1
|
Zhu Y, Webster MJ, Mendez Victoriano G, Middleton FA, Massa PT, Weickert CS. Molecular Evidence for Altered Angiogenesis in Neuroinflammation-Associated Schizophrenia and Bipolar Disorder Implicate an Abnormal Midbrain Blood-Brain Barrier. Schizophr Bull 2024:sbae184. [PMID: 39471484 DOI: 10.1093/schbul/sbae184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
BACKGROUND AND HYPOTHESIS Angiogenesis triggered by inflammation increases BBB permeability and facilitates macrophage transmigration. In the midbrain, we have discovered molecular alterations related to the blood-brain barrier (BBB), including endothelial cell changes associated with macrophage diapedesis, in neuroinflammatory schizophrenia and bipolar disorder, but changes in angiogenesis are yet to be reported. Hypothesis: We expected to discover molecular evidence of altered angiogenesis in the midbrain in individuals with schizophrenia and bipolar disorder compared to controls, with these changes more evident in "high" inflammation schizophrenia as compared to "low" inflammation. STUDY DESIGN In a case-control post-mortem cohort including schizophrenia (n = 35), bipolar disorder (n = 35), and controls (n = 33), we measured mRNA (RT-PCR) and protein (multiplex immunoassays) and performed immunohistochemistry to determine levels and anatomical distribution of angiogenesis-related molecules in the ventral midbrain. STUDY RESULTS We found large changes in angiogenesis factors in bipolar disorder high inflammatory subgroup (increased angiopoietin-2 and SERPINE1 mRNAs, but decreased angiopoietin-1, angiopoietin-2, and TEK receptor proteins). In schizophrenia high inflammatory subgroup, we found a robust increase in SERPINE1 mRNA and protein levels. However, we found no significant changes in angiopoietins in schizophrenia. We found that VEGFA mRNA level was increased in high inflammation schizophrenia, but only reached statistical significance compared to one low inflammatory subgroup. CONCLUSIONS Thus, angiogenesis signaling pathways appeared to be involved in the BBB alterations when inflammation is also present in the midbrain of schizophrenia and bipolar disorder, with increased levels of SERPINE1 in schizophrenia high inflammatory subgroup and with a putative suppression of angiopoietin signaling in bipolar disorder high inflammatory subgroup.
Collapse
Affiliation(s)
- Yunting Zhu
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY 13210, United States
| | - Maree J Webster
- Stanley Medical Research Institute, 9800 Medical Center Drive, Rockville, MD, United States
| | - Gerardo Mendez Victoriano
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW 2031, Australia
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney NSW 2052, Australia
| | - Frank A Middleton
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY 13210, United States
| | - Paul T Massa
- Department of Neurology, Upstate Medical University, Syracuse, NY 13210, United States
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, NY 13210, United States
| | - Cynthia Shannon Weickert
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY 13210, United States
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW 2031, Australia
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney NSW 2052, Australia
| |
Collapse
|
2
|
Esser N, Hogan MF, Templin AT, Akter R, Fountaine BS, Castillo JJ, El-Osta A, Manathunga L, Zhyvoloup A, Raleigh DP, Zraika S, Hull RL, Kahn SE. The islet tissue plasminogen activator/plasmin system is upregulated with human islet amyloid polypeptide aggregation and protects beta cells from aggregation-induced toxicity. Diabetologia 2024; 67:1897-1911. [PMID: 39245780 PMCID: PMC11410534 DOI: 10.1007/s00125-024-06161-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 09/10/2024]
Abstract
AIMS/HYPOTHESIS Apart from its fibrinolytic activity, the tissue plasminogen activator (tPA)/plasmin system has been reported to cleave the peptide amyloid beta, attenuating brain amyloid deposition in Alzheimer's disease. As aggregation of human islet amyloid polypeptide (hIAPP) is toxic to beta cells, we sought to determine whether activation of the fibrinolytic system can also reduce islet amyloid deposition and its cytotoxic effects, which are both observed in type 2 diabetes. METHODS The expression of Plat (encoding tPA) and plasmin activity were measured in isolated islets from amyloid-prone hIAPP transgenic mice or non-transgenic control islets expressing non-amyloidogenic mouse islet amyloid polypeptide cultured in the absence or presence of the amyloid inhibitor Congo Red. Plat expression was also determined in hIAPP-treated primary islet endothelial cells, bone marrow-derived macrophages (BMDM) and INS-1 cells, in order to determine the islet cell type(s) producing tPA in response to hIAPP aggregation. Cell-free thioflavin-T assays and MS were used to respectively monitor hIAPP aggregation kinetics and investigate plasmin cleavage of hIAPP. Cell viability was assessed in INS-1 beta cells treated with hIAPP with or without plasmin. Finally, to confirm the findings in human samples, PLAT expression was measured in freshly isolated islets from donors with and without type 2 diabetes. RESULTS In isolated islets from transgenic mice, islet Plat expression and plasmin activity increased significantly with the process of amyloid deposition (p≤0.01, n=5); these effects were not observed in islets from non-transgenic mice and were blocked by Congo Red (p≤0.01, n=4). In response to hIAPP exposure, Plat expression increased in BMDM and INS-1 cells vs vehicle-treated cells (p≤0.05, n=4), but not in islet endothelial cells. Plasmin reduced hIAPP fibril formation in a dose-dependent manner in a cell-free system, and restored hIAPP-induced loss of cell viability in INS-1 beta cells (p≤0.01, n=5). Plasmin cleaved monomeric hIAPP, inducing a rapid decrease in the abundance of full-length hIAPP and the appearance of hIAPP 1-11 and 12-37 fragments. hIAPP 12-37, which contains the critical amyloidogenic region, was not toxic to INS-1 cells. Finally, PLAT expression was significantly increased by 2.4-fold in islets from donors with type 2 diabetes (n=4) vs islets from donors without type 2 diabetes (n=7) (p≤0.05). CONCLUSIONS/INTERPRETATION The fibrinolytic system is upregulated in islets with hIAPP aggregation. Plasmin rapidly degrades hIAPP, limiting its aggregation into amyloid and thus protecting beta cells from hIAPP-induced toxicity. Thus, increasing islet plasmin activity might be a strategy to limit beta cell loss in type 2 diabetes.
Collapse
Affiliation(s)
- Nathalie Esser
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
- Laboratory of Immunometabolism and Nutrition, GIGA, University of Liège, CHU of Liège, Liège, Belgium
- Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, CHU of Liège, Liège, Belgium
| | - Meghan F Hogan
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Andrew T Templin
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
- Division of Endocrinology, Department of Medicine, Roudebush VA Medical Center and Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rehana Akter
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Joseph J Castillo
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Assam El-Osta
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Lakshan Manathunga
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
| | - Alexander Zhyvoloup
- Research Department of Structural and Molecular Biology, University College London, London, UK
| | - Daniel P Raleigh
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA.
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA.
- Research Department of Structural and Molecular Biology, University College London, London, UK.
| | - Sakeneh Zraika
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Rebecca L Hull
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Steven E Kahn
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA.
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
3
|
Uekawa K, Anfray A, Ahn SJ, Casey N, Seo J, Zhou P, Iadecola C, Park L. tPA supplementation preserves neurovascular and cognitive function in Tg2576 mice. Alzheimers Dement 2024; 20:4572-4582. [PMID: 38899570 PMCID: PMC11247712 DOI: 10.1002/alz.13878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 06/21/2024]
Abstract
INTRODUCTION Amyloid beta (Aβ) impairs the cerebral blood flow (CBF) increase induced by neural activity (functional hyperemia). Tissue plasminogen activator (tPA) is required for functional hyperemia, and in mouse models of Aβ accumulation tPA deficiency contributes to neurovascular and cognitive impairment. However, it remains unknown if tPA supplementation can rescue Aβ-induced neurovascular and cognitive dysfunction. METHODS Tg2576 mice and wild-type littermates received intranasal tPA (0.8 mg/kg/day) or vehicle 5 days a week starting at 11 to 12 months of age and were assessed 3 months later. RESULTS Treatment of Tg2576 mice with tPA restored resting CBF, prevented the attenuation in functional hyperemia, and improved nesting behavior. These effects were associated with reduced cerebral atrophy and cerebral amyloid angiopathy, but not parenchymal amyloid. DISCUSSION These findings highlight the key role of tPA deficiency in the neurovascular and cognitive dysfunction associated with amyloid pathology, and suggest potential therapeutic strategies involving tPA reconstitution. HIGHLIGHTS Amyloid beta (Aβ) induces neurovascular dysfunction and impairs the increase of cerebral blood flow induced by neural activity (functional hyperemia). Tissue plasminogen activator (tPA) deficiency contributes to the neurovascular and cognitive dysfunction caused by Aβ. In mice with florid amyloid pathology intranasal administration of tPA rescues the neurovascular and cognitive dysfunction and reduces brain atrophy and cerebral amyloid angiopathy. tPA deficiency plays a crucial role in neurovascular and cognitive dysfunction induced by Aβ and tPA reconstitution may be of therapeutic value.
Collapse
Affiliation(s)
- Ken Uekawa
- Feil Family Brain and Mind Research Institute, Weill Cornell MedicineNew YorkNew YorkUSA
| | - Antoine Anfray
- Feil Family Brain and Mind Research Institute, Weill Cornell MedicineNew YorkNew YorkUSA
| | - Sung Ji Ahn
- Feil Family Brain and Mind Research Institute, Weill Cornell MedicineNew YorkNew YorkUSA
| | - Nicole Casey
- Feil Family Brain and Mind Research Institute, Weill Cornell MedicineNew YorkNew YorkUSA
| | - James Seo
- Feil Family Brain and Mind Research Institute, Weill Cornell MedicineNew YorkNew YorkUSA
| | - Ping Zhou
- Feil Family Brain and Mind Research Institute, Weill Cornell MedicineNew YorkNew YorkUSA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell MedicineNew YorkNew YorkUSA
| | - Laibaik Park
- Feil Family Brain and Mind Research Institute, Weill Cornell MedicineNew YorkNew YorkUSA
| |
Collapse
|
4
|
Żukowska J, Moss SJ, Subramanian V, Acharya KR. Molecular basis of selective amyloid-β degrading enzymes in Alzheimer's disease. FEBS J 2024; 291:2999-3029. [PMID: 37622248 DOI: 10.1111/febs.16939] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/31/2023] [Accepted: 08/22/2023] [Indexed: 08/26/2023]
Abstract
The accumulation of the small 42-residue long peptide amyloid-β (Aβ) has been proposed as a major trigger for the development of Alzheimer's disease (AD). Within the brain, the concentration of Aβ peptide is tightly controlled through production and clearance mechanisms. Substantial experimental evidence now shows that reduced levels of Aβ clearance are present in individuals living with AD. This accumulation of Aβ can lead to the formation of large aggregated amyloid plaques-one of two detectable hallmarks of the disease. Aβ-degrading enzymes (ADEs) are major players in the clearance of Aβ. Stimulating ADE activity or expression, in order to compensate for the decreased clearance in the AD phenotype, provides a promising therapeutic target. It has been reported in mice that upregulation of ADEs can reduce the levels of Aβ peptide and amyloid plaques-in some cases, this led to improved cognitive function. Among several known ADEs, neprilysin (NEP), endothelin-converting enzyme-1 (ECE-1), insulin degrading enzyme (IDE) and angiotensin-1 converting enzyme (ACE) from the zinc metalloprotease family have been identified as important. These ADEs have the capacity to digest soluble Aβ which, in turn, cannot form the toxic oligomeric species. While they are known for their amyloid degradation, they exhibit complexity through promiscuous nature and a broad range of substrates that they can degrade. This review highlights current structural and functional understanding of these key ADEs, giving some insight into the molecular interactions that leads to the hydrolysis of peptide substrates, the crucial tasks performed by them and the potential for therapeutic use in the future.
Collapse
|
5
|
Chen B, Schneeberger M. Neuro-Adipokine Crosstalk in Alzheimer's Disease. Int J Mol Sci 2024; 25:5932. [PMID: 38892118 PMCID: PMC11173274 DOI: 10.3390/ijms25115932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
The connection between body weight alterations and Alzheimer's disease highlights the intricate relationship between the brain and adipose tissue in the context of neurological disorders. During midlife, weight gain increases the risk of cognitive decline and dementia, whereas in late life, weight gain becomes a protective factor. Despite their substantial impact on metabolism, the role of adipokines in the transition from healthy aging to neurological disorders remains largely unexplored. We aim to investigate how the adipose tissue milieu and the secreted adipokines are involved in the transition between biological and pathological aging, highlighting the bidirectional relationship between the brain and systemic metabolism. Understanding the function of these adipokines will allow us to identify biomarkers for early detection of Alzheimer's disease and uncover novel therapeutic options.
