1
|
Lobato-Moreno S, Yildiz U, Claringbould A, Servaas NH, Vlachou EP, Arnold C, Bauersachs HG, Campos-Fornés V, Kim M, Berest I, Prummel KD, Noh KM, Marttinen M, Zaugg JB. Single-cell ultra-high-throughput multiplexed chromatin and RNA profiling reveals gene regulatory dynamics. Nat Methods 2025:10.1038/s41592-025-02700-8. [PMID: 40419657 DOI: 10.1038/s41592-025-02700-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/11/2025] [Indexed: 05/28/2025]
Abstract
Enhancers and transcription factors (TFs) are crucial in regulating cellular processes. Current multiomic technologies to study these elements in gene regulatory mechanisms lack multiplexing capability and scalability. Here we present single-cell ultra-high-throughput multiplexed sequencing (SUM-seq) for co-assaying chromatin accessibility and gene expression in single nuclei. SUM-seq enables profiling hundreds of samples at the million cell scale and outperforms current high-throughput single-cell methods. We demonstrate the capability of SUM-seq to (1) resolve temporal gene regulation of macrophage M1 and M2 polarization to bridge TF regulatory networks and immune disease genetic variants, (2) define the regulatory landscape of primary T helper cell subsets and (3) dissect the effect of perturbing lineage TFs via arrayed CRISPR screens in spontaneously differentiating human induced pluripotent stem cells. SUM-seq offers a cost-effective, scalable solution for ultra-high-throughput single-cell multiomic sequencing, accelerating the unraveling of complex gene regulatory networks in cell differentiation, responses to perturbations and disease studies.
Collapse
Affiliation(s)
- Sara Lobato-Moreno
- European Molecular Biology Laboratory, Molecular Systems Biology Unit, Heidelberg, Germany
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
- Faculty of Biosciences, Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Heidelberg, Germany
| | - Umut Yildiz
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
- Faculty of Biosciences, Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Heidelberg, Germany
| | - Annique Claringbould
- European Molecular Biology Laboratory, Molecular Systems Biology Unit, Heidelberg, Germany
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
- Department of Internal Medicine, Erasmus Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Nila H Servaas
- European Molecular Biology Laboratory, Molecular Systems Biology Unit, Heidelberg, Germany
| | - Evi P Vlachou
- European Molecular Biology Laboratory, Molecular Systems Biology Unit, Heidelberg, Germany
| | - Christian Arnold
- European Molecular Biology Laboratory, Molecular Systems Biology Unit, Heidelberg, Germany
| | | | - Víctor Campos-Fornés
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
- Faculty of Biosciences, Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Heidelberg, Germany
| | - Minyoung Kim
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Ivan Berest
- European Molecular Biology Laboratory, Molecular Systems Biology Unit, Heidelberg, Germany
- Molecular Medicine Partnership Unit, Heidelberg, Germany
| | - Karin D Prummel
- European Molecular Biology Laboratory, Molecular Systems Biology Unit, Heidelberg, Germany
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Kyung-Min Noh
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| | - Mikael Marttinen
- European Molecular Biology Laboratory, Molecular Systems Biology Unit, Heidelberg, Germany.
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany.
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| | - Judith B Zaugg
- European Molecular Biology Laboratory, Molecular Systems Biology Unit, Heidelberg, Germany.
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany.
- Molecular Medicine Partnership Unit, Heidelberg, Germany.
- Department of Biomedicine, University of Basel, Basel University Hospital, Basel, Switzerland.
| |
Collapse
|
2
|
Wang YY, Lin JF, Wu WW, Fu Z, Cao F, Chen YX, Mo HY, Sheng H, Liu ZX, Zeng ZL, Guan XY, Ju HQ, Liao K, Xu RH. Inhibition of MBTPS1 enhances antitumor immunity and potentiates anti-PD-1 immunotherapy. Nat Commun 2025; 16:4047. [PMID: 40307212 PMCID: PMC12043911 DOI: 10.1038/s41467-025-59193-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 04/14/2025] [Indexed: 05/02/2025] Open
Abstract
Despite advances in cancer immunotherapy, colorectal cancer patients exhibit limited therapeutic responses. Therefore, the exploration of strategies combining immunotherapy with adjuvant approaches to enhance adaptive immune responses is in demand. Here, we perform a customized in vivo CRISPR-Cas9 screen to target genes encoding membrane and secreted proteins in CRC mouse models with different immune characteristics. We observe that loss of membrane-bound transcription factor site-1 protease (MBTPS1) in tumor cells enhances antitumor immunity and potentiates anti-PD-1 therapy. Mechanistic studies reveal that tumor cell-intrinsic MBTPS1 competes with USP13 for binding to STAT1, thereby disrupting the USP13-dependent deubiquitination-mediated STAT1 stabilization. The upregulated STAT1-transcribed chemokines including CXCL9, CXCL10, and CXCL11, promote CXCR3+CD8+ T cell infiltration. Notably, the regulatory role of MBTPS1 in antitumor immunity operates independently of its classic function in cleaving membrane-bound transcription factors. Collectively, our results provide a theoretical basis for MBTPS1 as a potential immunotherapy target.
Collapse
Affiliation(s)
- Yi-Yu Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, P. R. China
| | - Jin-Fei Lin
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, P. R. China
- Department of Clinical Laboratory, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Wen-Wei Wu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, P. R. China
| | - Zhe Fu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, P. R. China
| | - Fen Cao
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, P. R. China
| | - Yan-Xing Chen
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, P. R. China
| | - Hai-Yu Mo
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, P. R. China
| | - Hui Sheng
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, P. R. China
| | - Ze-Xian Liu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, P. R. China
| | - Zhao-Lei Zeng
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, P. R. China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, P. R. China
| | - Huai-Qiang Ju
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, P. R. China.
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, P. R. China.
| | - Kun Liao
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, P. R. China.
| | - Rui-Hua Xu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, P. R. China.
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, P. R. China.
| |
Collapse
|
3
|
Yang W, Huang B, Rao H, Ye P, Chen B, Wang H, Chung C, Wu H, Yen H, Wang S, Cha J, Yan X, Yang M, Hung M. Ribonuclease 1 Induces T-Cell Dysfunction and Impairs CD8 + T-Cell Cytotoxicity to Benefit Tumor Growth through Hijacking STAT1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2404961. [PMID: 39932384 PMCID: PMC11967817 DOI: 10.1002/advs.202404961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 01/19/2025] [Indexed: 04/05/2025]
Abstract
T-cell-based immunotherapy holds promise for eliminating cancer through T-cell activation. However, prolonged interaction between T cells and tumors and the presence of immunosuppressive factors can diminish T-cell cytotoxicity, leading to treatment failure. Here, ribonuclease 1 (RNase1), which degrades RNA, reduced the expression of effector cytokines and increases immune checkpoint protein levels, inducing T-cell dysfunction. RNase1 expression is positively associated with exhausted T-cell gene signatures and immune checkpoint proteins across several cancer types. Cancer cells expressing RNase1 are resistant to CD8+ T-cell-mediated killing. RNase1 promotes tumor growth in immunocompetent, but not in immunodeficient, mouse models and inhibits CD8+ T-cell activity in vivo. Mechanistically, RNase1 enters T cells and deactivates signal transducer and activator of transcription 1 (STAT1), causing T-cell dysfunction. Loss of RNase1-STAT1 interaction restores CD8+ T-cell cytotoxicity. Notably, a study has found RNase1 might activate CD4+ T cells to inhibit breast cancer growth, while another has indicated it causes immunosuppression in liver cancer. The current research shows that RNase1 does not impact CD4+ T cells in vivo. Overall, the study supports the immunosuppressive role of RNase1 in cancer of negatively regulating STAT1 to impair CD8+ T-cell cytotoxicity. Targeting the RNase1-STAT1 interaction could prevent CD8+ T-cell dysfunction in RNase1-highly expressing cancer patients.
Collapse
Affiliation(s)
- Wen‐Hao Yang
- Graduate Institute of Cell Biology and Cancer Biology and Precision Therapeutics CenterChina Medical UniversityTaichung406040Taiwan
| | - Bao‐Yue Huang
- Graduate Institute of Cell Biology and Cancer Biology and Precision Therapeutics CenterChina Medical UniversityTaichung406040Taiwan
| | - Hsing‐Yu Rao
- Graduate Institute of Cell Biology and Cancer Biology and Precision Therapeutics CenterChina Medical UniversityTaichung406040Taiwan
| | - Peng Ye
- Affiliated Cancer Hospital and Institute of Guangzhou Medical UniversityGuangzhouGuangdong910095China
- Infection Medicine Research Institute of Panyu DistrictThe Affiliated Panyu Central Hospital of Guangzhou Medical UniversityGuangzhouGuangdong910095China
| | - Bi Chen
- Affiliated Cancer Hospital and Institute of Guangzhou Medical UniversityGuangzhouGuangdong910095China
| | - Hao‐Ching Wang
- The PhD Program for Translational Medicine, and Graduate Institute of Translational MedicineCollege of Medical Science and TechnologyTaipei Medical UniversityTaipei110301Taiwan
| | - Chih‐Hung Chung
- Cancer and Immunology Research CenterNational Yang Ming Chiao Tung UniversityTaipei112304Taiwan
| | - Heng‐Hsiung Wu
- Graduate Institute of Biomedical SciencesChina Medical UniversityTaichung404328Taiwan
| | - Hung‐Rong Yen
- School of Chinese MedicineCollege of Chinese MedicineChina Medical UniversityTaichung404328Taiwan
| | - Shao‐Chun Wang
- Graduate Institute of Biomedical SciencesChina Medical UniversityTaichung404328Taiwan
| | - Jong‐Ho Cha
- Department of Biomedical Science and EngineeringGraduate SchoolInha UniversityIncheon22212Republic of Korea
| | - Xiuwen Yan
- Affiliated Cancer Hospital and Institute of Guangzhou Medical UniversityGuangzhouGuangdong910095China
| | - Muh‐Hwa Yang
- Institute of Clinical Medicine and Cancer and Immunology Research CenterNational Yang Ming Chiao Tung UniversityTaipei112304Taiwan
- Department of OncologyTaipei Veterans General HospitalTaipei112201Taiwan
| | - Mien‐Chie Hung
- Graduate Institute of Biomedical SciencesInstitute of Biochemistry and Molecular BiologyResearch Center for Cancer BiologyCancer Biology and Precision Therapeutics Center and Center for Molecular MedicineChina Medical UniversityTaichung406040Taiwan
| |
Collapse
|
4
|
Metwally H. STAT Signature Dish: Serving Immunity with a Side of Dietary Control. Biomolecules 2025; 15:487. [PMID: 40305224 PMCID: PMC12024614 DOI: 10.3390/biom15040487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/10/2025] [Accepted: 03/25/2025] [Indexed: 05/02/2025] Open
Abstract
Immunity is a fundamental aspect of animal biology, defined as the host's ability to detect and defend against harmful pathogens and toxic substances to preserve homeostasis. However, immune defenses are metabolically demanding, requiring the efficient allocation of limited resources to balance immune function with other physiological and developmental needs. To achieve this balance, organisms have evolved sophisticated signaling networks that enable precise, context-specific responses to internal and external cues. These networks are essential for survival and adaptation in multicellular systems. Central to this regulatory architecture is the STAT (signal transducer and activator of Transcription) family, a group of versatile signaling molecules that govern a wide array of biological processes across eukaryotes. STAT signaling demonstrates remarkable plasticity, from orchestrating host defense mechanisms to regulating dietary metabolism. Despite its critical role, the cell-specific and context-dependent nuances of STAT signaling remain incompletely understood, highlighting a significant gap in our understanding. This review delves into emerging perspectives on immunity, presenting dynamic frameworks to explore the complexity and adaptability of STAT signaling and the underlying logic driving cellular decision-making. It emphasizes how STAT pathways integrate diverse physiological processes, from immune responses to dietary regulation, ultimately supporting organismal balance and homeostasis.
Collapse
Affiliation(s)
- Hozaifa Metwally
- Laboratory of Immune Regulation, The World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
5
|
Samidurai M, Chennakesavan K, Sarkar S, Malovic E, Nguyen HM, Singh L, Kumar A, Ealy A, Janarthanam C, Palanisamy BN, Kondru N, Zenitsky G, Jin H, Anantharam V, Kanthasamy A, Zhang H, Wulff H, Kanthasamy A. KCa3.1 Contributes to Neuroinflammation and Nigral Dopaminergic Neurodegeneration in Experimental models of Parkinson's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.18.643982. [PMID: 40166152 PMCID: PMC11956954 DOI: 10.1101/2025.03.18.643982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Chronic neuroinflammation and misfolded α-synuclein (αSyn) have been identified as key pathological correlates driving Parkinson's disease (PD) pathogenesis; however, the contribution of ion channels to microglia activation in the context of α-synucleinopathy remains elusive. Herein, we show that KCa3.1, a calcium-activated potassium channel, is robustly upregulated within microglia in multiple preclinical models of PD and, most importantly, in human PD and dementia with Lewy bodies (DLB) brains. Pharmacological inhibition of KCa3.1 via senicapoc or TRAM-34 inhibits KCa3.1 channel activity and the associated reactive microglial phenotype in response to aggregated αSyn, as well as ameliorates of PD like pathology in diverse PD mouse models. Additionally, proteomic and transcriptomic profiling of microglia revealed that senicapoc ameliorates aggregated αSyn-induced, inflammation-associated pathways and dysregulated metabolism in primary microglial cells. Mechanistically, FYN kinase in a STAT1 dependent manner regulates KCa3.1 mediated the microglial reactive activation phenotype after α-synucleinopathy. Moreover, reduced neuroinflammation and subsequent PD-like neuropathology were observed in SYN AAV inoculated KCa3.1 knockout mice. Together, these findings suggest that KCa3.1 inhibition represents a novel therapeutic strategy for treating patients with PD and related α-synucleinopathies.
Collapse
|
6
|
Rivada AR, de Oliveira JG, Martin-Vazquez Garcia ME, de Brachene AC, Yi X, Junior JC, Zimath P, Van Goethem F, Pattou F, Kerr-Conte J, Buemi A, Mourad N, Eizirik D. The type 1 diabetes candidate genes PTPN2 and BACH2 regulate novel IFN-α-induced crosstalk between the JAK/STAT and MAPKs pathways in human beta cells. RESEARCH SQUARE 2025:rs.3.rs-6079043. [PMID: 40162226 PMCID: PMC11952633 DOI: 10.21203/rs.3.rs-6079043/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease that leads to the progressive loss of pancreatic beta cells. Interferons (IFNs) contribute to the initiation and amplification of beta cell autoimmunity. STAT1 is the main mediator of IFN signalling but little is known on its complex activation processes and role in the progression of beta cell failure. We presently show that two T1D candidate genes (i.e. PTPN2 and BACH2) modulate STAT1 activation via two different pathways, namely the JAK/STAT, involved in the short-term phosphorylation of its tyrosine residue (Y701), and the MAPKs pathway, involved in the long-term phosphorylation of its serine residue (S727). Each STAT1 phosphorylation type can independently induce expression of the chemokine CXCL10, but both residues are necessary for the expression of MHC class I molecules. IFN-α-induced STAT1 activation is dynamic and residue-dependent, being STAT1-Y701 fast (detectable after 4h) but transitory (back to basal by 24h) while STAT1-S727 increases slowly (peak at 48h) and is associated with the long-term effects of IFN-α exposure. These pathways can be chemically dissociated in human beta cells by the use of JAK1/2, TYK2 or JNK1 inhibitors. The present findings provide a novel understanding of the dynamics of STAT1 activation and will be useful to develop novel and hopefully targeted (i.e. favouring individuals with particular polymorphisms) therapies for T1D and other autoimmune diseases.
