1
|
Zhou Y, Huang S, Zhang T, Deng D, Huang L, Chen X. Deciphering consciousness: The role of corticothalamocortical interactions in general anesthesia. Pharmacol Res 2025; 212:107593. [PMID: 39788339 DOI: 10.1016/j.phrs.2025.107593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/09/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
General anesthesia is administered to millions of individuals each year, however, the precise mechanism by which it induces unconsciousness remains unclear. While some theories suggest that anesthesia shares similarities with natural sleep, targeting sleep-promoting areas and inhibiting arousal nuclei, recent research indicates a more complex process. Emerging evidence highlights the critical role of corticothalamocortical circuits, which are involved in higher cognitive functions, in controlling arousal states and modulating transitions between different conscious states during anesthesia. The administration of general anesthetics disrupts connectivity within these circuits, resulting in a reversible state of unconsciousness. This review elucidates how anesthetics impair corticothalamocortical interactions, thereby affecting the flow of information across various cortical layers and disrupting higher-order cognitive functions while preserving basic sensory processing. Additionally, the role of the prefrontal cortex in regulating arousal through both top-down and bottom-up pathways was examined. These findings highlight the intricate interplay between the cortical and subcortical networks in maintaining and restoring consciousness under anesthesia, offering potential therapeutic targets for enhancing anesthesia management.
Collapse
Affiliation(s)
- Yuxi Zhou
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Shiqian Huang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Tianhao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Daling Deng
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Li Huang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China.
| |
Collapse
|
2
|
Farhadi M, Gorji A, Mirsalehi M, Poletaev AB, Asadpour A, Mahboudi F, Jafarian M, Farrahizadeh M, Akbarnejad Z, Mahmoudian S. Electrophysiological and molecular changes following neuroprotective placental protein administration on tinnitus-induced rats. Laryngoscope Investig Otolaryngol 2023; 8:1410-1420. [PMID: 37899856 PMCID: PMC10601594 DOI: 10.1002/lio2.1156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/01/2023] [Accepted: 08/16/2023] [Indexed: 10/31/2023] Open
Abstract
Objective Despite 6%-20% of the adult population suffering from tinnitus, there is no standard treatment for it. Placenta extract has been used for various therapeutic purposes, including hearing loss. Here, we evaluate the effect of a novel neuroprotective protein composition (NPPC) extract on electrophysiological and molecular changes in the medial geniculate body (MGB) of tinnitus-induced rats. Methods To evaluate the protein analysis by western blot, the rats were divided into three groups: (1) saline group (intraperitoneal injection of 200 mg/kg saline twice a day for 28 consecutive days, (2) chronic Na-Sal group received sodium salicylate as in the first group, and (3) chronic treatment group (received salicylate 200 mg/kg twice daily for 2 weeks, followed by 0.4 mg NPPC daily from day 14 to day 28). Single-unit recordings were performed on a separate group that was treated as in group 4. Gap-prepulse inhibition of the acoustic startle (GPIAS) and pre-pulse inhibition (PPI) was performed to confirm tinnitus in all groups at the baseline, 14th and 28th days. Results Western blot analysis showed that the expression of γ-Aminobutyric acid Aα1 subunit (GABA Aα1), N-methyl-d-aspartate receptor subtype 2B (NR2B or NMDAR2B), α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors subunit GluR1 (GluR1), and α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors subunit GluR2 (GluR2) decreased after Na-Sal injection, while NPPC upregulated their expression. MGB units in rats with tinnitus showed decreased spontaneous firing rate, burst per minute, and a spike in a burst. After NPPC administration, neural activity patterns showed a significant positive effect of NPPC on tinnitus. Conclusion NPPC can play an effective role in the treatment of tinnitus in salicylate-induced rats, and MGB is one of the brain areas involved in these processes. Level of Evidence NA.
Collapse
Affiliation(s)
- Mohammad Farhadi
- ENT and Head and Neck Research CenterThe Five Senses Health Institute, School of Medicine, Iran University of Medical SciencesTehranIran
| | - Ali Gorji
- Epilepsy Research Center, Department of NeurosurgeryWestfälische Wilhelms‐Universitat MünsterMünsterGermany
- Neuroscience Research CenterMashhad University of Medical SciencesMashhadIran
- Shefa Neuroscience Research CenterKhatam Alanbia HospitalTehranIran
| | - Marjan Mirsalehi
- ENT and Head and Neck Research CenterThe Five Senses Health Institute, School of Medicine, Iran University of Medical SciencesTehranIran
| | - Alexander Borisovich Poletaev
- Clinical and Research Center of Children Psycho‐NeurologyMoscowRussian Federation
- Medical Research Centre “Immunculus”MoscowRussian Federation
| | - Abdoreza Asadpour
- Intelligent Systems Research CenterUlster University, Magee CampusDerry~LondonderryNorthern IrelandUK
| | | | - Maryam Jafarian
- Brain and Spinal Cord Injury Research CentreNeuroscience Institute, Tehran University of Medical SciencesTehranIran
| | - Maryam Farrahizadeh
- Department of Neuroscience, School of Advanced Technologies in MedicineIran University of Medical SciencesTehranIran
| | - Zeinab Akbarnejad
- ENT and Head and Neck Research CenterThe Five Senses Health Institute, School of Medicine, Iran University of Medical SciencesTehranIran
| | - Saeid Mahmoudian
- ENT and Head and Neck Research CenterThe Five Senses Health Institute, School of Medicine, Iran University of Medical SciencesTehranIran
| |
Collapse
|
3
|
Dudarenko MV, Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Pozdnyakova NG, Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv. Perinatal hypoxia and thalamus brain region: increased efficiency of antiepileptic drug levetiracetam to inhibit GABA release from nerve terminals. UKRAINIAN BIOCHEMICAL JOURNAL 2022. [DOI: 10.15407/ubj94.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Levetiracetam (LV), 2S-(2-oxo-1-pyrrolidiny1) butanamide, is an antiepileptic drug. The exact mechanisms of anticonvulsant effects of LV remain unclear. In this study, rats (Wistar strain) underwent hypoxia and seizures at the age of 10–12 postnatal days (pd). [3H]GABA release was analysed in isolated from thalamus nerve terminals (synaptosomes) during development at the age of pd 17–19 and pd 24–26 (infantile stage), pd 38–40 (puberty) and pd 66–73 (young adults) in control and after perinatal hypoxia. The extracellular level of [3H]GABA in the preparation of thalamic synaptosomes increased during development at the age of pd 38–40 and pd 66–73 as compared to earlier ones. LV did not influence the extracellular level of [3H]GABA in control and after perinatal hypoxia at all studied ages. Exocytotic [3H]GABA release in control increased at the age of pd 24–26 as compared to pd 17–19. After hypoxia, exocytotic [3H]GABA release from synaptosomes also increased during development. LV elevated [3H]GABA release from thalamic synaptosomes at the age of pd 66–73 after hypoxia and during blockage of GABA uptake by NO-711 only. LV realizes its antiepileptic effects at the presynaptic site through an increase in exocytotic release of [3H]GABA in thalamic synaptosomes after perinatal hypoxia at pd 66–73. LV exhibited a more significant effect in thalamic synaptosomes after perinatal hypoxia than in control ones. The action of LV is age-dependent, and the drug was inert at the infantile stage that can be useful for an LV application strategy in child epilepsy therapy. Keywords: brain development, exocytosis, GABA, levetiracetam, perinatal hypoxia, thalamic synaptosomes
Collapse
|
4
|
Kong W, Ma L, Yin C, Zhao W, Wang Y. Unilateral thalamic infarction onset with lethargy: A case report and literature review. Medicine (Baltimore) 2022; 101:e32158. [PMID: 36482596 PMCID: PMC9726381 DOI: 10.1097/md.0000000000032158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Infarct-induced lethargy is a common disabling symptom that lacks a consensual definition and a standardized method of care. Identifying the causes of the infarct in the thalamic reticular nucleus (TRN) induced lethargy is crucial in stroke patients. CASE PRESENTATION A 68-year-old female patient was admitted to the hospital with lethargy and weakness in the right limb. A computed tomography (CT) scan performed at the presentation showed no bleeding. She was given intravenous thrombolysis. A head computed tomography (CT) scan clearly showed that the infarct was located in the TRN. After 1 hour of treatment, the weakness in the patient's limb was relieved. However, she was still lethargic, but her lethargy symptoms improved after 3 days. DISCUSSION AND CONCLUSIONS Our case highlights that despite the small size of the infarct, the patient was unconscious, which makes it difficult for physicians to understand and treat the condition, resulting in trouble managing the case. We performed a literature review and proposed that the infarction located in the TRN causes lethargy. However, further clinical and pathophysiological research is still needed to improve patient care.
Collapse
Affiliation(s)
- Wei Kong
- Department of Neurosurgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Lei Ma
- Department of Anaesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Changyou Yin
- Department of Neurosurgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Wei Zhao
- Department of Neurosurgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Yanbin Wang
- Department of Neurosurgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
- * Correspondence: Yanbin Wang, Department of Neurosurgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangding East Road, Yantai 264000, China (e-mail: )
| |
Collapse
|
5
|
Antunes FM, Malmierca MS. Corticothalamic Pathways in Auditory Processing: Recent Advances and Insights From Other Sensory Systems. Front Neural Circuits 2021; 15:721186. [PMID: 34489648 PMCID: PMC8418311 DOI: 10.3389/fncir.2021.721186] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/28/2021] [Indexed: 11/24/2022] Open
Abstract
The corticothalamic (CT) pathways emanate from either Layer 5 (L5) or 6 (L6) of the neocortex and largely outnumber the ascending, thalamocortical pathways. The CT pathways provide the anatomical foundations for an intricate, bidirectional communication between thalamus and cortex. They act as dynamic circuits of information transfer with the ability to modulate or even drive the response properties of target neurons at each synaptic node of the circuit. L6 CT feedback pathways enable the cortex to shape the nature of its driving inputs, by directly modulating the sensory message arriving at the thalamus. L5 CT pathways can drive the postsynaptic neurons and initiate a transthalamic corticocortical circuit by which cortical areas communicate with each other. For this reason, L5 CT pathways place the thalamus at the heart of information transfer through the cortical hierarchy. Recent evidence goes even further to suggest that the thalamus via CT pathways regulates functional connectivity within and across cortical regions, and might be engaged in cognition, behavior, and perceptual inference. As descending pathways that enable reciprocal and context-dependent communication between thalamus and cortex, we venture that CT projections are particularly interesting in the context of hierarchical perceptual inference formulations such as those contemplated in predictive processing schemes, which so far heavily rely on cortical implementations. We discuss recent proposals suggesting that the thalamus, and particularly higher order thalamus via transthalamic pathways, could coordinate and contextualize hierarchical inference in cortical hierarchies. We will explore these ideas with a focus on the auditory system.
