1
|
Tomczewski S, Curatolo A, Foik A, Węgrzyn P, Bałamut B, Wielgo M, Kulesza W, Galińska A, Kordecka K, Gulati S, Fernandes H, Palczewski K, Wojtkowski M. Photopic flicker optoretinography captures the light-driven length modulation of photoreceptors during phototransduction. Proc Natl Acad Sci U S A 2025; 122:e2421722122. [PMID: 39946535 PMCID: PMC11848411 DOI: 10.1073/pnas.2421722122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/13/2025] [Indexed: 02/26/2025] Open
Abstract
In this study, we used an inhibitor of phosphodiesterase 6 (PDE6) to examine the impact of changes in the conformation of the PDE6 protein on the light-induced process responsible for altering the length of the outer segments of photoreceptor cells in both human and rodent eyes. We employed a imaging method called spatiotemporal optical coherence tomography, which ensures high contrast and phase stability within the strongly scattering photoreceptor- Retinal Pigment Epithelium complex. Using this approach, we recorded nanometer-scale changes in human cones and rods in response to photopic flicker stimulation and observed length changes in rodent rods under scotopic conditions following a single pulse of light, in the absence or presence of sildenafil, which inhibits the catalytic activity of PDE6. Our findings are consistent with the interpretation that during phototransduction conformational changes in PDE6 structure, which occur on an angstrom scale, are amplified to the nanometer scale due to the unique structure of the photoreceptor outer segments and sequential stimulation. This finding opens up possibilities for the informed use of photopic flicker optoretinography measurements as a diagnostic tool, as the observed nanometer-scale changes in rod and cone dimensions as a function of light stimulus can now be directly linked to molecular events involved in the phototransduction pathway.
Collapse
Affiliation(s)
- Sławomir Tomczewski
- International Centre for Translational Eye Research, Warsaw01-230, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw01-224, Poland
| | - Andrea Curatolo
- International Centre for Translational Eye Research, Warsaw01-230, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw01-224, Poland
- Department of Physics, Politecnico di Milano, Milan20133, Italy
| | - Andrzej Foik
- International Centre for Translational Eye Research, Warsaw01-230, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw01-224, Poland
| | - Piotr Węgrzyn
- International Centre for Translational Eye Research, Warsaw01-230, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw01-224, Poland
- Faculty of Physics, University of Warsaw, Warsaw02-093, Poland
| | - Bartłomiej Bałamut
- International Centre for Translational Eye Research, Warsaw01-230, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw01-224, Poland
| | - Maciej Wielgo
- International Centre for Translational Eye Research, Warsaw01-230, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw01-224, Poland
| | - Wiktor Kulesza
- International Centre for Translational Eye Research, Warsaw01-230, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw01-224, Poland
| | - Anna Galińska
- International Centre for Translational Eye Research, Warsaw01-230, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw01-224, Poland
| | - Katarzyna Kordecka
- International Centre for Translational Eye Research, Warsaw01-230, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw01-224, Poland
| | | | - Humberto Fernandes
- International Centre for Translational Eye Research, Warsaw01-230, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw01-224, Poland
| | - Krzysztof Palczewski
- Center for Translational Vision Research, Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA92697
- Department of Physiology and Biophysics, University of California, Irvine, CA92697
- Department of Chemistry, University of California, Irvine, CA92697
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA92697
| | - Maciej Wojtkowski
- International Centre for Translational Eye Research, Warsaw01-230, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw01-224, Poland
| |
Collapse
|
2
|
Chai Z, Silverman D, Li S, Bina P, Yau KW. Dark continuous noise from visual pigment as a major mechanism underlying rod-cone difference in light sensitivity. Proc Natl Acad Sci U S A 2024; 121:e2418031121. [PMID: 39656211 PMCID: PMC11665912 DOI: 10.1073/pnas.2418031121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/07/2024] [Indexed: 01/15/2025] Open
Abstract
Retinal rods and cones underlie scotopic and photopic vision, respectively. Their pigments exhibit spontaneous isomerizations (quantal noise) in darkness due to intrinsic thermal energy. This quantal noise, albeit exceedingly low in rods, dictates the light threshold for scotopic vision. The same quantal noise in cones, however, is too low to explain the much higher diurnal light threshold. Separately, a dark continuous noise is present in rods, long accepted to originate from an intrinsic random activation of the cyclic guanosine monophosphate (cGMP)-phosphodiesterase enzyme mediating phototransduction downstream of the pigment. Here, we report the surprising finding that most of this rod dark continuous noise actually originates from rhodopsin itself. Importantly, we found the same continuous noise with a much higher magnitude from cone pigments. The rod and cone continuous noises are apparently both associated with a hitherto unrecognized "metastable" pigment conformational state physiologically resembling that in apo-opsin (opsin devoid of chromophore) and is intermittently active for very brief moments. The cone holopigment's high continuous noise is expected to act as an intrinsic equivalent light and adapt the cone dramatically, accounting for a major part of the light-sensitivity difference between rods and cones in darkness.
Collapse
Affiliation(s)
- Zuying Chai
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Daniel Silverman
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Sihan Li
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Parinaz Bina
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - King-Wai Yau
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD21205
| |
Collapse
|
3
|
Maggi J, Hanson JVM, Kurmann L, Koller S, Feil S, Gerth-Kahlert C, Berger W. Retinal Dystrophy Associated with Homozygous Variants in NRL. Genes (Basel) 2024; 15:1594. [PMID: 39766861 PMCID: PMC11675615 DOI: 10.3390/genes15121594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 01/30/2025] Open
Abstract
Background/Objectives: Neural retina leucine zipper (NRL) is a transcription factor involved in the differentiation of rod photoreceptors. Pathogenic variants in the gene encoding NRL have been associated with autosomal dominant retinitis pigmentosa and autosomal recessive clumped pigmentary retinal degeneration. Only a dozen unrelated families affected by recessive NRL-related retinal dystrophy have been described. The purpose of this study was to expand the genotypic spectrum of this disease by reporting clinical and genetic findings of two unrelated families. Methods: Index patients affected by retinal dystrophy were genetically tested by whole-exome sequencing (WES) and whole-genome sequencing (WGS). Segregation analysis within the families was performed for candidate variants. A minigene assay was performed to functionally characterize a variant suspected to affect splicing. Results: Variant filtering revealed homozygous NRL variants in both families. The variant in patient A was a small deletion encompassing the donor splice site of exon 1 of transcript NM_006177.3. The minigene assay revealed that this variant led to two aberrant transcripts that used alternative cryptic donor splice sites located in intron 1. In patient B, a stop-gain variant was identified in the last exon of NRL in a homozygous state due to maternal uniparental disomy of chromosome 14. Conclusions: Our study expands the genotypic spectrum of autosomal recessive NRL-related retinal dystrophy. Moreover, it underscores the importance of actively maintaining bioinformatic pipelines for variant detection and the utility of minigene assays in functionally characterizing candidate splicing variants.
Collapse
Affiliation(s)
- Jordi Maggi
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (J.M.); (L.K.); (S.K.); (S.F.)
| | - James V. M. Hanson
- Department of Ophthalmology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland; (J.V.M.H.); (C.G.-K.)
| | - Lisa Kurmann
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (J.M.); (L.K.); (S.K.); (S.F.)
| | - Samuel Koller
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (J.M.); (L.K.); (S.K.); (S.F.)
| | - Silke Feil
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (J.M.); (L.K.); (S.K.); (S.F.)
| | - Christina Gerth-Kahlert
- Department of Ophthalmology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland; (J.V.M.H.); (C.G.-K.)
| | - Wolfgang Berger
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (J.M.); (L.K.); (S.K.); (S.F.)
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University and ETH Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
4
|
Krishnamoorthi A, Salom D, Wu A, Palczewski K, Rentzepis PM. Ultrafast transient absorption spectra and kinetics of human blue cone visual pigment at room temperature. Proc Natl Acad Sci U S A 2024; 121:e2414037121. [PMID: 39356673 PMCID: PMC11474067 DOI: 10.1073/pnas.2414037121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/01/2024] [Indexed: 10/04/2024] Open
Abstract
The ultrafast photochemical reaction mechanism, transient spectra, and transition kinetics of the human blue cone visual pigment have been recorded at room temperature. Ultrafast time-resolved absorption spectroscopy revealed the progressive formation and decay of several metastable photo-intermediates, corresponding to the Batho to Meta-II photo-intermediates previously observed with bovine rhodopsin and human green cone opsin, on the picosecond to millisecond timescales following pulsed excitation. The experimental data reveal several interesting similarities and differences between the photobleaching sequences of bovine rhodopsin, human green cone opsin, and human blue cone opsin. While Meta-II formation kinetics are comparable between bovine rhodopsin and blue cone opsin, the transition kinetics of earlier photo-intermediates and qualitative characteristics of the Meta-I to Meta-II transition are more similar for blue cone opsin and green cone opsin. Additionally, the blue cone photo-intermediate spectra exhibit a high degree of overlap with uniquely small spectral shifts. The observed variation in Meta-II formation kinetics between rod and cone visual pigments is explained based on key structural differences.
Collapse
Affiliation(s)
- Arjun Krishnamoorthi
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX77843
| | - David Salom
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA92697
- Department of Ophthalmology, School of Medicine, University of California Irvine, Irvine, CA92697
| | - Arum Wu
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA92697
- Department of Ophthalmology, School of Medicine, University of California Irvine, Irvine, CA92697
| | - Krzysztof Palczewski
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA92697
- Department of Ophthalmology, School of Medicine, University of California Irvine, Irvine, CA92697
- Department of Chemistry, University of California Irvine, Irvine, CA92697
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA92697
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA92697
| | - Peter M. Rentzepis
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX77843
| |
Collapse
|
5
|
Shahu M, Schuhmann F, Wong SY, Solov’yov IA, Koch KW. Allosteric Communication of the Dimerization and the Catalytic Domain in Photoreceptor Guanylate Cyclase. Biochemistry 2024; 63:2131-2140. [PMID: 39175413 PMCID: PMC11375764 DOI: 10.1021/acs.biochem.4c00170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
Phototransduction in vertebrate photoreceptor cells is controlled by Ca2+-dependent feedback loops involving the membrane-bound guanylate cyclase GC-E that synthesizes the second messenger guanosine-3',5'-cyclic monophosphate. Intracellular Ca2+-sensor proteins named guanylate cyclase-activating proteins (GCAPs) regulate the activity of GC-E by switching from a Ca2+-bound inhibiting state to a Ca2+-free/Mg2+-bound activating state. The gene GUCY2D encodes for human GC-E, and mutations in GUCY2D are often associated with an imbalance of Ca2+ and cGMP homeostasis causing retinal disorders. Here, we investigate the Ca2+-dependent inhibition of the constitutively active GC-E mutant V902L. The inhibition is not mediated by GCAP variants but by Ca2+ replacing Mg2+ in the catalytic center. Distant from the cyclase catalytic domain is an α-helical domain containing a highly conserved helix-turn-helix motif. Mutating the critical amino acid position 804 from leucine to proline left the principal activation mechanism intact but resulted in a lower level of catalytic efficiency. Our experimental analysis of amino acid positions in two distant GC-E domains implied an allosteric communication pathway connecting the α-helical and the cyclase catalytic domains. A computational connectivity analysis unveiled critical differences between wildtype GC-E and the mutant V902L in the allosteric network of critical amino acid positions.
Collapse
Affiliation(s)
- Manisha
Kumari Shahu
- Department
of Neuroscience, Carl von Ossietzky Universität
Oldenburg, Carl-von-Ossietzky-Str.
