1
|
Tang SKY, Marshall WF. Physical Forces in Regeneration of Cells and Tissues. Cold Spring Harb Perspect Biol 2025; 17:a041527. [PMID: 38806241 PMCID: PMC11602525 DOI: 10.1101/cshperspect.a041527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The ability to regenerate after the loss of a part is a hallmark of living systems and occurs at both the tissue and organ scales, but also within individual cells. Regeneration entails many processes that are physical and mechanical in nature, including the closure of wounds, the repositioning of material from one place to another, and the restoration of symmetry following perturbations. However, we currently know far more about the genetics and molecular signaling pathways involved in regeneration, and there is a need to investigate the role of physical forces in the process. Here, we will provide an overview of how physical forces may play a role in wound healing and regeneration, in which we compare and contrast regenerative processes at the tissue and cell scales.
Collapse
Affiliation(s)
- Sindy K Y Tang
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305-3030, USA
| | - Wallace F Marshall
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94158-2517, USA
| |
Collapse
|
2
|
Huang HL, Grandinetti G, Heissler SM, Chinthalapudi K. Cryo-EM structures of the membrane repair protein dysferlin. Nat Commun 2024; 15:9650. [PMID: 39511170 PMCID: PMC11544258 DOI: 10.1038/s41467-024-53773-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024] Open
Abstract
Plasma membrane repair in response to damage is essential for cell viability. The ferlin family protein dysferlin plays a key role in Ca2+-dependent membrane repair in striated muscles. Mutations in dysferlin lead to a spectrum of diseases known as dysferlinopathies. The lack of a structure of dysferlin and other ferlin family members has impeded a mechanistic understanding of membrane repair mechanisms and the development of therapies. Here, we present the cryo-EM structures of the full-length human dysferlin monomer and homodimer at 2.96 Å and 4.65 Å resolution. These structures define the architecture of dysferlin, ferlin family-specific domains, and homodimerization mechanisms essential to function. Furthermore, biophysical and cell biology studies revealed how missense mutations in dysferlin contribute to disease mechanisms. In summary, our study provides a framework for the molecular mechanisms of dysferlin and the broader ferlin family, offering a foundation for the development of therapeutic strategies aimed at treating dysferlinopathies.
Collapse
Affiliation(s)
- Hsiang-Ling Huang
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, USA
| | - Giovanna Grandinetti
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, USA
- Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, USA
| | - Sarah M Heissler
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, USA.
| | - Krishna Chinthalapudi
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, USA.
| |
Collapse
|
3
|
Yumura S. Wound Repair of the Cell Membrane: Lessons from Dictyostelium Cells. Cells 2024; 13:341. [PMID: 38391954 PMCID: PMC10886852 DOI: 10.3390/cells13040341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
The cell membrane is frequently subjected to damage, either through physical or chemical means. The swift restoration of the cell membrane's integrity is crucial to prevent the leakage of intracellular materials and the uncontrolled influx of extracellular ions. Consequently, wound repair plays a vital role in cell survival, akin to the importance of DNA repair. The mechanisms involved in wound repair encompass a series of events, including ion influx, membrane patch formation, endocytosis, exocytosis, recruitment of the actin cytoskeleton, and the elimination of damaged membrane sections. Despite the absence of a universally accepted general model, diverse molecular models have been proposed for wound repair in different organisms. Traditional wound methods not only damage the cell membrane but also impact intracellular structures, including the underlying cortical actin networks, microtubules, and organelles. In contrast, the more recent improved laserporation selectively targets the cell membrane. Studies on Dictyostelium cells utilizing this method have introduced a novel perspective on the wound repair mechanism. This review commences by detailing methods for inducing wounds and subsequently reviews recent developments in the field.
Collapse
Affiliation(s)
- Shigehiko Yumura
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8511, Japan
| |
Collapse
|
4
|
Role of calcium-sensor proteins in cell membrane repair. Biosci Rep 2023; 43:232522. [PMID: 36728029 PMCID: PMC9970828 DOI: 10.1042/bsr20220765] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/03/2023] Open
Abstract
Cell membrane repair is a critical process used to maintain cell integrity and survival from potentially lethal chemical, and mechanical membrane injury. Rapid increases in local calcium levels due to a membrane rupture have been widely accepted as a trigger for multiple membrane-resealing models that utilize exocytosis, endocytosis, patching, and shedding mechanisms. Calcium-sensor proteins, such as synaptotagmins (Syt), dysferlin, S100 proteins, and annexins, have all been identified to regulate, or participate in, multiple modes of membrane repair. Dysfunction of membrane repair from inefficiencies or genetic alterations in these proteins contributes to diseases such as muscular dystrophy (MD) and heart disease. The present review covers the role of some of the key calcium-sensor proteins and their involvement in membrane repair.
Collapse
|
5
|
Xu B, Wang C, Chen H, Zhang L, Gong L, Zhong L, Yang J. Protective role of MG53 against ischemia/reperfusion injury on multiple organs: A narrative review. Front Physiol 2022; 13:1018971. [PMID: 36479346 PMCID: PMC9720843 DOI: 10.3389/fphys.2022.1018971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/07/2022] [Indexed: 12/19/2023] Open
Abstract
Ischemia/reperfusion (I/R) injury is a common clinical problem after coronary angioplasty, cardiopulmonary resuscitation, and organ transplantation, which can lead to cell damage and death. Mitsugumin 53 (MG53), also known as Trim72, is a conservative member of the TRIM family and is highly expressed in mouse skeletal and cardiac muscle, with minimal amounts in humans. MG53 has been proven to be involved in repairing cell membrane damage. It has a protective effect on I/R injury in multiple oxygen-dependent organs, such as the heart, brain, lung, kidney, and liver. Recombinant human MG53 also plays a unique role in I/R, sepsis, and other aspects, which is expected to provide new ideas for related treatment. This article briefly reviews the pathophysiology of I/R injury and how MG53 mitigates multi-organ I/R injury.
Collapse
Affiliation(s)
- Bowen Xu
- The 2nd Medical College of Binzhou Medical University, Yantai, Shandong, China
- Department of Cardiology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Chunxiao Wang
- Department of Cardiology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Hongping Chen
- Department of Cardiology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
- Medical Department of Qingdao University, Qingdao, Shandong, China
| | - Lihui Zhang
- Department of Cardiology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
- Medical Department of Qingdao University, Qingdao, Shandong, China
| | - Lei Gong
- Department of Cardiology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Lin Zhong
- Department of Cardiology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Jun Yang
- Department of Cardiology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| |
Collapse
|
6
|
Li A, Yi J, Li X, Dong L, Ostrow LW, Ma J, Zhou J. Deficient Sarcolemma Repair in ALS: A Novel Mechanism with Therapeutic Potential. Cells 2022; 11:cells11203263. [PMID: 36291129 PMCID: PMC9600524 DOI: 10.3390/cells11203263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
The plasma membrane (sarcolemma) of skeletal muscle myofibers is susceptible to injury caused by physical and chemical stresses during normal daily movement and/or under disease conditions. These acute plasma membrane disruptions are normally compensated by an intrinsic membrane resealing process involving interactions of multiple intracellular proteins including dysferlin, annexin, caveolin, and Mitsugumin 53 (MG53)/TRIM72. There is new evidence for compromised muscle sarcolemma repair mechanisms in Amyotrophic Lateral Sclerosis (ALS). Mitochondrial dysfunction in proximity to neuromuscular junctions (NMJs) increases oxidative stress, triggering MG53 aggregation and loss of its function. Compromised membrane repair further worsens sarcolemma fragility and amplifies oxidative stress in a vicious cycle. This article is to review existing literature supporting the concept that ALS is a disease of oxidative-stress induced disruption of muscle membrane repair that compromise the integrity of the NMJs and hence augmenting muscle membrane repair mechanisms could represent a viable therapeutic strategy for ALS.
Collapse
Affiliation(s)
- Ang Li
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Jianxun Yi
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Xuejun Li
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Li Dong
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Lyle W. Ostrow
- Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19122, USA
- Correspondence: (L.W.O.); (J.M.); (J.Z.)
| | - Jianjie Ma
- Department of Surgery, University of Virginia, Charlottesville, VA 22903, USA
- Correspondence: (L.W.O.); (J.M.); (J.Z.)
| | - Jingsong Zhou
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA
- Correspondence: (L.W.O.); (J.M.); (J.Z.)
| |
Collapse
|
7
|
Fischer L, Nosratlo M, Hast K, Karakaya E, Ströhlein N, Esser TU, Gerum R, Richter S, Engel FB, Detsch R, Fabry B, Thievessen I. Calcium supplementation of bioinks reduces shear stress-induced cell damage during bioprinting. Biofabrication 2022; 14. [PMID: 35896101 DOI: 10.1088/1758-5090/ac84af] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/27/2022] [Indexed: 11/12/2022]
Abstract
During bioprinting, cells are suspended in a viscous bioink and extruded under pressure through small diameter printing needles. The combination of high pressure and small needle diameter exposes cells to considerable shear stress, which can lead to cell damage and death. Approaches to monitor and control shear stress-induced cell damage are currently not well established. To visualize the effects of printing-induced shear stress on plasma membrane integrity, we add FM 1-43 to the bioink, a styryl dye that becomes fluorescent when bound to lipid membranes, such as the cellular plasma membrane. Upon plasma membrane disruption, the dye enters the cell and also stains intracellular membranes. Extrusion of alginate-suspended NIH/3T3 cells through a 200µm printing needle led to an increased FM 1-43 incorporation at high pressure, demonstrating that typical shear stresses during bioprinting can transiently damage the plasma membrane. Cell imaging in a microfluidic channel confirmed that FM 1-43 incorporation is caused by cell strain. Notably, high printing pressure also impaired cell survival in bioprinting experiments. Using cell types of different stiffnesses, we find that shear stress-induced cell strain, FM 1-43 incorporation and cell death were reduced in stiffer compared to softer cell types and demonstrate that cell damage and death correlate with shear stress-induced cell deformation. Importantly, supplementation of the suspension medium with physiological concentrations of CaCl2greatly reduced shear stress-induced cell damage and death but not cell deformation. As the sudden influx of calcium ions is known to induce rapid cellular vesicle exocytosis and subsequent actin polymerization in the cell cortex, we hypothesize that calcium supplementation facilitates the rapid resealing of plasma membrane damage sites. We recommend that bioinks should be routinely supplemented with physiological concentrations of calcium ions to reduce shear stress-induced cell damage and death during extrusion bioprinting.
Collapse
Affiliation(s)
- Lena Fischer
- Department of Physics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Mojtaba Nosratlo
- Department of Physics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Katharina Hast
- Department of Physics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Emine Karakaya
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Nadine Ströhlein
- Department of Physics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Tilman U Esser
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Richard Gerum
- Department of Physics, University of Erlangen-Nuremberg, Erlangen, Germany.,Department of Physics and Astronomy, York-University Toronto, Ontario, Canada
| | - Sebastian Richter
- Department of Physics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - F B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Rainer Detsch
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Ben Fabry
- Department of Physics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Ingo Thievessen
- Department of Physics, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
8
|
Recruitment of tetraspanin TSP-15 to epidermal wounds promotes plasma membrane repair in C. elegans. Dev Cell 2022; 57:1630-1642.e4. [PMID: 35777354 DOI: 10.1016/j.devcel.2022.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 04/26/2022] [Accepted: 06/07/2022] [Indexed: 01/14/2023]
Abstract
Maintaining the integrity of the plasma membrane after cellular damage is essential for cell survival. However, it is unclear how cells repair large membrane injuries in vivo. Here, we report that the tetraspanin protein, TSP-15, is recruited to large membrane wounds and forms a ring-like structure in C. elegans epidermis and promotes membrane repair after an injury. TSP-15 recruits from the adjacent region underneath the plasma membrane to the wound site in a RAB-5-dependent manner upon membrane damage. Genetic and live-imaging analysis suggested that the endosomal sorting complex required for transport III (ESCRT III) is necessary for recruiting TSP-15 from the early endosome to the damaged membrane. Moreover, TSP-15 interacts with and is required for the accumulation of t-SNARE protein Syntaxin-2, which facilitates membrane repair. These findings provide valuable insights into the role of the conserved tetraspanin TSP-15 in the cellular repair of large wounds resulting from environmental insults.
