1
|
Guzmán-Dinamarca B, Conejeros R, Rivas-Astroza M. Dynamic metabolic regulation of histone modifications during the yeast metabolic cycle. PLoS One 2025; 20:e0323242. [PMID: 40392806 PMCID: PMC12091797 DOI: 10.1371/journal.pone.0323242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 04/04/2025] [Indexed: 05/22/2025] Open
Abstract
Eukaryotes achieve a wide range of stable phenotypes by virtue of epigenetic modifications. However, what drives epigenetic diversification in the first place remains an open question. Here, we investigated the dynamic interplay between the production fluxes of epigenetic cosubstrates and histone post-translation modifications (PTMs) in Saccharomyces cerevisiae's Yeast Metabolic Cycle (YMC). We developed a novel approach integrating flux analysis with transcriptomic data to investigate the production fluxes of acetyl-CoA and SAM and their influence on histone marks H3K9Ac and H3K4me3. Our results show that acetyl-CoA and SAM flux dynamics are asynchronous during the YMC, suggesting distinct regulatory roles. Gene ontology analysis revealed that genes whose enrichment of H3K9Ac correlates with acetyl-CoA dynamics are associated with metabolic functions, while genes whose enrichment of H3K4me3 correlates with SAM dynamics are associated with translation processes. Finally, we found evidence that chromatin accessibility on genes promoter regions was a precondition for the metabolic fluxes influencing the enrichment of H3K4me3 and H3K9Ac. These findings support the concept that metabolism provides timely cosubstrates essential for histone PTMs.
Collapse
Affiliation(s)
| | - Raúl Conejeros
- Pontificia Universidad Católica de Valparaíso, Escuela de Ingeniería Bioquímica, Valparaíso, Chile
| | - Marcelo Rivas-Astroza
- Universidad Tecnológica Metropolitana, Departamento de Biotecnología, Santiago, Chile
| |
Collapse
|
2
|
Yang S, Wang Y, Huang S, Zhang T, Xu P, Jiang C, Ye C. Temporal oscillation of phospholipids promotes metabolic efficiency. Nat Chem Biol 2025:10.1038/s41589-025-01885-5. [PMID: 40229581 DOI: 10.1038/s41589-025-01885-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 03/13/2025] [Indexed: 04/16/2025]
Abstract
Biological timing is a fundamental aspect of life, facilitating efficient resource use and adaptation to environmental changes. In this study, we unveil robust temporal oscillations in phospholipid abundance as a function of the yeast metabolic cycle (YMC). These fluctuations, occurring throughout the cell division cycle, demonstrate a systematic segregation of various phospholipid species over time. Such segregation corresponds logically with their physical properties, generating entropic forces for membrane dynamics and biogenesis. Within the YMC, the temporal oscillations in phosphatidylethanolamine and phosphatidylcholine levels require biosynthesis from triacylglycerol as a crucial lipid reservoir, with phosphatidylinositol and phosphatidylserine synthesized primarily de novo. The orchestrated regulation of gene expression in biosynthesis pathways ensures precise temporal control of phospholipid dynamics, ultimately promoting metabolic efficiency.
Collapse
Affiliation(s)
- Sen Yang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yuan Wang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Sisi Huang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Tong Zhang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Pinglong Xu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Chao Jiang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Cunqi Ye
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Hainan Institute, Zhejiang University, Sanya, China.
| |
Collapse
|
3
|
De la Fuente IM, Cortes JM, Malaina I, Pérez-Yarza G, Martinez L, López JI, Fedetz M, Carrasco-Pujante J. The main sources of molecular organization in the cell. Atlas of self-organized and self-regulated dynamic biostructures. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 195:167-191. [PMID: 39805422 DOI: 10.1016/j.pbiomolbio.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
One of the most important goals of contemporary biology is to understand the principles of the molecular order underlying the complex dynamic architecture of cells. Here, we present an overview of the main driving forces involved in the cellular molecular complexity and in the emergent functional dynamic structures, spanning from the most basic molecular organization levels to the complex emergent integrative systemic behaviors. First, we address the molecular information processing which is essential in many complex fundamental mechanisms such as the epigenetic memory, alternative splicing, regulation of transcriptional system, and the adequate self-regulatory adaptation to the extracellular environment. Next, we approach the biochemical self-organization, which is central to understand the emergency of metabolic rhythms, circadian oscillations, and spatial traveling waves. Such a complex behavior is also fundamental to understand the temporal compartmentalization of the cellular metabolism and the dynamic regulation of many physiological activities. Numerous examples of biochemical self-organization are considered here, which show that practically all the main physiological processes in the cell exhibit this type of dynamic molecular organization. Finally, we focus on the biochemical self-assembly which, at a primary level of organization, is a basic but important mechanism for the order in the cell allowing biomolecules in a disorganized state to form complex aggregates necessary for a plethora of essential structures and physiological functions. In total, more than 500 references have been compiled in this review. Due to these main sources of order, systemic functional structures emerge in the cell, driving the metabolic functionality towards the biological complexity.
Collapse
Affiliation(s)
- Ildefonso M De la Fuente
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain.
| | - Jesus M Cortes
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain; Biobizkaia Health Research Institute, Barakaldo, 48903, Spain; IKERBASQUE: The Basque Foundation for Science, Bilbao, Spain
| | - Iker Malaina
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | - Gorka Pérez-Yarza
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | - Luis Martinez
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | - José I López
- Biobizkaia Health Research Institute, Barakaldo, 48903, Spain
| | - Maria Fedetz
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine "López-Neyra", CSIC, Granada, 18016, Spain
| | - Jose Carrasco-Pujante
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| |
Collapse
|
4
|
Eigenfeld M, Schwaminger SP. Cellular variability as a driver for bioprocess innovation and optimization. Biotechnol Adv 2025; 79:108528. [PMID: 39914686 DOI: 10.1016/j.biotechadv.2025.108528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/29/2024] [Accepted: 02/03/2025] [Indexed: 02/11/2025]
Abstract
Cellular heterogeneity plays a crucial role in biotechnological processes, significantly influencing metabolic activity, product yield, and process consistency. This review explores the different dimensions of cellular heterogeneity, focusing on its manifestation at both single-cell and population levels. The study examines how factors such as asymmetric cell division, age, and environmental conditions contribute to functional diversity within cell populations, with an emphasis on microorganisms like yeast. Age-related cellular heterogeneity, in particular, is highlighted for its impact on metabolic pathways, mitochondrial function, and secondary metabolite production, which directly affect bioprocess outcomes. Furthermore, the review discusses advanced techniques for detecting and managing heterogeneity, including surface marker-based approaches, which utilize proteins, polysaccharides, and lipids, and label-free methods that leverage cellular volume and physical properties for separation. Understanding and controlling cellular heterogeneity is essential for optimizing industrial bioprocesses, improving yield, and ensuring product quality. The review also underscores the potential of emerging biotechnological tools, such as real-time single-cell analysis and microfluidic devices, in enhancing separation techniques and managing cellular diversity for better process efficiency and robustness.
Collapse
Affiliation(s)
- M Eigenfeld
- Medical University of Graz, Otto Loewi Research Center, Division of Medicinal Chemistry, NanoLab Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria.
| | - S P Schwaminger
- Medical University of Graz, Otto Loewi Research Center, Division of Medicinal Chemistry, NanoLab Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria.
| |
Collapse
|
5
|
Wang L, Li X, Shi J, Li LM. A four eigen-phase model of multi-omics unveils new insights into yeast metabolic cycle. NAR Genom Bioinform 2025; 7:lqaf022. [PMID: 40109351 PMCID: PMC11920873 DOI: 10.1093/nargab/lqaf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/17/2025] [Accepted: 02/24/2025] [Indexed: 03/22/2025] Open
Abstract
The yeast metabolic cycle (YMC), characterized by cyclic oscillations in transcripts and metabolites, is an ideal model for studying biological rhythms. Although multiple omics datasets on the YMC are available, a unified landscape for this process is missing. To address this gap, we integrated multi-omics datasets by singular value decompositions (SVDs), which stratify each dataset into two levels and define four eigen-phases: primary 1A/1B and secondary 2A/2B. The eigen-phases occur cyclically in the order 1B, 2A, 1A, and 2B, demonstrating an interplay of induction and repression: one eigen-phase induces the next one at a different level, while represses the other one at the same level. Distinct molecular characteristics were identified for each eigen-phase. Novel ones include the production and consumption of glycerol in eigen-phases 2A/2B, and the opposite regulation of ribosome biogenesis and aerobic respiration between 2A/2B. Moreover, we estimated the timing of multi-omics: histone modifications H3K9ac/H3K18ac precede mRNA transcription in ∼3 min, followed by metabolomic changes in ∼13 min. The transition to the next eigen-phase occurs roughly 38 min later. From epigenome H3K9ac/H3K18ac to metabolome, the eigen-entropy increases. This work provides a computational framework applicable to multi-omics data integration.
Collapse
Affiliation(s)
- Linting Wang
- State Key Laboratory of Mathematical Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China
- School of Mathematical Sciences, University of the Chinese Academy of Sciences, Beijing, 101408, China
| | - Xiaojie Li
- State Key Laboratory of Mathematical Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China
- School of Mathematical Sciences, University of the Chinese Academy of Sciences, Beijing, 101408, China
| | - Jianhui Shi
- State Key Laboratory of Mathematical Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China
- School of Mathematical Sciences, University of the Chinese Academy of Sciences, Beijing, 101408, China
| | - Lei M Li
- State Key Laboratory of Mathematical Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China
- School of Mathematical Sciences, University of the Chinese Academy of Sciences, Beijing, 101408, China
| |
Collapse
|
6
|
Kozubowski L, Berman J. The impact of phenotypic heterogeneity on fungal pathogenicity and drug resistance. FEMS Microbiol Rev 2025; 49:fuaf001. [PMID: 39809571 PMCID: PMC11756289 DOI: 10.1093/femsre/fuaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 11/26/2024] [Accepted: 01/13/2025] [Indexed: 01/16/2025] Open
Abstract
Phenotypic heterogeneity in genetically clonal populations facilitates cellular adaptation to adverse environmental conditions while enabling a return to the basal physiological state. It also plays a crucial role in pathogenicity and the acquisition of drug resistance in unicellular organisms and cancer cells, yet the exact contributing factors remain elusive. In this review, we outline the current state of understanding concerning the contribution of phenotypic heterogeneity to fungal pathogenesis and antifungal drug resistance.