9-11, 26129 Oldenburg ,Germany
| | - Fabian Schuhmann
- Niels
Bohr International Academy, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
- Institute
of Physics, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| | - Siu Ying Wong
- Institute
of Physics, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| | - Ilia A. Solov’yov
- Institute
of Physics, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
- Research
Centre for Neurosensory Science, Carl von
Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg ,Germany
- Center
for Nanoscale Dynamics (CENAD), Institute of Physics, Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstr. 114-118, 26129 Oldenburg, Germany
| | - Karl-Wilhelm Koch
- Department
of Neuroscience, Carl von Ossietzky Universität
Oldenburg, Carl-von-Ossietzky-Str.
9-11, 26129 Oldenburg ,Germany
- Research
Centre for Neurosensory Science, Carl von
Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg ,Germany
| |
Collapse
|
6
|
Rao F, Xue T. Circadian-independent light regulation of mammalian metabolism. Nat Metab 2024; 6:1000-1007. [PMID: 38831000 DOI: 10.1038/s42255-024-01051-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/16/2024] [Indexed: 06/05/2024]
Abstract
The daily light-dark cycle is a key zeitgeber (time cue) for entraining an organism's biological clock, whereby light sensing by retinal photoreceptors, particularly intrinsically photosensitive retinal ganglion cells, stimulates the suprachiasmatic nucleus of the hypothalamus, a central pacemaker that in turn orchestrates the rhythm of peripheral metabolic activities. Non-rhythmic effects of light on metabolism have also been long known, and their transduction mechanisms are only beginning to unfold. Here, we summarize emerging evidence that, in mammals, light exposure or deprivation profoundly affects glucose homeostasis, thermogenesis and other metabolic activities in a clock-independent manner. Such light regulation could involve melanopsin-based, intrinsically photosensitive retinal ganglion cell-initiated brain circuits via the suprachiasmatic nucleus of the hypothalamus and other nuclei, or direct stimulation of opsins expressed in the hypothalamus, adipose tissue, blood vessels and skin to regulate sympathetic tone, lipolysis, glucose uptake, mitochondrial activation, thermogenesis, food intake, blood pressure and melanogenesis. These photic signalling events may coordinate with circadian-based mechanisms to maintain metabolic homeostasis, with dysregulation of this system underlying metabolic diseases caused by aberrant light exposure, such as environmental night light and shift work.
Collapse
Affiliation(s)
- Feng Rao
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| | - Tian Xue
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
7
|
Cheng J, Keuthan CJ, Esumi N. The many faces of SIRT6 in the retina and retinal pigment epithelium. Front Cell Dev Biol 2023; 11:1244765. [PMID: 38016059 PMCID: PMC10646311 DOI: 10.3389/fcell.2023.1244765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/18/2023] [Indexed: 11/30/2023] Open
Abstract
Sirtuin 6 (SIRT6) is a member of the mammalian sirtuin family of NAD+-dependent protein deacylases, homologues of the yeast silent information regulator 2 (Sir2). SIRT6 has remarkably diverse functions and plays a key role in a variety of biological processes for maintaining cellular and organismal homeostasis. In this review, our primary aim is to summarize recent progress in understanding SIRT6's functions in the retina and retinal pigment epithelium (RPE), with the hope of further drawing interests in SIRT6 to increase efforts in exploring the therapeutic potential of this unique protein in the vision field. Before describing SIRT6's role in the eye, we first discuss SIRT6's general functions in a wide range of biological contexts. SIRT6 plays an important role in gene silencing, metabolism, DNA repair, antioxidant defense, inflammation, aging and longevity, early development, and stress response. In addition, recent studies have revealed SIRT6's role in macrophage polarization and mitochondrial homeostasis. Despite being initially understudied in the context of the eye, recent efforts have begun to elucidate the critical functions of SIRT6 in the retina and RPE. In the retina, SIRT6 is essential for adult retinal function, regulates energy metabolism by suppressing glycolysis that affects photoreceptor cell survival, protects retinal ganglion cells from oxidative stress, and plays a role in Müller cells during early neurodegenerative events in diabetic retinopathy. In the RPE, SIRT6 activates autophagy in culture and protects against oxidative stress in mice. Taken together, this review demonstrates that better understanding of SIRT6's functions and their mechanisms, both in and out of the context of the eye, holds great promise for the development of SIRT6-targeted strategies for prevention and treatment of blinding eye diseases.
Collapse
Affiliation(s)
| | | | - Noriko Esumi
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
8
|
Wu A, Salom D, Hong JD, Tworak A, Watanabe K, Pardon E, Steyaert J, Kandori H, Katayama K, Kiser PD, Palczewski K. Structural basis for the allosteric modulation of rhodopsin by nanobody binding to its extracellular domain. Nat Commun 2023; 14:5209. [PMID: 37626045 PMCID: PMC10457330 DOI: 10.1038/s41467-023-40911-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Rhodopsin is a prototypical G protein-coupled receptor (GPCR) critical for vertebrate vision. Research on GPCR signaling states has been facilitated using llama-derived nanobodies (Nbs), some of which bind to the intracellular surface to allosterically modulate the receptor. Extracellularly binding allosteric nanobodies have also been investigated, but the structural basis for their activity has not been resolved to date. Here, we report a library of Nbs that bind to the extracellular surface of rhodopsin and allosterically modulate the thermodynamics of its activation process. Crystal structures of Nb2 in complex with native rhodopsin reveal a mechanism of allosteric modulation involving extracellular loop 2 and native glycans. Nb2 binding suppresses Schiff base deprotonation and hydrolysis and prevents intracellular outward movement of helices five and six - a universal activation event for GPCRs. Nb2 also mitigates protein misfolding in a disease-associated mutant rhodopsin. Our data show the power of nanobodies to modulate the photoactivation of rhodopsin and potentially serve as therapeutic agents for disease-associated rhodopsin misfolding.
Collapse
Affiliation(s)
- Arum Wu
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, 92697, USA
| | - David Salom
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, 92697, USA
| | - John D Hong
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, 92697, USA
- Department of Chemistry, University of California, Irvine, CA, 92697, USA
| | - Aleksander Tworak
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, 92697, USA
| | - Kohei Watanabe
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, 466- 8555, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, 466- 8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
| | - Kota Katayama
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, 466- 8555, Japan.
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan.
| | - Philip D Kiser
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, 92697, USA.
- Department of Physiology & Biophysics, University of California, Irvine, CA, USA.
- Department of Clinical Pharmacy Practice, University of California, Irvine, CA, USA.
- Research Service, VA Long Beach Healthcare System, Long Beach, CA, USA.
| | - Krzysztof Palczewski
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, 92697, USA.
- Department of Chemistry, University of California, Irvine, CA, 92697, USA.
- Department of Physiology & Biophysics, University of California, Irvine, CA, USA.
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
9
|
Krishnamoorthi A, Khosh Abady K, Dhankhar D, Rentzepis PM. Ultrafast Transient Absorption Spectra and Kinetics of Rod and Cone Visual Pigments. Molecules 2023; 28:5829. [PMID: 37570798 PMCID: PMC10421382 DOI: 10.3390/molecules28155829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Rods and cones are the photoreceptor cells containing the visual pigment proteins that initiate visual phototransduction following the absorption of a photon. Photon absorption induces the photochemical transformation of a visual pigment, which results in the sequential formation of distinct photo-intermediate species on the femtosecond to millisecond timescales, whereupon a visual electrical signal is generated and transmitted to the brain. Time-resolved spectroscopic studies of the rod and cone photo-intermediaries enable the detailed understanding of initial events in vision, namely the key differences that underlie the functionally distinct scotopic (rod) and photopic (cone) visual systems. In this paper, we review our recent ultrafast (picoseconds to milliseconds) transient absorption studies of rod and cone visual pigments with a detailed comparison of the transient molecular spectra and kinetics of their respective photo-intermediaries. Key results include the characterization of the porphyropsin (carp fish rhodopsin) and human green-cone opsin photobleaching sequences, which show significant spectral and kinetic differences when compared against that of bovine rhodopsin. These results altogether reveal a rather strong interplay between the visual pigment structure and its corresponding photobleaching sequence, and relevant outstanding questions that will be further investigated through a forthcoming study of the human blue-cone visual pigment are discussed.
Collapse
Affiliation(s)
- Arjun Krishnamoorthi
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Keyvan Khosh Abady
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Dinesh Dhankhar
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
- Thermo Fisher Scientific, Hillsboro, OR 97124, USA
| | - Peter M. Rentzepis
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
10
|
O'Neill AG, Burrell AL, Zech M, Elpeleg O, Harel T, Edvardson S, Mor-Shaked H, Rippert AL, Nomakuchi T, Izumi K, Kollman JM. Neurodevelopmental disorder mutations in the purine biosynthetic enzyme IMPDH2 disrupt its allosteric regulation. J Biol Chem 2023; 299:105012. [PMID: 37414152 PMCID: PMC10407431 DOI: 10.1016/j.jbc.2023.105012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/08/2023] Open
Abstract
Inosine 5' monophosphate dehydrogenase (IMPDH) is a critical regulatory enzyme in purine nucleotide biosynthesis that is inhibited by the downstream product GTP. Multiple point mutations in the human isoform IMPDH2 have recently been associated with dystonia and other neurodevelopmental disorders, but the effect of the mutations on enzyme function has not been described. Here, we report the identification of two additional missense variants in IMPDH2 from affected individuals and show that all of the disease-associated mutations disrupt GTP regulation. Cryo-EM structures of one IMPDH2 mutant suggest this regulatory defect arises from a shift in the conformational equilibrium toward a more active state. This structural and functional analysis provides insight into IMPDH2-associated disease mechanisms that point to potential therapeutic approaches and raises new questions about fundamental aspects of IMPDH regulation.
Collapse
Affiliation(s)
- Audrey G O'Neill
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Anika L Burrell
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany; Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Orly Elpeleg
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tamar Harel
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Simon Edvardson
- Alyn Hospital, Hebrew University School of Medicine, Jerusalem, Israel
| | - Hagar Mor-Shaked
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alyssa L Rippert
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Tomoki Nomakuchi
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kosuke Izumi
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Justin M Kollman
- Department of Biochemistry, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
11
|
O'Neill AG, Burrell AL, Zech M, Elpeleg O, Harel T, Edvardson S, Shaked HM, Rippert AL, Nomakuchi T, Izumi K, Kollman JM. Point mutations in IMPDH2 which cause early-onset neurodevelopmental disorders disrupt enzyme regulation and filament structure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.15.532669. [PMID: 36993700 PMCID: PMC10055058 DOI: 10.1101/2023.03.15.532669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Inosine 5' monophosphate dehydrogenase (IMPDH) is a critical regulatory enzyme in purine nucleotide biosynthesis that is inhibited by the downstream product GTP. Multiple point mutations in the human isoform IMPDH2 have recently been associated with dystonia and other neurodevelopmental disorders, but the effect of the mutations on enzyme function has not been described. Here, we report identification of two additional affected individuals with missense variants in IMPDH2 and show that all of the disease-associated mutations disrupt GTP regulation. Cryo-EM structures of one IMPDH2 mutant suggest this regulatory defect arises from a shift in the conformational equilibrium toward a more active state. This structural and functional analysis provides insight into IMPDH2-associated disease mechanisms that point to potential therapeutic approaches and raises new questions about fundamental aspects of IMPDH regulation.
