1
|
Adeleye MA, Hopf F, Haberle SG, Stannard GL, Mcwethy DB, Harris S, Bowman DMJS. Landscape burning facilitated Aboriginal migration into Lutruwita/Tasmania 41,600 years ago. SCIENCE ADVANCES 2024; 10:eadp6579. [PMID: 39546600 PMCID: PMC11567000 DOI: 10.1126/sciadv.adp6579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/10/2024] [Indexed: 11/17/2024]
Abstract
The establishment of Tasmanian Palawa/Pakana communities ~40 thousand years ago (ka) was achieved by the earliest and farthest human migrations from Africa and necessitated migration into high-latitude Southern Hemisphere environments. The scarcity of high-resolution paleoecological records during this period, however, limits our understanding of the environmental effects of this pivotal event, particularly the importance of using fire as a tool for habitat modification. We use two paleoecological records from the Bass Strait islands to identify the initiation of anthropogenic landscape transformation associated with ancestral Palawa/Pakana land use. People were living on the Tasmanian/Lutruwitan peninsula by ~41.6 ka using fire to penetrate and manipulate forests, an approach possibly used in the first migrations across the last glacial landscape of Sahul.
Collapse
Affiliation(s)
- Matthew A. Adeleye
- Department of Geography, University of Cambridge, Cambridgeshire CB2 3EN, UK
- School of Culture, History and Language, The Australian National University, Canberra, ACT 0200, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, The Australian National University, Canberra, ACT 0200, Australia
| | - Felicitas Hopf
- School of Culture, History and Language, The Australian National University, Canberra, ACT 0200, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, The Australian National University, Canberra, ACT 0200, Australia
| | - Simon G. Haberle
- School of Culture, History and Language, The Australian National University, Canberra, ACT 0200, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, The Australian National University, Canberra, ACT 0200, Australia
- Australian Research Council Centre of Excellence for Indigenous and Environmental Histories and Futures, College of Asia & the Pacific, The Australian National University, Canberra, ACT 2600, Australia
| | - Georgia L. Stannard
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, The Australian National University, Canberra, ACT 0200, Australia
- Department of Archaeology and History, La Trobe University, Melbourne, VIC 3086, Australia
| | - David B. Mcwethy
- Department of Earth Sciences, Montana State University, Bozeman, MT 59717, USA
| | - Stephen Harris
- School of Culture, History and Language, The Australian National University, Canberra, ACT 0200, Australia
| | - David M. J. S. Bowman
- Fire Centre, School of Natural Sciences, University of Tasmania, Sandy Bay, TAS 7001, Australia
| |
Collapse
|
2
|
Carmelet‐Rescan D, Morgan‐Richards M, Pattabiraman N, Trewick SA. Time-calibrated phylogeny and ecological niche models indicate Pliocene aridification drove intraspecific diversification of brushtail possums in Australia. Ecol Evol 2022; 12:e9633. [PMID: 36540081 PMCID: PMC9755819 DOI: 10.1002/ece3.9633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Major aridification events in Australia during the Pliocene may have had significant impact on the distribution and structure of widespread species. To explore the potential impact of Pliocene and Pleistocene climate oscillations, we estimated the timing of population fragmentation and past connectivity of the currently isolated but morphologically similar subspecies of the widespread brushtail possum (Trichosurus vulpecula). We use ecological niche modeling (ENM) with the current fragmented distribution of brushtail possums to estimate the environmental envelope of this marsupial. We projected the ENM on models of past climatic conditions in Australia to infer the potential distribution of brushtail possums over 6 million years. D-loop haplotypes were used to describe population structure. From shotgun sequencing, we assembled whole mitochondrial DNA genomes and estimated the timing of intraspecific divergence. Our projections of ENMs suggest current possum populations were unlikely to have been in contact during the Pleistocene. Although lowered sea level during glacial periods enabled connection with habitat in Tasmania, climate fluctuation during this time would not have facilitated gene flow over much of Australia. The most recent common ancestor of sampled intraspecific diversity dates to the early Pliocene when continental aridification caused significant changes to Australian ecology and Trichosurus vulpecula distribution was likely fragmented. Phylogenetic analysis revealed that the subspecies T. v. hypoleucus (koomal; southwest), T. v. arnhemensis (langkurr; north), and T. v. vulpecula (bilda; southeast) correspond to distinct mitochondrial lineages. Despite little phenotypic differentiation, Trichosurus vulpecula populations probably experienced little gene flow with one another since the Pliocene, supporting the recognition of several subspecies and explaining their adaptations to the regional plant assemblages on which they feed.
