1
|
Zhen S, Rocheleau CE. ALG-1, a microRNA argonaute, promotes vulva induction in C. elegans. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001373. [PMID: 39493436 PMCID: PMC11529891 DOI: 10.17912/micropub.biology.001373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/10/2024] [Accepted: 10/13/2024] [Indexed: 11/05/2024]
Abstract
Signaling by the LET-60 Ras GTPase/ MPK-1 Extracellular Regulated Kinase pathway specifies the vulva cell fate in C. elegans . The let-7 miRNA family negatively regulates LET-60 Ras but other miRNAs can also modulate vulva induction. To determine the impact of globally reducing miRNA function on LET-60 Ras-mediated vulva induction we analyzed the effect of loss of the ALG-1 miRNA regulator on vulva development . Contrary to our expectations, we find that ALG-1 promotes vulva induction independently of LET-60 Ras. We found that the reduced vulva cell fate induction of alg-1 deletion mutants could be due to delayed development of the vulva, or a requirement to maintain the competence of the uninduced precursor cells.
Collapse
Affiliation(s)
- Sunny Zhen
- Department of Biomedical Sciences, University of Waterloo
| | - Christian E Rocheleau
- Division of Endocrinology and Metabolism, Department of Medicine, McGill University
- Metabolic Disorders and Complications Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre
| |
Collapse
|
2
|
Liu J, Murray JI. Mechanisms of lineage specification in Caenorhabditis elegans. Genetics 2023; 225:iyad174. [PMID: 37847877 PMCID: PMC11491538 DOI: 10.1093/genetics/iyad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 09/18/2023] [Indexed: 10/19/2023] Open
Abstract
The studies of cell fate and lineage specification are fundamental to our understanding of the development of multicellular organisms. Caenorhabditis elegans has been one of the premiere systems for studying cell fate specification mechanisms at single cell resolution, due to its transparent nature, the invariant cell lineage, and fixed number of somatic cells. We discuss the general themes and regulatory mechanisms that have emerged from these studies, with a focus on somatic lineages and cell fates. We next review the key factors and pathways that regulate the specification of discrete cells and lineages during embryogenesis and postembryonic development; we focus on transcription factors and include numerous lineage diagrams that depict the expression of key factors that specify embryonic founder cells and postembryonic blast cells, and the diverse somatic cell fates they generate. We end by discussing some future perspectives in cell and lineage specification.
Collapse
Affiliation(s)
- Jun Liu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - John Isaac Murray
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
O'Keeffe C, Greenwald I. EGFR signal transduction is downregulated in C. elegans vulval precursor cells during dauer diapause. Development 2022; 149:dev201094. [PMID: 36227589 PMCID: PMC9793418 DOI: 10.1242/dev.201094] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
Abstract
Caenorhabditis elegans larvae display developmental plasticity in response to environmental conditions: in adverse conditions, second-stage larvae enter a reversible, long-lived dauer stage instead of proceeding to reproductive adulthood. Dauer entry interrupts vulval induction and is associated with a reprogramming-like event that preserves the multipotency of vulval precursor cells (VPCs), allowing vulval development to reinitiate if conditions improve. Vulval induction requires the LIN-3/EGF-like signal from the gonad, which activates EGFR-Ras-ERK signal transduction in the nearest VPC, P6.p. Here, using a biosensor and live imaging we show that EGFR-Ras-ERK activity is downregulated in P6.p in dauers. We investigated this process using gene mutations or transgenes to manipulate different steps of the pathway, and by analyzing LET-23/EGFR subcellular localization during dauer life history. We found that the response to EGF is attenuated at or upstream of Ras activation, and discuss potential membrane-associated mechanisms that could achieve this. We also describe other findings pertaining to the maintenance of VPC competence and quiescence in dauer larvae. Our analysis indicates that VPCs have L2-like and unique dauer stage features rather than features of L3 VPCs in continuous development.
Collapse
Affiliation(s)
- Catherine O'Keeffe
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Iva Greenwald
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
4
|
Zhang Q, Hrach H, Mangone M, Reiner DJ. Identifying the Caenorhabditis elegans vulval transcriptome. G3 (BETHESDA, MD.) 2022; 12:jkac091. [PMID: 35551383 PMCID: PMC9157107 DOI: 10.1093/g3journal/jkac091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/11/2022] [Indexed: 11/16/2022]
Abstract
Development of the Caenorhabditis elegans vulva is a classic model of organogenesis. This system, which starts with 6 equipotent cells, encompasses diverse types of developmental event, including developmental competence, multiple signaling events to control precise and faithful patterning of three cell fates, execution and proliferation of specific cell lineages, and a series of sophisticated morphogenetic events. Early events have been subjected to extensive mutational and genetic investigations and later events to cell biological analyses. We infer the existence of dramatically changing profiles of gene expression that accompanies the observed changes in development. Yet, except from serendipitous discovery of several transcription factors expressed in dynamic patterns in vulval lineages, our knowledge of the transcriptomic landscape during vulval development is minimal. This study describes the composition of a vulva-specific transcriptome. We used tissue-specific harvesting of mRNAs via immunoprecipitation of epitope-tagged poly(A) binding protein, PAB-1, heterologously expressed by a promoter known to express GFP in vulval cells throughout their development. The identified transcriptome was small but tightly interconnected. From this data set, we identified several genes with identified functions in development of the vulva and validated more with promoter-GFP reporters of expression. For one target, lag-1, promoter-GFP expression was limited but a fluorescent tag of the endogenous protein revealed extensive expression. Thus, we have identified a transcriptome of C. elegans vulval lineages as a launching pad for exploration of functions of these genes in organogenesis.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Translational Medical Science, Institute of Biosciences and Technology, Texas A&M Health Science Center, Texas A&M University, Houston, TX 77030, USA
| | - Heather Hrach
- Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe, AZ 85281, USA
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, AZ 85281, USA
| | - Marco Mangone
- Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe, AZ 85281, USA
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, AZ 85281, USA
| | - David J Reiner
- Department of Translational Medical Science, Institute of Biosciences and Technology, Texas A&M Health Science Center, Texas A&M University, Houston, TX 77030, USA
| |
Collapse
|
5
|
Rasmussen NR, Reiner DJ. Nuclear translocation of the tagged endogenous MAPK MPK-1 denotes a subset of activation events in C. elegans development. J Cell Sci 2021; 134:272044. [PMID: 34341823 PMCID: PMC8445601 DOI: 10.1242/jcs.258456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 07/14/2021] [Indexed: 11/20/2022] Open
Abstract
The extracellular signal-regulated kinases (ERKs) are mitogen-activated protein kinases (MAPKs) that are utilized downstream of Ras to Raf to MEK signaling to control activation of a wide array of targets. Activation of ERKs is elevated in Ras-driven tumors and RASopathies, and thus is a target for pharmacological inhibition. Regulatory mechanisms of ERK activation have been studied extensively in vitro and in cultured cells, but little in living animals. In this study, we tagged the Caenorhabditis elegans ERK-encoding gene, mpk-1. MPK-1 is ubiquitously expressed with elevated expression in certain contexts. We detected cytosol-to-nuclear translocation of MPK-1 in maturing oocytes and hence validated nuclear translocation as a reporter of some activation events. During patterning of vulval precursor cells (VPCs), MPK-1 is necessary and sufficient for the central cell, P6.p, to assume the primary fate. Yet MPK-1 translocates to the nuclei of all six VPCs in a temporal and concentration gradient centered on P6.p. This observation contrasts with previous results using the ERK nuclear kinase translocation reporter of substrate activation, raising questions about mechanisms and indicators of MPK-1 activation. This system and reagent promise to provide critical insights into the regulation of MPK-1 activation within a complex intercellular signaling network. Summary: Tagged endogenous C. elegans MPK-1 shows activation-dependent cytosol-to-nuclear translocation. This tool provides novel insights into MPK-1 localization compared with other markers of in vivo ERK activation.
Collapse
Affiliation(s)
- Neal R Rasmussen
- Institute of Biosciences and Technology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, Houston, 77030, USA
| | - David J Reiner
- Institute of Biosciences and Technology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, Houston, 77030, USA
| |
Collapse
|
6
|
Williamson C, Chamberlin HM, Dawes AT. Coordination of local and long range signaling modulates developmental patterning. J Theor Biol 2021; 517:110596. [PMID: 33508328 DOI: 10.1016/j.jtbi.2021.110596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/18/2020] [Accepted: 01/13/2021] [Indexed: 11/25/2022]
Abstract
The development of multicellular organisms relies on correct patterns of cell fates to produce functional tissues in the mature organism. A commonly observed developmental pattern consists of alternating cell fates, where neighboring cells take on distinct cell fates characterized by contrasting gene and protein expression levels, and this cell fate pattern repeats over two or more cells. The patterns produced by these fate decisions are regulated by a small number of highly conserved signaling networks, some of which are mediated by long range diffusible signals and others mediated by local contact-dependent signals. However, it is not completely understood how local and long range signals associated with these networks interact to produce fate patterns that are both robust and flexible. Here we analyze mathematical models to investigate the patterning of cell fates in an array of cells, focusing on a two cell repeating pattern. Bifurcation analysis of a multicellular ODE model, where we consider the cells as discrete compartments, suggests that cells must balance sensitivity to external signals with robustness to perturbations. To focus on the patterning dynamics close to the bifurcation point, we derive a continuum PDE model that integrates local and long range signaling. For those cells with dynamics close to the bifurcation point, sensitivity to long range signals determines how far a pattern extends in space, while the number of local signaling connections determines the type of pattern produced. This investigation provides a general framework for understanding developmental patterning, and how both long range and local signals play a role in generating features observed across biology, such as species differences in nematode vulval development and insect bristle patterning, as well as medically relevant processes such as control of stem cell fate in the intestinal crypt.