Collapse
Affiliation(s)
- Audrey G O'Neill
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Anika L Burrell
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, 85764 Munich, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Orly Elpeleg
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tamar Harel
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Simon Edvardson
- Alyn Hospital, Hebrew University School of Medicine, Jerusalem, Israel
| | - Hagar Mor Shaked
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alyssa L Rippert
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Tomoki Nomakuchi
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kosuke Izumi
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Justin M Kollman
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| |
Collapse
|
12
|
Xu T, Molday L, Molday R. Retinal-phospholipid Schiff-base conjugates and their interaction with ABCA4, the ABC transporter associated with Stargardt Disease. J Biol Chem 2023; 299:104614. [PMID: 36931393 PMCID: PMC10127136 DOI: 10.1016/j.jbc.2023.104614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
N-retinylidene-phosphatidylethanolamine (N-Ret-PE), the Schiff-base conjugate formed through the reversible reaction of retinal (Vitamin A-aldehyde) and phosphatidylethanolamine, plays a crucial role in the visual cycle and visual pigment photoregeneration. However, N-Ret-PE can react with another molecule of retinal to form toxic di-retinoids if not removed from photoreceptors through its transport across photoreceptor membranes by the ATP-binding-cassette transporter ABCA4. Loss-of-function mutations in ABCA4 are known to cause Stargardt disease (STGD1), an inherited retinal degenerative disease associated with the accumulation of fluorescent di-retinoids and severe loss in vision. A larger assessment of retinal-phospholipid Schiff-base conjugates in photoreceptors is needed, along with further investigation of ABCA4 residues important for N-Ret-PE binding. In this study we show that N-Ret-PE formation is dependent on pH and phospholipid content. When retinal is added to liposomes or photoreceptor membranes, 40-60% is converted to N-Ret-PE at physiological pH. Phosphatidylserine and taurine also react with retinal to form N-retinylidene-phosphatidylserine (N-Ret-PS) and N-retinylidene-taurine, respectively, but at significantly lower levels. N-Ret-PS is not a substrate for ABCA4 and reacts poorly with retinal to form di-retinoids. Additionally, amino acid residues within the binding pocket of ABCA4 that contribute to its interaction with N-Ret-PE were identified and characterized using site-directed mutagenesis together with functional and binding assays. Substitution of arginine residues and hydrophobic residues with alanine or residues implicated in STGD1 significantly reduced or in some cases eliminated substrate-activated ATPase activity and substrate binding. Collectively, this study provides important insight into conditions which affect retinal-phospholipid Schiff-base formation and mechanisms underlying the pathogenesis of STGD1.
Collapse
Affiliation(s)
- Tongzhou Xu
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, B.C. V6T 1Z3 Canada
| | - LaurieL Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, B.C. V6T 1Z3 Canada
| | - RobertS Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, B.C. V6T 1Z3 Canada.
| |
Collapse
|
13
|
Gulati S, Palczewski K. Structural view of G protein-coupled receptor signaling in the retinal rod outer segment. Trends Biochem Sci 2023; 48:172-186. [PMID: 36163145 PMCID: PMC9868064 DOI: 10.1016/j.tibs.2022.08.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 01/26/2023]
Abstract
Visual phototransduction is the most extensively studied G protein-coupled receptor (GPCR) signaling pathway because of its quantifiable stimulus, non-redundancy of genes, and immense importance in vision. We summarize recent discoveries that have advanced our understanding of rod outer segment (ROS) morphology and the pathological basis of retinal diseases. We have combined recently published cryo-electron tomography (cryo-ET) data on the ROS with structural knowledge on individual proteins to define the precise spatial limitations under which phototransduction occurs. Although hypothetical, the reconstruction of the rod phototransduction system highlights the potential roles of phosphodiesterase 6 (PDE6) and guanylate cyclases (GCs) in maintaining the spacing between ROS discs, suggesting a plausible mechanism by which intrinsic optical signals are generated in the retina.
Collapse
Affiliation(s)
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute and the Department of Ophthalmology, Center for Translational Vision Research, Department of Physiology and Biophysics, Department of Chemistry, Molecular Biology, and Biochemistry, University of California Irvine, 850 Health Sciences Road, Irvine, CA 92697-4375, USA.
| |
Collapse
|
14
|
Duda T, Sharma RK. Multilimbed membrane guanylate cyclase signaling system, evolutionary ladder. Front Mol Neurosci 2023; 15:1022771. [PMID: 36683846 PMCID: PMC9849996 DOI: 10.3389/fnmol.2022.1022771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/14/2022] [Indexed: 01/07/2023] Open
Abstract
One monumental discovery in the field of cell biology is the establishment of the membrane guanylate cyclase signal transduction system. Decoding its fundamental, molecular, biochemical, and genetic features revolutionized the processes of developing therapies for diseases of endocrinology, cardio-vasculature, and sensory neurons; lastly, it has started to leave its imprints with the atmospheric carbon dioxide. The membrane guanylate cyclase does so via its multi-limbed structure. The inter-netted limbs throughout the central, sympathetic, and parasympathetic systems perform these functions. They generate their common second messenger, cyclic GMP to affect the physiology. This review describes an historical account of their sequential evolutionary development, their structural components and their mechanisms of interaction. The foundational principles were laid down by the discovery of its first limb, the ACTH modulated signaling pathway (the companion monograph). It challenged two general existing dogmas at the time. First, there was the question of the existence of a membrane guanylate cyclase independent from a soluble form that was heme-regulated. Second, the sole known cyclic AMP three-component-transduction system was modulated by GTP-binding proteins, so there was the question of whether a one-component transduction system could exclusively modulate cyclic GMP in response to the polypeptide hormone, ACTH. The present review moves past the first question and narrates the evolution and complexity of the cyclic GMP signaling pathway. Besides ACTH, there are at least five additional limbs. Each embodies a unique modular design to perform a specific physiological function; exemplified by ATP binding and phosphorylation, Ca2+-sensor proteins that either increase or decrease cyclic GMP synthesis, co-expression of antithetical Ca2+ sensors, GCAP1 and S100B, and modulation by atmospheric carbon dioxide and temperature. The complexity provided by these various manners of operation enables membrane guanylate cyclase to conduct diverse functions, exemplified by the control over cardiovasculature, sensory neurons and, endocrine systems.
Collapse
|
15
|
Widjaja-Adhi MAK, Kolesnikov AV, Vasudevan S, Park PSH, Kefalov VJ, Golczak M. Acyl-CoA:wax alcohol acyltransferase 2 modulates the cone visual cycle in mouse retina. FASEB J 2022; 36:e22390. [PMID: 35665537 DOI: 10.1096/fj.202101855rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 11/11/2022]
Abstract
The daylight and color vision of diurnal vertebrates depends on cone photoreceptors. The capability of cones to operate and respond to changes in light brightness even under high illumination is attributed to their fast rate of recovery to the ground photosensitive state. This process requires the rapid replenishing of photoisomerized visual chromophore (11-cis-retinal) to regenerate cone visual pigments. Recently, several gene candidates have been proposed to contribute to the cone-specific retinoid metabolism, including acyl-CoA wax alcohol acyltransferase 2 (AWAT2, aka MFAT). Here, we evaluated the role of AWAT2 in the regeneration of visual chromophore by the phenotypic characterization of Awat2-/- mice. The global absence of AWAT2 enzymatic activity did not affect gross retinal morphology or the rate of visual chromophore regeneration by the canonical RPE65-dependent visual cycle. Analysis of Awat2 expression indicated the presence of the enzyme throughout the murine retina, including the retinal pigment epithelium (RPE) and Müller cells. Electrophysiological recordings revealed reduced maximal rod and cone dark-adapted responses in AWAT2-deficient mice compared to control mice. While rod dark adaptation was not affected by the lack of AWAT2, M-cone dark adaptation both in isolated retina and in vivo was significantly suppressed. Altogether, these results indicate that while AWAT2 is not required for the normal operation of the canonical visual cycle, it is a functional component of the cone-specific visual chromophore regenerative pathway.
Collapse
Affiliation(s)
| | - Alexander V Kolesnikov
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, California, USA
| | - Sreelakshmi Vasudevan
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Paul S-H Park
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Vladimir J Kefalov
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, California, USA.,Department of Physiology and Biophysics, University of California, Irvine, California, USA
| | - Marcin Golczak
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA.,Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
16
|
IMPDH dysregulation in disease: a mini review. Biochem Soc Trans 2022; 50:71-82. [PMID: 35191957 PMCID: PMC9022972 DOI: 10.1042/bst20210446] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/20/2022]
Abstract
Inosine-5′-monophosphate dehydrogenase (IMPDH) is a highly conserved enzyme in purine metabolism that is tightly regulated on multiple levels. IMPDH has a critical role in purine biosynthesis, where it regulates flux at the branch point between adenine and guanine nucleotide synthesis, but it also has a role in transcription regulation and other moonlighting functions have been described. Vertebrates have two isoforms, IMPDH1 and IMPDH2, and point mutations in each are linked to human disease. Mutations in IMPDH2 in humans are associated with neurodevelopmental disease, but the effects of mutations at the enzyme level have not yet been characterized. Mutations in IMPDH1 lead to retinal degeneration in humans, and recent studies have characterized how they cause functional defects in regulation. IMPDH1 is expressed as two unique splice variants in the retina, a tissue with very high and specific demands for purine nucleotides. Recent studies have revealed functional differences among splice variants, demonstrating that retinal variants up-regulate guanine nucleotide synthesis by reducing sensitivity to feedback inhibition by downstream products. A better understanding of the role of IMPDH1 in the retina and the characterization of an animal disease model will be critical for determining the molecular mechanism of IMPDH1-associated blindness.
Collapse
|
17
|
Burrell AL, Nie C, Said M, Simonet JC, Fernández-Justel D, Johnson MC, Quispe J, Buey RM, Peterson JR, Kollman JM. IMPDH1 retinal variants control filament architecture to tune allosteric regulation. Nat Struct Mol Biol 2022; 29:47-58. [PMID: 35013599 PMCID: PMC9044917 DOI: 10.1038/s41594-021-00706-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/23/2021] [Indexed: 01/06/2023]
Abstract
Inosine-5'-monophosphate dehydrogenase (IMPDH), a key regulatory enzyme in purine nucleotide biosynthesis, dynamically assembles filaments in response to changes in metabolic demand. Humans have two isoforms: IMPDH2 filaments reduce sensitivity to feedback inhibition, while IMPDH1 assembly remains uncharacterized. IMPDH1 plays a unique role in retinal metabolism, and point mutants cause blindness. Here, in a series of cryogenic-electron microscopy structures we show that human IMPDH1 assembles polymorphic filaments with different assembly interfaces in extended and compressed states. Retina-specific splice variants introduce structural elements that reduce sensitivity to GTP inhibition, including stabilization of the extended filament form. Finally, we show that IMPDH1 disease mutations fall into two classes: one disrupts GTP regulation and the other has no effect on GTP regulation or filament assembly. These findings provide a foundation for understanding the role of IMPDH1 in retinal function and disease and demonstrate the diverse mechanisms by which metabolic enzyme filaments are allosterically regulated.