Collapse
Affiliation(s)
- Flora M. Antunes
- Cognitive and Auditory Neuroscience Laboratory (CANELAB), Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca, University of Salamanca, Salamanca, Spain
| | - Manuel S. Malmierca
- Cognitive and Auditory Neuroscience Laboratory (CANELAB), Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca, University of Salamanca, Salamanca, Spain
- Department of Cell Biology and Pathology, School of Medicine, University of Salamanca, Salamanca, Spain
| |
Collapse
|
6
|
Frasch MG, Walter B, Herry CL, Bauer R. Multimodal pathophysiological dataset of gradual cerebral ischemia in a cohort of juvenile pigs. Sci Data 2021; 8:4. [PMID: 33414507 PMCID: PMC7791136 DOI: 10.1038/s41597-020-00781-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 11/26/2020] [Indexed: 11/09/2022] Open
Abstract
Ischemic brain injuries are frequent and difficult to detect reliably or early. We present the multi-modal data set containing cardiovascular (blood pressure, blood flow, electrocardiogram) and brain electrical activities to derive electroencephalogram (EEG) biomarkers of corticothalamic communication under normal, sedation, and hypoxic/ischemic conditions with ensuing recovery. We provide technical validation using EEGLAB. We also delineate the corresponding changes in the electrocardiogram (ECG)-derived heart rate variability (HRV) with the potential for future in-depth analyses of joint EEG-ECG dynamics. We review an open-source methodology to derive signatures of coupling between the ECoG and electrothalamogram (EThG) signals contained in the presented data set to better characterize the dynamics of thalamocortical communication during these clinically relevant states. The data set is presented in full band sampled at 2000 Hz, so the additional potential exists for insights from the full-band EEG and high-frequency oscillations under the bespoke experimental conditions. Future studies on the dataset may contribute to the development of new brain monitoring technologies, which will facilitate the prevention of neurological injuries. Measurement(s) | EEG with persistent abnormal rhythmic activity • electrocardiogram • Electrothalamogram • cerebral blood flow measurement • positive regulation of heart rate involved in baroreceptor response to decreased systemic arterial blood pressure • cerebral metabolic rate of oxygen • cerebral perfusion pressure | Technology Type(s) | electrophysiology assay • extracellular electrophysiology recording assay • fluorescent colormicrospheres • Electrophysiology | Factor Type(s) | sedation • cerebral ischemia • recovery | Sample Characteristic - Organism | Sus scrofa | Sample Characteristic - Environment | laboratory environment |
Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.13251176
Collapse
Affiliation(s)
- Martin G Frasch
- University of Washington School of Medicine, Center on Human Development and Disability, Seattle, WA, USA.
| | - Bernd Walter
- Department of Spine Surgery and Neurotraumatology, SRH Waldklinikum, Gera, Germany.,Institute of Molecular Cell Biology, Jena University Hospital, Jena, Germany
| | - Christophe L Herry
- Dynamical Analysis Lab, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Reinhard Bauer
- Institute of Molecular Cell Biology, Jena University Hospital, Jena, Germany.
| |
Collapse
|
7
|
Castelnovo A, Lopez R, Proserpio P, Nobili L, Dauvilliers Y. NREM sleep parasomnias as disorders of sleep-state dissociation. Nat Rev Neurol 2019; 14:470-481. [PMID: 29959394 DOI: 10.1038/s41582-018-0030-y] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Non-rapid eye movement (NREM) sleep parasomnias (or NREM parasomnias) are fascinating disorders with mysterious neurobiological substrates. These conditions are common and often severe, with social, personal and forensic implications. The NREM parasomnias include sleepwalking, sleep terrors and confusional arousals - collectively termed disorders of arousal (DOAs) - as well as less well-known entities such as sleep-related sexual behaviours and eating disorders. Affected patients can exhibit waking behaviours arising abruptly out of NREM sleep. Although the individual remains largely unresponsive to the external environment, their EEG shows both typical sleep-like and wake-like features, and they occasionally report dreaming afterwards. Therefore, these disorders offer a unique natural model to explore the abnormal coexistence of local sleep and wake brain activity and the dissociation between behaviour and various aspects of consciousness. In this article, we critically review major findings and updates on DOAs, focusing on neurophysiological studies, and offer an overview of new clinical frontiers and promising future research areas. We advocate a joint effort to inform clinicians and the general public about the management and follow-up of these conditions. We also strongly encourage collaborative multicentre studies to add more objective polysomnographic criteria to the current official diagnostic definitions and to develop clinical practice guidelines, multidisciplinary research approaches and evidence-based medical care.
Collapse
Affiliation(s)
- Anna Castelnovo
- Center for Sleep and Consciousness, Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA.,Sleep and Epilepsy Center, Neurocenter of Southern Switzerland, Civic Hospital of Lugano, Lugano, Switzerland
| | - Régis Lopez
- Reference National Center for Narcolepsy-Hypersomnia, Sleep Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, Montpellier, France
| | - Paola Proserpio
- Claudio Munari Center for Epilepsy Surgery, Niguarda Hospital, Milan, Italy
| | - Lino Nobili
- Claudio Munari Center for Epilepsy Surgery, Niguarda Hospital, Milan, Italy. .,Department of Neuroscience, DINOGMI, University of Genoa, Genoa, Italy.
| | - Yves Dauvilliers
- Reference National Center for Narcolepsy-Hypersomnia, Sleep Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, Montpellier, France.
| |
Collapse
|
8
|
Temporally dissociable effects of ketamine on neuronal discharge and gamma oscillations in rat thalamo-cortical networks. Neuropharmacology 2018; 137:13-23. [DOI: 10.1016/j.neuropharm.2018.04.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/19/2018] [Accepted: 04/21/2018] [Indexed: 12/28/2022]
|
9
|
Zhang C, Chen RX, Zhang Y, Wang J, Liu FY, Cai J, Liao FF, Xu FQ, Yi M, Wan Y. Reduced GABAergic transmission in the ventrobasal thalamus contributes to thermal hyperalgesia in chronic inflammatory pain. Sci Rep 2017; 7:41439. [PMID: 28150719 PMCID: PMC5288727 DOI: 10.1038/srep41439] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/20/2016] [Indexed: 12/26/2022] Open
Abstract
The ventrobasal (VB) thalamus is innervated by GABAergic afferents from the thalamic reticular nucleus (TRN) and participates in nociception. But how the TRN-VB pathway regulates pain is not fully understood. In the present study, we reported decreased extracellular GABA levels in the VB of rats with CFA-induced chronic inflammatory pain, measured by microdialysis with HPLC analysis. In vitro whole-cell patch-clamp recording showed decreased amplitudes of tonic currents, increased frequencies of mIPSCs, and increased paired-pulse ratios in thalamic slices from chronic inflammatory rats (7 days). Microinjection of the GABAAR agonist muscimol and optogenetic activation of the TRN-VB pathway relieved thermal hyperalgesia in chronic inflammatory pain. By contrast, microinjecting the extrasynaptic GABAAR agonist THIP or selective knockout of synaptic GABAAR γ2 subunits aggravated thermal hyperalgesia in the chronic stage of inflammatory pain. Our findings indicate that reduced GABAergic transmission in the VB contributes to thermal hyperalgesia in chronic inflammatory pain, which could be a synaptic target for pharmacotherapy.
Collapse
Affiliation(s)
- Chan Zhang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, P.R. China.,Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, P.R. China
| | - Rong-Xiang Chen
- Research Center for Medicine and Biology, Zunyi Medical University, Zunyi, 563000, P.R. China
| | - Yu Zhang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, P.R. China
| | - Jie Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, P.R. China
| | - Feng-Yu Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, P.R. China
| | - Jie Cai
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, P.R. China
| | - Fei-Fei Liao
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, P.R. China
| | - Fu-Qiang Xu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, P.R. China
| | - Ming Yi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, P.R. China.
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, P.R. China. .,Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Beijing, 100191, P.R. China.
| |
Collapse
|
10
|
Milton J, Wu J, Campbell SA, Bélair J. Outgrowing Neurological Diseases: Microcircuits, Conduction Delay and Childhood Absence Epilepsy. COMPUTATIONAL NEUROLOGY AND PSYCHIATRY 2017. [DOI: 10.1007/978-3-319-49959-8_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
11
|
Effects of Optogenetic Activation of Corticothalamic Terminals in the Motor Thalamus of Awake Monkeys. J Neurosci 2016; 36:3519-30. [PMID: 27013680 DOI: 10.1523/jneurosci.4363-15.2016] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/02/2016] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED The role of the corticothalamic projection in the ventral motor thalamus remains poorly understood. Therefore, we studied the electrophysiological responses of neurons in the basal ganglia and cerebellar receiving-territories of the motor thalamus (BGMT and CbMT, respectively) using optogenetic activation of corticothalamic projections in awake rhesus macaques. After injections of viral vectors carrying the excitatory opsins ChR2 or C1V1 into the primary motor and premotor cortices of two monkeys, we used optrodes to light activate opsin-expressing neurons in cortex or their terminals in the thalamus while simultaneously recording the extracellular activity of neurons in the vicinity of the stimulation sites. As expected, light activation of opsins in the cerebral cortex evoked robust, short-latency increases in firing of cortical neurons. In contrast, light stimulation of corticothalamic terminals induced small-amplitude, long-latency increases and/or decreases of activity in thalamic neurons. In postmortem material, opsins were found to be expressed in cell bodies and dendrites of cortical neurons and along their corticothalamic projections. At the electron microscopic level, opsin labeling was confined to unmyelinated preterminal axons and small terminals that formed asymmetric synapses with dendrites of projection neurons or GABAergic interneurons in BGMT and CbMT and with neurons in the reticular thalamic nucleus. The morphological features of the transfected terminals, along with the long latency and complex physiological responses of thalamic neurons to their activation, suggest a modulatory role of corticothalamic afferents upon the primate ventral motor thalamus. SIGNIFICANCE STATEMENT This study provides the first analysis of the physiological effects of cortical inputs on the activity of neurons in the primate ventral motor thalamus using light activation of opsin-containing corticothalamic terminals in awake monkeys. We found that selective light activation of corticothalamic terminals in contact with distal dendrites of thalamocortical neurons and GABAergic interneurons elicits complex patterns of slowly developing excitatory and inhibitory effects in thalamic neurons of the basal ganglia- and cerebellar-receiving regions of the motor thalamus. Our observations suggest a modulatory (instead of a "driver") role of the corticothalamic system in the primate ventral motor thalamus.
