family. Following injury, abundance of miR-29 is lowered, permitting a prompt increase in NPGPx transcripts and protein expression in adult wound-edge tissue. NPGPx expression was required to mediate increased keratinocyte migration induced by miR-29 inhibition in vitro and in vivo. Increased NPGPx expression induced increased SOX2 expression and β-catenin nuclear localization in keratinocytes. Augmenting physiologic NPGPx expression via experimentally induced miR-29 suppression, using cutaneous tissue nanotransfection or targeted lipid nanoparticle delivery of anti-sense oligonucleotides, proved to be sufficient to overcome the deleterious effects of diabetes on this specific pathway to enhance tissue repair.
Collapse
Affiliation(s)
- Subhadip Ghatak
- Indiana Center for Regenerative Medicine & Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Savita Khanna
- Indiana Center for Regenerative Medicine & Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sashwati Roy
- Indiana Center for Regenerative Medicine & Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mahesh Thirunavukkarasu
- Department of Surgery, Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut Health, Farmington, CT 06030, USA
| | - Seetur R Pradeep
- Department of Surgery, Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut Health, Farmington, CT 06030, USA
| | - Brian C Wulff
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Mohamed S El Masry
- Indiana Center for Regenerative Medicine & Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Plastic Surgery, Zagazig University, Zagazig 44519, Egypt
| | - Anu Sharma
- Indiana Center for Regenerative Medicine & Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Ravichand Palakurti
- Indiana Center for Regenerative Medicine & Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Nandini Ghosh
- Indiana Center for Regenerative Medicine & Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yi Xuan
- Indiana Center for Regenerative Medicine & Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Traci A Wilgus
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Nilanjana Maulik
- Department of Surgery, Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut Health, Farmington, CT 06030, USA
| | - Mervin C Yoder
- Indiana Center for Regenerative Medicine & Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chandan K Sen
- Indiana Center for Regenerative Medicine & Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
4
|
Palakurti R, Biswas N, Roy S, Gnyawali SC, Sinha M, Singh K, Ghatak S, Sen CK, Khanna S. Inducible miR-1224 silences cerebrovascular Serpine1 and restores blood flow to the stroke-affected site of the brain. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:276-292. [PMID: 36726407 PMCID: PMC9868883 DOI: 10.1016/j.omtn.2022.12.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/31/2022] [Indexed: 01/04/2023]
Abstract
The α-tocotrienol (TCT) form of natural vitamin E is more potent than the better known α-tocopherol against stroke. Angiographic studies of canine stroke have revealed beneficial cerebrovascular effects of TCT. This work seeks to understand the molecular basis of such effect. In mice, TCT supplementation improved perfusion at the stroke-affected site by inducing miR-1224. miRNA profiling of a laser-capture-microdissected stroke-affected brain site identified miR-1224 as the only vascular miR induced. Lentiviral knockdown of miR-1224 significantly blunted the otherwise beneficial effects of TCT on stroke outcomes. Studies on primary brain microvascular endothelial cells revealed direct angiogenic properties of miR-1224. In mice not treated with TCT, advance stereotaxic delivery of an miR-1224 mimic to the stroke site markedly improved stroke outcomes. Mechanistic studies identified Serpine1 as a target of miR-1224. Downregulation of Serpine1 augmented the angiogenic response of the miR-1224 mimic in the brain endothelial cells. The inhibition of Serpine1, by dietary TCT and pharmacologically, increased cerebrovascular blood flow at the stroke-affected site and protected against stroke. This work assigns Serpine1, otherwise known to be of critical significance in stroke, a cerebrovascular function that worsens stroke outcomes. miR-1224-dependent inhibition of Serpine1 can be achieved by dietary TCT as well as by the small-molecule inhibitor TM5441.
Collapse
Affiliation(s)
- Ravichand Palakurti
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Nirupam Biswas
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sashwati Roy
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Surya C. Gnyawali
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mithun Sinha
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kanhaiya Singh
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Subhadip Ghatak
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chandan K. Sen
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Savita Khanna
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA,Corresponding author: Savita Khanna, PhD, Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
5
|
The GPI-Anchored Protein Thy-1/CD90 Promotes Wound Healing upon Injury to the Skin by Enhancing Skin Perfusion. Int J Mol Sci 2022; 23:ijms232012539. [PMID: 36293394 PMCID: PMC9603913 DOI: 10.3390/ijms232012539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Wound healing is a highly regulated multi-step process that involves a plethora of signals. Blood perfusion is crucial in wound healing and abnormalities in the formation of new blood vessels define the outcome of the wound healing process. Thy-1 has been implicated in angiogenesis and silencing of the Thy-1 gene retards the wound healing process. However, the role of Thy-1 in blood perfusion during wound closure remains unclear. We proposed that Thy-1 regulates vascular perfusion, affecting the healing rate in mouse skin. We analyzed the time of recovery, blood perfusion using Laser Speckle Contrast Imaging, and tissue morphology from images acquired with a Nanozoomer tissue scanner. The latter was assessed in a tissue sample taken with a biopsy punch on several days during the wound healing process. Results obtained with the Thy-1 knockout (Thy-1−/−) mice were compared with control mice. Thy-1−/− mice showed at day seven, a delayed re-epithelialization, increased micro- to macro-circulation ratio, and lower blood perfusion in the wound area. In addition, skin morphology displayed a flatter epidermis, fewer ridges, and almost no stratum granulosum or corneum, while the dermis was thicker, showing more fibroblasts and fewer lymphocytes. Our results suggest a critical role for Thy-1 in wound healing, particularly in vascular dynamics.
Collapse
|
6
|
Weighted Gene Coexpression Network Analysis Identifies Crucial Genes Involved in Coronary Atherosclerotic Heart Disease. DISEASE MARKERS 2022; 2022:6971238. [PMID: 35958279 PMCID: PMC9363224 DOI: 10.1155/2022/6971238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/31/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022]
Abstract
Background Coronary atherosclerotic heart disease (CHD) is a lethal disease with an unstated pathogenic mechanism. Therefore, it is urgent to develop innovative strategies to ameliorate the outcome of CHD patients and explore novel biomarkers connected to the pathogenicity of CHD. Methods The weighted gene coexpression network analysis (WGCNA) was carried out on a coronary atherosclerosis dataset GSE90074 to determine the crucial modules and hub genes for their prospective relationship to CHD. After the different modules associated with CHD have been identified, the Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enriched pathway analyses were conducted. The protein-protein interaction (PPI) network was thereafter performed for the critical module using STRING and Cytoscape. Results The yellow module was recognized as the most critical module associated with CHD. The enriched pathways in the yellow module included those related to inflammatory response, positive regulation of extracellular signal-regulated kinase1/2 (ERK1/2) cascade, lipid catabolic process, cellular response to oxidative stress, apoptotic pathway, and NF-kappa B pathway. Further CytoHubba analysis revealed the top five hub genes (MMP14, CD28, CaMK4, RGS1, and DDAH1) associated with CHD development. Conclusions The current study provides the prognosis, novel hub genes, and signaling pathways for treating coronary atherosclerosis. However, their potential biological roles require deeper investigation.
Collapse
|
7
|
Singh K, Rustagi Y, Abouhashem AS, Tabasum S, Verma P, Hernandez E, Pal D, Khona DK, Mohanty SK, Kumar M, Srivastava R, Guda PR, Verma SS, Mahajan S, Killian JA, Walker LA, Ghatak S, Mathew-Steiner SS, Wanczyk K, Liu S, Wan J, Yan P, Bundschuh R, Khanna S, Gordillo GM, Murphy MP, Roy S, Sen CK. Genome-wide DNA hypermethylation opposes healing in chronic wound patients by impairing epithelial-to-mesenchymal transition. J Clin Invest 2022; 132:157279. [PMID: 35819852 PMCID: PMC9433101 DOI: 10.1172/jci157279] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 07/07/2022] [Indexed: 12/15/2022] Open
Abstract
An extreme chronic wound tissue microenvironment causes epigenetic gene silencing. An unbiased whole-genome methylome was studied in the wound-edge tissue of patients with chronic wounds. A total of 4,689 differentially methylated regions (DMRs) were identified in chronic wound-edge skin compared with unwounded human skin. Hypermethylation was more frequently observed (3,661 DMRs) in the chronic wound-edge tissue compared with hypomethylation (1,028 DMRs). Twenty-six hypermethylated DMRs were involved in epithelial-mesenchymal transition (EMT). Bisulfite sequencing validated hypermethylation of a predicted specific upstream regulator TP53. RNA-Seq analysis was performed to qualify findings from methylome analysis. Analysis of the downregulated genes identified the TP53 signaling pathway as being significantly silenced. Direct comparison of hypermethylation and downregulated genes identified 4 genes, ADAM17, NOTCH, TWIST1, and SMURF1, that functionally represent the EMT pathway. Single-cell RNA-Seq studies revealed that these effects on gene expression were limited to the keratinocyte cell compartment. Experimental murine studies established that tissue ischemia potently induces wound-edge gene methylation and that 5′-azacytidine, inhibitor of methylation, improved wound closure. To specifically address the significance of TP53 methylation, keratinocyte-specific editing of TP53 methylation at the wound edge was achieved by a tissue nanotransfection-based CRISPR/dCas9 approach. This work identified that reversal of methylation-dependent keratinocyte gene silencing represents a productive therapeutic strategy to improve wound closure.
Collapse
Affiliation(s)
- Kanhaiya Singh
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Yashika Rustagi
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Ahmed S Abouhashem
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Saba Tabasum
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Priyanka Verma
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Edward Hernandez
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Durba Pal
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Ropar, India
| | - Dolly K Khona
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Sujit K Mohanty
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Manishekhar Kumar
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Rajneesh Srivastava
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Poornachander R Guda
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Sumit S Verma
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Sanskruti Mahajan
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Jackson A Killian
- Department of Physics, Ohio State University, Columbus, United States of America
| | - Logan A Walker
- Department of Physics, Ohio State University, Columbus, United States of America
| | - Subhadip Ghatak
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Shomita S Mathew-Steiner
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Kristen Wanczyk
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Sheng Liu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, United States of America
| | - Jun Wan
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, United States of America
| | - Pearlly Yan
- Comprehensive Cancer Center, Ohio State University, Columbus, United States of America
| | - Ralf Bundschuh
- Department of Physics, Ohio State University, Columbus, United States of America
| | - Savita Khanna
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Gayle M Gordillo
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Michael P Murphy
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Sashwati Roy
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Chandan K Sen
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| |
Collapse
|
8
|
Pérez LA, Leyton L, Valdivia A. Thy-1 (CD90), Integrins and Syndecan 4 are Key Regulators of Skin Wound Healing. Front Cell Dev Biol 2022; 10:810474. [PMID: 35186924 PMCID: PMC8851320 DOI: 10.3389/fcell.2022.810474] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/06/2022] [Indexed: 12/12/2022] Open
Abstract
Acute skin wound healing is a multistage process consisting of a plethora of tightly regulated signaling events in specialized cells. The Thy-1 (CD90) glycoprotein interacts with integrins and the heparan sulfate proteoglycan syndecan 4, generating a trimolecular complex that triggers bi-directional signaling to regulate diverse aspects of the wound healing process. These proteins can act either as ligands or receptors, and they are critical for the successful progression of wound healing. The expression of Thy-1, integrins, and syndecan 4 is controlled during the healing process, and the lack of expression of any of these proteins results in delayed wound healing. Here, we review and discuss the roles and regulatory events along the stages of wound healing that support the relevance of Thy-1, integrins, and syndecan 4 as crucial regulators of skin wound healing.
Collapse
Affiliation(s)
- Leonardo A. Pérez
- Cellular Communication Laboratory, Program of Cellular & Molecular Biology, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
- Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Lisette Leyton
- Cellular Communication Laboratory, Program of Cellular & Molecular Biology, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
- Faculty of Medicine, Universidad de Chile, Santiago, Chile
- *Correspondence: Lisette Leyton, ; Alejandra Valdivia,
| | - Alejandra Valdivia
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States
- *Correspondence: Lisette Leyton, ; Alejandra Valdivia,
| |
Collapse
|
9
|
Comparative Transcriptomic Analysis of Regenerated Skins Provides Insights into Cutaneous Air-Breathing Formation in Fish. BIOLOGY 2021; 10:biology10121294. [PMID: 34943209 PMCID: PMC8698756 DOI: 10.3390/biology10121294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022]
Abstract
Cutaneous air-breathing is one of the air-breathing patterns in bimodal respiration fishes, while little is known about its underlying formation mechanisms. Here, we first investigated the skin regeneration of loach (Misgurnus anguillicaudatus, a cutaneous air-breathing fish) and yellow catfish (Pelteobagrus fulvidraco, a water-breathing fish) through morphological and histological observations. Then, the original skins (OS: MOS, POS) and regenerated skins (RS: MRS, PRS) when their capillaries were the most abundant (the structural foundation of air-breathing in fish) during healing, of the two fish species were collected for high-throughput RNA-seq. A total of 56,054 unigenes and 53,731 unigenes were assembled in loach and yellow catfish, respectively. A total of 640 (460 up- and 180 down-regulated) and 4446 (2340 up- and 2106 down-regulated) differentially expressed genes (DEGs) were respectively observed in RS/OS of loach and yellow catfish. Subsequently, the two DEG datasets were clustered in GO, KOG and KEGG databases, and further analyzed by comparison and screening. Consequently, tens of genes and thirteen key pathways were targeted, indicating that these genes and pathways had strong ties to cutaneous skin air-breathing in loach. This study provides new insights into the formation mechanism of cutaneous air-breathing and also offers a substantial contribution to the gene expression profiles of skin regeneration in fish.