Collapse
Affiliation(s)
- Anika L Burrell
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Chuankai Nie
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Meerit Said
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Jacqueline C Simonet
- Cancer Epigenetics and Signaling Program, Fox Chase Cancer Center, Philadelphia, PA, USA
- Department of Biology, Arcadia University, Glenside, PA, USA
| | - David Fernández-Justel
- Metabolic Engineering Group, Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Matthew C Johnson
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Department of Structural Biology, Genentech, South San Francisco, CA, USA
| | - Joel Quispe
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Rubén M Buey
- Metabolic Engineering Group, Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Jeffrey R Peterson
- Cancer Epigenetics and Signaling Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Justin M Kollman
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
| |
Collapse
|
18
|
Michalakis S, Gerhardt M, Rudolph G, Priglinger S, Priglinger C. Achromatopsia: Genetics and Gene Therapy. Mol Diagn Ther 2022; 26:51-59. [PMID: 34860352 PMCID: PMC8766373 DOI: 10.1007/s40291-021-00565-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2021] [Indexed: 01/02/2023]
Abstract
Achromatopsia (ACHM), also known as rod monochromatism or total color blindness, is an autosomal recessively inherited retinal disorder that affects the cones of the retina, the type of photoreceptors responsible for high-acuity daylight vision. ACHM is caused by pathogenic variants in one of six cone photoreceptor-expressed genes. These mutations result in a functional loss and a slow progressive degeneration of cone photoreceptors. The loss of cone photoreceptor function manifests at birth or early in childhood and results in decreased visual acuity, lack of color discrimination, abnormal intolerance to light (photophobia), and rapid involuntary eye movement (nystagmus). Up to 90% of patients with ACHM carry mutations in CNGA3 or CNGB3, which are the genes encoding the alpha and beta subunits of the cone cyclic nucleotide-gated (CNG) channel, respectively. No authorized therapy for ACHM exists, but research activities have intensified over the past decade and have led to several preclinical gene therapy studies that have shown functional and morphological improvements in animal models of ACHM. These encouraging preclinical data helped advance multiple gene therapy programs for CNGA3- and CNGB3-linked ACHM into the clinical phase. Here, we provide an overview of the genetic and molecular basis of ACHM, summarize the gene therapy-related research activities, and provide an outlook for their clinical application.
Collapse
Affiliation(s)
- Stylianos Michalakis
- Department of Ophthalmology, University Hospital, LMU Munich, Mathildenstr. 8, 80336, Munich, Germany.
| | - Maximilian Gerhardt
- Department of Ophthalmology, University Hospital, LMU Munich, Mathildenstr. 8, 80336, Munich, Germany
| | - Günther Rudolph
- Department of Ophthalmology, University Hospital, LMU Munich, Mathildenstr. 8, 80336, Munich, Germany
| | - Siegfried Priglinger
- Department of Ophthalmology, University Hospital, LMU Munich, Mathildenstr. 8, 80336, Munich, Germany
| | - Claudia Priglinger
- Department of Ophthalmology, University Hospital, LMU Munich, Mathildenstr. 8, 80336, Munich, Germany
| |
Collapse
|
19
|
Molday RS, Garces FA, Scortecci JF, Molday LL. Structure and function of ABCA4 and its role in the visual cycle and Stargardt macular degeneration. Prog Retin Eye Res 2021; 89:101036. [PMID: 34954332 DOI: 10.1016/j.preteyeres.2021.101036] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 12/17/2022]
Abstract
ABCA4 is a member of the superfamily of ATP-binding cassette (ABC) transporters that is preferentially localized along the rim region of rod and cone photoreceptor outer segment disc membranes. It uses the energy from ATP binding and hydrolysis to transport N-retinylidene-phosphatidylethanolamine (N-Ret-PE), the Schiff base adduct of retinal and phosphatidylethanolamine, from the lumen to the cytoplasmic leaflet of disc membranes. This ensures that all-trans-retinal and excess 11-cis-retinal are efficiently cleared from photoreceptor cells thereby preventing the accumulation of toxic retinoid compounds. Loss-of-function mutations in the gene encoding ABCA4 cause autosomal recessive Stargardt macular degeneration, also known as Stargardt disease (STGD1), and related autosomal recessive retinopathies characterized by impaired central vision and an accumulation of lipofuscin and bis-retinoid compounds. High resolution structures of ABCA4 in its substrate and nucleotide free state and containing bound N-Ret-PE or ATP have been determined by cryo-electron microscopy providing insight into the molecular architecture of ABCA4 and mechanisms underlying substrate recognition and conformational changes induced by ATP binding. The expression and functional characterization of a large number of disease-causing missense ABCA4 variants have been determined. These studies have shed light into the molecular mechanisms underlying Stargardt disease and a classification that reliably predicts the effect of a specific missense mutation on the severity of the disease. They also provide a framework for developing rational therapeutic treatments for ABCA4-associated diseases.
Collapse
Affiliation(s)
- Robert S Molday
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C., Canada; Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, B.C., Canada.
| | - Fabian A Garces
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C., Canada
| | | | - Laurie L Molday
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C., Canada
| |
Collapse
|
20
|
Pattanaik DK, Sahu AP, Lakshminarayanan V, Sharma NK. The
a
-Wave of the Electroretinogram and Iron-Induced Oxidative Stress: A Model. Acta Biotheor 2021; 70:2. [PMID: 34870770 DOI: 10.1007/s10441-021-09426-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 07/25/2021] [Indexed: 10/19/2022]
Abstract
In photoreceptors of a dark adapted eye, the inward flux of sodium and calcium ions in the outer segment is balanced by the outward flux of potassium ions. But in the presence of light the creation of cyclic guanosine monophosphate in the outer segment decreases. Due to low concentration of cG (cyclic GMP) the channels in the outer segment open relatively less and thus the influx of calcium ion decreases, leading finally to hyperpolarization of the photoreceptors. We have analyzed theoretically the effect of oxidizing iron ions on the photoreceptors. In order to explain the effects of iron-induced oxidative stress, the different molecules and ions involved in phototransduction are quantified leading to a differential equation for calculating the electroretinogram a-wave voltage. The theoretical results are compared with published experimental data. In the presence of light, the iron ions could push outward the similarly charged calcium ions resulting in a small increase in the amount of inward calcium flux. Again, the presence of iron ions generates Reactive Oxygen Species, and ROS could attract the calcium ions which also increases the calcium flux. This will result in a reduction in the amplitude and slope of the a-wave voltage in the electroretinogram. These results are parametrized in terms of calcium ion concentrations. As the amplitude of the a-wave shows how much electrical signal is produced, its reduction indicates reduction in the visual signal. Thus, the increase in iron ions could explain the reduction in the electrical signal due to iron-induced oxidative stress.
Collapse
Affiliation(s)
| | - Amir Prasad Sahu
- Centurion University of Technology and Management, Bhubaneswar, India
| | - Vasudevan Lakshminarayanan
- School of Optometry and Vision Science, Departments of Physics, Electrical and Computer Engineering and System Design Engineering, University of Waterloo, Waterloo, ON, Canada.
| | | |
Collapse
|
21
|
Genovese F, Reisert J, Kefalov VJ. Sensory Transduction in Photoreceptors and Olfactory Sensory Neurons: Common Features and Distinct Characteristics. Front Cell Neurosci 2021; 15:761416. [PMID: 34690705 PMCID: PMC8531253 DOI: 10.3389/fncel.2021.761416] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022] Open
Abstract
The past decades have seen tremendous progress in our understanding of the function of photoreceptors and olfactory sensory neurons, uncovering the mechanisms that determine their properties and, ultimately, our ability to see and smell. This progress has been driven to a large degree by the powerful combination of physiological experimental tools and genetic manipulations, which has enabled us to identify the main molecular players in the transduction cascades of these sensory neurons, how their properties affect the detection and discrimination of stimuli, and how diseases affect our senses of vision and smell. This review summarizes some of the common and unique features of photoreceptors and olfactory sensory neurons that make these cells so exciting to study.
Collapse
Affiliation(s)
| | | | - Vladimir J Kefalov
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States.,Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
22
|
Scortecci JF, Molday LL, Curtis SB, Garces FA, Panwar P, Van Petegem F, Molday RS. Cryo-EM structures of the ABCA4 importer reveal mechanisms underlying substrate binding and Stargardt disease. Nat Commun 2021; 12:5902. [PMID: 34625547 PMCID: PMC8501128 DOI: 10.1038/s41467-021-26161-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 09/20/2021] [Indexed: 12/04/2022] Open
Abstract
ABCA4 is an ATP-binding cassette (ABC) transporter that flips N-retinylidene-phosphatidylethanolamine (N-Ret-PE) from the lumen to the cytoplasmic leaflet of photoreceptor membranes. Loss-of-function mutations cause Stargardt disease (STGD1), a macular dystrophy associated with severe vision loss. To define the mechanisms underlying substrate binding and STGD1, we determine the cryo-EM structure of ABCA4 in its substrate-free and bound states. The two structures are similar and delineate an elongated protein with the two transmembrane domains (TMD) forming an outward facing conformation, extended and twisted exocytoplasmic domains (ECD), and closely opposed nucleotide binding domains. N-Ret-PE is wedged between the two TMDs and a loop from ECD1 within the lumen leaflet consistent with a lateral access mechanism and is stabilized through hydrophobic and ionic interactions with residues from the TMDs and ECDs. Our studies provide a framework for further elucidating the molecular mechanism associated with lipid transport and disease and developing promising disease interventions.
Collapse
Affiliation(s)
| | - Laurie L Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Susan B Curtis
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Fabian A Garces
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Pankaj Panwar
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Robert S Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
23
|
Manzini I, Schild D, Di Natale C. Principles of odor coding in vertebrates and artificial chemosensory systems. Physiol Rev 2021; 102:61-154. [PMID: 34254835 DOI: 10.1152/physrev.00036.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The biological olfactory system is the sensory system responsible for the detection of the chemical composition of the environment. Several attempts to mimic biological olfactory systems have led to various artificial olfactory systems using different technical approaches. Here we provide a parallel description of biological olfactory systems and their technical counterparts. We start with a presentation of the input to the systems, the stimuli, and treat the interface between the external world and the environment where receptor neurons or artificial chemosensors reside. We then delineate the functions of receptor neurons and chemosensors as well as their overall I-O relationships. Up to this point, our account of the systems goes along similar lines. The next processing steps differ considerably: while in biology the processing step following the receptor neurons is the "integration" and "processing" of receptor neuron outputs in the olfactory bulb, this step has various realizations in electronic noses. For a long period of time, the signal processing stages beyond the olfactory bulb, i.e., the higher olfactory centers were little studied. Only recently there has been a marked growth of studies tackling the information processing in these centers. In electronic noses, a third stage of processing has virtually never been considered. In this review, we provide an up-to-date overview of the current knowledge of both fields and, for the first time, attempt to tie them together. We hope it will be a breeding ground for better information, communication, and data exchange between very related but so far little connected fields.
Collapse
Affiliation(s)
- Ivan Manzini
- Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Gießen, Gießen, Germany
| | - Detlev Schild
- Institute of Neurophysiology and Cellular Biophysics, University Medical Center, University of Göttingen, Göttingen, Germany
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
24
|
Tonade D, Kern TS. Photoreceptor cells and RPE contribute to the development of diabetic retinopathy. Prog Retin Eye Res 2021; 83:100919. [PMID: 33188897 PMCID: PMC8113320 DOI: 10.1016/j.preteyeres.2020.100919] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/27/2020] [Accepted: 10/31/2020] [Indexed: 12/26/2022]
Abstract
Diabetic retinopathy (DR) is a leading cause of blindness. It has long been regarded as vascular disease, but work in the past years has shown abnormalities also in the neural retina. Unfortunately, research on the vascular and neural abnormalities have remained largely separate, instead of being integrated into a comprehensive view of DR that includes both the neural and vascular components. Recent evidence suggests that the most predominant neural cell in the retina (photoreceptors) and the adjacent retinal pigment epithelium (RPE) play an important role in the development of vascular lesions characteristic of DR. This review summarizes evidence that the outer retina is altered in diabetes, and that photoreceptors and RPE contribute to retinal vascular alterations in the early stages of the retinopathy. The possible molecular mechanisms by which cells of the outer retina might contribute to retinal vascular damage in diabetes also are discussed. Diabetes-induced alterations in the outer retina represent a novel therapeutic target to inhibit DR.
