1
|
Wardell SJ, Yung DB, Nielsen JE, Lamichhane R, Sørensen K, Molchanova N, Herlan C, Lin JS, Bräse S, Wise LM, Barron AE, Pletzer D. A biofilm-targeting lipo-peptoid to treat Pseudomonas aeruginosa and Staphylococcus aureus co-infections. Biofilm 2025; 9:100272. [PMID: 40248507 PMCID: PMC12005307 DOI: 10.1016/j.bioflm.2025.100272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/21/2025] [Accepted: 03/10/2025] [Indexed: 04/19/2025] Open
Abstract
Antibiotic-resistant bacterial infections are a significant clinical challenge, especially when involving multiple species. Antimicrobial peptides and their synthetic analogues, peptoids, which target bacterial cell membranes as well as intracellular components, offer potential solutions. We evaluated the biological activities of novel peptoids TM11-TM20, which include an additional charged NLys residue, against multidrug-resistant Pseudomonas aeruginosa and Staphylococcus aureus, both in vitro and in vivo. Building on insights from previously reported compounds TM1-TM10, the lipo-peptoid TM18, which forms self-assembled ellipsoidal micelles, demonstrated potent antimicrobial, anti-biofilm, and anti-abscess activity. Transcriptome sequencing (RNA-seq) revealed that TM18 disrupted gene expression pathways linked to antibiotic resistance and tolerance, and biofilm formation in both pathogens. Under dual-species conditions, TM18 induced overlapping but attenuated transcriptional changes, suggesting a priming effect that enhances bacterial tolerance. In a murine skin infection model, TM18 significantly reduced dermonecrosis and bacterial burden in mono-species infections. When combined with the antibiotic meropenem, they synergistically nearly cleared co-infections. Our findings highlight that TM18 has potential as a novel therapeutic for combating antibiotic-resistant pathogens and associated biofilm-driven tolerance.
Collapse
Affiliation(s)
- Samuel J.T. Wardell
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, 1042, New Zealand
| | - Deborah B.Y. Yung
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, 1042, New Zealand
| | - Josefine E. Nielsen
- Department of Bioengineering, Stanford University, School of Medicine, Stanford, CA 94305, USA
- Department of Science and Environment, Roskilde University, 4000, Roskilde, Denmark
| | - Rajesh Lamichhane
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, 1042, New Zealand
| | - Kristian Sørensen
- Department of Bioengineering, Stanford University, School of Medicine, Stanford, CA 94305, USA
| | - Natalia Molchanova
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Claudine Herlan
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Germany
| | - Jennifer S. Lin
- Department of Bioengineering, Stanford University, School of Medicine, Stanford, CA 94305, USA
| | - Stefan Bräse
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Germany
| | - Lyn M. Wise
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, 1042, New Zealand
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Annelise E. Barron
- Department of Bioengineering, Stanford University, School of Medicine, Stanford, CA 94305, USA
| | - Daniel Pletzer
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, 1042, New Zealand
| |
Collapse
|
2
|
Ma A, Deng X, Wei L, Dong Y, Zhang P, Xuan S, Zhang Z. High Antibacterial Activity and Selectivity of Cationic Disubstituted Polypeptoids with Stable Helices and Enzymatic Resistance. ACS APPLIED MATERIALS & INTERFACES 2025; 17:27950-27963. [PMID: 40311149 DOI: 10.1021/acsami.5c02994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
High antibacterial activity, low mammalian cell toxicity, and serum stability are crucial parameters for designing efficient antibacterial materials under physiological conditions. This relies on a deep understanding of the structure-property relationship of antibacterial materials. In this study, a series of cationic amphiphilic disubstituted polypeptoids were synthesized by using ring-opening polymerization (ROP) followed by thiol-ene click reactions. This new class of peptidomimetic materials, with chiral centers at backbones and ammonium alkyl N-substituents, exhibited remarkably stable helical structures independent of pH, temperature, salt, and denaturing agents. The helical analogs were found to show higher antibacterial activity against both Gram-negative and Gram-positive strains than the racemic, nonhelical counterparts. The helical structure and the balance of cationic charges and hydrophobicity were key parameters to achieve high selectivity for bacteria over mammalian cells. Moreover, unlike poly(l-lysine), the disubstituted polypeptoids, with stable helices and enzymatic resistance, retained high antibacterial activity even in the presence of salts, human serum albumin (HSA), and protease trypsin at physiological concentrations. This study deepens our understanding of how structural elements correlate with antibacterial activity and selectivity. In addition, the helical and enzymatically stable disubstituted polypeptoids have shown promise as an attractive platform for the design of new antibacterial materials with high efficiency and low toxicity.
Collapse
Affiliation(s)
- Anyao Ma
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xuehua Deng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Luxin Wei
- The Fourth Affiliated Hospital of Soochow University, Suzhou 215124, China
| | - Yutong Dong
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | | | - Sunting Xuan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| |
Collapse
|
3
|
Evdokimov A, Miliordos E. To Transfer or Not to Transfer an Electron: Anionic Metal Centers Reveal Dual Functionality for Polymerization Reactions. Molecules 2025; 30:1570. [PMID: 40286170 PMCID: PMC11990126 DOI: 10.3390/molecules30071570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/29/2025] [Accepted: 03/29/2025] [Indexed: 04/29/2025] Open
Abstract
Catalysts with anionic metal centers have recently been proposed to enhance the performance of various chemical processes. Here, we focus on the reactivity of Co(CO)4- for the polymerization of aziridine and carbon monoxide to form polypeptoids, motivated by earlier experimental studies. We used multi-reference and density functional theory methods to investigate possible reaction mechanisms and provide insights into the role of the negatively charged cobalt center. Two different reaction paths were identified. In the first path, Co- acts as a nucleophile, donating an electron pair to the reaction substrate, while in the second path, it performs a single electron transfer to the substrate, initiating radical polymerization. The difference in the activation barriers for the two key steps is small and falls within the accuracy of our calculations. As suggested in the literature, solvent effects can play a primary role in determining the outcomes of such reactions. Future investigations will involve different metals or ligands and will investigate the effects of these two reaction paths on other chemical transformations.
Collapse
Affiliation(s)
| | - Evangelos Miliordos
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA;
| |
Collapse
|
4
|
Dash R, Liu Z, Lepori I, Chordia MD, Ocius K, Holsinger K, Zhang H, Kenyon R, Im W, Siegrist MS, Pires MM. Systematic Determination of the Impact of Structural Edits on Peptide Accumulation into Mycobacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633618. [PMID: 39868157 PMCID: PMC11760776 DOI: 10.1101/2025.01.17.633618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Understanding the factors that influence the accumulation of molecules beyond the mycomembrane of Mycobacterium tuberculosis ( Mtb ) - the main barrier to accumulation - is essential for developing effective antimycobacterial agents. In this study, we investigated two design principles commonly observed in natural products and mammalian cell-permeable peptides: backbone N -alkylation and macrocyclization. To assess how these structural edits impact molecule accumulation beyond the mycomembrane, we utilized our recently developed Peptidoglycan Accessibility Click-Mediated Assessment (PAC-MAN) assay for live-cell analysis. Our findings provide the first empirical evidence that peptide macrocyclization generally enhances accumulation in mycobacteria, while N -alkylation influences accumulation in a context-dependent manner. We examined these design principles in the context of two peptide antibiotics, tridecaptin A1 and griselimycin, which revealed the roles of N -alkylation and macrocyclization in improving both accumulation and antimicrobial activity against mycobacteria in specific contexts. Together, we present a working model for strategic structural modifications aimed at enhancing the accumulation of molecules past the mycomembrane. More broadly, our results also challenge the prevailing belief in the field that large and hydrophilic molecules, such as peptides, cannot readily traverse the mycomembrane.
Collapse
|
5
|
Mishra SK, Yasir M, Kuppusamy R, Wong EHH, Hui A, Sørensen K, Lin JS, Jenssen H, Barron AE, Willcox M. Antimicrobial activity of peptoids against Metallo-β-lactamase-producing Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and other WHO priority pathogens, including Candida auris. J Appl Microbiol 2025; 136:lxaf031. [PMID: 39933590 PMCID: PMC11879280 DOI: 10.1093/jambio/lxaf031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/27/2025] [Accepted: 02/12/2025] [Indexed: 02/13/2025]
Abstract
AIMS The World Health Organization has identified ESKAPE bacteria and Candida auris as priority pathogens, emphasizing an urgent need for novel antimicrobials to combat them. This study aimed to explore the therapeutic potential of antimicrobial peptidomimetics, specifically peptoids with sequence-specific N-substituted glycines, against ESKAPEE pathogens, including metallo-β-lactamase (MBL) producers, as well as C. auris strains. METHODS AND RESULTS This study evaluated activity of the peptoids against the multidrug-resistant priority pathogens. The peptoid TM8 (with an N-decyl alkyl chain) demonstrated a geometric mean minimum inhibitory concentration (MIC) of 7.8 μg ml-1 against MBL-producing bacteria, and 5.5 μg ml-1 against C. auris. TM8 showed synergy with ciprofloxacin, enhancing its effectiveness 4-fold against NDM-1-producing Klebsiella pneumoniae. No antagonism was seen when TM8 was used with either conventional antibiotics or antifungals. Peptoids that had therapeutic indices below 3 were generally more hydrophobic, due to either alkyl chains or bromine. Scanning electron microscopy and live-dead staining assay on peptoid-treated C. auris confirmed morphological changes and killing activity, respectively. Furthermore, the peptoid could effectively inhibit biofilm formation by C. auris. CONCLUSION Peptoids demonstrated antibacterial activity against ESKAPEE, particularly against MBL-producing Gram-negative bacteria. Additionally, they exhibited antifungal and anti-biofilm activities against C. auris strains.
Collapse
Affiliation(s)
- Shyam Kumar Mishra
- School of Optometry and Vision Science, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Department of Microbiology, Maharajgunj Medical Campus, Institute of Medicine, Tribhuvan University, Kathmandu 44600, Nepal
| | - Muhammad Yasir
- School of Optometry and Vision Science, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Rajesh Kuppusamy
- School of Optometry and Vision Science, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- School of Chemistry, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Edgar H H Wong
- School of Chemical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Alex Hui
- School of Optometry and Vision Science, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Kristian Sørensen
- Department of Bioengineering, School of Medicine and School of Engineering, Stanford University, Stanford, CA 94305, USA
| | - Jennifer S Lin
- Department of Bioengineering, School of Medicine and School of Engineering, Stanford University, Stanford, CA 94305, USA
| | - Håvard Jenssen
- Department of Science and Environment, Roskilde University, Roskilde 4000, Denmark
- Department of Chemistry, University of Oslo, Oslo 0315, Norway
| | - Annelise E Barron
- Department of Bioengineering, School of Medicine and School of Engineering, Stanford University, Stanford, CA 94305, USA
| | - Mark Willcox
- School of Optometry and Vision Science, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
6
|
Carretero G, Samarasekara HK, Battigelli A, Mojsoska B. Uprising Unconventional Nanobiomaterials: Peptoid Nanosheets as a Multi-Modular Platform for Advanced Biological Studies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406128. [PMID: 39618020 PMCID: PMC11878265 DOI: 10.1002/smll.202406128] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/09/2024] [Indexed: 03/05/2025]
Abstract
Peptoids are bio-inspired peptidomimetic polymers that can be designed to self-assemble into a variety of nanostructures. Among these different assemblies, peptoid nanosheets are the most studied. Peptoid nanosheets are 2D highly ordered nanostructures, able to free float in aqueous solutions while featuring versatile chemical displays that can be tuned to incorporate a plethora of functional units. In this review, the synthetic approach used to prepare sequence-defined oligomers and highlight their main characteristics is introduced. The ability of peptoids to fold into nanostructures is then reviewed with an extensive emphasis on peptoid nanosheets, and their physico-chemical characteristics, assembly mechanism, and stability. A particular focus is also placed on the variety of functionalization incorporated into the peptoid nanosheets to tune their properties toward specific applications, especially within the fields of biology and medicine. Finally, the comparison between peptoid nanosheets and other 2D nanomaterials is discussed to address the challenges in the current nanomaterials and underline the future development of peptoid nanosheets in the field of biology.
Collapse
Affiliation(s)
- Gustavo Carretero
- Department of Science and EnvironmentRoskilde UniversityRoskilde4000Denmark
| | | | | | - Biljana Mojsoska
- Department of Science and EnvironmentRoskilde UniversityRoskilde4000Denmark
| |
Collapse
|
7
|
Smith PT, Franco JL, Kirshenbaum K. Enhancing molecular diversity of peptoid oligomers using amino acid synthons. Org Biomol Chem 2025; 23:1175-1183. [PMID: 39693124 DOI: 10.1039/d4ob01564a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
We report the use of unprotected amino acids as submonomer reagents in the solid-phase synthesis of N-substituted glycine peptoid oligomers. Subsequent coupling of an amine, alcohol, or thiol to the free carboxylate of the incorporated amino acid provides access to peptoids bearing amides, esters, and thioesters as side chain pendant groups and permits further elongation of the peptoid backbone. The palette of readily obtained building blocks suitable for solid-phase peptoid synthesis is substantially expanded through this protocol, further enhancing the chemical diversity and potential applications of sequence-specific peptoid oligomers.