Collapse
|
10
|
Huizer K, Zhu C, Chirifi I, Krist B, Zorgman D, van der Weiden M, van den Bosch TPP, Dumas J, Cheng C, Kros JM, Mustafa DA. Periostin Is Expressed by Pericytes and Is Crucial for Angiogenesis in Glioma. J Neuropathol Exp Neurol 2021; 79:863-872. [PMID: 32647861 DOI: 10.1093/jnen/nlaa067] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/12/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022] Open
Abstract
The expression of the matricellular protein periostin has been associated with glioma progression. In previous work we found an association of periostin with glioma angiogenesis. Here, we screen gliomas for POSTN expression and identify the cells that express periostin in human gliomas. In addition, we study the role of periostin in an in vitro model for angiogenesis. The expression of periostin was investigated by RT-PCR and by immunohistochemistry. In addition, we used double labeling and in situ RNA techniques to identify the expressing cells. To investigate the function of periostin, we silenced POSTN in a 3D in vitro angiogenesis model. Periostin expression was elevated in pilocytic astrocytoma and glioblastoma, but not in grade II/III astrocytomas and oligodendrogliomas. The expression of periostin colocalized with PDGFRβ+ cells, but not with OLIG2+/SOX2+ glioma stem cells. Silencing of periostin in pericytes in coculture experiments resulted in attenuation of the numbers and the length of the vessels formation and in a decrease in endothelial junction formation. We conclude that pericytes are the main source of periostin in human gliomas and that periostin plays an essential role in the growth and branching of blood vessels. Therefore, periostin should be explored as a novel target for developing anti-angiogenic therapy for glioma.
Collapse
Affiliation(s)
- Karin Huizer
- From the Laboratory for Tumor Immunopathology, Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Changbin Zhu
- From the Laboratory for Tumor Immunopathology, Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ihsan Chirifi
- Laboratory for Experimental Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Bart Krist
- From the Laboratory for Tumor Immunopathology, Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Denise Zorgman
- From the Laboratory for Tumor Immunopathology, Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Marcel van der Weiden
- From the Laboratory for Tumor Immunopathology, Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Thierry P P van den Bosch
- From the Laboratory for Tumor Immunopathology, Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jasper Dumas
- From the Laboratory for Tumor Immunopathology, Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Caroline Cheng
- Laboratory for Experimental Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Johan M Kros
- From the Laboratory for Tumor Immunopathology, Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Dana A Mustafa
- From the Laboratory for Tumor Immunopathology, Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
11
|
Urolithin A augments angiogenic pathways in skeletal muscle by bolstering NAD + and SIRT1. Sci Rep 2020; 10:20184. [PMID: 33214614 PMCID: PMC7678835 DOI: 10.1038/s41598-020-76564-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/12/2020] [Indexed: 12/27/2022] Open
Abstract
Urolithin A (UA) is a natural compound that is known to improve muscle function. In this work we sought to evaluate the effect of UA on muscle angiogenesis and identify the underlying molecular mechanisms. C57BL/6 mice were administered with UA (10 mg/body weight) for 12–16 weeks. ATP levels and NAD+ levels were measured using in vivo 31P NMR and HPLC, respectively. UA significantly increased ATP and NAD+ levels in mice skeletal muscle. Unbiased transcriptomics analysis followed by Ingenuity Pathway Analysis (IPA) revealed upregulation of angiogenic pathways upon UA supplementation in murine muscle. The expression of the differentially regulated genes were validated using quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC). Angiogenic markers such as VEGFA and CDH5 which were blunted in skeletal muscles of 28 week old mice were found to be upregulated upon UA supplementation. Such augmentation of skeletal muscle vascularization was found to be bolstered via Silent information regulator 1 (SIRT1) and peroxisome proliferator-activated receptor-gamma coactivator-1-alpha (PGC-1α) pathway. Inhibition of SIRT1 by selisistat EX527 blunted UA-induced angiogenic markers in C2C12 cells. Thus this work provides maiden evidence demonstrating that UA supplementation bolsters skeletal muscle ATP and NAD+ levels causing upregulated angiogenic pathways via a SIRT1-PGC-1α pathway.
Collapse
|
12
|
J Rgensen E, Hjerpe FB, Hougen HP, Bjarnsholt T, Berg LC, Jacobsen S. Histologic changes and gene expression patterns in biopsy specimens from bacteria-inoculated and noninoculated excisional body and limb wounds in horses healing by second intention. Am J Vet Res 2020; 81:276-284. [PMID: 32101041 DOI: 10.2460/ajvr.81.3.276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate histologic changes and gene expression patterns in body and limb wounds in horses in response to bacterial inoculation. SAMPLE Wound biopsy specimens from 6 horses collected on days 7, 14, 21, and 27 after excisional wounds (20 wounds/horse) were created over the metacarpal and metatarsal region and lateral thoracic region (body) and then inoculated or not inoculated on day 4 with Staphylococcus aureus and Pseudomonas aeruginosa. PROCEDURES Specimens were histologically scored for the amount of inflammation, edema, angiogenesis, fibrosis organization, and epithelialization. Quantitative PCR assays were performed to quantify gene expression of 10 inflammatory, proteolytic, fibrotic, and hypoxia-related markers involved in wound healing. RESULTS Except for gene expression of interleukin-6 on day 27 and tumor necrosis factor-α on day 14, bacterial inoculation had no significant effect on histologic scores and gene expression. Gene expression of interleukin-1β and -6, serum amyloid A, and matrix metalloproteinase-9 was higher in limb wounds versus body wounds by day 27. Gene expression of cellular communication network factor 1 was higher in limb wounds versus body wounds throughout the observation period. CONCLUSIONS AND CLINICAL RELEVANCE The lack of clear markers of wound infection in this study reflected well-known difficulties in detecting wound infections in horses. Changes consistent with protracted inflammation were evident in limb wounds, and gene expression patterns of limb wounds shared similarities with those of chronic wounds in humans. Cellular communication network factor warrants further investigation and may be useful in elucidating the mechanisms underlying poor limb wound healing in horses.
Collapse
|
13
|
Roudnický P, Potěšil D, Zdráhal Z, Gelnar M, Kašný M. Laser capture microdissection in combination with mass spectrometry: Approach to characterization of tissue-specific proteomes of Eudiplozoon nipponicum (Monogenea, Polyopisthocotylea). PLoS One 2020; 15:e0231681. [PMID: 32555742 PMCID: PMC7299319 DOI: 10.1371/journal.pone.0231681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/25/2020] [Indexed: 12/14/2022] Open
Abstract
Eudiplozoon nipponicum (Goto, 1891) is a hematophagous monogenean ectoparasite which inhabits the gills of the common carp (Cyprinus carpio). Heavy infestation can lead to anemia and in conjunction with secondary bacterial infections cause poor health and eventual death of the host. This study is based on an innovative approach to protein localization which has never been used in parasitology before. Using laser capture microdissection, we dissected particular areas of the parasite body without contaminating the samples by surrounding tissue and in combination with analysis by mass spectrometry obtained tissue-specific proteomes of tegument, intestine, and parenchyma of our model organism, E. nipponicum. We successfully verified the presence of certain functional proteins (e.g. cathepsin L) in tissues where their presence was expected (intestine) and confirmed that there were no traces of these proteins in other tissues (tegument and parenchyma). Additionally, we identified a total of 2,059 proteins, including 72 peptidases and 33 peptidase inhibitors. As expected, the greatest variety was found in the intestine and the lowest variety in the parenchyma. Our results are significant on two levels. Firstly, we demonstrated that one can localize all proteins in one analysis and without using laboratory animals (antibodies for immunolocalization of single proteins). Secondly, this study offers the first complex proteomic data on not only the E. nipponicum but within the whole class of Monogenea, which was from this point of view until recently neglected.
Collapse
Affiliation(s)
- Pavel Roudnický
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
- * E-mail:
| | - David Potěšil
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Zbyněk Zdráhal
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Milan Gelnar
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Martin Kašný
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
14
|
Zouboulis C, Nogueira da Costa A, Fimmel S, Zouboulis K. Apocrine glands are bystanders in hidradenitis suppurativa and their involvement is gender specific. J Eur Acad Dermatol Venereol 2020; 34:1555-1563. [DOI: 10.1111/jdv.16264] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/29/2020] [Indexed: 02/06/2023]
Affiliation(s)
- C.C. Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology Dessau Medical Center Brandenburg Medical School Theodor Fontane Dessau Germany
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
| | | | - S. Fimmel
- Departments of Dermatology, Venereology, Allergology and Immunology Dessau Medical Center Brandenburg Medical School Theodor Fontane Dessau Germany
| | - K.C. Zouboulis
- Department of Chemistry and Applied Biosciences Swiss Federal Institute of Technology (ETH) Zurich Zurich Switzerland
| |
Collapse
|
15
|
Electric Field Based Dressing Disrupts Mixed-Species Bacterial Biofilm Infection and Restores Functional Wound Healing. Ann Surg 2020; 269:756-766. [PMID: 29099398 DOI: 10.1097/sla.0000000000002504] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE This study was designed to employ electroceutical principles, as an alternative to pharmacological intervention, to manage wound biofilm infection. Mechanism of action of a United States Food and Drug Administration-cleared wireless electroceutical dressing (WED) was tested in an established porcine chronic wound polymicrobial biofilm infection model involving inoculation with Pseudomonas aeruginosa PAO1 and Acinetobacter baumannii 19606. BACKGROUND Bacterial biofilms represent a major wound complication. Resistance of biofilm toward pharmacologic interventions calls for alternative therapeutic strategies. Weak electric field has anti-biofilm properties. We have previously reported the development of WED involving patterned deposition of Ag and Zn on fabric. When moistened, WED generates a weak electric field without any external power supply and can be used as any other disposable dressing. METHODS WED dressing was applied within 2 hours of wound infection to test its ability to prevent biofilm formation. Alternatively, WED was applied after 7 days of infection to study disruption of established biofilm. Wounds were treated with placebo dressing or WED twice a week for 56 days. RESULTS Scanning electron microscopy demonstrated that WED prevented and disrupted wound biofilm aggregates. WED accelerated functional wound closure by restoring skin barrier function. WED blunted biofilm-induced expression of (1) P. aeruginosa quorum sensing mvfR (pqsR), rhlR and lasR genes, and (2) miR-9 and silencing of E-cadherin. E-cadherin is critically required for skin barrier function. Furthermore, WED rescued against biofilm-induced persistent inflammation by circumventing nuclear factor kappa B activation and its downstream cytokine responses. CONCLUSION This is the first pre-clinical porcine mechanistic study to recognize the potential of electroceuticals as an effective platform technology to combat wound biofilm infection.
Collapse
|
16
|
Brophy RH, Cai L, Duan X, Zhang Q, Townsend RR, Nunley R, Guilak F, Rai MF. Proteomic analysis of synovial fluid identifies periostin as a biomarker for anterior cruciate ligament injury. Osteoarthritis Cartilage 2019; 27:1778-1789. [PMID: 31430535 PMCID: PMC6875635 DOI: 10.1016/j.joca.2019.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/25/2019] [Accepted: 08/07/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Emerging evidence suggests that injury to the anterior cruciate ligament (ACL) typically initiates biological changes that contribute to the development of osteoarthritis (OA). The molecular biomarkers or mediators of these biological events remain unknown. The goal of this exploratory study was to identify novel synovial fluid biomarkers associated with early biological changes following ACL injury distinct from findings in end-stage OA. METHODS Synovial fluid was aspirated from patients with acute (≤30 days) and subacute (31-90 days) ACL tears and from patients with advanced OA and probed via tandem mass spectrometry for biomarkers to distinguish OA from ACL injury. Periostin (POSTN) was identified as a potential candidate. Further analyses of POSTN were performed in synovial fluid, OA cartilage, torn ACL remnants, and cultured cells and media by Western blot, PCR, immunostaining and ELISA. RESULTS Synovial fluid analysis revealed that POSTN exhibited higher expression in subacute ACL injury than OA. POSTN expression was relatively low in cartilage/chondrocytes suggesting it is also produced by other intra-articular tissues. Conversely, high and time-dependent expression of POSTN in ACL tear remnants and isolated cells was consistent with the synovial fluid results. CONCLUSIONS Elevated POSTN may provide a synovial fluid biomarker of subacute ACL injury setting separate from OA. Increased expression of POSTN in ACL suggests that the injured ACL may play a pivotal role in POSTN production, which is sensitive to time from injury. Previous studies have shown potential catabolic effects of POSTN, raising the possibility that POSTN contributes to the initiation of joint degeneration and may offer a window of opportunity to intervene in the early stages of post-traumatic OA.
Collapse
Affiliation(s)
- Robert H. Brophy
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Lei Cai
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Xin Duan
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Qiang Zhang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - R. Reid Townsend
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ryan Nunley
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, United States,,Shriners Hospitals for Children – St. Louis, St. Louis, MO, United States
| | - Muhammad Farooq Rai
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, United States,,Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
17
|
Singh K, Sinha M, Pal D, Tabasum S, Gnyawali SC, Khona D, Sarkar S, Mohanty SK, Soto-Gonzalez F, Khanna S, Roy S, Sen CK. Cutaneous Epithelial to Mesenchymal Transition Activator ZEB1 Regulates Wound Angiogenesis and Closure in a Glycemic Status-Dependent Manner. Diabetes 2019; 68:2175-2190. [PMID: 31439646 PMCID: PMC6804631 DOI: 10.2337/db19-0202] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/15/2019] [Indexed: 12/14/2022]
Abstract
Epithelial to mesenchymal transition (EMT) and wound vascularization are two critical interrelated processes that enable cutaneous wound healing. Zinc finger E-box binding homeobox 1 (ZEB1), primarily studied in the context of tumor biology, is a potent EMT activator. ZEB1 is also known to contribute to endothelial cell survival as well as stimulate tumor angiogenesis. The role of ZEB1 in cutaneous wounds was assessed using Zeb1+/- mice, as Zeb1-/- mice are not viable. Quantitative stable isotope labeling by amino acids in cell culture (SILAC) proteomics was used to elucidate the effect of elevated ZEB1, as noted during hyperglycemia. Under different glycemic conditions, ZEB1 binding to E-cadherin promoter was investigated using chromatin immunoprecipitation. Cutaneous wounding resulted in loss of epithelial marker E-cadherin with concomitant gain of ZEB1. The dominant proteins downregulated after ZEB1 overexpression functionally represented adherens junction pathway. Zeb1+/- mice exhibited compromised wound closure complicated by defective EMT and poor wound angiogenesis. Under hyperglycemic conditions, ZEB1 lost its ability to bind E-cadherin promoter. Keratinocyte E-cadherin, thus upregulated, resisted EMT required for wound healing. Diabetic wound healing was improved in ZEB+/- as well as in db/db mice subjected to ZEB1 knockdown. This work recognizes ZEB1 as a key regulator of cutaneous wound healing that is of particular relevance to diabetic wound complication.