Collapse
Affiliation(s)
- Bandy Chen
- Laboratory of Neurovascular Control of Homeostasis, Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA;
| | - Marc Schneeberger
- Laboratory of Neurovascular Control of Homeostasis, Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA;
- Wu Tsai Institute for Mind and Brain, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
6
|
Fan J, Liu Q, Liu X, Gong M, Leong II, Tsang Y, Xu X, Lei S, Duan L, Zhang Y, Liao M, Zhuang L. The effect of epigenetic aging on neurodegenerative diseases: a Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1372518. [PMID: 38800486 PMCID: PMC11116635 DOI: 10.3389/fendo.2024.1372518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/19/2024] [Indexed: 05/29/2024] Open
Abstract
Background Aging has always been considered as a risk factor for neurodegenerative diseases, but there are individual differences and its mechanism is not yet clear. Epigenetics may unveil the relationship between aging and neurodegenerative diseases. Methods Our study employed a bidirectional two-sample Mendelian randomization (MR) design to assess the potential causal association between epigenetic aging and neurodegenerative diseases. We utilized publicly available summary datasets from several genome-wide association studies (GWAS). Our investigation focused on multiple measures of epigenetic age as potential exposures and outcomes, while the occurrence of neurodegenerative diseases served as potential exposures and outcomes. Sensitivity analyses confirmed the accuracy of the results. Results The results show a significant decrease in risk of Parkinson's disease with GrimAge (OR = 0.8862, 95% CI 0.7914-0.9924, p = 0.03638). Additionally, we identified that HannumAge was linked to an increased risk of Multiple Sclerosis (OR = 1.0707, 95% CI 1.0056-1.1401, p = 0.03295). Furthermore, we also found that estimated plasminogen activator inhibitor-1(PAI-1) levels demonstrated an increased risk for Alzheimer's disease (OR = 1.0001, 95% CI 1.0000-1.0002, p = 0.04425). Beyond that, we did not observe any causal associations between epigenetic age and neurodegenerative diseases risk. Conclusion The findings firstly provide evidence for causal association of epigenetic aging and neurodegenerative diseases. Exploring neurodegenerative diseases from an epigenetic perspective may contribute to diagnosis, prognosis, and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jingqi Fan
- Institute of Neurology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qing Liu
- Institute of Neurology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xin Liu
- Institute of Neurology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mengjiao Gong
- Institute of Neurology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ian I. Leong
- Institute of Neurology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - YauKeung Tsang
- Institute of Neurology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoyan Xu
- Institute of Neurology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Suying Lei
- Institute of Neurology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lining Duan
- Institute of Neurology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yifan Zhang
- Institute of Neurology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Muxi Liao
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lixing Zhuang
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
7
|
Ali NH, Al-Kuraishy HM, Al-Gareeb AI, Alnaaim SA, Alexiou A, Papadakis M, Saad HM, Batiha GES. The probable role of tissue plasminogen activator/neuroserpin axis in Alzheimer's disease: a new perspective. Acta Neurol Belg 2024; 124:377-388. [PMID: 37917293 PMCID: PMC10965687 DOI: 10.1007/s13760-023-02403-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023]
Abstract
Alzheimer's disease (AD) is the most common type of dementia associated with amyloid beta (Aβ) deposition. Dysfunction of the neuronal clearance pathway promotes the accumulation of Aβ. The plasminogen-activating system (PAS) is controlled by various enzymes like tissue plasminogen activators (tPA). Neuronal tPA enhances the conversion of plasminogen to plasmin, which cleaves Aβ; this function is controlled by many inhibitors of PAS, including a plasminogen-activating inhibitor (PAI-1) and neuroserpin. Therefore, the objective of the present narrative review was to explore the potential role of tPA/neuroserpin in the pathogenesis of AD. PAI-1 activity is increased in AD, which is involved in accumulating Aβ. Progressive increase of Aβ level during AD neuropathology is correlated with the over-production of PAI-1 with subsequent reduction of plasmin and tPA activities. Reducing plasmin and tPA activities promote Aβ by reducing Aβ clearance. Neuroserpin plays a critical role in the pathogenesis of AD as it regulates the expression and accumulation of Aβ. Higher expression of neuroserpin inhibits the neuroprotective tPA and the generation of plasmin with subsequent reduction in the clearance of Aβ. These observations raise conflicting evidence on whether neuroserpin is neuroprotective or involved in AD progression. Thus, neuroserpin over-expression with subsequent reduction of tPA may propagate AD neuropathology.
Collapse
Affiliation(s)
- Naif H Ali
- Department of Internal Medicine, Medical College, Najran University, Najran, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, PO Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, PO Box 14132, Baghdad, Iraq
| | - Saud A Alnaaim
- Clinical Neurosciences Department, College of Medicine, King Faisal University, Hofuf, Saudi Arabia
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
- AFNP Med, 1030, Vienna, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke, 42283, Wuppertal, Germany.
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, 51744, Matrouh, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| |
Collapse
|
8
|
Angelucci F, Veverova K, Katonová A, Vyhnalek M, Hort J. Plasminogen activator inhibitor-1 serum levels in frontotemporal lobar degeneration. J Cell Mol Med 2024; 28:e18013. [PMID: 38386354 PMCID: PMC10902304 DOI: 10.1111/jcmm.18013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/25/2023] [Accepted: 10/17/2023] [Indexed: 02/23/2024] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1) impedes brain plasmin synthesis. Reduced plasmin activity facilitates cumulation of amyloid beta (Aβ) in Alzheimer's disease (AD). Since plasmin also regulates the synaptic activity, it is possible that altered PAI-1 is present in other neurodegenerative disorders. We investigated whether PAI-1 and its counter-regulatory tissue plasminogen activator (tPA) are altered in serum of patients with dementia due to frontotemporal lobar degeneration (FTLD). Thirty five FTLD patients (21 in mild cognitive impairment stage (MCI) and 14 in dementia stage) and 10 cognitively healthy controls were recruited. Serum tPA and PAI-1 protein levels were measured by anova. Correlation between biochemical and demographic data were explored by measuring Pearson correlation coefficient. Serum PAI-1 levels were elevated in the FTLD dementia group as compared to FTLD MCI and controls. tPA serum levels and PAI-1/tPA ratio did not significantly differ among groups. There was a negative correlation between PAI-1 serum levels and disease severity measured by MMSE score. No correlations of tPA serum levels and PAI-1/tPA ratio with MMSE were found. Increased PAI-1 serum levels may serve as a marker of dementia in FTLD, suggesting that, besides Aβ pathway, the plasmin system may affect cognition through synaptic activity.
Collapse
Affiliation(s)
- Francesco Angelucci
- Memory ClinicDepartment of NeurologySecond Faculty of MedicineCharles University and Motol University HospitalPragueCzech Republic
- International Clinical Research CentreSt. Anne's University HospitalBrnoCzech Republic
| | - Katerina Veverova
- Memory ClinicDepartment of NeurologySecond Faculty of MedicineCharles University and Motol University HospitalPragueCzech Republic
| | - Alžbeta Katonová
- Memory ClinicDepartment of NeurologySecond Faculty of MedicineCharles University and Motol University HospitalPragueCzech Republic
| | - Martin Vyhnalek
- Memory ClinicDepartment of NeurologySecond Faculty of MedicineCharles University and Motol University HospitalPragueCzech Republic
| | - Jakub Hort
- Memory ClinicDepartment of NeurologySecond Faculty of MedicineCharles University and Motol University HospitalPragueCzech Republic
- International Clinical Research CentreSt. Anne's University HospitalBrnoCzech Republic
| |
Collapse
|
9
|
Rodriguez G, Eren M, Haupfear I, Viola KL, Cline EN, Miyata T, Klein WL, Vaughan DE, Dong H. Pharmacological inhibition of plasminogen activator inhibitor-1 prevents memory deficits and reduces neuropathology in APP/PS1 mice. Psychopharmacology (Berl) 2023; 240:2641-2655. [PMID: 37700086 DOI: 10.1007/s00213-023-06459-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023]
Abstract
RATIONALE Extracellular proteolytic activity plays an important role in memory formation and the preservation of cognitive function. Previous studies have shown increased levels of plasminogen activator inhibitor-1 (PAI-1) in the brain of mouse models of Alzheimer's disease (AD) and plasma of AD patients, associated with memory and cognitive decline; however, the exact function of PAI-1 in AD onset and progression is largely unclear. OBJECTIVE In this study, we evaluated a novel PAI-1 inhibitor, TM5A15, on its ability to prevent or reverse memory deficits and decrease Aβ levels and plaque deposition in APP/PS1 mice. METHODS We administered TM5A15 mixed in a chow diet to 3-month and 9-month-old APP/PS1 mice before and after neuropathological changes were distinguishable. We then evaluated the effects of TM5A15 on memory function and neuropathology at 9 months and 18 months of age. RESULTS In the younger mice, 6 months of TM5A15 treatment protected against recognition and short-term working memory impairment. TM5A15 also decreased oligomer levels and amyloid plaques, and increased mBDNF expression in APP/PS1 mice at 9 months of age. In aged mice, 9 months of TM5A15 treatment did not significantly improve memory function nor decrease amyloid plaques. However, TM5A15 treatment showed a trend in decreasing oligomer levels in APP/PS1 mice at 18 months of age. CONCLUSION Our results suggest that PAI-1 inhibition could improve memory function and reduce the accumulation of amyloid levels in APP/PS1 mice. Such effects are more prominent when TM5A15 is administered before advanced AD pathology and memory deficits occur.
Collapse
Affiliation(s)
- Guadalupe Rodriguez
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Ward 7-103, Chicago, IL, 60611, USA
| | - Mesut Eren
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Isabel Haupfear
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Ward 7-103, Chicago, IL, 60611, USA
| | - Kirsten L Viola
- Department of Neurobiology, Northwestern University, 2205 Tech Drive, Hogan 4-160, Evanston, IL, 60208, USA
| | - Erika N Cline
- Department of Neurobiology, Northwestern University, 2205 Tech Drive, Hogan 4-160, Evanston, IL, 60208, USA
| | - Toshio Miyata
- Department of Molecular Medicine and Therapy, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - William L Klein
- Department of Neurobiology, Northwestern University, 2205 Tech Drive, Hogan 4-160, Evanston, IL, 60208, USA
| | - Douglas E Vaughan
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Ward 7-103, Chicago, IL, 60611, USA.
| |
Collapse
|
10
|
Qu F, Brough SC, Michno W, Madubata CJ, Hartmann GG, Puno A, Drainas AP, Bhattacharya D, Tomasich E, Lee MC, Yang D, Kim J, Peiris-Pagès M, Simpson KL, Dive C, Preusser M, Toland A, Kong C, Das M, Winslow MM, Pasca AM, Sage J. Crosstalk between small-cell lung cancer cells and astrocytes mimics brain development to promote brain metastasis. Nat Cell Biol 2023; 25:1506-1519. [PMID: 37783795 PMCID: PMC11230587 DOI: 10.1038/s41556-023-01241-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/25/2023] [Indexed: 10/04/2023]
Abstract
Brain metastases represent an important clinical problem for patients with small-cell lung cancer (SCLC). However, the mechanisms underlying SCLC growth in the brain remain poorly understood. Here, using intracranial injections in mice and assembloids between SCLC aggregates and human cortical organoids in culture, we found that SCLC cells recruit reactive astrocytes to the tumour microenvironment. This crosstalk between SCLC cells and astrocytes drives the induction of gene expression programmes that are similar to those found during early brain development in neurons and astrocytes. Mechanistically, the brain development factor Reelin, secreted by SCLC cells, recruits astrocytes to brain metastases. These astrocytes in turn promote SCLC growth by secreting neuronal pro-survival factors such as SERPINE1. Thus, SCLC brain metastases grow by co-opting mechanisms involved in reciprocal neuron-astrocyte interactions during brain development. Targeting such developmental programmes activated in this cancer ecosystem may help prevent and treat brain metastases.
Collapse
Affiliation(s)
- Fangfei Qu
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Siqi C Brough
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Wojciech Michno
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Chioma J Madubata
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Griffin G Hartmann
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Alyssa Puno
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexandros P Drainas
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Debadrita Bhattacharya
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Erwin Tomasich
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Myung Chang Lee
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Dian Yang
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jun Kim
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Maria Peiris-Pagès
- Cancer Research UK Cancer Biomarker Centre, Manchester, UK
- Cancer Research UK Manchester Institute, Manchester, UK
| | - Kathryn L Simpson
- Cancer Research UK Cancer Biomarker Centre, Manchester, UK
- Cancer Research UK Manchester Institute, Manchester, UK
| | - Caroline Dive
- Cancer Research UK Cancer Biomarker Centre, Manchester, UK
- Cancer Research UK Manchester Institute, Manchester, UK
| | - Matthias Preusser
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Angus Toland
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Christina Kong
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Millie Das
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Monte M Winslow
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Anca M Pasca
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Julien Sage
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
11
|
Ullah R, Lee EJ. Advances in Amyloid-β Clearance in the Brain and Periphery: Implications for Neurodegenerative Diseases. Exp Neurobiol 2023; 32:216-246. [PMID: 37749925 PMCID: PMC10569141 DOI: 10.5607/en23014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/25/2023] [Accepted: 08/23/2023] [Indexed: 09/27/2023] Open
Abstract
This review examines the role of impaired amyloid-β clearance in the accumulation of amyloid-β in the brain and the periphery, which is closely associated with Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA). The molecular mechanism underlying amyloid-β accumulation is largely unknown, but recent evidence suggests that impaired amyloid-β clearance plays a critical role in its accumulation. The review provides an overview of recent research and proposes strategies for efficient amyloid-β clearance in both the brain and periphery. The clearance of amyloid-β can occur through enzymatic or non-enzymatic pathways in the brain, including neuronal and glial cells, blood-brain barrier, interstitial fluid bulk flow, perivascular drainage, and cerebrospinal fluid absorption-mediated pathways. In the periphery, various mechanisms, including peripheral organs, immunomodulation/immune cells, enzymes, amyloid-β-binding proteins, and amyloid-β-binding cells, are involved in amyloid-β clearance. Although recent findings have shed light on amyloid-β clearance in both regions, opportunities remain in areas where limited data is available. Therefore, future strategies that enhance amyloid-β clearance in the brain and/or periphery, either through central or peripheral clearance approaches or in combination, are highly encouraged. These strategies will provide new insight into the disease pathogenesis at the molecular level and explore new targets for inhibiting amyloid-β deposition, which is central to the pathogenesis of sporadic AD (amyloid-β in parenchyma) and CAA (amyloid-β in blood vessels).