Collapse
Affiliation(s)
- Deoye Tonade
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Timothy S Kern
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA; Veterans Administration Medical Center Research Service, Cleveland, OH, USA; Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, USA; Veterans Administration Medical Center Research Service, Long Beach, CA, USA.
| |
Collapse
|
25
|
Ahrens N, Aeissen E, Lippe A, Janssen-Bienhold U, Christoffers J, Koch KW. Farnesylation of Zebrafish G-Protein-Coupled Receptor Kinase Using Bio-orthogonal Labeling. ACS Chem Neurosci 2021; 12:1824-1832. [PMID: 33945258 DOI: 10.1021/acschemneuro.1c00155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
G-protein-coupled receptors are deactivated or desensitized by phosphorylation by respective G-protein-coupled receptor kinases (GRKs). In zebrafish rod and cone photoreceptor cells, four orthologous GRKs are expressed participating in the deactivation of rod and cone opsins. An important feature of GRKs in general is the consensus sites for lipid modification, which would allow the posttranslational attachment of isoprenoids facilitating membrane association and enzymatic performance. Because direct proof is missing for isoprenoid modification of zebrafish GRKs, we used a semichemical approach to study the incorporation of a farnesyl moiety into a GRK and its cellular consequences. The approach involves organic synthesis of a functionalized farnesyl derivative that is suitable for a subsequent alkyne-azide cycloaddition (click reaction). For this purpose, zebrafish GRK was expressed in HEK293 cells and modified in situ with the synthetic farnesyl moiety. Successful farnesylation by an endogenous farnesyltransferase was detected by immunoblotting and immunocytochemistry using a biotin-streptavidin-coupled assay and ligation with a fluorescence dye, respectively. Immunocytochemical detection of farnesylated GRK in different cell compartments indicates the applicability of the approach for studying the transport of cellular components.
Collapse
Affiliation(s)
- Nicole Ahrens
- Division of Biochemistry, Department of Neurosciences, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany
| | - Enno Aeissen
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany
| | - Anka Lippe
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany
| | - Ulrike Janssen-Bienhold
- Division of Neurobiology, Department of Neurosciences, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany
| | - Jens Christoffers
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany
| | - Karl-Wilhelm Koch
- Division of Biochemistry, Department of Neurosciences, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany
| |
Collapse
|
26
|
Abbas F, Vinberg F. Transduction and Adaptation Mechanisms in the Cilium or Microvilli of Photoreceptors and Olfactory Receptors From Insects to Humans. Front Cell Neurosci 2021; 15:662453. [PMID: 33867944 PMCID: PMC8046925 DOI: 10.3389/fncel.2021.662453] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/02/2021] [Indexed: 12/11/2022] Open
Abstract
Sensing changes in the environment is crucial for survival. Animals from invertebrates to vertebrates use both visual and olfactory stimuli to direct survival behaviors including identification of food sources, finding mates, and predator avoidance. In primary sensory neurons there are signal transduction mechanisms that convert chemical or light signals into an electrical response through ligand binding or photoactivation of a receptor, that can be propagated to the olfactory and visual centers of the brain to create a perception of the odor and visual landscapes surrounding us. The fundamental principles of olfactory and phototransduction pathways within vertebrates are somewhat analogous. Signal transduction in both systems takes place in the ciliary sub-compartments of the sensory cells and relies upon the activation of G protein-coupled receptors (GPCRs) to close cyclic nucleotide-gated (CNG) cation channels in photoreceptors to produce a hyperpolarization of the cell, or in olfactory sensory neurons open CNG channels to produce a depolarization. However, while invertebrate phototransduction also involves GPCRs, invertebrate photoreceptors can be either ciliary and/or microvillar with hyperpolarizing and depolarizing responses to light, respectively. Moreover, olfactory transduction in invertebrates may be a mixture of metabotropic G protein and ionotropic signaling pathways. This review will highlight differences of the visual and olfactory transduction mechanisms between vertebrates and invertebrates, focusing on the implications to the gain of the transduction processes, and how they are modulated to allow detection of small changes in odor concentration and light intensity over a wide range of background stimulus levels.
Collapse
Affiliation(s)
- Fatima Abbas
- Vinberg Lab, Department of Ophthalmology and Visual Science, John A. Moran Center, University of Utah, Salt Lake City, UT, United States
| | - Frans Vinberg
- Vinberg Lab, Department of Ophthalmology and Visual Science, John A. Moran Center, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
27
|
Kiser PD, Palczewski K. Pathways and disease-causing alterations in visual chromophore production for vertebrate vision. J Biol Chem 2021; 296:100072. [PMID: 33187985 PMCID: PMC7948990 DOI: 10.1074/jbc.rev120.014405] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022] Open
Abstract
All that we view of the world begins with an ultrafast cis to trans photoisomerization of the retinylidene chromophore associated with the visual pigments of rod and cone photoreceptors. The continual responsiveness of these photoreceptors is then sustained by regeneration processes that convert the trans-retinoid back to an 11-cis configuration. Recent biochemical and electrophysiological analyses of the retinal G-protein-coupled receptor (RGR) suggest that it could sustain the responsiveness of photoreceptor cells, particularly cones, even under bright light conditions. Thus, two mechanisms have evolved to accomplish the reisomerization: one involving the well-studied retinoid isomerase (RPE65) and a second photoisomerase reaction mediated by the RGR. Impairments to the pathways that transform all-trans-retinal back to 11-cis-retinal are associated with mild to severe forms of retinal dystrophy. Moreover, with age there also is a decline in the rate of chromophore regeneration. Both pharmacological and genetic approaches are being used to bypass visual cycle defects and consequently mitigate blinding diseases. Rapid progress in the use of genome editing also is paving the way for the treatment of disparate retinal diseases. In this review, we provide an update on visual cycle biochemistry and then discuss visual-cycle-related diseases and emerging therapeutics for these disorders. There is hope that these advances will be helpful in treating more complex diseases of the eye, including age-related macular degeneration (AMD).
Collapse
Affiliation(s)
- Philip D Kiser
- The Department of Physiology & Biophysics, University of California, Irvine, California, USA; Research Service, The VA Long Beach Health Care System, Long Beach, California, USA; The Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, California, USA.
| | - Krzysztof Palczewski
- The Department of Physiology & Biophysics, University of California, Irvine, California, USA; The Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, California, USA; The Department of Chemistry, University of California, Irvine, California, USA.
| |
Collapse
|
28
|
Zhang H, Sajdak BS, Merriman DK, McCall MA, Carroll J, Lipinski DM. Electroretinogram of the Cone-Dominant Thirteen-Lined Ground Squirrel during Euthermia and Hibernation in Comparison with the Rod-Dominant Brown Norway Rat. Invest Ophthalmol Vis Sci 2021; 61:6. [PMID: 32492111 PMCID: PMC7415905 DOI: 10.1167/iovs.61.6.6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Purpose The majority of small animal species used in research are nocturnal, with retinae that are anatomically and functionally dissimilar from humans, complicating their use as disease models. Herein we characterize the retinal structure and electrophysiological function of the diurnal, cone-dominant 13-lined ground squirrel (13-LGS) retina during euthermia and in hibernation. Methods Full-field electroretinography (ERG) was performed in 13-LGS and Brown Norway (BN) rat models to establish baseline values for retinal function in each species, including following intravitreal injection of pharmacologic agents to selectively block the contributions of ON- and OFF-bipolar cells. The effect of hibernation-associated retinal remodeling on electrophysiological function was assessed in 13-LGS during torpor and emergence, with correlative histology performed using transmission electron microscopy. Results Under light-adapted conditions, the a-, b-, and d-wave amplitude of the 13-LGS was significantly greater than that of the BN rat. Retinal function was absent in the 13-LGS during hibernation and correlated to widespread disruption of photoreceptor and RPE structure. Remarkably, both retinal function and structure recovered rapidly on emergence from hibernation, with ERG responses reaching normal amplitude within 6 hours. Conclusions ERG responses for both BN rats and 13-LGS reflect the relative proportions of cone photoreceptors present within the retinae, indicating that the cone-dominant 13-LGS may be a potentially useful model for studying human central retinal function and disease. That retinal remodeling and restoration of electrophysiological function occurs rapidly on emergence from hibernation implies the 13-LGS may also be a useful tool for studying aspects of retinal physiology and recovery from injury.
Collapse
|
29
|
Singh RK, Nasonkin IO. Limitations and Promise of Retinal Tissue From Human Pluripotent Stem Cells for Developing Therapies of Blindness. Front Cell Neurosci 2020; 14:179. [PMID: 33132839 PMCID: PMC7513806 DOI: 10.3389/fncel.2020.00179] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022] Open
Abstract
The self-formation of retinal tissue from pluripotent stem cells generated a tremendous promise for developing new therapies of retinal degenerative diseases, which previously seemed unattainable. Together with use of induced pluripotent stem cells or/and CRISPR-based recombineering the retinal organoid technology provided an avenue for developing models of human retinal degenerative diseases "in a dish" for studying the pathology, delineating the mechanisms and also establishing a platform for large-scale drug screening. At the same time, retinal organoids, highly resembling developing human fetal retinal tissue, are viewed as source of multipotential retinal progenitors, young photoreceptors and just the whole retinal tissue, which may be transplanted into the subretinal space with a goal of replacing patient's degenerated retina with a new retinal "patch." Both approaches (transplantation and modeling/drug screening) were projected when Yoshiki Sasai demonstrated the feasibility of deriving mammalian retinal tissue from pluripotent stem cells, and generated a lot of excitement. With further work and testing of both approaches in vitro and in vivo, a major implicit limitation has become apparent pretty quickly: the absence of the uniform layer of Retinal Pigment Epithelium (RPE) cells, which is normally present in mammalian retina, surrounds photoreceptor layer and develops and matures first. The RPE layer polarize into apical and basal sides during development and establish microvilli on the apical side, interacting with photoreceptors, nurturing photoreceptor outer segments and participating in the visual cycle by recycling 11-trans retinal (bleached pigment) back to 11-cis retinal. Retinal organoids, however, either do not have RPE layer or carry patches of RPE mostly on one side, thus directly exposing most photoreceptors in the developing organoids to neural medium. Recreation of the critical retinal niche between the apical RPE and photoreceptors, where many retinal disease mechanisms originate, is so far unattainable, imposes clear limitations on both modeling/drug screening and transplantation approaches and is a focus of investigation in many labs. Here we dissect different retinal degenerative diseases and analyze how and where retinal organoid technology can contribute the most to developing therapies even with a current limitation and absence of long and functional outer segments, supported by RPE.