Collapse
Affiliation(s)
- Kanhaiya Singh
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
- Comprehensive Wound Center, Center for Regenerative Medicine and Cell Based Therapies, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Mithun Sinha
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
- Comprehensive Wound Center, Center for Regenerative Medicine and Cell Based Therapies, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Durba Pal
- Comprehensive Wound Center, Center for Regenerative Medicine and Cell Based Therapies, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
- Center for Biomedical Engineering, Indian Institute of Technology Ropar, Punjab, India
| | - Saba Tabasum
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
- Comprehensive Wound Center, Center for Regenerative Medicine and Cell Based Therapies, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Surya C Gnyawali
- Comprehensive Wound Center, Center for Regenerative Medicine and Cell Based Therapies, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Dolly Khona
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
- Comprehensive Wound Center, Center for Regenerative Medicine and Cell Based Therapies, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Subendu Sarkar
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
- Comprehensive Wound Center, Center for Regenerative Medicine and Cell Based Therapies, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Sujit K Mohanty
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Fidel Soto-Gonzalez
- Comprehensive Wound Center, Center for Regenerative Medicine and Cell Based Therapies, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Savita Khanna
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
- Comprehensive Wound Center, Center for Regenerative Medicine and Cell Based Therapies, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Sashwati Roy
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
- Comprehensive Wound Center, Center for Regenerative Medicine and Cell Based Therapies, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Chandan K Sen
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
- Comprehensive Wound Center, Center for Regenerative Medicine and Cell Based Therapies, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| |
Collapse
|
18
|
García-Venzor A, Mandujano-Tinoco EA, Lizarraga F, Zampedri C, Krötzsch E, Salgado RM, Dávila-Borja VM, Encarnación-Guevara S, Melendez-Zajgla J, Maldonado V. Microenvironment-regulated lncRNA-HAL is able to promote stemness in breast cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118523. [PMID: 31401107 DOI: 10.1016/j.bbamcr.2019.118523] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/12/2019] [Accepted: 08/01/2019] [Indexed: 12/18/2022]
Abstract
Multicellular Tumor Spheroids culture (MCTS) is an in vitro model mimicking the characteristics of the tumor microenvironment, such as hypoxia and acidosis, resulting in the presence of both proliferating and quiescent cell populations. lncRNA's is a novel group of regulatory molecules that participates in the acquisition of tumorigenic phenotypes. In the present work we evaluated the oncogenic association of an uncharacterized lncRNA (lncRNA-HAL) in the tumorigenic phenotype induced by the MCTS microenvironment. We measured lncRNA-HAL expression level in MCF-7-MCTS populations and under different hypoxic conditions by RT-qPCR. Afterwards, we silenced lncRNA-HAL expression by shRNAs and evaluated its effect in MCF-7 transcriptome (by RNAseq) and validated the modified cellular processes by proliferation, migration, and stem cells assays. Finally, we analyzed which proteins interacts with lncRNA-HAL by ChIRP assay, to propose a possible molecular mechanism for this lncRNA. We found that lncRNA-HAL is overexpressed in the internal quiescent populations (p27 positive populations) of MCF-7-MCTS, mainly in the quiescent stem cell population, being hypoxia one of the microenvironmental cues responsible of its overexpression. Transcriptome analysis of lncRNA-HAL knockdown MCF7 cells revealed that lncRNA-HAL effect is associated with proliferation, migration and cell survival mechanisms; moreover, lncRNA-HAL silencing increased cell proliferation and impaired cancer stem cell proportion and function, resulting in decreased tumor grafting in vivo. In addition, we found that this lncRNA was overexpressed in triple-negative breast cancer patients. Analysis by ChIRP assay showed that this nuclear lncRNA binds to histones and hnRNPs suggesting a participation at the chromatin level and transcriptional regulation. The results obtained in the present work suggest that the function of lncRNA-HAL is associated with quiescent stem cell populations, which in turn is relevant due to its implications in cancer cell survival and resistance against treatment in vivo. Altogether, our data highlights a new lncRNA whose expression is regulated by the tumor microenvironment and associated to stemness in breast cancer.
Collapse
Affiliation(s)
- Alfredo García-Venzor
- Epigenetics, Instituto Nacional de Medicina Genomica, Periferico Sur No.4809, Col Arenal Tepepan, Tlalpan, Mexico City 14610, Mexico
| | - Edna Ayerim Mandujano-Tinoco
- Epigenetics, Instituto Nacional de Medicina Genomica, Periferico Sur No.4809, Col Arenal Tepepan, Tlalpan, Mexico City 14610, Mexico; Laboratory of Connective Tissue, Centro Nacional de Investigación y Atención de Quemados, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra", Mexico City, Mexico
| | - Floria Lizarraga
- Epigenetics, Instituto Nacional de Medicina Genomica, Periferico Sur No.4809, Col Arenal Tepepan, Tlalpan, Mexico City 14610, Mexico
| | - Cecilia Zampedri
- Epigenetics, Instituto Nacional de Medicina Genomica, Periferico Sur No.4809, Col Arenal Tepepan, Tlalpan, Mexico City 14610, Mexico
| | - Edgar Krötzsch
- Laboratory of Connective Tissue, Centro Nacional de Investigación y Atención de Quemados, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra", Mexico City, Mexico
| | - Rosa María Salgado
- Laboratory of Connective Tissue, Centro Nacional de Investigación y Atención de Quemados, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra", Mexico City, Mexico
| | | | - Sergio Encarnación-Guevara
- Programa de Genómica Funcional de Procariontes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, 62210 Cuernavaca, Morelos, Mexico
| | - Jorge Melendez-Zajgla
- Functional Genomics Laboratories, Instituto Nacional de Medicina Genomica, Periferico Sur No.4809, Col Arenal Tepepan, Tlalpan, Mexico City 14610, Mexico
| | - Vilma Maldonado
- Epigenetics, Instituto Nacional de Medicina Genomica, Periferico Sur No.4809, Col Arenal Tepepan, Tlalpan, Mexico City 14610, Mexico.
| |
Collapse
|
19
|
Das A, Masry MSE, Gnyawali SC, Ghatak S, Singh K, Stewart R, Lewis M, Saha A, Gordillo G, Khanna S. Skin Transcriptome of Middle-Aged Women Supplemented With Natural Herbo-mineral Shilajit Shows Induction of Microvascular and Extracellular Matrix Mechanisms. J Am Coll Nutr 2019; 38:526-536. [PMID: 31161927 PMCID: PMC7027386 DOI: 10.1080/07315724.2018.1564088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/21/2018] [Accepted: 12/23/2018] [Indexed: 12/20/2022]
Abstract
Objective: Shilajit is a pale-brown to blackish-brown organic mineral substance available from Himalayan rocks. We demonstrated that in type I obese humans, shilajit supplementation significantly upregulated extracellular matrix (ECM)-related genes in the skeletal muscle. Such an effect was highly synergistic with exercise. The present study (clinicaltrials.gov NCT02762032) aimed to evaluate the effects of shilajit supplementation on skin gene expression profile and microperfusion in healthy adult females. Methods: The study design comprised six total study visits including a baseline visit (V1) and a final 14-week visit (V6) following oral shilajit supplementation (125 or 250 mg bid). A skin biopsy of the left inner upper arm of each subject was collected at visit 2 and visit 6 for gene expression profiling using Affymetrix Clariom™ D Assay. Skin perfusion was determined by MATLAB processing of dermascopic images. Transcriptome data were normalized and subjected to statistical analysis. The differentially regulated genes were subjected to Ingenuity Pathway Analysis (IPA®). The expression of the differentially regulated genes identified by IPA® were verified using real-time polymerase chain reaction (RT-PCR). Results: Supplementation with shilajit for 14 weeks was not associated with any reported adverse effect within this period. At a higher dose (250 mg bid), shilajit improved skin perfusion when compared to baseline or the placebo. Pathway analysis identified shilajit-inducible genes relevant to endothelial cell migration, growth of blood vessels, and ECM which were validated by quantitative real-time polymerase chain reaction (RT-PCR) analysis. Conclusions: This work provides maiden evidence demonstrating that oral shilajit supplementation in adult healthy women induced genes relevant to endothelial cell migration and growth of blood vessels. Shilajit supplementation improved skin microperfusion.
Collapse
Affiliation(s)
- Amitava Das
- Department of Surgery, Indiana Center for Regenerative
Medicine and Engineering, Indiana University School of Medicine, Indianapolis,
IN
- Department of Surgery, The Ohio State University, Wexner
Medical Center, Columbus, Ohio
| | - Mohamed S. El Masry
- Department of Surgery, Indiana Center for Regenerative
Medicine and Engineering, Indiana University School of Medicine, Indianapolis,
IN
- Department of Surgery, The Ohio State University, Wexner
Medical Center, Columbus, Ohio
- Department of Plastic and Reconstructive Surgery, Zagazig
University, Zagazig, Egypt
| | - Surya C. Gnyawali
- Department of Surgery, The Ohio State University, Wexner
Medical Center, Columbus, Ohio
| | - Subhadip Ghatak
- Department of Surgery, The Ohio State University, Wexner
Medical Center, Columbus, Ohio
- Department of Plastic Surgery, Indiana University School of
Medicine, Indianapolis, IN
| | - Kanhaiya Singh
- Department of Surgery, Indiana Center for Regenerative
Medicine and Engineering, Indiana University School of Medicine, Indianapolis,
IN
- Department of Surgery, The Ohio State University, Wexner
Medical Center, Columbus, Ohio
| | - Richard Stewart
- Department of Surgery, The Ohio State University, Wexner
Medical Center, Columbus, Ohio
| | - Madeline Lewis
- Department of Surgery, The Ohio State University, Wexner
Medical Center, Columbus, Ohio
| | - Abhijoy Saha
- Department of Statistics, The Ohio State University,
Columbus, OH, USA
| | - Gayle Gordillo
- Department of Plastic Surgery, Indiana University School of
Medicine, Indianapolis, IN
- Department of Plastic Surgery, The Ohio State University,
Wexner Medical Center, Columbus, Ohio
| | - Savita Khanna
- Department of Surgery, The Ohio State University, Wexner
Medical Center, Columbus, Ohio
- Department of Plastic Surgery, Indiana University School of
Medicine, Indianapolis, IN
| |
Collapse
|
20
|
Acevedo CA, Sánchez E, Orellana N, Morales P, Olguín Y, Brown DI, Enrione J. Re-Epithelialization Appraisal of Skin Wound in a Porcine Model Using a Salmon-Gelatin Based Biomaterial as Wound Dressing. Pharmaceutics 2019; 11:pharmaceutics11050196. [PMID: 31027353 PMCID: PMC6571591 DOI: 10.3390/pharmaceutics11050196] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/16/2019] [Accepted: 04/24/2019] [Indexed: 01/04/2023] Open
Abstract
The design of new functional materials for skin tissue engineering is an area of constant research. In this work, a novel wound-dressing biomaterial with a porous structure, previously formulated using salmon-gelatin as main component (called salmon-gelatin biomaterial (SGB)), was tested in vivo using pigs as skin wound models. Four weeks after cutaneous excision and implantation in the animals, the healing process did not show apparent symptoms of inflammation or infection. Interestingly, the temporal evolution of wound size from 100% to around 10% would indicate a faster recovery when SGB was compared against a commercial control. Histological analysis established that wounds treated with SGB presented similar healing and epithelialization profiles with respect to the commercial control. Moreover, vascularized granulation tissue and epithelialization stages were clearly identified, indicating a proliferation phase. These results showed that SGB formulation allows cell viability to be maintained. The latter foresees the development of therapeutic alternatives for skin repair based on SGB fabricated using low cost production protocols.
Collapse
Affiliation(s)
- Cristian A Acevedo
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile.
- Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile.
| | - Elizabeth Sánchez
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile.
| | - Nicole Orellana
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile.
| | - Patricio Morales
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile.
| | - Yusser Olguín
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile.
- Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile.
| | - Donald I Brown
- Instituto de Biología, Universidad de Valparaíso, Avenida Gran Bretaña 1111, Valparaíso 2340000, Chile.
| | - Javier Enrione
- Biopolymer Research and Engineering Lab, Facultad de Medicina, Universidad de los Andes, Monseñor Álvaro del Portillo 12455, Las Condes, Santiago 7550000, Chile.
| |
Collapse
|
21
|
Yoon S, Rossi JJ. Aptamers: Uptake mechanisms and intracellular applications. Adv Drug Deliv Rev 2018; 134:22-35. [PMID: 29981799 PMCID: PMC7126894 DOI: 10.1016/j.addr.2018.07.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 06/06/2018] [Accepted: 07/04/2018] [Indexed: 01/10/2023]
Abstract
The structural flexibility and small size of aptamers enable precise recognition of cellular elements for imaging and therapeutic applications. The process by which aptamers are taken into cells depends on their targets but is typically clathrin-mediated endocytosis or macropinocytosis. After internalization, most aptamers are transported to endosomes, lysosomes, endoplasmic reticulum, Golgi apparatus, and occasionally mitochondria and autophagosomes. Intracellular aptamers, or “intramers,” have versatile functions ranging from intracellular RNA imaging, gene regulation, and therapeutics to allosteric modulation, which we discuss in this review. Immune responses to therapeutic aptamers and the effects of G-quadruplex structure on aptamer function are also discussed.