Collapse
Affiliation(s)
- Arturo Roca Rivada
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles
| | | | | | | | | | - Jose Costa Junior
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles
| | - Priscila Zimath
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles
| | - Flore Van Goethem
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles
| | - François Pattou
- Recherche Translationnelle sur le diabète UMR 1190, Université de Lille, Inserm, Institut Pasteur Lille, CHU Lille
| | - Julie Kerr-Conte
- University of Lille, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire de Lille (CHU Lille), Institute Pasteur Lille
| | - Antoine Buemi
- Pôle de chirurgie expérimentale et transplantation, Institut de recherche expérimentale et clinique, Université catholique de Louvain
| | - Nizar Mourad
- Pôle de chirurgie expérimentale et transplantation, Institut de recherche expérimentale et clinique, Université catholique de Louvain
| | | |
Collapse
|
7
|
Schmidt C, Harit K, Traidl S, Naumann M, Werfel T, Roesner LM, Nishanth G, Schlüter D. Ablation of the deubiquitinating enzyme cylindromatosis (CYLD) augments STAT1-mediated M1 macrophage polarization and fosters Staphylococcus aureus control. Front Immunol 2025; 16:1507989. [PMID: 39958342 PMCID: PMC11827430 DOI: 10.3389/fimmu.2025.1507989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/07/2025] [Indexed: 02/18/2025] Open
Abstract
In atopic dermatitis (AD), lesional skin is frequently colonized by Staphylococcus aureus, which promotes clinical symptoms of the disease. The inflammatory milieu in the skin is characterized by a Th2 response, including M2 macrophages, which cannot eradicate S. aureus. Therefore, repolarization of macrophages toward the M1 phenotype may foster control of S. aureus. Our data show that the deubiquitinating enzyme cylindromatosis (CYLD) is strongly expressed in macrophages of AD patients and prevents the clearance of S. aureus. Mechanistically, CYLD impaired M1 macrophage polarization by K63-specific deubiquitination of STAT1 and activation of the NF-κB pathway via its interaction with TRAF6, NEMO, and RIPK2. Inhibition of STAT1 and NF-κB, independently, abolished the differences between S. aureus-infected CYLD-deficient and CYLD-competent M1 macrophages. Infection of Cyld-deficient and wild-type mice with S. aureus confirmed the protective CYLD function. Collectively, our study shows that CYLD impairs the control of S. aureus in macrophages of AD patients, identifying CYLD as a potential therapeutic target.
Collapse
Affiliation(s)
- Christina Schmidt
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Kunjan Harit
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Stephan Traidl
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Thomas Werfel
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Lennart M. Roesner
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Gopala Nishanth
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Dirk Schlüter
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
8
|
Argoetti A, Shalev D, Polyak G, Shima N, Biran H, Lahav T, Hashimshony T, Mandel-Gutfreund Y. lncRNA NORAD modulates STAT3/STAT1 balance and innate immune responses in human cells via interaction with STAT3. Nat Commun 2025; 16:571. [PMID: 39794357 PMCID: PMC11723954 DOI: 10.1038/s41467-025-55822-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Long non-coding RNAs (lncRNAs) are pivotal regulators of cellular processes. Here we reveal an interaction between the lncRNA NORAD, noted for its role in DNA stability, and the immune related transcription factor STAT3 in embryonic and differentiated human cells. Results from NORAD knockdown experiments implicate NORAD in facilitating STAT3 nuclear localization and suppressing antiviral gene activation. In NORAD-deficient cells, STAT3 remains cytoplasmic, allowing STAT1 to enhance antiviral activity. Analysis of RNA expression data from in vitro experiments and clinical samples demonstrates reduced NORAD upon viral infection. Additionally, evolutionary conservation analysis suggests that this regulatory function of NORAD is restricted to humans, potentially owing to the introduction of an Alu element in hominoids. Our findings thus suggest that NORAD functions as a modulator of STAT3-mediated immune suppression, adding to the understanding of lncRNAs in immune regulation and evolutionary adaptation in host defense mechanisms.
Collapse
Affiliation(s)
- Amir Argoetti
- Technion-Israel Institute of Technology, Faculty of Biology, Emerson building, Haifa, Israel
| | - Dor Shalev
- Technion-Israel Institute of Technology, Faculty of Biology, Emerson building, Haifa, Israel
| | - Galia Polyak
- Technion-Israel Institute of Technology, Faculty of Biology, Emerson building, Haifa, Israel
| | - Noa Shima
- Technion-Israel Institute of Technology, Faculty of Biology, Emerson building, Haifa, Israel
| | - Hadas Biran
- Technion-Israel Institute of Technology, Faculty of Computer Science, Taub building, Haifa, Israel
| | - Tamar Lahav
- Technion-Israel Institute of Technology, Faculty of Biology, Emerson building, Haifa, Israel
| | - Tamar Hashimshony
- Technion-Israel Institute of Technology, Faculty of Biology, Emerson building, Haifa, Israel
| | - Yael Mandel-Gutfreund
- Technion-Israel Institute of Technology, Faculty of Biology, Emerson building, Haifa, Israel.
- Technion-Israel Institute of Technology, Faculty of Computer Science, Taub building, Haifa, Israel.
| |
Collapse
|
9
|
Yuzhalin AE, Lowery FJ, Saito Y, Yuan X, Yao J, Duan Y, Ding J, Acharya S, Zhang C, Fajardo A, Chen HN, Wei Y, Sun Y, Zhang L, Xiao Y, Li P, Lorenzi PL, Huse JT, Fan H, Zhao Z, Hung MC, Yu D. Astrocyte-induced Cdk5 expedites breast cancer brain metastasis by suppressing MHC-I expression to evade immune recognition. Nat Cell Biol 2024; 26:1773-1789. [PMID: 39304713 PMCID: PMC11676029 DOI: 10.1038/s41556-024-01509-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/16/2024] [Indexed: 09/22/2024]
Abstract
Brain metastases (BrMs) evade the immune response to develop in the brain, yet the mechanisms of BrM immune evasion remains unclear. This study shows that brain astrocytes induce the overexpression of neuronal-specific cyclin-dependent kinase 5 (Cdk5) in breast cancer-derived BrMs, which facilitates BrM outgrowth in mice. Cdk5-overexpressing BrMs exhibit reduced expression and function of the class I major histocompatibility complex (MHC-I) and antigen-presentation pathway, which are restored by inhibiting Cdk5 genetically or pharmacologically, as evidenced by single-cell RNA sequencing and functional studies. Mechanistically, Cdk5 suppresses MHC-I expression on the cancer cell membrane through the Irf2bp1-Stat1-importin α-Nlrc5 pathway, enabling BrMs to avoid recognition by T cells. Treatment with roscovitine-a clinically applicable Cdk5 inhibitor-alone or combined with immune checkpoint inhibitors, significantly reduces BrM burden and increases tumour-infiltrating functional CD8+ lymphocytes in mice. Thus, astrocyte-induced Cdk5 overexpression endorses BrM immune evasion, whereas therapeutically targeting Cdk5 markedly improves the efficacy of immune checkpoint inhibitors and inhibits BrM growth.
Collapse
Affiliation(s)
- Arseniy E Yuzhalin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Frank J Lowery
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yohei Saito
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiangliang Yuan
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jun Yao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yimin Duan
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jingzhen Ding
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sunil Acharya
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chenyu Zhang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Abigail Fajardo
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hao-Nien Chen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yongkun Wei
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yutong Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lin Zhang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yi Xiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ping Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Philip L Lorenzi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason T Huse
- Departments of Pathology and Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Huihui Fan
- Center for Precision Health, McWilliams School of Biomedical Informatics, Houston, TX, USA
- John P and Katherine G McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhongming Zhao
- Center for Precision Health, McWilliams School of Biomedical Informatics, Houston, TX, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung City, Taiwan
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
10
|
Huang M, Cha Z, Liu R, Lin M, Gafoor NA, Kong T, Ge F, Chen W. Enhancing immunotherapy outcomes by targeted remodeling of the tumor microenvironment via combined cGAS-STING pathway strategies. Front Immunol 2024; 15:1399926. [PMID: 38817608 PMCID: PMC11137211 DOI: 10.3389/fimmu.2024.1399926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/26/2024] [Indexed: 06/01/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) represent a groundbreaking advance in the treatment of malignancies such as melanoma and non-small cell lung cancer, showcasing substantial therapeutic benefits. Nonetheless, the efficacy of ICIs is limited to a small subset of patients, primarily benefiting those with "hot" tumors characterized by significant immune infiltration. The challenge of converting "cold" tumors, which exhibit minimal immune activity, into "hot" tumors to enhance their responsiveness to ICIs is a critical and complex area of current research. Central to this endeavor is the activation of the cGAS-STING pathway, a pivotal nexus between innate and adaptive immunity. This pathway's activation promotes the production of type I interferon (IFN) and the recruitment of CD8+ T cells, thereby transforming the tumor microenvironment (TME) from "cold" to "hot". This review comprehensively explores the cGAS-STING pathway's role in reconditioning the TME, detailing the underlying mechanisms of innate and adaptive immunity and highlighting the contributions of various immune cells to tumor immunity. Furthermore, we delve into the latest clinical research on STING agonists and their potential in combination therapies, targeting this pathway. The discussion concludes with an examination of the challenges facing the advancement of promising STING agonists in clinical trials and the pressing issues within the cGAS-STING signaling pathway research.
Collapse
Affiliation(s)
- Mingqing Huang
- Third Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Zhuocen Cha
- Third Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
- Guizhou Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guizhou, China
| | - Rui Liu
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Mengping Lin
- Third Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Naif Abdul Gafoor
- International Education School of Kunming Medical University, Kunming, China
| | - Tong Kong
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Fei Ge
- Department of Breast Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wenlin Chen
- Third Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| |
Collapse
|
11
|
Ghosh C, Kakar R, Hoyle RG, Liu Z, Guo C, Li J, Wang XY, Sun Y. Type I gamma phosphatidylinositol phosphate 5-kinase i5 controls cell sensitivity to interferon. Dev Cell 2024; 59:1028-1042.e5. [PMID: 38452758 PMCID: PMC11043016 DOI: 10.1016/j.devcel.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 12/21/2023] [Accepted: 02/09/2024] [Indexed: 03/09/2024]
Abstract
The interferon signaling pathway is critical for host defense by serving diverse functions in both innate and adaptive immune responses. Here, we show that type I gamma phosphatidylinositol phosphate 5-kinase i5 (PIPKIγi5), an enzyme that synthesizes phosphatidylinositol-4,5-bisphosphate (PI4,5P2), controls the sensitivity to interferon in both human and mouse cells. PIPKIγi5 directly binds to the interferon-gamma (IFN-γ) downstream effector signal transducer and activator of transcription 1 (STAT1), which suppresses the STAT1 dimerization, IFN-γ-induced STAT1 nuclear translocation, and transcription of IFN-γ-responsive genes. Depletion of PIPKIγi5 significantly enhances IFN-γ signaling and strengthens an antiviral response. In addition, PIPKIγi5-synthesized PI4,5P2 can bind to STAT1 and promote the PIPKIγi5-STAT1 interaction. Similar to its interaction with STAT1, PIPKIγi5 is capable of interacting with other members of the STAT family, including STAT2 and STAT3, thereby suppressing the expression of genes mediated by these transcription factors. These findings identify the function of PIPKIγi5 in immune regulation.
Collapse
Affiliation(s)
- Chinmoy Ghosh
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Ruchi Kakar
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Rosalie G Hoyle
- Department of Medicinal Chemistry, Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Zheng Liu
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Chunqing Guo
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jiong Li
- Department of Medicinal Chemistry, Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Yue Sun
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298, USA; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
12
|
Jirau-Colón H, Jiménez-Vélez BD. PM 2.5 Extracts Induce INFγ-Independent Activation of CIITA, MHCII, and Increases Inflammation in Human Bronchial Epithelium. TOXICS 2024; 12:292. [PMID: 38668515 PMCID: PMC11054084 DOI: 10.3390/toxics12040292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 04/29/2024]
Abstract
The capacity of particulate matter (PM) to enhance and stimulate the expression of pro-inflammatory mediators has been previously demonstrated in non-antigen-presenting cells (human bronchial epithelia). Nonetheless, many proposed mechanisms for this are extrapolated from known canonical molecular pathways. This work evaluates a possible mechanism for inflammatory exacerbation after exposure to PM2.5 (from Puerto Rico) and CuSO4, using human bronchial epithelial cells (BEAS-2B) as a model. The induction of CIITA, MHCII genes, and various pro-inflammatory mediators was investigated. Among these, the phosphorylation of STAT1 Y701 was significantly induced after 4 h of PM2.5 exposure, concurrent with a slight increase in CIITA and HLA-DRα mRNA levels. INFγ mRNA levels remained low amidst exposure time, while IL-6 levels significantly increased at earlier times. IL-8 remained low, as expected from attenuation by IL-6 in the known INFγ-independent inflammation pathway. The effects of CuSO4 showed an increase in HLA-DRα expression after 8 h, an increase in STAT1 at 1 h, and RF1 at 8 h We hypothesize and show evidence that an inflammatory response due to PM2.5 extract exposure in human bronchial epithelia can be induced early via an alternate non-canonical pathway in the absence of INFγ.