Collapse
|
30
|
Interplay between cell-adhesion molecules governs synaptic wiring of cone photoreceptors. Proc Natl Acad Sci U S A 2020; 117:23914-23924. [PMID: 32879010 DOI: 10.1073/pnas.2009940117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Establishment of functional synaptic connections in a selective manner is essential for nervous system operation. In mammalian retinas, rod and cone photoreceptors form selective synaptic connections with different classes of bipolar cells (BCs) to propagate light signals. While there has been progress in elucidating rod wiring, molecular mechanisms used by cones to establish functional synapses with BCs have remained unknown. Using an unbiased proteomic strategy in cone-dominant species, we identified the cell-adhesion molecule ELFN2 to be pivotal for the functional wiring of cones with the ON type of BC. It is selectively expressed in cones and transsynaptically recruits the key neurotransmitter receptor mGluR6 in ON-BCs to enable synaptic transmission. Remarkably, ELFN2 in cone terminals functions in synergy with a related adhesion molecule, ELFN1, and their concerted interplay during development specifies selective wiring and transmission of cone signals. These findings identify a synaptic connectivity mechanism of cones and illustrate how interplay between adhesion molecules and postsynaptic transmitter receptors orchestrates functional synaptic specification in a neural circuit.
Collapse
|
31
|
Abstract
The visual phototransduction cascade begins with a cis-trans photoisomerization of a retinylidene chromophore associated with the visual pigments of rod and cone photoreceptors. Visual opsins release their all-trans-retinal chromophore following photoactivation, which necessitates the existence of pathways that produce 11-cis-retinal for continued formation of visual pigments and sustained vision. Proteins in the retinal pigment epithelium (RPE), a cell layer adjacent to the photoreceptor outer segments, form the well-established "dark" regeneration pathway known as the classical visual cycle. This pathway is sufficient to maintain continuous rod function and support cone photoreceptors as well although its throughput has to be augmented by additional mechanism(s) to maintain pigment levels in the face of high rates of photon capture. Recent studies indicate that the classical visual cycle works together with light-dependent processes in both the RPE and neural retina to ensure adequate 11-cis-retinal production under natural illuminances that can span ten orders of magnitude. Further elucidation of the interplay between these complementary systems is fundamental to understanding how cone-mediated vision is sustained in vivo. Here, we describe recent advances in understanding how 11-cis-retinal is synthesized via light-dependent mechanisms.
Collapse
|
32
|
Cheng N, Pagtalunan E, Abushaibah A, Naidu J, Stell WK, Rho JM, Sauvé Y. Atypical visual processing in a mouse model of autism. Sci Rep 2020; 10:12390. [PMID: 32709898 PMCID: PMC7381655 DOI: 10.1038/s41598-020-68589-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 06/15/2020] [Indexed: 12/03/2022] Open
Abstract
Human social cognition relies heavily on the processing of various visual cues, such as eye contact and facial expressions. Atypical visual perception and integration have been recognized as key phenotypes in individuals diagnosed with autism spectrum disorder (ASD), and may potentially contribute to impediments in normal social development, a hallmark of ASD. Meanwhile, increasing studies on visual function in ASD have pointed to detail-oriented perception, which has been hypothesized to result from heightened response to information of high spatial frequency. However, mixed results of human studies have led to much debate, and investigations using animal models have been limited. Here, using BTBR mice as a model of idiopathic ASD, we assessed retinal stimulus processing by full-field electroretinogram and found impaired photoreceptor function and retina-based alterations mostly in the cone pathway. Using the optokinetic reflex to evaluate visual function, we observed robustly enhanced visual response to finer spatial details and more subtle contrasts at only higher spatial frequencies in the BTBR mice, under both photopic and scotopic conditions. These behavioral results, which are similar to findings in a subset of ASD patients, indicate a bias toward processing information of high spatial frequencies. Together, these findings also suggest that, while enhancement of visual behaviors under both photopic and scotopic conditions might be due to alterations in visual processing common to both rod and cone pathways, these mechanisms are probably downstream of photoreceptor function.
Collapse
Affiliation(s)
- Ning Cheng
- Alberta Children's Hospital Research Institute (ACHRI), Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| | - Eden Pagtalunan
- Alberta Children's Hospital Research Institute (ACHRI), Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.,O'Brien Centre for the Bachelor of Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Abdulrahman Abushaibah
- Alberta Children's Hospital Research Institute (ACHRI), Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.,O'Brien Centre for the Bachelor of Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jessica Naidu
- Alberta Children's Hospital Research Institute (ACHRI), Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.,O'Brien Centre for the Bachelor of Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - William K Stell
- Department of Cell Biology and Anatomy, Alberta Children's Hospital Research Institute and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jong M Rho
- Alberta Children's Hospital Research Institute (ACHRI), Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Departments of Neurosciences and Pediatrics, University of California San Diego, Rady Children's Hospital, San Diego, CA, USA
| | - Yves Sauvé
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, AB, Canada.,Department of Physiology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
33
|
Abbas S, Marino V, Weisschuh N, Kieninger S, Solaki M, Dell’Orco D, Koch KW. Neuronal Calcium Sensor GCAP1 Encoded by GUCA1A Exhibits Heterogeneous Functional Properties in Two Cases of Retinitis Pigmentosa. ACS Chem Neurosci 2020; 11:1458-1470. [PMID: 32298085 DOI: 10.1021/acschemneuro.0c00111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Genetic heterogeneity leading to retinal disorders impairs biological processes by causing, for example, severe disorder of signal transduction in photoreceptor outer segments. A normal balance of the second messenger homeostasis in photoreceptor cells seems to be a crucial factor for healthy and normal photoreceptor function. Genes like GUCY2D coding for guanylate cyclase GC-E and GUCA1A coding for the Ca2+-sensor guanylate cyclase-activating protein GCAP1 are critical for a precisely controlled synthesis of the second messenger cGMP. Mutations in GUCA1A frequently correlate in patients with cone dystrophy and cone-rod dystrophy. Here, we report two mutations in the GUCA1A gene that were found in patients diagnosed with retinitis pigmentosa, a phenotype that was rarely detected among previous cases of GUCA1A related retinopathies. One patient was heterozygous for the missense variant c.55C > T (p.H19Y), while the other patient was heterozygous for the missense variant c.479T > G (p.V160G). Using heterologous expression and cell culture systems, we examined the functional and molecular consequences of these point mutations. Both variants showed a dysregulation of guanylate cyclase activity, either a profound shift in Ca2+-sensitivity (H19Y) or a nearly complete loss of activating potency (V160G). Functional heterogeneity became also apparent in Ca2+/Mg2+-binding properties and protein conformational dynamics. A faster progression of retinal dystrophy in the patient carrying the V160G mutation seems to correlate with the more severe impairment of this variant.
Collapse
Affiliation(s)
- Seher Abbas
- Department of Neuroscience, Division of Biochemistry, University of Oldenburg, 26111 Oldenburg, Germany
| | - Valerio Marino
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134 Verona, Italy
| | - Nicole Weisschuh
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, 72076 Tübingen, Germany
| | - Sinja Kieninger
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, 72076 Tübingen, Germany
| | - Maria Solaki
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, 72076 Tübingen, Germany
| | - Daniele Dell’Orco
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134 Verona, Italy
| | - Karl-Wilhelm Koch
- Department of Neuroscience, Division of Biochemistry, University of Oldenburg, 26111 Oldenburg, Germany
| |
Collapse
|
34
|
Induction of Rod and Cone Photoreceptor-Specific Progenitors from Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019. [PMID: 31884669 DOI: 10.1007/978-3-030-27378-1_90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Retinal degeneration includes a variety of diseases for which there is no regenerative therapy. Cellular transplantation is one potential approach for future therapy for retinal degeneration, and stem cells have emerged as a promising source for future cell therapeutics. One major barrier to therapy is the ability to specify individual photoreceptor lineages from a variety of stem cell sources. In this review, we focus on photoreceptor genesis from progenitor populations in the developing embryo and how this understanding has given us the tools to manipulate cultures to specific unique rod and cone lineages from adult stem cell populations. We discuss experiments and evidence uncovering the lineage mechanisms at play in the establishment of fate-specific rod and cone photoreceptor progenitors. This may lead to an improved understanding of retinal development in vivo, as well as new cell sources for transplantation.
Collapse
|
35
|
Chaya T, Tsutsumi R, Varner LR, Maeda Y, Yoshida S, Furukawa T. Cul3-Klhl18 ubiquitin ligase modulates rod transducin translocation during light-dark adaptation. EMBO J 2019; 38:e101409. [PMID: 31696965 DOI: 10.15252/embj.2018101409] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 01/02/2023] Open
Abstract
Adaptation is a general feature of sensory systems. In rod photoreceptors, light-dependent transducin translocation and Ca2+ homeostasis are involved in light/dark adaptation and prevention of cell damage by light. However, the underlying regulatory mechanisms remain unclear. Here, we identify mammalian Cul3-Klhl18 ubiquitin ligase as a transducin translocation modulator during light/dark adaptation. Under dark conditions, Klhl18-/- mice exhibited decreased rod light responses and subcellular localization of the transducin α-subunit (Tα), similar to that observed in light-adapted Klhl18+/+ mice. Cul3-Klhl18 promoted ubiquitination and degradation of Unc119, a rod Tα-interacting protein. Unc119 overexpression phenocopied Tα mislocalization observed in Klhl18-/- mice. Klhl18 weakly recognized casein kinase-2-phosphorylated Unc119 protein, which is dephosphorylated by Ca2+ -dependent phosphatase calcineurin. Calcineurin inhibition increased Unc119 expression and Tα mislocalization in rods. These results suggest that Cul3-Klhl18 modulates rod Tα translocation during light/dark adaptation through Unc119 ubiquitination, which is affected by phosphorylation. Notably, inactivation of the Cul3-Klhl18 ligase and calcineurin inhibitors FK506 and cyclosporine A that are known immunosuppressant drugs repressed light-induced photoreceptor damage, suggesting potential therapeutic targets.
Collapse
Affiliation(s)
- Taro Chaya
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Ryotaro Tsutsumi
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Leah Rie Varner
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Yamato Maeda
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Satoyo Yoshida
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| |
Collapse
|
36
|
JNK1 Induces Notch1 Expression to Regulate Genes Governing Photoreceptor Production. Cells 2019; 8:cells8090970. [PMID: 31450635 PMCID: PMC6769813 DOI: 10.3390/cells8090970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/19/2019] [Accepted: 08/23/2019] [Indexed: 12/17/2022] Open
Abstract
c-Jun N-terminal kinases (JNKs) regulate cell proliferation and differentiation via phosphorylating such transcription factors as c-Jun. The function of JNKs in retinogenesis remains to be elucidated. Here, we report that knocking out Jnk1, but not Jnk2, increased the number of photoreceptors, thus enhancing the electroretinogram (ERG) responses. Intriguingly, Notch1, a well-established negative regulator of photoreceptor genesis, was significantly attenuated in Jnk1 knockout (KO) mice compared to wild-type mice. Mechanistically, light specifically activated JNK1 to phosphorylate c-Jun, which in turn induced Notch1 transcription. The identified JNK1–c-Jun–Notch1 axis strongly inhibited photoreceptor-related transcriptional factor expression and ultimately impaired photoreceptor opsin expression. Our study uncovered an essential function of JNK1 in retinogenesis, revealing JNK1 as a potential candidate for targeting ophthalmic diseases.