Collapse
Affiliation(s)
- Carly Williamson
- Department of Mathematics, The Ohio State University, Columbus, OH 43210, United States
| | - Helen M Chamberlin
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, United States
| | - Adriana T Dawes
- Department of Mathematics, The Ohio State University, Columbus, OH 43210, United States; Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
7
|
Modzelewska K, Brown L, Culotti J, Moghal N. Sensory regulated Wnt production from neurons helps make organ development robust to environmental changes in C. elegans. Development 2020; 147:dev186080. [PMID: 32586974 DOI: 10.1242/dev.186080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 06/13/2020] [Indexed: 11/20/2022]
Abstract
Long-term survival of an animal species depends on development being robust to environmental variations and climate changes. We used C. elegans to study how mechanisms that sense environmental changes trigger adaptive responses that ensure animals develop properly. In water, the nervous system induces an adaptive response that reinforces vulval development through an unknown backup signal for vulval induction. This response involves the heterotrimeric G-protein EGL-30//Gαq acting in motor neurons. It also requires body-wall muscle, which is excited by EGL-30-stimulated synaptic transmission, suggesting a behavioral function of neurons induces backup signal production from muscle. We now report that increased acetylcholine during liquid growth activates an EGL-30-Rho pathway, distinct from the synaptic transmission pathway, that increases Wnt production from motor neurons. We also provide evidence that this neuronal Wnt contributes to EGL-30-stimulated vulval development, with muscle producing a parallel developmental signal. As diverse sensory modalities stimulate motor neurons via acetylcholine, this mechanism enables broad sensory perception to enhance Wnt-dependent development. Thus, sensory perception improves animal fitness by activating distinct neuronal functions that trigger adaptive changes in both behavior and developmental processes.
Collapse
Affiliation(s)
- Katarzyna Modzelewska
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Louise Brown
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | - Joseph Culotti
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | - Nadeem Moghal
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
- Princess Margaret Cancer Centre/University Health Network, Toronto, Ontario, M5G 1L7, Canada
| |
Collapse
|
8
|
Kroll JR, Tsiaxiras J, van Zon JS. Variability in β-catenin pulse dynamics in a stochastic cell fate decision in C. elegans. Dev Biol 2020; 461:110-123. [PMID: 32032579 PMCID: PMC7203549 DOI: 10.1016/j.ydbio.2020.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 11/30/2022]
Abstract
During development, cell fate decisions are often highly stochastic, but with the frequency of the different possible fates tightly controlled. To understand how signaling networks control the cell fate frequency of such random decisions, we studied the stochastic decision of the Caenorhabditis elegans P3.p cell to either fuse to the hypodermis or assume vulva precursor cell fate. Using time-lapse microscopy to measure the single-cell dynamics of two key inhibitors of cell fusion, the Hox gene LIN-39 and Wnt signaling through the β-catenin BAR-1, we uncovered significant variability in the dynamics of LIN-39 and BAR-1 levels. Most strikingly, we observed that BAR-1 accumulated in a single, 1–4 h pulse at the time of the P3.p cell fate decision, with strong variability both in pulse slope and time of pulse onset. We found that the time of BAR-1 pulse onset was delayed relative to the time of cell fusion in mutants with low cell fusion frequency, linking BAR-1 pulse timing to cell fate outcome. Overall, a model emerged where animal-to-animal variability in LIN-39 levels and BAR-1 pulse dynamics biases cell fate by modulating their absolute level at the time cell fusion is induced. Our results highlight that timing of cell signaling dynamics, rather than its average level or amplitude, could play an instructive role in determining cell fate. The fate of the C. elegans P3.p cell is stochastic. β-catenin (BAR-1) accumulated in P3.p at the time of the cell fate decision. There is variability in dynamics of Hox and β-catenin levels during the decision. BAR-1 accumulated with variable pulse slope and time of pulse onset. Pulse dynamics bias cell fate at the time of the cell fate decision.
Collapse
Affiliation(s)
- Jason R Kroll
- Department of Living Matter, AMOLF, 1098 XG, Amsterdam, the Netherlands
| | - Jasonas Tsiaxiras
- Department of Living Matter, AMOLF, 1098 XG, Amsterdam, the Netherlands
| | - Jeroen S van Zon
- Department of Living Matter, AMOLF, 1098 XG, Amsterdam, the Netherlands.
| |
Collapse
|
9
|
Shin H, Braendle C, Monahan KB, Kaplan REW, Zand TP, Mote FS, Peters EC, Reiner DJ. Developmental fidelity is imposed by genetically separable RalGEF activities that mediate opposing signals. PLoS Genet 2019; 15:e1008056. [PMID: 31086367 PMCID: PMC6534338 DOI: 10.1371/journal.pgen.1008056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 05/24/2019] [Accepted: 02/28/2019] [Indexed: 02/06/2023] Open
Abstract
The six C. elegans vulval precursor cells (VPCs) are induced to form the 3°-3°-2°-1°-2°-3° pattern of cell fates with high fidelity. In response to EGF signal, the LET-60/Ras-LIN-45/Raf-MEK-2/MEK-MPK-1/ERK canonical MAP kinase cascade is necessary to induce 1° fate and synthesis of DSL ligands for the lateral Notch signal. In turn, LIN-12/Notch receptor is necessary to induce neighboring cells to become 2°. We previously showed that, in response to graded EGF signal, the modulatory LET-60/Ras-RGL-1/RalGEF-RAL-1/Ral signal promotes 2° fate in support of LIN-12. In this study, we identify two key differences between RGL-1 and RAL-1. First, deletion of RGL-1 confers no overt developmental defects, while previous studies showed RAL-1 to be essential for viability and fertility. From this observation, we hypothesize that the essential functions of RAL-1 are independent of upstream activation. Second, RGL-1 plays opposing and genetically separable roles in VPC fate patterning. RGL-1 promotes 2° fate via canonical GEF-dependent activation of RAL-1. Conversely, RGL-1 promotes 1° fate via a non-canonical GEF-independent activity. Our genetic epistasis experiments are consistent with RGL-1 functioning in the modulatory 1°-promoting AGE-1/PI3-Kinase-PDK-1-AKT-1 cascade. Additionally, animals lacking RGL-1 experience 15-fold higher rates of VPC patterning errors compared to the wild type. Yet VPC patterning in RGL-1 deletion mutants is not more sensitive to environmental perturbations. We propose that RGL-1 functions to orchestrate opposing 1°- and 2°-promoting modulatory cascades to decrease developmental stochasticity. We speculate that such switches are broadly conserved but mostly masked by paralog redundancy or essential functions. Developmental signals are increasingly conceptualized in the context of networks rather than linear pathways. Patterning of C. elegans vulval fates is mostly governed by two major signaling cascades that operate antagonistically to induce two cell identities. An additional pair of minor cascades support each of the major cascades. All components in this system are conserved in mammalian oncogenic signaling networks. We find that RGL-1, a component of one of the minor cascades, performs two antagonistic functions. Its deletion appears to abolish both opposing modulatory signals, resulting in a 15-fold increase in the basal error rate in development of these cells. We hypothesize that the bifunctional RGL-1 protein defines a novel mechanism by which signaling networks are interwoven to mitigate developmental errors.
Collapse
Affiliation(s)
- Hanna Shin
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Texas A&M University, Houston, TX, United States of America
| | | | - Kimberly B Monahan
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States of America
| | - Rebecca E W Kaplan
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States of America
| | - Tanya P Zand
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States of America.,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, United States of America
| | - Francisca Sefakor Mote
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Texas A&M University, Houston, TX, United States of America
| | - Eldon C Peters
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States of America
| | - David J Reiner
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Texas A&M University, Houston, TX, United States of America.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States of America.,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, United States of America
| |
Collapse
|
10
|
Necessity and Contingency in Developmental Genetic Screens: EGF, Wnt, and Semaphorin Pathways in Vulval Induction of the Nematode Oscheius tipulae. Genetics 2019; 211:1315-1330. [PMID: 30700527 PMCID: PMC6456316 DOI: 10.1534/genetics.119.301970] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 01/27/2019] [Indexed: 02/06/2023] Open
Abstract
Genetic screens in the nematode Caenorhabditis elegans have identified EGF and Notch pathways as key for vulval precursor cell fate patterning. Here, Vargas-Velazquez, Besnard, and Félix report on the molecular identification of... Genetic screens in the nematode Caenorhabditis elegans identified the EGF/Ras and Notch pathways as central for vulval precursor cell fate patterning. Schematically, the anchor cell secretes EGF, inducing the P6.p cell to a primary (1°) vulval fate; P6.p in turn induces its neighbors to a secondary (2°) fate through Delta-Notch signaling and represses Ras signaling. In the nematode Oscheius tipulae, the anchor cell successively induces 2° then 1° vulval fates. Here, we report on the molecular identification of mutations affecting vulval induction in O. tipulae. A single Induction Vulvaless mutation was found, which we identify as a cis-regulatory deletion in a tissue-specific enhancer of the O. tipulae lin-3 homolog, confirmed by clustered regularly interspaced short palindromic repeats/Cas9 mutation. In contrast to this predictable Vulvaless mutation, mutations resulting in an excess of 2° fates unexpectedly correspond to the plexin/semaphorin pathway. Hyperinduction of P4.p and P8.p in these mutants likely results from mispositioning of these cells due to a lack of contact inhibition. The third signaling pathway found by forward genetics in O. tipulae is the Wnt pathway; a decrease in Wnt pathway activity results in loss of vulval precursor competence and induction, and 1° fate miscentering on P5.p. Our results suggest that the EGF and Wnt pathways have qualitatively similar activities in vulval induction in C. elegans and O. tipulae, albeit with quantitative differences in the effects of mutation. Thus, the derived induction process in C. elegans with an early induction of the 1° fate appeared during evolution, after the recruitment of the EGF pathway for vulval induction.