Collapse
|
12
|
Troyano-Rodriguez E, Lladó-Pelfort L, Santana N, Teruel-Martí V, Celada P, Artigas F. Phencyclidine inhibits the activity of thalamic reticular gamma-aminobutyric acidergic neurons in rat brain. Biol Psychiatry 2014; 76:937-45. [PMID: 25038984 DOI: 10.1016/j.biopsych.2014.05.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 04/24/2014] [Accepted: 05/21/2014] [Indexed: 01/04/2023]
Abstract
BACKGROUND The neurobiological basis of action of noncompetitive N-methyl-D-aspartate acid receptor (NMDA-R) antagonists is poorly understood. Electrophysiological studies indicate that phencyclidine (PCP) markedly disrupts neuronal activity with an overall excitatory effect and reduces the power of low-frequency oscillations (LFO; <4 Hz) in thalamocortical networks. Because the reticular nucleus of the thalamus (RtN) provides tonic feed-forward inhibition to the rest of the thalamic nuclei, we examined the effect of PCP on RtN activity, under the working hypothesis that NMDA-R blockade in RtN would disinhibit thalamocortical networks. METHODS Drug effects (PCP followed by clozapine) on the activity of RtN (single unit and local field potential recordings) and prefrontal cortex (PFC; electrocorticogram) in anesthetized rats were assessed. RESULTS PCP (.25-.5 mg/kg, intravenous) reduced the discharge rate of 19 of 21 RtN neurons to 37% of baseline (p < .000001) and the power of LFO in RtN and PFC to ~20% of baseline (p < .001). PCP also reduced the coherence between PFC and RtN in the LFO range. A low clozapine dose (1 mg/kg intravenous) significantly countered the effect of PCP on LFO in PFC but not in RtN and further reduced the discharge rate of RtN neurons. However, clozapine administration partly antagonized the fall in coherence and phase-locking values produced by PCP. CONCLUSIONS PCP activates thalamocortical circuits in a bottom-up manner by reducing the activity of RtN neurons, which tonically inhibit thalamic relay neurons. However, clozapine reversal of PCP effects is not driven by restoring RtN activity and may involve a cortical action.
Collapse
Affiliation(s)
- Eva Troyano-Rodriguez
- Department of Neurochemistry and Neuropharmacology, Institut d'Investigacions Biomèdiques de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Laia Lladó-Pelfort
- Department of Neurochemistry and Neuropharmacology, Institut d'Investigacions Biomèdiques de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Noemi Santana
- Department of Neurochemistry and Neuropharmacology, Institut d'Investigacions Biomèdiques de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Vicent Teruel-Martí
- Deptartamento de Anatomia i Embriologia Humana, Facultat de Medicina, Universitat de València, Valencia, Spain
| | - Pau Celada
- Department of Neurochemistry and Neuropharmacology, Institut d'Investigacions Biomèdiques de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.
| | - Francesc Artigas
- Department of Neurochemistry and Neuropharmacology, Institut d'Investigacions Biomèdiques de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| |
Collapse
|
13
|
Pantoja-Jiménez CR, Magdaleno-Madrigal VM, Almazán-Alvarado S, Fernández-Mas R. Anti-epileptogenic effect of high-frequency stimulation in the thalamic reticular nucleus on PTZ-induced seizures. Brain Stimul 2014; 7:587-94. [PMID: 24794164 DOI: 10.1016/j.brs.2014.03.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 01/31/2014] [Accepted: 03/27/2014] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Deep brain stimulation, specifically high-frequency stimulation (HFS), is an alternative and promising treatment for intractable epilepsies; however, the optimal targets are still unknown. The thalamic reticular nucleus (TRN) occupies a key position in the modulation of the cortico-thalamic and thalamo-cortical pathways. OBJECTIVE We determined the efficacy of HFS in the TRN against tonic-clonic generalized seizures (TCGS) and status epilepticus (SE), which were induced by scheduled pentylenetetrazole (PTZ) injections. METHODS Male Wistar rats were stereotactically implanted and assigned to three experimental groups: Control group, which received only PTZ injections; HFS-TRN group, which received HFS in the left TRN prior to PTZ injections; and HFS-Adj group, which received HFS in the left adjacent nuclei prior to PTZ injections. RESULTS The HFS-TRN group reported a significant increase in the latency for development of TCGS and SE compared with the HFS-Adj and Control groups (P < 0.009). The number of PTZ-doses required for SE was also significantly increased (P < 0.001). Spectral analysis revealed a significant decrease in the frequency band from 0.5 Hz to 4.5 Hz of the left motor cortex in the HFS-TRN and HFS-Adj groups, compared to the Control group. Conversely, HFS-TRN provoked a significant increase in all frequency bands in the TRN. EEG asynchrony was observed during spike-wave discharges by HFS-TRN. CONCLUSION These data indicate that HFS-TRN has an anti-epileptogenic effect and is able to modify seizure synchrony and interrupt abnormal EEG recruitment of thalamo-cortical and, indirectly, cortico-thalamic pathways.
Collapse
Affiliation(s)
- C R Pantoja-Jiménez
- Laboratorio de Neurofisiología del Control y la Regulación, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico; Carrera de Psicología, Facultad de Estudios Superiores Zaragoza-UNAM, Ciudad de México, Mexico
| | - V M Magdaleno-Madrigal
- Laboratorio de Neurofisiología del Control y la Regulación, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico; Carrera de Psicología, Facultad de Estudios Superiores Zaragoza-UNAM, Ciudad de México, Mexico.
| | - S Almazán-Alvarado
- Laboratorio de Neurofisiología del Control y la Regulación, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico
| | - R Fernández-Mas
- Laboratorio de Neurofisiología del Control y la Regulación, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico
| |
Collapse
|
14
|
van Luijtelaar G, Behr C, Avoli M. Is there such a thing as "generalized" epilepsy? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 813:81-91. [PMID: 25012369 DOI: 10.1007/978-94-017-8914-1_7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
The distinction between generalized and partial epilepsies is probably one, if not the most, pregnant assertions in modern epileptology. Both absence and generalized tonic-clonic seizures, the prototypic seizures found in generalized epilepsies, are classically seen as the result of a rapid, synchronous recruitment of neuronal networks resulting in impairment of consciousness and/or convulsive semiology. The term generalized also refers to electroencephalographic presentation, with bilateral, synchronous activity, such as the classical 3 Hz spike and wave discharges of typical absence epilepsy. However, findings obtained from electrophysiological and functional imaging studies over the last few years, contradict this view, showing a rather focal onset for most of the so-called generalized seizure types. Therefore, we ask here the question whether "generalized epilepsy" does indeed exist.
Collapse
Affiliation(s)
- Gilles van Luijtelaar
- Donders Centre for Cognition, Radboud University Nijmegen, Montessorilaan 3, 6525 HR, Nijmegen, The Netherlands
| | | | | |
Collapse
|
15
|
Disruption of thalamocortical activity in schizophrenia models: relevance to antipsychotic drug action. Int J Neuropsychopharmacol 2013; 16:2145-63. [PMID: 23809188 DOI: 10.1017/s1461145713000643] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Non-competitive NMDA receptor antagonists are widely used as pharmacological models of schizophrenia due to their ability to evoke the symptoms of the illness. Likewise, serotonergic hallucinogens, acting on 5-HT(2A) receptors, induce perceptual and behavioural alterations possibly related to psychotic symptoms. The neurobiological basis of these alterations is not fully elucidated. Data obtained in recent years revealed that the NMDA receptor antagonist phencyclidine (PCP) and the serotonergic hallucinogen 1-(2,5-dimethoxy-4-iodophenyl-2-aminopropane; DOI) produce a series of common actions in rodent prefrontal cortex (PFC) that may underlie psychotomimetic effects. Hence, both agents markedly disrupt PFC function by altering pyramidal neuron discharge (with an overall increase) and reducing the power of low frequency cortical oscillations (LFCO; < 4 Hz). In parallel, PCP increased c-fos expression in excitatory neurons of various cortical areas, the thalamus and other subcortical structures, such as the amygdala. Electrophysiological studies revealed that PCP altered similarly the function of the centromedial and mediodorsal nuclei of the thalamus, reciprocally connected with PFC, suggesting that its psychotomimetic properties are mediated by an alteration of thalamocortical activity (the effect of DOI was not examined in the thalamus). Interestingly, the observed effects were prevented or reversed by the antipsychotic drugs clozapine and haloperidol, supporting that the disruption of PFC activity is intimately related to the psychotomimetic activity of these agents. Overall, the present experimental model can be successfully used to elucidate the neurobiological basis of schizophrenia symptoms and to examine the potential antipsychotic activity of new drugs in development.
Collapse
|
16
|
Ní Mhuircheartaigh R, Warnaby C, Rogers R, Jbabdi S, Tracey I. Slow-wave activity saturation and thalamocortical isolation during propofol anesthesia in humans. Sci Transl Med 2013; 5:208ra148. [PMID: 24154602 DOI: 10.1126/scitranslmed.3006007] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
The altered state of consciousness produced by general anesthetics is associated with a variety of changes in the brain's electrical activity. Under hyperpolarizing influences such as anesthetic drugs, cortical neurons oscillate at ~1 Hz, which is measurable as slow waves in the electroencephalogram (EEG). We have administered propofol anesthesia to 16 subjects and found that, after they had lost behavioral responsiveness (response to standard sensory stimuli), each individual's EEG slow-wave activity (SWA) rose to saturation and then remained constant despite increasing drug concentrations. We then simultaneously collected functional magnetic resonance imaging and EEG data in 12 of these subjects during propofol administration and sensory stimulation. During the transition to SWA saturation, the thalamocortical system became isolated from sensory stimuli, whereas internal thalamocortical exchange persisted. Rather, an alternative and more fundamental cortical network (which includes the precuneus) responded to all sensory stimulation. We conclude that SWA saturation is a potential individualized indicator of perception loss that could prove useful for monitoring depth of anesthesia and studying altered states of consciousness.
Collapse
Affiliation(s)
- Róisín Ní Mhuircheartaigh
- Oxford Centre for Functional Magnetic Resonance Imaging of the Brain and Nuffield Division of Anaesthetics, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | | | | | | | | |
Collapse
|
17
|
Yu XJ, Meng XK, Xu XX, He J. Individual auditory thalamic reticular neurons have large and cross-modal sources of cortical and thalamic inputs. Neuroscience 2011; 193:122-31. [DOI: 10.1016/j.neuroscience.2011.07.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 07/19/2011] [Accepted: 07/20/2011] [Indexed: 10/17/2022]
|
18
|
Santana N, Troyano-Rodriguez E, Mengod G, Celada P, Artigas F. Activation of thalamocortical networks by the N-methyl-D-aspartate receptor antagonist phencyclidine: reversal by clozapine. Biol Psychiatry 2011; 69:918-27. [PMID: 21251645 DOI: 10.1016/j.biopsych.2010.10.030] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 10/04/2010] [Accepted: 10/27/2010] [Indexed: 11/18/2022]
Abstract
BACKGROUND Noncompetitive N-methyl-D-aspartate receptor antagonists are widely used as pharmacological models of schizophrenia. Their neurobiological actions are still poorly understood, although the prefrontal cortex (PFC) appears as a key target area. METHODS We examined the effect of phencyclidine (PCP) on neuronal activity of the mediodorsal (MD) and centromedial (CM) thalamic nuclei, reciprocally connected with the PFC, using extracellular recordings (n = 50 neurons from 35 Wistar rats) and c-fos expression. RESULTS Phencyclidine (.25 mg/kg intravenous [IV]) markedly disorganized the activity of MD/CM neurons, increasing (424%) and decreasing (41%) the activity of 57% and 20% of the recorded neurons, respectively (23% remained unaffected). Phencyclidine reduced delta oscillations (.15-4 Hz) as assessed by recording local field potentials. The subsequent clozapine administration (1 mg/kg IV) reversed PCP effects on neuronal discharge and delta oscillations. Double in situ hybridization experiments revealed that PCP (10 mg/kg intraperitoneal [IP]) markedly increased c-fos expression in glutamatergic neurons of several cortical areas (prefrontal, somatosensory, retrosplenial, entorhinal) and in thalamic nuclei, including MD/CM. Phencyclidine also increased c-fos expression in the amygdala; yet, it had a small effect in the hippocampus. Phencyclidine did not increase c-fos expression in gamma-aminobutyric acidergic cells except in hippocampus, amygdala, somatosensory, and retrosplenial cortices. Clozapine (5 mg/kg IP) had no effect by itself but significantly prevented PCP-induced c-fos expression. CONCLUSIONS Phencyclidine likely exerts its psychotomimetic action by increasing excitatory neurotransmission in thalamo-cortico-thalamic networks involving, among others, PFC, retrosplenial, and somatosensory cortices. The antipsychotic action of clozapine includes, among other actions, an attenuation of the neuronal hyperactivity in thalamocortical networks.