Collapse
Affiliation(s)
- David Carmelet‐Rescan
- Wildlife and Ecology, School of Natural SciencesMassey UniversityPalmerston NorthNew Zealand
| | - Mary Morgan‐Richards
- Wildlife and Ecology, School of Natural SciencesMassey UniversityPalmerston NorthNew Zealand
| | - Nimeshika Pattabiraman
- Wildlife and Ecology, School of Natural SciencesMassey UniversityPalmerston NorthNew Zealand
| | - Steven A. Trewick
- Wildlife and Ecology, School of Natural SciencesMassey UniversityPalmerston NorthNew Zealand
| |
Collapse
|
3
|
Bowman DMJS, French BJ, Williamson GJ, Prior LD. Fire, herbivores and the management of temperate
Eucalyptus
savanna in Tasmania: Introducing the Beaufront fire – mammalian herbivore field experiment. ECOLOGICAL MANAGEMENT & RESTORATION 2021. [DOI: 10.1111/emr.12453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Cooper A, Turney CSM, Palmer J, Hogg A, McGlone M, Wilmshurst J, Lorrey AM, Heaton TJ, Russell JM, McCracken K, Anet JG, Rozanov E, Friedel M, Suter I, Peter T, Muscheler R, Adolphi F, Dosseto A, Faith JT, Fenwick P, Fogwill CJ, Hughen K, Lipson M, Liu J, Nowaczyk N, Rainsley E, Bronk Ramsey C, Sebastianelli P, Souilmi Y, Stevenson J, Thomas Z, Tobler R, Zech R. A global environmental crisis 42,000 years ago. Science 2021; 371:811-818. [PMID: 33602851 DOI: 10.1126/science.abb8677] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022]
Abstract
Geological archives record multiple reversals of Earth's magnetic poles, but the global impacts of these events, if any, remain unclear. Uncertain radiocarbon calibration has limited investigation of the potential effects of the last major magnetic inversion, known as the Laschamps Excursion [41 to 42 thousand years ago (ka)]. We use ancient New Zealand kauri trees (Agathis australis) to develop a detailed record of atmospheric radiocarbon levels across the Laschamps Excursion. We precisely characterize the geomagnetic reversal and perform global chemistry-climate modeling and detailed radiocarbon dating of paleoenvironmental records to investigate impacts. We find that geomagnetic field minima ~42 ka, in combination with Grand Solar Minima, caused substantial changes in atmospheric ozone concentration and circulation, driving synchronous global climate shifts that caused major environmental changes, extinction events, and transformations in the archaeological record.
Collapse
Affiliation(s)
- Alan Cooper
- South Australian Museum, Adelaide, SA 5000, Australia. .,BlueSky Genetics, PO Box 287, Adelaide, SA 5137, Australia
| | - Chris S M Turney
- Chronos Carbon-Cycle Facility, and Earth and Sustainability Science Research Centre, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Jonathan Palmer
- Chronos Carbon-Cycle Facility, and Earth and Sustainability Science Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Alan Hogg
- Radiocarbon Dating Laboratory, University of Waikato, Hamilton 3240, New Zealand
| | - Matt McGlone
- Landcare Research, PO Box 69040, Lincoln, New Zealand
| | - Janet Wilmshurst
- Landcare Research, PO Box 69040, Lincoln, New Zealand.,School of Environment, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Andrew M Lorrey
- National Institute of Water and Atmospheric Research Ltd, Auckland 1010, New Zealand
| | - Timothy J Heaton
- School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH, UK
| | - James M Russell
- Department of Geological Sciences, Brown University, Providence, RI 02912, USA
| | - Ken McCracken
- University of New South Wales, Sydney, NSW 2052, Australia
| | - Julien G Anet
- Zurich University of Applied Sciences, Centre for Aviation, 8401 Winterthur, Switzerland
| | - Eugene Rozanov
- Institute for Atmospheric and Climatic Science, ETH Zurich, 8006 Zurich, Switzerland.,Physikalisch-Meteorologisches Observatorium Davos and World Radiation Center, 7260 Davos, Switzerland.,Department of Physics of Earth, Faculty of Physics, St. Petersburg State University, St. Petersburg 198504, Russia
| | - Marina Friedel
- Institute for Atmospheric and Climatic Science, ETH Zurich, 8006 Zurich, Switzerland
| | - Ivo Suter
- Swiss Federal Laboratories for Materials Science and Technology (Empa), 8600 Dübendorf, Switzerland
| | - Thomas Peter
- Institute for Atmospheric and Climatic Science, ETH Zurich, 8006 Zurich, Switzerland
| | - Raimund Muscheler
- Department of Geology, Quaternary Sciences, Lund University, 22362 Lund, Sweden
| | - Florian Adolphi
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
| | - Anthony Dosseto
- Wollongong Isotope Geochronology Laboratory, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - J Tyler Faith
- Natural History Museum of Utah and Department of Anthropology, University of Utah, Salt Lake City, UT 84108, USA
| | - Pavla Fenwick
- Gondwana Tree-Ring Laboratory, PO Box 14, Little River, Canterbury 7546, New Zealand
| | - Christopher J Fogwill
- School of Geography, Geology and the Environment, University of Keele, Keele, Staffordshire ST5 5BG, UK
| | - Konrad Hughen
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Mathew Lipson
- Centre of Excellence for Climate System Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jiabo Liu
- Southern University of Science and Technology, Department of Ocean Science and Engineering, Shenzhen 518055, China
| | - Norbert Nowaczyk
- Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Section 4.3, 14473 Potsdam, Germany
| | - Eleanor Rainsley
- School of Geography, Geology and the Environment, University of Keele, Keele, Staffordshire ST5 5BG, UK
| | - Christopher Bronk Ramsey
- Research Laboratory for Archaeology and the History of Art, School of Archaeology, University of Oxford, OX1 3TG, UK