Collapse
Affiliation(s)
- Peter T Smith
- Department of Chemistry, New York University, New York, New York 10003, USA.
| | - Jennifer L Franco
- Department of Chemistry, New York University, New York, New York 10003, USA.
| | - Kent Kirshenbaum
- Department of Chemistry, New York University, New York, New York 10003, USA.
| |
Collapse
|
8
|
Kasturiarachchi JC. A study on antimicrobial activity of lysine-like peptoids for the development of new antimicrobials. Arch Microbiol 2025; 207:21. [PMID: 39745532 DOI: 10.1007/s00203-024-04227-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/17/2024] [Accepted: 12/24/2024] [Indexed: 01/25/2025]
Abstract
The development of new medicines with unique methods of antimicrobial action is desperately needed due to the emerging multidrug-resistant bacteria, such as methicillin-resistant Staphylococcus aureus. Therefore, antimicrobial peptoids have emerged as potential new antimicrobials. Thirteen peptoid analogues have been designed and synthesized via solid phase synthesis. These peptoids have undergone a biological analysis to determine the structure-activity relationships that define their antibacterial activity. Each peptoid is composed of nine repeating N-substituted glycine monomers (9-mer). The monomer units were synthesized with three distinct alkyl side chain lengths: four-carbon butyl monomers, six-carbon hexyl monomers, and eight-carbon octyl monomers. Out of 12 different peptoids, only one peptoid called Tosyl-Octyl-Peptoid (TOP) demonstrated significant broad-spectrum bactericidal activity. TOP kills bacteria under non-dividing and dividing conditions. The Minimum Inhibitory Concentrations values of TOP for Staphylococcus epidermidis, Escherichia coli and Klebsiella were 20 µM, whereas Methicillin-resistant Staphylococcus aureus and Methicillin-sensitive Staphylococcus aureus were 40 µM. The highest MIC values were observed for Pseudomonas aeruginosa at 80 µM. The selectivity ratio was calculated, by dividing the 10% haemolysis activity (5 mM) by the median of the MIC (50 µM) yielding a selective ratio for TOP as 100. This selective ratio is well above previously reported peptidomimetics selective ratio of around 20. TOP shows broad-spectrum bactericidal action in both dividing and non-dividing bacteria in co-culture systems and intracellular bacterial killing activity. These results add new information about the antimicrobial peptoids and aid in the future design of synthetic peptoids with increased therapeutic potential.
Collapse
|
9
|
Sara M, Chakraborty S, Chen R, Palms D, Katsifis G, Li Z, Farajikhah S, Massedupally V, Hui A, Wong EHH, Kumar N, Vasilev K, Mackenzie D, Losurdo L, Dehghani F, Jenssen H, Sorensen K, Lin JS, Barron AE, Willcox M. The effect of immobilisation strategies on the ability of peptoids to reduce the adhesion of P. aeruginosa strains to contact lenses. Exp Eye Res 2025; 250:110149. [PMID: 39571778 DOI: 10.1016/j.exer.2024.110149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/26/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024]
Abstract
AIM Previous studies have demonstrated that contact lenses coated with the antimicrobial cationic peptide Mel4, a derivative of melimine, can reduce the occurrence of keratitis. However, the antimicrobial activity of Mel4 weakened over time due to its susceptibility to proteolytic degradation. Oligo-N-substituted glycine peptoids such as TM5 and TM18 possess antimicrobial properties and are resistant to proteolytic breakdown. This study focused on exploring methods for covalently attaching these peptoids to contact lenses to enhance their durability and performance in vitro. METHODS The peptoids TM5 and TM18 were covalently attached to etafilcon lenses via carbodiimide chemistry (EDC/NHS), oxazoline plasma, and plasma ion immersion implantation (PIII). The lenses were analysed using X-ray photoelectron spectroscopy (XPS), surface charge, and hydrophobicity. Inhibition of adhesion of multidrug-resistant Pseudomonas aeruginosa and cytotoxicity on corneal epithelial cells were evaluated. The impact of moist heat sterilization on activity was also assessed. RESULTS XPS confirmed peptoid binding to lenses. Peptoid coatings slightly increased contact angles (≤23°) without affecting overall charge. Peptoids, bound via carbodiimide, inhibited P. aeruginosa adhesion by over 5 log10 CFU per lens, outperforming melimine, which required six times the concentration for a 3 log10 reduction. Peptoids attached via oxazoline or PIII reduced adhesion by > 5 log10 CFU. All covalent methods significantly reduced bacterial adhesion compared to untreated lenses (P < 0.0001). Peptoid-bound lenses were non-toxic to corneal epithelial cells. Sterilization did not affect carbodiimide-treated lenses but reduced the activity of oxazoline and PIII surfaces by 1-2 log10 CFU. CONCLUSION Peptoids TM5 and TM18 effectively reduced P. aeruginosa adhesion on lenses, with carbodiimide-bound surfaces retaining activity post-sterilization, showing promise for the development of antimicrobial contact lenses.
Collapse
Affiliation(s)
- Manjulatha Sara
- School of Optometry and Vision Science, UNSW Sydney, Australia.
| | | | - Renxun Chen
- School of Chemistry, UNSW Sydney, Australia.
| | - Dennis Palms
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia.
| | | | | | | | | | - Alex Hui
- School of Optometry and Vision Science, UNSW Sydney, Australia; Centre for Ocular Research and Education, University of Waterloo, Canada.
| | - Edgar H H Wong
- School of Optometry and Vision Science, UNSW Sydney, Australia; School of Chemical Engineering, UNSW Sydney, Australia.
| | | | - Krasimir Vasilev
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia.
| | - David Mackenzie
- School of Physics, University of Sydney, NSW, 2006, Australia.
| | - Linda Losurdo
- School of Physics, University of Sydney, NSW, 2006, Australia.
| | | | - Havard Jenssen
- Department of Science and Environment, Roskilde University, 4000, Roskilde, Denmark.
| | - Kristian Sorensen
- Department of Bioengineering, School of Medicine & School of Engineering, Standford University, California, 94305, USA.
| | - Jennifer S Lin
- Department of Bioengineering, School of Medicine & School of Engineering, Standford University, California, 94305, USA.
| | - Annelise E Barron
- Department of Bioengineering, School of Medicine & School of Engineering, Standford University, California, 94305, USA.
| | - Mark Willcox
- School of Optometry and Vision Science, UNSW Sydney, Australia.
| |
Collapse
|
10
|
Berlaga A, Torkelson K, Seal A, Pfaendtner J, Ferguson AL. A modular and extensible CHARMM-compatible model for all-atom simulation of polypeptoids. J Chem Phys 2024; 161:244901. [PMID: 39714012 DOI: 10.1063/5.0238570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/04/2024] [Indexed: 12/24/2024] Open
Abstract
Peptoids (N-substituted glycines) are a class of sequence-defined synthetic peptidomimetic polymers with applications including drug delivery, catalysis, and biomimicry. Classical molecular simulations have been used to predict and understand the conformational dynamics of single chains and their self-assembly into morphologies including sheets, tubes, spheres, and fibrils. The CGenFF-NTOID model based on the CHARMM General Force Field has demonstrated success in accurate all-atom molecular modeling of peptoid structure and thermodynamics. Extension of this force field to new peptoid side chains has historically required reparameterization of side chain bonded interactions against ab initio data. This fitting protocol improves the accuracy of the force field but is also burdensome and precludes modular extensibility of the model to arbitrary peptoid sequences. In this work, we develop and demonstrate a Modular Side Chain CGenFF-NTOID (MoSiC-CGenFF-NTOID) as an extension of CGenFF-NTOID employing a modular decomposition of the peptoid backbone and side chain parameterizations, wherein arbitrary side chains within the large family of substituted methyl groups (i.e., -CH3, -CH2R, -CHRR', and -CRR'R″) are directly ported from CGenFF. We validate this approach against ab initio calculations and experimental data to develop a MoSiC-CGenFF-NTOID model for all 20 natural amino acid side chains along with 13 commonly used synthetic side chains and present an extensible paradigm to efficiently determine whether a novel side chain can be directly incorporated into the model or whether refitting of the CGenFF parameters is warranted. We make the model freely available to the community along with a tool to perform automated initial structure generation.
Collapse
Affiliation(s)
- Alex Berlaga
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, USA
| | - Kaylyn Torkelson
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Aniruddha Seal
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, USA
| | - Jim Pfaendtner
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Andrew L Ferguson
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
11
|
Gao Y, Cui J, Cao S, Guo J, Liu Z, Long S. Recent advances in peptoids as promising antimicrobial agents to target diverse microbial species. Eur J Med Chem 2024; 280:116982. [PMID: 39461038 DOI: 10.1016/j.ejmech.2024.116982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024]
Abstract
The emergence of multidrug-resistant microbial species has become a global health concern, calling for novel antimicrobial agents. Peptoids, a class of synthetic peptidomimetics with unique structural properties, exhibit antimicrobial activity against a broad-spectrum of microbes, in addition to their stability to enzymatic degradation, selectivity, and relative ease of synthesis. Thus, peptoids have great potential in combating various drug-resistant pathogenic microbes. This review provides a comprehensive analysis of the recent advances in utilizing peptoids as effective antimicrobial agents against a wide range of bacteria, fungi, viruses, and parasites. In addition, some of the synthetic strategies and antimicrobial mechanisms are discussed. The imperfections of antimicrobial peptoids and the defects in current antimicrobial peptoids research are pointed out and promising directions for future development in peptoids are highlighted, to pave the way for innovating better antimicrobial peptoids to address the challenges posed by multidrug-resistant microbial species.
Collapse
Affiliation(s)
- Yi Gao
- Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China; Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China; Hubei Engineering Research Center for Advanced Fine Chemicals, Wuhan Institute of Technology 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China; School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Jingliang Cui
- Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China; Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China; Hubei Engineering Research Center for Advanced Fine Chemicals, Wuhan Institute of Technology 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China; School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Shuang Cao
- Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China; Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China; Hubei Engineering Research Center for Advanced Fine Chemicals, Wuhan Institute of Technology 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China; School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Ju Guo
- Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China; Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China; Hubei Engineering Research Center for Advanced Fine Chemicals, Wuhan Institute of Technology 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China; School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Ziwei Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China; Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China; Hubei Engineering Research Center for Advanced Fine Chemicals, Wuhan Institute of Technology 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China; School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China.
| | - Sihui Long
- Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China; Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China; Hubei Engineering Research Center for Advanced Fine Chemicals, Wuhan Institute of Technology 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China; School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China.
| |
Collapse
|
12
|
Barman S, Abiodun A, Hossain MW, Parris A, Chandrasseril AB, Older EA, Li J, Decho AW, Tang C. The role of secondary structures of peptide polymers on antimicrobial efficacy and antibiotic potentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.19.623429. [PMID: 39605571 PMCID: PMC11601527 DOI: 10.1101/2024.11.19.623429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The rise of antibiotic resistance, biofilm formation, and dormant bacterial populations poses serious global health threats. Synthetic antimicrobial peptide (AMP) mimics offer promising alternatives, though the impact of secondary structures in polymeric AMP mimics on antimicrobial efficacy is underexplored. This study investigates chirality-controlled α-peptide polymers (D-PP and DL-PP), synthesized via ring-opening polymerization of allylglycine N-carboxy anhydrides and post-polymerization modification through thiol-ene click chemistry. D-PP adopts a stable helical structure under biomimetic conditions, whereas DL-PP remains random. This helical structure enhanced D-PP's antibacterial and antibiotic potentiation activities, amplifying antibiotic efficacy by 2- to 256-fold across various classes-including tetracyclines, ansamycins, fusidanes, macrolides, cephalosporins, and monobactams-against multidrug-resistant Gram-negative pathogens, while maintaining low hemolytic activity and high protease stability. Mechanistic investigations revealed that D-PP exhibited greater membrane interaction. D-PP and antibiotic combinations eradicated dormant bacterial populations and disrupted biofilms with minimal antimicrobial resistance development. This study paves the way for the rational design of polypeptide-based antimicrobial agents, harnessing chirality and secondary structural features to enhance the efficacy of synthetic antimicrobial peptide mimics.
Collapse
Affiliation(s)
- Swagatam Barman
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
- Department of Environmental Health Sciences, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Alimi Abiodun
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Md Waliullah Hossain
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Adam Parris
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | | | - Ethan A. Older
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Jie Li
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Alan W. Decho
- Department of Environmental Health Sciences, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Chuanbing Tang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
13
|
Guerinot C, Malige M, De K, Maresca M, Charbonnel N, Courvoisier-Dezord E, Vidal N, Roy O, Laurent F, Josse J, Aisenbrey C, Bechinger B, Forestier C, Faure S. Quaternized 1,2,3-Triazolyl Content and Modulation Potentiate Antibacterial and Antifungal Activities of Amphipathic Peptoids. ACS Infect Dis 2024; 10:3915-3927. [PMID: 39393016 DOI: 10.1021/acsinfecdis.4c00591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Bioinspired from cationic antimicrobial peptides, sequence-defined triazolium-grafted peptoid oligomers (6- to 12-mer) were designed to adopt an amphipathic helical polyproline I-type structure. Their evaluation on a panel of bacterial strains (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Enterococcus faecalis), pathogenic fungi (Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus), and human cells (hRBC, BEAS-2B, Caco-2, HaCaT, and HepG2) enabled the identification of two heptamers with improved activity to selectively fight Staphylococcus aureus pathogens. Modulation of parameters such as the nature of the triazolium and hydrophobic/lipophilic side chains, the charge content, and the sequence length drastically potentiates activity and selectivity. Besides, the ability to block the proinflammatory effect induced by lipopolysaccharide or lipoteichoic acid was also explored. Finally, biophysical studies by circular dichroism and fluorescence spectroscopies strongly supported that the bactericidal effect of these triazolium-grafted oligomers was primarily due to the selective disruption of the bacterial membrane.