Collapse
Affiliation(s)
- Lukasz Kozubowski
- Eukaryotic Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, Clemson, SC, 29634, USA
| | - Judith Berman
- Shmunis School of Biomedical and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
7
|
Maan M, Jaiswal N, Liu M, Saavedra HI, Chellappan SP, Dutta M. TBK1 Reprograms Metabolism in Breast Cancer: An Integrated Omics Approach. J Proteome Res 2025; 24:121-133. [PMID: 39670797 DOI: 10.1021/acs.jproteome.4c00530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Metabolic rewiring is required for cancer cells to survive in harsh microenvironments and is considered to be a hallmark of cancer. Specific metabolic adaptations are required for a tumor to become invasive and metastatic. Cell division and metabolism are inherently interconnected, and several cell cycle modulators directly regulate metabolism. Here, we report that TBK1, which is a noncanonical IKK kinase with known roles in cell cycle regulation and TLR signaling, affects cellular metabolism in cancer cells. While TBK1 is reported to be overexpressed in several cancers and its enhanced protein level correlates with poor prognosis, the underlying molecular mechanism involved in the tumor-promoting role of TBK1 is not fully understood. In this study, we show a novel role of TBK1 in regulating cancer cell metabolism using combined metabolomics, transcriptomics, and pharmacological approaches. We find that TBK1 mediates the regulation of nucleotide and energy metabolism through aldo-keto reductase B10 (AKRB10) and thymidine phosphorylase (TYMP) genes, suggesting that this TBK1-mediated metabolic rewiring contributes to its oncogenic function. In addition, we find that TBK1 inhibitors can act synergistically with AKRB10 and TYMP inhibitors to reduce cell viability. These findings raise the possibility that combining these inhibitors might be beneficial in combating cancers that show elevated levels of TBK1.
Collapse
Affiliation(s)
- Meenu Maan
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, Florida 33612, United States
- New York University - Abu Dhabi, Abu Dhabi, P.O. Box 129188, United Arab Emirates
| | - Neha Jaiswal
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, Florida 33612, United States
- Roswell Park Comprehensive Cancer Center, Buffalo, New York 1420, United States
| | - Min Liu
- Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, Florida 33612, United States
| | - Harold I Saavedra
- Department of Basic Sciences, Division of Pharmacology and Cancer Biology, Ponce Health Sciences University/Ponce Research Institute, Ponce 00716-2347, Puerto Rico
| | - Srikumar P Chellappan
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, Florida 33612, United States
| | - Mainak Dutta
- Department of Biotechnology, Birla Institute of Technology and Science Pilani (BITS Pilani) - Dubai Campus, Academic City, Dubai, P.O. Box 345055, United Arab Emirates
| |
Collapse
|
8
|
Zhu Y, Tong X, Xue J, Qiu H, Zhang D, Zheng DQ, Tu ZC, Ye C. Phospholipid biosynthesis modulates nucleotide metabolism and reductive capacity. Nat Chem Biol 2025; 21:35-46. [PMID: 39060393 DOI: 10.1038/s41589-024-01689-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
Phospholipid and nucleotide syntheses are fundamental metabolic processes in eukaryotic organisms, with their dysregulation implicated in various disease states. Despite their importance, the interplay between these pathways remains poorly understood. Using genetic and metabolic analyses in Saccharomyces cerevisiae, we elucidate how cytidine triphosphate usage in the Kennedy pathway for phospholipid synthesis influences nucleotide metabolism and redox balance. We find that deficiencies in the Kennedy pathway limit nucleotide salvage, prompting compensatory activation of de novo nucleotide synthesis and the pentose phosphate pathway. This metabolic shift enhances the production of antioxidants such as NADPH and glutathione. Moreover, we observe that the Kennedy pathway for phospholipid synthesis is inhibited during replicative aging, indicating its role in antioxidative defense as an adaptive mechanism in aged cells. Our findings highlight the critical role of phospholipid synthesis pathway choice in the integrative regulation of nucleotide metabolism, redox balance and membrane properties for cellular defense.
Collapse
Affiliation(s)
- Yibing Zhu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xiaomeng Tong
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jingyuan Xue
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Hong Qiu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Dan Zhang
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dao-Qiong Zheng
- Ocean College, Zhejiang University, Zhoushan, China
- Hainan Institute, Zhejiang University, Sanya, China
| | - Zong-Cai Tu
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, China
| | - Cunqi Ye
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Hainan Institute, Zhejiang University, Sanya, China.
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, China.
| |
Collapse
|
9
|
Scherschel M, Niemeier JO, Jacobs LJHC, Hoffmann MDA, Diederich A, Bell C, Höhne P, Raetz S, Kroll JB, Steinbeck J, Lichtenauer S, Multhoff J, Zimmermann J, Sadhanasatish T, Rothemann RA, Grashoff C, Messens J, Ampofo E, Laschke MW, Riemer J, Roma LP, Schwarzländer M, Morgan B. A family of NADPH/NADP + biosensors reveals in vivo dynamics of central redox metabolism across eukaryotes. Nat Commun 2024; 15:10704. [PMID: 39702652 PMCID: PMC11659435 DOI: 10.1038/s41467-024-55302-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 12/08/2024] [Indexed: 12/21/2024] Open
Abstract
The NADPH/NADP+ redox couple is central to metabolism and redox signalling. NADP redox state is differentially regulated by distinct enzymatic machineries at the subcellular compartment level. Nonetheless, a detailed understanding of subcellular NADP redox dynamics is limited by the availability of appropriate tools. Here, we introduce NAPstars, a family of genetically encoded, fluorescent protein-based NADP redox state biosensors. NAPstars offer real-time, specific measurements, across a broad-range of NADP redox states, with subcellular resolution. NAPstar measurements in yeast, plants, and mammalian cell models, reveal a conserved robustness of cytosolic NADP redox homoeostasis. NAPstars uncover cell cycle-linked NADP redox oscillations in yeast and illumination- and hypoxia-dependent NADP redox changes in plant leaves. By applying NAPstars in combination with selective impairment of the glutathione and thioredoxin antioxidative pathways under acute oxidative challenge, we find an unexpected and conserved role for the glutathione system as the primary mediator of antioxidative electron flux.
Collapse
Affiliation(s)
- Marie Scherschel
- Institute of Biochemistry, Center for Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany
| | - Jan-Ole Niemeier
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster, Germany
| | - Lianne J H C Jacobs
- Redox Metabolism, Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Markus D A Hoffmann
- Department of Biophysics, Center for Human and Molecular Biology (ZHMB), Saarland University, Homburg, Germany
| | - Anika Diederich
- Institute of Biochemistry, Center for Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany
| | - Christopher Bell
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster, Germany
| | - Pascal Höhne
- Institute of Biochemistry, Center for Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster, Germany
| | - Sonja Raetz
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster, Germany
| | - Johanna B Kroll
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster, Germany
| | - Janina Steinbeck
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster, Germany
| | - Sophie Lichtenauer
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster, Germany
| | - Jan Multhoff
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster, Germany
| | - Jannik Zimmermann
- Institute of Biochemistry, Center for Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany
| | - Tanmay Sadhanasatish
- Institute of Integrative Cell Biology and Physiology, University of Münster, Schlossplatz 5, Münster, Germany
| | - R Alexander Rothemann
- Redox Metabolism, Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Carsten Grashoff
- Institute of Integrative Cell Biology and Physiology, University of Münster, Schlossplatz 5, Münster, Germany
| | - Joris Messens
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Brussels Center for Redox Biology, Vrije Universiteit Brussel, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Emmanuel Ampofo
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Germany
| | - Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Germany
| | - Jan Riemer
- Redox Metabolism, Institute for Biochemistry, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Leticia Prates Roma
- Department of Biophysics, Center for Human and Molecular Biology (ZHMB), Saarland University, Homburg, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster, Germany.
| | - Bruce Morgan
- Institute of Biochemistry, Center for Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany.
| |
Collapse
|
10
|
Abbate CC, Hu J, Albeck JG. Understanding metabolic plasticity at single cell resolution. Essays Biochem 2024; 68:273-281. [PMID: 39462995 DOI: 10.1042/ebc20240002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/29/2024]
Abstract
It is increasingly clear that cellular metabolic function varies not just between cells of different tissues, but also within tissues and cell types. In this essay, we envision how differences in central carbon metabolism arise from multiple sources, including the cell cycle, circadian rhythms, intrinsic metabolic cycles, and others. We also discuss and compare methods that enable such variation to be detected, including single-cell metabolomics and RNA-sequencing. We pay particular attention to biosensors for AMPK and central carbon metabolites, which when used in combination with metabolic perturbations, provide clear evidence of cellular variance in metabolic function.
Collapse
Affiliation(s)
- Christina C Abbate
- Department of Molecular and Cellular Biology, University of California, Davis, U.S.A
| | - Jason Hu
- Department of Molecular and Cellular Biology, University of California, Davis, U.S.A
| | - John G Albeck
- Department of Molecular and Cellular Biology, University of California, Davis, U.S.A
| |
Collapse
|
11
|
Johnson Z, Wang Y, Sutter BM, Tu BP. Evidence for a hydrogen sulfide-sensing E3 ligase in yeast. Genetics 2024; 228:iyae154. [PMID: 39378345 PMCID: PMC11538405 DOI: 10.1093/genetics/iyae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
In yeast, control of sulfur amino acid metabolism relies upon Met4, a transcription factor that activates the expression of a network of enzymes responsible for the biosynthesis of cysteine and methionine. In times of sulfur abundance, the activity of Met4 is repressed via ubiquitination by the SCFMet30 E3 ubiquitin ligase, but the mechanism by which the F-box protein Met30 senses sulfur status to tune its E3 ligase activity remains unresolved. Herein, we show that Met30 responds to flux through the trans-sulfuration pathway to regulate the MET gene transcriptional program. In particular, Met30 is responsive to the biological gas hydrogen sulfide, which is sufficient to induce ubiquitination of Met4 in vivo. Additionally, we identify important cysteine residues in Met30's WD-40 repeat region that sense the availability of sulfur in the cell. Our findings reveal how SCFMet30 dynamically senses the flow of sulfur metabolites through the trans-sulfuration pathway to regulate the synthesis of these special amino acids.
Collapse
Affiliation(s)
- Zane Johnson
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9038, USA
| | - Yun Wang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9038, USA
| | - Benjamin M Sutter
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9038, USA
| | - Benjamin P Tu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9038, USA
| |
Collapse
|
12
|
van Niekerk DD, van Wyk M, Kouril T, Snoep JL. Kinetic modelling of glycolytic oscillations. Essays Biochem 2024; 68:15-25. [PMID: 38206647 DOI: 10.1042/ebc20230037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024]
Abstract
Glycolytic oscillations have been studied for well over 60 years, but aspects of their function, and mechanisms of regulation and synchronisation remain unclear. Glycolysis is amenable to mechanistic mathematical modelling, as its components have been well characterised, and the system can be studied at many organisational levels: in vitro reconstituted enzymes, cell free extracts, individual cells, and cell populations. In recent years, the emergence of individual cell analysis has opened new ways of studying this intriguing system.