| | - Paolo Sebastianelli
- Faculty of Mathematics, Astronomy and Physics (FAMAF), National University of Cordoba, X5000HUA, Argentina
| | - Yassine Souilmi
- Australian Centre for Ancient DNA, University of Adelaide, Adelaide, SA 5000, Australia
| | - Janelle Stevenson
- Archaeology and Natural History, School of Culture History and Language, ANU College of Asia and the Pacific, Canberra, ACT 2601, Australia.,Australia ARC Centre of Excellence for Australian Biodiversity and Heritage, Australian National University, ACT 2601, Australia
| | - Zoë Thomas
- Chronos Carbon-Cycle Facility, and Earth and Sustainability Science Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Raymond Tobler
- Australian Centre for Ancient DNA, University of Adelaide, Adelaide, SA 5000, Australia
| | - Roland Zech
- Institute of Geography, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| |
Collapse
|
5
|
Weisbecker V, Rowe T, Wroe S, Macrini TE, Garland KLS, Travouillon KJ, Black K, Archer M, Hand SJ, Berlin JC, Beck RMD, Ladevèze S, Sharp AC, Mardon K, Sherratt E. Global elongation and high shape flexibility as an evolutionary hypothesis of accommodating mammalian brains into skulls. Evolution 2021; 75:625-640. [PMID: 33483947 DOI: 10.1111/evo.14163] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 12/07/2020] [Accepted: 12/13/2020] [Indexed: 12/26/2022]
Abstract
Little is known about how the large brains of mammals are accommodated into the dazzling diversity of their skulls. It has been suggested that brain shape is influenced by relative brain size, that it evolves or develops according to extrinsic or intrinsic mechanical constraints, and that its shape can provide insights into its proportions and function. Here, we characterize the shape variation among 84 marsupial cranial endocasts of 57 species including fossils, using three-dimensional geometric morphometrics and virtual dissections. Statistical shape analysis revealed four main patterns: over half of endocast shape variation ranges from elongate and straight to globular and inclined; little allometric variation with respect to centroid size, and none for relative volume; no association between locomotion and endocast shape; limited association between endocast shape and previously published histological cortex volumes. Fossil species tend to have smaller cerebral hemispheres. We find divergent endocast shapes in closely related species and within species, and diverse morphologies superimposed over the main variation. An evolutionarily and individually malleable brain with a fundamental tendency to arrange into a spectrum of elongate-to-globular shapes-possibly mostly independent of brain function-may explain the accommodation of brains within the enormous diversity of mammalian skull form.
Collapse
Affiliation(s)
- Vera Weisbecker
- College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia.,School of Biological Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Timothy Rowe
- Department of Geological Sciences, The University of Texas at Austin, Austin, Texas, 78712
| | - Stephen Wroe
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| | - Thomas E Macrini
- Department of Biological Sciences, St. Mary's University, San Antonio, Texas, 78228
| | | | - Kenny J Travouillon
- Collections and Research, Western Australian Museum, Welshpool, WA, 6986, Australia
| | - Karen Black
- Earth and Sustainability Science Research Center, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Michael Archer
- Earth and Sustainability Science Research Center, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Suzanne J Hand
- Earth and Sustainability Science Research Center, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jeri C Berlin
- Department of Geological Sciences, The University of Texas at Austin, Austin, Texas, 78712
| | - Robin M D Beck
- School of Science, Engineering and Environment, University of Salford, Salford, M5 4WT, United Kingdom
| | - Sandrine Ladevèze
- CR2P UMR 7207, CNRS/MNHN/Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, F-75005, France
| | - Alana C Sharp
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, United Kingdom
| | - Karine Mardon
- Centre of Advanced Imaging, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Emma Sherratt
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
6
|
Andermann T, Faurby S, Turvey ST, Antonelli A, Silvestro D. The past and future human impact on mammalian diversity. SCIENCE ADVANCES 2020; 6:6/36/eabb2313. [PMID: 32917612 PMCID: PMC7473673 DOI: 10.1126/sciadv.abb2313] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 07/16/2020] [Indexed: 05/18/2023]
Abstract
To understand the current biodiversity crisis, it is crucial to determine how humans have affected biodiversity in the past. However, the extent of human involvement in species extinctions from the Late Pleistocene onward remains contentious. Here, we apply Bayesian models to the fossil record to estimate how mammalian extinction rates have changed over the past 126,000 years, inferring specific times of rate increases. We specifically test the hypothesis of human-caused extinctions by using posterior predictive methods. We find that human population size is able to predict past extinctions with 96% accuracy. Predictors based on past climate, in contrast, perform no better than expected by chance, suggesting that climate had a negligible impact on global mammal extinctions. Based on current trends, we predict for the near future a rate escalation of unprecedented magnitude. Our results provide a comprehensive assessment of the human impact on past and predicted future extinctions of mammals.