Collapse
Affiliation(s)
- Noemí Santana
- Department of Neurochemistry and Neuropharmacology, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | | | | | | |
Collapse
|
19
|
Localized suppression of cortical growth hormone-releasing hormone receptors state-specifically attenuates electroencephalographic delta waves. J Neurosci 2010; 30:4151-9. [PMID: 20237285 DOI: 10.1523/jneurosci.6047-09.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Growth hormone-releasing hormone (GHRH) promotes non-rapid eye movement sleep (NREMS), in part via a well characterized hypothalamic sleep-promoting site. However, GHRH may also act in the cortex to influence sleep. Application of GHRH to the surface of the cortex changes electroencephalographic (EEG) delta power. GHRH and the GHRH receptor (GHRHR) mRNAs are detectable in the rat cortex, and the expression of cortical GHRHR is activity dependent. Here, we microinjected a GHRH antagonist or GHRHR small interfering RNA (siGHRHR) onto the somatosensory cortex surface in rats. The unilateral application of the GHRH antagonist ipsilaterally decreased EEG delta wave power during NREMS, but not wakefulness, during the initial 40 min after injection. Similarly, the injection of siGHRHR reduced cortical expression of GHRHR and suppressed NREMS EEG delta wave power during 20-24 h after injection. Using the fura-2 calcium imaging technique, cultured cortical cells responded to GHRH by increasing intracellular calcium. Approximately 18% of the GHRH-responsive cells were GABAergic as illustrated by glutamic acid decarboxylase-67 (GAD67) immunostaining. Double labeling for GAD67 and GHRHR in vitro and in vivo indicated that only a minority of cortical GHRHR-containing cells were GABAergic. Our data suggest that endogenous cortical GHRH activates local cortical cells to affect EEG delta wave power state-specifically. Results are also consistent with the hypothesis that GHRH contributes to local network state regulation.
Collapse
|
20
|
Csillik B, Schwaller B, Mihaly A, Henzi T, Losonczi E, Knyihar-Csillik E. Upregulated expression of oncomodulin, the beta isoform of parvalbumin, in perikarya and axons in the diencephalon of parvalbumin knockout mice. Neuroscience 2009; 165:749-57. [PMID: 19874871 DOI: 10.1016/j.neuroscience.2009.10.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 10/21/2009] [Accepted: 10/22/2009] [Indexed: 01/28/2023]
Abstract
The calcium-binding proteins parvalbumin, calbindin D-28k, calretinin and calcineurin are present in subsets of GABAergic gigantic calyciform presynaptic terminals of the reticular thalamic nucleus (RTN). Previously it was hypothesized that GABA and calcium-binding proteins including parvalbumin are not only colocalized in the same neuron subpopulation, but that GABA synthesis and parvalbumin expression could be also genetically regulated by a common mechanism. Moreover, parvalbumin expression levels could influence GABA synthesis. For this, we analyzed GABA immunoreactivity in RTN gigantic calyciform presynaptic terminals of parvalbumin-deficient (PV-/-) mice. With respect to GABA immunoreactivity we found no differences compared to wild-type animals. However, using a polyclonal parvalbumin antibody raised against full-length rat muscle parvalbumin on brain sections of PV-/- mice, we observed paradoxical parvalbumin immunoreactivity in partly varicose axons in the diencephalon, mainly in the lamina medullaris externa surrounding the thalamus. A detailed immunohistochemical, biochemical and molecular biological analysis revealed this immunoreactivity to be the result of an upregulation of oncomodulin (OM), the mammalian beta isoform of parvalbumin in PV-/- mice. In addition, OM was present in a sparse subpopulation of neurons in the thalamus and in the dentate gyrus. OM expression has not been observed before in neurons of the mammalian brain; its expression was restricted to outer hair cells in the organ of Corti. Our results indicate that the absence of parvalbumin has no major effect on the GABA-synthesizing system in RTN presynaptic terminals excluding a direct effect of parvalbumin on this regulation. However, a likely homeostatic mechanism is induced resulting in the upregulation of OM in selected axons and neuronal perikarya. Our results warrant further detailed investigations on the putative role of OM in the brain.
Collapse
Affiliation(s)
- B Csillik
- Department of Anatomy, Albert Szent-Györgyi Medical School, University of Szeged, Hungary.
| | | | | | | | | | | |
Collapse
|
21
|
Entrainment of slow oscillations of auditory thalamic neurons by repetitive sound stimuli. J Neurosci 2009; 29:6013-21. [PMID: 19420268 DOI: 10.1523/jneurosci.5733-08.2009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Slow oscillations at frequencies <1 Hz manifest in many brain regions as discrete transitions between a depolarized up state and a hyperpolarized down state of the neuronal membrane potential. Although up and down states are known to differentially affect sensory-evoked responses, whether and how they are modulated by sensory stimuli are not well understood. In the present study, intracellular recording in anesthetized guinea pigs showed that membrane potentials of nonlemniscal auditory thalamic neurons exhibited spontaneous up/down transitions at random intervals in the range of 2-30 s, which could be entrained to a regular interval by repetitive sound stimuli. After termination of the entraining stimulation (ES), regular up/down transitions persisted for several cycles at the ES interval. Furthermore, the efficacy of weak sound stimuli in triggering the up-to-down transition was potentiated specifically at the ES interval for at least 10 min. Extracellular recordings in the auditory thalamus of unanesthetized guinea pigs also showed entrainment of slow oscillations by rhythmic sound stimuli during slow wave sleep. These results demonstrate a novel form of network plasticity, which could help to retain the information of stimulus interval on the order of seconds.
Collapse
|
22
|
van Albada SJ, Robinson PA. Mean-field modeling of the basal ganglia-thalamocortical system. I Firing rates in healthy and parkinsonian states. J Theor Biol 2008; 257:642-63. [PMID: 19168074 DOI: 10.1016/j.jtbi.2008.12.018] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 12/08/2008] [Accepted: 12/08/2008] [Indexed: 01/02/2023]
Abstract
Parkinsonism leads to various electrophysiological changes in the basal ganglia-thalamocortical system (BGTCS), often including elevated discharge rates of the subthalamic nucleus (STN) and the output nuclei, and reduced activity of the globus pallidus external (GPe) segment. These rate changes have been explained qualitatively in terms of the direct/indirect pathway model, involving projections of distinct striatal populations to the output nuclei and GPe. Although these populations partly overlap, evidence suggests dopamine depletion differentially affects cortico-striato-pallidal connection strengths to the two pallidal segments. Dopamine loss may also decrease the striatal signal-to-noise ratio, reducing both corticostriatal coupling and striatal firing thresholds. Additionally, nigrostriatal degeneration may cause secondary changes including weakened lateral inhibition in the GPe, and mesocortical dopamine loss may decrease intracortical excitation and especially inhibition. Here a mean-field model of the BGTCS is presented with structure and parameter estimates closely based on physiology and anatomy. Changes in model rates due to the possible effects of dopamine loss listed above are compared with experiment. Our results suggest that a stronger indirect pathway, possibly combined with a weakened direct pathway, is compatible with empirical evidence. However, altered corticostriatal connection strengths are probably not solely responsible for substantially increased STN activity often found. A lower STN firing threshold, weaker intracortical inhibition, and stronger striato-GPe inhibition help explain the relatively large increase in STN rate. Reduced GPe-GPe inhibition and a lower GPe firing threshold can account for the comparatively small decrease in GPe rate frequently observed. Changes in cortex, GPe, and STN help normalize the cortical rate, also in accord with experiments. The model integrates the basal ganglia into a unified framework along with an existing thalamocortical model that already accounts for a wide range of electrophysiological phenomena. A companion paper discusses the dynamics and oscillations of this combined system.
Collapse
Affiliation(s)
- S J van Albada
- School of Physics, The University of Sydney, New South Wales 2006, Australia.
| | | |
Collapse
|
23
|
Yu XJ, Xu XX, Chen X, He S, He J. Slow recovery from excitation of thalamic reticular nucleus neurons. J Neurophysiol 2008; 101:980-7. [PMID: 19073800 DOI: 10.1152/jn.91130.2008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Responses to repeated auditory stimuli were examined in 103 neurons in the auditory region of the thalamic reticular nucleus (TRN) and in 20 medial geniculate (MGB) neurons of anesthetized rats. A further six TRN neurons were recorded from awake rats. The TRN neurons showed strong responses to the first trial and weak responses to the subsequent trials of repeated auditory stimuli and electrical stimulation of the MGB and auditory cortex when the interstimulus interval (ISI) was short (<3 s). They responded to the second trial when the interstimulus interval was lengthened to >or=3 s. These responses contrasted to those of MGB neurons, which responded to repeated auditory stimuli of different ISIs. The TRN neurons showed a significant increase in the onset auditory response from 9.5 to 76.5 Hz when the ISI was increased from 200 ms to 10 s (P<0.001, ANOVA). The duration of the auditory-evoked oscillation was longer when the ISI was lengthened. The slow recovery of the TRN neurons after oscillation of burst firings to fast repetitive stimulus was a reflection of a different role than that of the thalamocortical relay neurons. Supposedly the TRN is involved in the process of attention such as attention shift; the slow recovery of TRN neurons probably limits the frequent change of the attention in a fast rhythm.
Collapse
Affiliation(s)
- Xiong-Jie Yu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | |
Collapse
|
24
|
Russo E, Citraro R, De Fazio S, Torcasio G, De Sarro G, Di Paola ED. Effects of ethanol on the development of genetically determined epilepsies in rats. Int J Dev Neurosci 2008; 26:739-44. [PMID: 18656528 DOI: 10.1016/j.ijdevneu.2008.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Accepted: 07/02/2008] [Indexed: 10/21/2022] Open
Abstract
In the present study, we provide evidences for a differential effect of perinatal alcohol exposure with a direct correlation to the genetic background on the development of seizures. Ethanol (EtOH) is a widely used psychoactive substance that exerts its action by affecting multiple targets in the central nervous system. EtOH is known to interact with almost all identified neurotransmitters although its effects on excitatory and inhibitory amino acid neurotransmissions are considered to be particularly important in the mediation of its behavioural effects. Prenatal exposure to alcohol is associated with a wide variety of offspring's abnormalities which lead to the so called foetal alcohol syndrome (FAS), which is also related to a higher susceptibility to convulsions. In our study, a rat strain of convulsive epilepsy, the GEPRs rats, displayed an increase of seizure susceptibility after foetal exposure to this teratogenic drug, while a non-convulsive rat strain of absence epilepsy, the WAG/Rij rat, did not fully develop its characteristic features. However, when all groups of rat where tested for pentyletetrazole-induced convulsion, animals perinatally treated with ethanol were less responsive in comparison to their respective controls. These results are in agreement with previous reports showing how the genetic background can directly influence the teratogenic effects of alcohol, and this can be strictly related to the variability in the observation of offspring anomalies in humans which has lead to a 5-category classification system for individuals exposed to alcohol in uterus.