Collapse
Affiliation(s)
- David D van Niekerk
- Department of Biochemistry, Stellenbosch University, Matieland, South Africa
| | - Morne van Wyk
- Department of Biochemistry, Stellenbosch University, Matieland, South Africa
| | - Theresa Kouril
- Department of Biochemistry, Stellenbosch University, Matieland, South Africa
| | - Jacky L Snoep
- Department of Biochemistry, Stellenbosch University, Matieland, South Africa
- Molecular Cell Biology, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Schwarz JE, Sengupta A, Guevara C, Barber AF, Hsu CT, Zhang SL, Weljie A, Sehgal A. Age-regulated cycling metabolites are relevant for behavior. Aging Cell 2024; 23:e14082. [PMID: 38204362 PMCID: PMC11019118 DOI: 10.1111/acel.14082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/29/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Circadian cycles of sleep:wake and gene expression change with age in all organisms examined. Metabolism is also under robust circadian regulation, but little is known about how metabolic cycles change with age and whether these contribute to the regulation of behavioral cycles. To address this gap, we compared cycling of metabolites in young and old Drosophila and found major age-related variations. A significant model separated the young metabolic profiles by circadian timepoint, but could not be defined for the old metabolic profiles due to the greater variation in this dataset. Of the 159 metabolites measured in fly heads, we found 17 that cycle by JTK analysis in young flies and 17 in aged. Only four metabolites overlapped in the two groups, suggesting that cycling metabolites are distinct in young and old animals. Among our top cyclers exclusive to young flies were components of the pentose phosphate pathway (PPP). As the PPP is important for buffering reactive oxygen species, and overexpression of glucose-6-phosphate dehydrogenase (G6PD), a key component of the PPP, was previously shown to extend lifespan in Drosophila, we asked if this manipulation also affects sleep:wake cycles. We found that overexpression in circadian clock neurons decreases sleep in association with an increase in cellular calcium and mitochondrial oxidation, suggesting that altering PPP activity affects neuronal activity. Our findings elucidate the importance of metabolic regulation in maintaining patterns of neural activity, and thereby sleep:wake cycles.
Collapse
Affiliation(s)
- Jessica E. Schwarz
- Howard Hughes Medical Institute, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Arjun Sengupta
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Camilo Guevara
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Annika F. Barber
- Howard Hughes Medical Institute, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Present address:
Waksman Institute and Department of Molecular Biology and Biochemistry, RutgersThe State University of New JerseyNew BrunswickNew JerseyUSA
| | - Cynthia T. Hsu
- Howard Hughes Medical Institute, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Shirley L. Zhang
- Howard Hughes Medical Institute, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Present address:
Department of Cell BiologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - Aalim Weljie
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Amita Sehgal
- Howard Hughes Medical Institute, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
14
|
Ölmez TT, Moreno DF, Liu P, Johnson ZM, McGinnis MM, Tu BP, Hochstrasser M, Acar M. Sis2 regulates yeast replicative lifespan in a dose-dependent manner. Nat Commun 2023; 14:7719. [PMID: 38012152 PMCID: PMC10682402 DOI: 10.1038/s41467-023-43233-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/01/2023] [Indexed: 11/29/2023] Open
Abstract
Application of microfluidic platforms facilitated high-precision measurements of yeast replicative lifespan (RLS); however, comparative quantification of lifespan across strain libraries has been missing. Here we microfluidically measure the RLS of 307 yeast strains, each deleted for a single gene. Despite previous reports of extended lifespan in these strains, we found that 56% of them did not actually live longer than the wild-type; while the remaining 44% showed extended lifespans, the degree of extension was often different from what was previously reported. Deletion of SIS2 gene led to the largest RLS increase observed. Sis2 regulated yeast lifespan in a dose-dependent manner, implying a role for the coenzyme A biosynthesis pathway in lifespan regulation. Introduction of the human PPCDC gene in the sis2Δ background neutralized the lifespan extension. RNA-seq experiments revealed transcriptional increases in cell-cycle machinery components in sis2Δ background. High-precision lifespan measurement will be essential to elucidate the gene network governing lifespan.
Collapse
Affiliation(s)
- Tolga T Ölmez
- Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, 06511, USA
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516, USA
- Koç University Research Center for Translational Medicine, Koç University, Rumelifeneri Yolu, Sarıyer, İstanbul, 34450, Turkey
- Department of Basic Medical Sciences, Koc University Rumelifeneri Yolu, Sarıyer, İstanbul, 34450, Turkey
| | - David F Moreno
- Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, 06511, USA
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516, USA
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch-Graffenstaden, 67400, France
| | - Ping Liu
- Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, 06511, USA
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516, USA
| | - Zane M Johnson
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT, 06520, USA
| | - Madeline M McGinnis
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Benjamin P Tu
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Mark Hochstrasser
- Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, 06511, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT, 06520, USA
| | - Murat Acar
- Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, 06511, USA.
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516, USA.
- Department of Basic Medical Sciences, Koc University Rumelifeneri Yolu, Sarıyer, İstanbul, 34450, Turkey.
| |
Collapse
|
15
|
Siebieszuk A, Sejbuk M, Witkowska AM. Studying the Human Microbiota: Advances in Understanding the Fundamentals, Origin, and Evolution of Biological Timekeeping. Int J Mol Sci 2023; 24:16169. [PMID: 38003359 PMCID: PMC10671191 DOI: 10.3390/ijms242216169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
The recently observed circadian oscillations of the intestinal microbiota underscore the profound nature of the human-microbiome relationship and its importance for health. Together with the discovery of circadian clocks in non-photosynthetic gut bacteria and circadian rhythms in anucleated cells, these findings have indicated the possibility that virtually all microorganisms may possess functional biological clocks. However, they have also raised many essential questions concerning the fundamentals of biological timekeeping, its evolution, and its origin. This narrative review provides a comprehensive overview of the recent literature in molecular chronobiology, aiming to bring together the latest evidence on the structure and mechanisms driving microbial biological clocks while pointing to potential applications of this knowledge in medicine. Moreover, it discusses the latest hypotheses regarding the evolution of timing mechanisms and describes the functions of peroxiredoxins in cells and their contribution to the cellular clockwork. The diversity of biological clocks among various human-associated microorganisms and the role of transcriptional and post-translational timekeeping mechanisms are also addressed. Finally, recent evidence on metabolic oscillators and host-microbiome communication is presented.
Collapse
Affiliation(s)
- Adam Siebieszuk
- Department of Physiology, Faculty of Medicine, Medical University of Bialystok, Mickiewicza 2C, 15-222 Białystok, Poland;
| | - Monika Sejbuk
- Department of Food Biotechnology, Faculty of Health Sciences, Medical University of Bialystok, Szpitalna 37, 15-295 Białystok, Poland;
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Faculty of Health Sciences, Medical University of Bialystok, Szpitalna 37, 15-295 Białystok, Poland;
| |
Collapse
|
16
|
Jeon M, Schmitt DL, Kyoung M, An S. Size-Specific Modulation of a Multienzyme Glucosome Assembly during the Cell Cycle. ACS BIO & MED CHEM AU 2023; 3:461-470. [PMID: 37876499 PMCID: PMC10591302 DOI: 10.1021/acsbiomedchemau.3c00037] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 10/26/2023]
Abstract
Enzymes in glucose metabolism have been subjected to numerous studies, revealing the importance of their biological roles during the cell cycle. However, due to the lack of viable experimental strategies for measuring enzymatic activities particularly in living human cells, it has been challenging to address whether their enzymatic activities and thus anticipated glucose flux are directly associated with cell cycle progression. It has remained largely elusive how human cells regulate glucose metabolism at a subcellular level to meet the metabolic demands during the cell cycle. Meanwhile, we have characterized that rate-determining enzymes in glucose metabolism are spatially organized into three different sizes of multienzyme metabolic assemblies, termed glucosomes, to regulate the glucose flux between energy metabolism and building block biosynthesis. In this work, we first determined using cell synchronization and flow cytometric techniques that enhanced green fluorescent protein-tagged phosphofructokinase is adequate as an intracellular biomarker to evaluate the state of glucose metabolism during the cell cycle. We then applied fluorescence single-cell imaging strategies and discovered that the percentage of Hs578T cells showing small-sized glucosomes is drastically changed during the cell cycle, whereas the percentage of cells with medium-sized glucosomes is significantly elevated only in the G1 phase, but the percentage of cells showing large-sized glucosomes is barely or minimally altered along the cell cycle. Should we consider our previous localization-function studies that showed assembly size-dependent metabolic roles of glucosomes, this work strongly suggests that glucosome sizes are modulated during the cell cycle to regulate glucose flux between glycolysis and building block biosynthesis. Therefore, we propose the size-specific modulation of glucosomes as a behind-the-scenes mechanism that may explain functional association of glucose metabolism with the cell cycle and, thereby, their metabolic significance in human cell biology.
Collapse
Affiliation(s)
- Miji Jeon
- Department
of Chemistry and Biochemistry, University
of Maryland Baltimore County (UMBC); 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Danielle L. Schmitt
- Department
of Chemistry and Biochemistry, University
of Maryland Baltimore County (UMBC); 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Minjoung Kyoung
- Department
of Chemistry and Biochemistry, University
of Maryland Baltimore County (UMBC); 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
- Program
in Oncology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland 21201, United States
| | - Songon An
- Department
of Chemistry and Biochemistry, University
of Maryland Baltimore County (UMBC); 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
- Program
in Oncology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland 21201, United States
| |
Collapse
|
17
|
Zhang Y, Barberis M. Exploring cell cycle-mediated regulations of glycolysis in budding yeast. Front Microbiol 2023; 14:1270487. [PMID: 37886071 PMCID: PMC10598772 DOI: 10.3389/fmicb.2023.1270487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Coordination of cell cycle with metabolism exists in all cell types that grow by division. It serves to build a new cell, (i) fueling building blocks for the synthesis of proteins, nucleic acids, and membranes, and (ii) producing energy through glycolysis. Cyclin-dependent kinases (Cdks) play an essential role in this coordination, thereby in the regulation of cell division. Cdks are functional homologs across eukaryotes and are the engines that drive cell cycle events and the clocks that time them. Their function is counteracted by stoichiometric inhibitors; specifically, inhibitors of cyclin-cyclin dependent kinase (cyclin/Cdk) complexes allow for their activity at specific times. Here, we provide a new perspective about the yet unknown cell cycle mechanisms impacting on metabolism. We first investigated the effect of the mitotic cyclin/Cdk1 complex Cyclin B/Cdk1-functional homolog in mammalian cells of the budding yeast Clb2/Cdk1-on yeast metabolic enzymes of, or related to, the glycolysis pathway. Six glycolytic enzymes (Glk1, Hxk2, Pgi1, Fba1, Tdh1, and Pgk1) were subjected to in vitro Cdk-mediated phosphorylation assays. Glucose-6-phosphate dehydrogenase (Zwf1), the first enzyme in the pentose phosphate pathway that is important for NADPH production, and 6-phospho-fructo-2-kinase (Pfk27), which catalyzes fructose-2,6-bisphosphate synthesis, a key regulator of glycolysis, were also included in the study. We found that, among these metabolic enzymes, Fba1 and Pgk1 may be phosphorylated by Cdk1, in addition to the known Cdk1-mediated phosphorylation of Gph1. We then investigated the possible effect of Sic1, stoichiometric inhibitor of mitotic cyclin/Cdk1 complexes in budding yeast, on the activities of three most relevant glycolytic enzymes: Hxk2, Glk1, and Tdh1. We found that Sic1 may have a negative effect on Hxk2. Altogether, we reveal possible new routes, to be further explored, through which cell cycle may regulate cellular metabolism. Because of the functional homology of cyclin/Cdk complexes and their stoichiometric inhibitors across evolution, our findings may be relevant for the regulation of cell division in eukaryotes.