Collapse
Affiliation(s)
- Tobias Andermann
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden.
- Gothenburg Global Biodiversity Centre, Göteborg, Sweden
| | - Søren Faurby
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
- Gothenburg Global Biodiversity Centre, Göteborg, Sweden
| | - Samuel T Turvey
- Institute of Zoology, Zoological Society of London, London, UK
| | - Alexandre Antonelli
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
- Gothenburg Global Biodiversity Centre, Göteborg, Sweden
- Royal Botanic Gardens, Kew, Richmond, UK
| | - Daniele Silvestro
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
- Gothenburg Global Biodiversity Centre, Göteborg, Sweden
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
7
|
Cascini M, Mitchell KJ, Cooper A, Phillips MJ. Reconstructing the Evolution of Giant Extinct Kangaroos: Comparing the Utility of DNA, Morphology, and Total Evidence. Syst Biol 2018; 68:520-537. [DOI: 10.1093/sysbio/syy080] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 11/12/2022] Open
Affiliation(s)
- Manuela Cascini
- School of Earth, Environmental and Biological Sciences, Queensland University of Technology, 2, George Street, Brisbane, QLD 4000, Australia
| | - Kieren J Mitchell
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, North Terrace Campus, South Australia 5005, Australia
| | - Alan Cooper
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, North Terrace Campus, South Australia 5005, Australia
| | - Matthew J Phillips
- School of Earth, Environmental and Biological Sciences, Queensland University of Technology, 2, George Street, Brisbane, QLD 4000, Australia
| |
Collapse
|
8
|
Evans NM, Davis MA. What about cultural ecosystems? Opportunities for cultural considerations in the “International Standards for the Practice of Ecological Restoration”. Restor Ecol 2018. [DOI: 10.1111/rec.12714] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Nicole M. Evans
- Department of Natural Resources and Environmental Sciences; University of Illinois Urbana-Champaign; Champaign IL 61820 U.S.A
| | - Mark A. Davis
- Illinois Natural History Survey, Prairie Research Institute; University of Illinois Urbana-Champaign; Champaign IL 61820 U.S.A
| |
Collapse
|
9
|
Ecological consequences of human niche construction: Examining long-term anthropogenic shaping of global species distributions. Proc Natl Acad Sci U S A 2017; 113:6388-96. [PMID: 27274046 DOI: 10.1073/pnas.1525200113] [Citation(s) in RCA: 245] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The exhibition of increasingly intensive and complex niche construction behaviors through time is a key feature of human evolution, culminating in the advanced capacity for ecosystem engineering exhibited by Homo sapiens A crucial outcome of such behaviors has been the dramatic reshaping of the global biosphere, a transformation whose early origins are increasingly apparent from cumulative archaeological and paleoecological datasets. Such data suggest that, by the Late Pleistocene, humans had begun to engage in activities that have led to alterations in the distributions of a vast array of species across most, if not all, taxonomic groups. Changes to biodiversity have included extinctions, extirpations, and shifts in species composition, diversity, and community structure. We outline key examples of these changes, highlighting findings from the study of new datasets, like ancient DNA (aDNA), stable isotopes, and microfossils, as well as the application of new statistical and computational methods to datasets that have accumulated significantly in recent decades. We focus on four major phases that witnessed broad anthropogenic alterations to biodiversity-the Late Pleistocene global human expansion, the Neolithic spread of agriculture, the era of island colonization, and the emergence of early urbanized societies and commercial networks. Archaeological evidence documents millennia of anthropogenic transformations that have created novel ecosystems around the world. This record has implications for ecological and evolutionary research, conservation strategies, and the maintenance of ecosystem services, pointing to a significant need for broader cross-disciplinary engagement between archaeology and the biological and environmental sciences.
Collapse
|
10
|
Johnson CN, Alroy J, Beeton NJ, Bird MI, Brook BW, Cooper A, Gillespie R, Herrando-Pérez S, Jacobs Z, Miller GH, Prideaux GJ, Roberts RG, Rodríguez-Rey M, Saltré F, Turney CSM, Bradshaw CJA. What caused extinction of the Pleistocene megafauna of Sahul? Proc Biol Sci 2017; 283:rspb.2015.2399. [PMID: 26865301 DOI: 10.1098/rspb.2015.2399] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
During the Pleistocene, Australia and New Guinea supported a rich assemblage of large vertebrates. Why these animals disappeared has been debated for more than a century and remains controversial. Previous synthetic reviews of this problem have typically focused heavily on particular types of evidence, such as the dating of extinction and human arrival, and have frequently ignored uncertainties and biases that can lead to misinterpretation of this evidence. Here, we review diverse evidence bearing on this issue and conclude that, although many knowledge gaps remain, multiple independent lines of evidence point to direct human impact as the most likely cause of extinction.