Collapse
|
11
|
Shin H, Reiner DJ. The Signaling Network Controlling C. elegans Vulval Cell Fate Patterning. J Dev Biol 2018; 6:E30. [PMID: 30544993 PMCID: PMC6316802 DOI: 10.3390/jdb6040030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 12/17/2022] Open
Abstract
EGF, emitted by the Anchor Cell, patterns six equipotent C. elegans vulval precursor cells to assume a precise array of three cell fates with high fidelity. A group of core and modulatory signaling cascades forms a signaling network that demonstrates plasticity during the transition from naïve to terminally differentiated cells. In this review, we summarize the history of classical developmental manipulations and molecular genetics experiments that led to our understanding of the signals governing this process, and discuss principles of signal transduction and developmental biology that have emerged from these studies.
Collapse
Affiliation(s)
- Hanna Shin
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA.
| | - David J Reiner
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA.
- College of Medicine, Texas A & M University, Houston, TX 77030, USA.
| |
Collapse
|
12
|
Liu H, Dowdle JA, Khurshid S, Sullivan NJ, Bertos N, Rambani K, Mair M, Daniel P, Wheeler E, Tang X, Toth K, Lause M, Harrigan ME, Eiring K, Sullivan C, Sullivan MJ, Chang SW, Srivastava S, Conway JS, Kladney R, McElroy J, Bae S, Lu Y, Tofigh A, Saleh SMI, Fernandez SA, Parvin JD, Coppola V, Macrae ER, Majumder S, Shapiro CL, Yee LD, Ramaswamy B, Hallett M, Ostrowski MC, Park M, Chamberlin HM, Leone G. Discovery of Stromal Regulatory Networks that Suppress Ras-Sensitized Epithelial Cell Proliferation. Dev Cell 2017; 41:392-407.e6. [PMID: 28535374 DOI: 10.1016/j.devcel.2017.04.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 03/20/2017] [Accepted: 04/26/2017] [Indexed: 01/09/2023]
Abstract
Mesodermal cells signal to neighboring epithelial cells to modulate their proliferation in both normal and disease states. We adapted a Caenorhabditis elegans organogenesis model to enable a genome-wide mesodermal-specific RNAi screen and discovered 39 factors in mesodermal cells that suppress the proliferation of adjacent Ras pathway-sensitized epithelial cells. These candidates encode components of protein complexes and signaling pathways that converge on the control of chromatin dynamics, cytoplasmic polyadenylation, and translation. Stromal fibroblast-specific deletion of mouse orthologs of several candidates resulted in the hyper-proliferation of mammary gland epithelium. Furthermore, a 33-gene signature of human orthologs was selectively enriched in the tumor stroma of breast cancer patients, and depletion of these factors from normal human breast fibroblasts increased proliferation of co-cultured breast cancer cells. This cross-species approach identified unanticipated regulatory networks in mesodermal cells with growth-suppressive function, exposing the conserved and selective nature of mesodermal-epithelial communication in development and cancer.
Collapse
Affiliation(s)
- Huayang Liu
- Solid Tumor Biology Program, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Molecular Genetics, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA; Department of Cancer Biology and Genetics, McGill University, Montreal, QC H3A 1A1, Canada
| | - James A Dowdle
- Solid Tumor Biology Program, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Molecular Genetics, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA; Department of Cancer Biology and Genetics, McGill University, Montreal, QC H3A 1A1, Canada
| | - Safiya Khurshid
- Solid Tumor Biology Program, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Molecular Genetics, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA; Department of Cancer Biology and Genetics, McGill University, Montreal, QC H3A 1A1, Canada
| | - Nicholas J Sullivan
- Solid Tumor Biology Program, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Molecular Genetics, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA; Department of Cancer Biology and Genetics, McGill University, Montreal, QC H3A 1A1, Canada
| | - Nicholas Bertos
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Center, McGill University, Montreal, QC H3A 1A1, Canada; Department of Oncology, McGill University, Montreal, QC H3A 1A1, Canada
| | - Komal Rambani
- Solid Tumor Biology Program, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Molecular Genetics, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA; Department of Cancer Biology and Genetics, McGill University, Montreal, QC H3A 1A1, Canada
| | - Markus Mair
- Solid Tumor Biology Program, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Molecular Genetics, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA; Department of Cancer Biology and Genetics, McGill University, Montreal, QC H3A 1A1, Canada
| | - Piotr Daniel
- Solid Tumor Biology Program, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Molecular Genetics, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA; Department of Cancer Biology and Genetics, McGill University, Montreal, QC H3A 1A1, Canada
| | - Esther Wheeler
- Department of Molecular Genetics, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Xing Tang
- Solid Tumor Biology Program, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Molecular Genetics, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA; Department of Cancer Biology and Genetics, McGill University, Montreal, QC H3A 1A1, Canada
| | - Kyle Toth
- Solid Tumor Biology Program, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Molecular Genetics, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA; Department of Cancer Biology and Genetics, McGill University, Montreal, QC H3A 1A1, Canada
| | - Michael Lause
- Solid Tumor Biology Program, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Molecular Genetics, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA; Department of Cancer Biology and Genetics, McGill University, Montreal, QC H3A 1A1, Canada
| | - Markus E Harrigan
- Solid Tumor Biology Program, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Molecular Genetics, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA; Department of Cancer Biology and Genetics, McGill University, Montreal, QC H3A 1A1, Canada
| | - Karl Eiring
- Solid Tumor Biology Program, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Molecular Genetics, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA; Department of Cancer Biology and Genetics, McGill University, Montreal, QC H3A 1A1, Canada
| | - Connor Sullivan
- Solid Tumor Biology Program, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Molecular Genetics, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA; Department of Cancer Biology and Genetics, McGill University, Montreal, QC H3A 1A1, Canada
| | - Matthew J Sullivan
- Solid Tumor Biology Program, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Molecular Genetics, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA; Department of Cancer Biology and Genetics, McGill University, Montreal, QC H3A 1A1, Canada
| | - Serena W Chang
- Solid Tumor Biology Program, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Molecular Genetics, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA; Department of Cancer Biology and Genetics, McGill University, Montreal, QC H3A 1A1, Canada
| | - Siddhant Srivastava
- Solid Tumor Biology Program, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Molecular Genetics, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA; Department of Cancer Biology and Genetics, McGill University, Montreal, QC H3A 1A1, Canada
| | - Joseph S Conway
- Solid Tumor Biology Program, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Molecular Genetics, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA; Department of Cancer Biology and Genetics, McGill University, Montreal, QC H3A 1A1, Canada
| | - Raleigh Kladney
- Solid Tumor Biology Program, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Molecular Genetics, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA; Department of Cancer Biology and Genetics, McGill University, Montreal, QC H3A 1A1, Canada
| | - Joseph McElroy
- Center for Biostatistics, Office of Health Sciences, McGill University, Montreal, QC H3A 1A1, Canada; Department of Biomedical Informatics, McGill University, Montreal, QC H3A 1A1, Canada
| | - Sooin Bae
- Solid Tumor Biology Program, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Molecular Genetics, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA; Department of Cancer Biology and Genetics, McGill University, Montreal, QC H3A 1A1, Canada
| | - Yuanzhi Lu
- Solid Tumor Biology Program, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Molecular Genetics, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA; Department of Cancer Biology and Genetics, McGill University, Montreal, QC H3A 1A1, Canada
| | - Ali Tofigh
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Center, McGill University, Montreal, QC H3A 1A1, Canada; McGill Centre for Bioinformatics, McGill University, Montreal, QC H3A 1A1, Canada
| | - Sadiq M I Saleh
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Center, McGill University, Montreal, QC H3A 1A1, Canada; McGill Centre for Bioinformatics, McGill University, Montreal, QC H3A 1A1, Canada
| | - Soledad A Fernandez
- Center for Biostatistics, Office of Health Sciences, McGill University, Montreal, QC H3A 1A1, Canada; Department of Biomedical Informatics, McGill University, Montreal, QC H3A 1A1, Canada
| | - Jeffrey D Parvin
- Solid Tumor Biology Program, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Biomedical Informatics, McGill University, Montreal, QC H3A 1A1, Canada
| | - Vincenzo Coppola
- Solid Tumor Biology Program, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Cancer Biology and Genetics, McGill University, Montreal, QC H3A 1A1, Canada
| | - Erin R Macrae
- Division of Medical Oncology, Department of Internal Medicine, McGill University, Montreal, QC H3A 1A1, Canada
| | - Sarmila Majumder
- Solid Tumor Biology Program, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Cancer Biology and Genetics, McGill University, Montreal, QC H3A 1A1, Canada
| | - Charles L Shapiro
- Division of Medical Oncology, Department of Internal Medicine, McGill University, Montreal, QC H3A 1A1, Canada
| | - Lisa D Yee
- Department of Surgery, The Ohio State University, Columbus, OH 43210, USA
| | - Bhuvaneswari Ramaswamy
- Division of Medical Oncology, Department of Internal Medicine, McGill University, Montreal, QC H3A 1A1, Canada
| | - Michael Hallett
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Center, McGill University, Montreal, QC H3A 1A1, Canada; McGill Centre for Bioinformatics, McGill University, Montreal, QC H3A 1A1, Canada
| | - Michael C Ostrowski
- Solid Tumor Biology Program, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Cancer Biology and Genetics, McGill University, Montreal, QC H3A 1A1, Canada
| | - Morag Park
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Center, McGill University, Montreal, QC H3A 1A1, Canada; Department of Oncology, McGill University, Montreal, QC H3A 1A1, Canada
| | - Helen M Chamberlin
- Department of Molecular Genetics, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA.