Collapse
Affiliation(s)
- Cassandra Guerinot
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, F-63000 Clermont-Ferrand, France
| | - Mélodie Malige
- Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont-Ferrand, France
| | - Kathakali De
- Université de Strasbourg, CNRS, Institut de Chimie UMR7177, F-67008 Strasbourg, France
| | - Marc Maresca
- Centrale Med, ISM2, Aix Marseille Univ, CNRS, 13013 Marseille, France
| | - Nicolas Charbonnel
- Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont-Ferrand, France
| | | | - Nicolas Vidal
- Yelen Analytics, Aix-Marseille University ICR, 13013 Marseille, France
| | - Olivier Roy
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, F-63000 Clermont-Ferrand, France
| | - Frederic Laurent
- CIRI─Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007 Lyon, France
| | - Jérôme Josse
- CIRI─Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007 Lyon, France
| | - Christopher Aisenbrey
- Université de Strasbourg, CNRS, Institut de Chimie UMR7177, F-67008 Strasbourg, France
| | - Burkhard Bechinger
- Université de Strasbourg, CNRS, Institut de Chimie UMR7177, F-67008 Strasbourg, France
| | | | - Sophie Faure
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, F-63000 Clermont-Ferrand, France
| |
Collapse
|
14
|
Liu F, Yang S, Zhang L, Zhang M, Bi Y, Wang S, Wang X, Wang Y. Design, synthesis and biological evaluation of amphiphilic benzopyran derivatives as potent antibacterial agents against multidrug-resistant bacteria. Eur J Med Chem 2024; 277:116784. [PMID: 39178727 DOI: 10.1016/j.ejmech.2024.116784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/10/2024] [Accepted: 08/17/2024] [Indexed: 08/26/2024]
Abstract
Antimicrobial resistance has emerged as a significant threat to global public health. To develop novel, high efficiency antibacterial alternatives to combat multidrug-resistant bacteria, A total of thirty-two novel amphiphilic benzopyran derivatives by mimicking the structure and function of antimicrobial peptides were designed and synthesized. Among them, the most promising compounds 4h and 17e displayed excellent antibacterial activity against Gram-positive bacteria (MICs = 1-4 μg/mL) with weak hemolytic activity and good membrane selectivity. Additionally, compounds 4h and 17e had rapid bactericidal properties, low resistance frequency, good plasma stability, and strong capabilities of inhibiting and eliminating bacterial biofilms. Mechanistic studies revealed that compounds 4h and 17e could effectively disrupt the integrity of bacterial cell membranes, and accompanied by an increase in intracellular reactive oxygen species and the leakage of proteins and DNA, ultimately leading to bacterial death. Notably, compound 4h exhibited comparable in vivo antibacterial potency in a mouse septicemia model infected by Staphylococcus aureus ATCC43300, as compared to vancomycin. These findings indicated that 4h might be a promising antibacterial candidate to combat antimicrobial resistance.
Collapse
Affiliation(s)
- Fangquan Liu
- State Key Laboratory for Macromolecule Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Siyu Yang
- State Key Laboratory for Macromolecule Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Lei Zhang
- State Key Laboratory for Macromolecule Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Meiyue Zhang
- State Key Laboratory for Macromolecule Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Ying Bi
- State Key Laboratory for Macromolecule Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Shuo Wang
- State Key Laboratory for Macromolecule Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Xuekun Wang
- State Key Laboratory for Macromolecule Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, 252059, China.
| | - Yinhu Wang
- State Key Laboratory for Macromolecule Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, 252059, China.
| |
Collapse
|
15
|
Torkelson K, Pfaendtner J. Exploration of Tertiary Structure in Sequence-Defined Polymers Using Molecular Dynamics Simulations. Biomacromolecules 2024; 25:6439-6450. [PMID: 39292171 DOI: 10.1021/acs.biomac.4c00527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Peptoids are a class of sequence-defined biomimetic polymers with peptide-like backbones and side chains located on backbone nitrogens rather than alpha carbons. These materials demonstrate a strong ability for precise control of single-chain structure, multiunit self-assembly, and macromolecular assembly through careful tuning of sequence due to the diversity of available side chains, although the driving forces behind these assemblies are often not understood. Prior experimental work has shown that linked 15mer peptoids can mimic the protein helical hairpin structure by leveraging the chirality-inducing nature of bulky side chains and hydrophobicity, but there are still gaps in our understanding of the relationship between sequence, stability, and particular secondary or tertiary structure. We present a molecular dynamics (MD) study on the folding behavior of these polymers into hairpins, discussing the differences in structure from sequences with various characteristics in water and acetonitrile, and then compare the handedness preference of common helical motifs between solvents.
Collapse
Affiliation(s)
- Kaylyn Torkelson
- University of Washington, Chemical Engineering, Box 351750, Seattle, Washington 98195-1750, United States
| | - Jim Pfaendtner
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
16
|
Ruan G, Fridman N, Maayan G. Unique Crystal Structure of a Self-Assembled Dinuclear Cu Peptoid Reveals an Unusually Long Cu···Cu Distance. ACS OMEGA 2024; 9:42002-42009. [PMID: 39398127 PMCID: PMC11465249 DOI: 10.1021/acsomega.4c06987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024]
Abstract
Studies on a series of molecular dicopper peptoid complexes showed that the Cu···Cu distances measured in X-ray single-crystal diffraction are typically in the range of 4.2-6.9 Å. Herein, we designed a new peptoid, L1, having 2,2'-bipyridine, propyl, and pyridyl side chains and discovered that although it forms a typical dicopper self-assembled structure (complex 1), the Cu···Cu distance is exceedingly long -8.043 Å. By analyzing its structure and surface properties in comparison to a control Cu-peptoid complex (2), in which the pyridyl side chain is modified by an ethanolic side chain, we suggest that the long Cu···Cu distance is contributed by the hydrophilic-hydrophobic interaction influenced by the pyridyl side chain and the steric hindrance of the propyl side chain. This result may motivate the use of dinuclear Cu peptoid complexes for wider applications, such as cooperative catalysis and luminescence.
Collapse
Affiliation(s)
- Guilin Ruan
- Schulich Faculty of Chemistry, Technion−Israel Institute of Technology, Haifa 32000, Israel
| | - Natalia Fridman
- Schulich Faculty of Chemistry, Technion−Israel Institute of Technology, Haifa 32000, Israel
| | - Galia Maayan
- Schulich Faculty of Chemistry, Technion−Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
17
|
Chen G, Bai J, Wu X, Huo X, Li Y, Lei P, Ma Z. Amphiphilic amidines as potential plasmic membrane-targeting antifungal agents: synthesis, bio-activities and QSAR. PEST MANAGEMENT SCIENCE 2024; 80:5266-5276. [PMID: 38877543 DOI: 10.1002/ps.8253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/17/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Cationic antimicrobial peptides (AMPs) possess broad-spectrum biological activities with less inclination to inducing antibiotic resistance. Herein a battery of amphiphilic amidines were designed by mimicking the characteristics of AMPs. The antifungal activities and the effects to the hyphal morphology and membrane permeability were investigated. RESULTS The results indicated the inhibitory rates of ten compounds were over 80% to Botrytis cinerea and ten compounds over 90% to Valsa mali Miyabe et Yamada at 50 mg L-1. The half maximal effective concentration (EC50) values of compound 5g and 6g to V. mali were 1.21 and 1.90 mg L-1 respectively. The protective rate against apple canker of compound 5g reached 93.4% at 100 mg L-1 on twigs, superior to carbendazim (53.3%). When treated with 5g, the cell membrane permeability and leakage of content of V. mali increased, accompanied with the decrease of superoxide dismutase (SOD) and catalase (CAT) level. Concurrently, the mycelial hyphae contracted, wrinkled, and collapsed, providing evidence of membrane perturbation. A three-dimensional quantitative structure-activity relationship (3D-QSAR) between the topic compounds and the EC50 to V. mali was established showing good predictability (r2 = 0.971). CONCLUSION Amphiphilic amidines can acquire antifungal activities by acting on the plasmic membrane. Compound 5g could be a promising lead in discovering novel fungicidal candidates. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guangyou Chen
- College of Plant Protection, Northwest A&F University, Yangling, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling, China
| | - Jing Bai
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xinyan Wu
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xinyi Huo
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yongqiang Li
- College of Plant Protection, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Peng Lei
- College of Plant Protection, Northwest A&F University, Yangling, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling, China
| | - Zhiqing Ma
- College of Plant Protection, Northwest A&F University, Yangling, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
18
|
Song D, Kim B, Kim M, Lee JK, Choi J, Lee H, Shin S, Shin D, Nam HY, Lee Y, Lee S, Kim Y, Seo J. Impact of Conjugation of the Reactive Oxygen Species (ROS)-Generating Catalytic Moiety with Membrane-Active Antimicrobial Peptoids: Promoting Multitarget Mechanism and Enhancing Selectivity. J Med Chem 2024; 67:15148-15167. [PMID: 39207209 DOI: 10.1021/acs.jmedchem.4c00775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Antimicrobial peptides (AMPs) represent promising therapeutic modalities against multidrug-resistant bacterial infections. As a mimic of natural AMPs, peptidomimetic oligomers like peptoids (i.e., oligo-N-substituted glycines) have been utilized for antimicrobials with resistance against proteolytic degradation. Here, we explore the conjugation of catalytic metal-binding motifs─the amino terminal Cu(II) and Ni(II) binding (ATCUN) motif─with cationic amphipathic antimicrobial peptoids to enhance their efficacy. Upon complexation with Cu(II) or Ni(II), the conjugates catalyzed hydroxyl radical generation, and 22 and 22-Cu exhibited over 10-fold improved selectivity compared to the parent peptoid, likely due to reduced hydrophobicity. Cu-ATCUN-peptoids caused bacterial membrane disruption, aggregation of intracellular biomolecules, DNA oxidation, and lipid peroxidation, promoting multiple killing mechanisms. In a mouse sepsis model, 22 demonstrated antimicrobial and anti-inflammatory efficacy with low toxicity. This study suggests a strategy to improve the potency of membrane-acting antimicrobial peptoids by incorporating ROS-generating motifs, thereby adding oxidative damage as a killing mechanism.
Collapse
Affiliation(s)
- Dasom Song
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Byeongkwon Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Minsang Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jin Kyeong Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Jieun Choi
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Hyeju Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Sujin Shin
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Dongmin Shin
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Ho Yeon Nam
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Yunho Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Seongsoo Lee
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju 61751, Republic of Korea
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea
- Department of Bio-Analysis Science, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Yangmee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Jiwon Seo
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| |
Collapse
|
19
|
Jian T, Wang M, Hettige J, Li Y, Wang L, Gao R, Yang W, Zheng R, Zhong S, Baer MD, Noy A, De Yoreo JJ, Cai J, Chen CL. Self-Assembling and Pore-Forming Peptoids as Antimicrobial Biomaterials. ACS NANO 2024; 18:23077-23089. [PMID: 39146502 DOI: 10.1021/acsnano.4c05250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Bacterial infections have been a serious threat to mankind throughout history. Natural antimicrobial peptides (AMPs) and their membrane disruption mechanism have generated immense interest in the design and development of synthetic mimetics that could overcome the intrinsic drawbacks of AMPs, such as their susceptibility to proteolytic degradation and low bioavailability. Herein, by exploiting the self-assembly and pore-forming capabilities of sequence-defined peptoids, we discovered a family of low-molecular weight peptoid antibiotics that exhibit excellent broad-spectrum activity and high selectivity toward a panel of clinically significant Gram-positive and Gram-negative bacterial strains, including vancomycin-resistant Enterococcus faecalis (VREF), methicillin-resistant Staphylococcus aureus (MRSA), methicillin-resistant Staphylococcus epidermidis (MRSE), Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Tuning the peptoid side chain chemistry and structure enabled us to tune the efficacy of antimicrobial activity. Mechanistic studies using transmission electron microscopy (TEM), bacterial membrane depolarization and lysis, and time-kill kinetics assays along with molecular dynamics simulations reveal that these peptoids kill both Gram-positive and Gram-negative bacteria through a membrane disruption mechanism. These robust and biocompatible peptoid-based antibiotics can provide a valuable tool for combating emerging drug resistance.
Collapse
Affiliation(s)
- Tengyue Jian
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Minghui Wang
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Jeevapani Hettige
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Yuhao Li
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Lei Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| | - Ruixuan Gao
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Wenchao Yang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Renyu Zheng
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Shengliang Zhong
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| | - Marcel D Baer
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Aleksandr Noy
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
- School of Natural Sciences, University of California, Merced, Merced, California 95343, United States
| | - James J De Yoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Chun-Long Chen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
20
|
Moule MG, Benjamin AB, Burger ML, Herlan C, Lebedev M, Lin JS, Koster KJ, Wavare N, Adams LG, Bräse S, Munoz-Medina R, Cannon CL, Barron AE, Cirillo JD. Peptide-mimetic treatment of Pseudomonas aeruginosa in a mouse model of respiratory infection. Commun Biol 2024; 7:1033. [PMID: 39174819 PMCID: PMC11341572 DOI: 10.1038/s42003-024-06725-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024] Open
Abstract
The rise of drug resistance has become a global crisis, with >1 million deaths due to resistant bacterial infections each year. Pseudomonas aeruginosa, in particular, remains a serious problem with limited solutions due to complex resistance mechanisms that now lead to more than 32,000 multidrug-resistant (MDR) infections and over 2000 deaths in the U.S. annually. While the emergence of resistant bacteria has become ominously common, identification of useful new drug classes has been limited over the past over 40 years. We found that a potential novel therapeutic, the peptide-mimetic TM5, is effective at killing P. aeruginosa and displays sufficiently low toxicity in mammalian cells to allow for use in treatment of infections. Interestingly, TM5 kills P. aeruginosa more rapidly than traditional antibiotics, within 30-60 min in vitro, and is effective against a range of clinical isolates, including extensively drug resistant strains. In vivo, TM5 significantly reduced bacterial load in the lungs within 24 h compared to untreated mice and demonstrated few adverse effects. Taken together, these observations suggest that TM5 shows promise as an alternative therapy for MDR P. aeruginosa respiratory infections.