Collapse
Affiliation(s)
- Rahat Ullah
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, School of Medicine, The Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Neurology, School of Medicine, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Eun Jeong Lee
- Department of Brain Science, Ajou University School of Medicine, Suwon 16499, Korea
| |
Collapse
|
12
|
Jiang CS, Rana T, Jin LW, Farr SA, Morley JE, Qin H, Liu G, Liu RM. Aging, Plasminogen Activator Inhibitor 1, Brain Cell Senescence, and Alzheimer's Disease. Aging Dis 2023; 14:515-528. [PMID: 37008063 PMCID: PMC10017160 DOI: 10.14336/ad.2022.1220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/20/2022] [Indexed: 04/04/2023] Open
Abstract
The etiology for late-onset Alzheimer's disease (LOAD), which accounts for >95% of Alzheimer's disease (AD) cases, is unknown. Emerging evidence suggests that cellular senescence contributes importantly to AD pathophysiology, although the mechanisms underlying brain cell senescence and by which senescent cells promote neuro-pathophysiology remain unclear. In this study we show for the first time that the expression of plasminogen activator inhibitor 1 (PAI-1), a serine protease inhibitor, is increased, in correlation with the increased expression of cell cycle repressors p53 and p21, in the hippocampus/cortex of senescence accelerated mouse prone 8 (SAMP8) mice and LOAD patients. Double immunostaining results show that astrocytes in the brain of LOAD patients and SAMP8 mice express higher levels of senescent markers and PAI-1, compared to astrocytes in the corresponding controls. In vitro studies further show that overexpression of PAI-1 alone, intracellularly or extracellularly, induced senescence, whereas inhibition or silencing PAI-1 attenuated H2O2-induced senescence, in primary mouse and human astrocytes. Treatment with the conditional medium (CM) from senescent astrocytes induced neuron apoptosis. Importantly, the PAI-1 deficient CM from senescent astrocytes that overexpress a secretion deficient PAI-1 (sdPAI-1) has significantly reduced effect on neurons, compared to the PAI-1 containing CM from senescent astrocytes overexpressing wild type PAI-1 (wtPAI-1), although sdPAI-1 and wtPAI-1 induce similar degree of astrocyte senescence. Together, our results suggest that increased PAI-1, intracellularly or extracellularly, may contribute to brain cell senescence in LOAD and that senescent astrocytes can induce neuron apoptosis through secreting pathologically active molecules, including PAI-1.
Collapse
Affiliation(s)
- Chun-Sun Jiang
- Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.
| | - Tapasi Rana
- Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.
| | - Lee-Way Jin
- Department of Pathology and Laboratory Medicine, University of California, Davis, CA, USA.
| | - Susan A Farr
- Division of Geriatric Medicine, School of Medicine, Saint Louis University, St. Louis, MO, USA.
- Research and Development, Veterans Affairs Medical Center, St. Louis Missouri, MO, USA.
| | - John E Morley
- Division of Geriatric Medicine, School of Medicine, Saint Louis University, St. Louis, MO, USA.
| | - Hongwei Qin
- Department of Cell, Developmental and Integrative Biology, UAB, Birmingham, AL, USA.
| | - Gang Liu
- Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.
| | - Rui-Ming Liu
- Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.
| |
Collapse
|
13
|
Varangot A, Lebatard S, Bellemain-Sagnard M, Lebouvier L, Hommet Y, Vivien D. Modulations of the neuronal trafficking of tissue-type plasminogen activator (tPA) influences glutamate release. Cell Death Dis 2023; 14:34. [PMID: 36650132 PMCID: PMC9845363 DOI: 10.1038/s41419-022-05543-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 01/19/2023]
Abstract
The discovery of the neuronal expression of the serine protease tissue-type plasminogen activator (tPA) has opened new avenues of research, with important implications in the physiopathology of the central nervous system. For example, the interaction of tPA with synaptic receptors (NMDAR, LRP1, Annexin II, and EGFR) and its role in the maturation of BDNF have been reported to influence synaptic plasticity and neuronal survival. However, the mechanisms regulating the neuronal trafficking of tPA are unknown. Here, using high-resolution live cell imaging and a panel of innovative genetic approaches, we first unmasked the dynamic characteristics of the dendritic and axonal trafficking of tPA-containing vesicles under different paradigms of neuronal activation or inhibition. We then report a constitutive exocytosis of tPA- and VAMP2-positive vesicles, dramatically increased in conditions of neuronal activation, with a pattern which was mainly dendritic and thus post-synaptic. We also observed that the synaptic release of tPA led to an increase of the exocytosis of VGlut1 positive vesicles containing glutamate. Finally, we described alterations of the trafficking and exocytosis of neuronal tPA in cultured cortical neurons prepared from tau-22 transgenic mice (a preclinical model of Alzheimer's disease (AD)). Altogether, these data provide new insights about the neuronal trafficking of tPA, contributing to a better knowledge of the tPA-dependent brain functions and dysfunctions.
Collapse
Affiliation(s)
- Alexandre Varangot
- Normandie Univ, UNICAEN, INSERM U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Caen, France
| | - Simon Lebatard
- Normandie Univ, UNICAEN, INSERM U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Caen, France
| | - Mathys Bellemain-Sagnard
- Normandie Univ, UNICAEN, INSERM U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Caen, France
| | - Laurent Lebouvier
- Normandie Univ, UNICAEN, INSERM U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Caen, France
| | - Yannick Hommet
- Normandie Univ, UNICAEN, INSERM U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Caen, France
| | - Denis Vivien
- Normandie Univ, UNICAEN, INSERM U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Caen, France.
- Department of clinical research, Caen-Normandie University Hospital, CHU, Caen, France.
| |
Collapse
|
14
|
Mays CE, Trinh THT, Telling G, Kang HE, Ryou C. Endoproteolysis of cellular prion protein by plasmin hinders propagation of prions. Front Mol Neurosci 2022; 15:990136. [PMID: 36117913 PMCID: PMC9478470 DOI: 10.3389/fnmol.2022.990136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/15/2022] [Indexed: 01/21/2023] Open
Abstract
Many questions surround the underlying mechanism for the differential metabolic processing observed for the prion protein (PrP) in healthy and prion-infected mammals. Foremost, the physiological α-cleavage of PrP interrupts a region critical for both toxicity and conversion of cellular PrP (PrP C ) into its misfolded pathogenic isoform (PrP Sc ) by generating a glycosylphosphatidylinositol (GPI)-anchored C1 fragment. During prion diseases, alternative β-cleavage of PrP becomes prominent, producing a GPI-anchored C2 fragment with this particular region intact. It remains unexplored whether physical up-regulation of α-cleavage can inhibit disease progression. Furthermore, several pieces of evidence indicate that a disintegrin and metalloproteinase (ADAM) 10 and ADAM17 play a much smaller role in the α-cleavage of PrP C than originally believed, thus presenting the need to identify the primary protease(s) responsible. For this purpose, we characterized the ability of plasmin to perform PrP α-cleavage. Then, we conducted functional assays using protein misfolding cyclic amplification (PMCA) and prion-infected cell lines to clarify the role of plasmin-mediated α-cleavage during prion propagation. Here, we demonstrated an inhibitory role of plasmin for PrP Sc formation through PrP α-cleavage that increased C1 fragments resulting in reduced prion conversion compared with non-treated PMCA and cell cultures. The reduction of prion infectious titer in the bioassay of plasmin-treated PMCA material also supported the inhibitory role of plasmin on PrP Sc replication. Our results suggest that plasmin-mediated endoproteolytic cleavage of PrP may be an important event to prevent prion propagation.
Collapse
Affiliation(s)
- Charles E. Mays
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Trang H. T. Trinh
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, South Korea,Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, South Korea
| | - Glenn Telling
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, United States,Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY, United States,Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Hae-Eun Kang
- Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY, United States,Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States,Reference Laboratory for Chronic Wasting Disease (CWD), Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, South Korea,Hae-Eun Kang,
| | - Chongsuk Ryou
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, United States,Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, South Korea,Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, South Korea,Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY, United States,*Correspondence: Chongsuk Ryou,
| |
Collapse
|
15
|
Alzheimer’s Disease Severity Is Associated with an Imbalance in Serum Levels of Enzymes Regulating Plasmin Synthesis. Pharmaceuticals (Basel) 2022; 15:ph15091074. [PMID: 36145295 PMCID: PMC9505552 DOI: 10.3390/ph15091074] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/21/2022] [Accepted: 08/21/2022] [Indexed: 11/28/2022] Open
Abstract
Alzheimer’s disease (AD) is a central nervous system (CNS) disease characterized by loss of memory, cognitive functions, and neurodegeneration. Plasmin is an enzyme degrading many plasma proteins. In the CNS, plasmin may reduce the accumulation of beta amyloid (Aβ) and have other actions relevant to AD pathophysiology. Brain plasmin synthesis is regulated by two enzymes: one activating, the tissue plasminogen activator (tPA), and the other inhibiting, the plasminogen activator inhibitor-1 (PAI-1). We investigated the levels of tPA and PAI-1 in serum from 40 AD and 40 amnestic mild cognitively impaired (aMCI) patients compared to 10 cognitively healthy controls. Moreover, we also examined the PAI-1/tPA ratio in these patient groups. Venous blood was collected and the PAI-1 and tPA serum concentrations were quantified using sandwich ELISAs. The results showed that PAI-1 levels increased in AD and aMCI patients. This increase negatively correlated with cognitive performance measured using the Mini-Mental Status Exam (MMSE). Similarly, the ratio between tPA and PAI-1 gradually increases in aMCI and AD patients. This study demonstrates that AD and aMCI patients have altered PAI-1 serum levels and PAI-1/tPA ratio. Since these enzymes are CNS regulators of plasmin, PAI-1 serum levels could be a marker reflecting cognitive decline in AD.
Collapse
|
16
|
Padhi D, Govindaraju T. Mechanistic Insights for Drug Repurposing and the Design of Hybrid Drugs for Alzheimer's Disease. J Med Chem 2022; 65:7088-7105. [PMID: 35559617 DOI: 10.1021/acs.jmedchem.2c00335] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The heterogeneity and complex nature of Alzheimer's disease (AD) is attributed to several genetic risk factors and molecular culprits. The slow pace and increasing failure rate of conventional drug discovery has led to the exploration of complementary strategies based on repurposing approved drugs to treat AD. Drug repurposing (DR) is a cost-effective, low-risk, and efficient approach for identifying novel therapeutic candidates for AD treatment. Similarly, hybrid drug design through the integration of distinct pharmacophores from known or failed drugs and natural products is an interesting strategy to target the multifactorial nature of AD. In this Perspective, we discuss the potential of DR and highlight promising drug candidates that can be advanced for clinical trials, backed by a detailed discussion on their plausible mechanisms of action. Our article fosters research on the hidden potential of DR and hybrid drug design with the goal of unravelling new drugs and targets to tackle AD.
Collapse
Affiliation(s)
- Dikshaa Padhi
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru, Karnataka 560064, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru, Karnataka 560064, India
| |
Collapse
|
17
|
Rai M, Curley M, Coleman Z, Demontis F. Contribution of proteases to the hallmarks of aging and to age-related neurodegeneration. Aging Cell 2022; 21:e13603. [PMID: 35349763 PMCID: PMC9124314 DOI: 10.1111/acel.13603] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/10/2022] [Accepted: 03/13/2022] [Indexed: 12/20/2022] Open
Abstract
Protein quality control ensures the degradation of damaged and misfolded proteins. Derangement of proteostasis is a primary cause of aging and age-associated diseases. The ubiquitin-proteasome and autophagy-lysosome play key roles in proteostasis but, in addition to these systems, the human genome encodes for ~600 proteases, also known as peptidases. Here, we examine the role of proteases in aging and age-related neurodegeneration. Proteases are present across cell compartments, including the extracellular space, and their substrates encompass cellular constituents, proteins with signaling functions, and misfolded proteins. Proteolytic processing by proteases can lead to changes in the activity and localization of substrates or to their degradation. Proteases cooperate with the autophagy-lysosome and ubiquitin-proteasome systems but also have independent proteolytic roles that impact all hallmarks of cellular aging. Specifically, proteases regulate mitochondrial function, DNA damage repair, cellular senescence, nutrient sensing, stem cell properties and regeneration, protein quality control and stress responses, and intercellular signaling. The capacity of proteases to regulate cellular functions translates into important roles in preserving tissue homeostasis during aging. Consequently, proteases influence the onset and progression of age-related pathologies and are important determinants of health span. Specifically, we examine how certain proteases promote the progression of Alzheimer's, Huntington's, and/or Parkinson's disease whereas other proteases protect from neurodegeneration. Mechanistically, cleavage by proteases can lead to the degradation of a pathogenic protein and hence impede disease pathogenesis. Alternatively, proteases can generate substrate byproducts with increased toxicity, which promote disease progression. Altogether, these studies indicate the importance of proteases in aging and age-related neurodegeneration.