Collapse
Affiliation(s)
- C N Johnson
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
| | - J Alroy
- Department of Biological Sciences, Macquarie University, New South Wales 2109, Australia
| | - N J Beeton
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
| | - M I Bird
- Centre for Tropical Environmental and Sustainability Studies, College of Science Technology and Engineering, James Cook University, Cairns, Queensland 4878, Australia
| | - B W Brook
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
| | - A Cooper
- Australian Centre for Ancient DNA, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - R Gillespie
- Centre for Archaeological Science, School of Earth and Environmental Sciences, University of Wollongong, New South Wales 2522, Australia Archaeology and Natural History, School of Culture, History and Language, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - S Herrando-Pérez
- The Environment Institute, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia Department of Biogeography and Global Change, National Museum of Natural Sciences-Spanish Research Council (CSIC) c/ José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Z Jacobs
- Centre for Archaeological Science, School of Earth and Environmental Sciences, University of Wollongong, New South Wales 2522, Australia
| | - G H Miller
- Institute of Arctic and Alpine Research, Geological Sciences, University of Colorado, Boulder, CO 80309-0450, USA Environment and Agriculture, Curtin University, Perth, Western Australia 6102, Australia
| | - G J Prideaux
- School of Biological Sciences, Flinders University, Bedford Park, South Australia 5042, Australia
| | - R G Roberts
- Centre for Archaeological Science, School of Earth and Environmental Sciences, University of Wollongong, New South Wales 2522, Australia
| | - M Rodríguez-Rey
- The Environment Institute, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - F Saltré
- The Environment Institute, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - C S M Turney
- Climate Change Research Centre, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - C J A Bradshaw
- The Environment Institute, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
11
|
Opell BD, Helweg SG, Kiser KM. Phylogeography of Australian and New Zealand spray zone spiders (Anyphaenidae:Amaurobioides): Moa's Ark loses a few more passengers. Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12788] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Brent D. Opell
- Department of Biological Sciences; Virginia Tech; Blacksburg, VA 24061 USA
| | - Sarah G. Helweg
- Department of Biological Sciences; Virginia Tech; Blacksburg, VA 24061 USA
| | - Kea M. Kiser
- Department of Biological Sciences; Virginia Tech; Blacksburg, VA 24061 USA
| |
Collapse
|
12
|
Dick TJM, Clemente CJ. How to build your dragon: scaling of muscle architecture from the world's smallest to the world's largest monitor lizard. Front Zool 2016; 13:8. [PMID: 26893606 PMCID: PMC4758084 DOI: 10.1186/s12983-016-0141-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 02/10/2016] [Indexed: 11/10/2022] Open
Abstract
Background The functional design of skeletal muscles is shaped by conflicting selective pressures between support and propulsion, which becomes even more important as animals get larger. If larger animals were geometrically scaled up versions of smaller animals, increases in body size would cause an increase in musculoskeletal stress, a result of the greater scaling of mass in comparison to area. In large animals these stresses would come dangerously close to points of failure. By examining the architecture of 22 hindlimb muscles in 27 individuals from 9 species of varanid lizards ranging from the tiny 7.6 g Varanus brevicauda to the giant 40 kg Varanus komodoensis, we present a comprehensive dataset on the scaling of musculoskeletal architecture in monitor lizards (varanids), providing information about the phylogenetic constraints and adaptations of locomotor muscles in sprawling tetrapods. Results Scaling results for muscle mass, pennation and physiological cross-sectional area (PCSA), all suggest that larger varanids increase the relative force-generating capacity of femur adductors, knee flexors and ankle plantarflexors, with scaling exponents greater than geometric similarity predicts. Thus varanids mitigate the size-related increases in stress by increasing muscle mass and PCSA rather than adopting a more upright posture with size as is shown in other animals. As well as the scaling effects of muscle properties with body mass, the variation in muscle architecture with changes in hindlimb posture were also prominent. Within varanids, posture varies with habitat preference. Climbing lizards display a sprawling posture while terrestrial lizards display a more upright posture. Sprawling species required larger PCSAs and muscle masses in femur retractors, knee flexors, and ankle plantarflexors in order to support the body. Conclusions Both size and posture-related muscle changes all suggest an increased role in support over propulsion, leading to a decrease in locomotor performance which has previously been shown with increases in size. These estimates suggest the giant Pleistocene varanid lizard (Varanus megalania priscus) would likely not have been able to outrun early humans with which it co-habitated the Australian landmass with. Electronic supplementary material The online version of this article (doi:10.1186/s12983-016-0141-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Taylor J M Dick
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC Canada
| | - Christofer J Clemente
- School of Science and Engineering, University of the Sunshine Coast, Brisbane, QLD Australia
| |
Collapse
|
13
|
When did Carcharocles megalodon become extinct? A new analysis of the fossil record. PLoS One 2014; 9:e111086. [PMID: 25338197 PMCID: PMC4206505 DOI: 10.1371/journal.pone.0111086] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/29/2014] [Indexed: 11/25/2022] Open
Abstract
Carcharocles megalodon (“Megalodon”) is the largest shark that ever lived. Based on its distribution, dental morphology, and associated fauna, it has been suggested that this species was a cosmopolitan apex predator that fed on marine mammals from the middle Miocene to the Pliocene (15.9–2.6 Ma). Prevailing theory suggests that the extinction of apex predators affects ecosystem dynamics. Accordingly, knowing the time of extinction of C. megalodon is a fundamental step towards understanding the effects of such an event in ancient communities. However, the time of extinction of this important species has never been quantitatively assessed. Here, we synthesize the most recent records of C. megalodon from the literature and scientific collections and infer the date of its extinction by making a novel use of the Optimal Linear Estimation (OLE) model. Our results suggest that C. megalodon went extinct around 2.6 Ma. Furthermore, when contrasting our results with known ecological and macroevolutionary trends in marine mammals, it became evident that the modern composition and function of modern gigantic filter-feeding whales was established after the extinction of C. megalodon. Consequently, the study of the time of extinction of C. megalodon provides the basis to improve our understanding of the responses of marine species to the removal of apex predators, presenting a deep-time perspective for the conservation of modern ecosystems.