Collapse
Affiliation(s)
- Héctor Jirau-Colón
- Department of Biochemistry, University of Puerto Rico Medical Sciences Campus, San Juan 00935, Puerto Rico;
- Center for Environmental and Toxicological Research, Biochemistry Department, San Juan 00935, Puerto Rico
| | - Braulio D. Jiménez-Vélez
- Department of Biochemistry, University of Puerto Rico Medical Sciences Campus, San Juan 00935, Puerto Rico;
- Center for Environmental and Toxicological Research, Biochemistry Department, San Juan 00935, Puerto Rico
| |
Collapse
|
13
|
Yin X, He Z, Chen K, Ouyang K, Yang C, Li J, Tang H, Cai M. Unveiling the impact of CDK8 on tumor progression: mechanisms and therapeutic strategies. Front Pharmacol 2024; 15:1386929. [PMID: 38606172 PMCID: PMC11006979 DOI: 10.3389/fphar.2024.1386929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/14/2024] [Indexed: 04/13/2024] Open
Abstract
CDK8 is an important member of the cyclin-dependent kinase family associated with transcription and acts as a key "molecular switch" in the Mediator complex. CDK8 regulates gene expression by phosphorylating transcription factors and can control the transcription process through Mediator complex. Previous studies confirmed that CDK8 is an important oncogenic factor, making it a potential tumor biomarker and a promising target for tumor therapy. However, CDK8 has also been confirmed to be a tumor suppressor, indicating that it not only promotes the development of tumors but may also be involved in tumor suppression. Therefore, the dual role of CDK8 in the process of tumor development is worth further exploration and summary. This comprehensive review delves into the intricate involvement of CDK8 in transcription-related processes, as well as its role in signaling pathways related to tumorigenesis, with a focus on its critical part in driving cancer progression.
Collapse
Affiliation(s)
- Xiaomin Yin
- Department of Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhilong He
- Department of Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Kun Chen
- Department of Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Kai Ouyang
- Department of Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Changxuan Yang
- Department of Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jianjun Li
- Department of Urological Surgical, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Manbo Cai
- Department of Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
14
|
Jiang Y, Zheng Y, Zhang YW, Kong S, Dong J, Wang F, Ziman B, Gery S, Hao JJ, Zhou D, Zhou J, Ho AS, Sinha UK, Chen J, Zhang S, Yin C, Wei DD, Hazawa M, Pan H, Lu Z, Wei WQ, Wang MR, Koeffler HP, Lin DC, Jiang YY. Reciprocal inhibition between TP63 and STAT1 regulates anti-tumor immune response through interferon-γ signaling in squamous cancer. Nat Commun 2024; 15:2484. [PMID: 38509096 PMCID: PMC10954759 DOI: 10.1038/s41467-024-46785-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 03/11/2024] [Indexed: 03/22/2024] Open
Abstract
Squamous cell carcinomas (SCCs) are common and aggressive malignancies. Immune check point blockade (ICB) therapy using PD-1/PD-L1 antibodies has been approved in several types of advanced SCCs. However, low response rate and treatment resistance are common. Improving the efficacy of ICB therapy requires better understanding of the mechanism of immune evasion. Here, we identify that the SCC-master transcription factor TP63 suppresses interferon-γ (IFNγ) signaling. TP63 inhibition leads to increased CD8+ T cell infiltration and heighten tumor killing in in vivo syngeneic mouse model and ex vivo co-culture system, respectively. Moreover, expression of TP63 is negatively correlated with CD8+ T cell infiltration and activation in patients with SCC. Silencing of TP63 enhances the anti-tumor efficacy of PD-1 blockade by promoting CD8+ T cell infiltration and functionality. Mechanistically, TP63 and STAT1 mutually suppress each other to regulate the IFNγ signaling by co-occupying and co-regulating their own promoters and enhancers. Together, our findings elucidate a tumor-extrinsic function of TP63 in promoting immune evasion of SCC cells. Over-expression of TP63 may serve as a biomarker predicting the outcome of SCC patients treated with ICB therapy, and targeting TP63/STAT/IFNγ axis may enhance the efficacy of ICB therapy for this deadly cancer.
Collapse
Affiliation(s)
- Yuan Jiang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Yueyuan Zheng
- Clinical Big Data Research Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yuan-Wei Zhang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Shuai Kong
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Jinxiu Dong
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Fei Wang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Benjamin Ziman
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA
| | - Sigal Gery
- Department of Medicine, Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Jia-Jie Hao
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Dan Zhou
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Institutes of Physical Science and Technology, Anhui University, Hefei, 230601, China
| | - Jianian Zhou
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Allen S Ho
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Uttam K Sinha
- Department of otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Jian Chen
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Shuo Zhang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Chuntong Yin
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Dan-Dan Wei
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Masaharu Hazawa
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Huaguang Pan
- Department of Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Zhihao Lu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Wen-Qiang Wei
- Department of Cancer Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ming-Rong Wang
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - H Phillip Koeffler
- Department of Medicine, Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - De-Chen Lin
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA.
| | - Yan-Yi Jiang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
- University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
15
|
Yang Q, Lv Z, Wang M, Kong M, Zhong C, Gao K, Wan X. LATS1/2 loss promote tumor immune evasion in endometrial cancer through downregulating MHC-I expression. J Exp Clin Cancer Res 2024; 43:54. [PMID: 38383447 PMCID: PMC10880206 DOI: 10.1186/s13046-024-02979-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/11/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND LATS1/2 are frequently mutated and down-regulated in endometrial cancer (EC), but the contributions of LATS1/2 in EC progression remains unclear. Impaired antigen presentation due to mutations or downregulation of the major histocompatibility complex class I (MHC-I) has been implicated in tumor immune evasion. Herein, we elucidate the oncogenic role that dysregulation of LATS1/2 in EC leads to immune evasion through the down-regulation of MHC-I. METHODS The mutation and expression as well as the clinical significance of LATS1/2 in EC was assessed in the TCGA cohort and our sample cohort. CRISPR-Cas9 was used to construct knockout cell lines of LATS1/2 in EC. Differentially expressed genes were analyzed by RNA-seq. The interaction between LATS1/2 and STAT1 was verified using co-immunoprecipitation and GST pull-down assays. Mass spectrometry, in vitro kinase assays, ChIP-qPCR, flow cytometry, immunohistochemistry, immunofluorescence and confocal microscopy were performed to investigate the regulation of LATS1/2 on MHC-I through interaction with and phosphorylate STAT1. The killing effect of activated PBMCs on EC cells were used to monitor anti-tumor activity. RESULTS Here, we demonstrate that LATS1/2 are frequently mutated and down-regulated in EC. Moreover, LATS1/2 loss was found to be associated with a significant down-regulation of MHC-I, independently of the Hippo-YAP pathway. Instead, LATS1/2 were found to directly interact with and phosphorylate STAT1 at Ser727, a crucial transcription factor for MHC-I upregulation in response to interferon-gamma (IFN-γ) signaling, to promote STAT1 accumulating and moving into the nucleus to enhance the transcriptional activation of IRF1/NLRC5 on MHC-I. Additionally, the loss of LATS1/2 was observed to confer increased resistance of EC cells to immune cell-mediated killing and this resistance could be reversed by over-expression of MHC-I. CONCLUSION Our findings indicate that dysregulation of LATS1/2 in EC leads to immune evasion through the down-regulation of MHC-I, leading to the suppression of infiltrating activated CD8 + T cells and highlight the importance of LATS1/2 in IFN-γ signaling-mediated tumor immune response, suggesting that LATS1/2 is a promising target for immune checkpoint blockade therapy in EC.
Collapse
Affiliation(s)
- Qianlan Yang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Shanghai First Maternity and Infant Hospital, Shanghai, 200092, China
| | - Zehen Lv
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Shanghai First Maternity and Infant Hospital, Shanghai, 200092, China
| | - Mengfei Wang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Shanghai First Maternity and Infant Hospital, Shanghai, 200092, China
| | - Mengwen Kong
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Shanghai First Maternity and Infant Hospital, Shanghai, 200092, China
| | - Cheng Zhong
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Shanghai First Maternity and Infant Hospital, Shanghai, 200092, China
| | - Kun Gao
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Shanghai First Maternity and Infant Hospital, Shanghai, 200092, China.
| | - Xiaoping Wan
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Shanghai First Maternity and Infant Hospital, Shanghai, 200092, China.
| |
Collapse
|
16
|
Reuschl AK, Thorne LG, Whelan MVX, Ragazzini R, Furnon W, Cowton VM, De Lorenzo G, Mesner D, Turner JLE, Dowgier G, Bogoda N, Bonfanti P, Palmarini M, Patel AH, Jolly C, Towers GJ. Evolution of enhanced innate immune suppression by SARS-CoV-2 Omicron subvariants. Nat Microbiol 2024; 9:451-463. [PMID: 38228858 PMCID: PMC10847042 DOI: 10.1038/s41564-023-01588-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/13/2023] [Indexed: 01/18/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) human adaptation resulted in distinct lineages with enhanced transmissibility called variants of concern (VOCs). Omicron is the first VOC to evolve distinct globally dominant subvariants. Here we compared their replication in human cell lines and primary airway cultures and measured host responses to infection. We discovered that subvariants BA.4 and BA.5 have improved their suppression of innate immunity when compared with earlier subvariants BA.1 and BA.2. Similarly, more recent subvariants (BA.2.75 and XBB lineages) also triggered reduced innate immune activation. This correlated with increased expression of viral innate antagonists Orf6 and nucleocapsid, reminiscent of VOCs Alpha to Delta. Increased Orf6 levels suppressed host innate responses to infection by decreasing IRF3 and STAT1 signalling measured by transcription factor phosphorylation and nuclear translocation. Our data suggest that convergent evolution of enhanced innate immune antagonist expression is a common pathway of human adaptation and link Omicron subvariant dominance to improved innate immune evasion.
Collapse
Affiliation(s)
| | - Lucy G Thorne
- Division of Infection and Immunity, University College London, London, UK
- Department of Infectious Diseases, St Mary's Medical School, Imperial College London, London, UK
| | - Matthew V X Whelan
- Division of Infection and Immunity, University College London, London, UK
| | - Roberta Ragazzini
- Division of Infection and Immunity, University College London, London, UK
- Epithelial Stem Cell Biology and Regenerative Medicine Laboratory, The Francis Crick Institute, London, UK
| | - Wilhelm Furnon
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Vanessa M Cowton
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | | | - Dejan Mesner
- Division of Infection and Immunity, University College London, London, UK
| | - Jane L E Turner
- Division of Infection and Immunity, University College London, London, UK
| | - Giulia Dowgier
- Division of Infection and Immunity, University College London, London, UK
- COVID Surveillance Unit, The Francis Crick Institute, London, UK
| | - Nathasha Bogoda
- Division of Infection and Immunity, University College London, London, UK
| | - Paola Bonfanti
- Division of Infection and Immunity, University College London, London, UK
- Epithelial Stem Cell Biology and Regenerative Medicine Laboratory, The Francis Crick Institute, London, UK
| | | | - Arvind H Patel
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Clare Jolly
- Division of Infection and Immunity, University College London, London, UK.
| | - Greg J Towers
- Division of Infection and Immunity, University College London, London, UK.
| |
Collapse
|
17
|
Bansal A, Kooi C, Kalyanaraman K, Gill S, Thorne A, Chandramohan P, Necker-Brown A, Mostafa MM, Milani A, Leigh R, Newton R. Synergy between Interleukin-1 β, Interferon- γ, and Glucocorticoids to Induce TLR2 Expression Involves NF- κB, STAT1, and the Glucocorticoid Receptor. Mol Pharmacol 2023; 105:23-38. [PMID: 37863662 DOI: 10.1124/molpharm.123.000740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/14/2023] [Accepted: 09/29/2023] [Indexed: 10/22/2023] Open
Abstract
Glucocorticoids act via the glucocorticoid receptor (GR; NR3C1) to downregulate inflammatory gene expression and are effective treatments for mild to moderate asthma. However, in severe asthma and virus-induced exacerbations, glucocorticoid therapies are less efficacious, possibly due to reduced repressive ability and/or the increased expression of proinflammatory genes. In human A549 epithelial and primary human bronchial epithelial cells, toll-like receptor (TLR)-2 mRNA and protein were supra-additively induced by interleukin-1β (IL-1β) plus dexamethasone (IL-1β+Dex), interferon-γ (IFN-γ) plus dexamethasone (IFN-γ+Dex), and IL-1β plus IFN-γ plus dexamethasone (IL-1β+IFN-γ+Dex). Indeed, ∼34- to 2100-fold increases were apparent at 24 hours for IL-1β+IFN-γ+Dex, and this was greater than for any single or dual treatment. Using the A549 cell model, TLR2 induction by IL-1β+IFN-γ+Dex was antagonized by Org34517, a competitive GR antagonist. Further, when combined with IL-1β, IFN-γ, or IL-1β+IFN-γ, the enhancements by dexamethasone on TLR2 expression required GR. Likewise, inhibitor of κB kinase 2 inhibitors reduced IL-1β+IFN-γ+Dex-induced TLR2 expression, and TLR2 expression induced by IL-1β+Dex, with or without IFN-γ, required the nuclear factor (NF)-κB subunit, p65. Similarly, signal transducer and activator of transcription (STAT)-1 phosphorylation and γ-interferon-activated sequence-dependent transcription were induced by IFN-γ These, along with IL-1β+IFN-γ+Dex-induced TLR2 expression, were inhibited by Janus kinase (JAK) inhibitors. As IL-1β+IFN-γ+Dex-induced TLR2 expression also required STAT1, this study reveals cooperation between JAK-STAT1, NF-κB, and GR to upregulate TLR2 expression. Since TLR2 agonism elicits inflammatory responses, we propose that synergies involving TLR2 may occur within the cytokine milieu present in the immunopathology of glucocorticoid-resistant disease, and this could promote glucocorticoid resistance. SIGNIFICANCE STATEMENT: This study highlights that in human pulmonary epithelial cells, glucocorticoids, when combined with the inflammatory cytokines interleukin-1β (IL-1β) and interferon-γ (IFN-γ), can synergistically induce the expression of inflammatory genes, such as TLR2. This effect involved positive combinatorial interactions between NF-κB/p65, glucocorticoid receptor, and JAK-STAT1 signaling to synergistically upregulate TLR2 expression. Thus, synergies involving glucocorticoid enhancement of TLR2 expression may occur in the immunopathology of glucocorticoid-resistant inflammatory diseases, including severe asthma.
Collapse
Affiliation(s)
- Akanksha Bansal
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Cora Kooi
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Keerthana Kalyanaraman
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Sachman Gill
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Andrew Thorne
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Priyanka Chandramohan
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Amandah Necker-Brown
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Mahmoud M Mostafa
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Arya Milani
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Richard Leigh
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Robert Newton
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| |
Collapse
|
18
|
Zhao K, Huang J, Zhao Y, Wang S, Xu J, Yin K. Targeting STING in cancer: Challenges and emerging opportunities. Biochim Biophys Acta Rev Cancer 2023; 1878:188983. [PMID: 37717857 DOI: 10.1016/j.bbcan.2023.188983] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/21/2023] [Accepted: 08/26/2023] [Indexed: 09/19/2023]
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway is a key pathway through which the host regulates immune responses by recognizing cytoplasmic double-stranded DNA of abnormal origin, and it plays an important role in tumor growth as well as metastasis, with relevant molecular details constantly being explored and updated. The significant immunomodulatory effects make STING an attractive target for cancer immunotherapy, and STING agonists have been receiving great attention for their development and clinical translation. Despite exciting results in preclinical work, the application of STING agonists to cancer therapy remains challenging due to their poor pharmacokinetic and physicochemical properties, as well as toxic side effects they produce. Here, we summarize the dichotomous role of cGAS-STING in cancer and discuss the limitations of cancer immunotherapy based on STING activation as well as feasible strategies to overcome them to achieve tumor regression.