Collapse
Affiliation(s)
- Emilio Russo
- Department of Experimental and Clinical Medicine, School of Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | | | | | | | | | | |
Collapse
|
25
|
Neckelmann D, Mykletun A, Dahl AA. Chronic insomnia as a risk factor for developing anxiety and depression. Sleep 2007; 30:873-80. [PMID: 17682658 PMCID: PMC1978360 DOI: 10.1093/sleep/30.7.873] [Citation(s) in RCA: 452] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
STUDY OBJECTIVE To study prospectively the relations of insomnia to the development of anxiety disorders and depression in a population-based sample. DESIGN Cohort study based on data from 2 general health surveys of the adult population. SETTING Two general health surveys in the adult population in Nord-Trøndelag County of Norway, HUNT-1 performed in 1984-6 and HUNT-2 in 1995-7 PARTICIPANTS Participants without significant anxiety and depression in HUNT-1 were categorized according to the presence and absence of insomnia in the 2 surveys (N=25,130). MEASUREMENTS AND RESULTS Anxiety disorders and depression in HUNT-2 were assessed by the Hospital Anxiety and Depression Scale and analyzed using multivariate logistic regression analysis adjusted for age, gender, education, comorbid depression/anxiety, and history of insomnia. Anxiety disorders in HUNT-2 were significantly associated with the group with insomnia in HUNT-1 only (OR 1.6; 95% CI, 1.1-2.3), the group with insomnia in HUNT-2 only (OR 3.4; 95% CI, 3.1-3.8), as well as with the group with insomnia in both surveys (OR 4.9; 95% CI, 3.8-6.4). Depression in HUNT-2 was significantly associated with the group with insomnia in HUNT-2 only (OR 1.8; 95% CI, 1.6-2.0), but not with the groups with insomnia in HUNT-1 only or with insomnia in both surveys. CONCLUSIONS Only a state-like association between insomnia and depression was found. In addition to being a state marker, insomnia may be a trait marker for individuals at risk for developing anxiety disorders. Results are consistent with insomnia being a risk factor for the development of anxiety disorders.
Collapse
Affiliation(s)
- Dag Neckelmann
- Department of Psychiatry, Clinic ofPsychosomatic Medicine, Haukeland University Hospital, Bergen, Norway.
| | | | | |
Collapse
|
26
|
Abstract
Ethosuximide, 2-ethyl-2-methylsuccinimide, has been used extensively for "petit mal" seizures and it is a valuable agent in studies of absence epilepsy. In the treatment of epilepsy, ethosuximide has a narrow therapeutic profile. It is the drug of choice in the monotherapy or combination therapy of children with generalized absence (petit mal) epilepsy. Commonly observed side effects of ethosuximide are dose dependent and involve the gastrointestinal tract and central nervous system. Ethosuximide has been associated with a wide variety of idiosyncratic reactions and with hematopoietic adverse effects. Typical absence seizures are generated as a result of complex interactions between the thalamus and the cerebral cortex. This thalamocortical circuitry is under the control of several specific inhibitory and excitatory systems arising from the forebrain and brainstem. Corticothalamic rhythms are believed to be involved in the generation of spike-and-wave discharges that are the characteristic electroencephalographic signs of absence seizures. The spontaneous pacemaker oscillatory activity of thalamocortical circuitry involves low threshold T-type Ca2+ currents in the thalamus, and ethosuximide is presumed to reduce these low threshold T-type Ca2+ currents in thalamic neurons. Ethosuximide also decreases the persistent Na+ and Ca2+ -activated K+ currents in thalamic and layer V cortical pyramidal neurons. In addition, there is evidence that in a genetic absence epilepsy rat model ethosuximide reduces cortical gamma-aminobutyric acid (GABA) levels. Also, elevated glutamate levels in the primary motor cortex of rats with absence epilepsy (but not in normal animals) are reduced by ethosuximide.
Collapse
Affiliation(s)
- M Zafer Gören
- Department of Pharmacology and Clinical Pharmacology, School of Medicine, Epilepsy Research Center, Marmara University, Haydarpaşa, Istanbul, Turkey.
| | | |
Collapse
|
27
|
Xu M, Liu CH, Xiong Y, He J. Corticofugal modulation of the auditory thalamic reticular nucleus of the guinea pig. J Physiol 2007; 585:15-28. [PMID: 17855753 PMCID: PMC2375454 DOI: 10.1113/jphysiol.2007.142240] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Neuronal responses to auditory stimuli and electrical stimulation were examined in 104 neurones in the auditory sector of thalamic reticular nucleus (TRN) and nine medial geniculate (MGB) neurones from anaesthetized guinea pigs. TRN neurones showed rhythmic spontaneous activities. TRN neurones changed firing pattern over time, from tonic to burst in a time interval of several seconds to tens of seconds. One-third of the TRN neurones (25/76) responded to the acoustic stimulus in a slow oscillation mode, either producing a spike burst at one time and responded with nothing another time, or producing a spike burst at one time and a single spike at the other. Thirty-two of 40 neurones received a corticofugal modulation effect. Nineteen of 32 neurones responded directly to electrical stimulation of the cortex with an oscillation of the same rhythm (7-14 Hz) as its auditory-evoked oscillation. Six neurones changed their firing pattern from burst to tonic when the auditory cortex was activated. As the TRN applied inhibition to the MGB, the oscillatory nature of inhibition would affect the fidelity of MGB relays. Thus, it was unlikely that the MGB was in relay mode when the TRN was in a slow oscillation mode. These results hint at a possible mechanism for the modulation of states of vigilance through the corticofugal pathway via the TRN.
Collapse
Affiliation(s)
- Min Xu
- Institute of Neuroscience, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Yueyang Road, Shanghai, China
| | | | | | | |
Collapse
|
28
|
Mayer J, Schuster HG, Claussen JC, Mölle M. Corticothalamic projections control synchronization in locally coupled bistable thalamic oscillators. PHYSICAL REVIEW LETTERS 2007; 99:068102. [PMID: 17930870 DOI: 10.1103/physrevlett.99.068102] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Indexed: 05/25/2023]
Abstract
Thalamic circuits are able to generate state-dependent oscillations of different frequencies and degrees of synchronization. However, little is known about how synchronous oscillations, such as spindle oscillations in the thalamus, are organized in the intact brain. Experimental findings suggest that the simultaneous occurrence of spindle oscillations over widespread territories of the thalamus is due to the corticothalamic projections, as the synchrony is lost in the decorticated thalamus. In this Letter we study the influence of corticothalamic projections on the synchrony in a thalamic network, and uncover the underlying control mechanism, leading to a control method which is applicable for several types of oscillations in the central nervous system.
Collapse
Affiliation(s)
- Jörg Mayer
- Institute for Theoretical Physics and Astrophysics, University of Kiel, 24098 Kiel, Germany
| | | | | | | |
Collapse
|
29
|
Kovács Z, Puskás L, Nyitrai G, Papp E, Császár I, Juhász G, Palkovits M. Suppression of spike-wave discharge activity and c-fos expression by 2-methyl-4-oxo-3H-quinazoline-3-acetyl piperidine (Q5) in vivo. Neurosci Lett 2007; 423:73-7. [PMID: 17662531 DOI: 10.1016/j.neulet.2007.06.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 05/18/2007] [Accepted: 06/01/2007] [Indexed: 11/23/2022]
Abstract
Antiepileptic and network inhibitory actions of Q5 (2-methyl-4-oxo-3H-quinazoline-3-acetyl piperidine) have recently been described in hippocampal slices. Here we present evidence on the in vivo antiabsence effect of Q5. All doses of Q5 tested (0.3 mg/kg, 0.9 mg/kg, 2.8 mg/kg) decreased the number, but not the duration and the frequency of absence spike-wave discharges (SWDs) in freely moving WAG/Rij rats. In vivo network inhibitory action of Q5 was monitored by following c-fos expression in different brain areas of Wistar rats. Significant depletion of c-fos expression was observed after single or repeated injections of Q5 (2.8 mg/kg and 2x2.8 mg/kg) in various brain areas, including hypothalamic paraventricular nucleus, medial amygdaloid nucleus, piriform cortex, somatosensory cortex, periventricular thalamic nucleus and periaqueductal central gray. Thus, our in vivo results demonstrate that in addition to the prevention of absence seizures, Q5 effectively suppresses neuronal activation in various stress- and pain-sensitive brain areas.
Collapse
Affiliation(s)
- Zsolt Kovács
- Department of Zoology, Berzsenyi Dániel College, Szombathely, Hungary
| | | | | | | | | | | | | |
Collapse
|
30
|
Langguth B, Kleinjung T, Marienhagen J, Binder H, Sand PG, Hajak G, Eichhammer P. Transcranial magnetic stimulation for the treatment of tinnitus: effects on cortical excitability. BMC Neurosci 2007; 8:45. [PMID: 17605764 PMCID: PMC1929114 DOI: 10.1186/1471-2202-8-45] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Accepted: 07/02/2007] [Indexed: 11/29/2022] Open
Abstract
Background Low frequency repetitive transcranial magnetic stimulation (rTMS) has been proposed as an innovative treatment for chronic tinnitus. The aim of the present study was to elucidate the underlying mechanism and to evaluate the relationship between clinical outcome and changes in cortical excitability. We investigated ten patients with chronic tinnitus who participated in a sham-controlled crossover treatment trial. Magnetic-resonance-imaging and positron-emission-tomography guided 1 Hz rTMS were performed over the auditory cortex on 5 consecutive days. Active and sham treatments were separated by one week. Parameters of cortical excitability (motor thresholds, intracortical inhibition, intracortical facilitation, cortical silent period) were measured serially before and after rTMS treatment by using single- and paired-pulse transcranial magnetic stimulation. Clinical improvement was assessed with a standardized tinnitus-questionnaire. Results We noted a significant interaction between treatment response and changes in motor cortex excitability during active rTMS. Specifically, clinical improvement was associated with an increase in intracortical inhibition, intracortical facilitation and a prolongation of the cortical silent period. These results indicate that intraindividual changes in cortical excitability may serve as a correlate of response to rTMS treatment. Conclusion The observed alterations of cortical excitability suggest that low frequency rTMS may evoke long-term-depression like effects resulting in an improvement of subcortical inhibitory function.