Collapse
|
22
|
Omoyibo EE, Oladele AO, Ibrahim MH, Adekunle OT. Antibiotic susceptibility of wound swab isolates in a tertiary hospital in Southwest Nigeria. Ann Afr Med 2018; 17:110-116. [PMID: 30185679 PMCID: PMC6126054 DOI: 10.4103/aam.aam_22_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background Wounds are commonly encountered in the clinical practice. Microbacterial colonization and infection negatively affect wound outcomes. With increasing emergence of antibiotic-resistant strains, it is essential to determine local patterns of wound microbiological profile and antibiotic susceptibility to guide rational empirical antibiotic use. Materials and Methods Consecutive patients who presented to the plastic surgery unit were recruited to the study over a 6-month period. Wound swab cultures were performed at presentation using standard protocols and media. The wound swab was performed by the Levine technique and data were analyzed using a statistical software package. Results Eighty-five microbial isolates were obtained from the eighty patients (55 males and 25 females) recruited. Gram-positive isolates were 35 (41.2%) and Gram-negative were 50 (58.8%). There was equal distribution of acute and chronic wounds. Pseudomonas aeruginosa was the most common isolate at 30.6%, followed by Staphylococcus aureus (27.1%), Escherichia coli (9.4%), Streptococcus species (8.2%), and Morganella morganii (7.1%). The isolates demonstrated resistance to amoxicillin-clavulanate, ampicillin, cloxacillin, cefuroxime, ceftazidime; low-to-moderate sensitivity to erythromycin, gentamicin, streptomycin, tetracycline, ciprofloxacin, and ofloxacin; and a moderate sensitivity to ceftriaxone and a high sensitivity to imipenem. There was significant difference in antibiotic resistance patterns between Gram-positive isolates from acute and chronic wound infections but not for acute and chronic wound Gram-negative isolates. Conclusion Most of the microbial isolates, particularly the Gram-negative isolates demonstrated low sensitivity to commonly used antibiotics and moderate-to-high sensitivity to less commonly used newer antibiotics.
Collapse
Affiliation(s)
- Eguono Erhinyaye Omoyibo
- Department of Surgery, Obafemi Awolowo University Teaching Hospitals Complex, Ile-Ife, Osun State, Nigeria
| | - Ayodeji Olarewaju Oladele
- Department of Surgery, Obafemi Awolowo University Teaching Hospitals Complex, Ile-Ife, Osun State, Nigeria
| | | | - Oluwakayode Temitope Adekunle
- Department of Medical Microbiology and Parasitology, College of Health Sciences, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| |
Collapse
|
23
|
Pastar I, Wong LL, Egger AN, Tomic-Canic M. Descriptive vs mechanistic scientific approach to study wound healing and its inhibition: Is there a value of translational research involving human subjects? Exp Dermatol 2018; 27:551-562. [PMID: 29660181 PMCID: PMC6374114 DOI: 10.1111/exd.13663] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2018] [Indexed: 12/12/2022]
Abstract
The clinical field of wound healing is challenged by numerous hurdles. Not only are wound-healing disorders complex and multifactorial, but the corresponding patient population is diverse, often elderly and burdened by multiple comorbidities such as diabetes and cardiovascular disease. The care of such patients requires a dedicated, multidisciplinary team of physicians, surgeons, nurses and scientists. In spite of the critical clinical need, it has been over 15 years since a treatment received approval for efficacy by the FDA in the United States. Among the reasons contributing to this lack of effective new treatment modalities is poor understanding of mechanisms that inhibit healing in patients. Additionally, preclinical models do not fully reflect the disease complexity of the human condition, which brings us to a paradox: if we are to use a "mechanistic" approach that favours animal models, we can dissect specific mechanisms using advanced genetic, molecular and cellular technologies, with the caveat that it may not be directly applicable to patients. Traditionally, scientific review panels, for either grant funding or manuscript publication purposes, favour such "mechanistic" approaches whereby human tissue analyses, deemed "descriptive" science, are characterized as a "fishing expedition" and are considered "fatally flawed." However, more emerging evidence supports the notion that the use of human samples provides significant new knowledge regarding the molecular and cellular mechanisms that control wound healing and contribute to inhibition of the process in patients. Here, we discuss the advances, benefits and challenges of translational research in wound healing focusing on human subject research.
Collapse
Affiliation(s)
- Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School Of Medicine, Miami, FL, USA
| | - Lulu L Wong
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School Of Medicine, Miami, FL, USA
| | - Andjela N Egger
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School Of Medicine, Miami, FL, USA
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School Of Medicine, Miami, FL, USA
| |
Collapse
|
24
|
Li J, Ghatak S, El Masry MS, Das A, Liu Y, Roy S, Lee RJ, Sen CK. Topical Lyophilized Targeted Lipid Nanoparticles in the Restoration of Skin Barrier Function following Burn Wound. Mol Ther 2018; 26:2178-2188. [PMID: 29802017 DOI: 10.1016/j.ymthe.2018.04.021] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 04/19/2018] [Accepted: 04/21/2018] [Indexed: 12/25/2022] Open
Abstract
Lyophilized keratinocyte-targeted nanocarriers (TLNκ) loaded with locked nucleic acid (LNA) modified anti-miR were developed for topical application to full thickness burn injury. TLNκ were designed to selectively deliver LNA-anti-miR-107 to keratinocytes using the peptide sequence ASKAIQVFLLAG. TLNκ employed DOTAP/DODAP combination pH-responsive lipid components to improve endosomal escape. To minimize interference of clearance by non-targeted cells, especially immune cells in the acute wound microenvironment, surface charge was neutralized. Lyophilization was performed to extend the shelf life of the lipid nanoparticles (LNPs). Encapsulation efficiency of anti-miR in lyophilized TLNκ was estimated to be 96.54%. Cargo stability of lyophilized TLNκ was tested. After 9 days of loading with anti-miR-210, TLNκ was effective in lowering abundance of the hypoxamiR miR-210 in keratinocytes challenged with hypoxia. Keratinocyte uptake of DiD-labeled TLNκ was selective and exceeded 90% within 4 hr. Topical application of hydrogel-dispersed lyophilized TLNκ encapsulating LNA anti-miR-107 twice a week significantly accelerated wound closure and restoration of skin barrier function. TLNκ/anti-miR-107 application depleted miR-107 and upregulated dicer expression, which accelerated differentiation of keratinocytes. Expression of junctional proteins such as claudin-1, loricrin, filaggrin, ZO-1, and ZO-2 were significantly upregulated following TLNκ/anti-miR-107 treatment. These LNPs are promising as topical therapeutic agents in the management of burn injury.
Collapse
Affiliation(s)
- Jilong Li
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Subhadip Ghatak
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; Center for Regenerative Medicine and Cell-Based Therapies, The Ohio State University, Columbus, OH 43210, USA
| | - Mohamed S El Masry
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; Department of General Surgery (Plastic Surgery Unit), Zagazig University, 44519, Egypt
| | - Amitava Das
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; Center for Regenerative Medicine and Cell-Based Therapies, The Ohio State University, Columbus, OH 43210, USA
| | - Yang Liu
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Sashwati Roy
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; Center for Regenerative Medicine and Cell-Based Therapies, The Ohio State University, Columbus, OH 43210, USA
| | - Robert J Lee
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; Center for Regenerative Medicine and Cell-Based Therapies, The Ohio State University, Columbus, OH 43210, USA
| | - Chandan K Sen
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; Center for Regenerative Medicine and Cell-Based Therapies, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
25
|
Abstract
Laser capture microdissection is a non-molecular, minimally disruptive method to obtain cytologically and/or phenotypically defined cells or groups of cells from heterogeneous tissues. Its advantages include efficient rapid and precise procurement of cells. The potential disadvantages include time consuming, expensive, and limited by the need for a pathologist for recognition of distinct subpopulations within a specified sample. Overall it is versatile allowing the preparation of homogenous isolates of specific subpopulations of cells from which DNA/RNA or protein can be extracted for RT-PCR, quantitative PCR, next-generation sequencing, immunoblot blot analyses, and mass spectrometry.
Collapse
Affiliation(s)
- Meera Mahalingam
- Dermatopathology Section, Department of Pathology and Laboratory Medicine, VA Medical Center, West Roxbury, MA, USA.
| |
Collapse
|
26
|
Gallego-Perez D, Pal D, Ghatak S, Malkoc V, Higuita-Castro N, Gnyawali S, Chang L, Liao WC, Shi J, Sinha M, Singh K, Steen E, Sunyecz A, Stewart R, Moore J, Ziebro T, Northcutt RG, Homsy M, Bertani P, Lu W, Roy S, Khanna S, Rink C, Sundaresan VB, Otero JJ, Lee LJ, Sen CK. Topical tissue nano-transfection mediates non-viral stroma reprogramming and rescue. NATURE NANOTECHNOLOGY 2017; 12:974-979. [PMID: 28785092 PMCID: PMC5814120 DOI: 10.1038/nnano.2017.134] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/09/2017] [Indexed: 05/08/2023]
Abstract
Although cellular therapies represent a promising strategy for a number of conditions, current approaches face major translational hurdles, including limited cell sources and the need for cumbersome pre-processing steps (for example, isolation, induced pluripotency). In vivo cell reprogramming has the potential to enable more-effective cell-based therapies by using readily available cell sources (for example, fibroblasts) and circumventing the need for ex vivo pre-processing. Existing reprogramming methodologies, however, are fraught with caveats, including a heavy reliance on viral transfection. Moreover, capsid size constraints and/or the stochastic nature of status quo approaches (viral and non-viral) pose additional limitations, thus highlighting the need for safer and more deterministic in vivo reprogramming methods. Here, we report a novel yet simple-to-implement non-viral approach to topically reprogram tissues through a nanochannelled device validated with well-established and newly developed reprogramming models of induced neurons and endothelium, respectively. We demonstrate the simplicity and utility of this approach by rescuing necrotizing tissues and whole limbs using two murine models of injury-induced ischaemia.
Collapse
Affiliation(s)
- Daniel Gallego-Perez
- Department of Surgery, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, USA
- Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, Columbus, Ohio 43210, USA
- Center for Regenerative Medicine and Cell-Based Therapies, The Ohio State University, Columbus, Ohio 43210, USA
| | - Durba Pal
- Department of Surgery, The Ohio State University, Columbus, Ohio 43210, USA
- Center for Regenerative Medicine and Cell-Based Therapies, The Ohio State University, Columbus, Ohio 43210, USA
| | - Subhadip Ghatak
- Department of Surgery, The Ohio State University, Columbus, Ohio 43210, USA
- Center for Regenerative Medicine and Cell-Based Therapies, The Ohio State University, Columbus, Ohio 43210, USA
| | - Veysi Malkoc
- Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | - Natalia Higuita-Castro
- Department of Surgery, The Ohio State University, Columbus, Ohio 43210, USA
- Center for Regenerative Medicine and Cell-Based Therapies, The Ohio State University, Columbus, Ohio 43210, USA
| | - Surya Gnyawali
- Department of Surgery, The Ohio State University, Columbus, Ohio 43210, USA
- Center for Regenerative Medicine and Cell-Based Therapies, The Ohio State University, Columbus, Ohio 43210, USA
| | - Lingqian Chang
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, USA
- Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, Columbus, Ohio 43210, USA
| | - Wei-Ching Liao
- Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, Columbus, Ohio 43210, USA
| | - Junfeng Shi
- Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | - Mithun Sinha
- Department of Surgery, The Ohio State University, Columbus, Ohio 43210, USA
- Center for Regenerative Medicine and Cell-Based Therapies, The Ohio State University, Columbus, Ohio 43210, USA
| | - Kanhaiya Singh
- Department of Surgery, The Ohio State University, Columbus, Ohio 43210, USA
- Center for Regenerative Medicine and Cell-Based Therapies, The Ohio State University, Columbus, Ohio 43210, USA
| | - Erin Steen
- Department of Surgery, The Ohio State University, Columbus, Ohio 43210, USA
| | - Alec Sunyecz
- Department of Surgery, The Ohio State University, Columbus, Ohio 43210, USA
- Center for Regenerative Medicine and Cell-Based Therapies, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | - Richard Stewart
- Department of Surgery, The Ohio State University, Columbus, Ohio 43210, USA
- Center for Regenerative Medicine and Cell-Based Therapies, The Ohio State University, Columbus, Ohio 43210, USA
| | - Jordan Moore
- Department of Surgery, The Ohio State University, Columbus, Ohio 43210, USA
- Center for Regenerative Medicine and Cell-Based Therapies, The Ohio State University, Columbus, Ohio 43210, USA
| | - Thomas Ziebro
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | - Robert G. Northcutt
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | - Michael Homsy
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | - Paul Bertani
- Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | - Wu Lu
- Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | - Sashwati Roy
- Department of Surgery, The Ohio State University, Columbus, Ohio 43210, USA
- Center for Regenerative Medicine and Cell-Based Therapies, The Ohio State University, Columbus, Ohio 43210, USA
| | - Savita Khanna
- Department of Surgery, The Ohio State University, Columbus, Ohio 43210, USA
- Center for Regenerative Medicine and Cell-Based Therapies, The Ohio State University, Columbus, Ohio 43210, USA
| | - Cameron Rink
- Department of Surgery, The Ohio State University, Columbus, Ohio 43210, USA
- Center for Regenerative Medicine and Cell-Based Therapies, The Ohio State University, Columbus, Ohio 43210, USA
| | - Vishnu Baba Sundaresan
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | - Jose J. Otero
- Center for Regenerative Medicine and Cell-Based Therapies, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Pathology, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210, USA
| | - L. James Lee
- Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, Columbus, Ohio 43210, USA
- Center for Regenerative Medicine and Cell-Based Therapies, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, USA
- ;
| | - Chandan K. Sen
- Department of Surgery, The Ohio State University, Columbus, Ohio 43210, USA
- Center for Regenerative Medicine and Cell-Based Therapies, The Ohio State University, Columbus, Ohio 43210, USA
- ;
| |
Collapse
|
27
|
Mandujano-Tinoco EA, Garcia-Venzor A, Muñoz-Galindo L, Lizarraga-Sanchez F, Favela-Orozco A, Chavez-Gutierrez E, Krötzsch E, Salgado RM, Melendez-Zajgla J, Maldonado V. miRNA expression profile in multicellular breast cancer spheroids. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1642-1655. [DOI: 10.1016/j.bbamcr.2017.05.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 04/06/2017] [Accepted: 05/25/2017] [Indexed: 02/07/2023]
|
28
|
Singh K, Pal D, Sinha M, Ghatak S, Gnyawali SC, Khanna S, Roy S, Sen CK. Epigenetic Modification of MicroRNA-200b Contributes to Diabetic Vasculopathy. Mol Ther 2017; 25:2689-2704. [PMID: 29037594 DOI: 10.1016/j.ymthe.2017.09.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/01/2017] [Accepted: 09/07/2017] [Indexed: 12/26/2022] Open
Abstract
Hyperglycemia (HG) induces genome-wide cytosine demethylation. Our previous work recognized miR-200b as a critical angiomiR, which must be transiently downregulated to initiate wound angiogenesis. Under HG, miR-200b downregulation is not responsive to injury. Here, we demonstrate that HG may drive vasculopathy by epigenetic modification of a miR promoter. In human microvascular endothelial cells (HMECs), HG also lowered DNA methyltransferases (DNMT-1 and DNMT-3A) and compromised endothelial function as manifested by diminished endothelial nitric oxide (eNOS), lowered LDL uptake, impaired Matrigel tube formation, lower NO production, and compromised VE-cadherin expression. Bisulfite-sequencing documented HG-induced miR-200b promoter hypomethylation in HMECs and diabetic wound-site endothelial cells. In HMECs, HG compromised endothelial function. Methyl donor S-adenosyl-L-methionine (SAM) corrected miR-200b promoter hypomethylaton and rescued endothelial function. In vivo, wound-site administration of SAM to diabetic mice improved wound perfusion by limiting the pathogenic rise of miR-200b. Quantitative stable isotope labeling by amino acids in cell culture (SILAC) proteomics and ingenuity pathway analysis identified HG-induced proteins and principal clusters in HMECs sensitive to the genetic inhibition of miR-200b. This work presents the first evidence of the miR-200b promoter methylation as a critical determinant of diabetic wound angiogenesis.