Collapse
Affiliation(s)
- Kexin Zhao
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jiaojiao Huang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yue Zhao
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shengjun Wang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China; Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.
| | - Juan Xu
- Department of Laboratory Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China.
| | - Kai Yin
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
19
|
Zhao Q, Zhang R, Qiao C, Miao Y, Yuan Y, Zheng H. Ubiquitination network in the type I IFN-induced antiviral signaling pathway. Eur J Immunol 2023; 53:e2350384. [PMID: 37194705 DOI: 10.1002/eji.202350384] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/14/2023] [Accepted: 05/16/2023] [Indexed: 05/18/2023]
Abstract
Type I IFN (IFN-I) is the body's first line of defense against pathogen infection. IFN-I can induce cellular antiviral responses and therefore plays a key role in driving antiviral innate and adaptive immunity. Canonical IFN-I signaling activates the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway, which induces the expression of IFN-stimulated genes and eventually establishes a complex antiviral state in the cells. Ubiquitin is a ubiquitous cellular molecule for protein modifications, and the ubiquitination modifications of protein have been recognized as one of the key modifications that regulate protein levels and/or signaling activation. Despite great advances in understanding the ubiquitination regulation of many signaling pathways, the mechanisms by which protein ubiquitination regulates IFN-I-induced antiviral signaling have not been explored until very recently. This review details the current understanding of the regulatory network of ubiquitination that critically controls the IFN-I-induced antiviral signaling pathway from three main levels, including IFN-I receptors, IFN-I-induced cascade signals, and effector IFN-stimulated genes.
Collapse
Affiliation(s)
- Qian Zhao
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Renxia Zhang
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Caixia Qiao
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Ying Miao
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Yukang Yuan
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Hui Zheng
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| |
Collapse
|
20
|
Remling L, Gregus A, Wirths O, Meyer T, Staab J. A novel interface between the N-terminal and coiled-coil domain of STAT1 functions in an auto-inhibitory manner. Cell Commun Signal 2023; 21:170. [PMID: 37430250 DOI: 10.1186/s12964-023-01124-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/05/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND STAT1 is an intracellular signaling molecule that is crucially involved in the regulation of the innate immune system by activation of defense mechanisms against microbial pathogens. Phosphorylation-dependent activation of the STAT1 transcription factor is associated with a conversion from an antiparallel to parallel dimer configuration, which after nuclear import binds to DNA. However, not much is known about the specific intermolecular interactions that stabilize unphosphorylated, antiparallel STAT1 complexes prior to activation. RESULTS In this study, we identified a previously unknown interdimeric interaction site, which is involved in the termination of STAT1 signaling. Introduction of the glutamic acid-to-alanine point mutation E169A in the coiled-coil domain (CCD) by site-directed mutagenesis led to increased tyrosine phosphorylation as well as accelerated and prolonged nuclear accumulation in transiently transfected cells. In addition, DNA-binding affinity and transcriptional activity were strongly enhanced in the substitution mutant compared to the wild-type (WT) protein. Furthermore, we have demonstrated that the E169 residue in the CCD mediates the release of the dimer from the DNA in an auto-inhibitory manner. CONCLUSION Based on these findings, we propose a novel mechanism for the inactivation of the STAT1 signaling pathway, assigning the interface with the glutamic acid residue 169 in the CCD a crucial role in this process. Video Abstract.
Collapse
Affiliation(s)
- Linus Remling
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Anke Gregus
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Oliver Wirths
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Thomas Meyer
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Julia Staab
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany.
- Department of Psychosomatic Medicine and Psychotherapy, Laboratory of Molecular Psychocardiology, University of Göttingen, Waldweg 33, 37073, Göttingen, Germany.
| |
Collapse
|
21
|
Subedi P, Huber K, Sterr C, Dietz A, Strasser L, Kaestle F, Hauck SM, Duchrow L, Aldrian C, Monroy Ordonez EB, Luka B, Thomsen AR, Henke M, Gomolka M, Rößler U, Azimzadeh O, Moertl S, Hornhardt S. Towards unravelling biological mechanisms behind radiation-induced oral mucositis via mass spectrometry-based proteomics. Front Oncol 2023; 13:1180642. [PMID: 37384298 PMCID: PMC10298177 DOI: 10.3389/fonc.2023.1180642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/22/2023] [Indexed: 06/30/2023] Open
Abstract
Objective Head and neck cancer (HNC) accounts for almost 890,000 new cases per year. Radiotherapy (RT) is used to treat the majority of these patients. A common side-effect of RT is the onset of oral mucositis, which decreases the quality of life and represents the major dose-limiting factor in RT. To understand the origin of oral mucositis, the biological mechanisms post-ionizing radiation (IR) need to be clarified. Such knowledge is valuable to develop new treatment targets for oral mucositis and markers for the early identification of "at-risk" patients. Methods Primary keratinocytes from healthy volunteers were biopsied, irradiated in vitro (0 and 6 Gy), and subjected to mass spectrometry-based analyses 96 h after irradiation. Web-based tools were used to predict triggered biological pathways. The results were validated in the OKF6 cell culture model. Immunoblotting and mRNA validation was performed and cytokines present in cell culture media post-IR were quantified. Results Mass spectrometry-based proteomics identified 5879 proteins in primary keratinocytes and 4597 proteins in OKF6 cells. Amongst them, 212 proteins in primary keratinocytes and 169 proteins in OKF6 cells were differentially abundant 96 h after 6 Gy irradiation compared to sham-irradiated controls. In silico pathway enrichment analysis predicted interferon (IFN) response and DNA strand elongation pathways as mostly affected pathways in both cell systems. Immunoblot validations showed a decrease in minichromosome maintenance (MCM) complex proteins 2-7 and an increase in IFN-associated proteins STAT1 and ISG15. In line with affected IFN signalling, mRNA levels of IFNβ and interleukin 6 (IL-6) increased significantly following irradiation and also levels of secreted IL-1β, IL-6, IP-10, and ISG15 were elevated. Conclusion This study has investigated biological mechanisms in keratinocytes post-in vitro ionizing radiation. A common radiation signature in keratinocytes was identified. The role of IFN response in keratinocytes along with increased levels of pro-inflammatory cytokines and proteins could hint towards a possible mechanism for oral mucositis.
Collapse
Affiliation(s)
- Prabal Subedi
- Bundesamt für Strahlenschutz/Federal Office for Radiation Protection, Neuherberg, Germany
| | - Katharina Huber
- Bundesamt für Strahlenschutz/Federal Office for Radiation Protection, Neuherberg, Germany
| | - Christoph Sterr
- Bundesamt für Strahlenschutz/Federal Office for Radiation Protection, Neuherberg, Germany
| | - Anne Dietz
- Bundesamt für Strahlenschutz/Federal Office for Radiation Protection, Neuherberg, Germany
| | - Lukas Strasser
- Bundesamt für Strahlenschutz/Federal Office for Radiation Protection, Neuherberg, Germany
| | - Felix Kaestle
- Bundesamt für Strahlenschutz/Federal Office for Radiation Protection, Neuherberg, Germany
| | - Stefanie M. Hauck
- Helmholtz Zentrum München, German Research Centre for Environmental Health, Metabolomics and Proteomics Core, Munich, Germany
| | - Lukas Duchrow
- Bundesamt für Strahlenschutz/Federal Office for Radiation Protection, Neuherberg, Germany
| | - Christine Aldrian
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) partner site Freiburg, Freiburg, Germany
| | - Elsa Beatriz Monroy Ordonez
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) partner site Freiburg, Freiburg, Germany
| | - Benedikt Luka
- Department of Conservative Dentistry Periodontology and Preventive Dentistry, Hannover Medical School (MHH), Hannover, Germany
| | - Andreas R. Thomsen
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) partner site Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (dkfz), Heidelberg, Germany
| | - Michael Henke
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) partner site Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (dkfz), Heidelberg, Germany
| | - Maria Gomolka
- Bundesamt für Strahlenschutz/Federal Office for Radiation Protection, Neuherberg, Germany
| | - Ute Rößler
- Bundesamt für Strahlenschutz/Federal Office for Radiation Protection, Neuherberg, Germany
| | - Omid Azimzadeh
- Bundesamt für Strahlenschutz/Federal Office for Radiation Protection, Neuherberg, Germany
| | - Simone Moertl
- Bundesamt für Strahlenschutz/Federal Office for Radiation Protection, Neuherberg, Germany
| | - Sabine Hornhardt
- Bundesamt für Strahlenschutz/Federal Office for Radiation Protection, Neuherberg, Germany
| |
Collapse
|
22
|
Spens AE, Sutliff NA, Bennett SR, Campbell AE, Tapscott SJ. Human DUX4 and mouse Dux interact with STAT1 and broadly inhibit interferon-stimulated gene induction. eLife 2023; 12:e82057. [PMID: 37092726 PMCID: PMC10195082 DOI: 10.7554/elife.82057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 04/21/2023] [Indexed: 04/25/2023] Open
Abstract
DUX4 activates the first wave of zygotic gene expression in the early embryo. Mis-expression of DUX4 in skeletal muscle causes facioscapulohumeral dystrophy (FSHD), whereas expression in cancers suppresses IFNγ induction of major histocompatibility complex class I (MHC class I) and contributes to immune evasion. We show that the DUX4 protein interacts with STAT1 and broadly suppresses expression of IFNγ-stimulated genes by decreasing bound STAT1 and Pol-II recruitment. Transcriptional suppression of interferon-stimulated genes (ISGs) requires conserved (L)LxxL(L) motifs in the carboxyterminal region of DUX4 and phosphorylation of STAT1 Y701 enhances interaction with DUX4. Consistent with these findings, expression of endogenous DUX4 in FSHD muscle cells and the CIC-DUX4 fusion containing the DUX4 CTD in a sarcoma cell line inhibit IFNγ induction of ISGs. Mouse Dux similarly interacted with STAT1 and suppressed IFNγ induction of ISGs. These findings identify an evolved role of the DUXC family in modulating immune signaling pathways with implications for development, cancers, and FSHD.
Collapse
Affiliation(s)
- Amy E Spens
- Human Biology Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Nicholas A Sutliff
- Human Biology Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Sean R Bennett
- Human Biology Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Amy E Campbell
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical CampusDenverUnited States
| | - Stephen J Tapscott
- Human Biology Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
- Clinical Research Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
- Department of Neurology, University of WashingtonSeattleUnited States
| |
Collapse
|
23
|
Xu J, Gao Q, Zhang W, Zheng J, Chen R, Han X, Mao J, Shan Y, Shi F, He F, Fang W, Li X. Porcine Epidemic Diarrhea Virus Antagonizes Host IFN-λ-Mediated Responses by Tilting Transcription Factor STAT1 toward Acetylation over Phosphorylation To Block Its Activation. mBio 2023:e0340822. [PMID: 37052505 DOI: 10.1128/mbio.03408-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is the main etiologic agent causing acute swine epidemic diarrhea, leading to severe economic losses to the pig industry. PEDV has evolved to deploy complicated antagonistic strategies to escape from host antiviral innate immunity. Our previous study demonstrated that PEDV downregulates histone deacetylase 1 (HDAC1) expression by binding viral nucleocapsid (N) protein to the transcription factor Sp1, inducing enhanced protein acetylation. We hypothesized that PEDV inhibition of HDAC1 expression would enhance acetylation of the molecules critical in innate immune signaling. Signal transducer and activator of transcription 1 (STAT1) is a crucial transcription factor regulating expression of interferon (IFN)-stimulated genes (ISGs) and anti-PEDV immune responses, as shown by overexpression, chemical inhibition, and gene knockdown in IPEC-J2 cells. We further show that PEDV infection and its N protein overexpression, although they upregulated STAT1 transcription level, could significantly block poly(I·C) and IFN-λ3-induced STAT1 phosphorylation and nuclear localization. Western blotting revealed that PEDV and its N protein promote STAT1 acetylation via downregulation of HDAC1. Enhanced STAT1 acetylation due to HDAC1 inhibition by PEDV or MS-275 (an HDAC1 inhibitor) impaired STAT1 phosphorylation, indicating that STAT1 acetylation negatively regulated its activation. These results, together with our recent report on PEDV N-mediated inhibition of Sp1, clearly indicate that PEDV manipulates the Sp1-HDAC1-STAT1 signaling axis to inhibit transcription of OAS1 and ISG15 in favor of its replication. This novel immune evasion mechanism is realized by suppression of STAT1 activation through preferential modulation of STAT1 acetylation over phosphorylation as a result of HDAC1 expression inhibition. IMPORTANCE PEDV has developed sophisticated evasion mechanisms to escape host IFN signaling via its structural and nonstructural proteins. STAT1 is one of the key transcription factors in regulating expression of ISGs. We found that PEDV and its N protein inhibit STAT1 phosphorylation and nuclear localization via inducing STAT1 acetylation as a result of HDAC1 downregulation, which, in turn, dampens the host IFN signaling activation. Our study demonstrates a novel mechanism that PEDV evades host antiviral innate immunity through manipulating the reciprocal relationship of STAT1 acetylation and phosphorylation. This provides new insights into the pathogenetic mechanisms of PEDV and even other coronaviruses.