Collapse
Affiliation(s)
- Mamta Rai
- Department of Developmental NeurobiologySt. Jude Children’s Research HospitalMemphisTennesseeUSA
| | - Michelle Curley
- Department of Developmental NeurobiologySt. Jude Children’s Research HospitalMemphisTennesseeUSA
| | - Zane Coleman
- Department of Developmental NeurobiologySt. Jude Children’s Research HospitalMemphisTennesseeUSA
| | - Fabio Demontis
- Department of Developmental NeurobiologySt. Jude Children’s Research HospitalMemphisTennesseeUSA
| |
Collapse
|
18
|
Drummond E, Kavanagh T, Pires G, Marta-Ariza M, Kanshin E, Nayak S, Faustin A, Berdah V, Ueberheide B, Wisniewski T. The amyloid plaque proteome in early onset Alzheimer's disease and Down syndrome. Acta Neuropathol Commun 2022; 10:53. [PMID: 35418158 PMCID: PMC9008934 DOI: 10.1186/s40478-022-01356-1] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022] Open
Abstract
Amyloid plaques contain many proteins in addition to beta amyloid (Aβ). Previous studies examining plaque-associated proteins have shown these additional proteins are important; they provide insight into the factors that drive amyloid plaque development and are potential biomarkers or therapeutic targets for Alzheimer's disease (AD). The aim of this study was to comprehensively identify proteins that are enriched in amyloid plaques using unbiased proteomics in two subtypes of early onset AD: sporadic early onset AD (EOAD) and Down Syndrome (DS) with AD. We focused our study on early onset AD as the drivers of the more aggressive pathology development in these cases is unknown and it is unclear whether amyloid-plaque enriched proteins differ between subtypes of early onset AD. Amyloid plaques and neighbouring non-plaque tissue were microdissected from human brain sections using laser capture microdissection and label-free LC-MS was used to quantify the proteins present. 48 proteins were consistently enriched in amyloid plaques in EOAD and DS. Many of these proteins were more significantly enriched in amyloid plaques than Aβ. The most enriched proteins in amyloid plaques in both EOAD and DS were: COL25A1, SMOC1, MDK, NTN1, OLFML3 and HTRA1. Endosomal/lysosomal proteins were particularly highly enriched in amyloid plaques. Fluorescent immunohistochemistry was used to validate the enrichment of four proteins in amyloid plaques (moesin, ezrin, ARL8B and SMOC1) and to compare the amount of total Aβ, Aβ40, Aβ42, phosphorylated Aβ, pyroglutamate Aβ species and oligomeric species in EOAD and DS. These studies showed that phosphorylated Aβ, pyroglutamate Aβ species and SMOC1 were significantly higher in DS plaques, while oligomers were significantly higher in EOAD. Overall, we observed that amyloid plaques in EOAD and DS largely contained the same proteins, however the amount of enrichment of some proteins was different in EOAD and DS. Our study highlights the significant enrichment of many proteins in amyloid plaques, many of which may be potential therapeutic targets and/or biomarkers for AD.
Collapse
Affiliation(s)
- Eleanor Drummond
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, 94 Mallett Street, Camperdown, NSW, Australia.
- Centre for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, Science Building, Rm 1017, 435 East 30th Street, New York, NY, 10016, USA.
| | - Tomas Kavanagh
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, 94 Mallett Street, Camperdown, NSW, Australia
| | - Geoffrey Pires
- Centre for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, Science Building, Rm 1017, 435 East 30th Street, New York, NY, 10016, USA
| | - Mitchell Marta-Ariza
- Centre for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, Science Building, Rm 1017, 435 East 30th Street, New York, NY, 10016, USA
| | - Evgeny Kanshin
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY, USA
| | - Shruti Nayak
- Merck & Co., Inc, Computational & Structural Chemistry, Kenilworth, NJ, USA
| | - Arline Faustin
- Centre for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, Science Building, Rm 1017, 435 East 30th Street, New York, NY, 10016, USA
| | - Valentin Berdah
- Centre for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, Science Building, Rm 1017, 435 East 30th Street, New York, NY, 10016, USA
| | - Beatrix Ueberheide
- Centre for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, Science Building, Rm 1017, 435 East 30th Street, New York, NY, 10016, USA
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Thomas Wisniewski
- Centre for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, Science Building, Rm 1017, 435 East 30th Street, New York, NY, 10016, USA.
- Departments of Pathology and Psychiatry, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
19
|
Tang MY, Gorin FA, Lein PJ. Review of evidence implicating the plasminogen activator system in blood-brain barrier dysfunction associated with Alzheimer's disease. AGEING AND NEURODEGENERATIVE DISEASES 2022; 2. [PMID: 35156107 PMCID: PMC8830591 DOI: 10.20517/and.2022.05] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Elucidating the pathogenic mechanisms of Alzheimer’s disease (AD) to identify therapeutic targets has been the focus of many decades of research. While deposition of extracellular amyloid-beta plaques and intraneuronal neurofibrillary tangles of hyperphosphorylated tau have historically been the two characteristic hallmarks of AD pathology, therapeutic strategies targeting these proteinopathies have not been successful in the clinics. Neuroinflammation has been gaining more attention as a therapeutic target because increasing evidence implicates neuroinflammation as a key factor in the early onset of AD disease progression. The peripheral immune response has emerged as an important contributor to the chronic neuroinflammation associated with AD pathophysiology. In this context, the plasminogen activator system (PAS), also referred to as the vasculature’s fibrinolytic system, is emerging as a potential factor in AD pathogenesis. Evolving evidence suggests that the PAS plays a role in linking chronic peripheral inflammatory conditions to neuroinflammation in the brain. While the PAS is better known for its peripheral functions, components of the PAS are expressed in the brain and have been demonstrated to alter neuroinflammation and blood-brain barrier (BBB) permeation. Here, we review plasmin-dependent and -independent mechanisms by which the PAS modulates the BBB in AD pathogenesis and discuss therapeutic implications of these observations.
Collapse
Affiliation(s)
- Mei-Yun Tang
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Fredric A Gorin
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.,Department of Neurology, School of Medicine, University of California, Davis, CA 95616, USA
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
20
|
Liu RM. Aging, Cellular Senescence, and Alzheimer's Disease. Int J Mol Sci 2022; 23:1989. [PMID: 35216123 PMCID: PMC8874507 DOI: 10.3390/ijms23041989] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 01/10/2023] Open
Abstract
Aging is the greatest risk factor for late-onset Alzheimer's disease (LOAD), which accounts for >95% of Alzheimer's disease (AD) cases. The mechanism underlying the aging-related susceptibility to LOAD is unknown. Cellular senescence, a state of permanent cell growth arrest, is believed to contribute importantly to aging and aging-related diseases, including AD. Senescent astrocytes, microglia, endothelial cells, and neurons have been detected in the brain of AD patients and AD animal models. Removing senescent cells genetically or pharmacologically ameliorates β-amyloid (Aβ) peptide and tau-protein-induced neuropathologies, and improves memory in AD model mice, suggesting a pivotal role of cellular senescence in AD pathophysiology. Nonetheless, although accumulated evidence supports the role of cellular senescence in aging and AD, the mechanisms that promote cell senescence and how senescent cells contribute to AD neuropathophysiology remain largely unknown. This review summarizes recent advances in this field. We believe that the removal of senescent cells represents a promising approach toward the effective treatment of aging-related diseases, such as AD.
Collapse
Affiliation(s)
- Rui-Ming Liu
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294-0006, USA
| |
Collapse
|
21
|
Zhu Y, Liu T, Liu B, Shi H, Tan Q, Xu B. From α-keto acids to nitrile oxides enabled by copper nitrate: a facile access to fused isoxazolines. Org Chem Front 2022. [DOI: 10.1039/d1qo01574e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An unprecedented generation of nitrile oxides was developed from α-keto acids and copper nitrate through a novel carbon–carbon bond cleavage mode, affording pharmacologically interesting fused isoxazolines via 1,3-dipolar cycloadditions.
Collapse
Affiliation(s)
- Yuping Zhu
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Tianqi Liu
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Bingxin Liu
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Houguang Shi
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Qitao Tan
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Bin Xu
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai 200444, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
22
|
Stevenson TK, Moore SJ, Murphy GG, Lawrence DA. Tissue Plasminogen Activator in Central Nervous System Physiology and Pathology: From Synaptic Plasticity to Alzheimer's Disease. Semin Thromb Hemost 2021; 48:288-300. [DOI: 10.1055/s-0041-1740265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractTissue plasminogen activator's (tPA) fibrinolytic function in the vasculature is well-established. This specific role for tPA in the vasculature, however, contrasts with its pleiotropic activities in the central nervous system. Numerous physiological and pathological functions have been attributed to tPA in the central nervous system, including neurite outgrowth and regeneration; synaptic and spine plasticity; neurovascular coupling; neurodegeneration; microglial activation; and blood–brain barrier permeability. In addition, multiple substrates, both plasminogen-dependent and -independent, have been proposed to be responsible for tPA's action(s) in the central nervous system. This review aims to dissect a subset of these different functions and the different molecular mechanisms attributed to tPA in the context of learning and memory. We start from the original research that identified tPA as an immediate-early gene with a putative role in synaptic plasticity to what is currently known about tPA's role in a learning and memory disorder, Alzheimer's disease. We specifically focus on studies demonstrating tPA's involvement in the clearance of amyloid-β and neurovascular coupling. In addition, given that tPA has been shown to regulate blood–brain barrier permeability, which is perturbed in Alzheimer's disease, this review also discusses tPA-mediated vascular dysfunction and possible alternative mechanisms of action for tPA in Alzheimer's disease pathology.
Collapse
Affiliation(s)
- Tamara K. Stevenson
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Shannon J. Moore
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Geoffrey G. Murphy
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Daniel A. Lawrence
- Department of Molecular and Integrative Physiology, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
23
|
Leite JP, Lete MG, Fowler SB, Gimeno A, Rocha JF, Sousa SF, Webster CI, Jiménez-Bar̀bero JJ, Gales L. Aβ 31-35 Decreases Neprilysin-Mediated Alzheimer's Amyloid-β Peptide Degradation. ACS Chem Neurosci 2021; 12:3708-3718. [PMID: 34505762 DOI: 10.1021/acschemneuro.1c00432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Alzheimer's disease is associated with the deposition of extracellular senile plaques, made primarily of amyloid-β (Aβ), particularly peptides Aβ1-42 and Aβ1-40. Neprilysin, or neutral endopeptidase (NEP), catalyzes proteolysis of the amyloid peptides (Aβ) and is recognized as one of the major regulators of the levels of these peptides in the brain, preventing Aβ accumulation and plaque formation. Here, we used a combination of techniques to elucidate the mechanism of Aβ binding and cleavage by NEP. Our findings indicate that the Aβ31-X cleavage products remain bound to the neprilysin active site, reducing proteolytic activity. Interestingly, it was already shown that this Aβ31-35 sequence is also critical for recognition of Aβ peptides by other targets, such as the serpin-enzyme complex receptor in neuronal cells.
Collapse
Affiliation(s)
- José P. Leite
- i3S—Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, Porto 4200-135, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, Porto 4200-135, Portugal
- Programa Doutoral em Biologia Molecular e Celular (MCbiology), ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira 228, Porto 4050-313, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Marta G. Lete
- CIC bioGUNE, Bizkaia Technology Park, Building 801A, Derio 48170, Spain
| | - Susan B. Fowler
- Antibody Discovery & Protein Engineering R&D, AstraZeneca, Cambridge CB21 6GH, U.K
| | - Ana Gimeno
- CIC bioGUNE, Bizkaia Technology Park, Building 801A, Derio 48170, Spain
| | - Juliana F. Rocha
- UCIBIO/REQUIMTE, BioSIM-Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, Porto 4200-319, Portugal
| | - Sérgio F. Sousa
- UCIBIO/REQUIMTE, BioSIM-Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, Porto 4200-319, Portugal
| | - Carl I. Webster
- Antibody Discovery & Protein Engineering R&D, AstraZeneca, Cambridge CB21 6GH, U.K
| | - Jesús J. Jiménez-Bar̀bero
- CIC bioGUNE, Bizkaia Technology Park, Building 801A, Derio 48170, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao 48013, Spain
- Department of Organic Chemistry II, Faculty of Science and Technology, UPV-EHU, 48940 Leioa, Spain
| | - Luís Gales
- i3S—Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, Porto 4200-135, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, Porto 4200-135, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
24
|
Mutimer CA, Keragala CB, Markus HS, Werring DJ, Cloud GC, Medcalf RL. Cerebral Amyloid Angiopathy and the Fibrinolytic System: Is Plasmin a Therapeutic Target? Stroke 2021; 52:2707-2714. [PMID: 34126761 DOI: 10.1161/strokeaha.120.033107] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cerebral amyloid angiopathy is a devastating cause of intracerebral hemorrhage for which there is no specific secondary stroke prevention treatment. Here we review the current literature regarding cerebral amyloid angiopathy pathophysiology and treatment, as well as what is known of the fibrinolytic pathway and its interaction with amyloid. We postulate that tranexamic acid is a potential secondary stroke prevention treatment agent in sporadic cerebral amyloid angiopathy, although further research is required.