| | - Gustavo Leone
- Solid Tumor Biology Program, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Department of Molecular Genetics, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA; Department of Cancer Biology and Genetics, McGill University, Montreal, QC H3A 1A1, Canada; Hollings Cancer Center, Medical University of South Carolina, Hollings Cancer Center 124J, 86 Jonathan Lucas Street, Charleston, SC 29425, USA.
| |
Collapse
|
13
|
de la Cova C, Townley R, Regot S, Greenwald I. A Real-Time Biosensor for ERK Activity Reveals Signaling Dynamics during C. elegans Cell Fate Specification. Dev Cell 2017; 42:542-553.e4. [PMID: 28826819 PMCID: PMC5595649 DOI: 10.1016/j.devcel.2017.07.014] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/19/2017] [Accepted: 07/20/2017] [Indexed: 01/06/2023]
Abstract
Kinase translocation reporters (KTRs) are genetically encoded fluorescent activity sensors that convert kinase activity into a nucleocytoplasmic shuttling equilibrium for visualizing single-cell signaling dynamics. Here, we adapt the first-generation KTR for extracellular signal-regulated kinase (ERK) to allow easy implementation in vivo. This sensor, "ERK-nKTR," allows quantitative and qualitative assessment of ERK activity by analysis of individual nuclei and faithfully reports ERK activity during development and neural function in diverse cell contexts in Caenorhabditis elegans. Analysis of ERK activity over time in the vulval precursor cells, a well-characterized paradigm of epidermal growth factor receptor (EGFR)-Ras-ERK signaling, has identified dynamic features not evident from analysis of developmental endpoints alone, including pulsatile frequency-modulated signaling associated with proximity to the EGF source. The toolkit described here will facilitate studies of ERK signaling in other C. elegans contexts, and the design features will enable implementation of this technology in other multicellular organisms.
Collapse
Affiliation(s)
- Claire de la Cova
- Department of Biological Sciences, Columbia University, New York, NY, USA; Department of Biochemistry & Molecular Biophysics, Columbia University Medical Center, New York, NY, USA
| | - Robert Townley
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Sergi Regot
- Department of Molecular Biology & Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Iva Greenwald
- Department of Biological Sciences, Columbia University, New York, NY, USA; Department of Biochemistry & Molecular Biophysics, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
14
|
Dawes AT, Wu D, Mahalak KK, Zitnik EM, Kravtsova N, Su H, Chamberlin HM. A computational model predicts genetic nodes that allow switching between species-specific responses in a conserved signaling network. Integr Biol (Camb) 2017; 9:156-166. [DOI: 10.1039/c6ib00238b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alterations to only specific parameters in a model including EGF, Wnt and Notch lead to cell behavior differences.
Collapse
Affiliation(s)
- Adriana T. Dawes
- Department of Mathematics
- Ohio State University
- Columbus
- USA
- Department of Molecular Genetics
| | - David Wu
- Department of Mathematics
- Ohio State University
- Columbus
- USA
| | - Karley K. Mahalak
- Department of Molecular Genetics
- Ohio State University
- Columbus
- USA
- Graduate Program in Molecular
| | - Edward M. Zitnik
- Department of Molecular Genetics
- Ohio State University
- Columbus
- USA
| | - Natalia Kravtsova
- Department of Mathematics
- Ohio State University
- Columbus
- USA
- Department of Statistics
| | - Haiwei Su
- Department of Mathematics
- Ohio State University
- Columbus
- USA
| | | |
Collapse
|
15
|
Grimbert S, Tietze K, Barkoulas M, Sternberg PW, Félix MA, Braendle C. Anchor cell signaling and vulval precursor cell positioning establish a reproducible spatial context during C. elegans vulval induction. Dev Biol 2016; 416:123-135. [PMID: 27288708 DOI: 10.1016/j.ydbio.2016.05.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/05/2016] [Accepted: 05/31/2016] [Indexed: 01/26/2023]
Abstract
How cells coordinate their spatial positioning through intercellular signaling events is poorly understood. Here we address this topic using Caenorhabditis elegans vulval patterning during which hypodermal vulval precursor cells (VPCs) adopt distinct cell fates determined by their relative positions to the gonadal anchor cell (AC). LIN-3/EGF signaling by the AC induces the central VPC, P6.p, to adopt a 1° vulval fate. Exact alignment of AC and VPCs is thus critical for correct fate patterning, yet, as we show here, the initial AC-VPC positioning is both highly variable and asymmetric among individuals, with AC and P6.p only becoming aligned at the early L3 stage. Cell ablations and mutant analysis indicate that VPCs, most prominently 1° cells, move towards the AC. We identify AC-released LIN-3/EGF as a major attractive signal, which therefore plays a dual role in vulval patterning (cell alignment and fate induction). Additionally, compromising Wnt pathway components also induces AC-VPC alignment errors, with loss of posterior Wnt signaling increasing stochastic vulval centering on P5.p. Our results illustrate how intercellular signaling reduces initial spatial variability in cell positioning to generate reproducible interactions across tissues.
Collapse
Affiliation(s)
- Stéphanie Grimbert
- Centre National de la Recherche Scientifique (CNRS) UMR7277 - Institut National de la Santé et de la Recherche Médicale (INSERM) U1091, Université Nice Sophia Antipolis, 06108 Nice cedex 02, France
| | - Kyria Tietze
- Howard Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA
| | - Michalis Barkoulas
- Institute of Biology of the Ecole Normale Supérieure, CNRS UMR 8197 and INSERM U1024, 46 rue d'Ulm, 75230 Paris cedex 05, France
| | - Paul W Sternberg
- Howard Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA
| | - Marie-Anne Félix
- Institute of Biology of the Ecole Normale Supérieure, CNRS UMR 8197 and INSERM U1024, 46 rue d'Ulm, 75230 Paris cedex 05, France
| | - Christian Braendle
- Centre National de la Recherche Scientifique (CNRS) UMR7277 - Institut National de la Santé et de la Recherche Médicale (INSERM) U1091, Université Nice Sophia Antipolis, 06108 Nice cedex 02, France.
| |
Collapse
|
16
|
Kidd AR, Muñiz-Medina V, Der CJ, Cox AD, Reiner DJ. The C. elegans Chp/Wrch Ortholog CHW-1 Contributes to LIN-18/Ryk and LIN-17/Frizzled Signaling in Cell Polarity. PLoS One 2015. [PMID: 26208319 PMCID: PMC4514874 DOI: 10.1371/journal.pone.0133226] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Wnt signaling controls various aspects of developmental and cell biology, as well as contributing to certain cancers. Expression of the human Rho family small GTPase Wrch/RhoU is regulated by Wnt signaling, and Wrch and its paralog Chp/RhoV are both implicated in oncogenic transformation and regulation of cytoskeletal dynamics. We performed developmental genetic analysis of the single Caenorhabditis elegans ortholog of Chp and Wrch, CHW-1. Using a transgenic assay of the distal tip cell migration, we found that wild-type CHW-1 is likely to be partially constitutively active and that we can alter ectopic CHW-1-dependent migration phenotypes with mutations predicted to increase or decrease intrinsic GTP hydrolysis rate. The vulval P7.p polarity decision balances multiple antagonistic Wnt signals, and also uses different types of Wnt signaling. Previously described cooperative Wnt receptors LIN-17/Frizzled and LIN-18/Ryk orient P7.p posteriorly, with LIN-17/Fz contributing approximately two-thirds of polarizing activity. CHW-1 deletion appears to equalize the contributions of these two receptors. We hypothesize that CHW-1 increases LIN-17/Fz activity at the expense of LIN-18/Ryk, thus making the contribution of these signals unequal. For P7.p to polarize correctly and form a proper vulva, LIN-17/Fz and LIN-18/Ryk antagonize other Wnt transmembrane systems VANG-1/VanGogh and CAM-1/Ror. Our genetic data suggest that LIN-17/Fz represses both VANG-1/VanGogh and CAM-1/Ror, while LIN-18/Ryk represses only VANG-1. These data expand our knowledge of a sophisticated signaling network to control P7.p polarity, and suggests that CHW-1 can alter ligand gradients or receptor priorities in the system.
Collapse
Affiliation(s)
- Ambrose R. Kidd
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Vanessa Muñiz-Medina
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Channing J. Der
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Adrienne D. Cox
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - David J. Reiner
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center and College of Medicine, Houston, Texas, 77030, United States of America
- * E-mail:
| |
Collapse
|
17
|
Schmid T, Hajnal A. Signal transduction during C. elegans vulval development: a NeverEnding story. Curr Opin Genet Dev 2015; 32:1-9. [DOI: 10.1016/j.gde.2015.01.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/19/2015] [Accepted: 01/21/2015] [Indexed: 11/16/2022]
|
18
|
Chien SCJ, Gurling M, Kim C, Craft T, Forrester W, Garriga G. Autonomous and nonautonomous regulation of Wnt-mediated neuronal polarity by the C. elegans Ror kinase CAM-1. Dev Biol 2015; 404:55-65. [PMID: 25917219 DOI: 10.1016/j.ydbio.2015.04.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 04/16/2015] [Accepted: 04/19/2015] [Indexed: 11/28/2022]
Abstract
Wnts are a conserved family of secreted glycoproteins that regulate various developmental processes in metazoans. Three of the five Caenorhabditis elegans Wnts, CWN-1, CWN-2 and EGL-20, and the sole Wnt receptor of the Ror kinase family, CAM-1, are known to regulate the anterior polarization of the mechanosensory neuron ALM. Here we show that CAM-1 and the Frizzled receptor MOM-5 act in parallel pathways to control ALM polarity. We also show that CAM-1 has two functions in this process: an autonomous signaling function that promotes anterior polarization and a nonautonomous Wnt-antagonistic function that inhibits anterior polarization. These antagonistic activities can account for the weak ALM phenotypes displayed by cam-1 mutants. Our observations suggest that CAM-1 could function as a Wnt receptor in many developmental processes, but the analysis of cam-1 mutants may fail to reveal CAM-1's role as a receptor in these processes because of its Wnt-antagonistic activity. In this model, loss of CAM-1 results in increased levels of Wnts that act through other Wnt receptors, masking CAM-1's autonomous role as a Wnt receptor.