Collapse
Affiliation(s)
- Madeleine G Moule
- Department of Microbial Pathogenesis and Immunology, Texas A&M School of Medicine, Bryan, TX, USA
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Aaron B Benjamin
- Department of Microbial Pathogenesis and Immunology, Texas A&M School of Medicine, Bryan, TX, USA
| | - Melanie L Burger
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Claudine Herlan
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Maxim Lebedev
- Department of Microbial Pathogenesis and Immunology, Texas A&M School of Medicine, Bryan, TX, USA
| | - Jennifer S Lin
- Department of Bioengineering, Stanford University Schools of Medicine and of Engineering, Stanford, CA, USA
| | - Kent J Koster
- Department of Microbial Pathogenesis and Immunology, Texas A&M School of Medicine, Bryan, TX, USA
| | - Neha Wavare
- Department of Microbial Pathogenesis and Immunology, Texas A&M School of Medicine, Bryan, TX, USA
| | - Leslie G Adams
- Department of Veterinary Pathobiology, Texas A&M School of Veterinary Medicine & Biomedical Sciences, College Station, TX, USA
| | - Stefan Bräse
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Ricardo Munoz-Medina
- Department of Microbial Pathogenesis and Immunology, Texas A&M School of Medicine, Bryan, TX, USA
| | - Carolyn L Cannon
- Department of Microbial Pathogenesis and Immunology, Texas A&M School of Medicine, Bryan, TX, USA
| | - Annelise E Barron
- Department of Bioengineering, Stanford University Schools of Medicine and of Engineering, Stanford, CA, USA.
| | - Jeffrey D Cirillo
- Department of Microbial Pathogenesis and Immunology, Texas A&M School of Medicine, Bryan, TX, USA.
| |
Collapse
|
21
|
Bahatheg G, Kuppusamy R, Yasir M, Bridge S, Mishra SK, Cranfield CG, StC Black D, Willcox M, Kumar N. Dimeric peptoids as antibacterial agents. Bioorg Chem 2024; 147:107334. [PMID: 38583251 DOI: 10.1016/j.bioorg.2024.107334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Building upon our previous study on peptoid-based antibacterials which showed good activity against Gram-positive bacteria only, herein we report the synthesis of 34 dimeric peptoid compounds and the investigation of their activity against Gram-positive and Gram-negative pathogens. The newly designed peptoids feature a di-hydrophobic moiety incorporating phenyl, bromo-phenyl, and naphthyl groups, combined with variable lengths of cationic units such as amino and guanidine groups. The study also underscores the pivotal interplay between hydrophobicity and cationicity in optimizing efficacy against specific bacteria. The bromophenyl dimeric guanidinium peptoid compound 10j showed excellent activity against S. aureus 38 and E. coli K12 with MIC of 0.8 μg mL-1 and 6.2 μg mL-1, respectively. Further investigation into the mechanism of action revealed that the antibacterial effect might be attributed to the disruption of bacterial cell membranes, as suggested by tethered bilayer lipid membranes (tBLMs) and cytoplasmic membrane permeability studies. Notably, these promising antibacterial agents exhibited negligible toxicity against mammalian red blood cells. Additionally, the study explored the potential of 12 active compounds to disrupt established biofilms of S. aureus 38. The most effective biofilm disruptors were ethyl and octyl-naphthyl guanidinium peptoids (10c and 10 k). These compounds 10c and 10 k disrupted the established biofilms of S. aureus 38 with 51 % at 4x MIC (MIC = 17.6 μg mL-1 and 11.2 μg mL-1) and 56 %-58 % at 8x MIC (MIC = 35.2 μg mL-1 and 22.4 μg mL-1) respectively. Overall, this research contributes insights into the design principles of cationic dimeric peptoids and their antibacterial activity, with implications for the development of new antibacterial compounds.
Collapse
Affiliation(s)
- Ghayah Bahatheg
- School of Chemistry, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia; Department of Chemistry, Faculty of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Rajesh Kuppusamy
- School of Chemistry, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia; School of Optometry and Vision Science, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - Muhammad Yasir
- School of Optometry and Vision Science, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Samara Bridge
- School of Life Sciences, University of Technology Sydney, PO Box 123, Ultimo 2007, Australia
| | - Shyam K Mishra
- School of Optometry and Vision Science, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Charles G Cranfield
- School of Life Sciences, University of Technology Sydney, PO Box 123, Ultimo 2007, Australia
| | - David StC Black
- School of Chemistry, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Mark Willcox
- School of Optometry and Vision Science, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Naresh Kumar
- School of Chemistry, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| |
Collapse
|
22
|
Li S, Wang Z, Song S, Tang Y, Zhou J, Liu X, Zhang X, Chang M, Wang K, Peng Y. Membrane-Active All-Hydrocarbon-Stapled α-Helical Amphiphilic Tat Peptides: Broad-Spectrum Antibacterial Activity and Low Incidence of Drug Resistance. ACS Infect Dis 2024; 10:1839-1855. [PMID: 38725407 DOI: 10.1021/acsinfecdis.4c00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Multidrug resistance against conventional antibiotics has dramatically increased the difficulty of treatment and accelerated the need for novel antibacterial agents. The peptide Tat (47-57) is derived from the transactivating transcriptional activator of human immunodeficiency virus 1, which is well-known as a cell-penetrating peptide in mammalian cells. However, it is also reported that the Tat peptide (47-57) has antifungal activity. In this study, a series of membrane-active hydrocarbon-stapled α-helical amphiphilic peptides were synthesized and evaluated as antibacterial agents against Gram-positive and Gram-negative bacteria, including multidrug-resistant strains. The impact of hydrocarbon staple, the position of aromatic amino acid residue in the hydrophobic face, the various types of aromatic amino acids, and the hydrophobicity on bioactivity were also investigated and discussed in this study. Among those synthesized peptides, analogues P3 and P10 bearing a l-2-naphthylalanine (Φ) residue at the first position and a Tyr residue at the eighth position demonstrated the highest antimicrobial activity and negligible hemolytic toxicity. Notably, P3 and P10 showed obviously enhanced antimicrobial activity against multidrug-resistant bacteria, low drug resistance, high cell selectivity, extended half-life in plasma, and excellent performance against biofilm. The antibacterial mechanisms of P3 and P10 were also preliminarily investigated in this effort. In conclusion, P3 and P10 are promising antimicrobial alternatives for the treatment of the antimicrobial-resistance crisis.
Collapse
Affiliation(s)
- Shu Li
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources Ministry of Education, Shihezi University College of Pharmacy, Shihezi 832003, Xinjiang, P. R. China
| | - Zhaopeng Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Shibo Song
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yuanyuan Tang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jingjing Zhou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiaojing Liu
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xingjiao Zhang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Min Chang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Kairong Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yali Peng
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
23
|
Yang KC, Rivera Mirabal DM, Garcia RV, Vlahakis NW, Nguyen PH, Mengel SD, Mecklenburg M, Rodriguez JA, Shell MS, Hawker CJ, Segalman RA. Crystallization-Induced Flower-like Superstructures via Peptoid Helix Assembly. ACS Macro Lett 2024; 13:423-428. [PMID: 38529829 DOI: 10.1021/acsmacrolett.4c00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
We report a unique method to construct hierarchical superstructures based on molecular programming of peptidomimetics. Chiral steric hindrance in the polymer backbone stabilizes peptoid helices that crystallize into nanosheets during solvent evaporation. The stacking of nanosheets results in flower-like superstructures. The helical peptoid, nucleated from chiral monomers, is characterized as locally stiffer and more extended than the unstructured peptoid. Molecular dynamics (MD) simulations further suggest a constraint on the dihedral angles and a preference toward the trans configuration, resulting in an extended chain structure. The nanosheet assemblies at various length scales indicate an extent of intermolecular ordering amplified by chiral steric hindrance. Such molecular programming and processing protocols will benefit the future design and controlled assembly of hierarchical peptidomimetics.
Collapse
Affiliation(s)
- Kai-Chieh Yang
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Daniela M Rivera Mirabal
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Ronnie V Garcia
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Niko W Vlahakis
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Phong H Nguyen
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Shawn D Mengel
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Matthew Mecklenburg
- California NanoSystems Institute, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Jose A Rodriguez
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - M Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Craig J Hawker
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Rachel A Segalman
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
24
|
Sara M, Yasir M, Kalaiselvan P, Hui A, Kuppusamy R, Kumar N, Chakraborty S, Yu TT, Wong EHH, Molchanova N, Jenssen H, Lin JS, Barron AE, Willcox M. The activity of antimicrobial peptoids against multidrug-resistant ocular pathogens. Cont Lens Anterior Eye 2024; 47:102124. [PMID: 38341309 PMCID: PMC11024869 DOI: 10.1016/j.clae.2024.102124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/11/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Ocular infections caused by antibiotic-resistant pathogens can result in partial or complete vision loss. The development of pan-resistant microbial strains poses a significant challenge for clinicians as there are limited antimicrobial options available. Synthetic peptoids, which are sequence-specific oligo-N-substituted glycines, offer potential as alternative antimicrobial agents to target multidrug-resistant bacteria. METHODS The antimicrobial activity of synthesised peptoids against multidrug-resistant (MDR) ocular pathogens was evaluated using the microbroth dilution method. Hemolytic propensity was assessed using mammalian erythrocytes. Peptoids were also incubated with proteolytic enzymes, after which their minimum inhibitory activity against bacteria was re-evaluated. RESULTS Several alkylated and brominated peptoids showed good inhibitory activity against multidrug-resistant Pseudomonas aeruginosa strains at concentrations of ≤15 μg mL-1 (≤12 µM). Similarly, most brominated compounds inhibited the growth of methicillin-resistant Staphylococcus aureus at 1.9 to 15 μg mL-1 (12 µM). The N-terminally alkylated peptoids caused less toxicity to erythrocytes. The peptoid denoted as TM5 had a high therapeutic index, being non-toxic to either erythrocytes or corneal epithelial cells, even at 15 to 22 times its MIC. Additionally, the peptoids were resistant to protease activity. CONCLUSIONS Peptoids studied here demonstrated potent activity against various multidrug-resistant ocular pathogens. Their properties make them promising candidates for controlling vision-related morbidity associated with eye infections by antibiotic-resistant strains.
Collapse
Affiliation(s)
- Manjulatha Sara
- School of Optometry and Vision Science, UNSW Sydney, Australia.
| | - Muhammad Yasir
- School of Optometry and Vision Science, UNSW Sydney, Australia
| | | | - Alex Hui
- School of Optometry and Vision Science, UNSW Sydney, Australia; Centre for Ocular Research and Education, University of Waterloo, Canada
| | - Rajesh Kuppusamy
- School of Optometry and Vision Science, UNSW Sydney, Australia; School of Chemistry, UNSW Sydney, Australia
| | | | | | - Tsz Tin Yu
- School of Chemistry, UNSW Sydney, Australia
| | | | - Natalia Molchanova
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 4720, USA
| | - Håvard Jenssen
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Jennifer S Lin
- Department of Bioengineering, School of Medicine & School of Engineering, Stanford University, Stanford, CA 9430, USA
| | - Annelise E Barron
- Department of Bioengineering, School of Medicine & School of Engineering, Stanford University, Stanford, CA 9430, USA
| | - Mark Willcox
- School of Optometry and Vision Science, UNSW Sydney, Australia.
| |
Collapse
|
25
|
Chen Z, Wang L, He D, Liu Q, Han Q, Zhang J, Zhang AM, Song Y. Exploration of the Antibacterial and Anti-Inflammatory Activity of a Novel Antimicrobial Peptide Brevinin-1BW. Molecules 2024; 29:1534. [PMID: 38611812 PMCID: PMC11013252 DOI: 10.3390/molecules29071534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Antibiotic resistance has emerged as a grave threat to global public health, leading to an increasing number of treatment failures. Antimicrobial peptides (AMPs) are widely regarded as potential substitutes for traditional antibiotics since they are less likely to induce resistance when used. A novel AMP named Brevinin-1BW (FLPLLAGLAASFLPTIFCKISRKC) was obtained by the Research Center of Molecular Medicine of Yunnan Province from the skin of the Pelophylax nigromaculatus. Brevinia-1BW had effective inhibitory effects on Gram-positive bacteria, with a minimum inhibitory concentration (MIC) of 3.125 μg/mL against Enterococcus faecalis (ATCC 29212) and 6.25 μg/mL against both Staphylococcus aureus (ATCC 25923) and multidrug-resistant Staphylococcus aureus (ATCC 29213) but had weaker inhibitory effects on Gram-negative bacteria, with a MIC of ≥100 μg/mL. Studies using scanning electron microscopy (SEM) and flow cytometry have revealed that it exerts its antibacterial activity by disrupting bacterial membranes. Additionally, it possesses strong biofilm inhibitory and eradication activities as well as significant lipopolysaccharide (LPS)-binding activity. Furthermore, Brevinin-1BW has shown a significant anti-inflammatory effect in LPS-treated RAW264.7 cells. In conclusion, Brevinin-1BW is anticipated to be a promising clinical agent with potent anti-Gram-positive bacterial and anti-inflammatory properties.