Collapse
|
9
|
Sønder SL, Ebstrup ML, Dias C, Heitmann ASB, Nylandsted J. Plasma Membrane Wounding and Repair Assays for Eukaryotic Cells. Bio Protoc 2022; 12:e4437. [PMID: 35799909 PMCID: PMC9244498 DOI: 10.21769/bioprotoc.4437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/08/2022] [Accepted: 04/19/2022] [Indexed: 12/29/2022] Open
Abstract
Damage to the plasma membrane and loss of membrane integrity are detrimental to eukaryotic cells. It is, therefore, essential that cells possess an efficient membrane repair system to survive. However, the different cellular and molecular mechanisms behind plasma membrane repair have not been fully elucidated. Here, we present three complementary methods for plasma membrane wounding, and measurement of membrane repair and integrity. The first protocol is based on real time imaging of cell membrane repair kinetics in response to laser-induced injury. The second and third protocols are end point assays that provide a population-based measure of membrane integrity, after either mechanical injury by vortex mixing with glass beads, or by detergent-induced injury by digitonin in sublytic concentrations. The protocols can be applied to most adherent eukaryotic cells in culture, as well as cells in suspension.
Collapse
Affiliation(s)
- Stine Lauritzen Sønder
- Membrane Integrity, Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100, Copenhagen, Denmark
| | - Malene Laage Ebstrup
- Membrane Integrity, Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100, Copenhagen, Denmark
| | - Catarina Dias
- Membrane Integrity, Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100, Copenhagen, Denmark
| | - Anne Sofie Busk Heitmann
- Membrane Integrity, Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100, Copenhagen, Denmark
| | - Jesper Nylandsted
- Membrane Integrity, Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100, Copenhagen, Denmark
,
Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3C, DK-2200 Copenhagen N, Denmark
,
*For correspondence:
| |
Collapse
|
10
|
Maeda FY, van Haaren JJ, Langley DB, Christ D, Andrews NW, Song W. Surface-associated antigen induces permeabilization of primary mouse B-cells and lysosome exocytosis facilitating antigen uptake and presentation to T-cells. eLife 2021; 10:66984. [PMID: 34704555 PMCID: PMC8589448 DOI: 10.7554/elife.66984] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022] Open
Abstract
B-cell receptor (BCR)-mediated antigen internalization and presentation are essential for humoral memory immune responses. Antigen encountered by B-cells is often tightly associated with the surface of pathogens and/or antigen-presenting cells. Internalization of such antigens requires myosin-mediated traction forces and extracellular release of lysosomal enzymes, but the mechanism triggering lysosomal exocytosis is unknown. Here, we show that BCR-mediated recognition of antigen tethered to beads, to planar lipid-bilayers or expressed on cell surfaces causes localized plasma membrane (PM) permeabilization, a process that requires BCR signaling and non-muscle myosin II activity. B-cell permeabilization triggers PM repair responses involving lysosomal exocytosis, and B-cells permeabilized by surface-associated antigen internalize more antigen than cells that remain intact. Higher affinity antigens cause more B-cell permeabilization and lysosomal exocytosis and are more efficiently presented to T-cells. Thus, PM permeabilization by surface-associated antigen triggers a lysosome-mediated B-cell resealing response, providing the extracellular hydrolases that facilitate antigen internalization and presentation.
Collapse
Affiliation(s)
- Fernando Y Maeda
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
| | - Jurriaan Jh van Haaren
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
| | - David B Langley
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Daniel Christ
- Immunology, Garvan Institute of Medical Research, Darlinghurst/Sydney, Australia
| | - Norma W Andrews
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
| | - Wenxia Song
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
| |
Collapse
|
11
|
Yi J, Li A, Li X, Park K, Zhou X, Yi F, Xiao Y, Yoon D, Tan T, Ostrow LW, Ma J, Zhou J. MG53 Preserves Neuromuscular Junction Integrity and Alleviates ALS Disease Progression. Antioxidants (Basel) 2021; 10:antiox10101522. [PMID: 34679657 PMCID: PMC8532806 DOI: 10.3390/antiox10101522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/10/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022] Open
Abstract
Respiratory failure from progressive respiratory muscle weakness is the most common cause of death in amyotrophic lateral sclerosis (ALS). Defects in neuromuscular junctions (NMJs) and progressive NMJ loss occur at early stages, thus stabilizing and preserving NMJs represents a potential therapeutic strategy to slow ALS disease progression. Here we demonstrate that NMJ damage is repaired by MG53, an intrinsic muscle protein involved in plasma membrane repair. Compromised diaphragm muscle membrane repair and NMJ integrity are early pathological events in ALS. Diaphragm muscles from ALS mouse models show increased susceptibility to injury and intracellular MG53 aggregation, which is also a hallmark of human muscle samples from ALS patients. We show that systemic administration of recombinant human MG53 protein in ALS mice protects against injury to diaphragm muscle, preserves NMJ integrity, and slows ALS disease progression. As MG53 is present in circulation in rodents and humans under physiological conditions, our findings provide proof-of-concept data supporting MG53 as a potentially safe and effective therapy to mitigate ALS progression.
Collapse
Affiliation(s)
- Jianxun Yi
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA; (J.Y.); (A.L.); (X.L.)
- Department of Physiology, Kansas City University of Medicine and Biosciences, Kansas City, MO 64106, USA; (Y.X.); (D.Y.)
| | - Ang Li
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA; (J.Y.); (A.L.); (X.L.)
- Department of Physiology, Kansas City University of Medicine and Biosciences, Kansas City, MO 64106, USA; (Y.X.); (D.Y.)
| | - Xuejun Li
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA; (J.Y.); (A.L.); (X.L.)
- Department of Physiology, Kansas City University of Medicine and Biosciences, Kansas City, MO 64106, USA; (Y.X.); (D.Y.)
| | - Kiho Park
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; (K.P.); (X.Z.); (F.Y.); (T.T.)
| | - Xinyu Zhou
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; (K.P.); (X.Z.); (F.Y.); (T.T.)
| | - Frank Yi
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; (K.P.); (X.Z.); (F.Y.); (T.T.)
| | - Yajuan Xiao
- Department of Physiology, Kansas City University of Medicine and Biosciences, Kansas City, MO 64106, USA; (Y.X.); (D.Y.)
| | - Dosuk Yoon
- Department of Physiology, Kansas City University of Medicine and Biosciences, Kansas City, MO 64106, USA; (Y.X.); (D.Y.)
| | - Tao Tan
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; (K.P.); (X.Z.); (F.Y.); (T.T.)
| | - Lyle W. Ostrow
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA;
| | - Jianjie Ma
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; (K.P.); (X.Z.); (F.Y.); (T.T.)
- Correspondence: (J.M.); (J.Z.)
| | - Jingsong Zhou
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA; (J.Y.); (A.L.); (X.L.)
- Department of Physiology, Kansas City University of Medicine and Biosciences, Kansas City, MO 64106, USA; (Y.X.); (D.Y.)
- Correspondence: (J.M.); (J.Z.)
| |
Collapse
|
12
|
Rahman MH, Wong CHN, Lee MM, Chan MK, Ho YP. Efficient encapsulation of functional proteins into erythrocytes by controlled shear-mediated membrane deformation. LAB ON A CHIP 2021; 21:2121-2128. [PMID: 34002198 DOI: 10.1039/d0lc01077d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Red blood cells (RBCs) are attractive carriers of biomolecular payloads due to their biocompatibility and the ability to shelter their encapsulated cargo. Commonly employed strategies to encapsulate payloads into RBCs, such as hypotonic shock, membrane fusion or electroporation, often suffer from low throughput and unrecoverable membrane impairment. This work describes an investigation of a method to encapsulate protein payloads into RBCs by controlling membrane deformation either transiently or extendedly in a microfluidic channel. Under the optimized conditions, the loading efficiency of enhanced green fluorescent protein into mouse RBCs increased was about 2.5- and 4-fold compared to that with osmotic entrapment using transient and extended deformation, respectively. Significantly, mouse RBCs loaded with human arginase exhibit higher enzymatic activity and membrane integrity compared to their counterparts loaded by osmotic entrapment. These features together with the fact that this shear-mediated encapsulation strategy allows loading with physiological buffers highlight the key advantages of this approach compared to traditional osmotic entrapment.
Collapse
Affiliation(s)
- Md Habibur Rahman
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China. and Centre for Novel Biomaterials, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Chung Hong Nathaniel Wong
- Centre for Novel Biomaterials, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China and School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Marianne M Lee
- Centre for Novel Biomaterials, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China and School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Michael K Chan
- Centre for Novel Biomaterials, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China and School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Yi-Ping Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China. and Centre for Novel Biomaterials, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China and Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China and The Ministry of Education Key Laboratory of Regeneration Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
13
|
Annexins and Membrane Repair Dysfunctions in Muscular Dystrophies. Int J Mol Sci 2021; 22:ijms22105276. [PMID: 34067866 PMCID: PMC8155887 DOI: 10.3390/ijms22105276] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022] Open
Abstract
Muscular dystrophies constitute a group of genetic disorders that cause weakness and progressive loss of skeletal muscle mass. Among them, Miyoshi muscular dystrophy 1 (MMD1), limb girdle muscular dystrophy type R2 (LGMDR2/2B), and LGMDR12 (2L) are characterized by mutation in gene encoding key membrane-repair protein, which leads to severe dysfunctions in sarcolemma repair. Cell membrane disruption is a physiological event induced by mechanical stress, such as muscle contraction and stretching. Like many eukaryotic cells, muscle fibers possess a protein machinery ensuring fast resealing of damaged plasma membrane. Members of the annexins A (ANXA) family belong to this protein machinery. ANXA are small soluble proteins, twelve in number in humans, which share the property of binding to membranes exposing negatively-charged phospholipids in the presence of calcium (Ca2+). Many ANXA have been reported to participate in membrane repair of varied cell types and species, including human skeletal muscle cells in which they may play a collective role in protection and repair of the sarcolemma. Here, we discuss the participation of ANXA in membrane repair of healthy skeletal muscle cells and how dysregulation of ANXA expression may impact the clinical severity of muscular dystrophies.
Collapse
|
14
|
Kadri L, Bacle A, Khoury S, Vandebrouck C, Bescond J, Faivre JF, Ferreira T, Sebille S. Polyunsaturated Phospholipids Increase Cell Resilience to Mechanical Constraints. Cells 2021; 10:937. [PMID: 33920685 PMCID: PMC8073313 DOI: 10.3390/cells10040937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/10/2021] [Accepted: 04/13/2021] [Indexed: 11/24/2022] Open
Abstract
If polyunsaturated fatty acids (PUFAs) are generally accepted to be good for health, the mechanisms of their bona fide benefits still remain elusive. Membrane phospholipids (PLs) of the cardiovascular system and skeletal muscles are particularly enriched in PUFAs. The fatty acid composition of PLs is known to regulate crucial membrane properties, including elasticity and plasticity. Since muscle cells undergo repeated cycles of elongation and relaxation, we postulated in the present study that PUFA-containing PLs could be central players for muscle cell adaptation to mechanical constraints. By a combination of in cellulo and in silico approaches, we show that PUFAs, and particularly the ω-3 docosahexaenoic acid (DHA), regulate important properties of the plasma membrane that improve muscle cell resilience to mechanical constraints. Thanks to their unique property to contortionate within the bilayer plane, they facilitate the formation of vacuole-like dilation (VLD), which, in turn, avoid cell breakage under mechanical constraints.