Collapse
Affiliation(s)
- Chloe A Mutimer
- Department of Neurology, Alfred Hospital, Melbourne, Australia (C.A.M., G.C.C.)
| | - Charithani B Keragala
- Australian Centre for Blood Diseases (C.B.K., R.L.M.), Monash University, Melbourne, Australia
| | - Hugh S Markus
- Stroke Research Group, Department of Clinical Neuroscience, University of Cambridge, United Kingdom (H.S.M.)
| | - David J Werring
- Stroke Research Centre, Queen Square Institute of Neurology, London, United Kingdom (D.J.W.)
| | - Geoffrey C Cloud
- Department of Neurology, Alfred Hospital, Melbourne, Australia (C.A.M., G.C.C.).,Department of Clinical Neuroscience, Central Clinical School (G.C.C.), Monash University, Melbourne, Australia
| | - Robert L Medcalf
- Australian Centre for Blood Diseases (C.B.K., R.L.M.), Monash University, Melbourne, Australia
| |
Collapse
|
25
|
Abstract
Plasminogen is an abundant plasma protein that exists in various zymogenic forms. Plasmin, the proteolytically active form of plasminogen, is known for its essential role in fibrinolysis. To date, therapeutic targeting of the fibrinolytic system has been for 2 purposes: to promote plasmin generation for thromboembolic conditions or to stop plasmin to reduce bleeding. However, plasmin and plasminogen serve other important functions, some of which are unrelated to fibrin removal. Indeed, for >40 years, the antifibrinolytic agent tranexamic acid has been administered for its serendipitously discovered skin-whitening properties. Plasmin also plays an important role in the removal of misfolded/aggregated proteins and can trigger other enzymatic cascades, including complement. In addition, plasminogen, via binding to one of its dozen cell surface receptors, can modulate cell behavior and further influence immune and inflammatory processes. Plasminogen administration itself has been reported to improve thrombolysis and to accelerate wound repair. Although many of these more recent findings have been derived from in vitro or animal studies, the use of antifibrinolytic agents to reduce bleeding in humans has revealed additional clinically relevant consequences, particularly in relation to reducing infection risk that is independent of its hemostatic effects. The finding that many viruses harness the host plasminogen to aid infectivity has suggested that antifibrinolytic agents may have antiviral benefits. Here, we review the broadening role of the plasminogen-activating system in physiology and pathophysiology and how manipulation of this system may be harnessed for benefits unrelated to its conventional application in thrombosis and hemostasis.
Collapse
|
26
|
A Negative Energy Balance Is Associated with Metabolic Dysfunctions in the Hypothalamus of a Humanized Preclinical Model of Alzheimer's Disease, the 5XFAD Mouse. Int J Mol Sci 2021; 22:ijms22105365. [PMID: 34065168 PMCID: PMC8161294 DOI: 10.3390/ijms22105365] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/15/2021] [Accepted: 05/16/2021] [Indexed: 12/19/2022] Open
Abstract
Increasing evidence links metabolic disorders with neurodegenerative processes including Alzheimer’s disease (AD). Late AD is associated with amyloid (Aβ) plaque accumulation, neuroinflammation, and central insulin resistance. Here, a humanized AD model, the 5xFAD mouse model, was used to further explore food intake, energy expenditure, neuroinflammation, and neuroendocrine signaling in the hypothalamus. Experiments were performed on 6-month-old male and female full transgenic (Tg5xFAD/5xFAD), heterozygous (Tg5xFAD/-), and non-transgenic (Non-Tg) littermates. Although histological analysis showed absence of Aβ plaques in the hypothalamus of 5xFAD mice, this brain region displayed increased protein levels of GFAP and IBA1 in both Tg5xFAD/- and Tg5xFAD/5xFAD mice and increased expression of IL-1β in Tg5xFAD/5xFAD mice, suggesting neuroinflammation. This condition was accompanied by decreased body weight, food intake, and energy expenditure in both Tg5xFAD/- and Tg5xFAD/5xFAD mice. Negative energy balance was associated with altered circulating levels of insulin, GLP-1, GIP, ghrelin, and resistin; decreased insulin and leptin hypothalamic signaling; dysregulation in main metabolic sensors (phosphorylated IRS1, STAT5, AMPK, mTOR, ERK2); and neuropeptides controlling energy balance (NPY, AgRP, orexin, MCH). These results suggest that glial activation and metabolic dysfunctions in the hypothalamus of a mouse model of AD likely result in negative energy balance, which may contribute to AD pathogenesis development.
Collapse
|
27
|
Tzekaki EE, Tsolaki M, Pantazaki ΑA, Geromichalos G, Lazarou E, Kozori M, Sinakos Z. The pleiotropic beneficial intervention of olive oil intake on the Alzheimer's disease onset via fibrinolytic system. Exp Gerontol 2021; 150:111344. [PMID: 33836262 DOI: 10.1016/j.exger.2021.111344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/17/2021] [Accepted: 03/31/2021] [Indexed: 12/31/2022]
Abstract
The daily consumption of Extra Virgin Olive Oil (EVOO) in Mediterranean nutrition is tightly associated with lower frequency of many diseases' appearance, including Alzheimer's disease (AD). Fibrinolytic system is already assumed to be involved in AD pathophysiology through various factors, especially plasminogen activator inhibitor-1 (PAI-1), a2-antiplasmin (α2ΑP) and tissue plasminogen activator (tPA). We, here, present a biochemical study, as a continuation of a clinical trial of a cohort of 84 participants, focusing on the pleiotropic effect of the annual EVOO consumption on the fibrinolytic factors of Mild Cognitive Impairment (MCI) patients. The levels of all these fibrinolytic factors, measured by Enzyme-Linked Immunosorbent Assay (ELISA) method, were reduced in the serum of MCI patients annually administered with EVOO, versus not treated MCI patients, as well as AD patients. The well-established AD hallmarks (Aβ1-40 and Aβ1-42 species, tau, and p-tau) of MCI patients' group, annually administered with EVOO, were restored to levels equal to those of the cognitively-healthy group; in contrast to those patients not being administered, and their AD hallmarks levels increased at the end of the year. Moreover, one of the EVOO annual consumption multimodal effects on the MCI patients focused on the levels of an oxidative stress trademark, malondialdehyde (MDA), which displayed also a visible quenching; On the other hand, an increase exhibited in the MCI patients not consuming EVOO one year after, was attributed to the lack of the EVOO anti-oxidative properties. These outcomes are exploitable towards the establishment of natural products like EVOO, as a preventive remedy fighting this neurodegenerative disorder, AD. CLINICAL TRIAL REGISTRATION: https://clinicaltrials.gov/ct2/show/NCT03362996 MICOIL gov Identifier: NCT03362996.
Collapse
Affiliation(s)
- Elena E Tzekaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Makedonia, Greece
| | - Magda Tsolaki
- 1(st) Department of Neurology, Medical School, "AHEPA" General Hospital Medical School, Aristotle University of Thessaloniki, Faculty of Health Sciences, 54124 Thessaloniki, Makedonia, Greece; Greek Association of Alzheimer's Disease and Related Disorders - GAADRD, Greece.
| | - Αnastasia A Pantazaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Makedonia, Greece.
| | - George Geromichalos
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Makedonia, Greece
| | - Eftychia Lazarou
- Greek Association of Alzheimer's Disease and Related Disorders - GAADRD, Greece
| | - Mahi Kozori
- Greek Association of Alzheimer's Disease and Related Disorders - GAADRD, Greece
| | - Zacharias Sinakos
- Emeritus Professor of Hematology, Medical School, Aristotle University of Thessaloniki, Faculty of Health Sciences, Greece
| |
Collapse
|
28
|
Assessing Plasmin Generation in Health and Disease. Int J Mol Sci 2021; 22:ijms22052758. [PMID: 33803235 PMCID: PMC7963172 DOI: 10.3390/ijms22052758] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/20/2021] [Accepted: 03/05/2021] [Indexed: 12/13/2022] Open
Abstract
Fibrinolysis is an important process in hemostasis responsible for dissolving the clot during wound healing. Plasmin is a central enzyme in this process via its capacity to cleave fibrin. The kinetics of plasmin generation (PG) and inhibition during fibrinolysis have been poorly understood until the recent development of assays to quantify these metrics. The assessment of plasmin kinetics allows for the identification of fibrinolytic dysfunction and better understanding of the relationships between abnormal fibrin dissolution and disease pathogenesis. Additionally, direct measurement of the inhibition of PG by antifibrinolytic medications, such as tranexamic acid, can be a useful tool to assess the risks and effectiveness of antifibrinolytic therapy in hemorrhagic diseases. This review provides an overview of available PG assays to directly measure the kinetics of plasmin formation and inhibition in human and mouse plasmas and focuses on their applications in defining the role of plasmin in diseases, including angioedema, hemophilia, rare bleeding disorders, COVID-19, or diet-induced obesity. Moreover, this review introduces the PG assay as a promising clinical and research method to monitor antifibrinolytic medications and screen for genetic or acquired fibrinolytic disorders.
Collapse
|
29
|
Sillen M, Declerck PJ. A Narrative Review on Plasminogen Activator Inhibitor-1 and Its (Patho)Physiological Role: To Target or Not to Target? Int J Mol Sci 2021; 22:ijms22052721. [PMID: 33800359 PMCID: PMC7962805 DOI: 10.3390/ijms22052721] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1) is the main physiological inhibitor of plasminogen activators (PAs) and is therefore an important inhibitor of the plasminogen/plasmin system. Being the fast-acting inhibitor of tissue-type PA (tPA), PAI-1 primarily attenuates fibrinolysis. Through inhibition of urokinase-type PA (uPA) and interaction with biological ligands such as vitronectin and cell-surface receptors, the function of PAI-1 extends to pericellular proteolysis, tissue remodeling and other processes including cell migration. This review aims at providing a general overview of the properties of PAI-1 and the role it plays in many biological processes and touches upon the possible use of PAI-1 inhibitors as therapeutics.
Collapse
|
30
|
tPA Deficiency Underlies Neurovascular Coupling Dysfunction by Amyloid-β. J Neurosci 2020; 40:8160-8173. [PMID: 32928888 DOI: 10.1523/jneurosci.1140-20.2020] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/29/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
The amyloid-β (Aβ) peptide, a key pathogenic factor in Alzheimer's disease, attenuates the increase in cerebral blood flow (CBF) evoked by neural activity (functional hyperemia), a vital homeostatic response in which NMDA receptors (NMDARs) play a role through nitric oxide, and the CBF increase produced by endothelial factors. Tissue plasminogen activator (tPA), which is reduced in Alzheimer's disease and in mouse models of Aβ accumulation, is required for the full expression of the NMDAR-dependent component of functional hyperemia. Therefore, we investigated whether tPA is involved in the neurovascular dysfunction of Aβ. tPA activity was reduced, and the tPA inhibitor plasminogen inhibitor-1 (PAI-1) was increased in male mice expressing the Swedish mutation of the amyloid precursor protein (tg2576). Counteracting the tPA reduction with exogenous tPA or with pharmacological inhibition or genetic deletion of PAI-1 completely reversed the attenuation of the CBF increase evoked by whisker stimulation but did not ameliorate the response to the endothelium-dependent vasodilator acetylcholine. The tPA deficit attenuated functional hyperemia by suppressing NMDAR-dependent nitric oxide production during neural activity. Pharmacological inhibition of PAI-1 increased tPA activity, prevented neurovascular uncoupling, and ameliorated cognition in 11- to 12-month-old tg2576 mice, effects associated with a reduction of cerebral amyloid angiopathy but not amyloid plaques. The data unveil a selective role of the tPA in the suppression of functional hyperemia induced by Aβ and in the mechanisms of cerebral amyloid angiopathy, and support the possibility that modulation of the PAI-1-tPA pathway may be beneficial in diseases associated with amyloid accumulation.SIGNIFICANCE STATEMENT Amyloid-β (Aβ) peptides have profound neurovascular effects that may contribute to cognitive impairment in Alzheimer's disease. We found that Aβ attenuates the increases in blood flow evoked by neural activation through a reduction in tissue plasminogen activator (tPA) caused by upregulation of its endogenous inhibitor plasminogen inhibitor-1 (PAI-1). tPA deficiency prevents NMDA receptors from triggering nitric oxide production, thereby attenuating the flow increase evoked by neural activity. PAI-1 inhibition restores tPA activity, rescues neurovascular coupling, reduces amyloid deposition around blood vessels, and improves cognition in a mouse model of Aβ accumulation. The findings demonstrate a previously unappreciated role of tPA in Aβ-related neurovascular dysfunction and in vascular amyloid deposition. Restoration of tPA activity could be of therapeutic value in diseases associated with amyloid accumulation.
Collapse
|
31
|
Yang D, Zhu W, Wang Y, Tan F, Ma Z, Gao J, Lin X. Selection of mutant µplasmin for amyloid-β cleavage in vivo. Sci Rep 2020; 10:12117. [PMID: 32694536 PMCID: PMC7374754 DOI: 10.1038/s41598-020-69079-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/01/2020] [Indexed: 12/25/2022] Open
Abstract
One of the main culprits of Alzheimer's disease (AD) is the formation of toxic amyloid-β (Aβ) peptide polymers and the aggregation of Aβ to form plaques in the brain. We have developed techniques to purify the catalytic domain of plasmin, micro-plasmin (µPlm), which can be used for an Aβ-clearance based AD therapy. However, in serum, µPlm is irreversibly inhibited by its principal inhibitor α2-antiplasmin (α2-AP). In this study, we engineered and selected mutant forms of µPlm that are both catalytically active and insensitive to α2-AP inhibition. We identified surface residues of μPlm that might interact and bind α2-AP, and used an alanine-scanning mutagenesis method to select residues having higher activity but lower α2-AP inhibition. Then we employed saturation mutagenesis for further optimize both properties. Modeled complex structure of µPlm/α2-AP shows that F587 is a critical contact residue, which can be used as a starting position for further investigation.
Collapse
Affiliation(s)
- Dongying Yang
- Shandong Provincial Key Laboratory of Biophysics, Shandong Key Laboratory in University of Functional Bioresource Utilization, School of Medicine and Nursing, Dezhou University, Daxuexi Road 566#, Dezhou, 253023, Shandong, China
| | - Wei Zhu
- Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Science, South-Central University for Nationalities, Wuhan, China
| | - Yingjie Wang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Fangmei Tan
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Zhiping Ma
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Jiali Gao
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Xinli Lin
- Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Science, South-Central University for Nationalities, Wuhan, China.