Collapse
Affiliation(s)
- Shih-Chieh Jason Chien
- Department of Molecular and Cell Biology, University of California, Berkelry, CA 94720, United States
| | - Mark Gurling
- Department of Molecular and Cell Biology, University of California, Berkelry, CA 94720, United States
| | - Changsung Kim
- Department of Medical and Molecular Genetics, Indiana University Medical Sciences, Indiana University, Bloomington, IN 47405, United States
| | - Teresa Craft
- Department of Medical and Molecular Genetics, Indiana University Medical Sciences, Indiana University, Bloomington, IN 47405, United States
| | - Wayne Forrester
- Department of Medical and Molecular Genetics, Indiana University Medical Sciences, Indiana University, Bloomington, IN 47405, United States
| | - Gian Garriga
- Department of Molecular and Cell Biology, University of California, Berkelry, CA 94720, United States; Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States.
| |
Collapse
|
19
|
Weinstein N, Ortiz-Gutiérrez E, Muñoz S, Rosenblueth DA, Álvarez-Buylla ER, Mendoza L. A model of the regulatory network involved in the control of the cell cycle and cell differentiation in the Caenorhabditis elegans vulva. BMC Bioinformatics 2015; 16:81. [PMID: 25884811 PMCID: PMC4367908 DOI: 10.1186/s12859-015-0498-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 02/16/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND There are recent experimental reports on the cross-regulation between molecules involved in the control of the cell cycle and the differentiation of the vulval precursor cells (VPCs) of Caenorhabditis elegans. Such discoveries provide novel clues on how the molecular mechanisms involved in the cell cycle and cell differentiation processes are coordinated during vulval development. Dynamic computational models are helpful to understand the integrated regulatory mechanisms affecting these cellular processes. RESULTS Here we propose a simplified model of the regulatory network that includes sufficient molecules involved in the control of both the cell cycle and cell differentiation in the C. elegans vulva to recover their dynamic behavior. We first infer both the topology and the update rules of the cell cycle module from an expected time series. Next, we use a symbolic algorithmic approach to find which interactions must be included in the regulatory network. Finally, we use a continuous-time version of the update rules for the cell cycle module to validate the cyclic behavior of the network, as well as to rule out the presence of potential artifacts due to the synchronous updating of the discrete model. We analyze the dynamical behavior of the model for the wild type and several mutants, finding that most of the results are consistent with published experimental results. CONCLUSIONS Our model shows that the regulation of Notch signaling by the cell cycle preserves the potential of the VPCs and the three vulval fates to differentiate and de-differentiate, allowing them to remain completely responsive to the concentration of LIN-3 and lateral signal in the extracellular microenvironment.
Collapse
Affiliation(s)
- Nathan Weinstein
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de, México, DF, México.
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, DF, México.
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, México, DF, México.
| | - Elizabeth Ortiz-Gutiérrez
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de, México, DF, México.
- Instituto de Ecología, Universidad Nacional Autónoma de México, México, DF, México.
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, México, DF, México.
| | - Stalin Muñoz
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad, Nacional Autónoma de México, México, DF, México.
| | - David A Rosenblueth
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad, Nacional Autónoma de México, México, DF, México.
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, México, DF, México.
| | - Elena R Álvarez-Buylla
- Instituto de Ecología, Universidad Nacional Autónoma de México, México, DF, México.
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, México, DF, México.
| | - Luis Mendoza
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, DF, México.
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, México, DF, México.
| |
Collapse
|
20
|
Doupé DP, Perrimon N. Visualizing and manipulating temporal signaling dynamics with fluorescence-based tools. Sci Signal 2014; 7:re1. [PMID: 24692594 PMCID: PMC4319366 DOI: 10.1126/scisignal.2005077] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The use of genome-wide proteomic and RNA interference approaches has moved our understanding of signal transduction from linear pathways to highly integrated networks centered on core nodes. However, probing the dynamics of flow of information through such networks remains technically challenging. In particular, how the temporal dynamics of an individual pathway can elicit distinct outcomes in a single cell type and how multiple pathways may interact sequentially or synchronously to influence cell fate remain open questions in many contexts. The development of fluorescence-based reporters and optogenetic regulators of pathway activity enables the analysis of signaling in living cells and organisms with unprecedented spatiotemporal resolution and holds the promise of addressing these key questions. We present a brief overview of the evidence for the importance of temporal dynamics in cellular regulation, introduce these fluorescence-based tools, and highlight specific studies that leveraged these tools to probe the dynamics of information flow through signaling networks. In particular, we highlight two studies in Caenorhabditis elegans sensory neurons and cultured mammalian cells that demonstrate the importance of signal dynamics in determining cellular responses.
Collapse
Affiliation(s)
- David P Doupé
- 1Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
21
|
de Groot REA, Ganji RS, Bernatik O, Lloyd-Lewis B, Seipel K, Šedová K, Zdráhal Z, Dhople VM, Dale TC, Korswagen HC, Bryja V. Huwe1-mediated ubiquitylation of dishevelled defines a negative feedback loop in the Wnt signaling pathway. Sci Signal 2014; 7:ra26. [PMID: 24643799 DOI: 10.1126/scisignal.2004985] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2024]
Abstract
Wnt signaling plays a central role in development, adult tissue homeostasis, and cancer. Several steps in the canonical Wnt/β-catenin signaling cascade are regulated by ubiquitylation, a protein modification that influences the stability, subcellular localization, or interactions of target proteins. To identify regulators of the Wnt/β-catenin pathway, we performed an RNA interference screen in Caenorhabditis elegans and identified the HECT domain-containing ubiquitin ligase EEL-1 as an inhibitor of Wnt signaling. In human embryonic kidney 293T cells, knockdown of the EEL-1 homolog Huwe1 enhanced the activity of a Wnt reporter in cells stimulated with Wnt3a or in cells that overexpressed casein kinase 1 (CK1) or a constitutively active mutant of the Wnt co-receptor low-density lipoprotein receptor-related protein 6 (LRP6). However, knockdown of Huwe1 had no effect on reporter gene expression in cells expressing constitutively active β-catenin, suggesting that Huwe1 inhibited Wnt signaling upstream of β-catenin and downstream of CK1 and LRP6. Huwe1 bound to and ubiquitylated the cytoplasmic Wnt pathway component Dishevelled (Dvl) in a Wnt3a- and CK1ε-dependent manner. Mass spectrometric analysis showed that Huwe1 promoted K63-linked, but not K48-linked, polyubiquitination of Dvl. Instead of targeting Dvl for degradation, ubiquitylation of the DIX domain of Dvl by Huwe1 inhibited Dvl multimerization, which is necessary for its function. Our findings indicate that Huwe1 is part of an evolutionarily conserved negative feedback loop in the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Reinoud E A de Groot
- 1Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584CT Utrecht, the Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Weinstein N, Mendoza L. A network model for the specification of vulval precursor cells and cell fusion control in Caenorhabditis elegans. Front Genet 2013; 4:112. [PMID: 23785384 PMCID: PMC3682179 DOI: 10.3389/fgene.2013.00112] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 05/28/2013] [Indexed: 01/21/2023] Open
Abstract
The vulva of Caenorhabditis elegans has been long used as an experimental model of cell differentiation and organogenesis. While it is known that the signaling cascades of Wnt, Ras/MAPK, and NOTCH interact to form a molecular network, there is no consensus regarding its precise topology and dynamical properties. We inferred the molecular network, and developed a multivalued synchronous discrete dynamic model to study its behavior. The model reproduces the patterns of activation reported for the following types of cell: vulval precursor, first fate, second fate, second fate with reversed polarity, third fate, and fusion fate. We simulated the fusion of cells, the determination of the first, second, and third fates, as well as the transition from the second to the first fate. We also used the model to simulate all possible single loss- and gain-of-function mutants, as well as some relevant double and triple mutants. Importantly, we associated most of these simulated mutants to multivulva, vulvaless, egg-laying defective, or defective polarity phenotypes. The model shows that it is necessary for RAL-1 to activate NOTCH signaling, since the repression of LIN-45 by RAL-1 would not suffice for a proper second fate determination in an environment lacking DSL ligands. We also found that the model requires the complex formed by LAG-1, LIN-12, and SEL-8 to inhibit the transcription of eff-1 in second fate cells. Our model is the largest reconstruction to date of the molecular network controlling the specification of vulval precursor cells and cell fusion control in C. elegans. According to our model, the process of fate determination in the vulval precursor cells is reversible, at least until either the cells fuse with the ventral hypoderm or divide, and therefore the cell fates must be maintained by the presence of extracellular signals.