Collapse
Affiliation(s)
- Kanhaiya Singh
- Department of Surgery, Davis Heart and Lung Research Institute, Center for Regenerative Medicine & Cell-Based Therapies, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Durba Pal
- Department of Surgery, Davis Heart and Lung Research Institute, Center for Regenerative Medicine & Cell-Based Therapies, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Mithun Sinha
- Department of Surgery, Davis Heart and Lung Research Institute, Center for Regenerative Medicine & Cell-Based Therapies, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Subhadip Ghatak
- Department of Surgery, Davis Heart and Lung Research Institute, Center for Regenerative Medicine & Cell-Based Therapies, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Surya C Gnyawali
- Department of Surgery, Davis Heart and Lung Research Institute, Center for Regenerative Medicine & Cell-Based Therapies, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Savita Khanna
- Department of Surgery, Davis Heart and Lung Research Institute, Center for Regenerative Medicine & Cell-Based Therapies, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Sashwati Roy
- Department of Surgery, Davis Heart and Lung Research Institute, Center for Regenerative Medicine & Cell-Based Therapies, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Chandan K Sen
- Department of Surgery, Davis Heart and Lung Research Institute, Center for Regenerative Medicine & Cell-Based Therapies, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
29
|
Alssum L, Eubank TD, Roy S, Erdal BS, Yildiz VO, Tatakis DN, Leblebicioglu B. Gingival Perfusion and Tissue Biomarkers During Early Healing of Postextraction Regenerative Procedures: A Prospective Case Series. J Periodontol 2017. [PMID: 28644107 DOI: 10.1902/jop.2017.170117] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Postextraction alveolar bone loss, mostly affecting the buccal plate, occurs despite regenerative procedures. To better understand possible determinants, this prospective case series assesses gingival blood perfusion and tissue molecular responses in relation to postextraction regenerative outcomes. METHODS Adults scheduled to receive bone grafting in maxillary, non-molar, single-tooth extraction sites were recruited. Clinical documentation included the following: 1) probing depth (PD); 2) keratinized tissue width (KT); 3) tissue biotype (TB); and 4) plaque level. Wound closure was clinically evaluated. Gingival blood perfusion was measured by laser Doppler flowmetry (LDF). Wound fluid (WF) and gingival biopsies were analyzed for protein levels and gene expression, respectively, of relevant molecular markers. Bone healing outcomes were determined radiographically (cone-beam computed tomography). Healing was followed for 4 months. RESULTS Data from 15 patients are reported. Postoperatively, neither complications nor changes in PD, KT, or TB were observed. LDF revealed decreased perfusion followed by hyperemia that persisted for 1 month (P ≤0.05). WF levels of angiopoietin-2, interleukin-8 (IL-8), tumor necrosis factor-alpha (TNF-α), and vascular endothelial growth factor peaked on day 6 (P ≤0.05) and decreased thereafter. Only IL-8 and TNF-α exhibited increased gene expression. Linear bone changes were negligible. Volumetric bone changes were minimal but statistically significant, with more bone loss when membrane was used (P = 0.05). CONCLUSIONS Gingival blood perfusion after postextraction bone regenerative procedures follows an ischemia-reperfusion model. Transient increases in angiogenic factor levels and prolonged hyperemia characterize the soft tissue response. These soft tissue responses do not determine radiographic bone changes.
Collapse
Affiliation(s)
- Lamees Alssum
- Currently, Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia; previously, Division of Periodontology, College of Dentistry, The Ohio State University, Columbus, OH
| | - Timothy D Eubank
- Department of Microbiology, Immunology and Cell Biology; School of Medicine; West Virginia University; Morgantown, WV
| | - Sashwati Roy
- Department of Surgery, College of Medicine, The Ohio State University
| | - Barbaros S Erdal
- Department of Radiology, College of Medicine, The Ohio State University
| | - Vedat O Yildiz
- Department of Biomedical Informatics, Center for Biostatistics, The Ohio State University
| | - Dimitris N Tatakis
- Division of Periodontology, College of Dentistry, The Ohio State University
| | | |
Collapse
|
30
|
Biswas A, Pan X, Meyer M, Khanna S, Roy S, Pearson G, Kirschner R, Witman P, Faith EF, Sen CK, Gordillo GM. Urinary Excretion of MicroRNA-126 Is a Biomarker for Hemangioma Proliferation. Plast Reconstr Surg 2017; 139:1277e-1284e. [PMID: 28538565 PMCID: PMC5963954 DOI: 10.1097/prs.0000000000003349] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Hemangiomas are unique endothelial cell tumors that involute spontaneously, which makes interpreting their response to therapies difficult. The objective of this work was to identify a potential biomarker in the urine of children with infantile hemangiomas that would facilitate testing new therapies. METHODS A prospective longitudinal study in children with hemangiomas and age-matched healthy controls was performed to determine whether microRNA-126, which is highly abundant in fetal endothelial cells, was more abundant in the urine of affected children. Prospective ultrasound measurements of hemangioma size and blood flow velocity were obtained as secondary endpoints to document longitudinal changes in untreated hemangiomas. RESULTS Urinary microRNA-126 levels were significantly elevated in children with proliferating hemangiomas, and relative levels of urinary microRNA abundance correlated with hemangioma size. Hemangiomas had elevated levels of microRNA abundance compared with healthy controls. Ultrasound data revealed that hemangioma proliferation typically stopped between 6 and 9 months of age. When hemangioma proliferation stopped, urinary microRNA-126 levels in children with hemangiomas dropped to levels observed in healthy age-matched controls. CONCLUSIONS These are the first reported results to identify a potential microRNA biomarker in the urine of children with hemangiomas. Measurement of urinary levels of microRNA-126 could potentially be used to monitor hemangioma response to therapies. CLINICAL QUESTION/LEVEL OF EVIDENCE Diagnostic, II.
Collapse
Affiliation(s)
- Ayan Biswas
- Columbus, Ohio
- From the Department of Plastic Surgery, the Department of Biomedical Informatics, Center for Biostatistics, the Department of Surgery, and the Divisions of Vascular Surgery and General Surgery, The Ohio State University; and the Department of Pediatrics, the Hemangioma and Vascular Malformation Clinic, and the Department of Pediatrics, Division of Dermatology, Nationwide Children's Hospital
| | - Xueliang Pan
- Columbus, Ohio
- From the Department of Plastic Surgery, the Department of Biomedical Informatics, Center for Biostatistics, the Department of Surgery, and the Divisions of Vascular Surgery and General Surgery, The Ohio State University; and the Department of Pediatrics, the Hemangioma and Vascular Malformation Clinic, and the Department of Pediatrics, Division of Dermatology, Nationwide Children's Hospital
| | - Melissa Meyer
- Columbus, Ohio
- From the Department of Plastic Surgery, the Department of Biomedical Informatics, Center for Biostatistics, the Department of Surgery, and the Divisions of Vascular Surgery and General Surgery, The Ohio State University; and the Department of Pediatrics, the Hemangioma and Vascular Malformation Clinic, and the Department of Pediatrics, Division of Dermatology, Nationwide Children's Hospital
| | - Savita Khanna
- Columbus, Ohio
- From the Department of Plastic Surgery, the Department of Biomedical Informatics, Center for Biostatistics, the Department of Surgery, and the Divisions of Vascular Surgery and General Surgery, The Ohio State University; and the Department of Pediatrics, the Hemangioma and Vascular Malformation Clinic, and the Department of Pediatrics, Division of Dermatology, Nationwide Children's Hospital
| | - Sashwati Roy
- Columbus, Ohio
- From the Department of Plastic Surgery, the Department of Biomedical Informatics, Center for Biostatistics, the Department of Surgery, and the Divisions of Vascular Surgery and General Surgery, The Ohio State University; and the Department of Pediatrics, the Hemangioma and Vascular Malformation Clinic, and the Department of Pediatrics, Division of Dermatology, Nationwide Children's Hospital
| | - Gregory Pearson
- Columbus, Ohio
- From the Department of Plastic Surgery, the Department of Biomedical Informatics, Center for Biostatistics, the Department of Surgery, and the Divisions of Vascular Surgery and General Surgery, The Ohio State University; and the Department of Pediatrics, the Hemangioma and Vascular Malformation Clinic, and the Department of Pediatrics, Division of Dermatology, Nationwide Children's Hospital
| | - Richard Kirschner
- Columbus, Ohio
- From the Department of Plastic Surgery, the Department of Biomedical Informatics, Center for Biostatistics, the Department of Surgery, and the Divisions of Vascular Surgery and General Surgery, The Ohio State University; and the Department of Pediatrics, the Hemangioma and Vascular Malformation Clinic, and the Department of Pediatrics, Division of Dermatology, Nationwide Children's Hospital
| | - Patricia Witman
- Columbus, Ohio
- From the Department of Plastic Surgery, the Department of Biomedical Informatics, Center for Biostatistics, the Department of Surgery, and the Divisions of Vascular Surgery and General Surgery, The Ohio State University; and the Department of Pediatrics, the Hemangioma and Vascular Malformation Clinic, and the Department of Pediatrics, Division of Dermatology, Nationwide Children's Hospital
| | - Esteban Fernandez Faith
- Columbus, Ohio
- From the Department of Plastic Surgery, the Department of Biomedical Informatics, Center for Biostatistics, the Department of Surgery, and the Divisions of Vascular Surgery and General Surgery, The Ohio State University; and the Department of Pediatrics, the Hemangioma and Vascular Malformation Clinic, and the Department of Pediatrics, Division of Dermatology, Nationwide Children's Hospital
| | - Chandan K Sen
- Columbus, Ohio
- From the Department of Plastic Surgery, the Department of Biomedical Informatics, Center for Biostatistics, the Department of Surgery, and the Divisions of Vascular Surgery and General Surgery, The Ohio State University; and the Department of Pediatrics, the Hemangioma and Vascular Malformation Clinic, and the Department of Pediatrics, Division of Dermatology, Nationwide Children's Hospital
| | - Gayle M Gordillo
- Columbus, Ohio
- From the Department of Plastic Surgery, the Department of Biomedical Informatics, Center for Biostatistics, the Department of Surgery, and the Divisions of Vascular Surgery and General Surgery, The Ohio State University; and the Department of Pediatrics, the Hemangioma and Vascular Malformation Clinic, and the Department of Pediatrics, Division of Dermatology, Nationwide Children's Hospital
| |
Collapse
|
31
|
Das A, Datta S, Rhea B, Sinha M, Veeraragavan M, Gordillo G, Roy S. The Human Skeletal Muscle Transcriptome in Response to Oral Shilajit Supplementation. J Med Food 2017; 19:701-9. [PMID: 27414521 DOI: 10.1089/jmf.2016.0010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
UNLABELLED The objective of the present study ( clinicaltrials.gov NCT02026414) was to observe the effects of oral supplementation of a purified and standardized Shilajit extract on skeletal muscle adaptation in adult overweight/class I obese human subjects from the U.S. POPULATION Shilajit is a mineral pitch that oozes out of Himalayan rocks. The study design consisted of a baseline visit, followed by 8 weeks of 250 mg of oral Shilajit supplementation b.i.d., and additional 4 weeks of supplementation with exercise. At each visit, blood samples and muscle biopsies were collected for further analysis. Supplementation was well tolerated without any changes in blood glucose levels and lipid profile after 8 weeks of oral supplementation and the additional 4 weeks of oral supplementation with exercise. In addition, no changes were noted in creatine kinase and serum myoglobin levels after 8 weeks of oral supplementation and the additional 4 weeks of supplementation with exercise. Microarray analysis identified a cluster of 17 extracellular matrix (ECM)-related probe sets that were significantly upregulated in muscles following 8 weeks of oral supplementation compared with the expression at the baseline visit. This cluster included tenascin XB, decorin, myoferlin, collagen, elastin, fibrillin 1, and fibronectin 1. The differential expression of these genes was confirmed using quantitative real-time polymerase chain reaction (RT-PCR). The study provided maiden evidence that oral Shilajit supplementation in adult overweight/class I obese human subjects promoted skeletal muscle adaptation through upregulation of ECM-related genes that control muscle mechanotransduction properties, elasticity, repair, and regeneration.