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| |
Collapse
|
32
|
Taliyan R, Chandran SK, Kakoty V. Therapeutic Approaches to Alzheimer's Type of Dementia: A Focus on FGF21 Mediated Neuroprotection. Curr Pharm Des 2020; 25:2555-2568. [PMID: 31333086 DOI: 10.2174/1381612825666190716101411] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 07/08/2019] [Indexed: 12/31/2022]
Abstract
Neurodegenerative disorders are the most devastating disorder of the nervous system. The pathological basis of neurodegeneration is linked with dysfunctional protein trafficking, mitochondrial stress, environmental factors and aging. With the identification of insulin and insulin receptors in some parts of the brain, it has become evident that certain metabolic conditions associated with insulin dysfunction like Type 2 diabetes mellitus (T2DM), dyslipidemia, obesity etc., are also known to contribute to neurodegeneration mainly Alzheimer's Disease (AD). Recently, a member of the fibroblast growth factor (FGF) superfamily, FGF21 has proved tremendous efficacy in diseases like diabetes mellitus, obesity and insulin resistance (IR). Increased levels of FGF21 have been reported to exert multiple beneficial effects in metabolic syndrome. FGF21 receptors are present in certain areas of the brain involved in learning and memory. However, despite extensive research, its function as a neuroprotectant in AD remains elusive. FGF21 is a circulating endocrine hormone which is mainly secreted by the liver primarily in fasting conditions. FGF21 exerts its effects after binding to FGFR1 and co-receptor, β-klotho (KLB). It is involved in regulating energy via glucose and lipid metabolism. It is believed that aberrant FGF21 signalling might account for various anomalies like neurodegeneration, cancer, metabolic dysfunction etc. Hence, this review will majorly focus on FGF21 role as a neuroprotectant and potential metabolic regulator. Moreover, we will also review its potential as an emerging candidate for combating metabolic stress induced neurodegenerative abnormalities.
Collapse
Affiliation(s)
- Rajeev Taliyan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani-333031, Rajasthan, India
| | - Sarathlal K Chandran
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani-333031, Rajasthan, India
| | - Violina Kakoty
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani-333031, Rajasthan, India
| |
Collapse
|
33
|
Cai M, Jung I, Kwon H, Cho E, Jeon J, Yun J, Lee YC, Kim DH, Ryu JH. Spinosin Attenuates Alzheimer's Disease-Associated Synaptic Dysfunction via Regulation of Plasmin Activity. Biomol Ther (Seoul) 2020; 28:131-136. [PMID: 31791115 PMCID: PMC7059816 DOI: 10.4062/biomolther.2019.076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/27/2019] [Accepted: 11/07/2019] [Indexed: 02/07/2023] Open
Abstract
Hippocampal synaptic dysfunction is a hallmark of Alzheimer’s disease (AD). Many agents regulating hippocampal synaptic plasticity show an ameliorative effect on AD pathology, making them potential candidates for AD therapy. In the present study, we investigated spinosin as a regulating agent of synaptic plasticity in AD. Spinosin attenuated amyloid β (Aβ)-induced long-term potentiation (LTP) impairment, and improved plasmin activity and protein level in the hippocampi of 5XFAD mice, a transgenic AD mouse model. Moreover, the effect of spinosin on hippocampal LTP in 5XFAD mice was prevented by 6-aminocaproic acid, a plasmin inhibitor. These results suggest that spinosin improves synaptic function in the AD hippocampus by regulating plasmin activity.
Collapse
Affiliation(s)
- Mudan Cai
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Inho Jung
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Huiyoung Kwon
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Republic of Korea
| | - Eunbi Cho
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Republic of Korea
| | - Jieun Jeon
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Republic of Korea
| | - Jeanho Yun
- Department of Biochemistry, College of Medicine, Dong-A University, Busan 49201, Republic of Korea.,Institute of Convergence Bio-Health, Dong-A University, Busan 49315, Republic of Korea
| | - Young Choon Lee
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Republic of Korea.,Institute of Convergence Bio-Health, Dong-A University, Busan 49315, Republic of Korea
| | - Dong Hyun Kim
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Republic of Korea.,Institute of Convergence Bio-Health, Dong-A University, Busan 49315, Republic of Korea
| | - Jong Hoon Ryu
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul 02447, Republic of Korea.,Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
34
|
Chan SL, Bishop N, Li Z, Cipolla MJ. Inhibition of PAI (Plasminogen Activator Inhibitor)-1 Improves Brain Collateral Perfusion and Injury After Acute Ischemic Stroke in Aged Hypertensive Rats. Stroke 2019; 49:1969-1976. [PMID: 29991657 DOI: 10.1161/strokeaha.118.022056] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background and Purpose- Aging and hypertension, comorbidities prevalent in the stroke population, are associated with poor collateral status and worsened stroke outcome. However, underlying mechanisms by which these conditions affect stroke outcome are not clear. We studied the role of PAI (plasminogen activator inhibitor)-1 that is increased in aging and hypertension on brain and vascular expression of inflammatory factors and perfusion that may contribute to worse stroke outcomes. Methods- Aged (≈50 weeks) and young (≈18 weeks) spontaneously hypertensive rats (SHR) were subjected to ischemia by middle cerebral artery occlusion (2 hours) and reperfusion (2 hours) with or without treatment with the PAI-1 inhibitor TM5441. Changes in middle cerebral artery and collateral perfusion territories were measured by multisite laser Doppler. Reactivity to TM5441 was studied using isolated and pressurized leptomeningeal anastomotic arterioles. Brain injury was determined by 2,3,5-triphenyltetrazolium staining and quantitative immunohistochemistry of amyloid-β-42, PAI-1, and hemoglobin. Circulating inflammatory factors were measured by ELISA. Results- Changes in cerebral blood flow during middle cerebral artery occlusion were similar between groups, with both having poor collateral perfusion and incomplete reperfusion. However, aged SHR had greater brain injury versus young (41±2 versus 23±2%, P<0.05) as well as increased brain deposition of amyloid-β-42 and circulating oxLDL (oxidized low-density lipoprotein). Erythrocyte aggregation and hemorrhage within the injured brain was observed in 50% of aged but no young SHR, with increased circulating PAI-1 in this subgroup of aged SHR (16±3 versus 6±2 ng/mL, P<0.05). PAI-1 inhibition with TM5441 improved brain injury but did not affect hemorrhage. TM5441 increased collateral perfusion by 38±7% and dilated leptomeningeal anastomotic arterioles by 44±10%, which was abolished by nitric oxide synthase inhibition. Conclusions- Increased injury in aged SHR seemed to be related to poor collateral perfusion, hemorrhagic transformation, increased amyloid-β-42, and oxidative stress. PAI-1 inhibition reduced infarction in both groups of SHR that possibly due, in part, to increased collateral perfusion.
Collapse
Affiliation(s)
- Siu-Lung Chan
- From the Departments of Neurological Sciences (S.-L.C., N.B., Z.L., M.J.C.)
| | - Nicole Bishop
- From the Departments of Neurological Sciences (S.-L.C., N.B., Z.L., M.J.C.)
| | - Zhaojin Li
- From the Departments of Neurological Sciences (S.-L.C., N.B., Z.L., M.J.C.)
| | - Marilyn J Cipolla
- From the Departments of Neurological Sciences (S.-L.C., N.B., Z.L., M.J.C.).,Obstetrics, Gynecology and Reproductive Sciences (M.J.C.).,Pharmacology (M.J.C.), University of Vermont Larner College of Medicine, Burlington
| |
Collapse
|
35
|
Akhter H, Huang WT, van Groen T, Kuo HC, Miyata T, Liu RM. A Small Molecule Inhibitor of Plasminogen Activator Inhibitor-1 Reduces Brain Amyloid-β Load and Improves Memory in an Animal Model of Alzheimer's Disease. J Alzheimers Dis 2019; 64:447-457. [PMID: 29914038 DOI: 10.3233/jad-180241] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Alzheimer's disease (AD) is a major cause of dementia in the elderly with no effective treatment. Accumulation of amyloid-β peptide (Aβ) in the brain is a pathological hallmark of AD and is believed to be a central disease-causing and disease-promoting event. In a previous study, we showed that deletion of plasminogen activator inhibitor 1 (PAI-1), a primary inhibitor of tissue type and urokinase type plasminogen activators (tPA and uPA), significantly reduced brain Aβ load in APP/PS1 mice, an animal model of familial AD. In this study, we further show that oral administration of TM5275, a small molecule inhibitor of PAI-1, for a period of 6 weeks, inhibits the activity of PAI-1 and increases the activities of tPA and uPA as well as plasmin, which is associated with a reduction of Aβ load in the hippocampus and cortex and improvement of learning/memory function in APP/PS1 mice. Protein abundance of low density lipoprotein related protein-1 (LRP-1), a multi ligand endocytotic receptor involved in transporting Aβ out of the brain, as well as plasma Aβ42 are increased, whereas the expression and processing of full-length amyloid-β protein precursor is not affected by TM5275 treatment in APP/PS1 mice. In vitro studies further show that PAI-1 increases, whereas TM5275 reduces, Aβ40 level in the culture medium of SHSY5Y-APP neuroblastoma cells. Collectively, our data suggest that TM5275 improves memory function of APP/PS1 mice, probably by reducing brain Aβ accumulation through increasing plasmin-mediated degradation and LRP-1-mediated efflux of Aβ in the brain.
Collapse
Affiliation(s)
- Hasina Akhter
- Department of Environmental Health Sciences, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Wen-Tan Huang
- Department of Environmental Health Sciences, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Thomas van Groen
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hui-Chien Kuo
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Toshio Miyata
- United Centers for Advanced Research and Translational Medicine, Tohoku University, Tohoku, Japan
| | - Rui-Ming Liu
- Department of Environmental Health Sciences, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA.,Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
36
|
Park HJ, Jung IH, Kwon H, Yu J, Jo E, Kim H, Park SJ, Lee YC, Kim DH, Ryu JH. The ethanol extract of Zizyphus jujuba var. spinosa seeds ameliorates the memory deficits in Alzheimer's disease model mice. JOURNAL OF ETHNOPHARMACOLOGY 2019; 233:73-79. [PMID: 30605739 DOI: 10.1016/j.jep.2018.12.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/28/2018] [Accepted: 12/28/2018] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The seeds of Zizyphus jujuba var. spinosa (Bunge) Hu ex H.F. Chow (Rhamnaceae) have long been treated as hypnotic agent for sleep disturbances in traditional Chinese and Korean medicine and many previous studies have focused on its effect in central nervous system. AIMS OF STUDY The present study aimed to provide evidence showing that the ethanol extract of Zizyphus jujuba var. spinosa seeds (EEZS), which may regulate plasmin activity, has the potential to serve as a therapeutic agent for AD. MATERIALS AND METHODS Synaptic function was determined by measuring long-term potentiation (LTP) in Shaffer-collateral pathway of the hippocampus. Protein levels of plasmin or plasminogen were examined using western blotting. Plasmin activity was measured using ELISA. Cognitive functions were measured using passive avoidance and object recognition tests in the 5XFAD mice. RESULTS Our in vitro analysis revealed that EEZS-treated hippocampal slices from 5XFAD mice, a mouse model of AD, showed significantly higher long-term potentiation levels than did vehicle-treated hippocampal slices from 5XFAD mice (P < 0.05). Additionally, EEZS significantly elevated the plasmin level and activity in the hippocampal slices from 5XFAD mice (P < 0.05). Co-treating the slices with EEZS and 6-aminocaproic acid, a plasmin inhibitor, blocked the ameliorating effects of EEZS on the synaptic deficits that were present in 5XFAD mice. Compatible with the in vitro study, the results of our in vivo investigation showed that administering EEZS orally to 5XFAD mice ameliorated their memory impairments. Orally administered EEZS also elevated the plasmin level and activity in the hippocampus of 5XFAD mice. CONCLUSIONS Collectively, our findings suggest that EEZS alleviates the AD-like symptoms in 5XFAD mice by regulating of plasmin activity and EEZS may be a suitable treatment for AD.
Collapse
Affiliation(s)
- Hye Jin Park
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, Republic of Korea.
| | - In Ho Jung
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Hoeki-dong, Dongdaemoon-Ku, Seoul, Republic of Korea.
| | - Huiyoung Kwon
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, Republic of Korea.
| | - Jimin Yu
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, Republic of Korea.
| | - Eunbi Jo
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, Republic of Korea.
| | - Haneul Kim
- Daehwa Pharmaceutical Co., Ltd., Seongnam 13488, Republic of Korea
| | - Se Jin Park
- School of Natural Resources and Environmental Science, Kangwon National University, ChoonCheon, Republic of Korea.
| | - Young Choon Lee
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, Republic of Korea.
| | - Dong Hyun Kim
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, Republic of Korea; Institute of Convergence Bio-Health, Dong-A University, Busan 49315, Republic of Korea.
| | - Jong Hoon Ryu
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Hoeki-dong, Dongdaemoon-Ku, Seoul, Republic of Korea; Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
37
|
Tosi G, Pederzoli F, Belletti D, Vandelli MA, Forni F, Duskey JT, Ruozi B. Nanomedicine in Alzheimer's disease: Amyloid beta targeting strategy. PROGRESS IN BRAIN RESEARCH 2019; 245:57-88. [PMID: 30961872 DOI: 10.1016/bs.pbr.2019.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The treatment of Alzheimer's disease (AD) is up to today one of the most unsuccessful examples of biomedical science. Despite the high number of literature evidences detailing the multifactorial and complex etiopathology of AD, no cure is yet present on the market and the available treatments are only symptomatic. The reasons could be ascribed on two main factors: (i) lack of ability of the majority of drugs to cross the blood-brain barrier (BBB), thus excluding the brain for any successful therapy; (ii) lack of selectivity and specificity of drugs, decreasing the efficacy of even potent anti-AD drugs. The exploitation of specifically engineered nanomedicines planned to cross the BBB and to target the most "hot" site of action (i.e., β-amyloid) is one of the most interesting innovations in drug delivery and could reasonably represent an promising choice for possible treatments and even early-diagnosis of AD. In this chapter, we therefore outline the most talented approaches in AD treatment with a specific focus on the main advantages/drawbacks and future possible translation to clinic application.