Collapse
Affiliation(s)
- Jidong Xu
- Department of Veterinary Medicine, College of Animal Sciences, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Key Laboratory of Veterinary Medicine, MOA Key Laboratory of Animal Virology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qin Gao
- Department of Veterinary Medicine, College of Animal Sciences, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weiwu Zhang
- Hangzhou Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Jingyou Zheng
- Department of Veterinary Medicine, College of Animal Sciences, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Rong Chen
- Department of Veterinary Medicine, College of Animal Sciences, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiao Han
- Department of Veterinary Medicine, College of Animal Sciences, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Junyong Mao
- Department of Veterinary Medicine, College of Animal Sciences, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya, China
| | - Ying Shan
- Department of Veterinary Medicine, College of Animal Sciences, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Key Laboratory of Veterinary Medicine, MOA Key Laboratory of Animal Virology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fushan Shi
- Department of Veterinary Medicine, College of Animal Sciences, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Key Laboratory of Veterinary Medicine, MOA Key Laboratory of Animal Virology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fang He
- Department of Veterinary Medicine, College of Animal Sciences, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Key Laboratory of Veterinary Medicine, MOA Key Laboratory of Animal Virology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weihuan Fang
- Department of Veterinary Medicine, College of Animal Sciences, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Key Laboratory of Veterinary Medicine, MOA Key Laboratory of Animal Virology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoliang Li
- Department of Veterinary Medicine, College of Animal Sciences, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Key Laboratory of Veterinary Medicine, MOA Key Laboratory of Animal Virology, Zhejiang University, Hangzhou, Zhejiang, China
- Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya, China
| |
Collapse
|
24
|
Serpico AF, Pisauro C, Grieco D. cGAS-dependent proinflammatory and immune homeostatic effects of the microtubule-targeting agent paclitaxel. Front Immunol 2023; 14:1127623. [PMID: 36960066 PMCID: PMC10028148 DOI: 10.3389/fimmu.2023.1127623] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/23/2023] [Indexed: 03/09/2023] Open
Abstract
Taxanes are Microtubule-Targeting Agents (MTAs) that exert potent anticancer activity by directly killing cancer cells. However, recent evidence suggests that they may also stimulate inflammation and anticancer adaptive immunity and that these actions strongly contribute to their therapeutic efficacy. Details on how Taxanes may modulate inflammation and anticancer immunity are, nevertheless, still missing. We show here that at very low doses the Taxane Paclitaxel (Pxl) indeed induces a potent proinflammatory response in various cancer cell types in a cyclic GMP-AMP (cGAMP) synthase (cGAS)- and Stimulator of Interferon Genes (STING)-dependent manner, leading to interferon (IFN) signaling. However, we find that Pxl treatment also strongly upregulates the expression of the immune checkpoint protein Programmed Death-Ligand 1 (PD-L1) in cancer cells, therefore, inducing an inhibitory response to adaptive immunity potentially attenuating anticancer immunity and therapeutic success. These observations provide a mechanistic explanation of why clinical benefit may derive from the combination of Pxl with Immune Checkpoint Inhibitors (ICIs) and suggest that more accurately tailoring dosage and schedule of this combination therapy may provide benefit in the management of a larger number of cancer types and stages.
Collapse
Affiliation(s)
- Angela Flavia Serpico
- 1CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
- 2Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), University of Naples “Federico II”, Naples, Italy
| | | | - Domenico Grieco
- 1CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
- 2Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), University of Naples “Federico II”, Naples, Italy
- *Correspondence: Domenico Grieco,
| |
Collapse
|
25
|
Chung SY, Chang YC, Hsu DSS, Hung YC, Lu ML, Hung YP, Chiang NJ, Yeh CN, Hsiao M, Soong J, Su Y, Chen MH. A G-quadruplex stabilizer, CX-5461 combined with two immune checkpoint inhibitors enhances in vivo therapeutic efficacy by increasing PD-L1 expression in colorectal cancer. Neoplasia 2022; 35:100856. [PMID: 36442297 PMCID: PMC9709093 DOI: 10.1016/j.neo.2022.100856] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Immune checkpoint inhibitors (ICIs) alone or in combination with chemotherapy can improve the limited efficacy of colorectal cancer (CRC) immunotherapy. CX-5461 causes substantial DNA damage and genomic instability and can increase ICIs' therapeutic efficacies through tumor microenvironment alteration. RESULTS We analyzed whether CX-5461 enhances ICIs' effects in CRC and discovered that CX-5461 causes severe DNA damage, including cytosolic dsDNA appearance, in various human and mouse CRC cells. Our bioinformatics analysis predicted CX-5461-based interferon (IFN) signaling pathway activation in these cells, which was verified by the finding that CX-5461 induces IFN-α and IFN-β secretion in these cells. Next, cGAMP, phospho-IRF3, CCL5, and CXCL10 levels exhibited significant posttreatment increases in CRC cells, indicating that CX-5461 activates the cGAS-STING-IFN pathway. CX-5461 also enhanced PD-L1 expression through STAT1 activation. CX-5461 alone inhibited tumor growth and prolonged survival in mice. CX-5461+anti-PD-1 or anti-PD-L1 alone exhibited synergistic growth-suppressive effects against CRC and breast cancer. CX-5461 alone or CX-5461+anti-PD-1 increased cytotoxic T-cell numbers and reduced myeloid-derived suppressor cell numbers in mouse spleens. CONCLUSIONS Therefore, clinically, CX-5461 combined with ICIs for CRC therapy warrants consideration because CX-5461 can turn cold tumors into hot ones.
Collapse
Affiliation(s)
- Shin-Yi Chung
- Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | | | - Ya-Chi Hung
- Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Meng-Lun Lu
- Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Ping Hung
- Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Nai-Jung Chiang
- Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan,National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
| | - Chun-Nan Yeh
- Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Yeu Su
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan,Corresponding author at: National Yang Ming Chiao Tung University No. 155, Sec. 2, Linong St., Beitou District, Taipei City 11221, Taiwan.
| | - Ming-Huang Chen
- Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan,Center of Immuno-Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan,Corresponding author at: Center of Immuno-Oncology, Department of Oncology, Taipei Veterans General Hospital, 201 Shipai Road, Section 2, Taipei 112, Taiwan.
| |
Collapse
|
26
|
Activities and binding partners of E3 ubiquitin ligase DTX3L and its roles in cancer. Biochem Soc Trans 2022; 50:1683-1692. [DOI: 10.1042/bst20220501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/27/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022]
Abstract
Ubiquitination is a protein post-translational modification that affects protein localisation, stability and interactions. E3 ubiquitin ligases regulate the final step of the ubiquitination reaction by recognising target proteins and mediating the ubiquitin transfer from an E2 enzyme. DTX3L is a multi-domain E3 ubiquitin ligase in which the N-terminus mediates protein oligomerisation, a middle D3 domain mediates the interaction with PARP9, a RING domain responsible for recognising E2 ∼ Ub and a DTC domain has the dual activity of ADP-ribosylating ubiquitin and mediating ubiquitination. The activity of DTX3L is known to be modulated by at least two different factors: the concentration of NAD+, which dictates if the enzyme acts as a ligase or as an ADP-ribosyltransferase, and its binding partners, which affect DTX3L activity through yet unknown mechanisms. In light of recent findings it is possible that DTX3L could ubiquitinate ADP-ribose attached to proteins. Different DTX3L–protein complexes have been found to be part of multiple signalling pathways through which they promote the adhesion, proliferation, migration and chemoresistance of e.g. lymphoma, glioma, melanoma, and prostate cancer. In this review, we have covered the literature available for the molecular functions of DTX3L especially in the context of cancer biology, different pathways it regulates and how these relate to its function as an oncoprotein.
Collapse
|
27
|
Proteogenomic analysis of lung adenocarcinoma reveals tumor heterogeneity, survival determinants, and therapeutically relevant pathways. Cell Rep Med 2022; 3:100819. [PMID: 36384096 PMCID: PMC9729884 DOI: 10.1016/j.xcrm.2022.100819] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/09/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022]
Abstract
We present a deep proteogenomic profiling study of 87 lung adenocarcinoma (LUAD) tumors from the United States, integrating whole-genome sequencing, transcriptome sequencing, proteomics and phosphoproteomics by mass spectrometry, and reverse-phase protein arrays. We identify three subtypes from somatic genome signature analysis, including a transition-high subtype enriched with never smokers, a transversion-high subtype enriched with current smokers, and a structurally altered subtype enriched with former smokers, TP53 alterations, and genome-wide structural alterations. We show that within-tumor correlations of RNA and protein expression associate with tumor purity and immune cell profiles. We detect and independently validate expression signatures of RNA and protein that predict patient survival. Additionally, among co-measured genes, we found that protein expression is more often associated with patient survival than RNA. Finally, integrative analysis characterizes three expression subtypes with divergent mutations, proteomic regulatory networks, and therapeutic vulnerabilities. This proteogenomic characterization provides a foundation for molecularly informed medicine in LUAD.
Collapse
|
28
|
Oliveira MM, Bonturi CR, Salu BR, Oliva MLV, Mortara RA, Orikaza CM. Modulation of STAT-1, STAT-3, and STAT-6 activities in THP-1 derived macrophages infected with two Trypanosoma cruzi strains. Front Immunol 2022; 13:1038332. [PMID: 36389843 PMCID: PMC9643828 DOI: 10.3389/fimmu.2022.1038332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/04/2022] [Indexed: 12/03/2022] Open
Abstract
Trypanosoma cruzi is the causative protozoan of Chagas' Disease, a neglected tropical disease that affects 6-7 million people worldwide. Interaction of the parasite with the host immune system is a key factor in disease progression and chronic symptoms. Although the human immune system is capable of controlling the disease, the parasite has numerous evasion mechanisms that aim to maintain intracellular persistence and survival. Due to the pronounced genetic variability of T. cruzi, co-infections or mixed infections with more than one parasite strain have been reported in the literature. The intermodulation in such cases is unclear. This study aimed to evaluate the co-infection of T. cruzi strains G and CL compared to their individual infections in human macrophages derived from THP-1 cells activated by classical or alternative pathways. Flow cytometry analysis demonstrated that trypomastigotes were more infective than extracellular amastigotes (EAs) and that strain G could infect more macrophages than strain CL. Classically activated macrophages showed lower number of infected cells and IL-4-stimulated cells displayed increased CL-infected macrophages. However, co-infection was a rare event. CL EAs decreased the production of reactive oxygen species (ROS), whereas G trypomastigotes displayed increased ROS detection in classically activated cells. Co-infection did not affect ROS production. Monoinfection by strain G or CL mainly induced an anti-inflammatory cytokine profile by decreasing inflammatory cytokines (IFN-γ, TNF-α, IL-1β) and/or increasing IL-4, IL-10, and TGF-β. Co-infection led to a predominant inflammatory milieu, with reduced IL-10 and TGF-β, and/or promotion of IFN-γ and IL-1β release. Infection by strain G reduced activation of intracellular signal transducer and activator of transcription (STAT) factors. In EAs, monoinfections impaired STAT-1 activity and promoted phosphorylation of STAT-3, both changes may prolong cell survival. Coinfected macrophages displayed pronounced activation of all STATs examined. These activations likely promoted parasite persistence and survival of infected cells. The collective results demonstrate that although macrophages respond to both strains, T. cruzi can modulate the intracellular environment, inducing different responses depending on the strain, parasite infective form, and co-infection or monoinfection. The modulation influences parasite persistence and survival of infected cells.
Collapse
Affiliation(s)
- Melissa Martins Oliveira
- ¹Microbiology, Immunology and Parasitology Department, Escola Paulista de Medicina, Federal University of São Paulo - UNIFESP, São Paulo, Brazil
| | - Camila Ramalho Bonturi
- ²Biochemistry Department, Escola Paulista de Medicina, Federal University of São Paulo - UNIFESP, São Paulo, Brazil
| | - Bruno Ramos Salu
- ²Biochemistry Department, Escola Paulista de Medicina, Federal University of São Paulo - UNIFESP, São Paulo, Brazil
| | - Maria Luiza Vilela Oliva
- ²Biochemistry Department, Escola Paulista de Medicina, Federal University of São Paulo - UNIFESP, São Paulo, Brazil
| | - Renato Arruda Mortara
- ¹Microbiology, Immunology and Parasitology Department, Escola Paulista de Medicina, Federal University of São Paulo - UNIFESP, São Paulo, Brazil
| | - Cristina Mary Orikaza
- ¹Microbiology, Immunology and Parasitology Department, Escola Paulista de Medicina, Federal University of São Paulo - UNIFESP, São Paulo, Brazil
| |
Collapse
|
29
|
Xiong J, Ran L, Zhu Y, Wang Y, Wang S, Wang Y, Lan Q, Han W, Liu Y, Huang Y, He T, Li Y, Liu L, Zhao J, Yang K. DUSP2-mediated inhibition of tubular epithelial cell pyroptosis confers nephroprotection in acute kidney injury. Am J Cancer Res 2022; 12:5069-5085. [PMID: 35836796 PMCID: PMC9274747 DOI: 10.7150/thno.72291] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/25/2022] [Indexed: 02/07/2023] Open
Abstract
Rationale: Acute kidney injury (AKI) is pathologically characterized by renal tubular epithelial cell (RTEC) death and interstitial inflammation, while their pathogenesis remains incompletely understood. Dual-specificity phosphatase 2 (DUSP2) recently emerges as a crucial regulator of cell death and inflammation in a wide range of diseases, but its roles in renal pathophysiology are largely unknown. Methods: The expression of DUSP2 in the kidney was characterized by histological analysis in renal tissues from patients and mice with AKI. The role and mechanism of DUSP2-mediated inhibition of tubular epithelial cell pyroptosis in AKI were evaluated both in vivo and in vitro, and confirmed in RTEC-specific deletion of DUSP2 mice. Results: Here, we show that DUSP2 is enriched in RTECs in the renal tissue of both human and mouse and mainly positions in the nucleus. Further, we reveal that loss-of-DUSP2 in RTECs not only is a common feature of human and murine AKI but also positively contributes to AKI pathogenesis. Especially, RTEC-specific deletion of DUSP2 sensitizes mice to AKI by promoting RTEC pyroptosis and the resultant interstitial inflammation. Mechanistic studies show that gasdermin D (GSDMD), which mediates RTEC pyroptosis, is identified as a transcriptional target of activated STAT1 during AKI, whereas DUSP2 as a nuclear phosphatase deactivates STAT1 to restrict GSDMD-mediated RTEC pyroptosis. Importantly, DUSP2 overexpression in RTECs via adeno-associated virus-mediated gene transfer significantly ameliorates AKI. Conclusion: Our findings demonstrate a hitherto unrecognized role of DUSP2-STAT1 axis in regulating RTEC pyroptosis in AKI, highlighting that DUSP2-STAT1 axis is an attractive therapeutic target for AKI.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Jinghong Zhao
- ✉ Corresponding authors: Ke Yang, PhD, or Jinghong Zhao, MD, PhD, Department of Nephrology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China. E-mail: or . Tel: +86-023- 68774321; Fax: +86-023- 68774321
| | - Ke Yang
- ✉ Corresponding authors: Ke Yang, PhD, or Jinghong Zhao, MD, PhD, Department of Nephrology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China. E-mail: or . Tel: +86-023- 68774321; Fax: +86-023- 68774321
| |
Collapse
|
30
|
Abstract
Like many intracellular pathogens, the protozoan parasite Toxoplasma gondii has evolved sophisticated mechanisms to promote its transmission and persistence in a variety of hosts by injecting effector proteins that manipulate many processes in the cells it invades. Specifically, the parasite diverts host epigenetic modulators and modifiers from their native functions to rewire host gene expression to counteract the innate immune response and to limit its strength. The arms race between the parasite and its hosts has led to accelerated adaptive evolution of effector proteins and the unconventional secretion routes they use. This review provides an up-to-date overview of how T. gondii effectors, through the evolution of intrinsically disordered domains, the formation of supramolecular complexes, and the use of molecular mimicry, target host transcription factors that act as coordinating nodes, as well as chromatin-modifying enzymes, to control the fate of infected cells and ultimately the outcome of infection. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Mohamed-Ali Hakimi
- Host-Pathogen Interactions and Immunity to Infection, Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR 5309, Grenoble Alpes University, Grenoble, France;
| |
Collapse
|
31
|
Yang H, Sinha N, Rand U, Hauser H, Köster M, de Greef TFA, Tel J. A universal microfluidic approach for integrated analysis of temporal homocellular and heterocellular signaling and migration dynamics. Biosens Bioelectron 2022; 211:114353. [PMID: 35594624 DOI: 10.1016/j.bios.2022.114353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/26/2022] [Accepted: 05/06/2022] [Indexed: 11/24/2022]
Abstract
Microfluidics offers precise and dynamic control of microenvironments for the study of temporal cellular responses. However, recent research focusing solely on either homocellular (single-cell, population) or heterocellular response may yield insufficient output, which possibly leads to partial comprehension about the underlying mechanisms of signaling events and corresponding cellular behaviors. Here, a universal microfluidic approach is developed for integrated analysis of temporal signaling and cell migration dynamics in multiple cellular contexts (single-cell, population and coculture). This approach allows to confine the desired number or mixture of specific cell sample types in a single device. Precise single cell seeding was achieved manually with bidirectional controllability. Coupled with time-lapse imaging, temporal cellular responses can be observed with single-cell resolution. Using NIH3T3 cells stably expressing signal transducer and activator of transcription 1/2 (STAT1/2) activity biosensors, temporal STAT1/2 activation and cell migration dynamics were explored in isolated single cells, populations and cocultures stimulated with temporal inputs, such as single-pulse and continuous signals of interferon γ (IFNγ) or lipopolysaccharide (LPS). We demonstrate distinct dynamic responses of fibroblasts in different cellular contexts. Our presented approach facilitates a multi-dimensional understanding of STAT signaling and corresponding migration behaviors.