Collapse
Affiliation(s)
- Amitava Das
- 1 Department of Surgery, Davis Heart and Lung Research Institute, Center for Regenerative Medicine and Cell-Based Therapies and Comprehensive Wound Center, The Ohio State University , Wexner Medical Center, Columbus, Ohio, USA
| | - Soma Datta
- 1 Department of Surgery, Davis Heart and Lung Research Institute, Center for Regenerative Medicine and Cell-Based Therapies and Comprehensive Wound Center, The Ohio State University , Wexner Medical Center, Columbus, Ohio, USA
| | - Brian Rhea
- 1 Department of Surgery, Davis Heart and Lung Research Institute, Center for Regenerative Medicine and Cell-Based Therapies and Comprehensive Wound Center, The Ohio State University , Wexner Medical Center, Columbus, Ohio, USA
| | - Mithun Sinha
- 1 Department of Surgery, Davis Heart and Lung Research Institute, Center for Regenerative Medicine and Cell-Based Therapies and Comprehensive Wound Center, The Ohio State University , Wexner Medical Center, Columbus, Ohio, USA
| | | | - Gayle Gordillo
- 3 Department of Plastic Surgery, Davis Heart and Lung Research Institute, Center for Regenerative Medicine and Cell-Based Therapies and Comprehensive Wound Center, The Ohio State University , Wexner Medical Center, Columbus, Ohio, USA
| | - Sashwati Roy
- 1 Department of Surgery, Davis Heart and Lung Research Institute, Center for Regenerative Medicine and Cell-Based Therapies and Comprehensive Wound Center, The Ohio State University , Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
32
|
Fan Z, Shu S, Xu C, Xiao X, Wang G, Bai Y, Xia C, Wu L, Zhang H, Xu C, Yang W. Protein profiling of plasma proteins in dairy cows with subclinical hypocalcaemia. Ir Vet J 2017; 70:3. [PMID: 28116073 PMCID: PMC5242045 DOI: 10.1186/s13620-017-0082-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 01/11/2017] [Indexed: 02/07/2023] Open
Abstract
Subclinical hypocalcaemia (SH) is an important metabolic disease in dairy cows that has a serious impact on production performance. The objective of this study was to investigate novel aspects of pathogenesis using proteomics technology to identify proteins that are differentially expressed in diseased and healthy animals. Dairy cows were divided into an SH group (T, n = 10) and a control group (C, n = 10) based on plasma calcium concentration. A total of 398 differentially expressed proteins were identified, of which 265 proteins were overlapped in the two parallel experiments. Of these, 24 differentially expressed proteins were statistically significant. Gene Ontology analysis yielded 74 annotations, including 7 cellular component, 55 biological process and 12 molecular function categories. Bioinformatics analysis indicated that calcium regulation, immune and inflammatory response, blood coagulation and complement pathway were all related to SH. Our iTRAQ/LC-MS/MS (isobaric tags for relative and absolute quantification/liquid chromatography-mass spectrometry/mass spectrometry) approach proved highly effective for plasma protein profiling of dairy cows with SH, and the results pave the way for further studies in this area.
Collapse
Affiliation(s)
- Ziling Fan
- Department of College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319 China
| | - Shi Shu
- Department of College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319 China
| | - Chuchu Xu
- Department of College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319 China
| | - Xinhuan Xiao
- Department of College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319 China
| | - Gang Wang
- Department of College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319 China
| | - Yunlong Bai
- Department of College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319 China
| | - Cheng Xia
- Department of College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319 China
| | - Ling Wu
- Department of College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319 China
| | - Hongyou Zhang
- Department of College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319 China
| | - Chuang Xu
- Department of College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319 China
| | - Wei Yang
- Department of College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319 China
| |
Collapse
|
33
|
Primary Pancreatic Secretinoma: Further Evidence Supporting Secretin as a Diarrheogenic Hormone. Ann Surg 2016; 266:346-352. [PMID: 27501174 DOI: 10.1097/sla.0000000000001938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES To document the existence of primary pancreatic secretinoma in patients with watery diarrhea syndrome (WDS) and achlorhydria and establish secretin as a diarrheogenic hormone. BACKGROUND Vasoactive intestinal peptide (VIP) has been widely accepted as the main mediator of WDS. However, in 1968, Zollinger et al reported 2 female patients with pancreatic neuroendocrine tumors, WDS, and achlorhydria. During surgery on the first, a 24-year-old patient, they noticed distended duodenum filled with fluid and a dilated gallbladder containing dilute bile with high bicarbonate concentration. After excision of the tumor, WDS ceased and gastric acid secretion returned. The second, a 47-year-old, patient's metastatic tumor extract given intravenously in dogs, produced significantly increased pancreatic and biliary fluid rich in bicarbonate. They suggested a secretin-like hormone of islet cell origin explains WDS and achlorhydria. These observations, however, predated radioimmunoassay, immunohistochemical staining, and other molecular studies. METHODS The first patient's tumor tissue was investigated for secretin and VIP. Using both immunohistochemistry and laser microdissection and pressure catapulting technique for RNA isolation and subsequent reverse transcription polymerase chain reaction, the expression levels of secretin, and VIP were measured. RESULTS Immunoreactive secretin and its mRNA were predominantly found in the tumor tissue whereas VIP and its mRNA were scarce. CONCLUSIONS The findings strongly support that the WDS and achlorhydria in this patient may have been caused by secretin as originally proposed in 1968 and that secretin may act as a diarrheogenic hormone.
Collapse
|
34
|
Luo W, Liang X, Huang S, Cao X. Molecular cloning, expression analysis and miRNA prediction of vascular endothelial growth factor A (VEGFAa and VEGFAb) in pond loach Misgurnus anguillicaudatus, an air-breathing fish. Comp Biochem Physiol B Biochem Mol Biol 2016; 202:39-47. [PMID: 27513203 DOI: 10.1016/j.cbpb.2016.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/21/2016] [Accepted: 07/30/2016] [Indexed: 01/07/2023]
Abstract
Vascular endothelial growth factor A (VEGFA) is the most studied and the best characterized member of the VEGF family and is a key regulator of angiogenesis via its ability to affect the proliferation, migration, and differentiation of endothelial cells. In this study, the full-length cDNAs encoding VEGFAa and VEGFAb from pond loach, Misgurnus anguillicaudatus, were isolated. The VEGFAa is constituted by an open reading frame (ORF) of 570bp encoding for a peptide of 189 amino acid residues, a 639bp 5'-untranslated region (UTR) and a 2383bp 3' UTR. The VEGFAb is constituted by an ORF of 687bp encoding for a peptide of 228 amino acid residues, a 560bp 5' UTR and a 1268bp 3' UTR. Phylogenetic analysis indicated that the VEGFAa and VEGFAb of pond loach were conserved in vertebrates. Expression levels of VEGFAa and VEGFAb were detected by RT-qPCR at different development stages of pond loach and in different tissues of 6-month-old, 12-month-old and 24-month-old pond loach. Moreover, eight predicted miRNAs (miR-200, miR-29, miR-218, miR-338, miR-103, miR-15, miR-17 and miR-223) targeting VEGFAa and VEGFAb were validated by an intestinal air-breathing inhibition experiment. This study will be of value for further studies into the function of VEGFA and its corresponding miRNAs, which will shed a light on the vascularization and accessory air-breathing process in pond loach.
Collapse
Affiliation(s)
- Weiwei Luo
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 437000, Hubei, People's Republic of China
| | - Xiao Liang
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 437000, Hubei, People's Republic of China
| | - Songqian Huang
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 437000, Hubei, People's Republic of China
| | - Xiaojuan Cao
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 437000, Hubei, People's Republic of China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Hubei, People's Republic of China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Hubei, People's Republic of China.
| |
Collapse
|
35
|
Brophy RH, Tycksen ED, Sandell LJ, Rai MF. Changes in Transcriptome-Wide Gene Expression of Anterior Cruciate Ligament Tears Based on Time From Injury. Am J Sports Med 2016; 44:2064-75. [PMID: 27159315 DOI: 10.1177/0363546516643810] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Anterior cruciate ligament (ACL) tears are a common injury. The healing potential of the injured ACL is poorly understood and is considered limited. Therefore, most ACL tears that are treated surgically undergo reconstruction rather than repair. However, there has been renewed interest recently in repairing ACL tears despite unanswered questions regarding the healing capacity of the ACL. HYPOTHESIS Gene expression in the injured ACL varies with time from injury. STUDY DESIGN Descriptive laboratory study. METHODS Transcriptome-wide expression profiles of 24 human ACL remnants recovered at the time of surgical reconstruction were analyzed using the Agilent human 8x60K microarray platform. Gene ontology was performed on differentially expressed transcripts based on time from injury (acute, <3 months; intermediate, 3-12 months; chronic, >12 months). A subset of transcripts with large fold changes in expression between any 2 categories was validated via microfluidic digital polymerase chain reaction. RESULTS Numerous transcripts representing important biological processes were differentially expressed by time from injury. The most significant changes were noted between the acute and chronic groups. Expression of several extracellular matrix genes- namely, POSTN, COL5A1, COL1A1, and COL12A1-was lower in the chronic tears compared with acute and intermediate tears. In acute tears, processes representing angiogenesis and stem cell differentiation were affected. In intermediate tears, processes representing stem cell proliferation concomitant with cellular component organization/cellular localization were altered. In ACL tears more than 12 months out from injury, processes denoting myosin filament organization, cellular component organization/cell localization, and extracellular matrix organization were affected. CONCLUSION These findings are consistent with initial repair activity in the injured ACL, which declines with time from injury. Individual genes identified in this study, such as periostin, deserve further investigation into their role in tissue repair. CLINICAL RELEVANCE The decreased healing capacity of ACL tears over time is relevant to the development of effective techniques for repairing ACL tears and may have some significance for ACL reconstruction techniques as well. The potential for healing appears to be greatest in acute ACL tears, suggesting this window should be the focus of research for ACL repair.
Collapse
Affiliation(s)
- Robert H Brophy
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine at Barnes-Jewish Hospital, St Louis, Missouri, USA
| | - Eric D Tycksen
- Genome Technology Access Center, Washington University in St Louis, St Louis, Missouri, USA
| | - Linda J Sandell
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine at Barnes-Jewish Hospital, St Louis, Missouri, USA Department of Biomedical Engineering, Washington University in St Louis at Engineering and Applied Sciences, St Louis, Missouri, USA Department of Cell Biology and Physiology, Washington University School of Medicine at Barnes-Jewish Hospital, St Louis, Missouri, USA
| | - Muhammad Farooq Rai
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine at Barnes-Jewish Hospital, St Louis, Missouri, USA
| |
Collapse
|
36
|
Huang S, Cao X, Tian X. Transcriptomic Analysis of Compromise Between Air-Breathing and Nutrient Uptake of Posterior Intestine in Loach (Misgurnus anguillicaudatus), an Air-Breathing Fish. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2016; 18:521-533. [PMID: 27457889 DOI: 10.1007/s10126-016-9713-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 05/31/2016] [Indexed: 06/06/2023]
Abstract
Dojo loach (Misgurnus anguillicaudatus) is an air-breathing fish species by using its posterior intestine to breathe on water surface. So far, the molecular mechanism about accessory air-breathing in fish is seldom addressed. Five cDNA libraries were constructed here for loach posterior intestines form T01 (the initial stage group), T02 (mid-stage of normal group), T03 (end stage of normal group), T04 (mid-stage of air-breathing inhibited group), and T05 (the end stage of air-breathing inhibited group) and subjected to perform RNA-seq to compare their transcriptomic profilings. A total of 92,962 unigenes were assembled, while 37,905 (40.77 %) unigenes were successfully annotated. 2298, 1091, and 3275 differentially expressed genes (fn1, ACE, EGFR, Pxdn, SDF, HIF, VEGF, SLC2A1, SLC5A8 etc.) were observed in T04/T02, T05/T03, and T05/T04, respectively. Expression levels of many genes associated with air-breathing and nutrient uptake varied significantly between normal and intestinal air-breathing inhibited group. Intraepithelial capillaries in posterior intestines of loaches from T05 were broken, while red blood cells were enriched at the surface of intestinal epithelial lining with 241 ± 39 cells per millimeter. There were periodic acid-schiff (PAS)-positive epithelial mucous cells in posterior intestines from both normal and air-breathing inhibited groups. Results obtained here suggested an overlap of air-breathing and nutrient uptake function of posterior intestine in loach. Intestinal air-breathing inhibition in loach would influence the posterior intestine's nutrient uptake ability and endothelial capillary structure stability. This study will contribute to our understanding on the molecular regulatory mechanisms of intestinal air-breathing in loach.
Collapse
Affiliation(s)
- Songqian Huang
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 437000, Hubei, People's Republic of China
| | - Xiaojuan Cao
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 437000, Hubei, People's Republic of China.
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Hubei, People's Republic of China.
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Hubei, People's Republic of China.
| | - Xianchang Tian
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 437000, Hubei, People's Republic of China
| |
Collapse
|
37
|
Das A, Ghatak S, Sinha M, Chaffee S, Ahmed NS, Parinandi NL, Wohleb ES, Sheridan JF, Sen CK, Roy S. Correction of MFG-E8 Resolves Inflammation and Promotes Cutaneous Wound Healing in Diabetes. THE JOURNAL OF IMMUNOLOGY 2016; 196:5089-100. [PMID: 27194784 DOI: 10.4049/jimmunol.1502270] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 04/18/2016] [Indexed: 12/15/2022]
Abstract
Milk fat globule epidermal growth factor-factor 8 (MFG-E8) is a peripheral glycoprotein that acts as a bridging molecule between the macrophage and apoptotic cells, thus executing a pivotal role in the scavenging of apoptotic cells from affected tissue. We have previously reported that apoptotic cell clearance activity or efferocytosis is compromised in diabetic wound macrophages. In this work, we test the hypothesis that MFG-E8 helps resolve inflammation, supports angiogenesis, and accelerates wound closure. MFG-E8(-/-) mice displayed impaired efferocytosis associated with exaggerated inflammatory response, poor angiogenesis, and wound closure. Wound macrophage-derived MFG-E8 was recognized as a critical driver of wound angiogenesis. Transplantation of MFG-E8(-/-) bone marrow to MFG-E8(+/+) mice resulted in impaired wound closure and compromised wound vascularization. In contrast, MFG-E8(-/-) mice that received wild-type bone marrow showed improved wound closure and improved wound vascularization. Hyperglycemia and exposure to advanced glycated end products inactivated MFG-E8, recognizing a key mechanism that complicates diabetic wound healing. Diabetic db/db mice suffered from impaired efferocytosis accompanied with persistent inflammation and slow wound closure. Topical recombinant MFG-E8 induced resolution of wound inflammation, improvements in angiogenesis, and acceleration of closure, upholding the potential of MFG-E8-directed therapeutics in diabetic wound care.