Collapse
|
37
|
Liu H, Tang J, Du Y, Saadane A, Samuels I, Veenstra A, Kiser JZ, Palczewski K, Kern TS. Transducin1, Phototransduction and the Development of Early Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2019; 60:1538-1546. [PMID: 30994864 PMCID: PMC6736377 DOI: 10.1167/iovs.18-26433] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/14/2019] [Indexed: 12/31/2022] Open
Abstract
Purpose Recent evidence suggests that retinal photoreceptor cells have an important role in the pathogenesis of retinal microvascular lesions in diabetes. We investigated the role of rod cell phototransduction on the pathogenesis of early diabetic retinopathy (DR) using Gnat1-/- mice (which causes permanent inhibition of phototransduction in rod cells without degeneration). Methods Retinal thickness, oxidative stress, expression of inflammatory proteins, electroretinograms (ERG) and optokinetic responses, and capillary permeability and degeneration were evaluated at up to 8 months of diabetes. Results The diabetes-induced degeneration of retinal capillaries was significantly inhibited in the Gnat1-/- diabetics. The effect of the Gnat1 deletion on the diabetes-induced increase in permeability showed a nonuniform accumulation of albumin in the neural retina; the defect was inhibited in diabetic Gnat1-/- mice in the inner plexiform layer (IPL), but neither in the outer plexiform (OPL) nor inner nuclear (INL) layers. In Gnat1-deficient animals, the diabetes-induced increase in expression of inflammatory associated proteins (iNOS and ICAM-1, and phosphorylation of IĸB) in the retina, and the leukocyte mediated killing of retinal endothelial cells were inhibited, however the diabetes-mediated induction of oxidative stress was not inhibited. Conclusions In conclusion, deletion of transducin1 (and the resulting inhibition of phototransduction in rod cells) inhibits the development of retinal vascular pathology in early DR.
Collapse
Affiliation(s)
- Haitao Liu
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States
| | - Jie Tang
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States
| | - Yunpeng Du
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States
| | - Aicha Saadane
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States
| | - Ivy Samuels
- Veterans Administration Medical Center Research Service 151, Cleveland, Ohio, United States
- Department of Ophthalmic Research, Cleveland Clinic, Cleveland, Ohio, United States
| | - Alex Veenstra
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States
| | - Jianying Z. Kiser
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States
| | - Krzysztof Palczewski
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States
- Gavin Herbert Eye Institute, University of California Irvine, Irvine, California, United States
| | - Timothy S. Kern
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States
- Veterans Administration Medical Center Research Service 151, Cleveland, Ohio, United States
- Gavin Herbert Eye Institute, University of California Irvine, Irvine, California, United States
| |
Collapse
|
38
|
Fettiplace R, Nam JH. Tonotopy in calcium homeostasis and vulnerability of cochlear hair cells. Hear Res 2018; 376:11-21. [PMID: 30473131 DOI: 10.1016/j.heares.2018.11.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/05/2018] [Accepted: 11/08/2018] [Indexed: 12/18/2022]
Abstract
Ototoxicity, noise overstimulation, or aging, can all produce hearing loss with similar properties, in which outer hair cells (OHCs), principally those at the high-frequency base of the cochlea, are preferentially affected. We suggest that the differential vulnerability may partly arise from differences in Ca2+ balance among cochlear locations. Homeostasis is determined by three factors: Ca2+ influx mainly via mechanotransducer (MET) channels; buffering by calcium-binding proteins and organelles like mitochondria; and extrusion by the plasma membrane CaATPase pump. We review quantification of these parameters and use our experimentally-determined values to model changes in cytoplasmic and mitochondrial Ca2+ during Ca2+ influx through the MET channels. We suggest that, in OHCs, there are two distinct micro-compartments for Ca2+ handling, one in the hair bundle and the other in the cell soma. One conclusion of the modeling is that there is a tonotopic gradient in the ability of OHCs to handle the Ca2+ load, which correlates with their vulnerability to environmental challenges. High-frequency basal OHCs are the most susceptible because they have much larger MET currents and have smaller dimensions than low-frequency apical OHCs.
Collapse
Affiliation(s)
- Robert Fettiplace
- Department of Neuroscience, University of Wisconsin, Madison, WI, 53706, USA.
| | - Jong-Hoon Nam
- Departments of Mechanical Engineering and Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| |
Collapse
|
39
|
Owen TS, Salom D, Sun W, Palczewski K. Increasing the Stability of Recombinant Human Green Cone Pigment. Biochemistry 2018; 57:1022-1030. [PMID: 29320632 PMCID: PMC5853123 DOI: 10.1021/acs.biochem.7b01118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Three types of cone cells exist in the human retina, each containing a different pigment responsible for the initial step of phototransduction. These pigments are distinguished by their specific absorbance maxima: 425 nm (blue), 530 nm (green), and 560 nm (red). Each pigment contains a common chromophore, 11-cis-retinal covalently bound to an opsin protein via a Schiff base. The 11-cis-retinal protonated Schiff base has an absorbance maxima at 440 nm in methanol. Unfortunately, the chemistry that allows the same chromophore to interact with different opsin proteins to tune the absorbance of the resulting pigments to distinct λmax values is poorly understood. Rhodopsin is the only pigment with a native structure determined at high resolution. Homology models for cone pigments have been generated, but experimentally determined structures are needed for a precise understanding of spectral tuning. The principal obstacle to solving the structures of cone pigments has been their innate instability in recombinant constructs. By inserting five different thermostabilizing proteins (BRIL, T4L, PGS, RUB, and FLAV) into the recombinant green opsin sequence, constructs were created that were up to 9-fold more stable than WT. Using cellular retinaldehyde-binding protein (CRALBP), we developed a quick means of assessing the stability of the green pigment. CRALBP testing also confirmed an additional 48-fold increase in pigment stability when varying the detergent used. These results suggest an efficient protocol for routine purification and stabilization of cone pigments that could be used for high-resolution determination of their structures, as well as for other studies.
Collapse
Affiliation(s)
- Timothy S. Owen
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 2109 Adelbert Road, Cleveland, Ohio 44106, United States
| | - David Salom
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 2109 Adelbert Road, Cleveland, Ohio 44106, United States
| | - Wenyu Sun
- Polgenix, Inc., Cleveland, Ohio 44106, United States
| | - Krzysztof Palczewski
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, 2109 Adelbert Road, Cleveland, Ohio 44106, United States
| |
Collapse
|
40
|
Arenas O, Osorno T, Malagón G, Pulido C, Gomez MDP, Nasi E. Molecular and functional identification of a novel photopigment in Pecten ciliary photoreceptors. J Gen Physiol 2018; 150:401-415. [PMID: 29374022 PMCID: PMC5839723 DOI: 10.1085/jgp.201711938] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/20/2017] [Indexed: 01/24/2023] Open
Abstract
The mollusk Pecten irradians possesses ciliary photoreceptors that operate with an atypical mechanism. Arenas et al. reveal that a recently uncovered opsin type is the functional visual pigment in these photoreceptors and couples to Go, in contrast to other types of photoreceptor. The two basic animal photoreceptor types, ciliary and microvillar, use different light-transduction schemes: their photopigments couple to Gt versus Gq proteins, respectively, to either mobilize cyclic nucleotides or trigger a lipid signaling cascade. A third class of photoreceptors has been described in the dual retina of some marine invertebrates; these present a ciliary morphology but operate via radically divergent mechanisms, prompting the suggestion that they comprise a novel lineage of light sensors. In one of these organisms, an uncommon putative opsin was uncovered that was proposed to signal through Go. Orthologues subsequently emerged in diverse phyla, including mollusks, echinoderms, and chordates, but the cells in which they express have not been identified, and no studies corroborated their function as visual pigments or their suggested signaling mode. Conversely, in only one invertebrate species, Pecten irradians, have the ciliary photoreceptors been physiologically characterized, but their photopigment has not been identified molecularly. We used the transcriptome of Pecten retina to guide the cloning by polymerase chain reaction (PCR) and rapid amplification of cDNA ends (RACE) extensions of a new member of this group of putative opsins. In situ hybridization shows selective transcription in the distal retina, and specific antibodies identify a single band of the expected molecular mass in Western blots and distinctly label ciliary photoreceptors in retina sections. RNA interference knockdown resulted in a reduction in the early receptor current—the first manifestation of light transduction—and prevented the prolonged aftercurrent, which requires a large buildup of activated rhodopsin. We also obtained a full-length clone of the α-subunit of a Go from Pecten retina complementary DNA and localized it by in situ hybridization to the distal photoreceptors. Small interfering RNA targeting this Go caused a specific depression of the photocurrent. These results establish this novel putative opsin as a bona fide visual pigment that couples to Go to convey the light signal.
Collapse
Affiliation(s)
- Oscar Arenas
- Departamento de Biología, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Tomás Osorno
- Departamento de Biología, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Gerardo Malagón
- Departamento de Biología, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Camila Pulido
- Departamento de Biología, Universidad Nacional de Colombia, Bogotá, Colombia
| | - María Del Pilar Gomez
- Departamento de Biología, Universidad Nacional de Colombia, Bogotá, Colombia.,Marine Biological Laboratory, Woods Hole, MA
| | - Enrico Nasi
- Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia .,Marine Biological Laboratory, Woods Hole, MA
| |
Collapse
|
41
|
Tirassa P, Rosso P, Iannitelli A. Ocular Nerve Growth Factor (NGF) and NGF Eye Drop Application as Paradigms to Investigate NGF Neuroprotective and Reparative Actions. Methods Mol Biol 2018; 1727:19-38. [PMID: 29222770 DOI: 10.1007/978-1-4939-7571-6_2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The eye is a central nervous system structure that is uniquely accessible to local treatment. Through the ocular surface, it is possible to access the retina, optic nerve, and brain. Animal models of retina degeneration or optic nerve crush could thus serve as tools to investigate whether and how factors, which are anterogradely or retrogradely transported through the optic nerve, might contribute to activate neuroprotection and eventually regeneration. Among these factors, nerve growth factor (NGF) plays a crucial role during development of the visual system, as well as during the entire life span, and in pathological conditions. The ability of NGF to exert survival and trophic actions on the retina and brain cells when applied intraocularly and topically as eye drops is critically reviewed here, together with the effects of ocular neurotrophins on neuronal pathways influencing body rhythm, cognitions, and behavioral functions. The latest data from animal models and humans are presented, and the mechanism of action of ocularly administered NGF is discussed. NGF eye drops are proposed as an experimental strategy to investigate the role and cellular targets of neurotrophins in the mechanism(s) underlying neurodegeneration/regeneration and their involvement in the regulation of neurological and behavioral dysfunctions.
Collapse
Affiliation(s)
- Paola Tirassa
- National Research Council (CNR), Institute of Cell Biology & Neurobiology, Rome, Italy.
| | - Pamela Rosso
- National Research Council (CNR), Institute of Cell Biology & Neurobiology, Rome, Italy.,Department of Science, LIME, University Roma Tre, Rome, Italy
| | - Angela Iannitelli
- Department of Human Sciences, University of L'Aquila, L'Aquila, Italy.,Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
42
|
Agrawal SA, Burgoyne T, Eblimit A, Bellingham J, Parfitt DA, Lane A, Nichols R, Asomugha C, Hayes MJ, Munro PM, Xu M, Wang K, Futter CE, Li Y, Chen R, Cheetham ME. REEP6 deficiency leads to retinal degeneration through disruption of ER homeostasis and protein trafficking. Hum Mol Genet 2017; 26:2667-2677. [PMID: 28475715 PMCID: PMC5808736 DOI: 10.1093/hmg/ddx149] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/12/2017] [Accepted: 04/14/2017] [Indexed: 01/09/2023] Open
Abstract
Retinitis pigmentosa (RP) is the most common form of inherited retinal dystrophy. We recently identified mutations in REEP6, which encodes the receptor expression enhancing protein 6, in several families with autosomal recessive RP. REEP6 is related to the REEP and Yop1p family of ER shaping proteins and potential receptor accessory proteins, but the role of REEP6 in the retina is unknown. Here we characterize the disease mechanisms associated with loss of REEP6 function using a Reep6 knockout mouse generated by CRISPR/Cas9 gene editing. In control mice REEP6 was localized to the inner segment and outer plexiform layer of rod photoreceptors. The Reep6-/- mice exhibited progressive photoreceptor degeneration from P20 onwards. Ultrastructural analyses at P20 by transmission electron microscopy and 3View serial block face scanning EM revealed an expansion of the distal ER in the Reep6-/- rods and an increase in their number of mitochondria. Electroretinograms revealed photoreceptor dysfunction preceded degeneration, suggesting potential defects in phototransduction. There was no effect on the traffic of rhodopsin, Rom1 or peripherin/rds; however, the retinal guanylate cyclases GC1 and GC2 were severely affected in the Reep6 knockout animals, with almost undetectable expression. These changes correlated with an increase in C/EBP homologous protein (CHOP) expression and the activation of caspase 12, suggesting that ER stress contributes to cell death. Collectively, these data suggest that REEP6 plays an essential role in maintaining cGMP homeostasis though facilitating the stability and/or trafficking of guanylate cyclases and maintaining ER and mitochondrial homeostasis.