Collapse
Affiliation(s)
- Giovanni Tosi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesca Pederzoli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy; Istituto di Ricerca Pediatrico "Città della Speranza", Padova, Italy
| | - Daniela Belletti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Angela Vandelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy; Fondazione Umberto Veronesi, Milano, Italy
| | - Flavio Forni
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Jason Thomas Duskey
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Barbara Ruozi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
38
|
Sikanyika NL, Parkington HC, Smith AI, Kuruppu S. Powering Amyloid Beta Degrading Enzymes: A Possible Therapy for Alzheimer's Disease. Neurochem Res 2019; 44:1289-1296. [PMID: 30806879 DOI: 10.1007/s11064-019-02756-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/15/2019] [Accepted: 02/17/2019] [Indexed: 12/23/2022]
Abstract
The accumulation of amyloid beta (Aβ) in the brain is believed to play a central role in the development and progression of Alzheimer's disease. Revisions to the amyloid cascade hypothesis now acknowledge the dynamic equilibrium in which Aβ exists and the importance of enzymes involved in the production and breakdown of Aβ in maintaining healthy Aβ levels. However, while a wealth of pharmacological and immunological therapies are being generated to inhibit the Aβ-producing enzymes, β-site APP cleavage enzyme 1 and γ-secretase, the therapeutic potential of stimulating Aβ-degrading enzymes such as neprilysin, endothelin-converting enzyme-1 and insulin-degrading enzyme remains relatively unexplored. Recent evidence indicates that increasing Aβ degradation as opposed to inhibiting synthesis is a more effective strategy to prevent Aβ build-up. Therefore Aβ degrading enzymes have become valuable targets of therapy. In this review, we discuss the pathway of Aβ synthesis and clearance along with the opportunities they present for therapeutic intervention, the benefits of increasing the expression/activity of Aβ-degrading enzymes, and the untapped therapeutic potential of enzyme activation.
Collapse
Affiliation(s)
- Nkumbu L Sikanyika
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Helena C Parkington
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - A Ian Smith
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Sanjaya Kuruppu
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
39
|
Angelucci F, Čechová K, Průša R, Hort J. Amyloid beta soluble forms and plasminogen activation system in Alzheimer's disease: Consequences on extracellular maturation of brain-derived neurotrophic factor and therapeutic implications. CNS Neurosci Ther 2018; 25:303-313. [PMID: 30403004 PMCID: PMC6488905 DOI: 10.1111/cns.13082] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 12/18/2022] Open
Abstract
Soluble oligomeric forms of amyloid beta (Aβ) play an important role in causing the cognitive deficits in Alzheimer’s disease (AD) by targeting and disrupting synaptic pathways. Thus, the present research is directed toward identifying the neuronal pathways targeted by soluble forms and, accordingly, develops alternative therapeutic strategies. The neurotrophin brain‐derived neurotrophic factor (BDNF) is synthesized as a precursor (pro‐BDNF) which is cleaved extracellularly by plasmin to release the mature form. The conversion from pro‐BDNF to BDNF is an important process that regulates neuronal activity and memory processes. Plasmin‐dependent maturation of BDNF in the brain is regulated by plasminogen activator inhibitor‐1 (PAI‐1), the natural inhibitor of tissue‐type plasminogen activator (tPA). Therefore, tPA/PAI‐1 system represents an important regulator of extracellular BDNF/pro‐BDNF ratio. In this review, we summarize the data on the components of the plasminogen activation system and on BDNF in AD. Moreover, we will hypothesize a possible pathogenic mechanism caused by soluble Aβ forms based on the effects on tPA/PAI‐1 system and on the consequence of an altered conversion from pro‐BDNF to the mature BDNF in the brain of AD patients. Translation into clinic may include a better characterization of the disease stage and future direction on therapeutic targets.
Collapse
Affiliation(s)
- Francesco Angelucci
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Kateřina Čechová
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic.,International Clinical Research Centre, St. Anne's University Hospital, Brno, Czech Republic
| | - Richard Průša
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Jakub Hort
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic.,International Clinical Research Centre, St. Anne's University Hospital, Brno, Czech Republic
| |
Collapse
|
40
|
Boland B, Yu WH, Corti O, Mollereau B, Henriques A, Bezard E, Pastores GM, Rubinsztein DC, Nixon RA, Duchen MR, Mallucci GR, Kroemer G, Levine B, Eskelinen EL, Mochel F, Spedding M, Louis C, Martin OR, Millan MJ. Promoting the clearance of neurotoxic proteins in neurodegenerative disorders of ageing. Nat Rev Drug Discov 2018; 17:660-688. [PMID: 30116051 DOI: 10.1038/nrd.2018.109] [Citation(s) in RCA: 361] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurodegenerative disorders of ageing (NDAs) such as Alzheimer disease, Parkinson disease, frontotemporal dementia, Huntington disease and amyotrophic lateral sclerosis represent a major socio-economic challenge in view of their high prevalence yet poor treatment. They are often called 'proteinopathies' owing to the presence of misfolded and aggregated proteins that lose their physiological roles and acquire neurotoxic properties. One reason underlying the accumulation and spread of oligomeric forms of neurotoxic proteins is insufficient clearance by the autophagic-lysosomal network. Several other clearance pathways are also compromised in NDAs: chaperone-mediated autophagy, the ubiquitin-proteasome system, extracellular clearance by proteases and extrusion into the circulation via the blood-brain barrier and glymphatic system. This article focuses on emerging mechanisms for promoting the clearance of neurotoxic proteins, a strategy that may curtail the onset and slow the progression of NDAs.
Collapse
Affiliation(s)
- Barry Boland
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Wai Haung Yu
- Department of Pathology and Cell Biology, Taub Institute for Alzheimer's Disease Research, Columbia University, New York, NY, USA
| | - Olga Corti
- ICM Institute for Brain and Spinal Cord, Paris, France
| | | | | | - Erwan Bezard
- CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Greg M Pastores
- Department of Metabolic Diseases, Mater Misericordiae University Hospital, Dublin, Ireland
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge and UK Dementia Research Institute, Cambridge Biomedical Campus, Cambridge, UK
| | - Ralph A Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA.,Departments of Psychiatry and Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Michael R Duchen
- UCL Consortium for Mitochondrial Research and Department of Cell and Developmental Biology, University College London, London, UK
| | - Giovanna R Mallucci
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Guido Kroemer
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France.,Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.,Pôle de Biologie, Hopitâl Européen George Pompidou (AP-HP), Paris, France
| | - Beth Levine
- Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Howard Hughes Medical Institute, Dallas, TX, USA
| | | | - Fanny Mochel
- INSERM U 1127, Brain and Spine Institute, Paris, France
| | | | - Caroline Louis
- Centre for Therapeutic Innovation in Neuropsychiatry, IDR Servier, 78290 Croissy sur Seine, France
| | - Olivier R Martin
- Université d'Orléans & CNRS, Institut de Chimie Organique et Analytique (ICOA), Orléans, France
| | - Mark J Millan
- Centre for Therapeutic Innovation in Neuropsychiatry, IDR Servier, 78290 Croissy sur Seine, France
| |
Collapse
|
41
|
Wang J, Yuan Y, Cai R, Huang R, Tian S, Lin H, Guo D, Wang S. Association between Plasma Levels of PAI-1, tPA/PAI-1 Molar Ratio, and Mild Cognitive Impairment in Chinese Patients with Type 2 Diabetes Mellitus. J Alzheimers Dis 2018; 63:835-845. [PMID: 29689724 DOI: 10.3233/jad-171038] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jiaqi Wang
- Department of Endocrinology, The Affiliated ZhongDa Hospital of Southeast University, Nanjing, PR China
- Medical School of Southeast University, Nanjing, PR China
| | - Yang Yuan
- Department of Endocrinology, The Affiliated ZhongDa Hospital of Southeast University, Nanjing, PR China
| | - Rongrong Cai
- Department of Endocrinology, The Affiliated ZhongDa Hospital of Southeast University, Nanjing, PR China
- Medical School of Southeast University, Nanjing, PR China
| | - Rong Huang
- Department of Endocrinology, The Affiliated ZhongDa Hospital of Southeast University, Nanjing, PR China
- Medical School of Southeast University, Nanjing, PR China
| | - Sai Tian
- Department of Endocrinology, The Affiliated ZhongDa Hospital of Southeast University, Nanjing, PR China
- Medical School of Southeast University, Nanjing, PR China
| | - Hongyan Lin
- Department of Endocrinology, The Affiliated ZhongDa Hospital of Southeast University, Nanjing, PR China
- Medical School of Southeast University, Nanjing, PR China
| | - Dan Guo
- Department of Endocrinology, The Affiliated ZhongDa Hospital of Southeast University, Nanjing, PR China
- Medical School of Southeast University, Nanjing, PR China
| | - Shaohua Wang
- Department of Endocrinology, The Affiliated ZhongDa Hospital of Southeast University, Nanjing, PR China
| |
Collapse
|
42
|
Yamaoka N, Murano K, Kodama H, Maeda A, Dan T, Nakabayashi T, Miyata T, Meguro K. Identification of novel plasminogen activator inhibitor-1 inhibitors with improved oral bioavailability: Structure optimization of N-acylanthranilic acid derivatives. Bioorg Med Chem Lett 2018; 28:809-813. [PMID: 29366646 DOI: 10.1016/j.bmcl.2017.11.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/03/2017] [Accepted: 11/08/2017] [Indexed: 12/20/2022]
Abstract
Novel plasminogen activator inhibitor-1 (PAI-1) inhibitors with highly improved oral bioavailability were discovered by structure-activity relationship studies on N-acyl-5-chloroanthranilic acid derivatives. Because lipophilic N-acyl groups seemed to be important for the anthranilic acid derivatives to strongly inhibit PAI-1, synthesis of compounds in which 5-chloroanthranilic acid was bound to a variety of highly lipophilic moieties with appropriate linkers was investigated. As the result it appeared that some of the derivatives possessing aryl- or heteroaryl-substituted phenyl groups in the acyl chain had potent in vitro PAI-1 inhibitory activity. Oral absorbability of typical compounds was also evaluated in rats, and compounds 40, 55, 60 and 76 which have diverse chemical structure with each other were selected for further pharmacological evaluation.
Collapse
Affiliation(s)
- Nagahisa Yamaoka
- CT Laboratory, Hamari Chemicals, Ltd., 1-4-29 Kunijima, Higashiyodogawa-ku, Osaka 533-0024, Japan.
| | - Kenji Murano
- CT Laboratory, Hamari Chemicals, Ltd., 1-4-29 Kunijima, Higashiyodogawa-ku, Osaka 533-0024, Japan
| | - Hidehiko Kodama
- CT Laboratory, Hamari Chemicals, Ltd., 1-4-29 Kunijima, Higashiyodogawa-ku, Osaka 533-0024, Japan
| | - Akihisa Maeda
- CT Laboratory, Hamari Chemicals, Ltd., 1-4-29 Kunijima, Higashiyodogawa-ku, Osaka 533-0024, Japan
| | - Takashi Dan
- United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Tetsuo Nakabayashi
- United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Toshio Miyata
- United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Kanji Meguro
- CT Laboratory, Hamari Chemicals, Ltd., 1-4-29 Kunijima, Higashiyodogawa-ku, Osaka 533-0024, Japan
| |
Collapse
|
43
|
Abstract
Alzheimer's disease (AD) is the primary cause of age-related dementia. Effective strategies to prevent and treat AD remain elusive despite major efforts to understand its basic biology and clinical pathophysiology. Significant investments in therapeutic drug discovery programs over the past two decades have yielded some important insights but no blockbuster drugs to alter the course of disease. Because significant memory loss and cognitive decline are associated with neuron death and loss of gray matter, especially in the frontal cortex and hippocampus, some focus in drug development has shifted to early prevention of cellular pathology. Although clinical trial design is challenging, due in part to a lack of robust biomarkers with predictive value, some optimism has come from the identification and study of inherited forms of early-onset AD and genetic risk factors that provide insights about molecular pathophysiology and potential drug targets. In addition, better understanding of the Aβ amyloid pathway and the tau pathway-leading to amyloid plaques and neurofibrillary tangles, respectively, which are histopathological hallmarks of AD-continues to drive significant drug research and development programs. The main focus of this review is to summarize the most recent basic biology, biochemistry, and pharmacology that serve as a foundation for more than 50 active advanced-phase clinical trials for AD prevention and therapy.