Collapse
Affiliation(s)
| | - Luis Mendoza
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de MéxicoMexico City, México
| |
Collapse
|
23
|
Gorrepati L, Thompson KW, Eisenmann DM. C. elegans GATA factors EGL-18 and ELT-6 function downstream of Wnt signaling to maintain the progenitor fate during larval asymmetric divisions of the seam cells. Development 2013; 140:2093-102. [PMID: 23633508 PMCID: PMC3640217 DOI: 10.1242/dev.091124] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2013] [Indexed: 11/20/2022]
Abstract
The C. elegans seam cells are lateral epithelial cells arrayed in a single line from anterior to posterior that divide in an asymmetric, stem cell-like manner during larval development. These asymmetric divisions are regulated by Wnt signaling; in most divisions, the posterior daughter in which the Wnt pathway is activated maintains the progenitor seam fate, while the anterior daughter in which the Wnt pathway is not activated adopts a differentiated hypodermal fate. Using mRNA tagging and microarray analysis, we identified the functionally redundant GATA factor genes egl-18 and elt-6 as Wnt pathway targets in the larval seam cells. EGL-18 and ELT-6 have previously been shown to be required for initial seam cell specification in the embryo. We show that in larval seam cell asymmetric divisions, EGL-18 is expressed strongly in the posterior seam-fated daughter. egl-18 and elt-6 are necessary for larval seam cell specification, and for hypodermal to seam cell fate transformations induced by ectopic Wnt pathway overactivation. The TCF homolog POP-1 binds a site in the egl-18 promoter in vitro, and this site is necessary for robust seam cell expression in vivo. Finally, larval overexpression of EGL-18 is sufficient to drive expression of a seam marker in other hypodermal cells in wild-type animals, and in anterior hypodermal-fated daughters in a Wnt pathway-sensitized background. These data suggest that two GATA factors that are required for seam cell specification in the embryo independently of Wnt signaling are reused downstream of Wnt signaling to maintain the progenitor fate during stem cell-like divisions in larval development.
Collapse
Affiliation(s)
| | | | - David M. Eisenmann
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| |
Collapse
|
24
|
Modzelewska K, Lauritzen A, Hasenoeder S, Brown L, Georgiou J, Moghal N. Neurons refine the Caenorhabditis elegans body plan by directing axial patterning by Wnts. PLoS Biol 2013; 11:e1001465. [PMID: 23319891 PMCID: PMC3539944 DOI: 10.1371/journal.pbio.1001465] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 11/16/2012] [Indexed: 12/14/2022] Open
Abstract
Metazoans display remarkable conservation of gene families, including growth factors, yet somehow these genes are used in different ways to generate tremendous morphological diversity. While variations in the magnitude and spatio-temporal aspects of signaling by a growth factor can generate different body patterns, how these signaling variations are organized and coordinated during development is unclear. Basic body plans are organized by the end of gastrulation and are refined as limbs, organs, and nervous systems co-develop. Despite their proximity to developing tissues, neurons are primarily thought to act after development, on behavior. Here, we show that in Caenorhabditis elegans, the axonal projections of neurons regulate tissue progenitor responses to Wnts so that certain organs develop with the correct morphology at the right axial positions. We find that foreshortening of the posteriorly directed axons of the two canal-associated neurons (CANs) disrupts mid-body vulval morphology, and produces ectopic vulval tissue in the posterior epidermis, in a Wnt-dependent manner. We also provide evidence that suggests that the posterior CAN axons modulate the location and strength of Wnt signaling along the anterior-posterior axis by employing a Ror family Wnt receptor to bind posteriorly derived Wnts, and hence, refine their distributions. Surprisingly, despite high levels of Ror expression in many other cells, these cells cannot substitute for the CAN axons in patterning the epidermis, nor can cells expressing a secreted Wnt inhibitor, SFRP-1. Thus, unmyelinated axon tracts are critical for patterning the C. elegans body. Our findings suggest that the evolution of neurons not only improved metazoans by increasing behavioral complexity, but also by expanding the diversity of developmental patterns generated by growth factors such as Wnts.
Collapse
Affiliation(s)
- Katarzyna Modzelewska
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Amara Lauritzen
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Stefan Hasenoeder
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, Princess Margaret Hospital, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Louise Brown
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - John Georgiou
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Nadeem Moghal
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, Princess Margaret Hospital, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Sharanya D, Thillainathan B, Marri S, Bojanala N, Taylor J, Flibotte S, Moerman DG, Waterston RH, Gupta BP. Genetic control of vulval development in Caenorhabditis briggsae. G3 (BETHESDA, MD.) 2012; 2:1625-41. [PMID: 23275885 PMCID: PMC3516484 DOI: 10.1534/g3.112.004598] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 10/19/2012] [Indexed: 01/23/2023]
Abstract
The nematode Caenorhabditis briggsae is an excellent model organism for the comparative analysis of gene function and developmental mechanisms. To study the evolutionary conservation and divergence of genetic pathways mediating vulva formation, we screened for mutations in C. briggsae that cause the egg-laying defective (Egl) phenotype. Here, we report the characterization of 13 genes, including three that are orthologs of Caenorhabditis elegans unc-84 (SUN domain), lin-39 (Dfd/Scr-related homeobox), and lin-11 (LIM homeobox). Based on the morphology and cell fate changes, the mutants were placed into four different categories. Class 1 animals have normal-looking vulva and vulva-uterine connections, indicating defects in other components of the egg-laying system. Class 2 animals frequently lack some or all of the vulval precursor cells (VPCs) due to defects in the migration of P-cell nuclei into the ventral hypodermal region. Class 3 animals show inappropriate fusion of VPCs to the hypodermal syncytium, leading to a reduced number of vulval progeny. Finally, class 4 animals exhibit abnormal vulval invagination and morphology. Interestingly, we did not find mutations that affect VPC induction and fates. Our work is the first study involving the characterization of genes in C. briggsae vulva formation, and it offers a basis for future investigations of these genes in C. elegans.
Collapse
Affiliation(s)
- Devika Sharanya
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | | | - Sujatha Marri
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | | | - Jon Taylor
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Stephane Flibotte
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Donald G. Moerman
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Robert H. Waterston
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195-5065
| | - Bhagwati P. Gupta
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
26
|
Bae YK, Sung JY, Kim YN, Kim S, Hong KM, Kim HT, Choi MS, Kwon JY, Shim J. An in vivo C. elegans model system for screening EGFR-inhibiting anti-cancer drugs. PLoS One 2012; 7:e42441. [PMID: 22957020 PMCID: PMC3434183 DOI: 10.1371/journal.pone.0042441] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 07/09/2012] [Indexed: 11/20/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is a well-established target for cancer treatment. EGFR tyrosine kinase (TK) inhibitors, such as gefinitib and erlotinib, have been developed as anti-cancer drugs. Although non-small cell lung carcinoma with an activating EGFR mutation, L858R, responds well to gefinitib and erlotinib, tumors with a doubly mutated EGFR, T790M-L858R, acquire resistance to these drugs. The C. elegans EGFR homolog LET-23 and its downstream signaling pathway have been studied extensively to provide insight into regulatory mechanisms conserved from C. elegans to humans. To develop an in vivo screening system for potential cancer drugs targeting specific EGFR mutants, we expressed three LET-23 chimeras in which the TK domain was replaced with either the human wild-type TK domain (LET-23::hEGFR-TK), a TK domain with the L858R mutation (LET-23::hEGFR-TK[L858R]), or a TK domain with the T790M-L858R mutations (LET-23::hEGFR-TK[T790M-L858R]) in C. elegans vulval cells using the let-23 promoter. The wild-type hEGFR-TK chimeric protein rescued the let-23 mutant phenotype, and the activating mutant hEGFR-TK chimeras induced a multivulva (Muv) phenotype in a wild-type C. elegans background. The anti-cancer drugs gefitinib and erlotinib suppressed the Muv phenotype in LET-23::hEGFR-TK[L858R]-expressing transgenic animals, but not in LET-23::hEGFR-TK[T790M-L858R] transgenic animals. As a pilot screen, 8,960 small chemicals were tested for Muv suppression, and AG1478 (an EGFR-TK inhibitor) and U0126 (a MEK inhibitor) were identified as potential inhibitors of EGFR-mediated biological function. In conclusion, transgenic C. elegans expressing chimeric LET-23::hEGFR-TK proteins are a model system that can be used in mutation-specific screens for new anti-cancer drugs.
Collapse
Affiliation(s)
- Young-Ki Bae
- Comparative Biomedicine Research Branch, National Cancer Center, Ilsandong-gu, Goyang-si, Gyeonggi-do, Korea
| | - Jee Young Sung
- Pediatric Oncology Research Branch, National Cancer Center, Ilsandong-gu, Goyang-si, Gyeonggi-do, Korea
| | - Yong-Nyun Kim
- Comparative Biomedicine Research Branch, National Cancer Center, Ilsandong-gu, Goyang-si, Gyeonggi-do, Korea
| | - Sunshin Kim
- New Experimental Therapeutics Branch, National Cancer Center, Ilsandong-gu, Goyang-si, Gyeonggi-do, Korea
| | - Kyeong Man Hong
- Cancer Cell and Molecular Biology Branch, National Cancer Center, Ilsandong-gu, Goyang-si, Gyeonggi-do, Korea
| | - Heung Tae Kim
- Center for Lung Cancer, National Cancer Center, Ilsandong-gu, Goyang-si, Gyeonggi-do, Korea
| | - Min Sung Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Gyeonggi-do, Korea
| | - Jae Young Kwon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Gyeonggi-do, Korea
| | - Jaegal Shim
- Comparative Biomedicine Research Branch, National Cancer Center, Ilsandong-gu, Goyang-si, Gyeonggi-do, Korea
- * E-mail:
| |
Collapse
|
27
|
Chisholm AD, Hsiao TI. The Caenorhabditis elegans epidermis as a model skin. I: development, patterning, and growth. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 1:861-78. [PMID: 23539299 DOI: 10.1002/wdev.79] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The skin of the nematode Caenorhabditis elegans is composed of a simple epidermal epithelium and overlying cuticle. The skin encloses the animal and plays central roles in body morphology and physiology; its simplicity and accessibility make it a tractable genetic model for several aspects of skin biology. Epidermal precursors are specified by a hierarchy of transcriptional regulators. Epidermal cells form on the dorsal surface of the embryo and differentiate to form the epidermal primordium, which then spreads out in a process of epiboly to enclose internal tissues. Subsequent elongation of the embryo into a vermiform larva is driven by cell shape changes and cell fusions in the epidermis. Most epidermal cells fuse in mid-embryogenesis to form a small number of multinucleate syncytia. During mid-embryogenesis the epidermis also becomes intimately associated with underlying muscles, performing a tendon-like role in transmitting muscle force. Post-embryonic development of the epidermis involves growth by addition of new cells to the syncytia from stem cell-like epidermal seam cells and by an increase in cell size driven by endoreplication of the chromosomes in epidermal nuclei.