Collapse
Affiliation(s)
- Zhizhi Chen
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650504, China; (Z.C.); (L.W.); (D.H.); (Q.L.); (Q.H.); (J.Z.); (A.-M.Z.)
| | - Lei Wang
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650504, China; (Z.C.); (L.W.); (D.H.); (Q.L.); (Q.H.); (J.Z.); (A.-M.Z.)
| | - Dongxia He
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650504, China; (Z.C.); (L.W.); (D.H.); (Q.L.); (Q.H.); (J.Z.); (A.-M.Z.)
| | - Qi Liu
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650504, China; (Z.C.); (L.W.); (D.H.); (Q.L.); (Q.H.); (J.Z.); (A.-M.Z.)
| | - Qinqin Han
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650504, China; (Z.C.); (L.W.); (D.H.); (Q.L.); (Q.H.); (J.Z.); (A.-M.Z.)
| | - Jinyang Zhang
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650504, China; (Z.C.); (L.W.); (D.H.); (Q.L.); (Q.H.); (J.Z.); (A.-M.Z.)
| | - A-Mei Zhang
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650504, China; (Z.C.); (L.W.); (D.H.); (Q.L.); (Q.H.); (J.Z.); (A.-M.Z.)
| | - Yuzhu Song
- Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650504, China; (Z.C.); (L.W.); (D.H.); (Q.L.); (Q.H.); (J.Z.); (A.-M.Z.)
- School of Medicine, Kunming University of Science and Technology, Kunming 650504, China
| |
Collapse
|
26
|
Lebedev M, Benjamin AB, Kumar S, Molchanova N, Lin JS, Koster KJ, Leibowitz JL, Barron AE, Cirillo JD. Antiviral Effect of Antimicrobial Peptoid TM9 and Murine Model of Respiratory Coronavirus Infection. Pharmaceutics 2024; 16:464. [PMID: 38675125 PMCID: PMC11054490 DOI: 10.3390/pharmaceutics16040464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
New antiviral agents are essential to improving treatment and control of SARS-CoV-2 infections that can lead to the disease COVID-19. Antimicrobial peptoids are sequence-specific oligo-N-substituted glycine peptidomimetics that emulate the structure and function of natural antimicrobial peptides but are resistant to proteases. We demonstrate antiviral activity of a new peptoid (TM9) against the coronavirus, murine hepatitis virus (MHV), as a closely related model for the structure and antiviral susceptibility profile of SARS-CoV-2. This peptoid mimics the human cathelicidin LL-37, which has also been shown to have antimicrobial and antiviral activity. In this study, TM9 was effective against three murine coronavirus strains, demonstrating that the therapeutic window is large enough to allow the use of TM9 for treatment. All three isolates of MHV generated infection in mice after 15 min of exposure by aerosol using the Madison aerosol chamber, and all three viral strains could be isolated from the lungs throughout the 5-day observation period post-infection, with the peak titers on day 2. MHV-A59 and MHV-A59-GFP were also isolated from the liver, heart, spleen, olfactory bulbs, and brain. These data demonstrate that MHV serves as a valuable natural murine model of coronavirus pathogenesis in multiple organs, including the brain.
Collapse
Affiliation(s)
- Maxim Lebedev
- School of Medicine, Texas A&M University, Bryan, TX 77807, USA; (M.L.); (A.B.B.); (S.K.); (K.J.K.); (J.L.L.)
| | - Aaron B. Benjamin
- School of Medicine, Texas A&M University, Bryan, TX 77807, USA; (M.L.); (A.B.B.); (S.K.); (K.J.K.); (J.L.L.)
| | - Sathish Kumar
- School of Medicine, Texas A&M University, Bryan, TX 77807, USA; (M.L.); (A.B.B.); (S.K.); (K.J.K.); (J.L.L.)
| | - Natalia Molchanova
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; (N.M.); (J.S.L.); (A.E.B.)
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jennifer S. Lin
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; (N.M.); (J.S.L.); (A.E.B.)
| | - Kent J. Koster
- School of Medicine, Texas A&M University, Bryan, TX 77807, USA; (M.L.); (A.B.B.); (S.K.); (K.J.K.); (J.L.L.)
| | - Julian L. Leibowitz
- School of Medicine, Texas A&M University, Bryan, TX 77807, USA; (M.L.); (A.B.B.); (S.K.); (K.J.K.); (J.L.L.)
| | - Annelise E. Barron
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; (N.M.); (J.S.L.); (A.E.B.)
| | - Jeffrey D. Cirillo
- School of Medicine, Texas A&M University, Bryan, TX 77807, USA; (M.L.); (A.B.B.); (S.K.); (K.J.K.); (J.L.L.)
| |
Collapse
|
27
|
Pereira AJ, Xing H, de Campos LJ, Seleem MA, de Oliveira KMP, Obaro SK, Conda-Sheridan M. Structure-Activity Relationship Study to Develop Peptide Amphiphiles as Species-Specific Antimicrobials. Chemistry 2024; 30:e202303986. [PMID: 38221408 PMCID: PMC10939825 DOI: 10.1002/chem.202303986] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Antimicrobial peptide amphiphiles (PAs) are a promising class of molecules that can disrupt the bacterial membrane or act as drug nanocarriers. In this study, we prepared 33 PAs to establish supramolecular structure-activity relationships. We studied the morphology and activity of the nanostructures against different Gram-positive and Gram-negative bacterial strains (such as Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Acinetobacter baumannii). Next, we used principal component analysis (PCA) to determine the key contributors to activity. We found that for S. aureus, the zeta potential was the major contributor to the activity while Gram-negative bacteria were more influenced by the partition coefficient (LogP) with the following order P. aeruginosa>E. coli>A. baumannii. We also performed a study of the mechanism of action of selected PAs on the bacterial membrane assessing the membrane permeability and depolarization, changes in zeta potential and overall integrity. We studied the toxicity of the nanostructures against mammalian cells. Finally, we performed an in vivo study using the wax moth larvae to determine the therapeutic efficacy of the active PAs. This study shows cationic PA nanostructures can be an intriguing platform for the development of nanoantibacterials.
Collapse
Affiliation(s)
- Aramis J. Pereira
- A. J. Pereira, Dr. H. Xing, L. J. de Campos, Prof. Dr. M. Conda-Sheridan, Department of Pharmaceutical Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE 68198 (USA)
| | - Huihua Xing
- A. J. Pereira, Dr. H. Xing, L. J. de Campos, Prof. Dr. M. Conda-Sheridan, Department of Pharmaceutical Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE 68198 (USA)
| | - Luana J. de Campos
- A. J. Pereira, Dr. H. Xing, L. J. de Campos, Prof. Dr. M. Conda-Sheridan, Department of Pharmaceutical Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE 68198 (USA)
| | - Mohamed A. Seleem
- Dr. M.A. Seleem, Department of Pharmaceutical Organic Chemistry, Al-Azhar University, Cairo, 4434003 (Egypt)
| | - Kelly M. P. de Oliveira
- Prof. Dr. K. M. P. de Oliveira, Department of Biological and Environmental Science, Federal University of Grande Dourados (UFGD), Dourados, MS 79804-970 (Brazil)
| | - Stephen K. Obaro
- Prof. Dr. S. K. Obaro, Division of Pediatric Infectious Diseases, University of Alabama at Birmingham (UAB), Birmingham, AL 35233 (USA), International Foundation against Infectious Diseases in Nigeria (IFAIN), Abuja, 900108 (Nigeria)
| | - Martin Conda-Sheridan
- A. J. Pereira, Dr. H. Xing, L. J. de Campos, Prof. Dr. M. Conda-Sheridan, Department of Pharmaceutical Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE 68198 (USA)
| |
Collapse
|
28
|
Murayama A, Igarashi H, Yamada N, Aly HH, Molchanova N, Lin JS, Nishitsuji H, Shimotohno K, Muramatsu M, Barron AE, Kato T. Antiviral effect of peptoids on hepatitis B virus infection in cell culture. Antiviral Res 2024; 223:105821. [PMID: 38272318 PMCID: PMC10939774 DOI: 10.1016/j.antiviral.2024.105821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Although antimicrobial peptides have been shown to inactivate viruses through disruption of their viral envelopes, clinical use of such peptides has been hampered by a number of factors, especially their enzymatically unstable structures. To overcome the shortcomings of antimicrobial peptides, peptoids (sequence-specific N-substituted glycine oligomers) mimicking antimicrobial peptides have been developed. We aimed to demonstrate the antiviral effects of antimicrobial peptoids against hepatitis B virus (HBV) in cell culture. The anti-HBV activity of antimicrobial peptoids was screened and evaluated in an infection system involving the HBV reporter virus and HepG2.2.15-derived HBV. By screening with the HBV reporter virus infection system, three (TM1, TM4, and TM19) of 12 peptoids were identified as reducing the infectivity of HBV, though they did not alter the production levels of HBs antigen in cell culture. These peptoids were not cytotoxic at the evaluated concentrations. Among these peptoids, TM19 was confirmed to reduce HBV infection most potently in a HepG2.2.15-derived HBV infection system that closely demonstrates authentic HBV infection. In cell culture, the most effective administration of TM19 was virus treatment at the infection step, but the reduction in HBV infectivity by pre-treatment or post-treatment of cells with TM19 was minimal. The disrupting effect of TM19 targeting infectious viral particles was clarified in iodixanol density gradient analysis. In conclusion, the peptoid TM19 was identified as a potent inhibitor of HBV. This peptoid prevents HBV infection by disrupting viral particles and is a candidate for a new class of anti-HBV reagents.
Collapse
Affiliation(s)
- Asako Murayama
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hitomi Igarashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Norie Yamada
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hussein Hassan Aly
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Natalia Molchanova
- Department of Bioengineering, Stanford University School of Medicine & School of Engineering, Stanford, CA, 94305, USA
| | - Jennifer S Lin
- Department of Bioengineering, Stanford University School of Medicine & School of Engineering, Stanford, CA, 94305, USA
| | - Hironori Nishitsuji
- Department of Virology, Fujita Health University School of Medicine, Aichi, Japan
| | - Kunitada Shimotohno
- Genome Medical Sciences Project, National Center for Global Health and Medicine, Chiba, Japan
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan; Department of Infectious Disease Research, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Annelise E Barron
- Department of Bioengineering, Stanford University School of Medicine & School of Engineering, Stanford, CA, 94305, USA
| | - Takanobu Kato
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan.
| |
Collapse
|
29
|
Zhao W, Lin JS, Nielsen JE, Sørensen K, Wadurkar AS, Ji J, Barron AE, Nangia S, Libera MR. Supramolecular Peptoid Structure Strengthens Complexation with Polyacrylic Acid Microgels. Biomacromolecules 2024; 25:1274-1281. [PMID: 38240722 PMCID: PMC11046531 DOI: 10.1021/acs.biomac.3c01242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
We have studied the complexation between cationic antimicrobials and polyanionic microgels to create self-defensive surfaces that responsively resist bacterial colonization. An essential property is the stable sequestration of the loaded (complexed) antimicrobial within the microgel under a physiological ionic strength. Here, we assess the complexation strength between poly(acrylic acid) [PAA] microgels and a series of cationic peptoids that display supramolecular structures ranging from an oligomeric monomer to a tetramer. We follow changes in loaded microgel diameter with increasing [Na+] as a measure of the counterion doping level. Consistent with prior findings on colistin/PAA complexation, we find that a monomeric peptoid is fully released at ionic strengths well below physiological conditions, despite its +5 charge. In contrast, progressively higher degrees of peptoid supramolecular structure display progressively greater resistance to salting out, which we attribute to the greater entropic stability associated with the complexation of multimeric peptoid bundles.
Collapse
Affiliation(s)
- Wenhan Zhao
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Jennifer S Lin
- Department of Bioengineering, School of Medicine & School of Engineering, Stanford University, Stanford, California 94305, United States
| | - Josefine Eilsø Nielsen
- Department of Bioengineering, School of Medicine & School of Engineering, Stanford University, Stanford, California 94305, United States
- Department of Science and Environment, Roskilde University, Roskilde DK-4000, Denmark
| | - Kristian Sørensen
- Department of Bioengineering, School of Medicine & School of Engineering, Stanford University, Stanford, California 94305, United States
| | - Anand Sunil Wadurkar
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Jingjing Ji
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Annelise E Barron
- Department of Bioengineering, School of Medicine & School of Engineering, Stanford University, Stanford, California 94305, United States
| | - Shikha Nangia
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Matthew R Libera
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| |
Collapse
|
30
|
Swanson HWA, van Teijlingen A, Lau KHA, Tuttle T. Martinoid: the peptoid martini force field. Phys Chem Chem Phys 2024; 26:4939-4953. [PMID: 38275003 DOI: 10.1039/d3cp05907c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Many exciting innovations have been made in the development of assembling peptoid materials. Typically, these have utilised large oligomeric sequences, though elsewhere the study of peptide self-assembly has yielded numerous examples of assemblers below 6-8 residues in length, evidencing that minimal peptoid assemblers are not only feasible but expected. A productive means of discovering such materials is through the application of in silico screening methods, which often benefit from the use of coarse-grained molecular dynamics (CG-MD) simulations. At the current level of development, CG models for peptoids are insufficient and we have been motivated to develop a Martini forcefield compatible peptoid model. A dual bottom-up and top-down parameterisation approach has been adopted, in keeping with the Martini parameterisation methodology, targeting the reproduction of atomistic MD dynamics and trends in experimentally obtained log D7.4 partition coefficients, respectively. This work has yielded valuable insights into the practicalities of parameterising peptoid monomers. Additionally, we demonstrate that our model can reproduce the experimental observations of two very different peptoid assembly systems, namely peptoid nanosheets and minimal tripeptoid assembly. Further we can simulate the peptoid helix secondary structure relevant for antimicrobial sequences. To be of maximum usefulness to the peptoid research community, we have developed freely available code to generate all requisite simulation files for the application of this model with Gromacs MD software.