Collapse
Affiliation(s)
- Haowen Yang
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, 5600MB, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600 MB, the Netherlands
| | - Nidhi Sinha
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, 5600MB, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600 MB, the Netherlands
| | - Ulfert Rand
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Hansjörg Hauser
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Mario Köster
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Tom F A de Greef
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600 MB, the Netherlands; Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, 5600MB, Eindhoven, the Netherlands
| | - Jurjen Tel
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, 5600MB, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600 MB, the Netherlands.
| |
Collapse
|
32
|
Zuo Y, He J, Liu S, Xu Y, Liu J, Qiao C, Zang L, Sun W, Yuan Y, Zhang H, Chen X, Jin L, Miao Y, Huang F, Ren T, Wang J, Qian F, Zhu C, Zhang W, Liu Y, Xu G, Ma F, Zheng H. LATS1 is a central signal transmitter for achieving full type-I interferon activity. SCIENCE ADVANCES 2022; 8:eabj3887. [PMID: 35394840 PMCID: PMC8993116 DOI: 10.1126/sciadv.abj3887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 02/19/2022] [Indexed: 05/14/2023]
Abstract
Interferons (IFNs) have broad-spectrum antiviral activity to resist virus epidemic. However, IFN antiviral efficacy needs to be greatly improved. Here, we reveal that LATS1 is a vital signal transmitter governing full type-I IFN (IFN-I) signaling activity. LATS1 constitutively binds with the IFN-I receptor IFNAR2 and is rapidly tyro-phosphorylated by Tyk2 upon IFN-I engagement. Tyro-phosphorylation of LATS1 promotes LATS1 activation and YAP degradation, thereby promoting IFN-mediated antiproliferation activity. Moreover, activated LATS1 translocates into the nucleus and induces CDK8-Ser62 phosphorylation, which in turn phosphorylates STAT1 at Ser727 and induces full IFN-I antiviral activity. LATS1 deficiency restricts in vivo IFN-I signaling and attenuates host antiviral immune response. Our study identifies IFN-I as a previously unidentified extracellular diffusible ligand signal for activation of the Hippo core LATS1 pathway and reveals Tyk2-LATS1-CDK8 as a complete signaling cascade controlling full IFN-I activity.
Collapse
Affiliation(s)
- Yibo Zuo
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Jiuyi He
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Siying Liu
- CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Ying Xu
- Department of Intensive Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jin Liu
- The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Caixia Qiao
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Lichao Zang
- Department of Laboratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Wenhuan Sun
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Yukang Yuan
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Hongguang Zhang
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Xiangjie Chen
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Lincong Jin
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Ying Miao
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Fan Huang
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Tengfei Ren
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Jun Wang
- Department of Intensive Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Feng Qian
- The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chuanwu Zhu
- The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wei Zhang
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, Ontario, N1G2W1, Canada
| | - Yaobo Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Guoqiang Xu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Feng Ma
- CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Hui Zheng
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| |
Collapse
|
33
|
Yiu G, Rasmussen TK, Tsai BL, Diep VK, Haddon DJ, Tsoi J, Miller GD, Comin-Anduix B, Deleuran B, Crooks GM, Utz PJ. High Interferon Signature Leads to Increased STAT1/3/5 Phosphorylation in PBMCs From SLE Patients by Single Cell Mass Cytometry. Front Immunol 2022; 13:833636. [PMID: 35185925 PMCID: PMC8851522 DOI: 10.3389/fimmu.2022.833636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 01/11/2022] [Indexed: 12/02/2022] Open
Abstract
The establishment of an “interferon (IFN) signature” to subset SLE patients on disease severity has led to therapeutics targeting IFNα. Here, we investigate IFN signaling in SLE using multiplexed protein arrays and single cell cytometry by time of flight (CyTOF). First, the IFN signature for SLE patients (n=81) from the Stanford Lupus Registry is determined using fluidigm qPCR measuring 44 previously determined IFN-inducible transcripts. IFN-high (IFN-H) patients have increased SLE criteria and renal/CNS/immunologic involvement, and increased autoantibody reactivity against spliceosome-associated antigens. CyTOF analysis is performed on non-stimulated and stimulated (IFNα, IFNγ, IL-21) PBMCs from SLE patients (n=25) and HCs (n=9) in a panel identifying changes in phosphorylation of intracellular signaling proteins (pTOF). Another panel is utilized to detect changes in intracellular cytokine (ICTOF) production in non-stimulated and stimulated (PMA/ionomycin) PBMCs from SLE patients (n=31) and HCs (n=17). Bioinformatic analysis by MetaCyto and OMIQ reveal phenotypic changes in immune cell subsets between IFN-H and IFN-low (IFN-L) patients. Most notably, IFN-H patients exhibit increased STAT1/3/5 phosphorylation downstream of cytokine stimulation and increased phosphorylation of non-canonical STAT proteins. These results suggest that IFN signaling in SLE modulates STAT phosphorylation, potentially uncovering possible targets for future therapeutic approaches.
Collapse
Affiliation(s)
- Gloria Yiu
- Department of Medicine, Division of Immunology and Rheumatology, Stanford School of Medicine, Stanford, CA, United States.,Department of Rheumatology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Tue Kruse Rasmussen
- Department of Medicine, Division of Immunology and Rheumatology, Stanford School of Medicine, Stanford, CA, United States.,Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
| | - Brandon L Tsai
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Vivian K Diep
- Department of Medicine, Division of Immunology and Rheumatology, Stanford School of Medicine, Stanford, CA, United States
| | - David J Haddon
- Department of Medicine, Division of Immunology and Rheumatology, Stanford School of Medicine, Stanford, CA, United States
| | - Jennifer Tsoi
- Department of Surgery David Geffen School of Medicine, Johnson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, United States
| | - Gopika D Miller
- Department of Medicine, Division of Immunology and Rheumatology, Stanford School of Medicine, Stanford, CA, United States
| | - Begoña Comin-Anduix
- Department of Surgery David Geffen School of Medicine, Johnson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, United States.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles (UCLA), Los Angeles, CA, United States.,Parker Institute for Cancer Immunotherapy, San Francisco, CA, United States
| | - Bent Deleuran
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
| | - Gay M Crooks
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles (UCLA), Los Angeles, CA, United States.,Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Eli and Edythe Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles (UCLA), Los Angeles, CA, United States.,Division of Pediatric Hematology-Oncology, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Paul J Utz
- Department of Medicine, Division of Immunology and Rheumatology, Stanford School of Medicine, Stanford, CA, United States.,Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
34
|
Myers SA, Gottschalk RA. Mechanisms encoding STAT functional diversity for context-specific inflammatory responses. Curr Opin Immunol 2022; 74:150-155. [DOI: 10.1016/j.coi.2022.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 01/22/2023]
|
35
|
Yang GH, Fontaine DA, Lodh S, Blumer JT, Roopra A, Davis DB. TCF19 Impacts a Network of Inflammatory and DNA Damage Response Genes in the Pancreatic β-Cell. Metabolites 2021; 11:metabo11080513. [PMID: 34436454 PMCID: PMC8400192 DOI: 10.3390/metabo11080513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022] Open
Abstract
Transcription factor 19 (TCF19) is a gene associated with type 1 diabetes (T1DM) and type 2 diabetes (T2DM) in genome-wide association studies. Prior studies have demonstrated that Tcf19 knockdown impairs β-cell proliferation and increases apoptosis. However, little is known about its role in diabetes pathogenesis or the effects of TCF19 gain-of-function. The aim of this study was to examine the impact of TCF19 overexpression in INS-1 β-cells and human islets on proliferation and gene expression. With TCF19 overexpression, there was an increase in nucleotide incorporation without any change in cell cycle gene expression, alluding to an alternate process of nucleotide incorporation. Analysis of RNA-seq of TCF19 overexpressing cells revealed increased expression of several DNA damage response (DDR) genes, as well as a tightly linked set of genes involved in viral responses, immune system processes, and inflammation. This connectivity between DNA damage and inflammatory gene expression has not been well studied in the β-cell and suggests a novel role for TCF19 in regulating these pathways. Future studies determining how TCF19 may modulate these pathways can provide potential targets for improving β-cell survival.
Collapse
Affiliation(s)
- Grace H. Yang
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; (G.H.Y.); (D.A.F.); (S.L.); (J.T.B.)
| | - Danielle A. Fontaine
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; (G.H.Y.); (D.A.F.); (S.L.); (J.T.B.)
| | - Sukanya Lodh
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; (G.H.Y.); (D.A.F.); (S.L.); (J.T.B.)
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Joseph T. Blumer
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; (G.H.Y.); (D.A.F.); (S.L.); (J.T.B.)
| | - Avtar Roopra
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Dawn Belt Davis
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; (G.H.Y.); (D.A.F.); (S.L.); (J.T.B.)
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
- Correspondence:
| |
Collapse
|
36
|
Gupte R, Nandu T, Kraus WL. Nuclear ADP-ribosylation drives IFNγ-dependent STAT1α enhancer formation in macrophages. Nat Commun 2021; 12:3931. [PMID: 34168143 PMCID: PMC8225886 DOI: 10.1038/s41467-021-24225-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 06/04/2021] [Indexed: 02/01/2023] Open
Abstract
STAT1α is a key transcription factor driving pro-inflammatory responses in macrophages. We found that the interferon gamma (IFNγ)-regulated transcriptional program in macrophages is controlled by ADP-ribosylation (ADPRylation) of STAT1α, a post-translational modification resulting in the site-specific covalent attachment of ADP-ribose moieties. PARP-1, the major nuclear poly(ADP-ribose) polymerase (PARP), supports IFNγ-stimulated enhancer formation by regulating the genome-wide binding and IFNγ-dependent transcriptional activation of STAT1α. It does so by ADPRylating STAT1α on specific residues in its DNA-binding domain (DBD) and transcription activation (TA) domain. ADPRylation of the DBD controls STAT1α binding to its cognate DNA elements, whereas ADPRylation of the TA domain regulates enhancer activation by modulating STAT1α phosphorylation and p300 acetyltransferase activity. Loss of ADPRylation at either site leads to diminished IFNγ-dependent transcription and downstream pro-inflammatory responses. We conclude that PARP-1-mediated ADPRylation of STAT1α drives distinct enhancer activation mechanisms and is a critical regulator of inflammatory responses in macrophages.
Collapse
Affiliation(s)
- Rebecca Gupte
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tulip Nandu
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
37
|
Frost ER, Ford EA, Peters AE, Reed NL, McLaughlin EA, Baker MA, Lovell-Badge R, Sutherland JM. Signal transducer and activator of transcription (STAT) 1 and STAT3 are expressed in the human ovary and have Janus kinase 1-independent functions in the COV434 human granulosa cell line. Reprod Fertil Dev 2021; 32:1027-1039. [PMID: 32758351 DOI: 10.1071/rd20098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/29/2020] [Indexed: 01/03/2023] Open
Abstract
Ovarian granulosa cells are fundamental for oocyte maintenance and maturation. Recent studies have demonstrated the importance of members of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signalling pathway in the granulosa cell population of mouse and horse ovaries, with perturbation of JAK1 signalling in the mouse shown to impair oocyte maintenance and accelerate primordial follicle activation. The presence and role of the JAK/STAT pathway in human granulosa cells has yet to be elucidated. In this study, expression of JAK1, STAT1 and STAT3 was detected in oocytes and granulosa cells of human ovarian sections from fetal (40 weeks gestation) and premenopausal ovaries (34-41 years of age; n=3). To determine the effects of JAK1 signalling in granulosa cells, the human granulosa-like cell line COV434 was used, with JAK1 inhibition using ruxolitinib. Chemical inhibition of JAK1 in COV434 cells with 100nM ruxolitinib for 72h resulted in significant increases in STAT3 mRNA (P=0.034) and p-Y701-STAT1 protein (P=0.0117), demonstrating a role for JAK1 in modulating STAT in granulosa cells. This study implicates a conserved role for JAK/STAT signalling in human ovary development, warranting further investigation of this pathway in human granulosa cell function.