Collapse
Affiliation(s)
- Berthold Langguth
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Regensburg, Universitaetsstraße 84, 93053 Regensburg, Germany
| | - Tobias Kleinjung
- Department of Otorhinolaryngology and Audiology, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Joerg Marienhagen
- Department of Nuclear Medicine, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Harald Binder
- Department of Medical Biometry and Statistics, University of Freiburg, Stefan-Meier-Strasse 26, 79104 Freiburg, Germany
| | - Philipp G Sand
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Regensburg, Universitaetsstraße 84, 93053 Regensburg, Germany
| | - Göran Hajak
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Regensburg, Universitaetsstraße 84, 93053 Regensburg, Germany
| | - Peter Eichhammer
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Regensburg, Universitaetsstraße 84, 93053 Regensburg, Germany
| |
Collapse
|
31
|
Abstract
The absence epilepsies are characterized by recurrent episodes of loss of consciousness associated with generalized spike-and-wave discharges, with an abrupt onset and offset, in the thalamocortical system. In the absence of detailed neurophysiological studies in humans, many of the concepts regarding the pathophysiological basis of absence seizures are based on studies in animal models. Each of these models has its particular strengths and limitations, and the validity of findings from these models for the human condition cannot be assumed. Consequently, studies in different models have produced some conflicting findings and conclusions. A long-standing concept, based primarily from studies in vivo in cats and in vitro brain slices, is that these paroxysmal electrical events develop suddenly from sleep-related spindle oscillations. More specifically, it is proposed that the initial mechanisms that underlie absence-related spike-and-wave discharges are located in the thalamus, involving especially the thalamic reticular nucleus. By contrast, more recent studies in well-established, genetic models of absence epilepsy in rats demonstrate that spike-and-wave discharges originate in a cortical focus and develop from a wake-related natural corticothalamic sensorimotor rhythm. In this review we integrate recent findings showing that, in both the thalamus and the neocortex, genetically-determined, absence-related spike-and-wave discharges are the manifestation of hypersynchronized, cellular, rhythmic excitations and inhibitions that result from a combination of complex, intrinsic, synaptic mechanisms. Arguments are put forward supporting the hypothesis that layer VI corticothalamic neurons act as 'drivers' in the generation of spike-and-wave discharges in the somatosensory thalamocortical system that result in corticothalamic resonances particularly initially involving the thalamic reticular nucleus. However an important unresolved question is: what are the cellular and network mechanisms responsible for the switch from physiological, wake-related, natural oscillations into pathological spike-and-wave discharges? We speculate on possible answers to this, building particularly on recent findings from genetic models in rats.
Collapse
|
32
|
Eichhammer P, Kleinjung T, Landgrebe M, Hajak G, Langguth B. TMS for treatment of chronic tinnitus — neurobiological effects. PROGRESS IN BRAIN RESEARCH 2007; 166:369-75. [DOI: 10.1016/s0079-6123(07)66035-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
33
|
Citraro R, Russo E, Gratteri S, Di Paola ED, Ibbadu GF, Curinga C, Gitto R, Chimirri A, Donato G, De Sarro G. Effects of non-competitive AMPA receptor antagonists injected into some brain areas of WAG/Rij rats, an animal model of generalized absence epilepsy. Neuropharmacology 2006; 51:1058-67. [PMID: 16901515 DOI: 10.1016/j.neuropharm.2006.06.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Revised: 05/24/2006] [Accepted: 06/29/2006] [Indexed: 10/24/2022]
Abstract
CFM-2 [1-(4-aminophenyl)-3,5-dihydro-7,8-dimethoxy-4H-2,3-benzodiazepin-4-one] and THIQ-10c [N-acetyl-1-(4-chlorophenyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline], are two non-competitive 2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl) propionic acid (AMPA) receptor antagonists, which demonstrated to antagonize generalized tonic-clonic seizures in different animal models. We have evaluated the effects of such compounds in a genetic animal model of absence epilepsy, the WAG/Rij rat. Animals were focally microinjected into specific brain areas of the cortico-thalamic circuit in order to evaluate the effects of these compounds on the number and duration of epileptic spike-wave discharges (SWDs) and better characterize the role of AMPA neurotransmission in this animal model. The focal microinjection of the two AMPA antagonists into some thalamic nuclei (ventralis posteromedialis (VPM), reticularis (NRT), ventralis posterolateralis (VPL) and the primary somatosensory forelimb region (S1FL)) was, generally, not able to significantly modify the occurrence of SWDs. Whereas, both compounds were able to reduce the number and duration of SWDs dose-dependently when microinjected into the peri-oral region of the primary somatosensory cortex (S1po). These findings suggest that AMPA receptor antagonists might play a role in absence epilepsies and that it might depend on the involvement of specific neuronal areas.
Collapse
Affiliation(s)
- Rita Citraro
- Section of Pharmacology, Department of Experimental and Clinical Medicine, Faculty of Medicine and Surgery, University of Catanzaro, School of Medicine at Catanzaro, Policlinico Mater Domini, Via Tommaso Campanella, 115, 88100 Catanzaro, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Butler AB, Cotterill RMJ. Mammalian and avian neuroanatomy and the question of consciousness in birds. THE BIOLOGICAL BULLETIN 2006; 211:106-27. [PMID: 17062871 DOI: 10.2307/4134586] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Some birds display behavior reminiscent of the sophisticated cognition and higher levels of consciousness usually associated with mammals, including the ability to fashion tools and to learn vocal sequences. It is thus important to ask what neuroanatomical attributes these taxonomic classes have in common and whether there are nevertheless significant differences. While the underlying brain structures of birds and mammals are remarkably similar in many respects, including high brain-body ratios and many aspects of brain circuitry, the architectural arrangements of neurons, particularly in the pallium, show marked dissimilarity. The neural substrate for complex cognitive functions that are associated with higher-level consciousness in mammals and birds alike may thus be based on patterns of circuitry rather than on local architectural constraints. In contrast, the corresponding circuits in reptiles are substantially less elaborated, with some components actually lacking, and in amphibian brains, the major thalamopallial circuits involving sensory relay nuclei are conspicuously absent. On the basis of these criteria, the potential for higher-level consciousness in these taxa appears to be lower than in birds and mammals.
Collapse
Affiliation(s)
- Ann B Butler
- The Krasnow Institute for Advanced Study and Department of Psychology, George Mason University, Fairfax, Virginia 22030, USA.
| | | |
Collapse
|
35
|
Monconduit L, Lopez-Avila A, Molat JL, Chalus M, Villanueva L. Corticofugal output from the primary somatosensory cortex selectively modulates innocuous and noxious inputs in the rat spinothalamic system. J Neurosci 2006; 26:8441-50. [PMID: 16914669 PMCID: PMC6674349 DOI: 10.1523/jneurosci.1293-06.2006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Revised: 06/21/2006] [Accepted: 07/01/2006] [Indexed: 11/21/2022] Open
Abstract
Sensory maps for pain can be modified by deafferentation or injury, and such plasticity has been attributed mainly to changes in the convergence of projections in "bottom-up" mechanisms. We addressed the possible contribution of "top-down" mechanisms by investigating the functional significance of corticofugal influences from the primary somatosensory cortex (S1) to the ventroposterolateral thalamic nucleus (VPL). The strong convergence of spinal and lemniscal afferents to the VPL and the close correspondence between afferents and efferents within the VPL-S1 network suggest the existence of functionally related thalamocortical circuits that are implicated in the detection of innocuous and noxious inputs. Functional characterization of single nociceptive, wide dynamic range, and non-nociceptive VPL neurons and labeling the axons and terminal fields with the juxtacellular technique showed that all three types of cells project to a restricted area, within S1. The convergence of the terminal trees of axons from VPL neurons activated by innocuous, noxious, or both inputs suggests that their inputs are not segregated into anatomically distinct regions. Microinjections within S1 were performed for pharmacological manipulation of corticofugal modulation. Glutamatergic activation of corticofugal output enhanced noxious-evoked responses and affected in a biphasic way tactile-evoked responses of VPL cells. GABA(A)-mediated depression of corticofugal output concomitantly depressed noxious and enhanced innocuous-evoked responses of VPL neurons. Microinjections of a GABA(A) antagonist on corticofugal cells enhanced noxious-evoked responses of VPL cells. Our findings demonstrate that corticofugal influences from S1 contribute to selectively modulate somatosensory submodalities at the thalamic level.
Collapse
|
36
|
Citraro R, Russo E, Di Paola ED, Ibbadu GF, Gratteri S, Marra R, De Sarro G. Effects of some neurosteroids injected into some brain areas of WAG/Rij rats, an animal model of generalized absence epilepsy. Neuropharmacology 2006; 50:1059-71. [PMID: 16631210 DOI: 10.1016/j.neuropharm.2006.02.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 01/30/2006] [Accepted: 02/20/2006] [Indexed: 10/24/2022]
Abstract
Neurosteroids are synthesized in the brain and have been demonstrated to modulate various cerebral functions. Allopregnanolone (3alpha-hydroxy-5alpha-pregnan-20-one), a naturally occurring neurosteroid, and ganaxolone (3alpha-hydroxy-3beta-methyl-5alpha-pregnan-20-one), a synthetic derivative, are two neurosteroids acting as positive allosteric modulators of the GABA(A) receptor complex acting on a specific steroid recognition site. Both agents antagonize generalized tonic-clonic seizures in various animal models of epilepsy. Pregnenolone sulphate (3beta-hydroxy-5alpha-pregnen-20-one 3-sulphate; PS) is a negative allosteric modulator of GABA(A) receptors and a positive modulator of the NMDA receptors. We have evaluated the effects of such compounds in a genetic animal model of absence epilepsy, the WAG/Rij rat. Animals were chronically implanted with five frontoparietal cortical electrodes for electrocorticogram (EEG) recordings and bilateral guide cannulae into specific brain areas of the cortico-thalamic circuit in order to evaluate the effects of these compounds on the number and duration of epileptic spike-wave discharges (SWDs). The focal and bilateral microinjection of the two GABA(A) positive modulators into some thalamic nuclei (nucleus ventralis posteromedialis, nucleus reticularis thalami, nucleus ventralis posterolateralis was usually able to significantly worsen the occurrence of SWDs in WAG/Rij rats. Whereas both compounds were able to reduce the number and duration of SWDs when microinjected into the peri-oral region of the primary somatosensory cortex. The effects of PS were more complex depending on both the dose and the site of administration, generally, at low doses in thalamic nuclei and cortex, PS induced an increase of absence activity and a reduction at higher doses. These findings suggest that neurosteroids might play a role in absence epilepsies and that it might depend on the involvement of specific neuronal areas.