Collapse
|
14
|
Climate change frames debate over the extinction of megafauna in Sahul (Pleistocene Australia-New Guinea). Proc Natl Acad Sci U S A 2013; 110:8777-81. [PMID: 23650401 DOI: 10.1073/pnas.1302698110] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Around 88 large vertebrate taxa disappeared from Sahul sometime during the Pleistocene, with the majority of losses (54 taxa) clearly taking place within the last 400,000 years. The largest was the 2.8-ton browsing Diprotodon optatum, whereas the ∼100- to 130-kg marsupial lion, Thylacoleo carnifex, the world's most specialized mammalian carnivore, and Varanus priscus, the largest lizard known, were formidable predators. Explanations for these extinctions have centered on climatic change or human activities. Here, we review the evidence and arguments for both. Human involvement in the disappearance of some species remains possible but unproven. Mounting evidence points to the loss of most species before the peopling of Sahul (circa 50-45 ka) and a significant role for climate change in the disappearance of the continent's megafauna.
Collapse
|
15
|
MCMAHON CLIVER, ISAGI YUJI, KANEKO SHINGO, BOWMAN DAVIDMJS, BROOK BARRYW, BRADSHAW COREYJA. Genetic structure of introduced swamp buffalo subpopulations in tropical Australia. AUSTRAL ECOL 2013. [DOI: 10.1111/j.1442-9993.2012.02373.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Helgen KM, Miguez RP, James L Kohen, Lauren E Helgen. Twentieth century occurrence of the Long-Beaked Echidna Zaglossus bruijnii in the Kimberley region of Australia. Zookeys 2012:103-32. [PMID: 23459668 PMCID: PMC3560862 DOI: 10.3897/zookeys.255.3774] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Accepted: 10/31/2012] [Indexed: 11/12/2022] Open
Abstract
The monotreme genus Zaglossus, the largest egg-laying mammal, comprises several endangered taxa today known only from New Guinea. Zaglossus is considered to be extinct in Australia, where its apparent occurrence (in addition to the large echidna genus Megalibgwilia) is recorded by Pleistocene fossil remains, as well as from convincing representations in Aboriginal rock art from Arnhem Land (Northern Territory). Here we report on the existence and history of a well documented but previously overlooked museum specimen (skin and skull) of the Western Long-Beaked Echidna (Zaglossus bruijnii) collected by John T. Tunney at Mount Anderson in the West Kimberley region of northern Western Australia in 1901, now deposited in the Natural History Museum, London. Possible accounts from living memory of Zaglossus are provided by Aboriginal inhabitants from Kununurra in the East Kimberley. We conclude that, like Tachyglossus, Zaglossus is part of the modern fauna of the Kimberley region of Western Australia, where it apparently survived as a rare element into the twentieth century, and may still survive.
Collapse
Affiliation(s)
- Kristofer M Helgen
- Division of Mammals, Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, MRC 108, Washington, D.C. 20013-7012, USA
| | | | | | | |
Collapse
|
17
|
Thomsen KJ, Murray A, Jain M. The dose dependency of the over-dispersion of quartz OSL single grain dose distributions. RADIAT MEAS 2012. [DOI: 10.1016/j.radmeas.2012.02.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Murray A, Thomsen K, Masuda N, Buylaert J, Jain M. Identifying well-bleached quartz using the different bleaching rates of quartz and feldspar luminescence signals. RADIAT MEAS 2012. [DOI: 10.1016/j.radmeas.2012.05.006] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
19
|
Quantitative global analysis of the role of climate and people in explaining late Quaternary megafaunal extinctions. Proc Natl Acad Sci U S A 2012; 109:4527-31. [PMID: 22393004 DOI: 10.1073/pnas.1113875109] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The late Quaternary period saw the rapid extinction of the majority of the world's terrestrial megafauna. The cause of these dramatic losses, especially the relative importance of climatic change and the impacts of newly arrived people, remains highly controversial, with geographically restricted analyses generating conflicting conclusions. By analyzing the distribution and timing of all megafaunal extinctions in relation to climatic variables and human arrival on five landmasses, we demonstrate that the observed pattern of extinctions is best explained by models that combine both human arrival and climatic variables. Our conclusions are robust to uncertainties in climate data and in the dates of megafaunal extinctions and human arrival on different landmasses, and strongly suggest that these extinctions were driven by both anthropogenic and climatic factors.