Collapse
Affiliation(s)
- Yanfei Zhang
- Molecular Systems Biology, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Matteo Barberis
- Molecular Systems Biology, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
- Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
18
|
Attfield PV. Crucial aspects of metabolism and cell biology relating to industrial production and processing of Saccharomyces biomass. Crit Rev Biotechnol 2023; 43:920-937. [PMID: 35731243 DOI: 10.1080/07388551.2022.2072268] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/27/2022] [Accepted: 04/21/2022] [Indexed: 12/16/2022]
Abstract
The multitude of applications to which Saccharomyces spp. are put makes these yeasts the most prolific of industrial microorganisms. This review considers biological aspects pertaining to the manufacture of industrial yeast biomass. It is proposed that the production of yeast biomass can be considered in two distinct but interdependent phases. Firstly, there is a cell replication phase that involves reproduction of cells by their transitions through multiple budding and metabolic cycles. Secondly, there needs to be a cell conditioning phase that enables the accrued biomass to withstand the physicochemical challenges associated with downstream processing and storage. The production of yeast biomass is not simply a case of providing sugar, nutrients, and other growth conditions to enable multiple budding cycles to occur. In the latter stages of culturing, it is important that all cells are induced to complete their current budding cycle and subsequently enter into a quiescent state engendering robustness. Both the cell replication and conditioning phases need to be optimized and considered in concert to ensure good biomass production economics, and optimum performance of industrial yeasts in food and fermentation applications. Key features of metabolism and cell biology affecting replication and conditioning of industrial Saccharomyces are presented. Alternatives for growth substrates are discussed, along with the challenges and prospects associated with defining the genetic bases of industrially important phenotypes, and the generation of new yeast strains."I must be cruel only to be kind: Thus bad begins, and worse remains behind." William Shakespeare: Hamlet, Act 3, Scene 4.
Collapse
|
19
|
Soultanas P, Janniere L. The metabolic control of DNA replication: mechanism and function. Open Biol 2023; 13:230220. [PMID: 37582405 PMCID: PMC10427196 DOI: 10.1098/rsob.230220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023] Open
Abstract
Metabolism and DNA replication are the two most fundamental biological functions in life. The catabolic branch of metabolism breaks down nutrients to produce energy and precursors used by the anabolic branch of metabolism to synthesize macromolecules. DNA replication consumes energy and precursors for faithfully copying genomes, propagating the genetic material from generation to generation. We have exquisite understanding of the mechanisms that underpin and regulate these two biological functions. However, the molecular mechanism coordinating replication to metabolism and its biological function remains mostly unknown. Understanding how and why living organisms respond to fluctuating nutritional stimuli through cell-cycle dynamic changes and reproducibly and distinctly temporalize DNA synthesis in a wide-range of growth conditions is important, with wider implications across all domains of life. After summarizing the seminal studies that founded the concept of the metabolic control of replication, we review data linking metabolism to replication from bacteria to humans. Molecular insights underpinning these links are then presented to propose that the metabolic control of replication uses signalling systems gearing metabolome homeostasis to orchestrate replication temporalization. The remarkable replication phenotypes found in mutants of this control highlight its importance in replication regulation and potentially genetic stability and tumorigenesis.
Collapse
Affiliation(s)
- Panos Soultanas
- Biodiscovery Institute, School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Laurent Janniere
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057 Evry, France
| |
Collapse
|
20
|
Zhang Y, van der Zee L, Barberis M. Two-way communication between cell cycle and metabolism in budding yeast: what do we know? Front Microbiol 2023; 14:1187304. [PMID: 37396387 PMCID: PMC10309209 DOI: 10.3389/fmicb.2023.1187304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Coordination of cell cycle and metabolism exists in all cells. The building of a new cell is a process that requires metabolic commitment to the provision of both Gibbs energy and building blocks for proteins, nucleic acids, and membranes. On the other hand, the cell cycle machinery will assess and regulate its metabolic environment before it makes decisions on when to enter the next cell cycle phase. Furthermore, more and more evidence demonstrate that the metabolism can be regulated by cell cycle progression, as different biosynthesis pathways are preferentially active in different cell cycle phases. Here, we review the available literature providing a critical overview on how cell cycle and metabolism may be coupled with one other, bidirectionally, in the budding yeast Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Yanfei Zhang
- Molecular Systems Biology, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Lucas van der Zee
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Matteo Barberis
- Molecular Systems Biology, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
- Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford, Surrey, United Kingdom
| |
Collapse
|
21
|
Fang W, Jiang L, Zhu Y, Yang S, Qiu H, Cheng J, Liang Q, Tu ZC, Ye C. Methionine restriction constrains lipoylation and activates mitochondria for nitrogenic synthesis of amino acids. Nat Commun 2023; 14:2504. [PMID: 37130856 PMCID: PMC10154411 DOI: 10.1038/s41467-023-38289-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 04/21/2023] [Indexed: 05/04/2023] Open
Abstract
Methionine restriction (MR) provides metabolic benefits in many organisms. However, mechanisms underlying the MR-induced effect remain incompletely understood. Here, we show in the budding yeast S. cerevisiae that MR relays a signal of S-adenosylmethionine (SAM) deprivation to adapt bioenergetic mitochondria to nitrogenic anabolism. In particular, decreases in cellular SAM constrain lipoate metabolism and protein lipoylation required for the operation of the tricarboxylic acid (TCA) cycle in the mitochondria, leading to incomplete glucose oxidation with an exit of acetyl-CoA and α-ketoglutarate from the TCA cycle to the syntheses of amino acids, such as arginine and leucine. This mitochondrial response achieves a trade-off between energy metabolism and nitrogenic anabolism, which serves as an effector mechanism promoting cell survival under MR.
Collapse
Affiliation(s)
- Wen Fang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Liu Jiang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yibing Zhu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Sen Yang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Hong Qiu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jiou Cheng
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Qingxi Liang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, 330022, China
| | - Zong-Cai Tu
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, 330022, China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Cunqi Ye
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
22
|
Trinklein TJ, Cain CN, Ochoa GS, Schöneich S, Mikaliunaite L, Synovec RE. Recent Advances in GC×GC and Chemometrics to Address Emerging Challenges in Nontargeted Analysis. Anal Chem 2023; 95:264-286. [PMID: 36625122 DOI: 10.1021/acs.analchem.2c04235] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Timothy J Trinklein
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Caitlin N Cain
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Grant S Ochoa
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Sonia Schöneich
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Lina Mikaliunaite
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Robert E Synovec
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|
23
|
Mathews TP. Quantitation of Glutathione and Oxidized Glutathione Ratios from Biological Matrices Using LC-MS/MS. Methods Mol Biol 2023; 2675:133-148. [PMID: 37258761 DOI: 10.1007/978-1-0716-3247-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Oxidation of glutathione (GSH) to its disulfide dimer (GSSG) is the major mechanism by which cells balance reactive oxygen species (ROS) and mitigate oxidative stress. Thus, measuring the ratio of GSH/GSSG is an ideal way to assess oxidative stress within a cell. Quantitative mass spectrometry offers an ideal method to measure the GSH/GSSG ratio and can be applied to a variety of biological matrices and disease models. The following chapter details the design, optimization, and execution of a liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay to measure the GSH/GSSG ratio.
Collapse
Affiliation(s)
- Thomas P Mathews
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
24
|
Tan Y, Stein LY, Sauvageau D. The influence of self-cycling fermentation long- and short-cycle schemes on Saccharomyces cerevisiae and Escherichia coli. Sci Rep 2022; 12:13154. [PMID: 35915208 PMCID: PMC9343364 DOI: 10.1038/s41598-022-16831-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/18/2022] [Indexed: 11/09/2022] Open
Abstract
Self-cycling fermentation (SCF), a cyclic process in which cells, on average, divide once per cycle, has been shown to lead to whole-culture synchronization and improvements in productivity during bioconversion. Previous studies have shown that the completion of synchronized cell replication sometimes occurs simultaneously with depletion of the limiting nutrient. However, cases in which the end of cell doubling occurred before limiting nutrient exhaustion were also observed. In order to better understand the impact of these patterns on bioprocessing, we investigated the growth of Saccharomyces cerevisiae and Escherichia coli in long- and short-cycle SCF strategies. Three characteristic events were identified during SCF cycles: (1) an optimum in control parameters, (2) the time of completion of synchronized cell division, and (3) the depletion or plateau of the limiting nutrient. Results from this study and literature led to the identification of three potential trends in SCF cycles: (A) co-occurrence of the three key events, (B) cell replication ending prior to the co-occurrence of the other two events, and (C) depletion or plateau of the limiting nutrient occurring later than the co-occurrence of the other two events. Based on these observations, microbial physiological differences were analyzed and a novel definition for SCF is proposed.
Collapse
Affiliation(s)
- Yusheng Tan
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
| | - Lisa Y Stein
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Dominic Sauvageau
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
25
|
Chen X, Li J, Gao Z, Yang Y, Kuang W, Dong Y, Chua GH, Huang X, Jiang B, Tian H, Wang Y, Huang X, Li Y, Lam SM, Shui G. Endogenous ceramide phosphoethanolamine modulates circadian rhythm via neural-glial coupling in Drosophila. Natl Sci Rev 2022; 9:nwac148. [PMID: 36713590 PMCID: PMC9875363 DOI: 10.1093/nsr/nwac148] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 06/08/2022] [Accepted: 07/13/2022] [Indexed: 02/01/2023] Open
Abstract
While endogenous lipids are known to exhibit rhythmic oscillations, less is known about how specific lipids modulate circadian behavior. Through a series of loss-of-function and gain-of-function experiments on ceramide phosphoethanolamine (CPE) synthase of Drosophila, we demonstrated that pan-glial-specific deficiency in membrane CPE, the structural analog of mammalian sphingomyelin (SM), leads to arrhythmic locomotor behavior and shortens lifespan, while the reverse is true for increasing CPE. Comparative proteomics uncovered dysregulated synaptic glutamate utilization and transport in CPE-deficient flies. An extensive genetic screen was conducted to verify the role of differentially expressed proteins in circadian regulation. Arrhythmic locomotion under cpes1 mutant background was rescued only by restoring endogenous CPE or SM through expressing their respective synthases. Our results underscore the essential role of CPE in maintaining synaptic glutamate homeostasis and modulating circadian behavior in Drosophila. The findings suggest that region-specific elevations of functional membrane lipids can benefit circadian regulation.