Collapse
Affiliation(s)
- Andrew D Chisholm
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA.
| | | |
Collapse
|
28
|
Félix MA, Barkoulas M. Robustness and flexibility in nematode vulva development. Trends Genet 2012; 28:185-95. [DOI: 10.1016/j.tig.2012.01.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 01/09/2012] [Accepted: 01/11/2012] [Indexed: 10/14/2022]
|
29
|
Sommer RJ. Evolution of Regulatory Networks: Nematode Vulva Induction as an Example of Developmental Systems Drift. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 751:79-91. [DOI: 10.1007/978-1-4614-3567-9_4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Pénigault JB, Félix MA. High sensitivity of C. elegans vulval precursor cells to the dose of posterior Wnts. Dev Biol 2011; 357:428-38. [DOI: 10.1016/j.ydbio.2011.06.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 06/02/2011] [Accepted: 06/04/2011] [Indexed: 10/18/2022]
|
31
|
Wang X, Sommer RJ. Antagonism of LIN-17/Frizzled and LIN-18/Ryk in nematode vulva induction reveals evolutionary alterations in core developmental pathways. PLoS Biol 2011; 9:e1001110. [PMID: 21814488 PMCID: PMC3144188 DOI: 10.1371/journal.pbio.1001110] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 06/02/2011] [Indexed: 11/25/2022] Open
Abstract
Most diversity in animals and plants results from the modification of already existing structures. Many organ systems, for example, are permanently modified during evolution to create developmental and morphological diversity, but little is known about the evolution of the underlying developmental mechanisms. The theory of developmental systems drift proposes that the development of conserved morphological structures can involve large-scale modifications in their regulatory mechanisms. We test this hypothesis by comparing vulva induction in two genetically tractable nematodes, Caenorhabditis elegans and Pristionchus pacificus. Previous work indicated that the vulva is induced by epidermal growth factor (EGF)/RAS and WNT signaling in Caenorhabditis and Pristionchus, respectively. Here, we show that the evolution of vulva induction involves major molecular alterations and that this shift of signaling pathways involves a novel wiring of WNT signaling and the acquisition of novel domains in otherwise conserved receptors in Pristionchus vulva induction. First, Ppa-LIN-17/Frizzled acts as an antagonist of WNT signaling and suppresses the ligand Ppa-EGL-20 by ligand sequestration. Second, Ppa-LIN-18/Ryk transmits WNT signaling and requires inhibitory SH3 domain binding motifs, unknown from Cel-LIN-18/Ryk. Third, Ppa-LIN-18/Ryk signaling involves Axin and β-catenin and Ppa-axl-1/Axin is epistatic to Ppa-lin-18/Ryk. These results confirm developmental system drift as an important theory for the evolution of organ systems and they highlight the significance of protein modularity in signal transduction and the dynamics of signaling networks. Diversity of biological form in animals can be generated by the modification of already existing developmental and morphological structures. One major challenge in evolutionary biology is to identify the molecular and genetic changes associated with such morphological modifications. A decade ago, the theory of developmental systems drift was proposed arguing that large-scale changes in regulatory mechanisms can underlie the development of conserved morphological structures. Our work supports this hypothesis by comparing the development of the egg-laying organ between Caenorhabditis elegans and Pristionchus pacificus, two nematode species that have significantly different mechanisms of vulva induction despite their morphological similarity. Our studies in P. pacificus reveal major molecular alterations of signaling pathways that involve first, a novel wiring and second, the acquisition of novel protein domains in otherwise conserved receptors in WNT signaling. We show that all Wnt signaling molecules analyzed are conserved in sequence, but crucial receptor molecules have acquired novel small peptides that allow new regulatory linkages. The independent evolution of small protein domains in otherwise conserved proteins increases the evolutionary freedom of signaling pathways and developmental networks. Thus, our analysis of a developmental process that follows developmental system drift highlights the significance of protein modularity in signal transduction.
Collapse
Affiliation(s)
- Xiaoyue Wang
- Department for Evolutionary Biology, Max-Planck Institut for Developmental Biology, Tübingen, Germany
| | - Ralf J. Sommer
- Department for Evolutionary Biology, Max-Planck Institut for Developmental Biology, Tübingen, Germany
- * E-mail:
| |
Collapse
|
32
|
Babu K, Hu Z, Chien SC, Garriga G, Kaplan JM. The immunoglobulin super family protein RIG-3 prevents synaptic potentiation and regulates Wnt signaling. Neuron 2011; 71:103-16. [PMID: 21745641 PMCID: PMC3134796 DOI: 10.1016/j.neuron.2011.05.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2011] [Indexed: 11/15/2022]
Abstract
Cell surface Ig superfamily proteins (IgSF) have been implicated in several aspects of neuron development and function. Here, we describe the function of a Caenorhabditis elegans IgSF protein, RIG-3. Mutants lacking RIG-3 have an exaggerated paralytic response to a cholinesterase inhibitor, aldicarb. Although RIG-3 is expressed in motor neurons, heightened drug responsiveness was caused by an aldicarb-induced increase in muscle ACR-16 acetylcholine receptor (AChR) abundance, and a corresponding potentiation of postsynaptic responses at neuromuscular junctions. Mutants lacking RIG-3 also had defects in the anteroposterior polarity of the ALM mechanosensory neurons. The effects of RIG-3 on synaptic transmission and ALM polarity were both mediated by changes in Wnt signaling, and in particular by inhibiting CAM-1, a Ror-type receptor tyrosine kinase that binds Wnt ligands. These results identify RIG-3 as a regulator of Wnt signaling, and suggest that RIG-3 has an anti-plasticity function that prevents activity-induced changes in postsynaptic receptor fields.
Collapse
Affiliation(s)
- Kavita Babu
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Zhitao Hu
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Shih-Chieh Chien
- Department of Molecular Cell Biology, University of California, Berkeley, CA 94720
| | - Gian Garriga
- Department of Molecular Cell Biology, University of California, Berkeley, CA 94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720
| | - Joshua M. Kaplan
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
33
|
Sommer RJ, Streit A. Comparative genetics and genomics of nematodes: genome structure, development, and lifestyle. Annu Rev Genet 2011; 45:1-20. [PMID: 21721943 DOI: 10.1146/annurev-genet-110410-132417] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nematodes are found in virtually all habitats on earth. Many of them are parasites of plants and animals, including humans. The free-living nematode, Caenorhabditis elegans, is one of the genetically best-studied model organisms and was the first metazoan whose genome was fully sequenced. In recent years, the draft genome sequences of another six nematodes representing four of the five major clades of nematodes were published. Compared to mammalian genomes, all these genomes are very small. Nevertheless, they contain almost the same number of genes as the human genome. Nematodes are therefore a very attractive system for comparative genetic and genomic studies, with C. elegans as an excellent baseline. Here, we review the efforts that were made to extend genetic analysis to nematodes other than C. elegans, and we compare the seven available nematode genomes. One of the most striking findings is the unexpectedly high incidence of gene acquisition through horizontal gene transfer (HGT).
Collapse
Affiliation(s)
- Ralf J Sommer
- Max Planck Institute for Developmental Biology, D-72076 T?bingen, Germany.
| | | |
Collapse
|
34
|
Shaye DD, Greenwald I. OrthoList: a compendium of C. elegans genes with human orthologs. PLoS One 2011; 6:e20085. [PMID: 21647448 PMCID: PMC3102077 DOI: 10.1371/journal.pone.0020085] [Citation(s) in RCA: 324] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 04/18/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND C. elegans is an important model for genetic studies relevant to human biology and disease. We sought to assess the orthology between C. elegans and human genes to understand better the relationship between their genomes and to generate a compelling list of candidates to streamline RNAi-based screens in this model. RESULTS We performed a meta-analysis of results from four orthology prediction programs and generated a compendium, "OrthoList", containing 7,663 C. elegans protein-coding genes. Various assessments indicate that OrthoList has extensive coverage with low false-positive and false-negative rates. Part of this evaluation examined the conservation of components of the receptor tyrosine kinase, Notch, Wnt, TGF-ß and insulin signaling pathways, and led us to update compendia of conserved C. elegans kinases, nuclear hormone receptors, F-box proteins, and transcription factors. Comparison with two published genome-wide RNAi screens indicated that virtually all of the conserved hits would have been obtained had just the OrthoList set (∼38% of the genome) been targeted. We compiled Ortholist by InterPro domains and Gene Ontology annotation, making it easy to identify C. elegans orthologs of human disease genes for potential functional analysis. CONCLUSIONS We anticipate that OrthoList will be of considerable utility to C. elegans researchers for streamlining RNAi screens, by focusing on genes with apparent human orthologs, thus reducing screening effort by ∼60%. Moreover, we find that OrthoList provides a useful basis for annotating orthology and reveals more C. elegans orthologs of human genes in various functional groups, such as transcription factors, than previously described.