Collapse
Affiliation(s)
- Smriti A. Agrawal
- Department of Molecular and Human Genetics
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030-3411, USA
| | - Thomas Burgoyne
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Aiden Eblimit
- Department of Molecular and Human Genetics
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030-3411, USA
| | - James Bellingham
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - David A. Parfitt
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Amelia Lane
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | | | - Chinwe Asomugha
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030-3411, USA
| | - Matthew J. Hayes
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Peter M. Munro
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Mingchu Xu
- Department of Molecular and Human Genetics
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030-3411, USA
| | - Keqing Wang
- Department of Molecular and Human Genetics
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030-3411, USA
| | - Clare E. Futter
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Yumei Li
- Department of Molecular and Human Genetics
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030-3411, USA
| | - Rui Chen
- Department of Molecular and Human Genetics
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030-3411, USA
| | | |
Collapse
|
43
|
Tian H, Sakmar TP, Huber T. Measurement of Slow Spontaneous Release of 11-cis-Retinal from Rhodopsin. Biophys J 2017; 112:153-161. [PMID: 28076806 DOI: 10.1016/j.bpj.2016.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/08/2016] [Accepted: 12/05/2016] [Indexed: 01/05/2023] Open
Abstract
The vertebrate visual photoreceptor rhodopsin (Rho) is a unique G protein-coupled receptor as it utilizes a covalently tethered inverse agonist (11-cis-retinal) as the native ligand. Previously, electrophysiological studies showed that ligand binding of 11-cis-retinal in dark-adapted Rho was essentially irreversible with a half-life estimated to be 420 years, until after thermal isomerization to all-trans-retinal, which then slowly dissociates. This long lifetime of 11-cis-retinal binding was considered to be physiologically important for minimizing background signal (dark noise) of the visual system. However, in vitro biochemical studies on the thermal stability of Rho showed that Rho decays with a half-life on the order of days. In this study, we resolve the discrepancy by measuring the chromophore exchange rate of the bound 11-cis-retinal chromophore with free 9-cis-retinal from Rho in an in vitro phospholipid/detergent bicelle system. We conclude that the thermal decay of Rho primarily proceeds through spontaneous breaking of the covalent linkage between opsin and 11-cis-retinal, which was overlooked in the electrophysiological recording. We estimate that this slow spontaneous release of 11-cis-retinal from Rho should result in 104 to 105 free opsin molecules in a dark-adapted rod cell-a number that is three orders of magnitude higher than previously expected. We also discuss the physiological implications of these findings on the basal activity of opsins and the associated dark noise in the visual system.
Collapse
Affiliation(s)
- He Tian
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, NY
| | - Thomas P Sakmar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, NY; Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden.
| | - Thomas Huber
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, NY.
| |
Collapse
|
44
|
Kim JW, Yang HJ, Oel AP, Brooks MJ, Jia L, Plachetzki DC, Li W, Allison WT, Swaroop A. Recruitment of Rod Photoreceptors from Short-Wavelength-Sensitive Cones during the Evolution of Nocturnal Vision in Mammals. Dev Cell 2017; 37:520-32. [PMID: 27326930 DOI: 10.1016/j.devcel.2016.05.023] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 04/16/2016] [Accepted: 05/24/2016] [Indexed: 01/07/2023]
Abstract
Vertebrate ancestors had only cone-like photoreceptors. The duplex retina evolved in jawless vertebrates with the advent of highly photosensitive rod-like photoreceptors. Despite cones being the arbiters of high-resolution color vision, rods emerged as the dominant photoreceptor in mammals during a nocturnal phase early in their evolution. We investigated the evolutionary and developmental origins of rods in two divergent vertebrate retinas. In mice, we discovered genetic and epigenetic vestiges of short-wavelength cones in developing rods, and cell-lineage tracing validated the genesis of rods from S cones. Curiously, rods did not derive from S cones in zebrafish. Our study illuminates several questions regarding the evolution of duplex retina and supports the hypothesis that, in mammals, the S-cone lineage was recruited via the Maf-family transcription factor NRL to augment rod photoreceptors. We propose that this developmental mechanism allowed the adaptive exploitation of scotopic niches during the nocturnal bottleneck early in mammalian evolution.
Collapse
Affiliation(s)
- Jung-Woong Kim
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Hyun-Jin Yang
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adam Phillip Oel
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Matthew John Brooks
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Li Jia
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Charles Plachetzki
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Wei Li
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - William Ted Allison
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada.
| | - Anand Swaroop
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
45
|
Profile of King-Wai Yau. Proc Natl Acad Sci U S A 2017; 114:6151-6153. [DOI: 10.1073/pnas.1707649114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
46
|
Label-free quantification of calcium-sensor targeting to photoreceptor guanylate cyclase and rhodopsin kinase by backscattering interferometry. Sci Rep 2017; 7:45515. [PMID: 28361875 PMCID: PMC5374524 DOI: 10.1038/srep45515] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/28/2017] [Indexed: 01/26/2023] Open
Abstract
Quantification of protein binding to membrane proteins is challenging and a limited set of methods is available to study such systems. Here we employed backscattering interferometry (BSI), a free-solution label-free method with high sensitivity, to quantify the interaction of neuronal Ca2+-Sensor proteins with their targets operating in phototransduction. We tested direct binding of guanylate cyclase–activating proteins (GCAP1 and GCAP2) to their membrane target guanylate cyclase 1. The regulatory mechanism of GCAPs including their binding interface in the target is unresolved. Here we used a label-free, free-solution assay method based on BSI to determine binding constants of GCAP1 and GCAP2 to the full-length membrane-bound guanylate cyclase type 1. GCAP1 and GCAP2 bound to different regions on the target guanylate cyclase with submicromolar affinity (apparent KD-values of 663 ± 121 nM and 231 ± 63 nM for Ca2+-free GCAP1 and GCAP2, respectively). A guanylate cyclase construct containing the juxta-membrane and kinase homology domain harbored an exclusive binding site for GCAP1 with similar affinities as the full-length protein, whereas GCAP2 did not bind to this region. We provide a model in which GCAP1 and GCAP2 do not share a single binding site to the target, thus cannot exchange upon fluctuating Ca2+ levels.
Collapse
|
47
|
Abstract
Abstract
Vision begins in highly specialized light-sensing neurons, the rod and cone photoreceptors. Their task is to absorb photons, transduce the physical stimulus into neuronal signals, transmit the signals to the parallel signal processing pathways of the subsequent retinal network with the highest possible fidelity and continuously adapt to changes in stimulus intensities. If you imagine a pitch-black night with only a few photons hitting the retina and being absorbed by the photoreceptors and a bright sunny day with the photoreceptors being bombarded by billions of photons, you realize that a photoreceptor faces two fundamental challenges: it has to detect the light signal with the greatest sensitivity, e.g. a single photon leads to a change in the membrane potential of a rod photoreceptor and, at the same time, encode light intensities covering a broad dynamic range of several orders of magnitude. To fulfill these demands, photoreceptors have developed separate, structurally and functionally specialized compartments, which are the topic of this article: the outer segment for signal transduction and the terminal with its highly complex ribbon synapse for signal transmission.
Collapse
|
48
|
Abstract
Retinal photoreceptor cells contain a specialized outer segment (OS) compartment that functions in the capture of light and its conversion into electrical signals in a process known as phototransduction. In rods, photoisomerization of 11-cis to all-trans retinal within rhodopsin triggers a biochemical cascade culminating in the closure of cGMP-gated channels and hyperpolarization of the cell. Biochemical reactions return the cell to its 'dark state' and the visual cycle converts all-trans retinal back to 11-cis retinal for rhodopsin regeneration. OS are continuously renewed, with aged membrane removed at the distal end by phagocytosis and new membrane added at the proximal end through OS disk morphogenesis linked to protein trafficking. The molecular basis for disk morphogenesis remains to be defined in detail although several models have been proposed, and molecular mechanisms underlying protein trafficking are under active investigation. The aim of this Cell Science at a Glance article and the accompanying poster is to highlight our current understanding of photoreceptor structure, phototransduction, the visual cycle, OS renewal, protein trafficking and retinal degenerative diseases.
Collapse
Affiliation(s)
- Robert S Molday
- Department of Biochemistry and Molecular Biology, Centre for Macular Research, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3 Department of Ophthalmology and Visual Sciences, Centre for Macular Research, University of British Columbia, Vancouver, British Columbia, Canada V5Z 3N9
| | - Orson L Moritz
- Department of Ophthalmology and Visual Sciences, Centre for Macular Research, University of British Columbia, Vancouver, British Columbia, Canada V5Z 3N9
| |
Collapse
|
49
|
Black JB, Premont RT, Daaka Y. Feedback regulation of G protein-coupled receptor signaling by GRKs and arrestins. Semin Cell Dev Biol 2016; 50:95-104. [PMID: 26773211 PMCID: PMC4779377 DOI: 10.1016/j.semcdb.2015.12.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/19/2015] [Indexed: 12/16/2022]
Abstract
GPCRs are ubiquitous in mammalian cells and present intricate mechanisms for cellular signaling and communication. Mechanistically, GPCR signaling was identified to occur vectorially through heterotrimeric G proteins that are negatively regulated by GRK and arrestin effectors. Emerging evidence highlights additional roles for GRK and Arrestin partners, and establishes the existence of interconnected feedback pathways that collectively define GPCR signaling. GPCRs influence cellular dynamics and can mediate pathologic development, such as cancer and cardiovascular remolding. Hence, a better understanding of their overall signal regulation is of great translational interest and research continues to exploit the pharmacologic potential for modulating their activity.
Collapse
Affiliation(s)
- Joseph B Black
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610, United States
| | - Richard T Premont
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, United States
| | - Yehia Daaka
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610, United States.
| |
Collapse
|
50
|
Schön C, Asteriti S, Koch S, Sothilingam V, Garrido MG, Tanimoto N, Herms J, Seeliger MW, Cangiano L, Biel M, Michalakis S. Loss of HCN1 enhances disease progression in mouse models of CNG channel-linked retinitis pigmentosa and achromatopsia. Hum Mol Genet 2016; 25:1165-75. [DOI: 10.1093/hmg/ddv639] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 12/22/2015] [Indexed: 01/24/2023] Open
|