Collapse
|
20
|
Nguyen JMT, Molak M, Black KH, Fitzgerald EMG, Travouillon KJ, Ho SYW. Vertebrate palaeontology of Australasia into the twenty-first century. Biol Lett 2011; 7:804-6. [PMID: 21715395 DOI: 10.1098/rsbl.2011.0549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The 13th Conference on Australasian Vertebrate Evolution Palaeontology and Systematics (CAVEPS) took place in Perth, Western Australia, from 27 to 30 April 2011. This biennial meeting was jointly hosted by Curtin University, the Western Australian Museum, Murdoch University and the University of Western Australia. Researchers from diverse disciplines addressed many aspects of vertebrate evolution, including functional morphology, phylogeny, ecology and extinctions. New additions to the fossil record were reported, especially from hitherto under-represented ages and clades. Yet, application of new techniques in palaeobiological analyses dominated, such as dental microwear and geochronology, and technological advances, including computed tomography and ancient biomolecules. This signals a shift towards increased emphasis in interpreting broader evolutionary patterns and processes. Nonetheless, further field exploration for new fossils and systematic descriptions will continue to shape our understanding of vertebrate evolution in this little-studied, but most unusual, part of the globe.
Collapse
Affiliation(s)
- Jacqueline M T Nguyen
- School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| | | | | | | | | | | |
Collapse
|
21
|
Turvey ST, Fritz SA. The ghosts of mammals past: biological and geographical patterns of global mammalian extinction across the Holocene. Philos Trans R Soc Lond B Biol Sci 2011; 366:2564-76. [PMID: 21807737 DOI: 10.1098/rstb.2011.0020] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although the recent historical period is usually treated as a temporal base-line for understanding patterns of mammal extinction, mammalian biodiversity loss has also taken place throughout the Late Quaternary. We explore the spatial, taxonomic and phylogenetic patterns of 241 mammal species extinctions known to have occurred during the Holocene up to the present day. To assess whether our understanding of mammalian threat processes has been affected by excluding these taxa, we incorporate extinct species data into analyses of the impact of body mass on extinction risk. We find that Holocene extinctions have been phylogenetically and spatially concentrated in specific taxa and geographical regions, which are often not congruent with those disproportionately at risk today. Large-bodied mammals have also been more extinction-prone in most geographical regions across the Holocene. Our data support the extinction filter hypothesis, whereby regional faunas from which susceptible species have already become extinct now appear less threatened; they may also suggest that different processes are responsible for driving past and present extinctions. We also find overall incompleteness and inter-regional biases in extinction data from the recent fossil record. Although direct use of fossil data in future projections of extinction risk is therefore not straightforward, insights into extinction processes from the Holocene record are still useful in understanding mammalian threat.
Collapse
Affiliation(s)
- Samuel T Turvey
- Institute of Zoology, Zoological Society of London, Regent's Park, UK.
| | | |
Collapse
|
22
|
Rawlence NJ, Scofield RP, Wood JR, Wilmshurst JM, Moar NT, Worthy TH. New palaeontological data from the excavation of the Late Glacial Glencrieff miring bone deposit, North Canterbury, South Island, New Zealand. J R Soc N Z 2011. [DOI: 10.1080/03036758.2011.559663] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Silvertown J, Tallowin J, Stevens C, Power SA, Morgan V, Emmett B, Hester A, Grime PJ, Morecroft M, Buxton R, Poulton P, Jinks R, Bardgett R. Environmental myopia: a diagnosis and a remedy. Trends Ecol Evol 2010; 25:556-61. [DOI: 10.1016/j.tree.2010.06.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 06/26/2010] [Accepted: 06/28/2010] [Indexed: 10/19/2022]
|
24
|
Affiliation(s)
- Richard G. Roberts
- Centre for Archaeological Science, School of Earth and Environmental Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Barry W. Brook
- The Environment Institute, School of Earth and Environmental Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
25
|
Johnson CN. Ecological consequences of Late Quaternary extinctions of megafauna. Proc Biol Sci 2009; 276:2509-19. [PMID: 19324773 DOI: 10.1098/rspb.2008.1921] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Large herbivorous vertebrates have strong interactions with vegetation, affecting the structure, composition and dynamics of plant communities in many ways. Living large herbivores are a small remnant of the assemblages of giants that existed in most terrestrial ecosystems 50,000 years ago. The extinction of so many large herbivores may well have triggered large changes in plant communities. In several parts of the world, palaeoecological studies suggest that extinct megafauna once maintained vegetation openness, and in wooded landscapes created mosaics of different structural types of vegetation with high habitat and species diversity. Following megafaunal extinction, these habitats reverted to more dense and uniform formations. Megafaunal extinction also led to changes in fire regimes and increased fire frequency due to accumulation of uncropped plant material, but there is a great deal of variation in post-extinction changes in fire. Plant communities that once interacted with extinct large herbivores still contain many species with obsolete defences against browsing and non-functional adaptations for seed dispersal. Such plants may be in decline, and, as a result, many plant communities may be in various stages of a process of relaxation from megafauna-conditioned to megafauna-naive states. Understanding the past role of giant herbivores provides fundamental insight into the history, dynamics and conservation of contemporary plant communities.