Collapse
Affiliation(s)
- E R Frost
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science and Pharmacy and Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; and Hunter Medical Research Institute, Kookaburra Circuit, New Lambton Heights, NSW 2305, Australia; and Stem Cell Biology and Developmental Genetics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; and Corresponding author.
| | - E A Ford
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science and Pharmacy and Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; and Hunter Medical Research Institute, Kookaburra Circuit, New Lambton Heights, NSW 2305, Australia
| | - A E Peters
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science and Pharmacy and Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; and Hunter Medical Research Institute, Kookaburra Circuit, New Lambton Heights, NSW 2305, Australia
| | - N L Reed
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science and Pharmacy and Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - E A McLaughlin
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science and Pharmacy and Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; and School of Science, Western Sydney University, Penrith, NSW 2751, Australia; and School of Biological Sciences, Faculty of Science, University of Auckland, Auckland 1142, New Zealand
| | - M A Baker
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science and Pharmacy and Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; and Hunter Medical Research Institute, Kookaburra Circuit, New Lambton Heights, NSW 2305, Australia
| | - R Lovell-Badge
- Stem Cell Biology and Developmental Genetics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - J M Sutherland
- Priority Research Centre for Reproductive Science, Schools of Biomedical Science and Pharmacy and Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; and Hunter Medical Research Institute, Kookaburra Circuit, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
38
|
de Faria Junior GM, Murata FHA, Lorenzi HA, Castro BBP, Assoni LCP, Ayo CM, Brandão CC, de Mattos LC. The Role of microRNAs in the Infection by T. gondii in Humans. Front Cell Infect Microbiol 2021; 11:670548. [PMID: 34055667 PMCID: PMC8160463 DOI: 10.3389/fcimb.2021.670548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/26/2021] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs are molecules belonging to an evolutionarily conserved family of small non-coding RNAs, which act on post-transcriptional gene regulation, causing messenger RNA (mRNA) degradation or inhibiting mRNA translation into proteins. These molecules represent potential biomarkers for diagnosis, non-invasive prognosis, and monitoring the development of the disease. Moreover, they may provide additional information on the pathophysiology of parasitic infections and guide strategies for treatment. The Apicomplexan parasite Toxoplasma gondii modifies the levels of microRNAs and mRNAs in infected host cells by modulating the innate and adaptive immune responses, facilitating its survival within the host. Some studies have shown that microRNAs are promising molecular markers for developing diagnostic tools for human toxoplasmosis. MicroRNAs can be detected in human specimens collected using non-invasive procedures. changes in the circulating host microRNAs have been associated with T. gondii infection in mice and ocular toxoplasmosis in humans. Besides, microRNAs can be amplified from samples using sensitive and molecular-specific approaches such as real-time PCR. This review presents recent findings of the role that microRNAs play during T. gondii infection and discuss their potential use of these small nuclei acid molecules to different approaches such as laboratory diagnosis, modulation of cell and tissue infected as other potential applications in human toxoplasmosis.
Collapse
Affiliation(s)
- Geraldo Magela de Faria Junior
- Immunogenetics Laboratory, Molecular Biology Department, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, Brazil
| | - Fernando Henrique Antunes Murata
- Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, United States
| | | | - Bruno Bello Pede Castro
- Department of Preventive Veterinary Medicine and Animal Health, Faculty of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Letícia Carolina Paraboli Assoni
- Immunogenetics Laboratory, Molecular Biology Department, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, Brazil
| | - Christiane Maria Ayo
- Immunogenetics Laboratory, Molecular Biology Department, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, Brazil
| | - Cinara Cássia Brandão
- Immunogenetics Laboratory, Molecular Biology Department, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, Brazil
| | - Luiz Carlos de Mattos
- Immunogenetics Laboratory, Molecular Biology Department, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, Brazil
| |
Collapse
|
39
|
Mills RJ, Humphrey SJ, Fortuna PRJ, Lor M, Foster SR, Quaife-Ryan GA, Johnston RL, Dumenil T, Bishop C, Rudraraju R, Rawle DJ, Le T, Zhao W, Lee L, Mackenzie-Kludas C, Mehdiabadi NR, Halliday C, Gilham D, Fu L, Nicholls SJ, Johansson J, Sweeney M, Wong NCW, Kulikowski E, Sokolowski KA, Tse BWC, Devilée L, Voges HK, Reynolds LT, Krumeich S, Mathieson E, Abu-Bonsrah D, Karavendzas K, Griffen B, Titmarsh D, Elliott DA, McMahon J, Suhrbier A, Subbarao K, Porrello ER, Smyth MJ, Engwerda CR, MacDonald KPA, Bald T, James DE, Hudson JE. BET inhibition blocks inflammation-induced cardiac dysfunction and SARS-CoV-2 infection. Cell 2021; 184:2167-2182.e22. [PMID: 33811809 PMCID: PMC7962543 DOI: 10.1016/j.cell.2021.03.026] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/10/2021] [Accepted: 03/11/2021] [Indexed: 12/13/2022]
Abstract
Cardiac injury and dysfunction occur in COVID-19 patients and increase the risk of mortality. Causes are ill defined but could be through direct cardiac infection and/or inflammation-induced dysfunction. To identify mechanisms and cardio-protective drugs, we use a state-of-the-art pipeline combining human cardiac organoids with phosphoproteomics and single nuclei RNA sequencing. We identify an inflammatory "cytokine-storm", a cocktail of interferon gamma, interleukin 1β, and poly(I:C), induced diastolic dysfunction. Bromodomain-containing protein 4 is activated along with a viral response that is consistent in both human cardiac organoids (hCOs) and hearts of SARS-CoV-2-infected K18-hACE2 mice. Bromodomain and extraterminal family inhibitors (BETi) recover dysfunction in hCOs and completely prevent cardiac dysfunction and death in a mouse cytokine-storm model. Additionally, BETi decreases transcription of genes in the viral response, decreases ACE2 expression, and reduces SARS-CoV-2 infection of cardiomyocytes. Together, BETi, including the Food and Drug Administration (FDA) breakthrough designated drug, apabetalone, are promising candidates to prevent COVID-19 mediated cardiac damage.
Collapse
Affiliation(s)
- Richard J Mills
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | - Sean J Humphrey
- Charles Perkins Centre, School of Life and Environmental Science, The University of Sydney, Sydney 2006, NSW, Australia
| | | | - Mary Lor
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | - Simon R Foster
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | | | - Rebecca L Johnston
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | - Troy Dumenil
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | - Cameron Bishop
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | - Rajeev Rudraraju
- The WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne 3000, VIC, Australia; Department of Microbiology and Immunology, The University of Melbourne, Melbourne 3052, VIC, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne 3000, VIC, Australia
| | - Daniel J Rawle
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | - Thuy Le
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | - Wei Zhao
- The Peter Doherty Institute for Infection and Immunity, Melbourne 3000, VIC, Australia
| | - Leo Lee
- The Peter Doherty Institute for Infection and Immunity, Melbourne 3000, VIC, Australia
| | | | - Neda R Mehdiabadi
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne 3052, VIC, Australia
| | | | - Dean Gilham
- Resverlogix Corp., Calgary T3E 6L1, AB, Canada
| | - Li Fu
- Resverlogix Corp., Calgary T3E 6L1, AB, Canada
| | - Stephen J Nicholls
- Victorian Heart Hospital, Monash University, Clayton 3168, VIC, Australia
| | | | | | | | | | - Kamil A Sokolowski
- Preclinical Imaging Facility, Translational Research Institute, Brisbane, QLD, Australia
| | - Brian W C Tse
- Preclinical Imaging Facility, Translational Research Institute, Brisbane, QLD, Australia
| | - Lynn Devilée
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | - Holly K Voges
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | - Liam T Reynolds
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | - Sophie Krumeich
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | - Ellen Mathieson
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | - Dad Abu-Bonsrah
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne 3052, VIC, Australia; Department of Paediatrics, The University of Melbourne, Melbourne 3052, VIC, Australia
| | - Kathy Karavendzas
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne 3052, VIC, Australia
| | - Brendan Griffen
- Dynomics Inc., San Mateo, CA 94401, USA; Dynomics Pty Ltd, Brisbane 4000, QLD, Australia
| | - Drew Titmarsh
- Dynomics Inc., San Mateo, CA 94401, USA; Dynomics Pty Ltd, Brisbane 4000, QLD, Australia
| | - David A Elliott
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne 3052, VIC, Australia
| | - James McMahon
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne 3004, VIC, Australia; Department of Infectious Diseases, Monash Medical Centre, Clayton 3168, VIC, Australia
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia; GVN Center of Excellence, Australian Infectious Diseases Research Centre, Brisbane, QLD, Australia
| | - Kanta Subbarao
- The WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne 3000, VIC, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne 3000, VIC, Australia
| | - Enzo R Porrello
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne 3052, VIC, Australia; Department of Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne 3052, VIC, Australia
| | - Mark J Smyth
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia
| | | | | | - Tobias Bald
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia; Institute of Experimental Oncology, University Hospital Bonn, Bonn 53127, Germany
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Science, The University of Sydney, Sydney 2006, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney 2006, NSW, Australia
| | - James E Hudson
- QIMR Berghofer Medical Research Institute, Brisbane 4006, QLD, Australia.
| |
Collapse
|
40
|
Kishimoto K, Wilder CL, Buchanan J, Nguyen M, Okeke C, Hoffmann A, Cheng QJ. High Dose IFN- β Activates GAF to Enhance Expression of ISGF3 Target Genes in MLE12 Epithelial Cells. Front Immunol 2021; 12:651254. [PMID: 33897699 PMCID: PMC8062733 DOI: 10.3389/fimmu.2021.651254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022] Open
Abstract
Interferon β (IFN-β) signaling activates the transcription factor complex ISGF3 to induce gene expression programs critical for antiviral defense and host immune responses. It has also been observed that IFN-β activates a second transcription factor complex, γ-activated factor (GAF), but the significance of this coordinated activation is unclear. We report that in murine lung epithelial cells (MLE12) high doses of IFN-β indeed activate both ISGF3 and GAF, which bind to distinct genomic locations defined by their respective DNA sequence motifs. In contrast, low doses of IFN-β preferentially activate ISGF3 but not GAF. Surprisingly, in MLE12 cells GAF binding does not induce nearby gene expression even when strongly bound to the promoter. Yet expression of interferon stimulated genes is enhanced when GAF and ISGF3 are both active compared to ISGF3 alone. We propose that GAF may function as a dose-sensitive amplifier of ISG expression to enhance antiviral immunity and establish pro-inflammatory states.
Collapse
Affiliation(s)
- Kensei Kishimoto
- Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA, United States.,Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, United States
| | - Catera L Wilder
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, United States
| | - Justin Buchanan
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, United States
| | - Minh Nguyen
- Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA, United States.,Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, United States
| | - Chidera Okeke
- Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA, United States.,Department of Life and Physical Sciences, Fisk University, Nashville, TN, United States
| | - Alexander Hoffmann
- Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA, United States.,Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, United States
| | - Quen J Cheng
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, United States.,Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| |
Collapse
|
41
|
Mikhalkevich N, O’Carroll IP, Tkavc R, Lund K, Sukumar G, Dalgard CL, Johnson KR, Li W, Wang T, Nath A, Iordanskiy S. Response of human macrophages to gamma radiation is mediated via expression of endogenous retroviruses. PLoS Pathog 2021; 17:e1009305. [PMID: 33556144 PMCID: PMC7895352 DOI: 10.1371/journal.ppat.1009305] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/19/2021] [Accepted: 01/11/2021] [Indexed: 01/11/2023] Open
Abstract
Ionizing radiation-induced tissue damage recruits monocytes into the exposed area where they are differentiated to macrophages. These implement phagocytic removal of dying cells and elicit an acute inflammatory response, but can also facilitate tumorigenesis due to production of anti-inflammatory cytokines. Using primary human monocyte-derived macrophages (MDMs) and the THP1 monocytic cell line, we demonstrate that gamma radiation triggers monocyte differentiation toward the macrophage phenotype with increased expression of type I interferons (IFN-I) and both pro- and anti-inflammatory macrophage activation markers. We found that these changes correlate with significantly upregulated expression of 622 retroelements from various groups, particularly of several clades of human endogenous retroviruses (HERVs). Elevated transcription was detected in both sense and antisense directions in the HERV subgroups tested, including the most genetically homogeneous clade HML-2. The level of antisense transcription was three- to five-fold higher than of the sense strand levels. Using a proximity ligation assay and immunoprecipitation followed by RNA quantification, we identified an increased amount of the dsRNA receptors MDA-5 and TLR3 bound to an equivalent number of copies of sense and antisense chains of HERVK HML-2 RNA. This binding triggered MAVS-associated signaling pathways resulting in increased expression of IFN-I and inflammation related genes that enhanced the cumulative inflammatory effect of radiation-induced senescence. HML-2 knockdown was accompanied with reduced expression and secretion of IFNα, pro-inflammatory (IL-1β, IL-6, CCL2, CCL3, CCL8, and CCL20) and anti-inflammatory (IL10) modulators in irradiated monocytes and MDMs. Taken together, our data indicate that radiation stress-induced HERV expression enhances the IFN-I and cytokine response and results in increased levels of pro-inflammatory modulators along with expression of anti-inflammatory factors associated with the macrophage tumorigenic phenotype. Ionizing radiation is a powerful stressogenic factor that induces massive cell damage. The signals released from radiation-damaged tissues recruit the monocytes, which are differentiated into macrophages that remove dying cells via phagocytosis and facilitate inflammation but can also contribute to tumorigenesis through anti-inflammatory and regenerative activities. The mechanism of this dual response of macrophages to irradiation is not fully understood. Using primary human macrophages and a monocytic cell line, we demonstrated that gamma radiation doses activate expression of various human endogenous retroviruses (HERVs). At the molecular level, we have shown that increased numbers of sense and antisense transcripts of tested HERV subgroups bind to double-stranded RNA receptors inducing the expression of type I interferons, multiple pro-inflammatory and some anti-inflammatory factors. At the phenotypic level, polarized macrophages exhibit a potent inflammatory response along with potentially tumorigenic characteristics. Our data suggest that endogenous retroviruses represent an important contributor of the macrophage-mediated inflammation in response to radiation-induced stress but may also indirectly influence tumorigenesis via biased macrophage polarization.
Collapse
Affiliation(s)
- Natallia Mikhalkevich
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Ina P. O’Carroll
- Department of Chemistry, United States Naval Academy, Annapolis, Maryland, United States of America
| | - Rok Tkavc
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Kateryna Lund
- Biomedical Instrumentation Center, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Gauthaman Sukumar
- The American Genome Center (TAGC), Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Clifton L. Dalgard
- The American Genome Center (TAGC), Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Kory R. Johnson
- Bioinformatics Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Wenxue Li
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tongguang Wang
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (AN); (SI)
| | - Sergey Iordanskiy
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- * E-mail: (AN); (SI)
| |
Collapse
|
42
|
Agrawal R, Jiří F, Thakur JK. The kinase module of the Mediator complex: an important signalling processor for the development and survival of plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:224-240. [PMID: 32945869 DOI: 10.1093/jxb/eraa439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 09/16/2020] [Indexed: 05/06/2023]
Abstract
Mediator, a multisubunit protein complex, is a signal processor that conveys regulatory information from transcription factors to RNA polymerase II and therefore plays an important role in the regulation of gene expression. This megadalton complex comprises four modules, namely, the head, middle, tail, and kinase modules. The first three modules form the core part of the complex, whereas association of the kinase module is facultative. The kinase module is able to alter the function of Mediator and has been established as a major transcriptional regulator of numerous developmental and biochemical processes. The kinase module consists of MED12, MED13, CycC, and kinase CDK8. Upon association with Mediator, the kinase module can alter its structure and function dramatically. In the past decade, research has established that the kinase module is very important for plant growth and development, and in the fight against biotic and abiotic challenges. However, there has been no comprehensive review discussing these findings in detail and depth. In this review, we survey the regulation of kinase module subunits and highlight their many functions in plants. Coordination between the subunits to process different signals for optimum plant growth and development is also discussed.