Collapse
Affiliation(s)
- Amitava Das
- Department of Surgery, Ohio State University Wexner Medical Center, Columbus, OH 43210; Davis Heart and Lung Research Institute, Ohio State University Wexner Medical Center, Columbus, OH 43210; Comprehensive Wound Center, Center for Regenerative Medicine and Cell Based Therapies, Ohio State University Wexner Medical Center, Columbus, OH 43210
| | - Subhadip Ghatak
- Department of Surgery, Ohio State University Wexner Medical Center, Columbus, OH 43210; Davis Heart and Lung Research Institute, Ohio State University Wexner Medical Center, Columbus, OH 43210; Comprehensive Wound Center, Center for Regenerative Medicine and Cell Based Therapies, Ohio State University Wexner Medical Center, Columbus, OH 43210
| | - Mithun Sinha
- Department of Surgery, Ohio State University Wexner Medical Center, Columbus, OH 43210; Davis Heart and Lung Research Institute, Ohio State University Wexner Medical Center, Columbus, OH 43210; Comprehensive Wound Center, Center for Regenerative Medicine and Cell Based Therapies, Ohio State University Wexner Medical Center, Columbus, OH 43210
| | - Scott Chaffee
- Department of Surgery, Ohio State University Wexner Medical Center, Columbus, OH 43210; Davis Heart and Lung Research Institute, Ohio State University Wexner Medical Center, Columbus, OH 43210; Comprehensive Wound Center, Center for Regenerative Medicine and Cell Based Therapies, Ohio State University Wexner Medical Center, Columbus, OH 43210
| | - Noha S Ahmed
- Department of Surgery, Ohio State University Wexner Medical Center, Columbus, OH 43210; Davis Heart and Lung Research Institute, Ohio State University Wexner Medical Center, Columbus, OH 43210; Comprehensive Wound Center, Center for Regenerative Medicine and Cell Based Therapies, Ohio State University Wexner Medical Center, Columbus, OH 43210
| | - Narasimham L Parinandi
- Davis Heart and Lung Research Institute, Ohio State University Wexner Medical Center, Columbus, OH 43210; Department of Internal Medicine, Ohio State University Wexner Medical Center, Columbus, OH 43210; and
| | - Eric S Wohleb
- Division of Biosciences, The Ohio State University, Columbus, OH 43210
| | - John F Sheridan
- Division of Biosciences, The Ohio State University, Columbus, OH 43210
| | - Chandan K Sen
- Department of Surgery, Ohio State University Wexner Medical Center, Columbus, OH 43210; Davis Heart and Lung Research Institute, Ohio State University Wexner Medical Center, Columbus, OH 43210; Comprehensive Wound Center, Center for Regenerative Medicine and Cell Based Therapies, Ohio State University Wexner Medical Center, Columbus, OH 43210
| | - Sashwati Roy
- Department of Surgery, Ohio State University Wexner Medical Center, Columbus, OH 43210; Davis Heart and Lung Research Institute, Ohio State University Wexner Medical Center, Columbus, OH 43210; Comprehensive Wound Center, Center for Regenerative Medicine and Cell Based Therapies, Ohio State University Wexner Medical Center, Columbus, OH 43210;
| |
Collapse
|
38
|
Powers CJ, Dickerson R, Zhang SW, Rink C, Roy S, Sen CK. Human cerebrospinal fluid microRNA: temporal changes following subarachnoid hemorrhage. Physiol Genomics 2016; 48:361-6. [PMID: 26945012 DOI: 10.1152/physiolgenomics.00052.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 03/01/2016] [Indexed: 02/01/2023] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is a devastating form of hemorrhagic stroke with 30-day mortality between 33 and 45%. Delayed cerebral ischemia (DCI) is the chief cause of morbidity and mortality in patients who survive the initial aSAH. DCI accounts for almost 50% of deaths in patients surviving to treatment of the ruptured aneurysm. The mechanisms for brain injury after aSAH and the brain's response to this injury are not fully understood in humans. MicroRNAs (miRs) are 22- to 25-nucleotide single-stranded RNA molecules that inhibit the expression of specific messenger RNA targets. In this work, miR profiling of human cerebrospinal fluid from eight patients after aSAH was performed daily for 10 days with the goal of identifying changes in miR abundance. Using the nanoString nCounter Expression Assay, we identified two specific clusters of miR that were differentially regulated over time. Quantitative RT-PCR was performed on select miRs from each cluster. The first cluster contained miRs known to be present in blood and decreased in abundance over time. miRs in this group include miR-92a and let-7b. The second cluster contained several poorly characterized miRs that increased in abundance over time. miRs in this group included miR-491. This second cluster of miRs may be released into the CSF by the brain itself as a result of the initial SAH. Temporal changes in the abundance of specific miRs in human CSF after aSAH may provide novel insight into the role of miRs in brain injury and the brain's response.
Collapse
Affiliation(s)
- Ciarán J Powers
- Department of Neurological Surgery, The Ohio State Wexner Medical Center, Columbus, Ohio; and
| | - Ryan Dickerson
- Department of Surgery, The Ohio State Wexner Medical Center, Columbus, Ohio
| | - Stacey W Zhang
- Department of Neurological Surgery, The Ohio State Wexner Medical Center, Columbus, Ohio; and
| | - Cameron Rink
- Department of Surgery, The Ohio State Wexner Medical Center, Columbus, Ohio
| | - Sashwati Roy
- Department of Surgery, The Ohio State Wexner Medical Center, Columbus, Ohio
| | - Chandan K Sen
- Department of Surgery, The Ohio State Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
39
|
Transcription factor KLF6 upregulates expression of metalloprotease MMP14 and subsequent release of soluble endoglin during vascular injury. Angiogenesis 2016; 19:155-71. [PMID: 26850053 PMCID: PMC4819519 DOI: 10.1007/s10456-016-9495-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 01/23/2016] [Indexed: 12/31/2022]
Abstract
After endothelial injury, the transcription factor Krüppel-like factor 6 (KLF6) translocates into the cell nucleus to regulate a variety of target genes involved in angiogenesis, vascular repair and remodeling, including components of the membrane transforming growth factor beta (TGF-β) receptor complex such as endoglin and activin receptor-like kinase 1. The membrane metalloproteinase 14 (MMP14 or MT1-MMP) targets endoglin to release soluble endoglin and is involved in vascular inflammation and endothelial tubulogenesis. However, little is known about the regulation of MMP14 expression during vascular wounding. In vitro denudation of monolayers of human endothelial cell monolayers leads to an increase in the KLF6 gene transcriptional rate, followed by an upregulation of MMP14 and release of soluble endoglin. Concomitant with this process, MMP14 co-localizes with endoglin in the sprouting endothelial cells surrounding the wound border. MMP14 expression at mRNA and protein levels is increased by ectopic KLF6 and downregulated by KLF6 suppression in cultured endothelial cells. Moreover, after wire-induced endothelial denudation, Klf6+/− mice show lower levels of MMP14 in their vasculature compared with their wild-type siblings. Ectopic cellular expression of KLF6 results in an increased transcription rate of MMP14, and chromatin immunoprecipitation assays show that KLF6 interacts with MMP14 promoter in ECs, this interaction being enhanced during wound healing. Furthermore, KLF6 markedly increases the transcriptional activity of different reporter constructs of MMP14 gene promoter. These results suggest that KLF6 regulates MMP14 transcription and is a critical player of the gene expression network triggered during endothelial repair.
Collapse
|
40
|
Martin-Rojas T, Mourino-Alvarez L, Alonso-Orgaz S, Rosello-Lleti E, Calvo E, Lopez-Almodovar LF, Rivera M, Padial LR, Lopez JA, de la Cuesta F, Barderas MG. iTRAQ proteomic analysis of extracellular matrix remodeling in aortic valve disease. Sci Rep 2015; 5:17290. [PMID: 26620461 PMCID: PMC4664895 DOI: 10.1038/srep17290] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 10/28/2015] [Indexed: 02/08/2023] Open
Abstract
Degenerative aortic stenosis (AS) is the most common worldwide cause of valve replacement. The aortic valve is a thin, complex, layered connective tissue with compartmentalized extracellular matrix (ECM) produced by specialized cell types, which directs blood flow in one direction through the heart. There is evidence suggesting remodeling of such ECM during aortic stenosis development. Thus, a better characterization of the role of ECM proteins in this disease would increase our understanding of the underlying molecular mechanisms. Aortic valve samples were collected from 18 patients which underwent aortic valve replacement (50% males, mean age of 74 years) and 18 normal control valves were obtained from necropsies (40% males, mean age of 69 years). The proteome of the samples was analyzed by 2D-LC MS/MS iTRAQ methodology. The results showed an altered expression of 13 ECM proteins of which 3 (biglycan, periostin, prolargin) were validated by Western blotting and/or SRM analyses. These findings are substantiated by our previous results demonstrating differential ECM protein expression. The present study has demonstrated a differential ECM protein pattern in individuals with AS, therefore supporting previous evidence of a dynamic ECM remodeling in human aortic valves during AS development.
Collapse
Affiliation(s)
- Tatiana Martin-Rojas
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Laura Mourino-Alvarez
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Sergio Alonso-Orgaz
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Esther Rosello-Lleti
- Cardiocirculatory Unit, Health Research Institute, Hospital La Fe, Valencia, Spain
| | | | | | - Miguel Rivera
- Cardiocirculatory Unit, Health Research Institute, Hospital La Fe, Valencia, Spain
| | - Luis R Padial
- Department of Cardiology, Hospital Virgen de la Salud, SESCAM, Toledo, Spain
| | | | - Fernando de la Cuesta
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Maria G Barderas
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| |
Collapse
|
41
|
Datta S, Malhotra L, Dickerson R, Chaffee S, Sen CK, Roy S. Laser capture microdissection: Big data from small samples. Histol Histopathol 2015; 30:1255-69. [PMID: 25892148 PMCID: PMC4665617 DOI: 10.14670/hh-11-622] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Any tissue is made up of a heterogeneous mix of spatially distributed cell types. In response to any (patho) physiological cue, responses of each cell type in any given tissue may be unique and cannot be homogenized across cell-types and spatial co-ordinates. For example, in response to myocardial infarction, on one hand myocytes and fibroblasts of the heart tissue respond differently. On the other hand, myocytes in the infarct core respond differently compared to those in the peri-infarct zone. Therefore, isolation of pure targeted cells is an important and essential step for the molecular analysis of cells involved in the progression of disease. Laser capture microdissection (LCM) is powerful to obtain a pure targeted cell subgroup, or even a single cell, quickly and precisely under the microscope, successfully tackling the problem of tissue heterogeneity in molecular analysis. This review presents an overview of LCM technology, the principles, advantages and limitations and its down-stream applications in the fields of proteomics, genomics and transcriptomics. With powerful technologies and appropriate applications, this technique provides unprecedented insights into cell biology from cells grown in their natural tissue habitat as opposed to those cultured in artificial petri dish conditions.
Collapse
Affiliation(s)
- Soma Datta
- Department of Surgery, Center for Regenerative Medicine and Cell Based Therapies and Comprehensive Wound Center, Laser Capture Molecular Core, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Lavina Malhotra
- Department of Surgery, Center for Regenerative Medicine and Cell Based Therapies and Comprehensive Wound Center, Laser Capture Molecular Core, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Ryan Dickerson
- Department of Surgery, Center for Regenerative Medicine and Cell Based Therapies and Comprehensive Wound Center, Laser Capture Molecular Core, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Scott Chaffee
- Department of Surgery, Center for Regenerative Medicine and Cell Based Therapies and Comprehensive Wound Center, Laser Capture Molecular Core, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Chandan K Sen
- Department of Surgery, Center for Regenerative Medicine and Cell Based Therapies and Comprehensive Wound Center, Laser Capture Molecular Core, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Sashwati Roy
- Department of Surgery, Center for Regenerative Medicine and Cell Based Therapies and Comprehensive Wound Center, Laser Capture Molecular Core, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.
| |
Collapse
|
42
|
Nowak DM, Gajecka M. Nonrandom Distribution of miRNAs Genes and Single Nucleotide Variants in Keratoconus Loci. PLoS One 2015; 10:e0132143. [PMID: 26176855 PMCID: PMC4503774 DOI: 10.1371/journal.pone.0132143] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/10/2015] [Indexed: 12/14/2022] Open
Abstract
Despite numerous studies, the causes of both development and progression of keratoconus remain elusive. Previous studies of this disorder focused mainly on one or two genetic factors only. However, in the analysis of such complex diseases all potential factors should be taken into consideration. The purpose of this study was a comprehensive analysis of known keratoconus loci to uncover genetic factors involved in this disease causation in the general population, which could be omitted in the original studies. In this investigation genomic data available in various databases and experimental own data were assessed. The lists of single nucleotide variants and miRNA genes localized in reported keratoconus loci were obtained from Ensembl and miRBase, respectively. The potential impact of nonsynonymous amino acid substitutions on protein structure and function was assessed with PolyPhen-2 and SIFT. For selected protein genes the ranking was made to choose those most promising for keratoconus development. Ranking results were based on topological features in the protein-protein interaction network. High specificity for the populations in which the causative sequence variants have been identified was found. In addition, the possibility of links between previously analyzed keratoconus loci was confirmed including miRNA-gene interactions. Identified number of genes associated with oxidative stress and inflammatory agents corroborated the hypothesis of their effect on the disease etiology. Distribution of the numerous sequences variants within both exons and mature miRNA which forces you to search for a broader look at the determinants of keratoconus. Our findings highlight the complexity of the keratoconus genetics.