Collapse
Affiliation(s)
- Hamish W A Swanson
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK.
| | - Alexander van Teijlingen
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK.
| | - King Hang Aaron Lau
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK.
| | - Tell Tuttle
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK.
| |
Collapse
|
31
|
Jørgensen J, Mood EH, Knap ASH, Nielsen SE, Nielsen PE, Żabicka D, Matias C, Domraceva I, Björkling F, Franzyk H. Polymyxins with Potent Antibacterial Activity against Colistin-Resistant Pathogens: Fine-Tuning Hydrophobicity with Unnatural Amino Acids. J Med Chem 2024; 67:1370-1383. [PMID: 38169430 PMCID: PMC10824244 DOI: 10.1021/acs.jmedchem.3c01908] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/14/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
In view of the increased prevalence of antimicrobial resistance among human pathogens, antibiotics against multidrug-resistant (MDR) bacteria are in urgent demand. In particular, the rapidly emerging resistance to last-resort antibiotic colistin, used for severe Gram-negative MDR infections, is critical. Here, a series of polymyxins containing unnatural amino acids were explored, and some analogues exhibited excellent antibacterial activity against Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa. Hydrophobicity of the compounds within this series (as measured by retention in reversed-phase analytical HPLC) exhibited a discernible correlation with their antimicrobial activity. This trend was particularly pronounced for colistin-resistant pathogens. The most active compounds demonstrated competitive activity against a panel of Gram-negative pathogens, while exhibiting low in vitro cytotoxicity. Importantly, most of these hits also retained (or even had increased) potency against colistin-susceptible strains. These findings infer that fine-tuning hydrophobicity may enable the design of polymyxin analogues with favorable activity profiles.
Collapse
Affiliation(s)
- Johan
Storm Jørgensen
- Center
for Peptide-Based Antibiotics, Department of Drug Design and Pharmacology,
Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen Ø, Denmark
| | - Elnaz Harifi Mood
- Center
for Peptide-Based Antibiotics, Department of Cellular and Molecular
Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, The Panum Building, 3C Blegdamsvej, DK-2200 Copenhagen N, Denmark
| | - Anne Sofie Holst Knap
- Center
for Peptide-Based Antibiotics, Department of Drug Design and Pharmacology,
Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen Ø, Denmark
| | - Simone Eidnes Nielsen
- Center
for Peptide-Based Antibiotics, Department of Drug Design and Pharmacology,
Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen Ø, Denmark
| | - Peter E. Nielsen
- Center
for Peptide-Based Antibiotics, Department of Cellular and Molecular
Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, The Panum Building, 3C Blegdamsvej, DK-2200 Copenhagen N, Denmark
| | - Dorota Żabicka
- Department
of Epidemiology and Clinical Microbiology, National Medicines Institute, ul. Chełmska 30/34, 00-725 Warsaw, Poland
| | - Carina Matias
- Department
of Bacteria, Parasites & Fungi, Statens
Serum Institut, Artillerivej 5, DK-2300 Copenhagen S, Denmark
| | - Ilona Domraceva
- Latvian
Institute of Organic Synthesis, Aizkraukles 21, 1006 Riga, Latvia
| | - Fredrik Björkling
- Center
for Peptide-Based Antibiotics, Department of Drug Design and Pharmacology,
Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen Ø, Denmark
| | - Henrik Franzyk
- Center
for Peptide-Based Antibiotics, Department of Drug Design and Pharmacology,
Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
32
|
Bonvin E, Personne H, Paschoud T, Reusser J, Gan BH, Luscher A, Köhler T, van Delden C, Reymond JL. Antimicrobial Peptide-Peptoid Hybrids with and without Membrane Disruption. ACS Infect Dis 2023; 9:2593-2606. [PMID: 38062792 PMCID: PMC10714400 DOI: 10.1021/acsinfecdis.3c00421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023]
Abstract
Among synthetic analogues of antimicrobial peptides (AMPs) under investigation to address antimicrobial resistance, peptoids (N-alkylated oligoglycines) have been reported to act both by membrane disruption and on intracellular targets. Here we gradually introduced peptoid units into the membrane-disruptive undecapeptide KKLLKLLKLLL to test a possible transition toward intracellular targeting. We found that selected hybrids containing up to five peptoid units retained the parent AMP's α-helical folding, membrane disruption, and antimicrobial effects against Gram-negative bacteria including multidrug-resistant (MDR) strains of Pseudomonas aeruginosa and Klebsiella pneumoniae while showing reduced hemolysis and cell toxicities. Furthermore, some hybrids containing as few as three peptoid units as well as the full peptoid lost folding, membrane disruption, hemolysis, and cytotoxicity but displayed strong antibacterial activity under dilute medium conditions typical for proline-rich antimicrobial peptides (PrAMPs), pointing to intracellular targeting. These findings parallel previous reports that partially helical amphiphilic peptoids are privileged oligomers for antibiotic development.
Collapse
Affiliation(s)
- Etienne Bonvin
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Hippolyte Personne
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Thierry Paschoud
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Jérémie Reusser
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Bee-Ha Gan
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Alexandre Luscher
- Department
of Microbiology and Molecular Medicine, University of Geneva, CH-1211 Geneva, Switzerland
- Service of
Infectious Diseases, University Hospital
of Geneva, CH-1211 Geneva, Switzerland
| | - Thilo Köhler
- Department
of Microbiology and Molecular Medicine, University of Geneva, CH-1211 Geneva, Switzerland
- Service of
Infectious Diseases, University Hospital
of Geneva, CH-1211 Geneva, Switzerland
| | - Christian van Delden
- Department
of Microbiology and Molecular Medicine, University of Geneva, CH-1211 Geneva, Switzerland
- Service of
Infectious Diseases, University Hospital
of Geneva, CH-1211 Geneva, Switzerland
| | - Jean-Louis Reymond
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| |
Collapse
|
33
|
Giorgio A, Del Gatto A, Pennacchio S, Saviano M, Zaccaro L. Peptoids: Smart and Emerging Candidates for the Diagnosis of Cancer, Neurological and Autoimmune Disorders. Int J Mol Sci 2023; 24:16333. [PMID: 38003529 PMCID: PMC10671428 DOI: 10.3390/ijms242216333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Early detection of fatal and disabling diseases such as cancer, neurological and autoimmune dysfunctions is still desirable yet challenging to improve quality of life and longevity. Peptoids (N-substituted glycine oligomers) are a relatively new class of peptidomimetics, being highly versatile and capable of mimicking the architectures and the activities of the peptides but with a marked resistance to proteases and a propensity to cross the cellular membranes over the peptides themselves. For these properties, they have gained an ever greater interest in applications in bioengineering and biomedical fields. In particular, the present manuscript is to our knowledge the only review focused on peptoids for diagnostic applications and covers the last decade's literature regarding peptoids as tools for early diagnosis of pathologies with a great impact on human health and social behavior. The review indeed provides insights into the peptoid employment in targeted cancer imaging and blood-based screening of neurological and autoimmune diseases, and it aims to attract the scientific community's attention to continuing and sustaining the investigation of these peptidomimetics in the diagnosis field considering their promising peculiarities.
Collapse
Affiliation(s)
- Anna Giorgio
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy;
| | - Annarita Del Gatto
- Institute of Biostructure and Bioimaging (IBB), CNR, 80131 Naples, Italy;
- Interuniversity Research Centre on Bioactive Peptides (CIRPeB) “Carlo Pedone”, University of Naples “Federico II”, 80131 Naples, Italy
| | - Simone Pennacchio
- Institute of Condensed Matter Chemistry and Technologies for Energy (ICMATE), CNR, 35127 Padova, Italy;
| | | | - Laura Zaccaro
- Institute of Biostructure and Bioimaging (IBB), CNR, 80131 Naples, Italy;
- Interuniversity Research Centre on Bioactive Peptides (CIRPeB) “Carlo Pedone”, University of Naples “Federico II”, 80131 Naples, Italy
| |
Collapse
|
34
|
Jiang TY, Ke YT, Wu YJ, Yao QJ, Shi BF. Pd(II)-Catalyzed atroposelective C-H olefination: synthesis of enantioenriched N-aryl peptoid atropisomers. Chem Commun (Camb) 2023; 59:13518-13521. [PMID: 37886838 DOI: 10.1039/d3cc04425d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Herein, we reported the synthesis of enantioenriched N-aryl peptoid atropisomers via Pd(II)-catalyzed atroposelective C-H olefination using the easily accessible L-pyroglutamic acid (L-pGlu-OH) as the chiral ligand. A series of optically active N-aryl peptoid atropisomers were obtained in synthetically useful yields with high enantioselectivities.
Collapse
Affiliation(s)
- Tian-Yu Jiang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
| | - Yi-Ting Ke
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
| | - Yong-Jie Wu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
| | - Qi-Jun Yao
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| |
Collapse
|
35
|
Moule MG, Benjamin AB, Buger ML, Herlan C, Lebedev M, Lin JS, Koster KJ, Wavare N, Adams LG, Bräse S, Barron AE, Cirillo JD. Peptide-mimetic treatment of Pseudomonas aeruginosa in a mouse model of respiratory infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.30.564794. [PMID: 37961726 PMCID: PMC10634950 DOI: 10.1101/2023.10.30.564794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The rise of drug resistance has become a global crisis, with >1 million deaths due to resistant bacterial infections each year. Pseudomonas aeruginosa, in particular, remains a serious problem with limited solutions due to complex resistance mechanisms that now lead to more than 32,000 multidrug-resistant (MDR) infections and over 2,000 deaths annually. While the emergence of resistant bacteria has become concerningly common, identification of useful new drug classes has been limited over the past 40+ years. We found that a potential novel therapeutic, the peptide-mimetic TM5, is effective at killing P. aeruginosa and displays sufficiently low toxicity for mammalian cells to allow for use in treatment of infections. Interestingly, TM5 kills P. aeruginosa more rapidly than traditional antibiotics, within 30-60 minutes in vitro , and is effective against a range of clinical isolates. In vivo , TM5 significantly reduced bacterial load in the lungs within 24 hours compared to untreated mice and demonstrated few adverse effects. Taken together, these observations suggest that TM5 shows promise as an alternative therapy for MDR P. aeruginosa respiratory infections.
Collapse
|
36
|
Zhu J, Chen S, Liu Z, Guo J, Cao S, Long S. Recent advances in anticancer peptoids. Bioorg Chem 2023; 139:106686. [PMID: 37399616 DOI: 10.1016/j.bioorg.2023.106686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/07/2023] [Accepted: 06/15/2023] [Indexed: 07/05/2023]
Abstract
Since most tumors become resistant to drugs in a gradual and irreversible manner, making treatment less effective over time, anticancer drugs require continuous development. Peptoids are a class of peptidomimetics that can be easily synthesized and optimized. They exhibit a number of unique characteristics, including protease resistance, non-immunogenicity, do not interfere with peptide functionality and skeleton polarity, and can adopt different conformations. They have been studied for their efficacy in different cancer therapies, and can be considered as a promising alternative molecular category for the development of anticancer drugs. Herein, we discuss the extensive recent advances in peptoids and peptoid hybrids in the treatment of cancers such as prostate, breast, lung, and other ones, in the hope of providing a reference for the further development of peptoid anticancer drugs.
Collapse
Affiliation(s)
- Jidan Zhu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China
| | - Siyu Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China
| | - Ziwei Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China
| | - Ju Guo
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China
| | - Shuang Cao
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China.
| | - Sihui Long
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei 430205, China.
| |
Collapse
|
37
|
Valdes O, Ali A, Carrasco-Sánchez V, Cabrera-Barjas G, Duran-Lara E, Ibrahim M, Ahmad S, Moreno R, Concepción O, de la Torre AF, Abrar M, Morales-Quintana L, Abril D. Ugi efficient synthesis of novel N-alkylated lipopeptides, antimicrobial properties and computational studies in Staphylococcus aureus via MurD antibacterial target. Comput Biol Chem 2023; 106:107932. [PMID: 37487249 DOI: 10.1016/j.compbiolchem.2023.107932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023]
Abstract
Lipopeptides are medicinally essential building blocks with strong hemolytic, antifungal and antibiotic potential. In the present research article, we are presenting our findings regarding the synthesis of N-alkylated lipopeptides via Ugi four-component approach, their antimicrobial potential against pathogenic (Gram-positive and Gram-negative) bacteria, as well as computational studies to investigate the compounds binding affinity and dynamic behavior with MurD antibacterial target. Molecular docking demonstrated the compounds have good binding ability with MurD enzyme. The FT94, FT95 and FT97 compounds revealed binding affinity scores of -8.585 kcal mol- 1, -7.660 kcal mol- 1 and -7.351 kcal mol- 1, respectively. Furthermore, dynamics analysis pointed the systems high structure dynamics. The docking and simulation results were validated by binding free energies, demonstrating solid intermolecular interactions and in the assay in vitro, the Minimal Inhibitory Concentration (MIC) of FT97 to Staphylococcus aureus (S. aureus) was 62.5 μg/mL. In conclusion, a moderate inhibitory response of peptoid FT97 was observed against the Gram-positive bacteria, S. aureus and B. cereus.