Collapse
|
15
|
Zhang KS, Blauch LR, Huang W, Marshall WF, Tang SKY. Microfluidic guillotine reveals multiple timescales and mechanical modes of wound response in Stentor coeruleus. BMC Biol 2021; 19:63. [PMID: 33810789 PMCID: PMC8017755 DOI: 10.1186/s12915-021-00970-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/31/2021] [Indexed: 11/11/2022] Open
Abstract
Background Wound healing is one of the defining features of life and is seen not only in tissues but also within individual cells. Understanding wound response at the single-cell level is critical for determining fundamental cellular functions needed for cell repair and survival. This understanding could also enable the engineering of single-cell wound repair strategies in emerging synthetic cell research. One approach is to examine and adapt self-repair mechanisms from a living system that already demonstrates robust capacity to heal from large wounds. Towards this end, Stentor coeruleus, a single-celled free-living ciliate protozoan, is a unique model because of its robust wound healing capacity. This capacity allows one to perturb the wounding conditions and measure their effect on the repair process without immediately causing cell death, thereby providing a robust platform for probing the self-repair mechanism. Results Here we used a microfluidic guillotine and a fluorescence-based assay to probe the timescales of wound repair and of mechanical modes of wound response in Stentor. We found that Stentor requires ~ 100–1000 s to close bisection wounds, depending on the severity of the wound. This corresponds to a healing rate of ~ 8–80 μm2/s, faster than most other single cells reported in the literature. Further, we characterized three distinct mechanical modes of wound response in Stentor: contraction, cytoplasm retrieval, and twisting/pulling. Using chemical perturbations, active cilia were found to be important for only the twisting/pulling mode. Contraction of myonemes, a major contractile fiber in Stentor, was surprisingly not important for the contraction mode and was of low importance for the others. Conclusions While events local to the wound site have been the focus of many single-cell wound repair studies, our results suggest that large-scale mechanical behaviors may be of greater importance to single-cell wound repair than previously thought. The work here advances our understanding of the wound response in Stentor and will lay the foundation for further investigations into the underlying components and molecular mechanisms involved. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-00970-0.
Collapse
Affiliation(s)
- Kevin S Zhang
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Lucas R Blauch
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Wesley Huang
- Department of Biology, San Francisco State University, San Francisco, CA, 94132, USA
| | - Wallace F Marshall
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Sindy K Y Tang
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
16
|
Vidallon MLP, Tabor RF, Bishop AI, Teo BM. Ultrasound-assisted fabrication of acoustically active, erythrocyte membrane "bubbles". ULTRASONICS SONOCHEMISTRY 2021; 72:105429. [PMID: 33383541 PMCID: PMC7803824 DOI: 10.1016/j.ultsonch.2020.105429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 11/22/2020] [Accepted: 12/11/2020] [Indexed: 05/04/2023]
Abstract
In this communication, we report an ultrasound-assisted method, utilising human red blood cell (RBC) or erythrocyte membranes, to produce acoustically active "bubbles", intended for vasculature imaging. The resulting RBC membrane bubbles have an average size of 1.5 μm with a generally spherical morphology, altered internal aqueous compartment contents, and small gas-containing protrusions or "pockets" in between the membrane bilayer. We also found that this method produced some nanobubbles (200-400 nm diameter), due to the shedding of lipid components from the RBC membranes to compensate for the membrane structural changes. In vitro ultrasound imaging showed that RBC membrane bubbles had comparable ultrasound contrast enhancement as the standard DEFINTYTM microbubble preparation (~13% v/v) and lower concentrations of this standard contrast agent. This current technology demonstrate a new and important application of ultrasound and of RBC membranes, having inherent biocompatibility, as potential material for the development of new types of ultrasound imaging agents, without the use of additional lipid components and pre-made microbubbles.
Collapse
Affiliation(s)
| | - Rico F Tabor
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Alexis I Bishop
- School of Physics, Monash University, Clayton, VIC, 3800, Australia
| | - Boon Mian Teo
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
17
|
Foltz SJ, Cui YY, Choo HJ, Hartzell HC. ANO5 ensures trafficking of annexins in wounded myofibers. J Cell Biol 2021; 220:e202007059. [PMID: 33496727 PMCID: PMC7844426 DOI: 10.1083/jcb.202007059] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/20/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022] Open
Abstract
Mutations in ANO5 (TMEM16E) cause limb-girdle muscular dystrophy R12. Defective plasma membrane repair is a likely mechanism. Using myofibers from Ano5 knockout mice, we show that trafficking of several annexin proteins, which together form a cap at the site of injury, is altered upon loss of ANO5. Annexin A2 accumulates at the wound to nearly twice the level observed in WT fibers, while annexin A6 accumulation is substantially inhibited in the absence of ANO5. Appearance of annexins A1 and A5 at the cap is likewise diminished in the Ano5 knockout. These changes are correlated with an alteration in annexin repair cap fine structure and shedding of annexin-positive vesicles. We conclude that loss of annexin coordination during repair is disrupted in Ano5 knockout mice and underlies the defective repair phenotype. Although ANO5 is a phospholipid scramblase, abnormal repair is rescued by overexpression of a scramblase-defective ANO5 mutant, suggesting a novel, scramblase-independent role of ANO5 in repair.
Collapse
Affiliation(s)
| | | | - Hyojung J. Choo
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA
| | - H. Criss Hartzell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
18
|
McElhanon KE, Young N, Hampton J, Paleo BJ, Kwiatkowski TA, Beck EX, Capati A, Jablonski K, Gurney T, Perez MAL, Aggarwal R, Oddis CV, Jarjour WN, Weisleder N. Autoantibodies targeting TRIM72 compromise membrane repair and contribute to inflammatory myopathy. J Clin Invest 2021; 130:4440-4455. [PMID: 32687067 DOI: 10.1172/jci131721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 05/14/2020] [Indexed: 12/27/2022] Open
Abstract
Idiopathic inflammatory myopathies (IIM) involve chronic inflammation of skeletal muscle and subsequent muscle degeneration due to an uncontrolled autoimmune response; however, the mechanisms leading to pathogenesis are not well understood. A compromised sarcolemmal repair process could promote an aberrant exposure of intramuscular antigens with the subsequent initiation of an inflammatory response that contributes to IIM. Using an adoptive transfer mouse model of IIM, we show that sarcolemmal repair is significantly compromised in distal skeletal muscle in the absence of inflammation. We identified autoantibodies against TRIM72 (also known as MG53), a muscle-enriched membrane repair protein, in IIM patient sera and in our mouse model of IIM by ELISA. We found that patient sera with elevated levels of TRIM72 autoantibodies suppress sarcolemmal resealing in healthy skeletal muscle, and depletion of TRIM72 antibodies from these same serum samples rescues sarcolemmal repair capacity. Autoantibodies targeting TRIM72 lead to skeletal muscle fibers with compromised membrane barrier function, providing a continuous source of autoantigens to promote autoimmunity and further amplifying humoral responses. These findings reveal a potential pathogenic mechanism that acts as a feedback loop contributing to the progression of IIM.
Collapse
Affiliation(s)
- Kevin E McElhanon
- Dorothy M. Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, and
| | - Nicholas Young
- Division of Rheumatology and Immunology, Department of Internal Medicine, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Jeffrey Hampton
- Division of Rheumatology and Immunology, Department of Internal Medicine, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Brian J Paleo
- Dorothy M. Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, and
| | - Thomas A Kwiatkowski
- Dorothy M. Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, and
| | - Eric X Beck
- Dorothy M. Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, and
| | - Ana Capati
- Dorothy M. Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, and
| | - Kyle Jablonski
- Division of Rheumatology and Immunology, Department of Internal Medicine, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Travis Gurney
- Dorothy M. Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, and
| | - Miguel A Lopez Perez
- Dorothy M. Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, and
| | - Rohit Aggarwal
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Chester V Oddis
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Wael N Jarjour
- Division of Rheumatology and Immunology, Department of Internal Medicine, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Noah Weisleder
- Dorothy M. Davis Heart and Lung Research Institute and Department of Physiology and Cell Biology, and
| |
Collapse
|
19
|
Collins CR, Hackett F, Howell SA, Snijders AP, Russell MRG, Collinson LM, Blackman MJ. The malaria parasite sheddase SUB2 governs host red blood cell membrane sealing at invasion. eLife 2020; 9:e61121. [PMID: 33287958 PMCID: PMC7723409 DOI: 10.7554/elife.61121] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/26/2020] [Indexed: 12/26/2022] Open
Abstract
Red blood cell (RBC) invasion by malaria merozoites involves formation of a parasitophorous vacuole into which the parasite moves. The vacuole membrane seals and pinches off behind the parasite through an unknown mechanism, enclosing the parasite within the RBC. During invasion, several parasite surface proteins are shed by a membrane-bound protease called SUB2. Here we show that genetic depletion of SUB2 abolishes shedding of a range of parasite proteins, identifying previously unrecognized SUB2 substrates. Interaction of SUB2-null merozoites with RBCs leads to either abortive invasion with rapid RBC lysis, or successful entry but developmental arrest. Selective failure to shed the most abundant SUB2 substrate, MSP1, reduces intracellular replication, whilst conditional ablation of the substrate AMA1 produces host RBC lysis. We conclude that SUB2 activity is critical for host RBC membrane sealing following parasite internalisation and for correct functioning of merozoite surface proteins.
Collapse
Affiliation(s)
- Christine R Collins
- Malaria Biochemistry Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Fiona Hackett
- Malaria Biochemistry Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Steven A Howell
- Protein Analysis and Proteomics Platform, The Francis Crick InstituteLondonUnited Kingdom
| | - Ambrosius P Snijders
- Protein Analysis and Proteomics Platform, The Francis Crick InstituteLondonUnited Kingdom
| | - Matthew RG Russell
- Electron Microscopy Science Technology Platform, The Francis Crick InstituteLondonUnited Kingdom
| | - Lucy M Collinson
- Electron Microscopy Science Technology Platform, The Francis Crick InstituteLondonUnited Kingdom
| | - Michael J Blackman
- Malaria Biochemistry Laboratory, The Francis Crick InstituteLondonUnited Kingdom
- Faculty of Infectious Diseases, London School of Hygiene & Tropical MedicineLondonUnited Kingdom
| |
Collapse
|
20
|
McDade JR, Naylor MT, Michele DE. Sarcolemma wounding activates dynamin-dependent endocytosis in striated muscle. FEBS J 2020; 288:160-174. [PMID: 32893434 DOI: 10.1111/febs.15556] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/08/2020] [Accepted: 09/01/2020] [Indexed: 01/13/2023]
Abstract
Plasma membrane repair is an evolutionarily conserved mechanism by which cells can seal breaches in the plasma membrane. Mutations in several proteins with putative roles in sarcolemma integrity, membrane repair, and membrane transport result in several forms of muscle disease; however, the mechanisms that are activated and responsible for sarcolemma resealing are not well understood. Using the standard assays for membrane repair, which track the uptake of FM 1-43 dye into adult skeletal muscle fibers following laser-induced sarcolemma disruption, we show that labeling of resting fibers by FM1-43 prior to membrane wounding and the induced FM1-43 dye uptake after sarcolemma wounding occurs via dynamin-dependent endocytosis. Dysferlin-deficient muscle fibers show elevated dye uptake following wounding, which is the basis for the assertion that membrane repair is defective in this model. Our data show that dynamin inhibition mitigates the differences in FM1-43 dye uptake between dysferlin-null and wild-type muscle fibers, suggesting that elevated wound-induced FM1-43 uptake in dysferlin-deficient muscle may actually be due to enhanced dynamin-dependent endocytosis following wounding, though dynamin inhibition had no effect on dysferlin trafficking after wounding. By monitoring calcium flux after membrane wounding, we show that reversal of calcium precedes the sustained, slower increase of dynamin-dependent FM1-43 uptake in WT fibers, and that dysferlin-deficient muscle fibers have persistently increased calcium after wounding, consistent with its proposed role in resealing. These data highlight a previously unappreciated role for dynamin-dependent endocytosis in wounded skeletal muscle fibers and identify overactive dynamin-dependent endocytosis following sarcolemma wounding as a potential mechanism or consequence of dysferlin deficiency.