Collapse
Affiliation(s)
- Dorota M. Nowak
- Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Marzena Gajecka
- Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
- * E-mail:
| |
Collapse
|
43
|
Genome-wide expression analysis of wounded skin reveals novel genes involved in angiogenesis. Angiogenesis 2015; 18:361-71. [DOI: 10.1007/s10456-015-9472-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 05/20/2015] [Indexed: 01/29/2023]
|
44
|
|
45
|
Barrier Function of the Repaired Skin Is Disrupted Following Arrest of Dicer in Keratinocytes. Mol Ther 2015; 23:1201-1210. [PMID: 25896246 DOI: 10.1038/mt.2015.65] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 04/07/2015] [Indexed: 02/07/2023] Open
Abstract
Tissue injury transiently silences miRNA-dependent posttranscriptional gene silencing in its effort to unleash adult tissue repair. Once the wound is closed, miRNA biogenesis is induced averting neoplasia. In this work, we report that Dicer plays an important role in reestablishing the barrier function of the skin post-wounding via a miRNA-dependent mechanism. MicroRNA expression profiling of skin and wound-edge tissue revealed global upregulation of miRNAs following wound closure at day 14 post-wounding with significant induction of Dicer expression. Barrier function of the skin, as measured by trans-epidermal water loss, was compromised in keratinocyte-specific conditional (K14/Lox-Cre) Dicer-ablated mice because of malformed cornified epithelium lacking loricrin expression. Studies on human keratinocytes recognized that loricrin expression was inversely related to the expression of the cyclin-dependent kinase inhibitor p21(Waf1/Cip1). Compared to healthy epidermis, wound-edge keratinocytes from Dicer-ablated skin epidermis revealed elevated p21(Waf1/Cip1) expression. Adenoviral and pharmacological suppression of p21(Waf1/Cip1) in keratinocyte-specific conditional Dicer-ablated mice improved wound healing indicating a role of Dicer in the suppression of p21(Waf1/Cip1). This work upholds p21(Waf1/Cip1) as a druggable target to restore barrier function of skin suffering from loss of Dicer function as would be expected in diabetes and other forms of oxidant insult.
Collapse
|
46
|
Liu GX, Xi HQ, Sun XY, Wei B. Role of periostin and its antagonist PNDA-3 in gastric cancer metastasis. World J Gastroenterol 2015; 21:2605-2613. [PMID: 25759527 PMCID: PMC4351209 DOI: 10.3748/wjg.v21.i9.2605] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 10/12/2014] [Accepted: 12/16/2014] [Indexed: 02/06/2023] Open
Abstract
The extracellular matrix component periostin is a secreted protein that functions as both a cell attachment protein and an autocrine or paracrine factor that signals through the cell adhesion molecule integrins αvβ3 and αvβ5. Periostin participates in normal physiological activities such as cardiac development, but is also involved in pathophysiological processes in vascular diseases, wound repair, bone formation, and tumor development. It is of increasing interest in tumor biology because it is frequently overexpressed in a variety of epithelial carcinomas and is functionally involved in multiple steps of metastasis progression. These include the maintenance of stemness, niche formation, EMT, the survival of tumor cells, and angiogenesis, all of which are indispensable for gastric cancer metastasis. Periostin has been reported to activate the PI-3K/AKT, Wnt, and FAK-mediated signaling pathways to promote metastasis. Therefore, periostin represents a potentially promising candidate for the inhibition of metastasis. In this review article, we summarize recent advances in knowledge concerning periostin, its antagonist PNDA-3, and their influence on such key processes in cancer metastasis as maintenance of stemness, niche formation, epithelial-to-mesenchymal transition, tumor cell survival, and angiogenesis. In particular, we focus our attention on the role of periostin in gastric cancer metastasis, speculate as to the usefulness of periostin as a therapeutic and diagnostic target for gastric cancer metastasis, and consider potential avenues for future research.
Collapse
|
47
|
Leise BS, Watts MR, Roy S, Yilmaz AS, Alder H, Belknap JK. Use of laser capture microdissection for the assessment of equine lamellar basal epithelial cell signalling in the early stages of laminitis. Equine Vet J 2014; 47:478-88. [PMID: 24750316 DOI: 10.1111/evj.12283] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 04/04/2014] [Indexed: 12/30/2022]
Abstract
REASONS FOR PERFORMING STUDY Dysadhesion of laminar basal epithelial cells (LBECs) from the underlying dermis is the central event leading to structural failure in equine laminitis. Although many studies of sepsis-related laminitis have reported multiple events occurring throughout the lamellar tissue, there is minimal information regarding signalling events occurring specifically in LBECs. OBJECTIVES To determine signalling events in the LBECs during the early stages of carbohydrate-induced laminitis. STUDY DESIGN Experimental study. METHODS Eight horses were given an overload of carbohydrate (CHO) consisting of corn starch mixture via nasogastric tube. Prior to administration of CHO, lamellar biopsies were taken from the left forefoot (control [CON]). Biopsies were taken from the left hind foot at the onset of fever (developmental [DEV]) and from the right forefoot at the onset of Obel grade 1 lameness (OG1). Laminar basal epithelial cells were isolated from cryosections using a laser capture microdissection (LCM) microscope. Next generation sequencing (RNA-seq) was used to identify transcripts expressed in the LBECs for each time point and bioinformatic analysis was performed with thresholds for between group comparisons set at a greater than 2-fold change and P value ≤0.05. RESULTS Forty genes (22 increased/18 decreased) were significantly different from DEV time vs. CON and 107 genes (57 increased/50 decreased) were significantly different from OG1 time vs. CON. Significant increases in inflammatory genes were present in addition to significantly altered expression of genes related to extracellular matrix composition, stability and turnover. CONCLUSIONS Signalling related to inflammatory response and extracellular matrix regulation was strongly represented at the DEV and OG1 times. These results indicate that the LBEC is not only a casualty but also an active participant in lamellar events leading to structural failure of the digital lamellae in equine laminitis.
Collapse
Affiliation(s)
- B S Leise
- Department of Clinical Sciences, College of Veterinary and Biomedical Sciences, Colorado State University, Fort Collins, USA
| | - M R Watts
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Ohio State University, Columbus, USA
| | - S Roy
- Department of Surgery, College of Medicine, Ohio State University, Columbus, USA
| | - A S Yilmaz
- Biomedical Informatics Shared Resource, Ohio State University Comprehensive Cancer Center, Columbus, USA
| | - H Alder
- Biomedical Informatics Shared Resource, Ohio State University Comprehensive Cancer Center, Columbus, USA
| | - J K Belknap
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Ohio State University, Columbus, USA
| |
Collapse
|
48
|
Roy S, Elgharably H, Sinha M, Ganesh K, Chaney S, Mann E, Miller C, Khanna S, Bergdall VK, Powell HM, Cook CH, Gordillo GM, Wozniak DJ, Sen CK. Mixed-species biofilm compromises wound healing by disrupting epidermal barrier function. J Pathol 2014; 233:331-343. [PMID: 24771509 PMCID: PMC4380277 DOI: 10.1002/path.4360] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/18/2014] [Accepted: 04/07/2014] [Indexed: 12/18/2022]
Abstract
In chronic wounds, biofilm infects host tissue for extended periods of time. This work establishes the first chronic preclinical model of wound biofilm infection aimed at addressing the long-term host response. Although biofilm-infected wounds did not show marked differences in wound closure, the repaired skin demonstrated compromised barrier function. This observation is clinically significant, because it leads to the notion that even if a biofilm infected wound is closed, as observed visually, it may be complicated by the presence of failed skin, which is likely to be infected and/or further complicated postclosure. Study of the underlying mechanisms recognized for the first time biofilm-inducible miR-146a and miR-106b in the host skin wound-edge tissue. These miRs silenced ZO-1 and ZO-2 to compromise tight junction function, resulting in leaky skin as measured by transepidermal water loss (TEWL). Intervention strategies aimed at inhibiting biofilm-inducible miRNAs may be productive in restoring the barrier function of host skin.
Collapse
Affiliation(s)
- Sashwati Roy
- Comprehensive Wound Center, Davis Heart & Lung Research Institute, Centers for Regenerative Medicine and Cell Based Therapies, The Ohio State University, Columbus, OH 43220 USA
- Department of Surgery, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43220 USA
| | - Haytham Elgharably
- Comprehensive Wound Center, Davis Heart & Lung Research Institute, Centers for Regenerative Medicine and Cell Based Therapies, The Ohio State University, Columbus, OH 43220 USA
- Department of Surgery, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43220 USA
| | - Mithun Sinha
- Comprehensive Wound Center, Davis Heart & Lung Research Institute, Centers for Regenerative Medicine and Cell Based Therapies, The Ohio State University, Columbus, OH 43220 USA
- Department of Surgery, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43220 USA
| | - Kasturi Ganesh
- Comprehensive Wound Center, Davis Heart & Lung Research Institute, Centers for Regenerative Medicine and Cell Based Therapies, The Ohio State University, Columbus, OH 43220 USA
- Department of Surgery, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43220 USA
| | - Sarah Chaney
- Microbial Interface Biology, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43220 USA
- Department of Microbial Infection and Immunity, Microbiology, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43220 USA
- Deparment of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43220 USA
| | - Ethan Mann
- Microbial Interface Biology, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43220 USA
- Department of Microbial Infection and Immunity, Microbiology, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43220 USA
| | - Christina Miller
- Department of Surgery, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43220 USA
| | - Savita Khanna
- Department of Surgery, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43220 USA
| | - Valerie K. Bergdall
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43220 USA
| | - Heather M. Powell
- Department of Materials Science and Engineering, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43220 USA
| | - Charles H. Cook
- Department of Surgery, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43220 USA
| | - Gayle M. Gordillo
- Comprehensive Wound Center, Davis Heart & Lung Research Institute, Centers for Regenerative Medicine and Cell Based Therapies, The Ohio State University, Columbus, OH 43220 USA
- Department of Plastic Surgery, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43220 USA
| | - Daniel J. Wozniak
- Microbial Interface Biology, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43220 USA
- Department of Microbial Infection and Immunity, Microbiology, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43220 USA
| | - Chandan K. Sen
- Comprehensive Wound Center, Davis Heart & Lung Research Institute, Centers for Regenerative Medicine and Cell Based Therapies, The Ohio State University, Columbus, OH 43220 USA
| |
Collapse
|
49
|
Readhead B, Dudley J. Translational Bioinformatics Approaches to Drug Development. Adv Wound Care (New Rochelle) 2013; 2:470-489. [PMID: 24527359 DOI: 10.1089/wound.2012.0422] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 04/07/2013] [Indexed: 12/16/2022] Open
Abstract
SIGNIFICANCE A majority of therapeutic interventions occur late in the pathological process, when treatment outcome can be less predictable and effective, highlighting the need for new precise and preventive therapeutic development strategies that consider genomic and environmental context. Translational bioinformatics is well positioned to contribute to the many challenges inherent in bridging this gap between our current reactive methods of healthcare delivery and the intent of precision medicine, particularly in the areas of drug development, which forms the focus of this review. RECENT ADVANCES A variety of powerful informatics methods for organizing and leveraging the vast wealth of available molecular measurements available for a broad range of disease contexts have recently emerged. These include methods for data driven disease classification, drug repositioning, identification of disease biomarkers, and the creation of disease network models, each with significant impacts on drug development approaches. CRITICAL ISSUES An important bottleneck in the application of bioinformatics methods in translational research is the lack of investigators who are versed in both biomedical domains and informatics. Efforts to nurture both sets of competencies within individuals and to increase interfield visibility will help to accelerate the adoption and increased application of bioinformatics in translational research. FUTURE DIRECTIONS It is possible to construct predictive, multiscale network models of disease by integrating genotype, gene expression, clinical traits, and other multiscale measures using causal network inference methods. This can enable the identification of the "key drivers" of pathology, which may represent novel therapeutic targets or biomarker candidates that play a more direct role in the etiology of disease.
Collapse
Affiliation(s)
- Ben Readhead
- Center for Biomedical Informatics, Icahn School of Medicine at Mount Sinai, New York, New York
- Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Joel Dudley
- Center for Biomedical Informatics, Icahn School of Medicine at Mount Sinai, New York, New York
- Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
50
|
Yang L, Engeland CG, Cheng B. Social isolation impairs oral palatal wound healing in sprague-dawley rats: a role for miR-29 and miR-203 via VEGF suppression. PLoS One 2013; 8:e72359. [PMID: 23951316 PMCID: PMC3739786 DOI: 10.1371/journal.pone.0072359] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 07/15/2013] [Indexed: 12/23/2022] Open
Abstract
Objective To investigate the effects of social isolation on oral mucosal healing in rats, and to determine if wound-associated genes and microRNAs (miRNAs) may contribute to this response. Methods Rats were group housed or socially isolated for 4 weeks before a 3.5 mm wound was placed on the hard oral palate. Wound closure was assessed daily and tissues were collected for determination of gene expression levels and miRNAs (i.e., miR-29a,b,c and miR-203). The predicted target of these microRNAs (i.e., vascular endothelial growth factor A, VEGFA) was functionally validated. Results Social isolation stress delayed the healing process of oral palatal mucosal wounds in rats. Lower mRNA levels of interleukin-1β (IL1β), macrophage inflammatory protein-1α (MIP1α), fibroblast growth factor 7 (FGF7), and VEGFA were found in the biopsied tissues of isolated animals on days 1 and/or 3 post-wounding. Intriguingly, the isolated rats persistently exhibited higher levels of miR-29 family members and miR-203. Our results confirmed that VEGFA is a direct target of these miRNAs, as both miR-29a,c and miR-203 strongly and specifically suppressed endogenous VEGFA expression in vitro. Conclusions This study in rats demonstrates for the first time that social isolation delays oral mucosal healing, and suggests a potential role for healing-associated gene and miRNA interactions during this process via modulation of VEGF expression.
Collapse
Affiliation(s)
- Linglan Yang
- Department of Oral Medicine, the Affiliated Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China
| | - Christopher G. Engeland
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Women, Child, Family Health Science, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Bin Cheng
- Department of Oral Medicine, the Affiliated Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China
- * E-mail:
| |
Collapse
|