Collapse
Affiliation(s)
- Rekha Agrawal
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Fajkus Jiří
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jitendra K Thakur
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
43
|
Unraveling the multifaceted nature of the nuclear function of mTOR. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118907. [PMID: 33189783 DOI: 10.1016/j.bbamcr.2020.118907] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/02/2020] [Accepted: 11/08/2020] [Indexed: 01/25/2023]
Abstract
Positioned at the axis between the cell and its environment, mTOR directs a wide range of cellular activity in response to nutrients, growth factors, and stress. Our understanding of the role of mTOR is evolving beyond the spatial confines of the cytosol, and its role in the nucleus becoming ever more apparent. In this review, we will address various studies that explore the role of nuclear mTOR (nmTOR) in specific cellular programs and how these pathways influence one another. To understand the emerging roles of nuclear mTOR, we discuss data and propose plausible mechanisms to offer novel ideas, hypotheses, and future research directions.
Collapse
|
44
|
Guo X, Ma P, Li Y, Yang Y, Wang C, Xu T, Wang H, Li C, Mao B, Qi X. RNF220 mediates K63-linked polyubiquitination of STAT1 and promotes host defense. Cell Death Differ 2020; 28:640-656. [PMID: 32814877 DOI: 10.1038/s41418-020-00609-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 08/02/2020] [Accepted: 08/06/2020] [Indexed: 12/27/2022] Open
Abstract
STAT1 is a master regulator that orchestrates type 1 and 2 interferon (IFN)-induced IFN-stimulated gene (ISG) expression. The mechanisms by which STAT1 is phosphorylated and activated upon IFN signaling remain elusive. Our work demonstrated that ubiquitination of STAT1 mediated by the E3 ligase RNF220 contributed significantly to STAT1 activation and innate immune responses. Rnf220 gene deficiency resulted in the downregulation of IFN signaling and decreased expression of ISGs in response to type 1 and 2 IFNs stimulation and Acinetobacter baumannii and HSV-1 infection. Mechanistically, RNF220 interacted with STAT1 and mediated the K63-linked polyubiquitination of STAT1 at residue K110, which promoted the interaction between STAT1 and the kinase JAK1. The expression of RNF220 was induced by pathogenic infection and IFN signaling. RNF220 promoted STAT1 ubiquitination and phosphorylation through a positive feedback loop. RNF220 haploinsufficiency impaired IFN signaling, and RNF220-defective mice were more susceptible to A. baumannii and HSV-1 infection than WT mice. Our work offers novel insights into the mechanisms of STAT1 modulation and provides potential therapeutic targets against bacterial and viral infection and inflammatory diseases.
Collapse
Affiliation(s)
- Xiaomin Guo
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, Yunnan, China.,Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China
| | - Pengcheng Ma
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, Yunnan, China
| | - Yuwei Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, 650204, Kunming, Yunnan, China
| | - Yanan Yang
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China
| | - Chaoming Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, 650204, Kunming, Yunnan, China
| | - Tao Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, Yunnan, China
| | - Huishan Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, 650204, Kunming, Yunnan, China
| | - Chaocui Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, Yunnan, China
| | - Bingyu Mao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, Yunnan, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223, Kunming, China.
| | - Xiaopeng Qi
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, Yunnan, China. .,Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China.
| |
Collapse
|
45
|
Giovannozzi S, Lemmens V, Hendrix J, Gijsbers R, Schrijvers R. Live Cell Imaging Demonstrates Multiple Routes Toward a STAT1 Gain-of-Function Phenotype. Front Immunol 2020; 11:1114. [PMID: 32582194 PMCID: PMC7296103 DOI: 10.3389/fimmu.2020.01114] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/07/2020] [Indexed: 11/29/2022] Open
Abstract
Signal transducer and activator of transcription 1 (STAT1) gain-of-function (GOF) mutations result in a primary immunodeficiency (PID) characterized typically by chronic mucocutaneous candidiasis (CMC), but a wider phenotypic range is reported and remains unexplained from a pathophysiological point-of-view. We hypothesized that different STAT1 GOF mutations may result in distinct molecular mechanisms, possibly explaining the variable phenotypes observed in patients. We selected STAT1 GOF mutants (R274W, R321S, T419R, and N574I) that are spread over the protein and studied their dynamic behavior in vitro in U3A and HeLa cell lines. All GOF mutants showed increased STAT1 phosphorylation compared to STAT1 WT. Real-time imaging demonstrated three underlying mechanisms for STAT1 GOF: (i) R274W showed a faster nuclear accumulation, (ii) both R321S and N574I showed a reduced nuclear mobility and slower dephosphorylation, whereas (iii) T419R was near-immobile in the nucleus, potentially due to enhanced binding to chromatin.
Collapse
Affiliation(s)
- Simone Giovannozzi
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium.,Laboratory for Viral Vector Technology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Veerle Lemmens
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Center and Biomedical Research Institute, Hasselt University, Hasselt, Belgium.,Molecular Imaging and Photonics Division, Chemistry Department, KU Leuven, Leuven, Belgium
| | - Jelle Hendrix
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Center and Biomedical Research Institute, Hasselt University, Hasselt, Belgium.,Molecular Imaging and Photonics Division, Chemistry Department, KU Leuven, Leuven, Belgium
| | - Rik Gijsbers
- Laboratory for Viral Vector Technology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.,Leuven Viral Vector Core, KU Leuven, Leuven, Belgium
| | - Rik Schrijvers
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium.,Department of Microbiology, Immunology and Transplantation, Immunogenetics Research Group, KU Leuven, Leuven, Belgium
| |
Collapse
|
46
|
PBRM1 loss defines a nonimmunogenic tumor phenotype associated with checkpoint inhibitor resistance in renal carcinoma. Nat Commun 2020; 11:2135. [PMID: 32358509 PMCID: PMC7195420 DOI: 10.1038/s41467-020-15959-6] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/03/2020] [Indexed: 01/04/2023] Open
Abstract
A non-immunogenic tumor microenvironment (TME) is a significant barrier to immune checkpoint blockade (ICB) response. The impact of Polybromo-1 (PBRM1) on TME and response to ICB in renal cell carcinoma (RCC) remains to be resolved. Here we show that PBRM1/Pbrm1 deficiency reduces the binding of brahma-related gene 1 (BRG1) to the IFNγ receptor 2 (Ifngr2) promoter, decreasing STAT1 phosphorylation and the subsequent expression of IFNγ target genes. An analysis of 3 independent patient cohorts and of murine pre-clinical models reveals that PBRM1 loss is associated with a less immunogenic TME and upregulated angiogenesis. Pbrm1 deficient Renca subcutaneous tumors in mice are more resistance to ICB, and a retrospective analysis of the IMmotion150 RCC study also suggests that PBRM1 mutation reduces benefit from ICB. Our study sheds light on the influence of PBRM1 mutations on IFNγ-STAT1 signaling and TME, and can inform additional preclinical and clinical studies in RCC.
Collapse
|
47
|
Suppression of a Subset of Interferon-Induced Genes by Human Papillomavirus Type 16 E7 via a Cyclin Dependent Kinase 8-Dependent Mechanism. Viruses 2020; 12:v12030311. [PMID: 32183180 PMCID: PMC7150855 DOI: 10.3390/v12030311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/16/2022] Open
Abstract
Persistent infection by human papillomaviruses (HPVs), small, double-stranded DNA viruses that infect keratinocytes of the squamous epithelia, can lead to the development of cervical and other cancers. The viral oncoprotein E7 contributes to viral persistence in part by regulating host gene expression through binding host transcriptional regulators, although mechanisms responsible for E7-mediated transcriptional regulation are incompletely understood. Type I IFN signaling promotes the expression of anti-viral genes, called interferon-stimulated genes (ISGs), through the phosphorylation and activation of STAT1. In this study, we have observed that the CR3 domain of E7 contributes to the episomal maintenance of viral genomes. Transcriptome analysis revealed that E7 transcriptionally suppresses a subset of ISGs but not through regulation of STAT1 activation. Instead, we discovered that E7 associates with Mediator kinase CDK8 and this is correlated with the recruitment of CDK8 to ISG promoters and reduced ISG expression. E7 fails to suppress ISGs in the absence of CDK8, indicating that CDK8 function contributes to the suppression of ISGs by E7. Altogether, E7/CDK8 association may be a novel mechanism by which E7 inhibits innate immune signaling.
Collapse
|
48
|
Ma D, Chen X, Shen XB, Sheng LQ, Liu XH. Binding patterns and structure–activity relationship of CDK8 inhibitors. Bioorg Chem 2020; 96:103624. [DOI: 10.1016/j.bioorg.2020.103624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 12/11/2022]
|
49
|
Ferluga S, Baiz D, Hilton DA, Adams CL, Ercolano E, Dunn J, Bassiri K, Kurian KM, Hanemann CO. Constitutive activation of the EGFR-STAT1 axis increases proliferation of meningioma tumor cells. Neurooncol Adv 2020; 2:vdaa008. [PMID: 32642677 PMCID: PMC7212880 DOI: 10.1093/noajnl/vdaa008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Background Meningiomas are the most frequent primary brain tumors of the central nervous system. The standard of treatment is surgery and radiotherapy, but effective pharmacological options are not available yet. The well-characterized genetic background stratifies these tumors in several subgroups, thus increasing diversification. We identified epidermal growth factor receptor–signal transducer and activator of transcription 1 (EGFR–STAT1) overexpression and activation as a common identifier of these tumors. Methods We analyzed STAT1 overexpression and phosphorylation in 131 meningiomas of different grades and locations by utilizing several techniques, including Western blots, qPCR, and immunocytochemistry. We also silenced and overexpressed wild-type and mutant forms of the gene to assess its biological function and its network. Results were further validated by drug testing. Results STAT1 was found widely overexpressed in meningioma but not in the corresponding healthy controls. The protein showed constitutive phosphorylation not dependent on the JAK–STAT pathway. STAT1 knockdown resulted in a significant reduction of cellular proliferation and deactivation of AKT and ERK1/2. STAT1 is known to be activated by EGFR, so we investigated the tyrosine kinase and found that EGFR was also constitutively phosphorylated in meningioma and was responsible for the aberrant phosphorylation of STAT1. The pharmaceutical inhibition of EGFR caused a significant reduction in cellular proliferation and of overall levels of cyclin D1, pAKT, and pERK1/2. Conclusions STAT1–EGFR-dependent constitutive phosphorylation is responsible for a positive feedback loop that causes its own overexpression and consequently an increased proliferation of the tumor cells. These findings provide the rationale for further studies aiming to identify effective therapeutic options in meningioma.
Collapse
Affiliation(s)
- Sara Ferluga
- Faculty of Health: Medicine, Dentistry and Human Sciences, Institute of Translational and Stratified Medicine, University of Plymouth, Plymouth, UK
| | - Daniele Baiz
- Faculty of Health: Medicine, Dentistry and Human Sciences, Institute of Translational and Stratified Medicine, University of Plymouth, Plymouth, UK
| | - David A Hilton
- Cellular and Anatomical Pathology, Plymouth Hospitals NHS Trust, Plymouth, UK
| | - Claire L Adams
- Faculty of Health: Medicine, Dentistry and Human Sciences, Institute of Translational and Stratified Medicine, University of Plymouth, Plymouth, UK
| | - Emanuela Ercolano
- Faculty of Health: Medicine, Dentistry and Human Sciences, Institute of Translational and Stratified Medicine, University of Plymouth, Plymouth, UK
| | - Jemma Dunn
- Faculty of Health: Medicine, Dentistry and Human Sciences, Institute of Translational and Stratified Medicine, University of Plymouth, Plymouth, UK
| | - Kayleigh Bassiri
- Faculty of Health: Medicine, Dentistry and Human Sciences, Institute of Translational and Stratified Medicine, University of Plymouth, Plymouth, UK
| | - Kathreena M Kurian
- Department of Neuropathology, Pathology Sciences, Southmead Hospital, Bristol, UK
| | - Clemens O Hanemann
- Faculty of Health: Medicine, Dentistry and Human Sciences, Institute of Translational and Stratified Medicine, University of Plymouth, Plymouth, UK
| |
Collapse
|
50
|
Steinparzer I, Sedlyarov V, Rubin JD, Eislmayr K, Galbraith MD, Levandowski CB, Vcelkova T, Sneezum L, Wascher F, Amman F, Kleinova R, Bender H, Andrysik Z, Espinosa JM, Superti-Furga G, Dowell RD, Taatjes DJ, Kovarik P. Transcriptional Responses to IFN-γ Require Mediator Kinase-Dependent Pause Release and Mechanistically Distinct CDK8 and CDK19 Functions. Mol Cell 2019; 76:485-499.e8. [PMID: 31495563 PMCID: PMC6842433 DOI: 10.1016/j.molcel.2019.07.034] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/03/2019] [Accepted: 07/25/2019] [Indexed: 01/12/2023]
Abstract
Transcriptional responses to external stimuli remain poorly understood. Using global nuclear run-on followed by sequencing (GRO-seq) and precision nuclear run-on sequencing (PRO-seq), we show that CDK8 kinase activity promotes RNA polymerase II pause release in response to interferon-γ (IFN-γ), a universal cytokine involved in immunity and tumor surveillance. The Mediator kinase module contains CDK8 or CDK19, which are presumed to be functionally redundant. We implemented cortistatin A, chemical genetics, transcriptomics, and other methods to decouple their function while assessing enzymatic versus structural roles. Unexpectedly, CDK8 and CDK19 regulated different gene sets via distinct mechanisms. CDK8-dependent regulation required its kinase activity, whereas CDK19 governed IFN-γ responses through its scaffolding function (i.e., it was kinase independent). Accordingly, CDK8, not CDK19, phosphorylates the STAT1 transcription factor (TF) during IFN-γ stimulation, and CDK8 kinase inhibition blocked activation of JAK-STAT pathway TFs. Cytokines such as IFN-γ rapidly mobilize TFs to "reprogram" cellular transcription; our results implicate CDK8 and CDK19 as essential for this transcriptional reprogramming.
Collapse
Affiliation(s)
- Iris Steinparzer
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, Vienna, Austria
| | - Vitaly Sedlyarov
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Jonathan D Rubin
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Kevin Eislmayr
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, Vienna, Austria
| | - Matthew D Galbraith
- Linda Crnic Institute for Down Syndrome, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | - Terezia Vcelkova
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, Vienna, Austria
| | - Lucy Sneezum
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, Vienna, Austria
| | - Florian Wascher
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, Vienna, Austria
| | - Fabian Amman
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, Vienna, Austria; Department of Theoretical Chemistry of the University of Vienna, 1090 Vienna, Austria
| | - Renata Kleinova
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, Vienna, Austria
| | - Heather Bender
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Zdenek Andrysik
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Joaquin M Espinosa
- Linda Crnic Institute for Down Syndrome, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Robin D Dowell
- BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA; Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Dylan J Taatjes
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA.
| | - Pavel Kovarik
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, Vienna, Austria.
| |
Collapse
|