Collapse
Affiliation(s)
- Joel R McDade
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Molly T Naylor
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.,Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, USA
| | - Daniel E Michele
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.,Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, USA.,Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
21
|
Paleo BJ, Madalena KM, Mital R, McElhanon KE, Kwiatkowski TA, Rose AL, Lerch JK, Weisleder N. Enhancing membrane repair increases regeneration in a sciatic injury model. PLoS One 2020; 15:e0231194. [PMID: 32271817 PMCID: PMC7145019 DOI: 10.1371/journal.pone.0231194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/18/2020] [Indexed: 12/26/2022] Open
Abstract
Various injuries to the neural tissues can cause irreversible damage to multiple functions of the nervous system ranging from motor control to cognitive function. The limited treatment options available for patients have led to extensive interest in studying the mechanisms of neuronal regeneration and recovery from injury. Since many neurons are terminally differentiated, by increasing cell survival following injury it may be possible to minimize the impact of these injuries and provide translational potential for treatment of neuronal diseases. While several cell types are known to survive injury through plasma membrane repair mechanisms, there has been little investigation of membrane repair in neurons and even fewer efforts to target membrane repair as a therapy in neurons. Studies from our laboratory group and others demonstrated that mitsugumin 53 (MG53), a muscle-enriched tripartite motif (TRIM) family protein also known as TRIM72, is an essential component of the cell membrane repair machinery in skeletal muscle. Interestingly, recombinant human MG53 (rhMG53) can be applied exogenously to increase membrane repair capacity both in vitro and in vivo. Increasing the membrane repair capacity of neurons could potentially minimize the death of these cells and affect the progression of various neuronal diseases. In this study we assess the therapeutic potential of rhMG53 to increase membrane repair in cultured neurons and in an in vivo mouse model of neurotrauma. We found that a robust repair response exists in various neuronal cells and that rhMG53 can increase neuronal membrane repair both in vitro and in vivo. These findings provide direct evidence of conserved membrane repair responses in neurons and that these repair mechanisms can be targeted as a potential therapeutic approach for neuronal injury.
Collapse
Affiliation(s)
- Brian J. Paleo
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Kathryn M. Madalena
- Department of Neuroscience, The Ohio State University, Columbus, Ohio, United States of America
| | - Rohan Mital
- Department of Neuroscience, The Ohio State University, Columbus, Ohio, United States of America
| | - Kevin E. McElhanon
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Thomas A. Kwiatkowski
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Aubrey L. Rose
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Jessica K. Lerch
- Department of Neuroscience, The Ohio State University, Columbus, Ohio, United States of America
| | - Noah Weisleder
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
22
|
Chu M, Li J, Zhang J, Shen S, Li C, Gao Y, Zhang S. AtCaM4 interacts with a Sec14-like protein, PATL1, to regulate freezing tolerance in Arabidopsis in a CBF-independent manner. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5241-5253. [PMID: 30124909 DOI: 10.1093/jxb/ery278] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/28/2018] [Indexed: 05/25/2023]
Abstract
Calmodulin (CaM), a multifunctional Ca2+ sensor, mediates multiple reactions involved in regulation of plant growth and responses to environmental stress. In this study, we found that AtCaM4 plays a negative role in freezing tolerance in Arabidopsis. The deletion of AtCaM4 resulted in enhanced freezing tolerance in cam4 mutant plants. Although AtCaM4 and AtCaM1 were cold-induced isoforms, cam4/cam1Ri double-mutant and cam4 single-mutant plants exhibited similar improvements in freezing tolerance, indicating that AtCaM4 plays major role. Furthermore, we found that AtCaM4 may influence freezing tolerance in a C-repeat binding factor (CBF)-independent manner as cold-induced expression patterns of CBFs did not change in the cam4/cam1Ri mutant. In addition, among the cold-responsive (COR) genes detected, KIN1, COR15b, and COR8.6 exhibited clearly enhanced expression over the long term in cam4/cam1Ri mutant plants exposed to cold stress. Using immunoprecipitation and mass spectrometry, we identified multiple candidate AtCaM4-interacting proteins. Co-immunoprecipitation assays confirmed the interaction of AtCaM4 with PATL1 in vivo and a phenotype analysis showed that patl1 mutant plants exhibited enhanced freezing tolerance. Thus, we conclude that AtCaM4 negatively regulates freezing tolerance in Arabidopsis by interacting with the novel CaM-binding protein PATL1.
Collapse
Affiliation(s)
- Mingxue Chu
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei, P.R. China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Hebei, P.R. China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei, P.R. China
| | - Jiaojiao Li
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei, P.R. China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Hebei, P.R. China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei, P.R. China
| | - Jingyu Zhang
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei, P.R. China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Hebei, P.R. China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei, P.R. China
| | - Sufen Shen
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei, P.R. China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Hebei, P.R. China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei, P.R. China
| | - Cuina Li
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei, P.R. China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Hebei, P.R. China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei, P.R. China
| | - Yingjie Gao
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei, P.R. China
| | - Suqiao Zhang
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei, P.R. China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Hebei, P.R. China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei, P.R. China
| |
Collapse
|
23
|
Croissant C, Bouvet F, Tan S, Bouter A. Imaging Membrane Repair in Single Cells Using Correlative Light and Electron Microscopy. ACTA ACUST UNITED AC 2018; 81:e55. [PMID: 30085404 DOI: 10.1002/cpcb.55] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Many cells possess the ability to repair plasma membrane disruption in physiological conditions. Growing evidence indicates a correlation between membrane repair and many human diseases. For example, a negative correlation is observed in muscle where failure to reseal sarcolemma may contribute to the development of muscular dystrophies. Instead, a positive correlation is observed in cancer cells where membrane repair may be exacerbated during metastasis. Here we describe a protocol that combines laser technology for membrane damage, immunostaining with gold nanoparticles and imaging by fluorescence microscopy and transmission electron microscopy (TEM), which allows the characterization of the molecular machinery involved in membrane repair. Fluorescence microscopy enables to determine the subcellular localization of candidate proteins in damaged cells while TEM offers high-resolution ultrastructural analysis of the µm²-disruption site, which enables to decipher the membrane repair mechanism. Here we focus on the study of human skeletal muscle cells, for obvious clinical interest, but this protocol is also suitable for other cell types. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Coralie Croissant
- Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, CNRS, University of Bordeaux, Pessac, France
| | - Flora Bouvet
- Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, CNRS, University of Bordeaux, Pessac, France
| | - Sisareuth Tan
- Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, CNRS, University of Bordeaux, Pessac, France
| | - Anthony Bouter
- Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, CNRS, University of Bordeaux, Pessac, France
| |
Collapse
|
24
|
Nagahama M, Takehara M, Miyamoto K, Ishidoh K, Kobayashi K. Acid Sphingomyelinase Promotes Cellular Internalization of Clostridium perfringens Iota-Toxin. Toxins (Basel) 2018; 10:toxins10050209. [PMID: 29783772 PMCID: PMC5983265 DOI: 10.3390/toxins10050209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/14/2018] [Accepted: 05/18/2018] [Indexed: 11/16/2022] Open
Abstract
Clostridium perfringens iota-toxin is a binary actin-ADP-ribosylating toxin composed of the enzymatic component Ia and receptor binding component Ib. Ib binds to a cell surface receptor, forms Ib oligomer in lipid rafts, and associates with Ia. The Ia-Ib complex then internalizes by endocytosis. Here, we showed that acid sphingomyelinase (ASMase) facilitates the cellular uptake of iota-toxin. Inhibitions of ASMase and lysosomal exocytosis by respective blockers depressed cell rounding induced by iota-toxin. The cytotoxicity of the toxin increased in the presence of Ca2+ in extracellular fluids. Ib entered target cells in the presence but not the absence of Ca2+. Ib induced the extracellular release of ASMase in the presence of Ca2+. ASMase siRNA prevented the cell rounding induced by iota-toxin. Furthermore, treatment of the cells with Ib resulted in the production of ceramide in cytoplasmic vesicles. These observations showed that ASMase promotes the internalization of iota-toxin into target cells.
Collapse
Affiliation(s)
- Masahiro Nagahama
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan.
| | - Masaya Takehara
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan.
| | - Kazuaki Miyamoto
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan.
| | - Kazumi Ishidoh
- Division of Molecular Biology, Institute for Health Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan.
| | - Keiko Kobayashi
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan.
| |
Collapse
|
25
|
Cholesterol-dependent cytolysins impair pro-inflammatory macrophage responses. Sci Rep 2018; 8:6458. [PMID: 29691463 PMCID: PMC5915385 DOI: 10.1038/s41598-018-24955-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/11/2018] [Indexed: 12/20/2022] Open
Abstract
Necrotizing soft tissue infections are lethal polymicrobial infections. Two key microbes that cause necrotizing soft tissue infections are Streptococcus pyogenes and Clostridium perfringens. These pathogens evade innate immunity using multiple virulence factors, including cholesterol-dependent cytolysins (CDCs). CDCs are resisted by mammalian cells through the sequestration and shedding of pores during intrinsic membrane repair. One hypothesis is that vesicle shedding promotes immune evasion by concomitantly eliminating key signaling proteins present in cholesterol-rich microdomains. To test this hypothesis, murine macrophages were challenged with sublytic CDC doses. CDCs suppressed LPS or IFNγ-stimulated TNFα production and CD69 and CD86 surface expression. This suppression was cell intrinsic. Two membrane repair pathways, patch repair and intrinsic repair, might mediate TNFα suppression. However, patch repair did not correlate with TNFα suppression. Intrinsic repair partially contributed to macrophage dysfunction because TLR4 and the IFNγR were partially shed following CDC challenge. Intrinsic repair was not sufficient for suppression, because pore formation was also required. These findings suggest that even when CDCs fail to kill cells, they may impair innate immune signaling responses dependent on cholesterol-rich microdomains. This is one potential mechanism to explain the lethality of S. pyogenes and C. perfringens during necrotizing soft tissue infections.
Collapse
|
26
|
Petty HR. Frontiers of Complex Disease Mechanisms: Membrane Surface Tension May Link Genotype to Phenotype in Glaucoma. Front Cell Dev Biol 2018; 6:32. [PMID: 29682502 PMCID: PMC5897435 DOI: 10.3389/fcell.2018.00032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/13/2018] [Indexed: 12/19/2022] Open
Abstract
Although many monogenic diseases are understood based upon structural changes of gene products, less progress has been made concerning polygenic disease mechanisms. This article presents a new interdisciplinary approach to understand complex diseases, especially their genetic polymorphisms. I focus upon primary open angle glaucoma (POAG). Although elevated intraocular pressure (IOP) and oxidative stress are glaucoma hallmarks, the linkages between these factors and cell death are obscure. Reactive oxygen species (ROS) promote the formation of oxidatively truncated phosphoglycerides (OTP), free fatty acids, lysophosphoglycerides, oxysterols, and other chemical species that promote membrane disruption and decrease membrane surface tension. Several POAG-linked gene polymorphisms identify proteins that manage damaged lipids and/or influence membrane surface tension. POAG-related genes expected to participate in these processes include: ELOVL5, ABCA1, APOE4, GST, CYP46A1, MYOC, and CAV. POAG-related gene products are expected to influence membrane surface tension, strength, and repair. I propose that heightened IOP overcomes retinal ganglion cell (RGC) membrane compressive strength, weakened by damaged lipid accumulation, to form pores. The ensuing structural failure promotes apoptosis and blindness. The linkage between glaucoma genotype and phenotype is mediated by physical events. Force balancing between the IOP and compressive strength regulates pore nucleation; force balancing between pore line tension and membrane surface tension regulates pore growth. Similar events may contribute to traumatic brain injury, Alzheimer's disease, and macular degeneration.