Collapse
Affiliation(s)
| | | | - Zhongbao Gao
- University of Chinese Academy of Sciences, Beijing 100049, China,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yang Yang
- University of Chinese Academy of Sciences, Beijing 100049, China,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenqing Kuang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Dong
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gek Huey Chua
- LipidALL Technologies Company Limited, Changzhou213022, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Binhua Jiang
- LipidALL Technologies Company Limited, Changzhou213022, China
| | - He Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Li
- University of Chinese Academy of Sciences, Beijing 100049, China,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | |
Collapse
|
26
|
Computational method for untargeted determination of cycling yeast metabolites using comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry. Talanta 2022; 244:123396. [DOI: 10.1016/j.talanta.2022.123396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 11/23/2022]
|
27
|
Genome-Wide Analysis of Yeast Metabolic Cycle through Metabolic Network Models Reveals Superiority of Integrated ATAC-seq Data over RNA-seq Data. mSystems 2022; 7:e0134721. [PMID: 35695574 PMCID: PMC9239220 DOI: 10.1128/msystems.01347-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Saccharomyces cerevisiae undergoes robust oscillations to regulate its physiology for adaptation and survival under nutrient-limited conditions. Environmental cues can induce rhythmic metabolic alterations in order to facilitate the coordination of dynamic metabolic behaviors. Of such metabolic processes, the yeast metabolic cycle enables adaptation of the cells to varying nutritional status through oscillations in gene expression and metabolite production levels. In this process, yeast metabolism is altered between diverse cellular states based on changing oxygen consumption levels: quiescent (reductive charging [RC]), growth (oxidative [OX]), and proliferation (reductive building [RB]) phases. We characterized metabolic alterations during the yeast metabolic cycle using a variety of approaches. Gene expression levels are widely used for condition-specific metabolic simulations, whereas the use of epigenetic information in metabolic modeling is still limited despite the clear relationship between epigenetics and metabolism. This prompted us to investigate the contribution of epigenomic information to metabolic predictions for progression of the yeast metabolic cycle. In this regard, we determined altered pathways through the prediction of regulated reactions and corresponding model genes relying on differential chromatin accessibility levels. The predicted metabolic alterations were confirmed via data analysis and literature. We subsequently utilized RNA sequencing (RNA-seq) and assay for transposase-accessible chromatin using sequencing (ATAC-seq) data sets in the contextualization of the yeast model. The use of ATAC-seq data considerably enhanced the predictive capability of the model. To the best of our knowledge, this is the first attempt to use genome-wide chromatin accessibility data in metabolic modeling. The preliminary results showed that epigenomic data sets can pave the way for more accurate metabolic simulations. IMPORTANCE Dynamic chromatin organization mediates the emergence of condition-specific phenotypes in eukaryotic organisms. Saccharomyces cerevisiae can alter its metabolic profile via regulation of genome accessibility and robust transcriptional oscillations under nutrient-limited conditions. Thus, both epigenetic information and transcriptomic information are crucial in the understanding of condition-specific metabolic behavior in this organism. Based on genome-wide alterations in chromatin accessibility and transcription, we investigated the yeast metabolic cycle, which is a remarkable example of coordinated and dynamic yeast behavior. In this regard, we assessed the use of ATAC-seq and RNA-seq data sets in condition-specific metabolic modeling. To our knowledge, this is the first attempt to use chromatin accessibility data in the reconstruction of context-specific metabolic models, despite the extensive use of transcriptomic data. As a result of comparative analyses, we propose that the incorporation of epigenetic information is a promising approach in the accurate prediction of metabolic dynamics.
Collapse
|
28
|
Li S, Han S, Zhang Q, Zhu Y, Zhang H, Wang J, Zhao Y, Zhao J, Su L, Li L, Zhou D, Ye C, Feng XH, Liang T, Zhao B. FUNDC2 promotes liver tumorigenesis by inhibiting MFN1-mediated mitochondrial fusion. Nat Commun 2022; 13:3486. [PMID: 35710796 PMCID: PMC9203792 DOI: 10.1038/s41467-022-31187-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 06/07/2022] [Indexed: 11/09/2022] Open
Abstract
Mitochondria generate ATP and play regulatory roles in various cellular activities. Cancer cells often exhibit fragmented mitochondria. However, the underlying mechanism remains elusive. Here we report that a mitochondrial protein FUN14 domain containing 2 (FUNDC2) is transcriptionally upregulated in primary mouse liver tumors, and in approximately 40% of human hepatocellular carcinoma (HCC). Importantly, elevated FUNDC2 expression inversely correlates with patient survival, and its knockdown inhibits liver tumorigenesis in mice. Mechanistically, the amino-terminal region of FUNDC2 interacts with the GTPase domain of mitofusin 1 (MFN1), thus inhibits its activity in promoting fusion of outer mitochondrial membrane. As a result, loss of FUNDC2 leads to mitochondrial elongation, decreased mitochondrial respiration, and reprogrammed cellular metabolism. These results identified a mechanism of mitochondrial fragmentation in cancer through MFN1 inhibition by FUNDC2, and suggested FUNDC2 as a potential therapeutic target of HCC.
Collapse
Affiliation(s)
- Shuaifeng Li
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Shixun Han
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yibing Zhu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Haitao Zhang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Junli Wang
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yang Zhao
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Jianhui Zhao
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Lin Su
- Department of Ultrasound Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
| | - Li Li
- Institute of Aging Research, Hangzhou Normal University, Hangzhou, 311121, China
| | - Dawang Zhou
- School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Cunqi Ye
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Xin-Hua Feng
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
- Shaoxing Institute, Zhejiang University, Shaoxing, 321000, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Bin Zhao
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- Shaoxing Institute, Zhejiang University, Shaoxing, 321000, China.
| |
Collapse
|
29
|
Horemans S, Pitoulias M, Holland A, Pateau E, Lechaplais C, Ekaterina D, Perret A, Soultanas P, Janniere L. Pyruvate kinase, a metabolic sensor powering glycolysis, drives the metabolic control of DNA replication. BMC Biol 2022; 20:87. [PMID: 35418203 PMCID: PMC9009071 DOI: 10.1186/s12915-022-01278-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/11/2022] [Indexed: 12/04/2022] Open
Abstract
Background In all living organisms, DNA replication is exquisitely regulated in a wide range of growth conditions to achieve timely and accurate genome duplication prior to cell division. Failures in this regulation cause DNA damage with potentially disastrous consequences for cell viability and human health, including cancer. To cope with these threats, cells tightly control replication initiation using well-known mechanisms. They also couple DNA synthesis to nutrient richness and growth rate through a poorly understood process thought to involve central carbon metabolism. One such process may involve the cross-species conserved pyruvate kinase (PykA) which catalyzes the last reaction of glycolysis. Here we have investigated the role of PykA in regulating DNA replication in the model system Bacillus subtilis. Results On analysing mutants of the catalytic (Cat) and C-terminal (PEPut) domains of B. subtilis PykA we found replication phenotypes in conditions where PykA is dispensable for growth. These phenotypes are independent from the effect of mutations on PykA catalytic activity and are not associated with significant changes in the metabolome. PEPut operates as a nutrient-dependent inhibitor of initiation while Cat acts as a stimulator of replication fork speed. Disruption of either PEPut or Cat replication function dramatically impacted the cell cycle and replication timing even in cells fully proficient in known replication control functions. In vitro, PykA modulates activities of enzymes essential for replication initiation and elongation via functional interactions. Additional experiments showed that PEPut regulates PykA activity and that Cat and PEPut determinants important for PykA catalytic activity regulation are also important for PykA-driven replication functions. Conclusions We infer from our findings that PykA typifies a new family of cross-species replication control regulators that drive the metabolic control of replication through a mechanism involving regulatory determinants of PykA catalytic activity. As disruption of PykA replication functions causes dramatic replication defects, we suggest that dysfunctions in this new family of universal replication regulators may pave the path to genetic instability and carcinogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01278-3.
Collapse
Affiliation(s)
- Steff Horemans
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057, Evry, France
| | - Matthaios Pitoulias
- Biodiscovery Institute, School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Alexandria Holland
- Biodiscovery Institute, School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Emilie Pateau
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057, Evry, France
| | - Christophe Lechaplais
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057, Evry, France
| | - Dariy Ekaterina
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057, Evry, France
| | - Alain Perret
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057, Evry, France
| | - Panos Soultanas
- Biodiscovery Institute, School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | - Laurent Janniere
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057, Evry, France.
| |
Collapse
|
30
|
Fang W, Zhu Y, Yang S, Tong X, Ye C. Reciprocal regulation of phosphatidylcholine synthesis and H3K36 methylation programs metabolic adaptation. Cell Rep 2022; 39:110672. [PMID: 35417718 DOI: 10.1016/j.celrep.2022.110672] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/14/2022] [Accepted: 03/22/2022] [Indexed: 11/17/2022] Open
Abstract
Phospholipid biosynthesis plays a role in mediating membrane-to-histone communication that influences metabolic decisions. Upon nutrient deprivation, phospholipid methylation generates a starvation signal in the form of S-adenosylmethionine (SAM) depletion, leading to dynamic changes in histone methylation. Here we show that the SAM-responsive methylation of H3K36 is critical for metabolic adaptation to nutrient starvation in the budding yeast Saccharomyces cerevisiae. We find that mutants deficient in H3K36 methylation exhibit defects in membrane integrity and pyrimidine metabolism and lose viability quickly under starvation. Adjusting the synthesis of phospholipids potently rewires metabolic pathways for nucleotide synthesis and boosts the production of antioxidants, ameliorating the defects resulting from the loss of H3K36 methylation. We further demonstrate that H3K36 methylation reciprocally regulates phospholipid synthesis by influencing redox balance. Our study illustrates an adaptive mechanism whereby phospholipid synthesis entails a histone modification to reprogram metabolism for adaptation in a eukaryotic model organism.
Collapse
Affiliation(s)
- Wen Fang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yibing Zhu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Sen Yang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xiaomeng Tong
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Cunqi Ye
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China; Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
31
|
Morrison AJ. Cancer cell metabolism connects epigenetic modifications to transcriptional regulation. FEBS J 2022; 289:1302-1314. [PMID: 34036737 PMCID: PMC8613311 DOI: 10.1111/febs.16032] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 04/12/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022]
Abstract
Adaptation of cellular function with the nutrient environment is essential for survival. Failure to adapt can lead to cell death and/or disease. Indeed, energy metabolism alterations are a major contributing factor for many pathologies, including cancer, cardiovascular disease, and diabetes. In particular, a primary characteristic of cancer cells is altered metabolism that promotes survival and proliferation even in the presence of limited nutrients. Interestingly, recent studies demonstrate that metabolic pathways produce intermediary metabolites that directly influence epigenetic modifications in the genome. Emerging evidence demonstrates that metabolic processes in cancer cells fuel malignant growth, in part, through epigenetic regulation of gene expression programs important for proliferation and adaptive survival. In this review, recent progress toward understanding the relationship of cancer cell metabolism, epigenetic modification, and transcriptional regulation will be discussed. Specifically, the need for adaptive cell metabolism and its modulation in cancer cells will be introduced. Current knowledge on the emerging field of metabolite production and epigenetic modification will also be reviewed. Alterations of DNA (de)methylation, histone modifications, such as (de)methylation and (de)acylation, as well as chromatin remodeling, will be discussed in the context of cancer cell metabolism. Finally, how these epigenetic alterations contribute to cancer cell phenotypes will be summarized. Collectively, these studies reveal that both metabolic and epigenetic pathways in cancer cells are closely linked, representing multiple opportunities to therapeutically target the unique features of malignant growth.