Collapse
Affiliation(s)
- Oscar Valdes
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, 3460000 Talca, Chile.
| | - Akbar Ali
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Verónica Carrasco-Sánchez
- Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, 2 Norte 681, Talca 3460000, Chile; Center for Nanomedicine, Diagnostic & Drug Development (ND3), Universidad de Talca, Talca 3460000, Chile
| | - Gustavo Cabrera-Barjas
- Facultad de Ciencias del Cuidado de la Salud, Universidad San Sebastian Campus Las Tres Pascualas, Lientur 1457, Concepción, CP 4080871, Chile
| | - Esteban Duran-Lara
- Center for Nanomedicine, Diagnostic & Drug Development (ND3), Universidad de Talca, Talca 3460000, Chile; Bio & Nano Materials Lab, Drug Delivery and Controlled Release, Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile
| | - Muhammad Ibrahim
- Department of Applied Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan
| | - Rachel Moreno
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Odette Concepción
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Alexander F de la Torre
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Muhammad Abrar
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Luis Morales-Quintana
- Multidisciplinary Agroindustry Research Laboratory, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca 3467987, Chile
| | - Diana Abril
- Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca 3460000, Chile
| |
Collapse
|
38
|
Cafaro V, Bosso A, Di Nardo I, D’Amato A, Izzo I, De Riccardis F, Siepi M, Culurciello R, D’Urzo N, Chiarot E, Torre A, Pizzo E, Merola M, Notomista E. The Antimicrobial, Antibiofilm and Anti-Inflammatory Activities of P13#1, a Cathelicidin-like Achiral Peptoid. Pharmaceuticals (Basel) 2023; 16:1386. [PMID: 37895857 PMCID: PMC10610514 DOI: 10.3390/ph16101386] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Cationic antimicrobial peptides (CAMPs) are powerful molecules with antimicrobial, antibiofilm and endotoxin-scavenging activities. These properties make CAMPs very attractive drugs in the face of the rapid increase in multidrug-resistant (MDR) pathogens, but they are limited by their susceptibility to proteolytic degradation. An intriguing solution to this issue could be the development of functional mimics of CAMPs with structures that enable the evasion of proteases. Peptoids (N-substituted glycine oligomers) are an important class of peptidomimetics with interesting benefits: easy synthetic access, intrinsic proteolytic stability and promising bioactivities. Here, we report the characterization of P13#1, a 13-residue peptoid specifically designed to mimic cathelicidins, the best-known and most widespread family of CAMPs. P13#1 showed all the biological activities typically associated with cathelicidins: bactericidal activity over a wide spectrum of strains, including several ESKAPE pathogens; the ability to act in combination with different classes of conventional antibiotics; antibiofilm activity against preformed biofilms of Pseudomonas aeruginosa, comparable to that of human cathelicidin LL-37; limited toxicity; and an ability to inhibit LPS-induced proinflammatory effects which is comparable to that of "the last resource" antibiotic colistin. We further studied the interaction of P13#1 with SDS, LPSs and bacterial cells by using a fluorescent version of P13#1. Finally, in a subcutaneous infection mouse model, it showed antimicrobial and anti-inflammatory activities comparable to ampicillin and gentamicin without apparent toxicity. The collected data indicate that P13#1 is an excellent candidate for the formulation of new antimicrobial therapies.
Collapse
Affiliation(s)
- Valeria Cafaro
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (V.C.); (A.B.); (I.D.N.); (M.S.); (R.C.); (N.D.); (E.P.)
| | - Andrea Bosso
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (V.C.); (A.B.); (I.D.N.); (M.S.); (R.C.); (N.D.); (E.P.)
| | - Ilaria Di Nardo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (V.C.); (A.B.); (I.D.N.); (M.S.); (R.C.); (N.D.); (E.P.)
| | - Assunta D’Amato
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, 84084 Fisciano, Italy; (A.D.); (I.I.); (F.D.R.)
| | - Irene Izzo
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, 84084 Fisciano, Italy; (A.D.); (I.I.); (F.D.R.)
| | - Francesco De Riccardis
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, 84084 Fisciano, Italy; (A.D.); (I.I.); (F.D.R.)
| | - Marialuisa Siepi
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (V.C.); (A.B.); (I.D.N.); (M.S.); (R.C.); (N.D.); (E.P.)
| | - Rosanna Culurciello
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (V.C.); (A.B.); (I.D.N.); (M.S.); (R.C.); (N.D.); (E.P.)
| | - Nunzia D’Urzo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (V.C.); (A.B.); (I.D.N.); (M.S.); (R.C.); (N.D.); (E.P.)
| | | | | | - Elio Pizzo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (V.C.); (A.B.); (I.D.N.); (M.S.); (R.C.); (N.D.); (E.P.)
| | - Marcello Merola
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (V.C.); (A.B.); (I.D.N.); (M.S.); (R.C.); (N.D.); (E.P.)
| | - Eugenio Notomista
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (V.C.); (A.B.); (I.D.N.); (M.S.); (R.C.); (N.D.); (E.P.)
| |
Collapse
|
39
|
Shah SKH, Modi U, Patel K, James A, N S, De S, Vasita R, Prabhakaran P. Site-selective post-modification of short α/γ hybrid foldamers: a powerful approach for molecular diversification towards biomedical applications. Biomater Sci 2023; 11:6210-6222. [PMID: 37526301 DOI: 10.1039/d3bm00766a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
The extensive research work in the exhilarating area of foldamers (artificial oligomers possessing well-defined conformation in solution) has shown them to be promising candidates in biomedical research and materials science. The post-modification approach is successful in peptides, proteins, and polymers to modulate their functions. To the best of our knowledge, site-selective post-modification of a foldamer affording molecules with different pendant functional groups within a molecular scaffold has not yet been reported. We demonstrate for the first time that late-stage site-selective functionalization of short hybrid oligomers is an efficient approach to afford molecules with diverse functional groups. In this article, we report the design and synthesis of hybrid peptides with repeating units of leucine (Leu) and 5-amino salicylic acid (ASA), regioselective post-modification, conformational analyses (based on solution-state NMR, circular dichroism and computational studies) and morphological studies of the peptide nanostructures. As a proof-of-concept, we demonstrate the applications of differently modified peptides as drug delivery agents, imaging probes, and anticancer agents. The novel feature of the work is that the difference in reactivity of two phenolic OH groups in short biomimetic peptides was utilized to achieve site-selective post-modification. It is challenging to apply the same approach to short α-peptides having a poor folding tendency, and their post-functionalization may considerably affect their conformation.
Collapse
Affiliation(s)
| | - Unnati Modi
- School of Life Sciences, Central University of Gujarat, Gandhinagar 382030, India
| | - Karma Patel
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar 382030, India.
| | - Anjima James
- Department of Applied Chemistry, Cochin University of Science and Technology, Kochi 682022, India
| | - Sreerag N
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar 382030, India.
| | - Susmita De
- Department of Chemistry, University of Calicut, Calicut 673635, India
| | - Rajesh Vasita
- School of Life Sciences, Central University of Gujarat, Gandhinagar 382030, India
| | - Panchami Prabhakaran
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar 382030, India.
| |
Collapse
|
40
|
Cavallazzi Sebold B, Li J, Ni G, Fu Q, Li H, Liu X, Wang T. Going Beyond Host Defence Peptides: Horizons of Chemically Engineered Peptides for Multidrug-Resistant Bacteria. BioDrugs 2023; 37:607-623. [PMID: 37300748 PMCID: PMC10432368 DOI: 10.1007/s40259-023-00608-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 06/12/2023]
Abstract
Multidrug-resistant (MDR) bacteria are considered a health threat worldwide, and this problem is set to increase over the decades. The ESKAPE, a group of six pathogens including Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp. is the major source of concern due to their high death incidence and nosocomial acquired infection. Host defence peptides (HDPs) are a class of ribosomally synthesised peptides that have shown promising results in combating MDR, including the ESKAPE group, in- and outside bacterial biofilms. However, their poor pharmacokinetics in physiological mediums may impede HDPs from becoming viable clinical candidates. To circumvent this problem, chemical engineering of HDPs has been seen as an emergent approach to not only improve their pharmacokinetics but also their efficacy against pathogens. In this review, we explore several chemical modifications of HDPs that have shown promising results, especially against ESKAPE pathogens, and provide an overview of the current findings with respect to each modification.
Collapse
Affiliation(s)
- Bernardo Cavallazzi Sebold
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia
- School of Science, Engineering and Technology, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia
| | - Junjie Li
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China
| | - Guoying Ni
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, 528000, Guangdong, China
| | - Quanlan Fu
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China
| | - Hejie Li
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia
- School of Science, Engineering and Technology, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia
| | - Xiaosong Liu
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China.
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, 528000, Guangdong, China.
| | - Tianfang Wang
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia.
- School of Science, Engineering and Technology, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia.
| |
Collapse
|
41
|
Davern CM, Proulx C. Late-Stage Chloride Displacements Enable Access to Peptoids with cis-Inducing Alkylammonium Side Chains. Org Lett 2023; 25:6195-6199. [PMID: 37578853 PMCID: PMC10903636 DOI: 10.1021/acs.orglett.3c02393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
The synthesis of peptoids possessing multiple cis-inducing monomers with alkylammonium side chains is reported, where chloropropyl side chains are diversified on a solid support by late-stage SN2 displacements with amines. The conditions were optimized for a wide variety of primary, secondary, and tertiary alkyl amine nucleophiles. We also demonstrated that multiple chloride displacements could be achieved on sequences possessing trans-inducing N-aryl- and N-imino glycine monomers.
Collapse
Affiliation(s)
- Carolynn M. Davern
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA
| | - Caroline Proulx
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA
| |
Collapse
|
42
|
Alexander S, Moghadam MG, Rothenbroker M, Y T Chou L. Addressing the in vivo delivery of nucleic-acid nanostructure therapeutics. Adv Drug Deliv Rev 2023; 199:114898. [PMID: 37230305 DOI: 10.1016/j.addr.2023.114898] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/02/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
DNA and RNA nanostructures are being investigated as therapeutics, vaccines, and drug delivery systems. These nanostructures can be functionalized with guests ranging from small molecules to proteins with precise spatial and stoichiometric control. This has enabled new strategies to manipulate drug activity and to engineer devices with novel therapeutic functionalities. Although existing studies have offered encouraging in vitro or pre-clinical proof-of-concepts, establishing mechanisms of in vivo delivery is the new frontier for nucleic-acid nanotechnologies. In this review, we first provide a summary of existing literature on the in vivo uses of DNA and RNA nanostructures. Based on their application areas, we discuss current models of nanoparticle delivery, and thereby highlight knowledge gaps on the in vivo interactions of nucleic-acid nanostructures. Finally, we describe techniques and strategies for investigating and engineering these interactions. Together, we propose a framework to establish in vivo design principles and advance the in vivo translation of nucleic-acid nanotechnologies.
Collapse
Affiliation(s)
- Shana Alexander
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | | | - Meghan Rothenbroker
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Leo Y T Chou
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada.
| |
Collapse
|
43
|
Kim M, Cheon Y, Shin D, Choi J, Nielsen JE, Jeong MS, Nam HY, Kim S, Lund R, Jenssen H, Barron AE, Lee S, Seo J. Real-Time Monitoring of Multitarget Antimicrobial Mechanisms of Peptoids Using Label-Free Imaging with Optical Diffraction Tomography. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302483. [PMID: 37341246 PMCID: PMC10460844 DOI: 10.1002/advs.202302483] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Indexed: 06/22/2023]
Abstract
Antimicrobial peptides (AMPs) are promising therapeutics in the fight against multidrug-resistant bacteria. As a mimic of AMPs, peptoids with N-substituted glycine backbone have been utilized for antimicrobials with resistance against proteolytic degradation. Antimicrobial peptoids are known to kill bacteria by membrane disruption; however, the nonspecific aggregation of intracellular contents is also suggested as an important bactericidal mechanism. Here,structure-activity relationship (SAR) of a library of indole side chain-containing peptoids resulting in peptoid 29 as a hit compound is investigated. Then, quantitative morphological analyses of live bacteria treated with AMPs and peptoid 29 in a label-free manner using optical diffraction tomography (ODT) are performed. It is unambiguously demonstrated that both membrane disruption and intracellular biomass flocculation are primary mechanisms of bacterial killing by monitoring real-time morphological changes of bacteria. These multitarget mechanisms and rapid action can be a merit for the discovery of a resistance-breaking novel antibiotic drug.