Collapse
Affiliation(s)
- Howard R Petty
- Department of Ophthalmology and Visual Sciences, The University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
27
|
|
28
|
Lee JJA, Maruyama R, Sakurai H, Yokota T. Cell Membrane Repair Assay Using a Two-photon Laser Microscope. J Vis Exp 2018. [PMID: 29364240 DOI: 10.3791/56999] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Numerous pathophysiological insults can cause damage to cell membranes and, when coupled with innate defects in cell membrane repair or integrity, can result in disease. Understanding the underlying molecular mechanisms surrounding cell membrane repair is, therefore, an important objective to the development of novel therapeutic strategies for diseases associated with dysfunctional cell membrane dynamics. Many in vitro and in vivo studies aimed at understanding cell membrane resealing in various disease contexts utilize two-photon laser ablation as a standard for determining functional outcomes following experimental treatments. In this assay, cell membranes are subjected to wounding with a two-photon laser, which causes the cell membrane to rupture and fluorescent dye to infiltrate the cell. The intensity of fluorescence within the cell can then be monitored to quantify the cell's ability to reseal itself. There are several alternative methods for assessing cell membrane response to injury, as well as great variation in the two-photon laser wounding approach itself, therefore, a single, unified model of cell wounding would beneficially serve to decrease the variation between these methodologies. In this article, we outline a simple two-photon laser wounding protocol for assessing cell membrane repair in vitro in both healthy and dysferlinopathy patient fibroblast cells transfected with or without a full-length dysferlin plasmid.
Collapse
Affiliation(s)
- Joshua J A Lee
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry
| | - Rika Maruyama
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry
| | | | - Toshifumi Yokota
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry;
| |
Collapse
|
29
|
Shannon EK, Stevens A, Edrington W, Zhao Y, Jayasinghe AK, Page-McCaw A, Hutson MS. Multiple Mechanisms Drive Calcium Signal Dynamics around Laser-Induced Epithelial Wounds. Biophys J 2017; 113:1623-1635. [PMID: 28978452 PMCID: PMC5627067 DOI: 10.1016/j.bpj.2017.07.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/16/2017] [Accepted: 07/31/2017] [Indexed: 12/15/2022] Open
Abstract
Epithelial wound healing is an evolutionarily conserved process that requires coordination across a field of cells. Studies in many organisms have shown that cytosolic calcium levels rise within a field of cells around the wound and spread to neighboring cells, within seconds of wounding. Although calcium is a known potent second messenger and master regulator of wound-healing programs, it is unknown what initiates the rise of cytosolic calcium across the wound field. Here we use laser ablation, a commonly used technique for the precision removal of cells or subcellular components, as a tool to investigate mechanisms of calcium entry upon wounding. Despite its precise ablation capabilities, we find that this technique damages cells outside the primary wound via a laser-induced cavitation bubble, which forms and collapses within microseconds of ablation. This cavitation bubble damages the plasma membranes of cells it contacts, tens of microns away from the wound, allowing direct calcium entry from extracellular fluid into damaged cells. Approximately 45 s after this rapid influx of calcium, we observe a second influx of calcium that spreads to neighboring cells beyond the footprint of cavitation. The occurrence of this second, delayed calcium expansion event is predicted by wound size, indicating that a separate mechanism of calcium entry exists, corresponding to cell loss at the primary wound. Our research demonstrates that the damage profile of laser ablation is more similar to a crush injury than the precision removal of individual cells. The generation of membrane microtears upon ablation is consistent with studies in the field of optoporation, which investigate ablation-induced cellular permeability. We conclude that multiple types of damage, including microtears and cell loss, result in multiple mechanisms of calcium influx around epithelial wounds.
Collapse
Affiliation(s)
- Erica K Shannon
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee; Program in Developmental Biology, Vanderbilt University, Nashville, Tennessee
| | - Aaron Stevens
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee
| | - Westin Edrington
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee
| | - Yunhua Zhao
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee
| | - Aroshan K Jayasinghe
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee
| | - Andrea Page-McCaw
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee; Program in Developmental Biology, Vanderbilt University, Nashville, Tennessee.
| | - M Shane Hutson
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee; Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee; Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, Tennessee.
| |
Collapse
|
30
|
Membrane wound healing at single cellular level. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:2351-2357. [PMID: 28756092 DOI: 10.1016/j.nano.2017.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 07/06/2017] [Accepted: 07/20/2017] [Indexed: 11/23/2022]
Abstract
We report a nano-technological method of creating a micrometer sized hole on the live cell membrane using atomic force microscope (AFM) and its resealing process at the single cellular level as a model of molecular level wound healing. First, the cell membrane was fluorescently labeled with Kusabira Orange (KO) which was tagged to a lipophilic membrane-sorting peptide. Then a glass bead glued on an AFM cantilever and modified with phospholipase A2 was made to contact the cell membrane. A small dark hole (4-14 μm2 in area) was created on the otherwise fluorescent cell surface often being accompanied by bleb formation. Refilling of holes with KO fluorescence proceeded at an average rate of ~0.014μm2s-1. The fluorescent lumps which initially surrounded the hole were gradually lost. We compared the present result with our previous ones on the repair processes of artificially damaged stress fibers (Graphical Abstract: Figure S2).
Collapse
|
31
|
Blauch LR, Gai Y, Khor JW, Sood P, Marshall WF, Tang SKY. Microfluidic guillotine for single-cell wound repair studies. Proc Natl Acad Sci U S A 2017; 114:7283-7288. [PMID: 28652371 PMCID: PMC5514750 DOI: 10.1073/pnas.1705059114] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Wound repair is a key feature distinguishing living from nonliving matter. Single cells are increasingly recognized to be capable of healing wounds. The lack of reproducible, high-throughput wounding methods has hindered single-cell wound repair studies. This work describes a microfluidic guillotine for bisecting single Stentor coeruleus cells in a continuous-flow manner. Stentor is used as a model due to its robust repair capacity and the ability to perform gene knockdown in a high-throughput manner. Local cutting dynamics reveals two regimes under which cells are bisected, one at low viscous stress where cells are cut with small membrane ruptures and high viability and one at high viscous stress where cells are cut with extended membrane ruptures and decreased viability. A cutting throughput up to 64 cells per minute-more than 200 times faster than current methods-is achieved. The method allows the generation of more than 100 cells in a synchronized stage of their repair process. This capacity, combined with high-throughput gene knockdown in Stentor, enables time-course mechanistic studies impossible with current wounding methods.
Collapse
Affiliation(s)
- Lucas R Blauch
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305
| | - Ya Gai
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305
| | - Jian Wei Khor
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305
| | - Pranidhi Sood
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143
| | - Wallace F Marshall
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143
| | - Sindy K Y Tang
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305;
| |
Collapse
|
32
|
Lukyanenko V, Muriel JM, Bloch RJ. Coupling of excitation to Ca 2+ release is modulated by dysferlin. J Physiol 2017; 595:5191-5207. [PMID: 28568606 DOI: 10.1113/jp274515] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 05/16/2017] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS Dysferlin, the protein missing in limb girdle muscular dystrophy 2B and Miyoshi myopathy, concentrates in transverse tubules of skeletal muscle, where it stabilizes voltage-induced Ca2+ transients against loss after osmotic shock injury (OSI). Local expression of dysferlin in dysferlin-null myofibres increases transient amplitude to control levels and protects them from loss after OSI. Inhibitors of ryanodine receptors (RyR1) and L-type Ca2+ channels protect voltage-induced Ca2+ transients from loss; thus both proteins play a role in injury in dysferlin's absence. Effects of Ca2+ -free medium and S107, which inhibits SR Ca2+ leak, suggest the SR as the primary source of Ca2+ responsible for the loss of the Ca2+ transient upon injury. Ca2+ waves were induced by OSI and suppressed by exogenous dysferlin. We conclude that dysferlin prevents injury-induced SR Ca2+ leak. ABSTRACT Dysferlin concentrates in the transverse tubules of skeletal muscle and stabilizes Ca2+ transients when muscle fibres are subjected to osmotic shock injury (OSI). We show here that voltage-induced Ca2+ transients elicited in dysferlin-null A/J myofibres were smaller than control A/WySnJ fibres. Regional expression of Venus-dysferlin chimeras in A/J fibres restored the full amplitude of the Ca2+ transients and protected against OSI. We also show that drugs that target ryanodine receptors (RyR1: dantrolene, tetracaine, S107) and L-type Ca2+ channels (LTCCs: nifedipine, verapamil, diltiazem) prevented the decrease in Ca2+ transients in A/J fibres following OSI. Diltiazem specifically increased transients by ∼20% in uninjured A/J fibres, restoring them to control values. The fact that both RyR1s and LTCCs were involved in OSI-induced damage suggests that damage is mediated by increased Ca2+ leak from the sarcoplasmic reticulum (SR) through the RyR1. Congruent with this, injured A/J fibres produced Ca2+ sparks and Ca2+ waves. S107 (a stabilizer of RyR1-FK506 binding protein coupling that reduces Ca2+ leak) or local expression of Venus-dysferlin prevented OSI-induced Ca2+ waves. Our data suggest that dysferlin modulates SR Ca2+ release in skeletal muscle, and that in its absence OSI causes increased RyR1-mediated Ca2+ leak from the SR into the cytoplasm.
Collapse
Affiliation(s)
- Valeriy Lukyanenko
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joaquin M Muriel
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Robert J Bloch
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
33
|
Intrinsic repair protects cells from pore-forming toxins by microvesicle shedding. Cell Death Differ 2017; 24:798-808. [PMID: 28186501 DOI: 10.1038/cdd.2017.11] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/13/2016] [Accepted: 01/17/2017] [Indexed: 01/01/2023] Open
Abstract
Pore-forming toxins (PFTs) are used by both the immune system and by pathogens to disrupt cell membranes. Cells attempt to repair this disruption in various ways, but the exact mechanism(s) that cells use are not fully understood, nor agreed upon. Current models for membrane repair include (1) patch formation (e.g., fusion of internal vesicles with plasma membrane defects), (2) endocytosis of the pores, and (3) shedding of the pores by blebbing from the cell membrane. In this study, we sought to determine the specific mechanism(s) that cells use to resist three different cholesterol-dependent PFTs: Streptolysin O, Perfringolysin O, and Intermedilysin. We found that all three toxins were shed from cells by blebbing from the cell membrane on extracellular microvesicles (MVs). Unique among the cells studied, we found that macrophages were 10 times more resistant to the toxins, yet they shed significantly smaller vesicles than the other cells. To examine the mechanism of shedding, we tested whether toxins with engineered defects in pore formation or oligomerization were shed. We found that oligomerization was necessary and sufficient for membrane shedding, suggesting that calcium influx and patch formation were not required for shedding. However, pore formation enhanced shedding, suggesting that calcium influx and patch formation enhance repair. In contrast, monomeric toxins were endocytosed. These data indicate that cells use two interrelated mechanisms of membrane repair: lipid-dependent MV shedding, which we term 'intrinsic repair', and patch formation by intracellular organelles. Endocytosis may act after membrane repair is complete by removing inactivated and monomeric toxins from the cell surface.
Collapse
|
34
|
He F, Shen H, Lin C, Fu H, Sheteiwy MS, Guan Y, Huang Y, Hu J. Transcriptome Analysis of Chilling-Imbibed Embryo Revealed Membrane Recovery Related Genes in Maize. FRONTIERS IN PLANT SCIENCE 2017; 7:1978. [PMID: 28101090 PMCID: PMC5209358 DOI: 10.3389/fpls.2016.01978] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/13/2016] [Indexed: 05/23/2023]
Abstract
The delayed seed germination and poor seedling growth caused by imbibitional chilling injury was common phenomenon in maize seedling establishment. In this study, RNA sequencing technology was used to comprehensively investigate the gene expressions in chilling-imbibed maize embryo and to reveal the underlying mechanism of chilling injury at molecular level. Imbibed seeds for 2 h at 5°C (LT2) were selected and transcriptomic comparative analysis was performed. Among 327 DEGs indentified between dry seed (CK0) and LT2, 15 specific genes with plasma membrane (PM) relevant functions belonging to lipid metabolism, stress, signaling and transport were characterized, and most of them showed down-regulation pattern under chilling stress. When transferred to 25°C for recovery (LT3), remarkable changes occurred in maize embryo. There were 873 DEGs including many PM related genes being identified between LT2 and LT3, some of which showing significant increase after 1 h recovery. Moreover, 15 genes encoding intracellular vesicular trafficking proteins were found to be exclusively differential expressed at recovery stage. It suggested that the intracellular vesicle trafficking might be essential for PM recovery through PM turnover. Furthermore, transcriptome analyses on imbibed embryos under normal condition (25°C) were also made as a contrast. A total of 651 DEGs were identified to mainly involved in protein metabolism, transcriptional regulation, signaling, and energy productions. Overall, the RNA-Seq results provided us a deep knowledge of imbibitional chilling injury on plasma membrane and a new view on PM repaired mechanism during early seed imbibition at transcriptional level. The DEGs identified in this work would be useful references in future seed germination research.