Collapse
Affiliation(s)
- Rita Citraro
- Section of Pharmacology, Department of Experimental and Clinical Medicine, Faculty of Medicine and Surgery, University of Catanzaro, Policlinico Mater Domini, Via T. Campanella, 115, 88100 Catanzaro, Italy
| | | | | | | | | | | | | |
Collapse
|
37
|
Csillik B, Mihaly A, Krisztin-Peva B, Fenyo R, Knyihar-Csillik E. Calcium-binding proteins in GABAergic calyciform synapses of the reticular nucleus. Neuroreport 2006; 17:575-8. [PMID: 16603914 DOI: 10.1097/00001756-200604240-00004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Large calyciform synapses in the rat reticular thalamic nucleus are characterized by the presence of gamma-aminobutyric acid. Presynaptic terminals are also loaded with calcium-binding proteins such as parvalbumin, calbindin, calretinin and calcineurin. The number of calyciform terminals containing gamma-aminobutyric acid and parvalbumin is 2005 in young adult rats; calbindin is present in 1,500, calretinin in 850 and calcineurin in 560 calyciform terminals. Developmental studies revealed that gamma-aminobutyric acid and calcium-binding proteins are virtually absent from calyciform terminals at birth but their occurrence increased considerably during postnatal life, suggesting increasing regulation of presynaptic calcium signaling during postnatal life. It is concluded that synaptic activity of large calyciform gamma-aminobutyric acid-containing synapses of the reticular thalamic nucleus is mediated, regulated or accompanied by calcium ions.
Collapse
Affiliation(s)
- Bertalan Csillik
- Department of Anatomy, Albert Szent-Gyorgyi Medical and Pharmaceutical Center, University of Szeged, Hungary.
| | | | | | | | | |
Collapse
|
38
|
Kovács Z, Kékesi KA, Szilágyi N, Abrahám I, Székács D, Király N, Papp E, Császár I, Szego E, Barabás K, Péterfy H, Erdei A, Bártfai T, Juhász G. Facilitation of spike-wave discharge activity by lipopolysaccharides in Wistar Albino Glaxo/Rijswijk rats. Neuroscience 2006; 140:731-42. [PMID: 16616432 DOI: 10.1016/j.neuroscience.2006.02.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Revised: 02/08/2006] [Accepted: 02/10/2006] [Indexed: 01/04/2023]
Abstract
In normal rats the proinflammatory cytokines like interleukin-1beta, interleukin-6, which are induced by bacterial lipopolysaccharides, are able to control thalamo-cortical excitability by exerting strong effects on physiological synchronization such as sleep and on pathological synchronization like that in epileptic discharges. To investigate whether proinflammatory cytokines or lipopolysaccharides could modulate absence seizures resulting from a very different generator mechanism than the already investigated bicuculline-, kindling- and kainate-induced seizures, we used a genetically epileptic Wistar Albino Glaxo/Rijswijk rat strain, which is spontaneously generating high voltage spike-wave discharges. Wistar Albino Glaxo/Rijswijk rats responded with an increase of the number of spike-wave discharges to lipopolysaccharide injection (from 10 microg/kg to 350 microg/kg). Repetitive administration of 350 microg/kg lipopolysaccharides daily for 5 days increased the number of spike-wave discharges on the first, second and third days but the number of spike-wave discharges returned to the control value on day 5, at the 5th injection of lipopolysaccharides, showing a tolerance to lipopolysaccharides. The lipopolysaccharide-induced increase in spike-wave discharges was not directly correlated with the elevation of the core body temperature, as it is in febrile seizures, although lipopolysaccharide induced prostaglandin and is clearly pyrogenic at the doses used. Indomethacin, the prostaglandin synthesis inhibitor, efficiently blocked lipopolysaccharide-induced enhancement of spike-wave discharge genesis suggesting that the spike-wave discharge facilitating effect of lipopolysaccharides involves induction of cyclooxygenase 2 and subsequent synthesis and actions of prostaglandin E2. Low dose (40 mg/kg, i.p.) of competitive N-methyl-d-aspartate receptor antagonist 2-amino-5-phosphonopentanoic acid, and low dose of lipopolysaccharide (20 microg/kg) showed a synergistic interaction to increase the number of spike-wave discharges, whereas at supramaximal doses of lipopolysaccharide and the N-methyl-D-aspartate antagonist no synergy was present. The data reveal a functional connection between absence epileptic activity and lipopolysaccharide induction of prostaglandin synthesis and prostaglandin action and suggest some common cellular targets in epilepsy and lipopolysaccharide-induced inflammation.
Collapse
Affiliation(s)
- Z Kovács
- Department of Zoology, Berzsenyi Dániel College, Károlyi Gáspár tér 4, Szombathely, 9700 Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Terzioğlu B, Aypak C, Onat FY, Küçükibrahimoğlu E, Ozkaynakçi AE, Gören MZ. The Effects of Ethosuximide on Amino Acids in Genetic Absence Epilepsy Rat Model. J Pharmacol Sci 2006; 100:227-33. [PMID: 16538026 DOI: 10.1254/jphs.fp0050691] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Genetic absence epilepsy rats from Strasbourg (GAERS), a selectively inbred strain of Wistar rats, has been validated as an experimental model for human absence epilepsy. In this model, systemic administration of ethosuximide (ETX) was shown to reduce the spike and wave discharges (SWD). In this study, gamma-aminobutyric acid (GABA) and L-glutamic acid levels in response to ETX injections (i.p., 100 mg/kg) were measured in the microdialysis samples collected from the ventrolateral thalamus (VLT) and the primary motor cortex (M1) area of Wistar rats and GAERS by using HPLC with fluorescent detection. Throughout the microdialysis procedure, continuous EEG recording was performed where ETX was shown to suppress the SWD activity. We demonstrated increased basal GABA levels in the M1 and VLT of GAERS, and ETX treatment did not produce any effect on higher GABA levels in the VLT, but suppressed the increased GABA levels significantly in the M1 of GAERS. All these findings denote the importance of corticothalamic circuitry and the role of increased GABA tonus in primary motor cortex and thalamus of GAERS. The primary motor cortex also seems to be involved in the SWD activity and ETX exerts, at least partially, its neurotransmitter effects through it.
Collapse
Affiliation(s)
- Berna Terzioğlu
- Department of Pharmacology and Clinical Pharmacology, Marmara University School of Medicine, 81326 Haydarpaşa, Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|
40
|
LXIXth Annual Meeting of the Hungarian Physiological Society. ACTA PHYSIOLOGICA HUNGARICA 2005; 92:237-324. [PMID: 25996271 DOI: 10.1556/aphysiol.92.2005.3-4.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
|
41
|
Csillik B, Mihály A, Krisztin-Péva B, Chadaide Z, Samsam M, Knyihár-Csillik E, Fenyo R. GABAergic parvalbumin-immunoreactive large calyciform presynaptic complexes in the reticular nucleus of the rat thalamus. J Chem Neuroanat 2005; 30:17-26. [PMID: 15913953 DOI: 10.1016/j.jchemneu.2005.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Revised: 03/03/2005] [Accepted: 03/25/2005] [Indexed: 11/17/2022]
Abstract
In the reticular thalamic nucleus of the rat, nearly all neurons are parvalbumin-immunoreactive. We found that in addition, though superficially similar to large parvalbumin-immunoreactive neurons, also numerous peculiar parvalbumin-immunoreactive complexes are present in the reticular thalamic nucleus which are not identical with parvalbumin-immunoreactive perikarya, as shown by nuclear variation curves. Light and electron microscopic immunocytochemical studies revealed that these parvalbumin-immunoreactive complexes are brought about by parvalbumin-immunoreactive calyciform terminals which establish synapses with large, parvalbumin-immunonegative dendritic profiles. Transection of thalamo-reticular connections did not cause any alteration of calyciform terminals in the reticular thalamic nucleus. Nuclear counterstaining revealed that parvalbumin-immunoreactive calyciform terminals originated from local parvalbumin-immunoreactive interneuronal perikarya, which, depending of the length of the "neck" protruding from the perikaryon, establish somato-dendritic, axo-dendritic or dendro-dendritic synapses. Light and electron microscopic immunocytochemical investigations prove that the parvalbumin-immunoreactive calyciform complexes contain also GABA, that are likely to be inhibitory. In accordance with literature data, our results suggest that parvalbumin-immunoreactive GABAergic calyciform terminals in the reticular thalamic nucleus may be instrumental in intrinsic cell-to-cell communications and, as such, may be involved in synchronisation of thalamo-cortical oscillations, in the production of sleep spindles and in attentional processes.
Collapse
Affiliation(s)
- Bertalan Csillik
- Department of Anatomy, Albert Szent-Györgyi Medical and Pharmaceutical Center, University of Szeged, 40 Kossuth Lajos sgt, H-6701 Szeged, Hungary.
| | | | | | | | | | | | | |
Collapse
|
42
|
Liske B, Schwarz J, Stevens A. Neural pattern dynamics in an oscillator model of the thalamo-reticular system. ACTA ACUST UNITED AC 2005; 99:66-71. [PMID: 16087325 DOI: 10.1016/j.jphysparis.2005.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One of development issues for information processing with synchronous oscillations in the brain is how new information is coded and how a comparison with already existing information is performed. In the present work we study a simple neural network model of the thalamo-reticular system based on the Wilson-Cowan model of neuronal oscillatory behavior. Our results show that both cortical control over the thalamus and external sensory input are essential in coordinating and generating spatio-temporal patterns of synchronous activity. A main finding of the numerical simulations is that the network connectivity and the intrinsic oscillatory properties of the neurons result in distinct collective behaviors within the network. By varying the connectivity schemes comparable with lesionated or damaged brain regions our results are in good agreement with in vivo experimental results. Suppressing the sensory input results in temporal oscillatory activity in the beta and gamma range and a strong spatial dependence of the network activity.
Collapse
Affiliation(s)
- Benjamin Liske
- Universitätsklinik für Psychiatrie und Psychotherapie, Osianderstr. 24, D-72076 Tübingen, Germany.
| | | | | |
Collapse
|
43
|
Yasuno F, Suhara T, Okubo Y, Ichimiya T, Takano A, Sudo Y, Inoue M. Abnormal effective connectivity of dopamine D2 receptor binding in schizophrenia. Psychiatry Res 2005; 138:197-207. [PMID: 15854788 DOI: 10.1016/j.pscychresns.2004.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2003] [Accepted: 04/07/2004] [Indexed: 11/23/2022]
Abstract
Receptor binding has been examined region by region in both in vitro and in vivo studies, but less attention has been paid to the connectivity of regional receptor binding despite the fact that neurophysiological studies have indicated an extensive inter-regional connectivity. In this study, we investigated the connectivity of regional dopamine D2 receptor binding in positron emission tomography data from 10 drug-naive patients with schizophrenia and 19 healthy controls. We applied a structural equation method to regional receptor binding. The results indicated that the network models of the patients and normal subjects were significantly different. As to the individual path coefficients, (a) connectivity between cortical regions was different between groups; (b) connectivity from the prefrontal cortex, parietal cortex, and thalamus to the anterior cingulate differed from that in controls; and (c) connectivity from the prefrontal cortex to the anterior cingulate and thalamus via the hippocampus was observed in normal subjects but not in patients. These results suggest that a systems-level change reflected in the connectivity of D2 receptor binding is present in schizophrenia.