Collapse
Affiliation(s)
- W Vallen Graham
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, NY 10065;
| | - Alessandra Bonito-Oliva
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, NY 10065;
| | - Thomas P Sakmar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, NY 10065; .,Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, 141 57 Huddinge, Sweden
| |
Collapse
|
44
|
Bagyinszky E, Giau VV, Shim K, Suk K, An SSA, Kim S. Role of inflammatory molecules in the Alzheimer's disease progression and diagnosis. J Neurol Sci 2017; 376:242-254. [PMID: 28431620 DOI: 10.1016/j.jns.2017.03.031] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/14/2017] [Accepted: 03/20/2017] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is a complex disorder and the most common form of neurodegenerative dementia. Several genetic, environmental, and physiological factors, including inflammations and metabolic influences, are involved in the progression of AD. Inflammations are composed of complicated networks of many chemokines and cytokines with diverse cells. Inflammatory molecules are needed for the protection against pathogens, and maintaining their balances is important for normal physiological function. Recent studies demonstrated that inflammation may be involved in neurodegenerative dementia. Cellular immune components, such as microglia or astrocytes, mediate the release of inflammatory molecules, including tumor necrosis factor, growth factors, adhesion molecules, or chemokines. Over- and underexpression of pro- and anti-inflammatory molecules, respectively, may result in neuroinflammation and thus disease initiation and progression. In addition, levels of several inflammatory factors were reported to be altered in the brain or bodily fluids of patients with AD, reflecting their neuropathological changes. Therefore, simultaneous detection of several inflammatory molecules in the early or pre-symptomatic stage may improve the early diagnosis of AD. Further studies are needed to determine, how induction or inhibition of inflammatory factors could be used for AD therapies. This review summarizes the role or possible role of immune cells and inflammatory molecules in disease progression or prevention.
Collapse
Affiliation(s)
- Eva Bagyinszky
- Department of Bionano Technology, Gachon University, Gyeonggi-do, Republic of Korea
| | - Vo Van Giau
- Department of Bionano Technology, Gachon University, Gyeonggi-do, Republic of Korea
| | - Kyuhwan Shim
- Department of Bionano Technology, Gachon University, Gyeonggi-do, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Seong Soo A An
- Department of Bionano Technology, Gachon University, Gyeonggi-do, Republic of Korea.
| | - SangYun Kim
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Gyeonggi-do, Republic of Korea
| |
Collapse
|
45
|
Zhang C, Huang X, Li J. Light chain amyloidosis: Where are the light chains from and how they play their pathogenic role? Blood Rev 2017; 31:261-270. [PMID: 28336182 DOI: 10.1016/j.blre.2017.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 03/03/2017] [Indexed: 12/17/2022]
Abstract
Amyloid light-chain (AL) amyloidosis is a plasma-cell dyscrasia, as well as the most common type of systematic amyloidosis. Pathogenic plasma cells that have distinct cytogenetic and molecular properties secrete an excess amount of amyloidogenic light chains. Assisted by post-translational modifications, matrix components, and other environmental factors, these light chains undergo a conformational change that triggers the formation of amyloid fibrils that overrides the extracellular protein quality control system. Moreover, the amyloidogenic light-chain itself is cytotoxic. As a consequence, organ dysfunction is caused by both organ architecture disruption and the direct cytotoxic effect of amyloidogenic light chains. Here, we reviewed the molecular mechanisms underlying this sequence of events that ultimately leads to AL amyloidosis and also discuss current in vitro and in vivo models, as well as relevant novel therapeutic approaches.
Collapse
Affiliation(s)
- Chunlan Zhang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xufei Huang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jian Li
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
46
|
Gerenu G, Martisova E, Ferrero H, Carracedo M, Rantamäki T, Ramirez MJ, Gil-Bea FJ. Modulation of BDNF cleavage by plasminogen-activator inhibitor-1 contributes to Alzheimer's neuropathology and cognitive deficits. Biochim Biophys Acta Mol Basis Dis 2017; 1863:991-1001. [PMID: 28132883 DOI: 10.1016/j.bbadis.2017.01.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/18/2017] [Accepted: 01/25/2017] [Indexed: 12/22/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) plays pivotal roles in neuronal function. The cleaved - mature - form of BDNF (mBDNF), predominantly expressed in adult brains, critically determines its effects. However, insufficient proteolytic processing under pathology may lead to the precursor form of BDNF (proBDNF) and thereby increased neuronal apoptosis and synaptic weakening. Previous findings in our lab showed that cognitive stimulation (CS) delayed memory decline in Tg2576 mouse model of Alzheimer's disease (AD), an effect that was tightly associated with augmented levels of mBDNF. In view of this association, the present study explored whether altered cleavage of BDNF could be involved in AD-related traits triggered by excessive amyloid-β (Aβ) pathology and whether this process could be therapeutically targeted. Aβ pathology, both in AD patient samples and experimental models, triggered the upregulation of plasminogen-activator inhibitor-1 (PAI-1) via JNK/c-Jun. This led to inhibition of plasmin-regulated conversion of mBDNF. Pharmacological inhibition of PAI-1 with PAI-039 sufficiently reverted Aβ-induced tau hyperphosphorylation and neurotoxicity. Chronic treatment of 15 old-month Tg2576 mice with oral administration of PAI-039 resulted in improved BDNF maturation and cognitive function without inducing significant changes in amyloid burden. In conclusion, upregulation of PAI-1 may be a critical mechanism underlying insufficient neurotrophic support and increased neurodegeneration associated with AD. Thus, targeting BDNF maturation through pharmacological inhibition of PAI-1 might become a potential treatment for AD.
Collapse
Affiliation(s)
- Gorka Gerenu
- Department of Pharmacology, University of Navarra, Pamplona, Spain; Department of Cellular and Molecular Neuropharmacology, Division of Neuroscience, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Eva Martisova
- Department of Cellular and Molecular Neuropharmacology, Division of Neuroscience, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Hilda Ferrero
- Department of Pharmacology, University of Navarra, Pamplona, Spain
| | - Miguel Carracedo
- Department of Cellular and Molecular Neuropharmacology, Division of Neuroscience, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Tomi Rantamäki
- Faculty of Biological and Environmental Sciences, Department of Biosciences, Division of Physiology and Neuroscience, P.O. Box 65, FI-00014, University of Helsinki, Finland
| | | | - Francisco Javier Gil-Bea
- Department of Cellular and Molecular Neuropharmacology, Division of Neuroscience, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; Department of Neuroscience, Biodonostia Health Research Institute, San Sebastian, Spain; Centre for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, Ministry of Economy and Competitiveness, Spain; Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
47
|
Lutz S, Williams E, Muthu P. Engineering Therapeutic Enzymes. DIRECTED ENZYME EVOLUTION: ADVANCES AND APPLICATIONS 2017:17-67. [DOI: 10.1007/978-3-319-50413-1_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
48
|
Freese C, Hanada S, Fallier-Becker P, Kirkpatrick CJ, Unger RE. Identification of neuronal and angiogenic growth factors in an in vitro blood-brain barrier model system: Relevance in barrier integrity and tight junction formation and complexity. Microvasc Res 2016; 111:1-11. [PMID: 27988246 DOI: 10.1016/j.mvr.2016.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/18/2016] [Accepted: 12/03/2016] [Indexed: 12/01/2022]
Abstract
We previously demonstrated that the co-cultivation of endothelial cells with neural cells resulted in an improved integrity of the in vitro blood-brain barrier (BBB), and that this model could be useful to evaluate the transport properties of potential central nervous system disease drugs through the microvascular brain endothelial. In this study we have used real-time PCR, fluorescent microscopy, protein arrays and enzyme-linked immunosorbent assays to determine which neural- and endothelial cell-derived factors are produced in the co-culture and improve the integrity of the BBB. In addition, a further improvement of the BBB integrity was achieved by adjusting serum concentrations and growth factors or by the addition of brain pericytes. Under specific conditions expression of angiogenic, angiostatic and neurotrophic factors such as endostatin, pigment epithelium derived factor (PEDF/serpins-F1), tissue inhibitor of metalloproteinases (TIMP-1), and vascular endothelial cell growth factor (VEGF) closely mimicked the in vivo situation. Freeze-fracture analysis of these cultures demonstrated the quality and organization of the endothelial tight junction structures and their association to the two different lipidic leaflets of the membrane. Finally, a multi-cell culture model of the BBB with a transendothelial electrical resistance up to 371 (±15) Ω×cm2 was developed, which may be useful for preliminary screening of drug transport across the BBB and to evaluate cellular crosstalk of cells involved in the neurovascular unit.
Collapse
Affiliation(s)
- Christian Freese
- REPAIR-lab, Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Langenbeckstr. 1, 55131 Mainz, Germany.
| | - Sanshiro Hanada
- REPAIR-lab, Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Langenbeckstr. 1, 55131 Mainz, Germany.
| | - Petra Fallier-Becker
- Institute of Pathology and Neuropathology, University of Tuebingen, Geschwister-Scholl-Platz, 72074 Tuebingen, Germany.
| | - C James Kirkpatrick
- REPAIR-lab, Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Langenbeckstr. 1, 55131 Mainz, Germany.
| | - Ronald E Unger
- REPAIR-lab, Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Langenbeckstr. 1, 55131 Mainz, Germany.
| |
Collapse
|
49
|
Pautus S, Alami M, Adam F, Bernadat G, Lawrence DA, De Carvalho A, Ferry G, Rupin A, Hamze A, Champy P, Bonneau N, Gloanec P, Peglion JL, Brion JD, Bianchini EP, Borgel D. Characterization of the Annonaceous acetogenin, annonacinone, a natural product inhibitor of plasminogen activator inhibitor-1. Sci Rep 2016; 6:36462. [PMID: 27876785 PMCID: PMC5120274 DOI: 10.1038/srep36462] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/17/2016] [Indexed: 12/26/2022] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1) is the main inhibitor of the tissue type and urokinase type plasminogen activators. High levels of PAI-1 are correlated with an increased risk of thrombotic events and several other pathologies. Despite several compounds with in vitro activity being developed, none of them are currently in clinical use. In this study, we evaluated a novel PAI-1 inhibitor, annonacinone, a natural product from the Annonaceous acetogenins group. Annonacinone was identified in a chromogenic screening assay and was more potent than tiplaxtinin. Annonacinone showed high potency ex vivo on thromboelastography and was able to potentiate the thrombolytic effect of tPA in vivo in a murine model. SDS-PAGE showed that annonacinone inhibited formation of PAI-1/tPA complex via enhancement of the substrate pathway. Mutagenesis and molecular dynamics allowed us to identify annonacinone binding site close to helix D and E and β-sheets 2A.
Collapse
Affiliation(s)
- Stéphane Pautus
- Université Paris-Sud, INSERM UMR-S1176, 94276 Le Kremlin-Bicêtre, France.,Servier Research Institute, 11 rue des Moulineaux 92150 Suresnes, France
| | - Mouad Alami
- Université Paris-Sud, BioCIS, 5 rue Jean-Baptiste Clément 92290 Châtenay-Malabry, France
| | - Fréderic Adam
- Université Paris-Sud, INSERM UMR-S1176, 94276 Le Kremlin-Bicêtre, France
| | - Guillaume Bernadat
- Université Paris-Sud, BioCIS, 5 rue Jean-Baptiste Clément 92290 Châtenay-Malabry, France
| | - Daniel A Lawrence
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Allan De Carvalho
- Université Paris-Sud, INSERM UMR-S1176, 94276 Le Kremlin-Bicêtre, France
| | - Gilles Ferry
- Servier Research Institute, 11 rue des Moulineaux 92150 Suresnes, France
| | - Alain Rupin
- Servier Research Institute, 11 rue des Moulineaux 92150 Suresnes, France
| | - Abdallah Hamze
- Université Paris-Sud, BioCIS, 5 rue Jean-Baptiste Clément 92290 Châtenay-Malabry, France
| | - Pierre Champy
- Laboratoire de Pharmacognosie, BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, UFR Pharmacie, 5 rue Jean-Baptiste Clément, 92290, Châtenay-Malabry, France
| | - Natacha Bonneau
- Laboratoire de Pharmacognosie, BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, UFR Pharmacie, 5 rue Jean-Baptiste Clément, 92290, Châtenay-Malabry, France
| | - Philippe Gloanec
- Servier Research Institute, 11 rue des Moulineaux 92150 Suresnes, France
| | - Jean-Louis Peglion
- Servier Research Institute, 11 rue des Moulineaux 92150 Suresnes, France
| | - Jean-Daniel Brion
- Université Paris-Sud, BioCIS, 5 rue Jean-Baptiste Clément 92290 Châtenay-Malabry, France
| | - Elsa P Bianchini
- Université Paris-Sud, INSERM UMR-S1176, 94276 Le Kremlin-Bicêtre, France
| | - Delphine Borgel
- Université Paris-Sud, INSERM UMR-S1176, 94276 Le Kremlin-Bicêtre, France.,AP-HP, Hôpital Necker, Service d'Hématologie Biologique, 75015 Paris, France
| |
Collapse
|
50
|
Abstract
The amyloid β-protein (Aβ) plays an indispensable role in the pathogenesis of Alzheimer disease (AD). Aβ is subject to proteolytic degradation by a diverse array of peptidases and proteinases, known collectively as Aβ-degrading proteases (AβDPs). A growing number of AβDPs have been identified that impact Aβ powerfully and in a surprising variety of ways. As such, AβDPs hold considerable therapeutic potential for the treatment and/or prevention of AD. Here, we critically review the relative merits of therapeutic strategies targeting AβDPs compared with current Aβ-lowering strategies focused on immunotherapies and pharmacological modulation of Aβ-producing enzymes. Several innovative advances have increased considerably the feasibility of delivering AβDPs to the brain or enhancing their activity in a non-invasive manner. We argue that therapies targeting AβDPs offer numerous potential advantages that should be explored through continued research into this promising field.
Collapse
Affiliation(s)
- Malcolm A Leissring
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Office: 5212 Natural Sciences II, Irvine, CA, 92697-1450, USA.
| |
Collapse
|