Collapse
Affiliation(s)
- Fei He
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
| | - Hangqi Shen
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
| | - Cheng Lin
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
| | - Hong Fu
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
| | - Mohamed S. Sheteiwy
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
- Department of Agronomy, Faculty of Agriculture, Mansoura UniversityMansoura, Egypt
| | - Yajing Guan
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
| | - Yutao Huang
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
| | - Jin Hu
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
| |
Collapse
|
35
|
Carmeille R, Croissant C, Bouvet F, Bouter A. Membrane Repair Assay for Human Skeletal Muscle Cells. Methods Mol Biol 2017; 1668:195-207. [PMID: 28842911 DOI: 10.1007/978-1-4939-7283-8_14] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The characterization of the membrane repair machinery in human skeletal muscle has become crucial, since it has been shown that some muscular dystrophies result from a defect of this fundamental physiological process. Deciphering membrane repair mechanism requires the development of methodologies allowing studying the response of skeletal muscle cells to sarcolemma damage and identifying candidate proteins playing a role in the membrane repair machinery. Here, we describe a protocol that is based on the creation of cell membrane disruption by infrared laser irradiation in human myotubes. Membrane disruption and repair are assayed by monitoring the incorporation into myotubes of the membrane probe FM1-43. This methodology has recently enabled us to show that Annexin-A5 is required for membrane repair in human skeletal muscle cells (Carmeille et al., Biochim Biophys Acta 1863:2267-2279, 2016).
Collapse
Affiliation(s)
- Romain Carmeille
- Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, CNRS, University of Bordeaux, IPB, Bat. B14, Allée Geoffroy Saint Hilaire, 33600, Pessac, France
| | - Coralie Croissant
- Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, CNRS, University of Bordeaux, IPB, Bat. B14, Allée Geoffroy Saint Hilaire, 33600, Pessac, France
| | - Flora Bouvet
- Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, CNRS, University of Bordeaux, IPB, Bat. B14, Allée Geoffroy Saint Hilaire, 33600, Pessac, France
| | - Anthony Bouter
- Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, CNRS, University of Bordeaux, IPB, Bat. B14, Allée Geoffroy Saint Hilaire, 33600, Pessac, France.
| |
Collapse
|
36
|
Davenport NR, Bement WM. Cell repair: Revisiting the patch hypothesis. Commun Integr Biol 2016; 9:e1253643. [PMID: 28042380 PMCID: PMC5193046 DOI: 10.1080/19420889.2016.1253643] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 10/22/2016] [Indexed: 11/23/2022] Open
Abstract
Plasma membrane damage elicits a complex and dynamic cellular response. A vital component of this response, membrane resealing, is thought to arise from fusion of intracellular membranous compartments to form a temporary, impermeant patch at the site of damage; however, this hypothesis has been difficult to confirm visually. By utilizing advanced microscopy technologies with high spatiotemporal resolution in wounded Xenopus laevis oocytes, we provide the first direct visualization of the membrane fusion events predicted by the patch hypothesis; we show the barrier formed by patching is capable of abating exchange of material across the plasma membrane within seconds. Profound changes also occur to the plasma membrane surrounding wounds; lipid remodeling is accompanied by membrane fusion events, both conventional (e.g., exocytosis) and novel (e.g., “explodosis”). Further, we reveal additional complexity in wound-induced subcellular patterning, supporting existing evidence that extensive interactions between lipid, protein, and ionic signaling pathways shape the cellular wound response.
Collapse
Affiliation(s)
- Nicholas R Davenport
- Laboratory of Cell & Molecular Biology University of Wisconsin-Madison , Madison, WI, USA
| | - William M Bement
- Laboratory of Cell & Molecular Biology University of Wisconsin-Madison, Madison, WI, USA; Department of Zoology; University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
37
|
Demonbreun AR, Quattrocelli M, Barefield DY, Allen MV, Swanson KE, McNally EM. An actin-dependent annexin complex mediates plasma membrane repair in muscle. J Cell Biol 2016; 213:705-18. [PMID: 27298325 PMCID: PMC4915191 DOI: 10.1083/jcb.201512022] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 05/19/2016] [Indexed: 01/03/2023] Open
Abstract
Disruption of the plasma membrane often accompanies cellular injury, and in muscle, plasma membrane resealing is essential for efficient recovery from injury. Muscle contraction, especially of lengthened muscle, disrupts the sarcolemma. To define the molecular machinery that directs repair, we applied laser wounding to live mammalian myofibers and assessed translocation of fluorescently tagged proteins using high-resolution microscopy. Within seconds of membrane disruption, annexins A1, A2, A5, and A6 formed a tight repair "cap." Actin was recruited to the site of damage, and annexin A6 cap formation was both actin dependent and Ca(2+) regulated. Repair proteins, including dysferlin, EHD1, EHD2, MG53, and BIN1, localized adjacent to the repair cap in a "shoulder" region enriched with phosphatidlyserine. Dye influx into muscle fibers lacking both dysferlin and the related protein myoferlin was substantially greater than control or individual null muscle fibers, underscoring the importance of shoulder-localized proteins. These data define the cap and shoulder as subdomains within the repair complex accumulating distinct and nonoverlapping components.
Collapse
Affiliation(s)
| | | | - David Y Barefield
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611
| | - Madison V Allen
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611
| | - Kaitlin E Swanson
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611 Department of Pathology, The University of Chicago, Chicago, IL 60637
| | | |
Collapse
|
38
|
Davenport NR, Sonnemann KJ, Eliceiri KW, Bement WM. Membrane dynamics during cellular wound repair. Mol Biol Cell 2016; 27:2272-85. [PMID: 27226483 PMCID: PMC4945144 DOI: 10.1091/mbc.e16-04-0223] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/18/2016] [Indexed: 12/31/2022] Open
Abstract
Fusion of intracellular compartments with each other and the plasma membrane has been hypothesized to occur at sites of cellular injury but has never been directly visualized. High-speed microscopy reveals this process and shows that resealing is accompanied by intracellular patterning of proteins, ions, and membrane lipids. Cells rapidly reseal after damage, but how they do so is unknown. It has been hypothesized that resealing occurs due to formation of a patch derived from rapid fusion of intracellular compartments at the wound site. However, patching has never been directly visualized. Here we study membrane dynamics in wounded Xenopus laevis oocytes at high spatiotemporal resolution. Consistent with the patch hypothesis, we find that damage triggers rampant fusion of intracellular compartments, generating a barrier that limits influx of extracellular dextrans. Patch formation is accompanied by compound exocytosis, local accumulation and aggregation of vesicles, and rupture of compartments facing the external environment. Subcellular patterning is evident as annexin A1, dysferlin, diacylglycerol, active Rho, and active Cdc42 are recruited to compartments confined to different regions around the wound. We also find that a ring of elevated intracellular calcium overlaps the region where membrane dynamics are most evident and persists for several minutes. The results provide the first direct visualization of membrane patching during membrane repair, reveal novel features of the repair process, and show that a remarkable degree of spatial patterning accompanies damage-induced membrane dynamics.
Collapse
Affiliation(s)
- Nicholas R Davenport
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706
| | - Kevin J Sonnemann
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706
| | - Kevin W Eliceiri
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706 Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI 53706
| | - William M Bement
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706 Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706 Department of Zoology, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
39
|
Co-option of Membrane Wounding Enables Virus Penetration into Cells. Cell Host Microbe 2016; 18:75-85. [PMID: 26159720 DOI: 10.1016/j.chom.2015.06.006] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 05/20/2015] [Accepted: 06/15/2015] [Indexed: 12/17/2022]
Abstract
During cell entry, non-enveloped viruses undergo partial uncoating to expose membrane lytic proteins for gaining access to the cytoplasm. We report that adenovirus uses membrane piercing to induce and hijack cellular wound removal processes that facilitate further membrane disruption and infection. Incoming adenovirus stimulates calcium influx and lysosomal exocytosis, a membrane repair mechanism resulting in release of acid sphingomyelinase (ASMase) and degradation of sphingomyelin to ceramide lipids in the plasma membrane. Lysosomal exocytosis is triggered by small plasma membrane lesions induced by the viral membrane lytic protein-VI, which is exposed upon mechanical cues from virus receptors, followed by virus endocytosis into leaky endosomes. Chemical inhibition or RNA interference of ASMase slows virus endocytosis, inhibits virus escape to the cytosol, and reduces infection. Ceramide enhances binding of protein-VI to lipid membranes and protein-VI-induced membrane rupture. Thus, adenovirus uses a positive feedback loop between virus uncoating and lipid signaling for efficient membrane penetration.
Collapse
|
40
|
Plasma membrane and cytoskeleton dynamics during single-cell wound healing. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015. [DOI: 10.1016/j.bbamcr.2015.07.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
41
|
Andrews NW, Corrotte M, Castro-Gomes T. Above the fray: Surface remodeling by secreted lysosomal enzymes leads to endocytosis-mediated plasma membrane repair. Semin Cell Dev Biol 2015; 45:10-7. [PMID: 26433178 DOI: 10.1016/j.semcdb.2015.09.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 09/28/2015] [Indexed: 11/16/2022]
Abstract
The study of plasma membrane repair is coming of age. Mirroring human adolescence, the field shows at the same time signs of maturity and significant uncertainty, confusion and skepticism. Here we discuss concepts that emerged from experimental data over the years, some of which are solidly established while others are still subject to different interpretations. The firmly established concepts include the critical requirement for Ca(2+) in wound repair, and the role of rapid exocytosis of intracellular vesicles. Lysosomes are being increasingly recognized as the major vesicles involved in injury-induced exocytosis in many cell types, as a growing number of laboratories detect markers for these organelles on the cell surface and lysosomal hydrolases in the supernatant of wounded cells. The more recent observation of massive endocytosis following Ca(2+)-triggered exocytosis initially came as a surprise, but this finding is also being increasingly reported by different groups, shifting the discussion to the mechanisms by which endocytosis promotes repair, and whether it operates or not in parallel with the shedding of membrane blebs. We discuss how the abundant intracellular vesicles that undergo homotypic fusion close to wound sites, previously interpreted as exocytic membrane patches, actually acquire extracellular tracers demonstrating their endocytic origin. We also suggest that an initial, temporary patch that prevents cytosol loss until the bilayer is restored might result not from vesicular fusion, but from rapid Ca(2+)-dependent crosslinking and aggregation of cytosolic proteins. Finally, we propose that cell surface remodeling, orchestrated by the extracellular release of lysosomal hydrolases and perhaps also cytosolic molecules, may represent a key aspect of the plasma membrane repair mechanism that has received little attention so far.