Collapse
Affiliation(s)
- Daniel D. Shaye
- Howard Hughes Medical Institute, Columbia University, College of Physicians and Surgeons, New York, New York, United States of America
| | - Iva Greenwald
- Howard Hughes Medical Institute, Columbia University, College of Physicians and Surgeons, New York, New York, United States of America
- Department of Biochemistry and Molecular Biophysics, Columbia University, College of Physicians and Surgeons, New York, New York, United States of America
- Department of Genetics and Development, Columbia University, College of Physicians and Surgeons, New York, New York, United States of America
| |
Collapse
|
35
|
Li J, Greenwald I. LIN-14 inhibition of LIN-12 contributes to precision and timing of C. elegans vulval fate patterning. Curr Biol 2010; 20:1875-9. [PMID: 20951046 PMCID: PMC3322352 DOI: 10.1016/j.cub.2010.09.055] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 09/08/2010] [Accepted: 09/20/2010] [Indexed: 12/15/2022]
Abstract
Studies of C. elegans vulval development have illuminated mechanisms underlying cell fate specification and elucidated intercellular signaling pathways [1]. The vulval precursor cells (VPCs) are spatially patterned during the L3 stage by the EGFR-Ras-MAPK-mediated inductive signal and the LIN-12/Notch-mediated lateral signal. The pattern is both precise and robust [2] because of crosstalk between these pathways [3]. Signaling is also regulated temporally, because constitutive activation of the spatial patterning pathways does not alter the timing of VPC fate specification [4, 5]. The heterochronic genes, including the microRNA lin-4 and its target lin-14, constitute a temporal control mechanism used in different contexts [6-8]. We find that lin-4 specifically controls the activity of LIN-12/Notch through lin-14, but not other known targets, and that persistent lin-14 blocks LIN-12 activity without interfering with the key events of LIN-12/Notch signal transduction. In the L2 stage, there is sufficient lin-14 activity to inhibit constitutive lin-12. Our results suggest that lin-4 and lin-14 contribute to spatial patterning through temporal gating of LIN-12. We propose that in the L2 stage, lin-14 sets a high threshold for LIN-12 activation to help prevent premature activation of LIN-12 by ligands expressed in other cells in the vicinity, thereby contributing to the precision and robustness of VPC fate patterning.
Collapse
Affiliation(s)
- Ji Li
- Dept. of Biological Sciences, Columbia University, New York, NY 10032 USA
| | - Iva Greenwald
- Dept. of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032 USA
- Dept. of Genetics and Development, Columbia University, New York, NY 10032 USA
- Howard Hughes Medical Institute, Columbia University, New York, NY 10032 USA
| |
Collapse
|
36
|
Conserved mechanism of Wnt signaling function in the specification of vulval precursor fates in C. elegans and C. briggsae. Dev Biol 2010; 346:128-39. [PMID: 20624381 DOI: 10.1016/j.ydbio.2010.07.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 06/17/2010] [Accepted: 07/01/2010] [Indexed: 01/29/2023]
Abstract
The C. elegans hermaphrodite vulva serves as a paradigm for understanding how signaling pathways control organ formation. Previous studies have shown that Wnt signaling plays important roles in vulval development. To understand the function and evolution of Wnt signaling in Caenorhabditis nematodes we focused on C. briggsae, a species that is substantially divergent from C. elegans in terms of the evolutionary time scale yet shares almost identical morphology. We isolated mutants in C. briggsae that display multiple pseudo-vulvae resulting from ectopic VPC induction. We cloned one of these loci and found that it encodes an Axin homolog, Cbr-PRY-1. Our genetic studies revealed that Cbr-pry-1 functions upstream of the canonical Wnt pathway components Cbr-bar-1 (beta-catenin) and Cbr-pop-1(tcf/lef) as well as the Hox target Cbr-lin-39 (Dfd/Scr). We further characterized the pry-1 vulval phenotype in C. briggsae and C. elegans using 8 cell fate markers, cell ablation, and genetic interaction approaches. Our results show that ectopically induced VPCs in pry-1 mutants adopt 2° fates independently of the gonad-derived inductive and LIN-12/Notch-mediated lateral signaling pathways. We also found that Cbr-pry-1 mutants frequently show a failure of P7.p induction. A similar, albeit low penetrant, defect is also observed in C. elegans pry-1 mutants. The genetic analysis of the P7.p induction defect revealed that it was caused by altered regulation of lin-12 and its transcriptional target lip-1 (MAP kinase phosphatase). Thus, our results provide evidence for LIN-12/Notch-dependent and independent roles of Wnt signaling in promoting 2 degrees VPC fates in both nematode species.
Collapse
|
37
|
Li X, Kulkarni RP, Hill RJ, Chamberlin HM. HOM-C genes, Wnt signaling and axial patterning in the C. elegans posterior ventral epidermis. Dev Biol 2009; 332:156-65. [PMID: 19481074 DOI: 10.1016/j.ydbio.2009.05.567] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2008] [Revised: 05/14/2009] [Accepted: 05/19/2009] [Indexed: 12/27/2022]
Abstract
Wnt signaling and HOM-C/Hox genes pattern cell fate along the anterior/posterior axis in many animals. In general, Wnt signaling participates in establishing the anterior/posterior axis, whereas HOM-C genes confer regional identities to cells along the axis. However, recent work in non-bilaterial metazoans suggests that the ancestral patterning system relied on Wnts, with a later co-option of HOM-C genes to replace Wnts in regional patterning. Here we provide direct experimental support for this model from C. elegans, where a regional Wnt patterning system is uncovered in HOM-C gene mutants. Anterior/posterior patterning of P11/P12 cell fate in the C. elegans tail is normally dependent on the HOM-C gene egl-5/Abdominal-B. If the HOM-C gene mab-5/fushi tarazu is also mutant, however, a Wnt signal can promote P12 fate in the absence of egl-5. Furthermore, transcription of egl-5 in the P12.pa cell is influenced by an autoregulatory element that is essential in wild type, but not in mab-5 egl-5 double mutants, identifying regulatory parallels between P12 cell fate specification and egl-5 transcriptional regulation in the P12 lineage. Together, our results identify complex regulatory relationships among signaling pathways and HOM-C genes, and uncover a layering of patterning systems that may reflect their evolutionary history.
Collapse
Affiliation(s)
- Xin Li
- Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
38
|
Yu H, Seah A, Herman MA, Ferguson EL, Horvitz HR, Sternberg PW. Wnt and EGF pathways act together to induce C. elegans male hook development. Dev Biol 2009; 327:419-32. [PMID: 19154732 PMCID: PMC2695933 DOI: 10.1016/j.ydbio.2008.12.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 11/26/2008] [Accepted: 12/19/2008] [Indexed: 01/08/2023]
Abstract
Comparative studies of vulva development between Caenorhabditis elegans and other nematode species have provided some insight into the evolution of patterning networks. However, molecular genetic details are available only in C. elegans and Pristionchus pacificus. To extend our knowledge on the evolution of patterning networks, we studied the C. elegans male hook competence group (HCG), an equivalence group that has similar developmental origins to the vulval precursor cells (VPCs), which generate the vulva in the hermaphrodite. Similar to VPC fate specification, each HCG cell adopts one of three fates (1 degree, 2 degrees, 3 degrees), and 2 degrees HCG fate specification is mediated by LIN-12/Notch. We show that 2 degrees HCG specification depends on the presence of a cell with the 1 degree fate. We also provide evidence that Wnt signaling via the Frizzled-like Wnt receptor LIN-17 acts to specify the 1 degree and 2 degrees HCG fate. A requirement for EGF signaling during 1 degree fate specification is seen only when LIN-17 activity is compromised. In addition, activation of the EGF pathway decreases dependence on LIN-17 and causes ectopic hook development. Our results suggest that WNT plays a more significant role than EGF signaling in specifying HCG fates, whereas in VPC specification EGF signaling is the major inductive signal. Nonetheless, the overall logic is similar in the VPCs and the HCG: EGF and/or WNT induce a 1 degree lineage, and LIN-12/NOTCH induces a 2 degrees lineage. Wnt signaling is also required for execution of the 1 degree and 2 degrees HCG lineages. lin-17 and bar-1/beta-catenin are preferentially expressed in the presumptive 1 degree cell P11.p. The dynamic subcellular localization of BAR-1-GFP in P11.p is concordant with the timing of HCG fate determination.
Collapse
Affiliation(s)
- Hui Yu
- HHMI and Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | | | |
Collapse
|
39
|
Wnt signaling in Pristionchus pacificus gonadal arm extension and the evolution of organ shape. Proc Natl Acad Sci U S A 2008; 105:10826-31. [PMID: 18664575 DOI: 10.1073/pnas.0800597105] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Changes in organ morphology have been essential to the evolution of novel body forms and in permitting organisms to invade new ecological niches. Changes in the arrangement of cells and tissues and in the regulation of morphological movements are fundamental to evolutionary transitions of organ shape and function. However, little is known about the genetic and developmental control of these changes. We use interspecific differences in the migration and extension of the nematode hermaphrodite gonadal arms to study the generation of morphological novelty. We show that the extending Pristionchus pacificus gonadal arms display a ventral migration that is unique to the Diplogastridae in comparison to the Rhabditidae, including Caenorhabditis elegans, and other nematodes. This results in the distal gonad residing along the ventral side of the body in P. pacificus in contrast to lying on the dorsal side of the body as in C. elegans. We show that at the cellular level this morphogenetic movement is regulated by signals from the developing vulva and the sister gonadal arm. We further show that in P. pacificus Wnt signaling is essential for this regulation. We show genetic and molecular evidence that suggest the Wnt ligands Ppa-mom-2 and Ppa-cwn-2 are components of the signaling mechanism. Supporting these findings, the hermaphrodite gonad of Ppa-bar-1 mutant animals mimics the shape of the C. elegans hermaphrodite gonad; the arms fail to extend ventrally. Thus, this genetic analysis of gonad migration provides insight into the mechanisms underlying the generation of morphological novelty and organ shape.
Collapse
|
40
|
|