Collapse
|
32
|
Loss of glucose 6-phosphate dehydrogenase function increases oxidative stress and glutaminolysis in metastasizing melanoma cells. Proc Natl Acad Sci U S A 2022; 119:2120617119. [PMID: 35110412 PMCID: PMC8833200 DOI: 10.1073/pnas.2120617119] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2021] [Indexed: 01/02/2023] Open
Abstract
Melanoma metastasis is limited by oxidative stress. Cells that enter the blood experience high levels of reactive oxygen species and usually die of ferroptosis. We found that melanoma cells become more dependent upon the oxidative pentose phosphate pathway to manage oxidative stress during metastasis. When pentose phosphate pathway function was impaired by reduced glucose 6-phosphate dehydrogenase (G6PD) function, melanoma cells increased malic enzyme activity and glutamine consumption. Melanoma cells thus have redundant and layered protection against oxidative stress. The pentose phosphate pathway is a major source of NADPH for oxidative stress resistance in cancer cells but there is limited insight into its role in metastasis, when some cancer cells experience high levels of oxidative stress. To address this, we mutated the substrate binding site of glucose 6-phosphate dehydrogenase (G6PD), which catalyzes the first step of the pentose phosphate pathway, in patient-derived melanomas. G6PD mutant melanomas had significantly decreased G6PD enzymatic activity and depletion of intermediates in the oxidative pentose phosphate pathway. Reduced G6PD function had little effect on the formation of primary subcutaneous tumors, but when these tumors spontaneously metastasized, the frequency of circulating melanoma cells in the blood and metastatic disease burden were significantly reduced. G6PD mutant melanomas exhibited increased levels of reactive oxygen species, decreased NADPH levels, and depleted glutathione as compared to control melanomas. G6PD mutant melanomas compensated for this increase in oxidative stress by increasing malic enzyme activity and glutamine consumption. This generated a new metabolic vulnerability as G6PD mutant melanomas were more dependent upon glutaminase than control melanomas, both for oxidative stress management and anaplerosis. The oxidative pentose phosphate pathway, malic enzyme, and glutaminolysis thus confer layered protection against oxidative stress during metastasis.
Collapse
|
33
|
Liu G, Tan J, Cen J, Zhang G, Hu J, Liu S. Oscillating the local milieu of polymersome interiors via single input-regulated bilayer crosslinking and permeability tuning. Nat Commun 2022; 13:585. [PMID: 35102153 PMCID: PMC8803951 DOI: 10.1038/s41467-022-28227-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/31/2021] [Indexed: 11/09/2022] Open
Abstract
The unique permselectivity of cellular membranes is of crucial importance to maintain intracellular homeostasis while adapting to microenvironmental changes. Although liposomes and polymersomes have been widely engineered to mimic microstructures and functions of cells, it still remains a considerable challenge to synergize the stability and permeability of artificial cells and to imitate local milieu fluctuations. Herein, we report concurrent crosslinking and permeabilizing of pH-responsive polymersomes containing Schiff base moieties within bilayer membranes via enzyme-catalyzed acid production. Notably, this synergistic crosslinking and permeabilizing strategy allows tuning of the mesh sizes of the crosslinked bilayers with subnanometer precision, showing discriminative permeability toward maltooligosaccharides with molecular sizes of ~1.4-2.6 nm. The permselectivity of bilayer membranes enables intravesicular pH oscillation, fueled by a single input of glucose. This intravesicular pH oscillation can further drive the dissipative self-assembly of pH-sensitive dipeptides. Moreover, the permeabilization of polymersomes can be regulated by intracellular pH gradient as well, enabling the controlled release of encapsulated payloads.
Collapse
Affiliation(s)
- Guhuan Liu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Jiajia Tan
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Jie Cen
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Guoying Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China.
| | - Shiyong Liu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China.
| |
Collapse
|
34
|
Hsieh WC, Sutter BM, Ruess H, Barnes SD, Malladi VS, Tu BP. Glucose starvation induces a switch in the histone acetylome for activation of gluconeogenic and fat metabolism genes. Mol Cell 2022; 82:60-74.e5. [PMID: 34995509 PMCID: PMC8794035 DOI: 10.1016/j.molcel.2021.12.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/31/2021] [Accepted: 12/13/2021] [Indexed: 01/09/2023]
Abstract
Acetyl-CoA is a key intermediate situated at the intersection of many metabolic pathways. The reliance of histone acetylation on acetyl-CoA enables the coordination of gene expression with metabolic state. Abundant acetyl-CoA has been linked to the activation of genes involved in cell growth or tumorigenesis through histone acetylation. However, the role of histone acetylation in transcription under low levels of acetyl-CoA remains poorly understood. Here, we use a yeast starvation model to observe the dramatic alteration in the global occupancy of histone acetylation following carbon starvation; the location of histone acetylation marks shifts from growth-promoting genes to gluconeogenic and fat metabolism genes. This reallocation is mediated by both the histone deacetylase Rpd3p and the acetyltransferase Gcn5p, a component of the SAGA transcriptional coactivator. Our findings reveal an unexpected switch in the specificity of histone acetylation to promote pathways that generate acetyl-CoA for oxidation when acetyl-CoA is limiting.
Collapse
Affiliation(s)
- Wen-Chuan Hsieh
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Benjamin M. Sutter
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Holly Ruess
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Spencer D. Barnes
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Venkat S. Malladi
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Benjamin P. Tu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA,Correspondence and Lead Contact:
| |
Collapse
|
35
|
Mishra P, Beura S, Ghosh R, Modak R. Nutritional Epigenetics: How Metabolism Epigenetically Controls Cellular Physiology, Gene Expression and Disease. Subcell Biochem 2022; 100:239-267. [PMID: 36301497 DOI: 10.1007/978-3-031-07634-3_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The regulation of gene expression is a dynamic process that is influenced by both internal and external factors. Alteration in the epigenetic profile is a key mechanism in the regulation process. Epigenetic regulators, such as enzymes and proteins involved in posttranslational modification (PTM), use different cofactors and substrates derived from dietary sources. For example, glucose metabolism provides acetyl CoA, S-adenosylmethionine (SAM), α- ketoglutarate, uridine diphosphate (UDP)-glucose, adenosine triphosphate (ATP), nicotinamide adenine dinucleotide (NAD+), and fatty acid desaturase (FAD), which are utilized by chromatin-modifying enzymes in many intermediary metabolic pathways. Any alteration in the metabolic status of the cell results in the alteration of these metabolites, which causes dysregulation in the activity of chromatin regulators, resulting in the alteration of the epigenetic profile. Such long-term or repeated alteration of epigenetic profile can lead to several diseases, like cancer, insulin resistance and diabetes, cognitive impairment, neurodegenerative disease, and metabolic syndromes. Here we discuss the functions of key nutrients that contribute to epigenetic regulation and their role in pathophysiological conditions.
Collapse
Affiliation(s)
- Pragyan Mishra
- Infection and Epigenetics Group, School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| | - Shibangini Beura
- Infection and Epigenetics Group, School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| | - Ritu Ghosh
- Infection and Epigenetics Group, School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| | - Rahul Modak
- Infection and Epigenetics Group, School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India.
| |
Collapse
|
36
|
Zhang J, Gundu A, Strahl BD. Recognition of acetylated histone by Yaf9 regulates metabolic cycling of transcription initiation and chromatin regulatory factors. Genes Dev 2021; 35:1678-1692. [PMID: 34819351 PMCID: PMC8653784 DOI: 10.1101/gad.348904.121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/02/2021] [Indexed: 12/14/2022]
Abstract
How transcription programs rapidly adjust to changing metabolic and cellular cues remains poorly defined. Here, we reveal a function for the Yaf9 component of the SWR1-C and NuA4 chromatin regulatory complexes in maintaining timely transcription of metabolic genes across the yeast metabolic cycle (YMC). By reading histone acetylation during the oxidative and respiratory phase of the YMC, Yaf9 recruits SWR1-C and NuA4 complexes to deposit H2A.Z and acetylate H4, respectively. Increased H2A.Z and H4 acetylation during the oxidative phase promotes transcriptional initiation and chromatin machinery occupancy and is associated with reduced RNA polymerase II levels at genes-a pattern reversed during transition from oxidative to reductive metabolism. Prevention of Yaf9-H3 acetyl reading disrupted this pattern of transcriptional and chromatin regulator recruitment and impaired the timely transcription of metabolic genes. Together, these findings reveal that Yaf9 contributes to a dynamic chromatin and transcription initiation factor signature that is necessary for the proper regulation of metabolic gene transcription during the YMC. They also suggest that unique regulatory mechanisms of transcription exist at distinct metabolic states.
Collapse
Affiliation(s)
- Jibo Zhang
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Aakanksha Gundu
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Brian D Strahl
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.,Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
37
|
Zhang X, Wang L, Li Q, den Haan R, Li F, Liu CG, Bai FW. Omics analysis reveals mechanism underlying metabolic oscillation during continuous very-high-gravity ethanol fermentation by Saccharomyces cerevisiae. Biotechnol Bioeng 2021; 118:2990-3001. [PMID: 33934328 DOI: 10.1002/bit.27809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 03/27/2021] [Accepted: 04/21/2021] [Indexed: 11/10/2022]
Abstract
During continuous very-high-gravity (VHG) ethanol fermentation with Saccharomyces cerevisiae, the process exhibits sustained oscillation in residual glucose, ethanol, and biomass, raising a question: how do yeast cells respond to this phenomenon? In this study, the oscillatory behavior of yeast cells was characterized through transcriptome and metabolome analysis for one complete oscillatory period. By analyzing the accumulation of 26 intracellular metabolites and the expression of 90 genes related to central carbon metabolism and stress response, we confirmed that the process oscillation was attributed to intracellular metabolic oscillation with phase difference, and the expression of HXK1, HXT1,2,4, and PFK1 was significantly different from other genes in the Embden-Meyerhof-Parnas pathway, indicating that glucose transport and phosphorylation could be key nodes for regulating the intracellular metabolism under oscillatory conditions. Moreover, the expression of stress response genes was triggered and affected predominately by ethanol inhibition in yeast cells. This progress not only contributes to the understanding of mechanisms underlying the process oscillation observed for continuous VHG ethanol fermentation, but also provides insights for understanding unsteady state that might develop in other continuous fermentation processes operated under VHG conditions to increase product titers for robust production.