Collapse
Affiliation(s)
- N W Andrews
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA.
| | - M Corrotte
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - T Castro-Gomes
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| |
Collapse
|
42
|
Deng S, Sun J, Zhao R, Ding M, Zhang Y, Sun Y, Wang W, Tan Y, Liu D, Ma X, Hou P, Wang M, Lu C, Shen X, Chen S. Populus euphratica APYRASE2 Enhances Cold Tolerance by Modulating Vesicular Trafficking and Extracellular ATP in Arabidopsis Plants. PLANT PHYSIOLOGY 2015; 169:530-548. [PMID: 26224801 PMCID: PMC4577398 DOI: 10.1104/pp.15.00581] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 07/28/2015] [Indexed: 05/20/2023]
Abstract
Apyrase and extracellular ATP play crucial roles in mediating plant growth and defense responses. In the cold-tolerant poplar, Populus euphratica, low temperatures up-regulate APYRASE2 (PeAPY2) expression in callus cells. We investigated the biochemical characteristics of PeAPY2 and its role in cold tolerance. We found that PeAPY2 predominantly localized to the plasma membrane, but punctate signals also appeared in the endoplasmic reticulum and Golgi apparatus. PeAPY2 exhibited broad substrate specificity, but it most efficiently hydrolyzed purine nucleotides, particularly ATP. PeAPY2 preferred Mg(2+) as a cofactor, and it was insensitive to various, specific ATPase inhibitors. When PeAPY2 was ectopically expressed in Arabidopsis (Arabidopsis thaliana), cold tolerance was enhanced, based on root growth measurements and survival rates. Moreover, under cold stress, PeAPY2-transgenic plants maintained plasma membrane integrity and showed reduced cold-elicited electrolyte leakage compared with wild-type plants. These responses probably resulted from efficient plasma membrane repair via vesicular trafficking. Indeed, transgenic plants showed accelerated endocytosis and exocytosis during cold stress and recovery. We found that low doses of extracellular ATP accelerated vesicular trafficking, but high extracellular ATP inhibited trafficking and reduced cell viability. Cold stress caused significant increases in root medium extracellular ATP. However, under these conditions, PeAPY2-transgenic lines showed greater control of extracellular ATP levels than wild-type plants. We conclude that Arabidopsis plants that overexpressed PeAPY2 could increase membrane repair by accelerating vesicular trafficking and hydrolyzing extracellular ATP to avoid excessive, cold-elicited ATP accumulation in the root medium and, thus, reduced ATP-induced inhibition of vesicular trafficking.
Collapse
Affiliation(s)
- Shurong Deng
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People's Republic of China (S.D., R.Z., Y.Z., Y.S., W.W., Y.T., D.L., X.M., M.W., C.L., X.S., S.C.);College of Life Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China (J.S.);College of Agricultural and Food Science, Zhejiang Agricultural and Forestry University, Hangzhou 311300, People's Republic of China (M.D.); andNational Engineering Research Center for Information Technology in Agriculture, Beijing 100097, People's Republic of China (P.H.)
| | - Jian Sun
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People's Republic of China (S.D., R.Z., Y.Z., Y.S., W.W., Y.T., D.L., X.M., M.W., C.L., X.S., S.C.);College of Life Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China (J.S.);College of Agricultural and Food Science, Zhejiang Agricultural and Forestry University, Hangzhou 311300, People's Republic of China (M.D.); andNational Engineering Research Center for Information Technology in Agriculture, Beijing 100097, People's Republic of China (P.H.)
| | - Rui Zhao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People's Republic of China (S.D., R.Z., Y.Z., Y.S., W.W., Y.T., D.L., X.M., M.W., C.L., X.S., S.C.);College of Life Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China (J.S.);College of Agricultural and Food Science, Zhejiang Agricultural and Forestry University, Hangzhou 311300, People's Republic of China (M.D.); andNational Engineering Research Center for Information Technology in Agriculture, Beijing 100097, People's Republic of China (P.H.)
| | - Mingquan Ding
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People's Republic of China (S.D., R.Z., Y.Z., Y.S., W.W., Y.T., D.L., X.M., M.W., C.L., X.S., S.C.);College of Life Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China (J.S.);College of Agricultural and Food Science, Zhejiang Agricultural and Forestry University, Hangzhou 311300, People's Republic of China (M.D.); andNational Engineering Research Center for Information Technology in Agriculture, Beijing 100097, People's Republic of China (P.H.)
| | - Yinan Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People's Republic of China (S.D., R.Z., Y.Z., Y.S., W.W., Y.T., D.L., X.M., M.W., C.L., X.S., S.C.);College of Life Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China (J.S.);College of Agricultural and Food Science, Zhejiang Agricultural and Forestry University, Hangzhou 311300, People's Republic of China (M.D.); andNational Engineering Research Center for Information Technology in Agriculture, Beijing 100097, People's Republic of China (P.H.)
| | - Yuanling Sun
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People's Republic of China (S.D., R.Z., Y.Z., Y.S., W.W., Y.T., D.L., X.M., M.W., C.L., X.S., S.C.);College of Life Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China (J.S.);College of Agricultural and Food Science, Zhejiang Agricultural and Forestry University, Hangzhou 311300, People's Republic of China (M.D.); andNational Engineering Research Center for Information Technology in Agriculture, Beijing 100097, People's Republic of China (P.H.)
| | - Wei Wang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People's Republic of China (S.D., R.Z., Y.Z., Y.S., W.W., Y.T., D.L., X.M., M.W., C.L., X.S., S.C.);College of Life Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China (J.S.);College of Agricultural and Food Science, Zhejiang Agricultural and Forestry University, Hangzhou 311300, People's Republic of China (M.D.); andNational Engineering Research Center for Information Technology in Agriculture, Beijing 100097, People's Republic of China (P.H.)
| | - Yeqing Tan
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People's Republic of China (S.D., R.Z., Y.Z., Y.S., W.W., Y.T., D.L., X.M., M.W., C.L., X.S., S.C.);College of Life Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China (J.S.);College of Agricultural and Food Science, Zhejiang Agricultural and Forestry University, Hangzhou 311300, People's Republic of China (M.D.); andNational Engineering Research Center for Information Technology in Agriculture, Beijing 100097, People's Republic of China (P.H.)
| | - Dandan Liu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People's Republic of China (S.D., R.Z., Y.Z., Y.S., W.W., Y.T., D.L., X.M., M.W., C.L., X.S., S.C.);College of Life Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China (J.S.);College of Agricultural and Food Science, Zhejiang Agricultural and Forestry University, Hangzhou 311300, People's Republic of China (M.D.); andNational Engineering Research Center for Information Technology in Agriculture, Beijing 100097, People's Republic of China (P.H.)
| | - Xujun Ma
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People's Republic of China (S.D., R.Z., Y.Z., Y.S., W.W., Y.T., D.L., X.M., M.W., C.L., X.S., S.C.);College of Life Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China (J.S.);College of Agricultural and Food Science, Zhejiang Agricultural and Forestry University, Hangzhou 311300, People's Republic of China (M.D.); andNational Engineering Research Center for Information Technology in Agriculture, Beijing 100097, People's Republic of China (P.H.)
| | - Peichen Hou
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People's Republic of China (S.D., R.Z., Y.Z., Y.S., W.W., Y.T., D.L., X.M., M.W., C.L., X.S., S.C.);College of Life Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China (J.S.);College of Agricultural and Food Science, Zhejiang Agricultural and Forestry University, Hangzhou 311300, People's Republic of China (M.D.); andNational Engineering Research Center for Information Technology in Agriculture, Beijing 100097, People's Republic of China (P.H.)
| | - Meijuan Wang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People's Republic of China (S.D., R.Z., Y.Z., Y.S., W.W., Y.T., D.L., X.M., M.W., C.L., X.S., S.C.);College of Life Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China (J.S.);College of Agricultural and Food Science, Zhejiang Agricultural and Forestry University, Hangzhou 311300, People's Republic of China (M.D.); andNational Engineering Research Center for Information Technology in Agriculture, Beijing 100097, People's Republic of China (P.H.)
| | - Cunfu Lu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People's Republic of China (S.D., R.Z., Y.Z., Y.S., W.W., Y.T., D.L., X.M., M.W., C.L., X.S., S.C.);College of Life Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China (J.S.);College of Agricultural and Food Science, Zhejiang Agricultural and Forestry University, Hangzhou 311300, People's Republic of China (M.D.); andNational Engineering Research Center for Information Technology in Agriculture, Beijing 100097, People's Republic of China (P.H.)
| | - Xin Shen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People's Republic of China (S.D., R.Z., Y.Z., Y.S., W.W., Y.T., D.L., X.M., M.W., C.L., X.S., S.C.);College of Life Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China (J.S.);College of Agricultural and Food Science, Zhejiang Agricultural and Forestry University, Hangzhou 311300, People's Republic of China (M.D.); andNational Engineering Research Center for Information Technology in Agriculture, Beijing 100097, People's Republic of China (P.H.)
| | - Shaoliang Chen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, People's Republic of China (S.D., R.Z., Y.Z., Y.S., W.W., Y.T., D.L., X.M., M.W., C.L., X.S., S.C.);College of Life Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China (J.S.);College of Agricultural and Food Science, Zhejiang Agricultural and Forestry University, Hangzhou 311300, People's Republic of China (M.D.); andNational Engineering Research Center for Information Technology in Agriculture, Beijing 100097, People's Republic of China (P.H.)
| |
Collapse
|
43
|
Lenhart KC, O'Neill TJ, Cheng Z, Dee R, Demonbreun AR, Li J, Xiao X, McNally EM, Mack CP, Taylor JM. GRAF1 deficiency blunts sarcolemmal injury repair and exacerbates cardiac and skeletal muscle pathology in dystrophin-deficient mice. Skelet Muscle 2015; 5:27. [PMID: 26301073 PMCID: PMC4546166 DOI: 10.1186/s13395-015-0054-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/04/2015] [Indexed: 11/18/2022] Open
Abstract
Background The plasma membranes of striated muscle cells are particularly susceptible to rupture as they endure significant mechanical stress and strain during muscle contraction, and studies have shown that defects in membrane repair can contribute to the progression of muscular dystrophy. The synaptotagmin-related protein, dysferlin, has been implicated in mediating rapid membrane repair through its ability to direct intracellular vesicles to sites of membrane injury. However, further work is required to identify the precise molecular mechanisms that govern dysferlin targeting and membrane repair. We previously showed that the bin–amphiphysin–Rvs (BAR)–pleckstrin homology (PH) domain containing Rho-GAP GTPase regulator associated with focal adhesion kinase-1 (GRAF1) was dynamically recruited to the tips of fusing myoblasts wherein it promoted membrane merging by facilitating ferlin-dependent capturing of intracellular vesicles. Because acute membrane repair responses involve similar vesicle trafficking complexes/events and because our prior studies in GRAF1-deficient tadpoles revealed a putative role for GRAF1 in maintaining muscle membrane integrity, we postulated that GRAF1 might also play an important role in facilitating dysferlin-dependent plasma membrane repair. Methods We used an in vitro laser-injury model to test whether GRAF1 was necessary for efficient muscle membrane repair. We also generated dystrophin/GRAF1 doubledeficient mice by breeding mdx mice with GRAF1 hypomorphic mice. Evans blue dye uptake and extensive morphometric analyses were used to assess sarcolemmal integrity and related pathologies in cardiac and skeletal muscles isolated from these mice. Results Herein, we show that GRAF1 is dynamically recruited to damaged skeletal and cardiac muscle plasma membranes and that GRAF1-depleted muscle cells have reduced membrane healing abilities. Moreover, we show that dystrophin depletion exacerbated muscle damage in GRAF1-deficient mice and that mice with dystrophin/GRAF1 double deficiency phenocopied the severe muscle pathologies observed in dystrophin/dysferlin-double null mice. Consistent with a model that GRAF1 facilitates dysferlin-dependent membrane patching, we found that GRAF1 associates with and regulates plasma membrane deposition of dysferlin. Conclusions Overall, our work indicates that GRAF1 facilitates dysferlin-dependent membrane repair following acute muscle injury. These findings indicate that GRAF1 might play a role in the phenotypic variation and pathological progression of cardiac and skeletal muscle degeneration in muscular dystrophy patients. Electronic supplementary material The online version of this article (doi:10.1186/s13395-015-0054-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kaitlin C Lenhart
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Thomas J O'Neill
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Zhaokang Cheng
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Rachel Dee
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Alexis R Demonbreun
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Jianbin Li
- Department of Gene Therapy Molecular Pharmaceutics, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Xiao Xiao
- Department of Gene Therapy Molecular Pharmaceutics, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Elizabeth M McNally
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Christopher P Mack
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA ; McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Joan M Taylor
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA ; McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| |
Collapse
|
44
|
Scheffer LL, Sreetama SC, Sharma N, Medikayala S, Brown KJ, Defour A, Jaiswal JK. Mechanism of Ca²⁺-triggered ESCRT assembly and regulation of cell membrane repair. Nat Commun 2014; 5:5646. [PMID: 25534348 PMCID: PMC4333728 DOI: 10.1038/ncomms6646] [Citation(s) in RCA: 248] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 10/22/2014] [Indexed: 12/11/2022] Open
Abstract
In muscle and other mechanically active tissue, cell membranes are constantly injured, and their repair depends on the injury-induced increase in cytosolic calcium. Here, we show that injury-triggered Ca(2+) increase results in assembly of ESCRT III and accessory proteins at the site of repair. This process is initiated by the calcium-binding protein-apoptosis-linked gene (ALG)-2. ALG-2 facilitates accumulation of ALG-2-interacting protein X (ALIX), ESCRT III and Vps4 complex at the injured cell membrane, which in turn results in cleavage and shedding of the damaged part of the cell membrane. Lack of ALG-2, ALIX or Vps4B each prevents shedding, and repair of the injured cell membrane. These results demonstrate Ca(2+)-dependent accumulation of ESCRT III-Vps4 complex following large focal injury to the cell membrane and identify the role of ALG-2 as the initiator of sequential ESCRT III-Vps4 complex assembly that facilitates scission and repair of the injured cell membrane.