Collapse
Affiliation(s)
- Fumihiko Yasuno
- Brain Imaging Project, National Institute of Radiological Sciences, Inage-ku, Chiba 263-8555, Japan
| | | | | | | | | | | | | |
Collapse
|
44
|
Yu YQ, Xiong Y, Chan YS, He J. Corticofugal gating of auditory information in the thalamus: an in vivo intracellular recording study. J Neurosci 2004; 24:3060-9. [PMID: 15044545 PMCID: PMC6729842 DOI: 10.1523/jneurosci.4897-03.2004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the present study, we investigated the auditory responses of the medial geniculate (MGB) neurons, through in vivo intracellular recordings of anesthetized guinea pigs, while the auditory cortex was electrically activated. Of the 63 neurons that received corticofugal modulation of the membrane potential, 30 received potentiation and 33 received hyperpolarization. The corticofugal potentiation of the membrane potential (amplitude, mean +/- SD, 8.6 +/- 5.5 mV; duration, 125.5 +/- 75.4 msec) facilitated the auditory responses and spontaneous firing of the MGB neurons. The hyperpolarization of -11.3 +/- 4.9 mV in amplitude and 210.0 +/- 210.1 msec in duration suppressed the auditory responses and spontaneous firing of the MGB neurons. Four of the five neurons that were histologically confirmed to be located in the lemniscal MGB received corticofugal facilitatory modulation, and all of the four neurons that were confirmed to be located in the non-lemniscal MGB received corticofugal inhibitory modulation. The present intracellular recording provides novel results on how the corticofugal projection gates the sensory information in the thalamus: via the spatially selective depolarization of lemniscal MGB neurons and hyperpolarization of non-lemniscal MGB neurons. It is speculated that the systematic selectivity of facilitation and inhibition over the lemniscal and non-lemniscal MGB is related to the attention shift within the auditory modality and across the sensory modalities.
Collapse
Affiliation(s)
- Yan-Qin Yu
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | | | | | | |
Collapse
|
45
|
Manning JPA, Richards DA, Leresche N, Crunelli V, Bowery NG. Cortical-area specific block of genetically determined absence seizures by ethosuximide. Neuroscience 2004; 123:5-9. [PMID: 14667436 DOI: 10.1016/j.neuroscience.2003.09.026] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Absence epilepsy is characterised by a paroxysmal loss of consciousness, of abrupt onset and termination, and is associated with a bilateral synchronous spike and wave discharge (SWD) on the electroencephalogram. Absence seizures involve an interplay between thalamic and cortical structures, although most research has so far focussed on sensory thalamic nuclei and the reticular thalamic nucleus (RTN). Thus, microinfusion of ethosuximide (ETX), a first choice anti-absence drug, into either the ventrobasal thalamus or RTN of the genetic absence epilepsy rat from Strasbourg (GAERS), a validated rat model of absence epilepsy, does not produce immediate cessation of seizure activity, as is seen following systemic administration. As recent evidence indicates a seizure initiation site within the peri-oral region of the primary somatosensory cortex (S1po), we have now applied ETX into S1po as well as the somatosensory cortex forelimb region (S1FL) and the motor cortex (M1) of freely moving GAERS. Microinfusion of 10 or 20 nmol/side of ETX into S1po produced an immediate cessation of seizure activity. A less marked response was produced when even a higher dose (200 nmol/side) was infused into S1FL. No reduction of SWD was seen when ETX was infused into M1. Microinfusion of CGP 36742 (5 nmol/side), a GABA(B) antagonist, produced immediate cessation of seizure activity in both S1po and M1 and a delayed effect in S1FL. These data suggest that the ability of ETX to abolish genetically determined absence seizures is cortical-area specific and support the involvement of S1po in the initiation of SWDs.
Collapse
Affiliation(s)
- J P A Manning
- Department of Pharmacology, The Medical School, University of Birmingham, B15 2TT, Birmingham, UK.
| | | | | | | | | |
Collapse
|
46
|
Steriade M, Amzica F, Timofeev I. [Cellular basis of transition between sleep and electrographic seizures]. Med Sci (Paris) 2003; 19:999-1002. [PMID: 14613014 DOI: 10.1051/medsci/20031910999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Epileptic seizures mainly develop during slow-wave sleep. Our experiments, using multi-site, extra- and intracellular recordings, show a transformation without discontinuity from sleep patterns to seizures. The cerebral cortex is the minimal substrate of paroxysms with spike-wave complexes at ~3 Hz. Simultaneously, thalamocortical neurons are steadily inhibited and cannot relay signals from the outside world to cortex. This may explain the unconsciousness during certain types of epilepsy.
Collapse
Affiliation(s)
- Mircea Steriade
- Laboratoire de neurophysiologie, Département d'anatomie et physiologie, Faculté de médecine, Université Laval, Québec, G1K 7P4 Canada.
| | | | | |
Collapse
|
47
|
Abstract
In the present study, we investigated the oscillatory behavior of the auditory thalamic neurons through in vivo intracellular and extracellular recordings in anesthetized guinea pigs. Repeated acoustic stimulus and cortical electrical stimulation were applied to examine their modulatory effects on the thalamic oscillation. The time course of the spike frequency over each trial was obtained by summing all spikes in the onset period and/or the last time period of 100 or 200 msec in the raster display. Spectral analysis was made on the time course of the spike frequency. A slow-frequency oscillation ranging from 0.03 to 0.25 Hz (mean +/- SD, 0.11 +/- 0.05 Hz) was found in the medial geniculate body (MGB) together with a second rhythm of 5-10 Hz. The oscillation neurons had a mean auditory response latency of 17.3 +/- 0.3 msec, which was significantly longer than that of the non-oscillation neurons in lemniscal MGB (9.0 +/- 1.5 msec, p < 0.001, ANOVA) and similar to the non-oscillation neurons in the non-lemniscal MGB (17.6 +/- 5.4 msec, p = 0.811). They were located in the non-lemniscal nuclei of the auditory thalamus. Cortical stimulation altered the thalamic oscillation, leading to termination of the oscillation or to acceleration of the rhythm of the oscillation (the average rhythm changed from 0.07 +/- 0.03 to 0.11 +/- 0.04 Hz, n = 8, p = 0.066, t test). Acoustic stimulation triggered a more regular rhythm in the oscillation neurons. The present results suggest that only the non-lemniscal auditory thalamus is involved in the slow thalamocortical oscillation. The auditory cortex may control the oscillation of the auditory thalamic neurons.
Collapse
|
48
|
He J. Slow oscillation in non-lemniscal auditory thalamus. J Neurosci 2003; 23:8281-90. [PMID: 12967990 PMCID: PMC6740700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
In the present study, we investigated the oscillatory behavior of the auditory thalamic neurons through in vivo intracellular and extracellular recordings in anesthetized guinea pigs. Repeated acoustic stimulus and cortical electrical stimulation were applied to examine their modulatory effects on the thalamic oscillation. The time course of the spike frequency over each trial was obtained by summing all spikes in the onset period and/or the last time period of 100 or 200 msec in the raster display. Spectral analysis was made on the time course of the spike frequency. A slow-frequency oscillation ranging from 0.03 to 0.25 Hz (mean +/- SD, 0.11 +/- 0.05 Hz) was found in the medial geniculate body (MGB) together with a second rhythm of 5-10 Hz. The oscillation neurons had a mean auditory response latency of 17.3 +/- 0.3 msec, which was significantly longer than that of the non-oscillation neurons in lemniscal MGB (9.0 +/- 1.5 msec, p < 0.001, ANOVA) and similar to the non-oscillation neurons in the non-lemniscal MGB (17.6 +/- 5.4 msec, p = 0.811). They were located in the non-lemniscal nuclei of the auditory thalamus. Cortical stimulation altered the thalamic oscillation, leading to termination of the oscillation or to acceleration of the rhythm of the oscillation (the average rhythm changed from 0.07 +/- 0.03 to 0.11 +/- 0.04 Hz, n = 8, p = 0.066, t test). Acoustic stimulation triggered a more regular rhythm in the oscillation neurons. The present results suggest that only the non-lemniscal auditory thalamus is involved in the slow thalamocortical oscillation. The auditory cortex may control the oscillation of the auditory thalamic neurons.
Collapse
Affiliation(s)
- Jufang He
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
49
|
Sarabi A, Hoffer BJ, Olson L, Morales M. Glial cell line neurotrophic factor-family receptor alpha-1 is present in central neurons with distinct phenotypes. Neuroscience 2003; 116:261-73. [PMID: 12535958 DOI: 10.1016/s0306-4522(02)00559-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Glial cell line neurotrophic factor(GDNF) is a potent survival factor for several types of neurons. GDNF binds with high affinity to the GDNF-family receptor alpha-1 (GFRalpha-1) which is expressed in different brain areas. In the present study, by using anatomical techniques, we document the phenotypic diversity among GFRalpha-1 expressing neurons in the CNS. GFRalpha-1 expression was found in GABA (gamma-aminobutyric acid)-containing neurons distributed in the cortex, reticular thalamic nucleus and septum. While high expression of GFRalpha-1 was often observed in cholinergic motoneurons in the spinal cord, very few septal cholinergic neurons were found to express GFRalpha-1. GFRalpha-1 transcripts were also detected in catecholaminergic neurons in the periventricular hypothalamic nucleus, dorsal raphe nucleus and locus ceruleus. Within the raphe nucleus, GFRalpha-1 expression was prominent in many serotonergic neurons and in few neurons containing the enzyme nitric oxide synthase. As GFRalpha-1 is activated by GDNF and GDNF-related neurotrophic factors, the widespread distribution of GFRalpha-1 in neurons with different phenotypes indicates that the neuronal activity of these neurons is likely to be affected by GDNF and GDNF-related neurotrophic factors. This would result in the regulation of diverse neuronal pathways in the adult brain. Published by Elsevier Science Ltd on behalf of IBRO.
Collapse
Affiliation(s)
- A Sarabi
- National Institute on Drug Abuse, Cellular Neurophysiology Section, 5500 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | | | | | |
Collapse
|
50
|
Slotnick SD, Moo LR, Kraut MA, Lesser RP, Hart J. Interactions between thalamic and cortical rhythms during semantic memory recall in human. Proc Natl Acad Sci U S A 2002; 99:6440-3. [PMID: 11972063 PMCID: PMC122967 DOI: 10.1073/pnas.092514899] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2001] [Indexed: 11/18/2022] Open
Abstract
Human scalp electroencephalographic rhythms, indicative of cortical population synchrony, have long been posited to reflect cognitive processing. Although numerous studies employing simultaneous thalamic and cortical electrode recording in nonhuman animals have explored the role of the thalamus in the modulation of cortical rhythms, direct evidence for thalamocortical modulation in human has not, to our knowledge, been obtained. We simultaneously recorded from thalamic and scalp electrodes in one human during performance of a cognitive task and found a spatially widespread, phase-locked, low-frequency rhythm (7-8 Hz) power decrease at thalamus and scalp during semantic memory recall. This low-frequency rhythm power decrease was followed by a spatially specific, phase-locked, fast-rhythm (21-34 Hz) power increase at thalamus and occipital scalp. Such a pattern of thalamocortical activity reflects a plausible neural mechanism underlying semantic memory recall that may underlie other cognitive processes as well.
Collapse
Affiliation(s)
- Scott D Slotnick
- Department of Psychology, Johns Hopkins University, Baltimore, MD 21218, USA.
| | | | | | | | | |
Collapse
|