Collapse
Affiliation(s)
- Minsang Kim
- Department of ChemistryGwangju Institute of Science and Technology (GIST)123, Cheomdangwagi‐ro, Buk‐guGwangju61005Republic of Korea
| | - Yeongmi Cheon
- Gwangju CenterKorea Basic Science Institute (KBSI)49, Dosicheomdansaneop‐ro, Nam‐guGwangju61751Republic of Korea
- Laboratory of Molecular BiochemistryChonnam National University77, Yongbong‐ro, Buk‐guGwangju61186Republic of Korea
- Department of Microbiology and Molecular BiologyChungnam National University99, Daehak‐ro, Yuseong‐guDaejeon34134Republic of Korea
| | - Dongmin Shin
- Department of ChemistryGwangju Institute of Science and Technology (GIST)123, Cheomdangwagi‐ro, Buk‐guGwangju61005Republic of Korea
| | - Jieun Choi
- Department of ChemistryGwangju Institute of Science and Technology (GIST)123, Cheomdangwagi‐ro, Buk‐guGwangju61005Republic of Korea
| | - Josefine Eilsø Nielsen
- Department of Science and EnvironmentRoskilde UniversityUniversitetsvej 1Roskilde4000Denmark
- Department of Bioengineering, Schools of Medicine and EngineeringStanford University443 Via OrtegaStanfordCalifornia94305United States
| | - Myeong Seon Jeong
- Chuncheon CenterKorea Basic Science Institute (KBSI)1, Kangwondaehak‐gil, Chuncheon‐siGangwon‐do24341Republic of Korea
| | - Ho Yeon Nam
- Department of ChemistryGwangju Institute of Science and Technology (GIST)123, Cheomdangwagi‐ro, Buk‐guGwangju61005Republic of Korea
| | - Sung‐Hak Kim
- Laboratory of Molecular BiochemistryChonnam National University77, Yongbong‐ro, Buk‐guGwangju61186Republic of Korea
| | - Reidar Lund
- Department of ChemistryUniversity of OsloProblemveien 7Oslo0315Norway
| | - Håvard Jenssen
- Department of Science and EnvironmentRoskilde UniversityUniversitetsvej 1Roskilde4000Denmark
| | - Annelise E. Barron
- Department of Bioengineering, Schools of Medicine and EngineeringStanford University443 Via OrtegaStanfordCalifornia94305United States
| | - Seongsoo Lee
- Gwangju CenterKorea Basic Science Institute (KBSI)49, Dosicheomdansaneop‐ro, Nam‐guGwangju61751Republic of Korea
- Department of Systems BiotechnologyChung‐Ang UniversityAnseong‐siGyeonggi‐do17546Republic of Korea
| | - Jiwon Seo
- Department of ChemistryGwangju Institute of Science and Technology (GIST)123, Cheomdangwagi‐ro, Buk‐guGwangju61005Republic of Korea
| |
Collapse
|
44
|
Castro TG, Melle-Franco M, Sousa CEA, Cavaco-Paulo A, Marcos JC. Non-Canonical Amino Acids as Building Blocks for Peptidomimetics: Structure, Function, and Applications. Biomolecules 2023; 13:981. [PMID: 37371561 PMCID: PMC10296201 DOI: 10.3390/biom13060981] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
This review provides a fresh overview of non-canonical amino acids and their applications in the design of peptidomimetics. Non-canonical amino acids appear widely distributed in nature and are known to enhance the stability of specific secondary structures and/or biological function. Contrary to the ubiquitous DNA-encoded amino acids, the structure and function of these residues are not fully understood. Here, results from experimental and molecular modelling approaches are gathered to classify several classes of non-canonical amino acids according to their ability to induce specific secondary structures yielding different biological functions and improved stability. Regarding side-chain modifications, symmetrical and asymmetrical α,α-dialkyl glycines, Cα to Cα cyclized amino acids, proline analogues, β-substituted amino acids, and α,β-dehydro amino acids are some of the non-canonical representatives addressed. Backbone modifications were also examined, especially those that result in retro-inverso peptidomimetics and depsipeptides. All this knowledge has an important application in the field of peptidomimetics, which is in continuous progress and promises to deliver new biologically active molecules and new materials in the near future.
Collapse
Affiliation(s)
- Tarsila G. Castro
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (T.G.C.); (A.C.-P.)
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| | - Manuel Melle-Franco
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Cristina E. A. Sousa
- BioMark Sensor Research—School of Engineering of the Polytechnic Institute of Porto, 4249-015 Porto, Portugal;
| | - Artur Cavaco-Paulo
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (T.G.C.); (A.C.-P.)
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| | - João C. Marcos
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
45
|
Nyembe PL, Ntombela T, Makatini MM. Review: Structure-Activity Relationship of Antimicrobial Peptoids. Pharmaceutics 2023; 15:pharmaceutics15051506. [PMID: 37242748 DOI: 10.3390/pharmaceutics15051506] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Due to their broad-spectrum activity against Gram-negative and Gram-positive bacteria, natural antimicrobial peptides (AMPs) and their synthetic analogs have emerged as prospective therapies for treating illnesses brought on by multi-drug resistant pathogens. To overcome the limitations of AMPs, such as protease degradation, oligo-N-substituted glycines (peptoids) are a promising alternative. Despite having the same backbone atom sequence as natural peptides, peptoid structures are more stable because, unlike AMP, their functional side chains are attached to the backbone nitrogen (N)-atom rather than the alpha carbon atom. As a result, peptoid structures are less susceptible to proteolysis and enzymatic degradation. The advantages of AMPs, such as hydrophobicity, cationic character, and amphipathicity, are mimicked by peptoids. Furthermore, structure-activity relationship studies (SAR) have shown that tuning the structure of peptoids is a crucial step in developing effective antimicrobials.
Collapse
Affiliation(s)
- Priscilla L Nyembe
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Thandokuhle Ntombela
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Maya M Makatini
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa
| |
Collapse
|
46
|
Wang Y, Xue M, Gao R, Chakraborty S, Wang S, Zhao X, Gu M, Cao C, Sun X, Cai J. Short, Lipidated Dendrimeric γ-AApeptides as New Antimicrobial Peptidomimetics. Int J Mol Sci 2023; 24:6407. [PMID: 37047380 PMCID: PMC10094648 DOI: 10.3390/ijms24076407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Antibiotic resistance is one of the most significant issues encountered in global health. There is an urgent demand for the development of a new generation of antibiotic agents combating the emergence of drug resistance. In this article, we reported the design of lipidated dendrimeric γ-AApeptides as a new class of antimicrobial agents. These AApeptides showed excellent potency and broad-spectrum activity against both Gram-positive bacteria and Gram-negative bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). The mechanistic studies revealed that the dendrimeric AApeptides could kill bacteria rapidly through the permeabilization of bacterial membranes, analogous to host-defense peptides (HDPs). These dendrimers also did not induce antibiotic resistance readily. The easy access to the synthesis, together with their potent and broad-spectrum activity, make these lipidated dendrimeric γ-AApeptides a new generation of antibacterial agents.
Collapse
Affiliation(s)
- Yafeng Wang
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620, USA
| | - Menglin Xue
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620, USA
| | - Ruixuan Gao
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620, USA
| | - Soumyadeep Chakraborty
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd., Tampa, FL 33612, USA
| | - Shaohui Wang
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd., Tampa, FL 33612, USA
| | - Xue Zhao
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd., Tampa, FL 33612, USA
| | - Meng Gu
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd., Tampa, FL 33612, USA
| | - Chuanhai Cao
- College of Pharmacy, University of South Florida, 12901 Bruce B Downs Blvd., Tampa, FL 33612, USA
| | - Xingmin Sun
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd., Tampa, FL 33612, USA
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620, USA
| |
Collapse
|
47
|
Saibu OA, Hammed SO, Oladipo OO, Odunitan TT, Ajayi TM, Adejuyigbe AJ, Apanisile BT, Oyeneyin OE, Oluwafemi AT, Ayoola T, Olaoba OT, Alausa AO, Omoboyowa DA. Protein-protein interaction and interference of carcinogenesis by supramolecular modifications. Bioorg Med Chem 2023; 81:117211. [PMID: 36809721 DOI: 10.1016/j.bmc.2023.117211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/18/2023]
Abstract
Protein-protein interactions (PPIs) are essential in normal biological processes, but they can become disrupted or imbalanced in cancer. Various technological advancements have led to an increase in the number of PPI inhibitors, which target hubs in cancer cell's protein networks. However, it remains difficult to develop PPI inhibitors with desired potency and specificity. Supramolecular chemistry has only lately become recognized as a promising method to modify protein activities. In this review, we highlight recent advances in the use of supramolecular modification approaches in cancer therapy. We make special note of efforts to apply supramolecular modifications, such as molecular tweezers, to targeting the nuclear export signal (NES), which can be used to attenuate signaling processes in carcinogenesis. Finally, we discuss the strengths and weaknesses of using supramolecular approaches to targeting PPIs.
Collapse
Affiliation(s)
- Oluwatosin A Saibu
- Department of Environmental Toxicology, Universitat Duisburg-Essen, NorthRhine-Westphalia, Germany
| | - Sodiq O Hammed
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria; Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Oladapo O Oladipo
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.
| | - Tope T Odunitan
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria; Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Temitope M Ajayi
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Aderonke J Adejuyigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Boluwatife T Apanisile
- Department of Nutrition and Dietetics, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Oluwatoba E Oyeneyin
- Theoretical and Computational Chemistry Unit, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria
| | - Adenrele T Oluwafemi
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Tolulope Ayoola
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Olamide T Olaoba
- Department of Molecular Pathogenesis and Therapeutics, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Abdullahi O Alausa
- Department of Molecular Biology and Biotechnology, ITMO University, St Petersburg, Russia
| | - Damilola A Omoboyowa
- Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria
| |
Collapse
|
48
|
Lee MF, Poh CL. Strategies to improve the physicochemical properties of peptide-based drugs. Pharm Res 2023; 40:617-632. [PMID: 36869247 DOI: 10.1007/s11095-023-03486-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/17/2023] [Indexed: 03/05/2023]
Abstract
Peptides are a rapid-growing class of therapeutics with unique and desirable physicochemical properties. Due to disadvantages such as low membrane permeability and susceptibility to proteolytic degradation, peptide-based drugs have limited bioavailability, a short half-life, and rapid in vivo elimination. Various strategies can be applied to improve the physicochemical properties of peptide-based drugs to overcome limitations such as limited tissue residence time, metabolic instability, and low permeability. Applied strategies including backbone modifications, side chain modifications, conjugation with polymers, modification of peptide termini, fusion to albumin, conjugation with the Fc portion of antibodies, cyclization, stapled peptides, pseudopeptides, cell-penetrating peptide conjugates, conjugation with lipids, and encapsulation in nanocarriers are discussed.
Collapse
Affiliation(s)
- Michelle Felicia Lee
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, 5, Jalan Universiti, Selangor 47500, Bandar Sunway, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, 5, Jalan Universiti, Selangor 47500, Bandar Sunway, Malaysia.
| |
Collapse
|
49
|
Yang W, Seo J, Kim JH. Protein-mimetic peptoid nanoarchitectures for pathogen recognition and neutralization. NANOSCALE 2023; 15:975-986. [PMID: 36541218 DOI: 10.1039/d2nr05326h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Recent outbreaks of both new and existing infectious pathogens have threatened healthcare systems around the world. Therefore, it is vital to detect and neutralize pathogens to prevent their spread and treat infected patients. This consideration has led to the development of biosensors and antibiotics inspired by the structure and function of antibodies and antimicrobial peptides (AMPs), which constitute adaptive and innate immunity, efficiently protecting the human body against invading pathogens. Herein, we provide an overview of recent advances in the detection and neutralization of pathogens using protein-mimetic peptoid nanoarchitectures. Peptoids are bio-inspired and sequence-defined polymers composed of repeating N-substituted glycine units. They can spontaneously fold into well-defined three-dimensional nanostructures that encode chemical information depending on their sequences. Loop-functionalized peptoid nanosheets have been constructed by mimicking antibodies containing chemically variable loops as binding motifs for their respective target pathogen. Furthermore, by mimicking the cationic amphipathic features of natural AMPs, helical peptoids and their assemblies have been developed to achieve selective anti-infective activity owing to their intrinsic ability to interact with bacterial membranes and viral envelopes. We believe that this mini-review furnishes in-depth insight into how to construct protein-like nanostructures via the self-assembly of peptoids for application in the detection of pathogens and the treatment of infectious diseases for future healthcare applications.
Collapse
Affiliation(s)
- Woojin Yang
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea.
| | - Jiwon Seo
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Jae Hong Kim
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea.
| |
Collapse
|
50
|
Yang W, Choi J, Choi SH, Shin S, Park SM, Lee Y, Seo J. A conjugate of chlorin e6 and cationic amphipathic peptoid: a dual antimicrobial and anticancer photodynamic therapy agent. Photochem Photobiol Sci 2022; 22:655-667. [PMID: 36481980 DOI: 10.1007/s43630-022-00343-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/08/2022] [Indexed: 12/13/2022]
Abstract
Cationic amphipathic structures are often utilized in natural membrane-active host-defense peptides. Negatively charged surface membranes of rapidly proliferating bacterial and cancer cells have been targeted by various synthetic peptides and peptidomimetics adopting the structural motif. Herein, we synthesized a set of conjugates composed of cationic amphipathic peptoids (i.e., oligo-N-substituted glycines) and a chlorin photosensitizer, named chlorin e6 (Ce6)-peptoid conjugates (CPCs). Among the nine CPCs, CPC 7, composed of Ce6, a PEG linker, and guanidine-rich helical amphipathic peptoids, exhibited a distinct photoresponsive inactivation of Gram-positive and Gram-negative bacteria. Subsequent studies showed that CPC 7 effectively killed various cancer cells after irradiation with red light (655 nm), suggesting the potential of CPC 7 as a dual antimicrobial and anticancer agent. Confocal laser scanning microscopy and flow cytometry data suggested that CPC 7 could induce apoptotic cell death. Our results show the potential of peptoid-based photosensitizer conjugates as a versatile platform for antimicrobial and anticancer photodynamic therapy agents and peptoid therapeutics.
Collapse
|