Collapse
Affiliation(s)
- Xue Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Liang Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Qian Li
- School of Life Science and Biotechnology, Dalian University, Dalian, Liaoning, China
| | - Riaan den Haan
- Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Fan Li
- COFCO Nutrition & Health Research Institute, Beijing, China
| | - Chen-Guang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Feng-Wu Bai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
38
|
Scarborough AM, Flaherty JN, Hunter OV, Liu K, Kumar A, Xing C, Tu BP, Conrad NK. SAM homeostasis is regulated by CFI m-mediated splicing of MAT2A. eLife 2021; 10:e64930. [PMID: 33949310 PMCID: PMC8139829 DOI: 10.7554/elife.64930] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/03/2021] [Indexed: 12/14/2022] Open
Abstract
S-adenosylmethionine (SAM) is the methyl donor for nearly all cellular methylation events. Cells regulate intracellular SAM levels through intron detention of MAT2A, the only SAM synthetase expressed in most cells. The N6-adenosine methyltransferase METTL16 promotes splicing of the MAT2A detained intron by an unknown mechanism. Using an unbiased CRISPR knock-out screen, we identified CFIm25 (NUDT21) as a regulator of MAT2A intron detention and intracellular SAM levels. CFIm25 is a component of the cleavage factor Im (CFIm) complex that regulates poly(A) site selection, but we show it promotes MAT2A splicing independent of poly(A) site selection. CFIm25-mediated MAT2A splicing induction requires the RS domains of its binding partners, CFIm68 and CFIm59 as well as binding sites in the detained intron and 3´ UTR. These studies uncover mechanisms that regulate MAT2A intron detention and reveal a previously undescribed role for CFIm in splicing and SAM metabolism.
Collapse
Affiliation(s)
- Anna M Scarborough
- Department of Microbiology, UT Southwestern Medical CenterDallasUnited States
| | - Juliana N Flaherty
- Department of Microbiology, UT Southwestern Medical CenterDallasUnited States
| | - Olga V Hunter
- Department of Microbiology, UT Southwestern Medical CenterDallasUnited States
| | - Kuanqing Liu
- Department of Biochemistry, UT Southwestern Medical CenterDallasUnited States
| | - Ashwani Kumar
- Eugene McDermott Center for Human Growth and Development, UT Southwestern Medical CenterDallasUnited States
| | - Chao Xing
- Eugene McDermott Center for Human Growth and Development, UT Southwestern Medical CenterDallasUnited States
- Department of Bioinformatics, UT Southwestern Medical CenterDallasUnited States
- Department of Population and Data Sciences, UT Southwestern Medical CenterDallasUnited States
| | - Benjamin P Tu
- Department of Biochemistry, UT Southwestern Medical CenterDallasUnited States
| | - Nicholas K Conrad
- Department of Microbiology, UT Southwestern Medical CenterDallasUnited States
| |
Collapse
|
39
|
Wang W, Ren S, Lu Y, Chen X, Qu J, Ma X, Deng Q, Hu Z, Jin Y, Zhou Z, Ge W, Zhu Y, Yang N, Li Q, Pu J, Chen G, Ye C, Wang H, Zhao X, Liu Z, Zhu S. Inhibition of Syk promotes chemical reprogramming of fibroblasts via metabolic rewiring and H 2 S production. EMBO J 2021; 40:e106771. [PMID: 33909912 DOI: 10.15252/embj.2020106771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 01/10/2023] Open
Abstract
Chemical compounds have recently been introduced as alternative and non-integrating inducers of pluripotent stem cell fate. However, chemical reprogramming is hampered by low efficiency and the molecular mechanisms remain poorly characterized. Here, we show that inhibition of spleen tyrosine kinase (Syk) by R406 significantly promotes mouse chemical reprogramming. Mechanistically, R406 alleviates Syk / calcineurin (Cn) / nuclear factor of activated T cells (NFAT) signaling-mediated suppression of glycine, serine, and threonine metabolic genes and dependent metabolites. Syk inhibition upregulates glycine level and downstream transsulfuration cysteine biosynthesis, promoting cysteine metabolism and cellular hydrogen sulfide (H2 S) production. This metabolic rewiring decreased oxidative phosphorylation and ROS levels, enhancing chemical reprogramming. In sum, our study identifies Syk-Cn-NFAT signaling axis as a new barrier of chemical reprogramming and suggests metabolic rewiring and redox homeostasis as important opportunities for controlling cell fates.
Collapse
Affiliation(s)
- Weiyun Wang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Shaofang Ren
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yunkun Lu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xi Chen
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Juanjuan Qu
- College of Life Science, Shanxi University, Taiyuan, China
| | - Xiaojie Ma
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Qian Deng
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Zhensheng Hu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yan Jin
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Ziyu Zhou
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Wenyan Ge
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yibing Zhu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Nannan Yang
- Prenatal Diagnosis Center, Hangzhou Women's Hospital, Hangzhou, China
| | - Qin Li
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jiaqi Pu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Guo Chen
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Cunqi Ye
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Hao Wang
- Prenatal Diagnosis Center, Hangzhou Women's Hospital, Hangzhou, China.,Department of Cell Biology and Medical Genetics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyang Zhao
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhiqiang Liu
- College of Life Science, Shanxi University, Taiyuan, China
| | - Saiyong Zhu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.,Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
40
|
Peroxiredoxins couple metabolism and cell division in an ultradian cycle. Nat Chem Biol 2021; 17:477-484. [PMID: 33574615 DOI: 10.1038/s41589-020-00728-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/22/2020] [Indexed: 01/30/2023]
Abstract
Redox cycles have been reported in ultradian, circadian and cell cycle-synchronized systems. Redox cycles persist in the absence of transcription and cyclin-CDK activity, indicating that cells harbor multiple coupled oscillators. Nonetheless, the causal relationships and molecular mechanisms by which redox cycles are embedded within ultradian, circadian or cell division cycles remain largely elusive. Yeast harbor an ultradian oscillator, the yeast metabolic cycle (YMC), which comprises metabolic/redox cycles, transcriptional cycles and synchronized cell division. Here, we reveal the existence of robust cycling of H2O2 and peroxiredoxin oxidation during the YMC and show that peroxiredoxin inactivation disrupts metabolic cycling and abolishes coupling with cell division. We find that thiol-disulfide oxidants and reductants predictably modulate the switching between different YMC metabolic states, which in turn predictably perturbs cell cycle entry and exit. We propose that oscillatory H2O2-dependent protein thiol oxidation is a key regulator of metabolic cycling and its coordination with cell division.
Collapse
|
41
|
Liu K, Santos DA, Hussmann JA, Wang Y, Sutter BM, Weissman JS, Tu BP. Regulation of translation by methylation multiplicity of 18S rRNA. Cell Rep 2021; 34:108825. [PMID: 33691096 PMCID: PMC8063911 DOI: 10.1016/j.celrep.2021.108825] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 01/04/2021] [Accepted: 02/12/2021] [Indexed: 02/01/2023] Open
Abstract
N6-methyladenosine (m6A) is a conserved ribonucleoside modification that regulates many facets of RNA metabolism. Using quantitative mass spectrometry, we find that the universally conserved tandem adenosines at the 3' end of 18S rRNA, thought to be constitutively di-methylated (m62A), are also mono-methylated (m6A). Although present at substoichiometric amounts, m6A at these positions increases significantly in response to sulfur starvation in yeast cells and mammalian cell lines. Combining yeast genetics and ribosome profiling, we provide evidence to suggest that m6A-bearing ribosomes carry out translation distinctly from m62A-bearing ribosomes, featuring a striking specificity for sulfur metabolism genes. Our work thus reveals methylation multiplicity as a mechanism to regulate translation.
Collapse
Affiliation(s)
- Kuanqing Liu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Daniel A Santos
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Jeffrey A Hussmann
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Yun Wang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Benjamin M Sutter
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Benjamin P Tu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
42
|
Maissan P, Mooij EJ, Barberis M. Sirtuins-Mediated System-Level Regulation of Mammalian Tissues at the Interface between Metabolism and Cell Cycle: A Systematic Review. BIOLOGY 2021; 10:194. [PMID: 33806509 PMCID: PMC7999230 DOI: 10.3390/biology10030194] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023]
Abstract
Sirtuins are a family of highly conserved NAD+-dependent proteins and this dependency links Sirtuins directly to metabolism. Sirtuins' activity has been shown to extend the lifespan of several organisms and mainly through the post-translational modification of their many target proteins, with deacetylation being the most common modification. The seven mammalian Sirtuins, SIRT1 through SIRT7, have been implicated in regulating physiological responses to metabolism and stress by acting as nutrient sensors, linking environmental and nutrient signals to mammalian metabolic homeostasis. Furthermore, mammalian Sirtuins have been implicated in playing major roles in mammalian pathophysiological conditions such as inflammation, obesity and cancer. Mammalian Sirtuins are expressed heterogeneously among different organs and tissues, and the same holds true for their substrates. Thus, the function of mammalian Sirtuins together with their substrates is expected to vary among tissues. Any therapy depending on Sirtuins could therefore have different local as well as systemic effects. Here, an introduction to processes relevant for the actions of Sirtuins, such as metabolism and cell cycle, will be followed by reasoning on the system-level function of Sirtuins and their substrates in different mammalian tissues. Their involvement in the healthy metabolism and metabolic disorders will be reviewed and critically discussed.
Collapse
Affiliation(s)
- Parcival Maissan
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
| | - Eva J. Mooij
- Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, UK;
- Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford GU2 7XH, Surrey, UK
| | - Matteo Barberis
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
- Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, UK;
- Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford GU2 7XH, Surrey, UK
| |
Collapse
|
43
|
Kosaisawe N, Sparta B, Pargett M, Teragawa CK, Albeck JG. Transient phases of OXPHOS inhibitor resistance reveal underlying metabolic heterogeneity in single cells. Cell Metab 2021; 33:649-665.e8. [PMID: 33561427 PMCID: PMC8005262 DOI: 10.1016/j.cmet.2021.01.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/13/2020] [Accepted: 01/13/2021] [Indexed: 12/16/2022]
Abstract
Cell-to-cell heterogeneity in metabolism plays an unknown role in physiology and pharmacology. To functionally characterize cellular variability in metabolism, we treated cells with inhibitors of oxidative phosphorylation (OXPHOS) and monitored their responses with live-cell reporters for ATP, ADP/ATP, or activity of the energy-sensing kinase AMPK. Across multiple OXPHOS inhibitors and cell types, we identified a subpopulation of cells resistant to activation of AMPK and reduction of ADP/ATP ratio. This resistant state persists transiently for at least several hours and can be inherited during cell divisions. OXPHOS inhibition suppresses the mTORC1 and ERK growth signaling pathways in sensitive cells, but not in resistant cells. Resistance is linked to a multi-factorial combination of increased glucose uptake, reduced protein biosynthesis, and G0/G1 cell-cycle status. Our results reveal dynamic fluctuations in cellular energetic balance and provide a basis for measuring and predicting the distribution of cellular responses to OXPHOS inhibition.