Collapse
Affiliation(s)
- Luana L Scheffer
- Children's National Medical Center, Center for Genetic Medicine Research, 111 Michigan Avenue, NW, Washington DC 20010-2970, USA
| | - Sen Chandra Sreetama
- Children's National Medical Center, Center for Genetic Medicine Research, 111 Michigan Avenue, NW, Washington DC 20010-2970, USA
| | - Nimisha Sharma
- Children's National Medical Center, Center for Genetic Medicine Research, 111 Michigan Avenue, NW, Washington DC 20010-2970, USA
| | - Sushma Medikayala
- Children's National Medical Center, Center for Genetic Medicine Research, 111 Michigan Avenue, NW, Washington DC 20010-2970, USA
| | - Kristy J Brown
- 1] Children's National Medical Center, Center for Genetic Medicine Research, 111 Michigan Avenue, NW, Washington DC 20010-2970, USA [2] Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington DC, USA
| | - Aurelia Defour
- Children's National Medical Center, Center for Genetic Medicine Research, 111 Michigan Avenue, NW, Washington DC 20010-2970, USA
| | - Jyoti K Jaiswal
- 1] Children's National Medical Center, Center for Genetic Medicine Research, 111 Michigan Avenue, NW, Washington DC 20010-2970, USA [2] Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington DC, USA
| |
Collapse
|
45
|
Mechanisms of microbubble-facilitated sonoporation for drug and gene delivery. Ther Deliv 2014; 5:467-86. [PMID: 24856171 DOI: 10.4155/tde.14.10] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
46
|
Li X, Xiao Y, Cui Y, Tan T, Narasimhulu CA, Hao H, Liu L, Zhang J, He G, Verfaillie CM, Lei M, Parthasarathy S, Ma J, Zhu H, Liu Z. Cell membrane damage is involved in the impaired survival of bone marrow stem cells by oxidized low-density lipoprotein. J Cell Mol Med 2014; 18:2445-53. [PMID: 25256620 PMCID: PMC4302650 DOI: 10.1111/jcmm.12424] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 08/13/2014] [Indexed: 12/11/2022] Open
Abstract
Cell therapy with bone marrow stem cells (BMSCs) remains a viable option for tissue repair and regeneration. A major challenge for cell therapy is the limited cell survival after implantation. This study was to investigate the effect of oxidized low-density lipoprotein (ox-LDL, naturally present in human blood) on BMSC injury and the effect of MG53, a tissue repair protein, for the improvement of stem cell survival. Rat bone marrow multipotent adult progenitor cells (MAPCs) were treated with ox-LDL, which caused significant cell death as reflected by the increased LDH release to the media. Exposure of MAPCs to ox-LDL led to entry of fluorescent dye FM1-43 measured under confocal microscope, suggesting damage to the plasma membrane. Ox-LDL also generated reactive oxygen species (ROS) as measured with electron paramagnetic resonance spectroscopy. While antioxidant N-acetylcysteine completely blocked ROS production from ox-LDL, it failed to prevent ox-LDL-induced cell death. When MAPCs were treated with the recombinant human MG53 protein (rhMG53) ox-LDL induced LDH release and FM1-43 dye entry were significantly reduced. In the presence of rhMG53, the MAPCs showed enhanced cell survival and proliferation. Our data suggest that membrane damage induced by ox-LDL contributed to the impaired survival of MAPCs. rhMG53 treatment protected MAPCs against membrane damage and enhanced their survival which might represent a novel means for improving efficacy for stem cell-based therapy for treatment of diseases, especially in setting of hyperlipidemia.
Collapse
Affiliation(s)
- Xin Li
- Xiangya Hospital of Central South University, Changsha, Hunan, China; Davis Heart & Lung Research Institute and Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Cells are always subjected to mechanical stresses, resulting in wounds of the cell membrane, but cells are able to repair and reseal their wounded membrane. Previous reports have shown that actin and myosin II accumulate around the wound and that the constriction of this purse-string closes the membrane pore. Here, we developed a microsurgical wound assay to assess wound repair in Dictyostelium cells. Fluorescent dye that had been incorporated into the cells leaked out for only 2-3 sec after wounding, and a GFP-derived, fluorescent Ca(2+) sensor showed that intracellular Ca(2+) transiently increased immediately after wounding. In the absence of external Ca(2+), the cell failed to repair itself. During the repair process, actin accumulated at the wounded sites but myosin II did not. The wounds were repaired even in myosin II null cells to a comparable degree as the wild-type cells, suggesting that myosin II does not contribute to wound repair. Thus, the actomyosin purse-string constriction model is not a common mechanism for wound repair in eukaryotic cells, and this discrepancy may arise from the difference in cell size.
Collapse
Affiliation(s)
- Shigehiko Yumura
- Department of Functional Molecular Biology, Graduate School of Medicine, Yamaguchi University, Yamaguchi 753-8512, Japan
| | - Sayaka Hashima
- Department of Functional Molecular Biology, Graduate School of Medicine, Yamaguchi University, Yamaguchi 753-8512, Japan
| | - Satsuki Muranaka
- Department of Functional Molecular Biology, Graduate School of Medicine, Yamaguchi University, Yamaguchi 753-8512, Japan
| |
Collapse
|
48
|
Hydrodynamic determinants of cell necrosis and molecular delivery produced by pulsed laser microbeam irradiation of adherent cells. Biophys J 2014; 105:2221-31. [PMID: 24209868 DOI: 10.1016/j.bpj.2013.09.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 08/28/2013] [Accepted: 09/12/2013] [Indexed: 12/11/2022] Open
Abstract
Time-resolved imaging, fluorescence microscopy, and hydrodynamic modeling were used to examine cell lysis and molecular delivery produced by picosecond and nanosecond pulsed laser microbeam irradiation in adherent cell cultures. Pulsed laser microbeam radiation at λ = 532 nm was delivered to confluent monolayers of PtK2 cells via a 40×, 0.8 NA microscope objective. Using laser microbeam pulse durations of 180-1100 ps and pulse energies of 0.5-10.5 μJ, we examined the resulting plasma formation and cavitation bubble dynamics that lead to laser-induced cell lysis, necrosis, and molecular delivery. The cavitation bubble dynamics are imaged at times of 0.5 ns to 50 μs after the pulsed laser microbeam irradiation, and fluorescence assays assess the resulting cell viability and molecular delivery of 3 kDa dextran molecules. Reductions in both the threshold laser microbeam pulse energy for plasma formation and the cavitation bubble energy are observed with decreasing pulse duration. These energy reductions provide for increased precision of laser-based cellular manipulation including cell lysis, cell necrosis, and molecular delivery. Hydrodynamic analysis reveals critical values for the shear-stress impulse generated by the cavitation bubble dynamics governs the location and spatial extent of cell necrosis and molecular delivery independent of pulse duration and pulse energy. Specifically, cellular exposure to a shear-stress impulse J≳0.1 Pa s ensures cell lysis or necrosis, whereas exposures in the range of 0.035≲J≲0.1 Pa s preserve cell viability while also enabling molecular delivery of 3 kDa dextran. Exposure to shear-stress impulses of J≲0.035 Pa s leaves the cells unaffected. Hydrodynamic analysis of these data, combined with data from studies of 6 ns microbeam irradiation, demonstrates the primacy of shear-stress impulse in determining cellular outcome resulting from pulsed laser microbeam irradiation spanning a nearly two-orders-of-magnitude range of pulse energy and pulse duration. These results provide a mechanistic foundation and design strategy applicable to a broad range of laser-based cellular manipulation procedures.
Collapse
|
49
|
Defour A, Sreetama SC, Jaiswal JK. Imaging cell membrane injury and subcellular processes involved in repair. J Vis Exp 2014:51106. [PMID: 24686523 PMCID: PMC4089398 DOI: 10.3791/51106] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The ability of injured cells to heal is a fundamental cellular process, but cellular and molecular mechanisms involved in healing injured cells are poorly understood. Here assays are described to monitor the ability and kinetics of healing of cultured cells following localized injury. The first protocol describes an end point based approach to simultaneously assess cell membrane repair ability of hundreds of cells. The second protocol describes a real time imaging approach to monitor the kinetics of cell membrane repair in individual cells following localized injury with a pulsed laser. As healing injured cells involves trafficking of specific proteins and subcellular compartments to the site of injury, the third protocol describes the use of above end point based approach to assess one such trafficking event (lysosomal exocytosis) in hundreds of cells injured simultaneously and the last protocol describes the use of pulsed laser injury together with TIRF microscopy to monitor the dynamics of individual subcellular compartments in injured cells at high spatial and temporal resolution. While the protocols here describe the use of these approaches to study the link between cell membrane repair and lysosomal exocytosis in cultured muscle cells, they can be applied as such for any other adherent cultured cell and subcellular compartment of choice.
Collapse
Affiliation(s)
- Aurelia Defour
- Center for Genetic Medicine Research, Children's National Medical Center
| | - S C Sreetama
- Center for Genetic Medicine Research, Children's National Medical Center
| | - Jyoti K Jaiswal
- Center for Genetic Medicine Research, Children's National Medical Center; Department of Integrative Systems Biology, George Washington University;
| |
Collapse
|
50
|
Moloughney JG, Weisleder N. Poloxamer 188 (p188) as a membrane resealing reagent in biomedical applications. Recent Pat Biotechnol 2013; 6:200-11. [PMID: 23092436 DOI: 10.2174/1872208311206030200] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/30/2012] [Accepted: 08/04/2012] [Indexed: 11/22/2022]
Abstract
Maintenance of the integrity of the plasma membrane is essential for maintenance of cellular function and prevention of cell death. Since the plasma membrane is frequently exposed to a variety of mechanical and chemical insults the cell has evolved active processes to defend against these injuries by resealing disruptions in the plasma membrane. Cell membrane repair is a conserved process observed in nearly every cell type where intracellular vesicles are recruited to sites of membrane disruption where they can fuse with themselves or the plasma membrane to create a repair patch. When disruptions are extensive or there is an underlying pathology that reduces the membrane repair capacity of a cell this defense mechanism may prove insufficient and the cell could die due to breakdown of the plasma membrane. Extensive loss of cells can compromise the integrity and function of tissues and leading to disease. Thus, methods to increase membrane resealing capacity could have broad utility in a number of disease states. Efforts to find reagents that can modulate plasma membrane reseal found that specific tri-block copolymers, such as poloxamer 188 (P188, or Pluronic F68), can increase the structural stability and resealing of the plasma membrane. Here we review several current patents and patent applications that present inventions making use of P188 and other copolymers to treat specific disease states such as muscular dystrophy, heart failure, neurodegenerative disorders and electrical injuries, or to facilitate biomedical applications such as transplantation. There appears to be promise for the application of poloxamers in the treatment of various diseases, however there are potential concerns with toxicity with long term application and bioavailability in some cases.
Collapse
Affiliation(s)
- Joseph G Moloughney
- Department of Neuroscience and Cell Biology, UMDNJ- Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | |
Collapse
|