Collapse
Affiliation(s)
- C N Johnson
- School of Marine and Tropical Biology, James Cook University, Townsville, Queensland 4811, Australia.
| |
Collapse
|
26
|
Schipper J, Chanson JS, Chiozza F, Cox NA, Hoffmann M, Katariya V, Lamoreux J, Rodrigues ASL, Stuart SN, Temple HJ, Baillie J, Boitani L, Lacher TE, Mittermeier RA, Smith AT, Absolon D, Aguiar JM, Amori G, Bakkour N, Baldi R, Berridge RJ, Bielby J, Black PA, Blanc JJ, Brooks TM, Burton JA, Butynski TM, Catullo G, Chapman R, Cokeliss Z, Collen B, Conroy J, Cooke JG, da Fonseca GAB, Derocher AE, Dublin HT, Duckworth JW, Emmons L, Emslie RH, Festa-Bianchet M, Foster M, Foster S, Garshelis DL, Gates C, Gimenez-Dixon M, Gonzalez S, Gonzalez-Maya JF, Good TC, Hammerson G, Hammond PS, Happold D, Happold M, Hare J, Harris RB, Hawkins CE, Haywood M, Heaney LR, Hedges S, Helgen KM, Hilton-Taylor C, Hussain SA, Ishii N, Jefferson TA, Jenkins RKB, Johnston CH, Keith M, Kingdon J, Knox DH, Kovacs KM, Langhammer P, Leus K, Lewison R, Lichtenstein G, Lowry LF, Macavoy Z, Mace GM, Mallon DP, Masi M, McKnight MW, Medellín RA, Medici P, Mills G, Moehlman PD, Molur S, Mora A, Nowell K, Oates JF, Olech W, Oliver WRL, Oprea M, Patterson BD, Perrin WF, Polidoro BA, Pollock C, Powel A, Protas Y, Racey P, Ragle J, Ramani P, Rathbun G, et alSchipper J, Chanson JS, Chiozza F, Cox NA, Hoffmann M, Katariya V, Lamoreux J, Rodrigues ASL, Stuart SN, Temple HJ, Baillie J, Boitani L, Lacher TE, Mittermeier RA, Smith AT, Absolon D, Aguiar JM, Amori G, Bakkour N, Baldi R, Berridge RJ, Bielby J, Black PA, Blanc JJ, Brooks TM, Burton JA, Butynski TM, Catullo G, Chapman R, Cokeliss Z, Collen B, Conroy J, Cooke JG, da Fonseca GAB, Derocher AE, Dublin HT, Duckworth JW, Emmons L, Emslie RH, Festa-Bianchet M, Foster M, Foster S, Garshelis DL, Gates C, Gimenez-Dixon M, Gonzalez S, Gonzalez-Maya JF, Good TC, Hammerson G, Hammond PS, Happold D, Happold M, Hare J, Harris RB, Hawkins CE, Haywood M, Heaney LR, Hedges S, Helgen KM, Hilton-Taylor C, Hussain SA, Ishii N, Jefferson TA, Jenkins RKB, Johnston CH, Keith M, Kingdon J, Knox DH, Kovacs KM, Langhammer P, Leus K, Lewison R, Lichtenstein G, Lowry LF, Macavoy Z, Mace GM, Mallon DP, Masi M, McKnight MW, Medellín RA, Medici P, Mills G, Moehlman PD, Molur S, Mora A, Nowell K, Oates JF, Olech W, Oliver WRL, Oprea M, Patterson BD, Perrin WF, Polidoro BA, Pollock C, Powel A, Protas Y, Racey P, Ragle J, Ramani P, Rathbun G, Reeves RR, Reilly SB, Reynolds JE, Rondinini C, Rosell-Ambal RG, Rulli M, Rylands AB, Savini S, Schank CJ, Sechrest W, Self-Sullivan C, Shoemaker A, Sillero-Zubiri C, De Silva N, Smith DE, Srinivasulu C, Stephenson PJ, van Strien N, Talukdar BK, Taylor BL, Timmins R, Tirira DG, Tognelli MF, Tsytsulina K, Veiga LM, Vié JC, Williamson EA, Wyatt SA, Xie Y, Young BE. The Status of the World's Land and Marine Mammals: Diversity, Threat, and Knowledge. Science 2008; 322:225-30. [PMID: 18845749 DOI: 10.1126/science.1165115] [Show More Authors] [Citation(s) in RCA: 693] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Jan Schipper
- International Union for Conservation of Nature (IUCN) Species Programme, IUCN, 28 Rue Mauverney, 1196 Gland, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
|