Collapse
Affiliation(s)
- Nont Kosaisawe
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Breanne Sparta
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Michael Pargett
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Carolyn K Teragawa
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - John G Albeck
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
44
|
Chen C, Mahar R, Merritt ME, Denlinger DL, Hahn DA. ROS and hypoxia signaling regulate periodic metabolic arousal during insect dormancy to coordinate glucose, amino acid, and lipid metabolism. Proc Natl Acad Sci U S A 2021; 118:e2017603118. [PMID: 33372159 PMCID: PMC7817151 DOI: 10.1073/pnas.2017603118] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Metabolic suppression is a hallmark of animal dormancy that promotes overall energy savings. Some diapausing insects and some mammalian hibernators have regular cyclic patterns of substantial metabolic depression alternating with periodic arousal where metabolic rates increase dramatically. Previous studies, largely in mammalian hibernators, have shown that periodic arousal is driven by an increase in aerobic mitochondrial metabolism and that many molecules related to energy metabolism fluctuate predictably across periodic arousal cycles. However, it is still not clear how these rapid metabolic shifts are regulated. We first found that diapausing flesh fly pupae primarily use anaerobic glycolysis during metabolic depression but engage in aerobic respiration through the tricarboxylic acid cycle during periodic arousal. Diapausing pupae also clear anaerobic by-products and regenerate many metabolic intermediates depleted in metabolic depression during arousal, consistent with patterns in mammalian hibernators. We found that decreased levels of reactive oxygen species (ROS) induced metabolic arousal and elevated ROS extended the duration of metabolic depression. Our data suggest ROS regulates the timing of metabolic arousal by changing the activity of two critical metabolic enzymes, pyruvate dehydrogenase and carnitine palmitoyltransferase I by modulating the levels of hypoxia inducible transcription factor (HIF) and phosphorylation of adenosine 5'-monophosphate-activated protein kinase (AMPK). Our study shows that ROS signaling regulates periodic arousal in our insect diapasue system, suggesting the possible importance ROS for regulating other types of of metabolic cycles in dormancy as well.
Collapse
Affiliation(s)
- Chao Chen
- Department of Entomology and Nematology, The University of Florida, Gainesville, FL 32611-0620;
| | - Rohit Mahar
- Department of Biochemistry and Molecular Biology, The University of Florida, Gainesville, FL 32610-0245
| | - Matthew E Merritt
- Department of Biochemistry and Molecular Biology, The University of Florida, Gainesville, FL 32610-0245
| | - David L Denlinger
- Department of Entomology, 300 Aronoff Laboratory, The Ohio State University, Columbus, OH 43210;
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, 300 Aronoff Laboratory, Columbus, OH 43210
| | - Daniel A Hahn
- Department of Entomology and Nematology, The University of Florida, Gainesville, FL 32611-0620;
- Genetics Institute, The University of Florida, Gainesville, FL 32610-3610
| |
Collapse
|
45
|
Autophagy sustains glutamate and aspartate synthesis in Saccharomyces cerevisiae during nitrogen starvation. Nat Commun 2021; 12:57. [PMID: 33397945 PMCID: PMC7782722 DOI: 10.1038/s41467-020-20253-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/20/2020] [Indexed: 01/29/2023] Open
Abstract
Autophagy catabolizes cellular constituents to promote survival during nutrient deprivation. Yet, a metabolic comprehension of this recycling operation, despite its crucial importance, remains incomplete. Here, we uncover a specific metabolic function of autophagy that exquisitely adjusts cellular metabolism according to nitrogen availability in the budding yeast Saccharomyces cerevisiae. Autophagy enables metabolic plasticity to promote glutamate and aspartate synthesis, which empowers nitrogen-starved cells to replenish their nitrogen currency and sustain macromolecule synthesis. Our findings provide critical insights into the metabolic basis by which autophagy recycles cellular components and may also have important implications in understanding the role of autophagy in diseases such as cancer.
Collapse
|
46
|
Abstract
Exponentially growing systems are prevalent in nature, spanning all scales from biochemical reaction networks in single cells to food webs of ecosystems. How exponential growth emerges in nonlinear systems is mathematically unclear. Here, we describe a general theoretical framework that reveals underlying principles of long-term growth: scalability of flux functions and ergodicity of the rescaled systems. Our theory shows that nonlinear fluxes can generate not only balanced growth but also oscillatory or chaotic growth modalities, explaining nonequilibrium dynamics observed in cell cycles and ecosystems. Our mathematical framework is broadly useful in predicting long-term growth rates from natural and synthetic networks, analyzing the effects of system noise and perturbations, validating empirical and phenomenological laws on growth rate, and studying autocatalysis and network evolution.
Collapse
|
47
|
Medina MÁ. Metabolic Reprogramming is a Hallmark of Metabolism Itself. Bioessays 2020; 42:e2000058. [PMID: 32939776 DOI: 10.1002/bies.202000058] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/13/2020] [Indexed: 12/16/2022]
Abstract
The reprogramming of metabolism has been identified as one of the hallmarks of cancer. It is becoming more and more frequent to connect other diseases with metabolic reprogramming. This article aims to argue that metabolic reprogramming is not driven by disease but instead is the main hallmark of metabolism, based on its dynamic behavior that allows it to continuously adapt to changes in the internal and external conditions.
Collapse
Affiliation(s)
- Miguel Ángel Medina
- Andalucía Tech, Facultad de Ciencias, Departamento de Biología Molecular y Bioquímica, and IBIMA (Biomedical Research Institute of Málaga), Universidad de Málaga, Málaga, E-29071, Spain.,CIBER de Enfermedades Raras (CIBERER), Málaga, E-29071, Spain
| |
Collapse
|
48
|
O' Neill JS, Hoyle NP, Robertson JB, Edgar RS, Beale AD, Peak-Chew SY, Day J, Costa ASH, Frezza C, Causton HC. Eukaryotic cell biology is temporally coordinated to support the energetic demands of protein homeostasis. Nat Commun 2020; 11:4706. [PMID: 32943618 PMCID: PMC7499178 DOI: 10.1038/s41467-020-18330-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/13/2020] [Indexed: 12/17/2022] Open
Abstract
Yeast physiology is temporally regulated, this becomes apparent under nutrient-limited conditions and results in respiratory oscillations (YROs). YROs share features with circadian rhythms and interact with, but are independent of, the cell division cycle. Here, we show that YROs minimise energy expenditure by restricting protein synthesis until sufficient resources are stored, while maintaining osmotic homeostasis and protein quality control. Although nutrient supply is constant, cells sequester and store metabolic resources via increased transport, autophagy and biomolecular condensation. Replete stores trigger increased H+ export which stimulates TORC1 and liberates proteasomes, ribosomes, chaperones and metabolic enzymes from non-membrane bound compartments. This facilitates translational bursting, liquidation of storage carbohydrates, increased ATP turnover, and the export of osmolytes. We propose that dynamic regulation of ion transport and metabolic plasticity are required to maintain osmotic and protein homeostasis during remodelling of eukaryotic proteomes, and that bioenergetic constraints selected for temporal organisation that promotes oscillatory behaviour.
Collapse
Affiliation(s)
- John S O' Neill
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK.
| | | | | | - Rachel S Edgar
- Molecular Virology, Department of Medicine, Imperial College, London, W2 1NY, UK
| | - Andrew D Beale
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | | | - Jason Day
- Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, UK
| | - Ana S H Costa
- MRC Cancer Unit, University of Cambridge, Cambridge, CB2 0XZ, UK.,Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Christian Frezza
- MRC Cancer Unit, University of Cambridge, Cambridge, CB2 0XZ, UK
| | - Helen C Causton
- Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
49
|
Ochoa GS, Prebihalo SE, Reaser BC, Marney LC, Synovec RE. Statistical inference of mass channel purity from Fisher ratio analysis using comprehensive two-dimensional gas chromatography with time of flight mass spectrometry data. J Chromatogr A 2020; 1627:461401. [PMID: 32823106 DOI: 10.1016/j.chroma.2020.461401] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022]
Abstract
Tile-based Fisher ratio (F-ratio) analysis has recently been developed and validated for discovery-based studies of highly complex data collected using comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC×GC-TOFMS). In previous studies, interpretation and utilization of F-ratio hit lists has relied upon manual decomposition and quantification performed by chemometric methods such as parallel factor analysis (PARAFAC), or via manual translation of the F-ratio hit list information to peak table quantitative information provided by the instrument software (ChromaTOF). Both of these quantification approaches are bottlenecks in the overall workflow. In order to address this issue, a more automatable approach to provide accurate relative quantification for F-ratio analyses was investigated, based upon the mass spectral selectivity provided via the F-ratio spectral output. Diesel fuel spiked with 15 analytes at four concentration levels (80, 40, 20, and 10 ppm) produced three sets of two class comparisons that were submitted to tile-based F-ratio analysis to obtain three hit lists, with an F-ratio spectrum for each hit. A novel algorithm which calculates the signal ratio (S-ratio) between two classes (eg., 80 ppm versus 40 ppm) was applied to all mass channels (m/z) in the F-ratio spectrum for each hit. A lack of fit (LOF) metric was utilized as a measure of peak purity and combined with F-ratio and p-values to study the relationship of each of these metrics with m/z purity. Application of a LOF threshold coupled with a p-value threshold yielded a subset of the most pure m/z for each of the 15 spiked analytes, evident by the low deviations (< 5%) in S-ratio relative to the true concentration ratio. A key outcome of this study was to demonstrate the isolation of pure m/z without the need for higher level signal decomposition algorithms.
Collapse
Affiliation(s)
- Grant S Ochoa
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195, USA
| | - Sarah E Prebihalo
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195, USA
| | - Brooke C Reaser
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195, USA
| | - Luke C Marney
- Department of Chemistry, Seattle University, 901 12th Avenue, Seattle, WA 98122, USA
| | - Robert E Synovec
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195, USA.
| |
Collapse
|
50
|
Caldez MJ, Bjorklund M, Kaldis P. Cell cycle regulation in NAFLD: when imbalanced metabolism limits cell division. Hepatol Int 2020; 14:463-474. [PMID: 32578019 PMCID: PMC7366567 DOI: 10.1007/s12072-020-10066-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/06/2020] [Indexed: 12/12/2022]
Abstract
Cell division is essential for organismal growth and tissue homeostasis. It is exceptionally significant in tissues chronically exposed to intrinsic and external damage, like the liver. After decades of studying the regulation of cell cycle by extracellular signals, there are still gaps in our knowledge on how these two interact with metabolic pathways in vivo. Studying the cross-talk of these pathways has direct clinical implications as defects in cell division, signaling pathways, and metabolic homeostasis are frequently observed in liver diseases. In this review, we will focus on recent reports which describe various functions of cell cycle regulators in hepatic homeostasis. We will describe the interplay between the cell cycle and metabolism during liver regeneration after acute and chronic damage. We will focus our attention on non-alcoholic fatty liver disease, especially non-alcoholic steatohepatitis. The global incidence of non-alcoholic fatty liver disease is increasing exponentially. Therefore, understanding the interplay between cell cycle regulators and metabolism may lead to the discovery of novel therapeutic targets amenable to intervention.
Collapse
Affiliation(s)
- Matias J Caldez
- WPI Immunology Frontiers Research Centre, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Mikael Bjorklund
- Zhejiang University-University of Edinburgh (ZJU-UoE) Institute and 2nd Affiliated Hospital, Zhejiang University School of Medicine, 718 East Haizhou Rd., Haining, 314400, Zhejiang, People's Republic of China
| | - Philipp Kaldis
- Department of Clinical Sciences, Clinical Research Centre (CRC), Lund University, Box 50332, 202 13, Malmö, Sweden.
| |
Collapse
|